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Large amplitude vibrations and forced resp~nsea of 

curved panels and ehells are studied by the applisaasn of $he 

sh~lBos;r~ shsfbl equation. The GoBarldn proeedura 88 used t o  

reduce the n o d i n e s ~  par$;iaJ differentid aquatione to  o~&nary 

nod.inear eqnatf ens, Mp/~a~k~ed diflorenc e s are found betx~r~eea the 

behavior of cillr~ved i3weB~ and eylindzisd ehsPle. XelatEaono foz  

the dependence of $he free vibration period on sn3pliguda ara 

given. tao i m ~ d ~ ? !  aadyads  of Lhe cy1indricaW ~ i ~ e l l  pr8bIdzm ?,g 

included. 

The G U B V ~ ~  pme1 is fsuad $0 szAibl9 a backling ghenone- 

saon POP &be ~ f m x p i e  B%reathfn,g n-ao;ldeati, Shock response x~at"a10de 

are used to predict dyna-mic buckling of tlaa curved panel a1;'kid 

the pradictions are variUsC by numetied integration. 

The cy1i~drfcd  ohell vibratPoazs m d  rBspoaees are found 

to be g o v ~ r a a d  by m f f h g 4 s  aquacon and cert&n of the wall* 

kno~wn 12roperGee of *D&f$inggs aquati021 are applied to  the 

c yhiiadricd shell dparfif c o. 

The two ~ ~ o d o  a a l y e i s  of &he cyUndricd shell lie shown 

ts a*bbit we&c*c~apl%ng, allov~ing the separate sxcitatlsn of &he 

c o ~ p l e d  miode s . 
Sazns 11ui~1erfc&1 aeed.te arc ,even, 



Intxoducstion 

The Gurved Panel 2r~b1erii 

The Response of a G U P V ~ ~  Pane1 

A Second Dehi.elop:~~ent of %he Curved 

Panel Pro blexn 

The Gylindxical Shell ProbPa12~ 

kP 
ah ~ v o  :.;ode Cyandsr :"analysf s 

Gsnckasisns and %m::arhcal 2 e ~ u l t a  

References 

i 2 ~ p p  endlx f 

Figures 



AraApl%tude of vibration 

3*~*~ipliO%zde of stress function; or aaipliitude 
of ~Exx3nd n,od@ af viaration 

dending stiffa@ s 5 

Youggg e ~ i ~ ~ d u l u s  

Energy function %^or frss vit~rat isn 

'StresE3 T)uneelo~l~ 

Energy cona&anks 

Shell or panel Bsngth 

-?  ending A:.o =iicnt re aultant s 

Stress resultants 

-, 
r. ondizxlet.asfonaH for ~ 8 2 2 2  f~nctirsn9 



i+~-\agni&uda of a step Pangstion in R; g19r 4 

ratio of frequencies 

-v 
2 re$ vi ;rratioas. periods 

Two mode tota3 phase paraxzete2~ 

L'%sP@G$ 3a;beao 

Shock response ratio 

Radius csf shell or panel 

A parasetear: of $-Ifllts acjuatfoa 

.I stability dateria,fnan$ 

C t r e  s o function coeliicients far the t"~%~o 
clods analysis 

Shell. or: pane1 G~iekness 

Sh!~ass yer u ~ 3 t  area 

e r 4 ~ g i a B  :*-iods QUY:I$C~ 

C it cut~ferential rzcsde  nu,::^ g2er 

Forcing fznction cons$nk?ts 



Cartesian coordina%es 

Chock ragpesnsa axxiplitude pararzlstar 

Tax0 xm0de Lor~iag i ~ n c t i o r ~  ~a~1pp1it t~da~ 

Psr;.sli:etes~ of the LWO ~~>.ad.e analysis 

Delta function ai-r-plitudo cosffi'jiciaat 

Nondiazeneiesnsl frequency 

Tvm mode analysis par=-~etsrs oi phase 
relation a; and coaplng 

\ - - 
~uondir~lensiomal velocity f n the nuLzxerhcaf 
integration 



&:ode n u r ~ ~ h e r s  for the two 2usde analy~ilz., 

Poiassn'e yatio 

m 
A WCD YX 'ode phe s e relation para~-j eter a 

N snlneasity parazx~eta r %or s cylinder 

2 i o ~  t i r - ~ i e  

Itera%Hon six-.tplitude coefficient 



The atady of cylbdrfcd  aheU vibrations dates from 4884, 

the eacond eation af Raylefghb fmoas (a), where 

ce&afa dicplacsms& modes are assumed in order to compute the 

as~ocfat~d frequencies of vlbra%fon by the opplica%ica of the Lam 

g r a g a  equa$ions. apprwaeb Boo developed bts %he widely 

used RsyPefgB-Rita ma%od of more recant li&@riitturs. A ~ev iew~ 

of the devslopmenta from the tfms of RayIeigh mtif 3957 is given 

in refsrenca 2,  To that time R e i l s a h a r R ~  papa~33~ (3)  was the prkncf- 

p1 shall~sv s21d.l study of the nnodlnaar v%"ozatioa~ of ~ y t h d r i e d  
\ 

shells (pmePaj, 3n 1998 A. S. VsL'mir (4) u s ~ d  ths ohdlow @hell 

equation8 to study the stability of cylindric& shells (panels) v+i%k 

r ap fay  applied mbl loadfag, and in 1959 V .  %. Agamisov zmd 

A. S. Vol'mir 45) again ass9 the shallow ahaU esqmtiona to ~ 4 u d y  

both a x f  al and hydro etatic load& which had beem applied dpamf - 
coP3by, 3.a $964 Qug e paper ( 6 )  appeared with a diecu~s isn  of $he 

influencs of large mpIi%ud@ e on e y l h % d ~ I ~ a l  she11 vibr&tioas again 

utilisiag the sh&$~w obell eq&iiationa. 

Even with these several papers uoiag the ohailow shell 

approach to study the large ampllgude ~bsa%ion or Pasponee prob- 

lems oB cylhdric01 @bell@ a d  pmels e there v~ti?re a t i l l  a n u m b r  

of qusotions &at ~ a m d n e d  to be a s w e r e d  by the application s f  

$be shallov~ ~hslkl equa%ions. Xt is the purpose oi tbf a thesis $0 80 

a little further tovgard the aa swerbg  of these queotbona. The 
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abaPlo*~.r ahelf equaaons a m  asad to sktdy vibration m d  re- 

spomBe proble~na f i r a t  f s ~  a curved pmeh, then for a cylindrical 

shell. A two -&node =dya%s sf the cyUadrlcal s11slP l a  2 r a ~ e n t e d  

I2. CCF%ag$er VEI. Ia k l ~ i g  connectboa% it s~~waid  be noted that the L-JJO , 

1"1:mdc peoblai:-A lor &he cy'$%HndrPcal shell 123 ~ix~ipler  t$ai the two 

mode probSen2 %OE a curved plate. 

The final chapter i g  devoted Bs nuw~efi~iacal rasuB&a. Theee 

are no$ intended $0 be ~ ~ ~ m p r e l ~ e n s i v e ;  ~8&1%@t, h d p r ~ ~ e n t a t i v e  

results are ~ H V Q E  280- several ~ P ~ S B ~ O ~ G  QC Lntaregt. 
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GNAPTER II 

TEE CURVED PANEL PROBLEBA 

2 - 1  

Ths psecsnt saalyeis will @tart froz~ *&~9 VOD Karmm 

large deflection plate equagion e~ended t o  include an initial cur- 

vatuse. The ccoordinats system and nomancl6turs are repre - 
sentad ia figure 4. A panel (plate) of length L in the x-dir~ccti~n~ 

width (7ia/n ) in the y-direction md thickness h in the .-direction. 

initially lies in the xy-plans. The xy-eosrd&ate syatexn is 

located wi& respect to ths panel sjrueh that the region of tAe xy- 

nd L ycLa O O - 6  L , The p1me covered by the p n e i  Ha - z* J 

plate i~ given a stmall positive veeieai displacement QpooitGte 

di@plocsmeat is in the upward or %-direction) to form a ahdlow 

cyliad~icafk ourface 

The V O ~  z&rn?= plate 63quatfons are2 
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Eere the operator v4 is defined by 

while the ~ t g e s g  function - is related to the strees resdtmts 

/d . N y and Nx by the relations 

Whan s cylindrical surlaca u d e r  mgorrfi axial or circkw 

fsoential ~ t r e a s  $8 to be etudied it is cowentent to separate the 

constaa~t initta ~~Dtress resultants N r i  ~ u a d N ~ i  trcm Nx and 

E\ly by defhxlng a new s t reea  haaction 

When squagions 2.4 throwh 2.6 are used togather with the sirfipli- 

fded notation 

the von Kasrnal pl&e equations gove~i3Ing an hit ial ly curved pam1 

become 



Some d p m f c  p ~ ~ b l b e m ~  of very t h h  wd led  cylBndriea1 

panela will ba considered. 1% io aoaumsd in these problems that 

the deformations ( w ia the s-direction, u in a s  x-direc%ion, 

v in the y -direction), the flexuaeal deformation, w , g r s d s m b t e s .  

In reference 3 it hoe been shorn th& for the lowera (fiexural) 

mods@ of f~esf vibration oi thin cylindrical shelf s ,  wban n is nag 

toea smd11, say n > 3, then ths mswiimw hsrtia1 farces due to 

accelerations tgngent to ths surface of the shell (i. e. . ;GI and 
' *  - 
V ) may be neglected in compari~on to the maxim- trw=m- 

verse iner%ial force ( w % 1. Thia ability to neglect the u % 

pnd $ 2  airriplifies the analytical problem tremendously. 

Wama ws shall a@smSe, explicitly that the only ins~ial force; 

*ich i o  to be conaidered i~ that due to the tran~vsrse accel- 

eration 2 Under this assumption the load normP tc 

gunfacs i o  considered to consist of 

where is a uniform constant pressure and PC%,% t ) i a  

a space a d  time d8,wnd~nt preseurs~?. %Then equation 2.9 69 LZA- 

tkaoduced into equation 2.8, the resdt is 
. . D v 4 S  ' ( R - 2  h ~ q i )  f Pc*,y;t) 

1 4  I = V  F ~ T  S x x  + I S : r - S x x S q q I  - 



1Sf% the curved p m e l ~  ~tudied hare wsrs  s part aoP s pressurized 

cylinder d thou t  other initial streeBes, the ~elatisn N i = F? d 
would hold and the term ( P, - Nfi ) would be zerb. Other- 

wise, the squatloas of motion are equations 2,10. 

2.2 

W e c t a n g d a ~  pmsl~ subjectsd $0 ths ao *called ''greely 

@ugpor%ed'%mdasy condigion8 will be con~idered. These con- 

at ions are 

s = S,, = o  
ON x=o,i- , 

F = Fxx = o 

Tne eowditiosr, Fgx = 0 on a b w d a r y  x = coast& reegetfres that 

N y  be eero on that boundary. The additional coedition F = O 

on the bwdav x = conatmt requBres that Fv y = 0 or f\lx = 0 

on that bomdary. Since the stress-strain rsla%ioae way be written 

G h Exv = N X Y  , 
the freely supported bowdsry conditions require that the norma1 
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stress resultants N and N and the aormal strains a?d 

vanish sn the hwdarfes while no r equ iaemn:~  ore imposed 

on the shear o%res&aes and tbs shear s t t a b s  by the bowdary can- 

dfgiono. 

h a. @ir&i%ar mame$ the $ouD&;~P~  ~onditioa S = 0 OD 

x . const- r s q u i r e ~  that Syy = 0 on x = constant. The relation 

between the mO338nO res~jhtmts a d  the dispbcerfian$, S ,  axe 

Thue the bomdary conditions an S psovida tan additional csndition 

that M x and My be? e@FQ on the bowd~i~ ies  bit MXY is not pzs- 

8~~3ibed the Lw%~da~iea. 

2 . 3  

Appropria%~ E ~ O ~ B B  for the dfbpbtaeement fmctian S and the 

stress fmction F must be selected in o r d e ~  to apply the Gslsrkfn 

mthod.  These m d e s  must satisfy tha prescribed b o w d r y  can- 

dieioas, equations 2 . 4 4 .  A set of modes \vh i~h  ~ a t i s f y  these baud- 

ary conditions (as *seiiell as babg a 881%1&ti&3n to the lheariaed equation 

o&ahsd when the aanlinsas terms are drsprsd from equations 

2.18) are 

s = (w-ur;) = pet, c o s ( 2 )  S I * J ( ? ) >  
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The choice of thee@ w d e a  c o z ~ i e s  wilh it the in2glbcBt assumption 

t b t  a$sy nanltnear%ty in the problem wQ.1 Lawnee  only the aatap~ 

of the time depeden% mplkiftades A(t) and Be) m d  will In no way 

affect the space distributions of stresses azod &splajacsment~. As 

m approximati~n* this asamption can somstbee be justified 

en on sxpssimeatal basfa. 

The Qderkin p~ocedssre rsquires that the m d s e  (equation 

2. 914) be subetiguted los S and F in the eqaationa 0% a2otHon, 2.64; 

that each of ffhsas equations be %vi%reightsd ~ ~ 5 t h  the a p p r ~ p ~ f a t e  

modal function (in lBia case coo(%) stu (?) 1 and that the reaultmt 
rrd 

-"a sy4  zm e+ation@ be in%bgra%@d QV@P *6 don~ab? 0 O )( XC , A n  
The aqressisns arising from this procedure aze 



Evdwtion of the integrals 0s equations 2 . 2 5  a d  2,16 give@ 

(1" 2 8~ - L B ~  
COS' (2) S I ~  (r) A X  J y  - (- ), 

0 -&V 
a m  

/ / ~ c o s 3 ( ~ ) s , ~ 3 ( ~ ) d x d y  = (%)($y) 
0 -a3 ** 
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Then 2. iS becomes 

and equation 2.46 Beeamat?s 

lf equatfoa 2.18 $8 used to  elfmfnata B from equation 2.49 and $3 
@ 

the f8oUovxfng notations are used 

2 % d: =DL(*) +(%)'I '+ Nxi (H)= + Nri (%Ia + 
1 



the equation 

i~ obtained for tho nonclimeneional amplitude coefficied { . 
2.5 

h reference 3 R~isaaraier developsd, by an eatfrelp dugex- 

eat ms&d,  aa squation identicall with equation 2.21% ~xeept  for 

the la@% tef~n3. Ref  ssner consider 8 an initially pr ea sa~laed panel 

which bs +eprsssnted by the shallaw ebell eguaLfoas, 2.8. 

Hence the, condition N q i  = a is a s s u e d  BO thal the last term 

h equation 2.21 vmk~hsa, m i s  sgreems& between the reedts 

obtahed by Galerk i~ '  8 me&@d and Weiasner" sethod provides 

@oms esnfiijidgsnca In equ&ion 2 .24 ,  

R ~ f a  aner, appiyhg the Lind~tedt-hBing perturbation 

Lsebiqus , s'&shs the ]%oU~wHslng e x p r ~ ~ ~ f o n  relaeing the free vi- 

br@ion f requeac y and mpllitude 

where i e  the wplitucis at 5 0 .  

, . . .Oh@ rsmarbble  fact that ahell does not gpend 
equal t h e  ka%ervals deflected outwards and deflected 
inwards. Rather, more U n  half sP the eyc1e 18 spent 
during the7 hward defiecfion. 

deaection amplitude there is a as soeiated larger inward deflection 



mpli tuds . 
2.6 

h. Chaptar UP 6 e  a d y e i s  sf a con3plete cylbdrical shell 

1s discus~ed in detail, ~ U I  it i s  ~uffiel ied to make ody a. b ~ f e f  

comment here, b order to @&end the appllic&ion or% the @halow 

shall squaticano ts thai3 csmplete cy lhds r ,  it is necessary to 

chmge $he limits of &e Gasrkin btsgragion t s  hclude at Isas$ 

cne ful l  wave, is@..  - L L x L  L ;: Y 5 3 . Can~equently the 

reoalts cgsn~fdered fa this chapter are mt ddrsctly applicable to 

a e  complete c ykbdrical shell. Z t  will turn sut Ohat far the corn- 

plieee shells $he quadratic gaonlhesrity vmiohes with It goao 

This squation may be rewritten as 

where 
Y =  4. 

Then equatiasa (2 .23)  kqown to have ebguhr i t f e  s w h ~ n  4 ( #) = 0 

and P= o S ~ & O ~ ~ O U B I ~ ~  ~ h e s e  sbgdarikies are loeaeed on 

the # a x i n  iR the phase plane at the poWs (t , o), (i, 0 ) , urd 



( d ,  0 ) . where 
( = o ,  

If and are complex, then $ i s  s .table center end the 

onLy singularity glkne. If and are real, i .e . ,  %t 

then ( and 4 are stable centere and is a saddle poh% 

[figure 21, Ths physical Hnte~pr~tatig~n of the in~kancae in a~hich 

sqwtion 2.26 holds l o  &bat @table vibration@ may exist  abs&: 

4 )  the w3deaected e q u i l i h r i u  point I(; with a 

limit on the maximum amplitude. 1 ( 1  - 1 , 1 . 
at which suck.% o vibratii~n may OCCUI; 

2) the 98buckled'' equilibrium p in t  with a limit 

on Ule a i ~ ~ i m ~ r n  amplitude. 1 $ (y1  1 - 1 1 a& 

~vhich such s vibration may ~ ~ ( t u r k " ;  

3) tbe saddle point , end rsarcomwssbg Lhs two 

equilibrium poLnls 4 and 4 a d  with a limit on 

the mlar imu ampliguds ( d n ) -  #z [ a& wMch such a vi- 

bragion mag QCCUZ e 

Fsr equation 2.26 $0 h ~ l d ~  ( must satisfy coaditi~z 



t e r m  DL(%)' + (g)L 1 * will have a s m d l  ecn&+ibaicn compared 
4 2 -Z 

t o  the zqembrane term (9) ( 2 )  [ (?)= + (2) 1 , unlees (4) >9 (f) . 
P, And indeed, Lhe initial pressure caa be made ~s large that 

i%hs &P;llaquality 2-28 i o  never true a d  than no possibility oaf a buck- 

led @Bats exist@. In t b ~ t  event the vibration 5s a b u t  ths single 

center = 0 and is very close l o  the linear sysLem in its bs- 

a, sa tbs other Band, this pressinure i s  nsgaeege Qextsrnd 

p r a ~ a u r e )  it may approach the vdus 

which ~ ~ o r f e a p n d s  to buccMing of this cylindric& panel wdea ez- 

where - Kc,, is a p s i t k e  nramber. A plot cP t vs 5 would 



reowndbg to E < 0 is not examined hare. 

Integration of @quatien 2.24 
n n 

NOW I the defhttion of Y is restrfctsd to the specid case, 

the freqasacy d, is replaced by it8 asoocia%sd period 

(a.  35) 
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&en the resdt of @@paragion sf variables md htagratboa is 

SLme the system described by equation 2 * 2 3  is C O E ~ ~ S B W ~ -  

give, the hdf pe~fod of the a y ~ t e m  is represented by sqaatfon 

2.31 il $ and f2 are the extremes of mpl9uda of the syBtem 

rspressntad by sqaation 2.23 a pa&%edar v d ~ e  of K 

h d  so the ratio of the period of one compiete cycle of the non- 

Ifnsar oacflktfow &e the pe.rriaod of the equivalent l k ~ a r  system i a  

Equation 2 .  38 is as alliptic ii%teg~s1 a d  its evdaatisa is discassed 

in AppeaBh X a ~ d  ghe results m e  p~e@e&ed in GhapQdr V. Equa- 

tion 2.32  can also be used ic describe the p b s e  plane ( $v - #- 
plarme) trajectories and, with set ideneicdly ~ o m ,  to de- 

eerfbe &ha ~ m x f m m  di6splaikeements far a given energy 1 ~ ~ 1 .  b 

fact, if ki?qu%ion 2,32 5s written in form 

where i s  to be taken as sero, then the curve ~ ( 6  0) is a 

veflical crass ~ect ion of the energy au~faea .  & provides a 

vf sudtzation sl how h e M b g  depends on the energy level, on the 

iaigialk pkeassure a d  sn the o&ez nodinasp contrib.h;iona (sag, 



The general cha~actesr d the phase p1-e trajectories, 

determbed from squation 2 ,3%,  is con%rsllad by %Be two pasme- 

Beas E d K which repres~nt fie dags~bz: of ~ ~ n i i a @ a r i f y  m d  

the energy level, respectively. E @@ation 2.27 holds, %ere ere 

two stab&& ce~ters .  The curve8 which e3$i~cl0sb efther of theae 
* 

c e ~ t a r a  are Ein tarn ea~elo~ed by the osparatrk . If the molfon i o  

at &a energy level less t h n  that of the s e p r a t ~ i x ~  then hf9lal 

con&%ion@ *11 debermine the esnter with ~vhie3B the motion f a  a@- 

eoceSa%ed. If a$:@ snsrgy level f @  greater than i%h& for the sewra-  

v~bsrs  the upper sign c o ~ r a a p o d a  go the upper h . d  plme. 8 the 

v a u e  of E i s  Ism tbm 8 / 9 ,  the slope of 4&sss traj~etorfel is 

zero only at = O . But the madmuan inward defieclion. {in 

mex, has a greager absolute value %ban does /out m w .  Xicw 

t h e tieme of t r m ~ ~ i t  f r ~ m  {in mtu; tc /= 0 and the time of 

tra~sit frorn += 0 to d OIL% max are determined by 

@ The saparatrix i s  h t e g r d  curve passing through the sadde 
p o h t  . 



4 in tbc Wger h a  pIkae. For ~ 1 e h  vdue  of Y fa Bhe upper ha&f 

plane, there ccraeapnds one value cl 4 L1 each of the inward 

as~d outward denection states. Since the dimtwce I 4 in max 1 
eovsred by Che integral t ,u is grearer than the di~tance I '/ oul max \ 
Dhen t,, > t,. A similaa argument may b made far other trajec- 

$oris@ whm & ) 8 / 9 .  Thio result ha@ d o o  been verified by direct 

n m e r i e d  iz-Ei;ag~&in af &e egutfotl.9~ of m ~ t f o a .  Ths types of 

trajector4es diecu~sad are @how in figure 2. 
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GPIAPTZW HI 

TI-3E R E S m N S E  OF A CURVED PAYEL 

A few d the :,my method1 of mdyzL: the F B B ~ O ~ B ~  of 

a n e n l l n ~ a ~  system w$kl now be applied. Tbs dgferen%fal equ,atf~n 

malyssd is 

Sfnee the discuooion of the Best eection has ds&% v~f& the 

pias@ p b s  , a re@ponse problem which may bs b a a e d  d t h  the 

aid of pilase plane trajectories will be conaidered first. 1l ('1 

is a ddsla f=c&fon and kf the hitid coadigiana aaooeiated ~ 5 t h  the 

problem are $(o) = 0, # T ~ o )  = 0 . a new problem dhich is 

e q u i ~ a 1 ~ t  to tab may be bo~mulslited. I.n $be new problem Q (T ) = 0 

far all vduse ol f a d  the abw hit'aaB, conditions are 4~o . I  = o , 

& Co) = 3 . The relation between d, 3 and a preaaurs  pulse 

of raa~imitpads T). i e  

where Po f E! obtained &?OW the fou*h of eqhwO%on@ 2,47, by see- 

t b g  p(~, y ; t  ) = 3, . Now Ohs phase plane Lrajeeztoriee df ocueeed 

fa 2.9 c a  be used to deecrfbe the 9kespnse of the 8y@%6m to  a delta 

function of inagnf ude d by simply finding the point in the $- (IT 
plans which ccrraspondo to &(o) = 0 ,  0 )  = . The reapense 



-209. 

gpecfal probkem of ceenoiderabfie intarest i@ %a find tbs magnitude 

of for which the t ~ a j ~ ~ t a r y  will e;acLo~e Ohe bucaed equLTPB- 

rium point $!!, ( E  3 $ ). This value of munt cop reapend io the 

valocity intercept of the esparaat.6~. Thus the cri@ic& value of 

pa will ba d6termined from settinag 

Ths equivdent statement ic  

h terms af the physical p&rame%er~ 

The eqlmatfon oL the sign in equation 3.6 emerges from 

s consideration of the effect8 of d-pa'%in.,g, kt the obsenee OP d w p -  

ing, the phase plme trasedsortao ass syrametrie with reogset to 

g7810~%ty, thud an intemdly applied praasugs palss w o a d  buckle 
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the system os easily as woaalid rn ek%eea& PXBSBUP@ pdse.  Thf s 

48 no% phyefcaUy reagonablo. A mare ea~efa3: examhatlg;ln Se Ln 
* 

Q P ~ @ F .  ~ x P B F ~ ~ ~ ? s B ~ &  WQZ~% b $ ~  vtateb 2%$; C. 2. T .  hat3 

indicaed &at I%@ dhmphg c,& %he vfbrationa ~f thin eiia"~*&ar c y f h -  

drical shells ba sa%&f-sqa%dva1eat fo figgy oz on@-hmdr~~d ilcyelso to 

b m g  to ha@ mpfiitud~. Dmpfng af such emaU magnigude i~ B&*- 

iafwtsriiy traaged as viiecou~ dmpbag. Zf a, visiicous dmpfng 

tsleem i@ f n t ~ ~ d a e e d  hgo aquagion 3 .23 ,  QBe phase p h s  trajactories 

ape na 10nge~ l&s figure 2 but are 5l;qov~ l i b  figkrlras 7 md 8. F P O ~ ~  

figure 7 it is elear sat for zs, trajacatory to enter tha bucMad ~ s g i o n ,  

$ha @quivamt hi%%al qir@loef%y must be negative, that 1s h%vard+ 

Hanca, $&,a prsoaure pulse muet bsis eeer-l. r~gui res  the 

3 , 2  

It $a worth notbg thst the phase plma tzajectories provide 

a d~B;ermim$ion QI tha maim-  amplitude response, of tihis @he81 

fiiystem, 80 an appi%ed impdsiv& pre~gaure L~adiag. The i a W i &  

v@locfty, corhaspondfag BSo a preeoure pul s 6 #  idsatifiea a given 

pha~e pPae  trajeetoq. The maxim- arnplJL$&adg? asso~fated wit32 

that %r&j@cQov i s  the maximum eb8tJakie deformation tha* the shell 

can experiene e . 
Aca Meration scheme may be applied to the reeponsa prob-. 

lem far a delta f tion lo&bg. A d68@~ip%i~&$ of the largest non- 

Srhsar @@act &a% m y  be treated with am sqaivaleat linear system 



%B o&a.&;&cked. Csasldet the iteration ~cherne 

h g ~ ~ & t e  @qaa%$on 3 , 7  h t ~  equatfon 2,223 d g b  the hitial cendi- 

tions f! (0) = 0 , 0 )  = . Acd further ssaurne r b t  4 (0) = i, 
is a eonstant. Then is determined by 

ths +o&s are &s earn@ as &a;ssa gowd bw equa%iarl 2- 25. 

W%en 4 = $ + 6 is intraduced into equation 2.2  3 ,  there follovrs 

4) fr +s :g ,  I I+*& 8, (I+- t8,)] = 0. (3,91 

Tbs sola  ion $0 ewa%isn 3.9 f 8 

Mter apptieation of %he initial conditions to , . the ewreosica2 

obtained is 

&,(TI = 40:., [ I - L ~ S P Y ~  +-p3 S I N ~ Y  . (s.azj  

Thie solugion can kave meankg ody i g  f a  is real. Bi 6 
is zmt real, the sclu%ion is not priodic. H 8,) is taken tc be 

sero, p = 3, , and rzahkg has beem achieved since a lilear system 



-23- 

has been matched to i t~elf .  l2 do, is %&en ts be the b.acMed 

squilfbria% pet t ian  (gar C 2 8/91, 

then ths condition, 

deleminee Lhe values of d*, and h vvhich are an acceptable sclu- 

%ion 0% eqatisn 2.23 copreepsndhg to equation 3 . 4 2 .  Fi"%gu~s 9 

sb~vgs several curves repregenting ( ~ / G L ) ~  a f m c $ i ~ n  osf 

lor @ever& valu.uee of E . % is cbsewed that as 6 ia- 

creasaa above 8/9 that a larger md i a ~ g e r  part of the cuws  in 

the regkn - 3 C d0,4 0 ccrreaponds to uaccep$able valuea for 

) a t  do) 4 - 3  these&Kilf always $ e m  acceptabBe 

solagion of the ~ Q I E P ~  of e v a t % ~ a  33. 42. FOP f n s 4 m e ~  II BI & be- 

comes unbundedlp large, the value of +( *, tends to -4.5 and 

for t = 1. ie  -3.  2"h~he region co > C ?  1 can have solatioris 

~f %he farm given in equation 3 , i Z  far V I ~ S ~ P ~ ~ I O B S  abat  the k ~ a e d  

eqablfbrim 4m9nt given by sqwtion 2.53, 

to a step fmction with zero in i t id  con&tisns irfiwsad, %. e , , d (O)= 

- - (0) = 0 , Q(Y) = R for ?' 3 0 , where R i a  a c o a s t a t .  

The syotem cconsidsrsd i s  
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Again %he i t~rat ion taeBnfqus is applied, seskL~3 a Ilneariasd 

ealution approximating the action of $he aoz~linea~ sy seem, Ths forn3 

of the iteration 18 

vrh@r@ &, is a conatmt. The Q,,, m ~ s t  satisfy 

vgith f de&oed by equation 3 .11 .  To determine the range of vslidity 

of equation 3 - 4 9 ,  il i~ a ~ s u m s d  Phe i) ( r )  is very  nearly fie cor- 

rect @olutfo~,  &6n the true oolutioa, tT becczxes 

where d2, ,[*) contains all the deviations d %he true solation from 



k,,, +- 4%) La- ?=~,pr + q c o s 2 ~ ~  I= o. e3.231 

the foram (ref. 7) 

From thfo 
I a b, - ~ q  (b,,, +b,.,) + ~ 7 n 3 , ( ~ m + , + b , . , ) - ~ ~ + ~ p ) ' ~ ~ = 0 ,  

I I ( 3 .26 )  
[ a - ( ~ + ~ p r j  b,- I?=  (b,,, + b,.,) + .i: ( bm+,+ b w - r ) = O ,  

i s  obtained. i ~ s o c i a % a d  with these sqyzatia:~g,s there i s  an ind&nPce 4s- 

eesmiinmt vvi%h $be ~ b a t ~ 8 1  seven by S ~ V ~ X I  dets rminant, Tks condition 

%hat thia determinant v a ~ i s h  (OF far that. matter, any finite cea~itrd 

determinant taken from the idinite dstsr*minxat) i a  an app~oxkx2aOe 

condition to dete~mina  the values of md i26fi~:e the stabiB&y of 

the solution assumed ia equation 3. I$ &his B O B U % ~ O ~  is - B ~ B ~ % B  
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then 4, is n o t a  good appp+o.xit:iation to the true anlution of equa- 

tion 3. 15, It ls certainly that the vanf ahiag of is the imundary 

bshwesa stable and unstable values of &(,, . biaking u s e  of this 

Pact the first order stability criterion for hi,, i s  

Y, = =:[h 8,,,1. 
- * 
iqherra $he i:necessar$p opsra~oas have !3eei;n carried in $ ~ g . ~ a $ i ~ n  

3. 27 '&kc conditions lor stability oi d,, and hence (he ?ii;.it!ng 

conditions ccder vrlzich J(,, can represent tho raspoxace oh the 

-1 v Q,,, 8s defined by equalion 3, 1 7, -&qu;ll.Bf~ns 3. B '7 and 3 , 8  1 

have been used $0 C O ~ S ~ T U C &  a stability ~30~,1elgraph vd~fch  is 

presented in f5g.u-e 13. 

A co:~&idaration of &he energy si the proSlese-= o i  a a t c p  func- 

tion loadin2 as represented is equatio~t 3.. -88 5 yields 
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A compa~issa with equation 2.39 SBOVJB tba% tiw eEecest of a pressure 

stop fmunclicn i e  to add a rsrm, linear in #, tc the elaerpy equation 

p r w i o ~ @ l y  ob*&in@d  OF the free vibration, These energy 4 8 ~ ~ ~ 6 8  

srs @horn figure 5.  A8 e>cpectsd, an. SermP preosuza step 

bilizea Oh@ cygfnde~ a d  a s x t s r d  pressure step  destabilize^ &%a 

c3~liadsr. IEa addition a there &re &her PBS B 81p~ted F ~ B Q P ~  SI V2ith 

m e~ncesmd pressure step, &he sadae gs i~a  moves closes to e h ~  

origin, # = O . and to a lowez energy level. The buckled egunbb- 

point move@ to a 1mer energy BmeB and a larger bvzsrd dia-  

plaeeraent. Tha static aqullbria~ pbt m v e s  to a. higher enBrgy 

level and m b%sva~d displacement. hhem101 yxeds~re has precissly 

ths,s oppsite sBect, Figure 3% showe how pl~ase pptam tzajsc- 

tsrieo are ~~3odBfied, Figura 14a depicts &a ~ a i n i m m  snesgy 

bucaiz%g trsjactcry (ssporatrk] for a given system. Figure 41db 

showe Bow this t r a j e e t o ~  would be ~h-ged by an. exterrd presgure 

step xvBfls figure Q l c  abowa the M u e n c e  of m infesrwl pressure 

step. 

3 . 4  

h 4nqpart~at m d  in%ereating q~ea t i o r i  %a ~aised by tbfe 

inQuence of &he etsp fmetian loading. 1% iis clear && the largex* 

the @&@FD&P ~ t e p  f&"~cfion~ the lov~er be the ~nergy level re- 

g ~ i ~ e d  to C 8 U S 4  b u ~ u h g  of $:he aheU, wail &@ st,@~ ~ ~ B B B U P B  i d  

equd to the otatic =mcMhg preosure i.n ~vh%cb e m s  the @hell wW 

bucae;r M@lo& dPamic e f g e ~ t ~ .  The qusatfoa that arises Pe "%is: 

$8 there s condi%isa such ahat an. applied e&srasl prssours  step, 



of magnitude %sea than the @fta$ic h a ; M b g  preBsure;, wi11 buckle 

&he sbeflPP To mswar this question it i%e iislecesaary to k n w  the 

rnawimuna v d u e  tBac / will attain b r  any external  preeaure step 

and ts comFre  this value wi& the lacation of the @addle poht. 

U this m a i m ~ m  reawnse i s  greater thm t he  mpli tade  which 

cosreopoirad~ wi% the ssdde point, hcklilim i s  gosefbls. 

Application 069 the weark of F u ~  md B ~ f i o n  (81 for the 

@pons@ of 1% nod inea~  system to tba maxiraw r e ~ p ~ n ~ e  of the 

equivalent &hear oyslem (t = 0 ) when each has been sabjectsd 

tto tbs oams Ioadbg, Thie ratio depends on the mture 6f the 

nodinaosity a# $he fe8L0rfng P O P C ~  in the s y s t e ~ ~  ccoasidered and 

on tha type of Loadkg to be applied to &see two syo tem~.  FOF 

a step load, they have shown that the response ratio % has the 

foliowbg ;iom 

where 9 (i*) represents the nonlinearity tuxt ion of U e  reotor- 

b g  f o r ~ e .  The dimit (-1) occurs here since buckflbg =curs in the 

nagat ive d%sp%iaeem@nt domah. FOP the p r ~ b l e m  exambed here 
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and A i@ the maximum ' ' afilowable" D O ~ - ~ ~ F ~ S O O ~ O ~ &  deflection 

of the noaliasas system. me choice fag A is that deflection 

which is %he Isast that wal  &low bucHbg to occur, i. s .  , the sad- 

dle psiat. The crftied loading ratis obtained is this mmner fo 

The maximma response of thia lhsar system i s  12 P = whx 1 4 ~ 1 ~ ~  \ a 

But recalling $ha$ 

the mufmum nonliaear respowas to o ,step input of magnitude r 

is fa-d tc be 

respect to { enad seetisag the de~ivarive equal to  sere, witb Uae 
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The three roots gdf this equation wf ll be ordered in the faahion 

dc3, dlal go, The magnitude of (Io(,, must correspond 

It i % s  not poaaible t8a& an b%:ernd ~ I P ~ B S U F I  Isading wf10 gsser&%e 

a dynamic rsspoass great enough to buckle the ehall, G%us an ex- 

tern11 g r e @ @ u @  step may be taken as the phyafcdly importmt 

condition. The sh%ernd Loading situation eorreapondo Lo r 4 0 

Ef equation 3.38 i@ Wrsduced h & ~  equation 3 .37  af%eg dropping 

tihe a b s ~ l u t e  va%1~@ eigns, &he bqwtion for value of r which 

will j u ~ t  allow buc&Uing is 

The roots of %hie aquatian are ordered as cz, I J;,, Ths vdua 

of , %&.I1 provide the correct mgnftude (and s i g n 1 . f ~ ~  t h ~  pres- 

8 sure step required to buckle the cylinder, provided only that 6 > 9 

Figure 39 shows the varlaeion of f'(, , a8 a function of. r . 
The m&galtud@ of R (md Benee V 6 can be rekted to a 

physic& preseuze P, The relation is 



Z 

Core muaQ be g&cen at t h i ~  p i s ~ t  since d L  depend8 on an t a i g i d  

preaaure, The baemd presoure is not 8 part ~f the initial pre8- 
(ST ) 

sure avlaich delemined r3: . Tho vsLw of POLPT be corn- 

pared with e,, from equation 2.29 to determine which is 

larger at e a h  p a a i ~ u l a ~  ~ ~ a d i t i ~ n .  
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GMAPTER 1V 

A SECOND DDEVELBP&LZNT OF ThE CURVED PANEL FROB=&& 

4.4 

h rsfs~eace 3 Rsissncr a s s u e d  a stress fmcbion that sat- 

f sffed %the b u a d a s y  condition@ bug whf~I2 did nab satigfy &@ earn- 

wtfbiEity aquaefon exactly. h section 2 . 3  et seq. the s m s  phpo~eduze 

%o fallowed, The squa%%oas of motion will bs o&ahsd uofng an a@- 

@urn ad dt splac @men mods shape md the C O ~ Z P P O B ~ ~ P ~ ~ ~  exoet st~438 8 

fwction (which a a t i ~ f f s a  the ccompatibility squation fa a mmner 

~ % m f l a r  80 the vm~k of Ghuo (6)). @the dfspfa~em~nt  G[xlygt) BB 

given in equation 2.44 f e  used a d  eu$o&iBat@d into the eompattbflity 

equatioa (&a f i r e &  i%sf equation@ 2.8) the strseas fw~ckfon may be 

dets smiaed by integration of that equation, The Integration give o 

This otseee fa~%i$tisn satisfies the eonlpatibili$y conditions exsc$ly 

but the b w d a r y  coapllditfono on F a d  108 sscoad derivative@ are 

not satisfied exactly, but ase eatiefied only- ooa the avs~ags. &:one 

the la@@, ~s gi?ssuI%s ~btafaed are eqeeted %0 be in9proved if squa- 

tfon 4,4 is u ~ e d  with the Gal/e~kin averaging technique 40 satisfy 

the squblibrfm e q w Q i ~ n  (fih04 of equa$I~n@ 2, $0) ~ d $ r  the res$rfc - 
tioas af seetion 2.6.  

'When eqaagions 2.44 a ~ ~ d  4.1 are btrod~csd info the first 

of equations 2 2. 4 0 ,  the following equation is obtained: 



(4.2) 

-2 
2 4 & . 2  . L o s 2 ( T )  -5," - 3 (P) ( a )  [ K T +  ($)'I S I J ~ ) .  

2 
4 . ~ a ( ~ ) j  + E ~ A '  (g) C~S(?) - (2 j L S ( 2  st& (TI ")-.I% 

2. %7 are used slang wit& the hteg~alis 
9 
an 

2 R% (FX)~,~ (-.)cot&) dx J r  = (s) 
) 



and if the aotattons of equations 2.20 are uoed, ths noadimsnaiand 

aquatien obtained Irsm equation 4.4 Sa 

then equatioa 4.6 may be writtan h the fora~i 

4.2 Tbs Wluencce 0% Assect R a t i o  

The n~din@a~e"iiey p a r w ~ t e z  6 , ewre~bed as a. fmcOfoa 
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A? tends "k zero, 6 %and% $0 zem D U ~  2 tends to plus Irdiaity 
+ -4 - 1 

sndt iasp~oduct  % c ( R )  Z(19)  tends to 3 ( 1 - v z ) ( r / 4 )  n (hh)and 

Lor s:nall FR (CRc< I ) equation 4,Ei is 

[.%. no) 

TEis,lu is the Daifing eq~~a t ion  vfft%l a hard spring and hencal: ~~d13e.,n the 

%ion L, 23a =lay be replaced by equation 4. 10. 

Tor tanding %o indinity C tends ta zero as ~ - 6 v d ~ i l e  

a X tez%ds $0 negative i-diniw &as /a { ~ e e  figure $2).  The product 

(2) 6 (a) x ( @ )  t omis  $0 zero 9 5  R-% for 2 diflerent fronl 

But if i a  only slightly d i f f s r ~ n t  Lrsl:-~ the suckilia3g cond&isn 

4' 
%,T the product (g) E -% can becsn3.a fiaita and thr: equation of 

x2ga%ion reduces to 

wkiiieh is Duf$ing8s equation for a a d %  spring. binee eq~lation 4. 1 % 

requires a very restrictive set  of conditions on and f i  a it is 

oB liriizited coeiulnes s. Hn S:LG~S$ instances it \-?ill be .mare a-pproprfate 

to : %;e eq~~ztion 1-Z. P. 

P"" " 1-ce co;-2?arf a s n  of equ.ak;ioa .-. G v~5%h eq~atlasn Z,2 31 s?n&iea$es 

#I %,=$ a .-, the two \~;l% zive ~ i r z z i l a r  results for &f? h : ~  the neigh-)azbood 

61 sf 0. 9, ki,o carry suttghc studies of sectloas 2 .  '8 thrk-ougk 2. 183 for 

eq~~at ion  .*i. L in all ranses ol the aspect ratio CR is cot practical %or 

the p~e@e'a"~g xmrk. &u1 since eqap1ation 3. 2 3 8  has i209t 3f $be iea&ur$eha 
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a$: equation "L $.+ sections 2.7 thmagh 2* 10 may be regarded a.3 de- 

pictbg mmy 08 the f e a t ~ ~ @ ~  af equatisa 4,8. 

A brief e x m h t i o n  of the eP4ee9 oae" /cR on Oh@ sbgda~f%bss 

of equation 4.8 Ivdth QC?) = 0 ) in the #as@ 4 1 1  paint out how 

thf  e sqa t i sn  disers  from &at bte;i&sd hi sec$ions 2.7 &=ugh 2.10. 

The phase plwe ~ h g u l a r f t i e a  are the mde of the equtfon 

4 and are stable centers whQe i o  a saddle pi&. If 

the oppoite L ~ e q a a i t y  

is valid. 4 ad are complex axid is a stable ceder .  Novr 

note %ha$ far @ t snang  toward zero the latter hequality holds and 



From these roogs is found tc be a sgablu center wliute and 

j(3 airs saddle poW8. h inimpohbad fea$.take oi' the large aowiect 
-'/z 

aagio problem io  &hat b t h  6 ( R - + ~  ) axxd - are small n ~ m -  

b r a  so that 8 s  tsnda to idfnigy amplitude of the staaa 

oacillaticns about Ehe pohk diminish to zero. Thus tho oacil- 

Pa%fone a very Bong ~ P B O W  pmeB B~CQZ'II~B Lees 8fabPe as the 

lea&& of the wne1 inereas@s. Figure 43 ahovcv's the variations in 

the 0me oO pbaae plme trajsctorie~ th& m a y  be expected ts secozz2- 

mny cbaagbg aepsct ratios h.1 @quation 4.8. 

%Be k&omogsnsoao duferenaial equation wiCh homogeneous 

hltial condit%~as considered in aecgion 3 . 3  caxx be treated sxactly 

by a sLmp%a tranefo~~matie;an. 331s dsferantfd @qaa&ion than t~eco~%e@ 

hsmogsnsous while the hitbal conditions bsco~me Womogensoua . 
&asides a aQep fm@Llsn applied to squa&iof? 4.8 



b d  It& bhe initid conditions ba 

$ 0  = = 0 .  

NOW let 

h = 6 +  B(z1 

where 6 ie  a eora~tmt ~ U C I ~  tb& 

9 1 ~ )  = R/x,.? = r . 
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M a i m =  amplitudeo may be dsterz~ined from %he phase plane 

E r & j @ ~ t ~ p i @ ~  as a fwetirsn of & . A given .%p& UB of W will Pix a 

value of 6 and benee a given v a h s  ot K, from 

The period aasociiated with a;qua$ion 4.22 i s  determined 

where Y=3 , t  anL?hemed=l and 8, are the maximmi ail& 

minln%wn p b t s  oon the phaee PI-6 ib ;~aje~&g~ty.  



5.1 

It hao h e n  p b % e d  out in ssctioa 2.6 the mamki$~ 432 

which ths Gderkin av8~1gIng ~ P I Q C ~ S O  f~ applied m&@aa a f.&adaw 

meat& B2ferd~ac&? in the *tare of the3 pby~irl=d sgsten? that ear- 

~ s s p n d s  to t h ~  resdtbag squation. bdeed, it appears B:ht if the 

Galsrkk~ btsgratioa sf %he equations of amtion io  taken over only 

cne half wave in b t h  wira and eircumfersx~tf& dirsetions, the 

ot bs said to apply %g% a Breathing n3&e 

vibrasion of o circdar cylbdrla~al @hell. P ~ Q W ~ V ~ P  1% the Gdericin 

%x&egration which Ped $0 eqmtion 2.26 Isad beein carried m s ~ =  a &d.l 

wave in b*& and ciscamfereatid &rectfono, an spuatfo~x 

quits dufssent from 2.216 w u l d  h v s  been fassid. I.n 4ae$: %he 

quad~aatic nordhsarity v86ulbd havs been gone, leaving a forra of 

M f i n g '  B equa%fon. &ad the objeetionabke m0z2ent dong the b s ~ u ~ d -  

aries Y = cosetmt w~odd haye depa-ed vdtB quadratic yrp,onlfr~- 

aaaitg . Bug, t3:a h$erestbg " 'bucuing" @ezo:mena and &e d@fe~e~zce 

of tiArne dmPa5 b\x~a~d defiaction from time daring outward deaectio~ 

will &843 be r3i 81ag from the a a l y  sic . 
Ei the aabg~ls wae %o start vdth equation 4.2 %ha o a f  

variation Bshg  intzsducsd by linteg~athg over the? doamain - L s x 5 t a 

-a L - \I' L 52 , ithe resdting ~ q ~ ~ f $ e i o n ~  ~$331 $@odd be limited to 
r) -4 

a  shallow shsU xr30de~~, i. e. , there v~ould still bs the ~astrietioa 

on the.? vdue  of rl . The -&ysis vjioald ap'ph-i only if V > 3 . 



o ~ d s r  to rdisve this ~estsfctton use M M  be w d e  of a noalhear 

germ 04  the rscmtlg developed MorPsy e ~ a k i o n s ,  En his paper 

(ref. 9 )  :&arr$$3y &&o ~ h o w n  that a slight rn~&Siea%fan of the Don-. 

vdaee of W in %%&tie problems. This eoncluoion ha@ been sub- 

stmtfated in a ppawr by Houghtoa ad. Jobas (10) whare Morl@%iyq s 

@qua$fon i a  c ~ m p a ~ a d  no* ody d t h  &rn81'@ equatioz bat al.1~6~ 

with the 6;?quathoao baarhg the n m o e  Biieseao a& Qrammel, 

Vlassov, Tinla shenko , B i j l a ~ d ,  Haghdi and EBPPY and Kemard 

bs applbsd. l.f a severs doubt abmg the h:ozl@y sqwtfsae f held 

by %;he r@&d6~~ he zmay sMah the BQA=~S @quation x@@u~%@ by drop- 
@ 

piag ane t s ~ m  in fbd e ~ a t i o n ,  

h con be s h w n  the co-mpatiBgity &rid eqa%libriw~ 

aqutisns wliiich correopoad to %he Bgiorlsy eqaatiojirn, with nan1kLear 



The boaandory condition@ are 

The rd~eming of the boundary csxaditiora8de on S are the ~ m 3 e  8 s  in 

section 2.2* The meaning sf $ha bow2dary eonditisals on F are 

s i m i i l o r  ts that of section 2 .2 ,  bat Beys  they are true on the aver - 
age over the entire boundary where, before th@y W@FB Om8 on a 

point by p i n t  bagis throughout %Be bsudary.  

Fdow, uisea a dull cylinder is considered, N q l  = aE and 

A I x i  = t d  fog initial stresses caused by preseurization. 

The disgPoccar::ent mode will Be Oaken to be 



and the associated stress fw2c$ion, which satisfies c~nlpatibiility, 

the squili$siu~-zs squation fs~sra squatigsao 5.6 produces 
- L 

Eh rr [% b + *[DL(EP+ (w(-$)'] + 2 [ ~ ) ~ [ ( % ) ~ ( % ) 1 1  

Equation 5. 3 is to be weighted with equation 5 , 2  a d  the CaSHerhin 

avaragb~g integral bo to be carried sue owes the domain -1 4 x L ; 

-3 5 YL_ . The Pollowing integrals are used 
n 



*&ere all ather integrals is &his CaEerakiaa average v a l s h -  

The mlbajrkin integrat i~n of the equilibrium eqaatisn than 

produces 

Once again the notation of equatioa 2 .  20 i~ used with the exception 
* 

that G is now replaced by 
- Gz 3, - 

IYnen these expre~~i~ns are used to simplify equation 5.5, equation 

4.5 is used to i%~%roduee $be aspect ratio, the nondin1anoiom1 amp- 

litude is governed by the equation 

where 

ln a receat -=per fl~ef.  6 ) ,  Chu has obtabsd a ~simflar equation by 

a different process. he collects te rms  mti;.hich contain first haz- 

monies of the space variables from an equation equivalent to equa- 

%ion 5.3 and neglects the higher harmonic apace? terxns. By this 

procedure he obtains ar equation which differs from equation 5 , 7  

* The? subscript kA is Lo denote that the &&orley equation has been 
used. 



by a factor sf two in the cubic te rn .  Ws\v@ver, since the htant of 

hia paper was to shovi the trends of frequency dependence on tbs 

amplitude of vibration, the lose  of this factor of two shsdd not In- 

validate his general concluefsns . Of course it mast be noted tha$ 

G h u h  development does not start from the 3-d;arlhey equation a d  

so has itlstead of X r M  in his development of the equa- 

tion, 

Because equagisn 5 .7  i~s a form sf Ddfing' a equation, a 

great deal of id~rm>at jb~n  abut i t  @an be obtained from the Hieer- 

aturs of aonlineas m.stsiecBanfc s . Since this i d o  rn2ation is gene rally 
"4h 

available, it is & 4 ~ 1 ~ ~ e $  sary $0 repaat the derivations here . It 

vvil be the work of the next aweral sections to make use of the 

already h ~ w n  data for Mf ings  s aquation in order to discuse the 

Equation 5.3 will be written in the as;i:>~plified form 

Sbgulorities of equation 5.8 %viBl be at the sso%s of 

P - 
* See, for instance, ref, % l .  



Bat since d3 O the only singularity i o  a sCeqb1e center at 4 =O . 

*#here the subscript '¶ ddLts on the period syn3boB is to designate @2$rt 

the &Lorley eoplaticn has been used. T t e  limits and are 

the read roots of 

and sorreopond to amaxin2um values of displacement. ksnce %he 

limits on the integral of equation 5.113 asps degerrninsd from 
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where the sign has been chasela so that 4 shld d a r e  real. The 

F 2 C i & b  %Ire aid of equations 5 .44  land 5.15, equation 5.42 may be evcP- 

uated foLlo\yuing the me&od presentee in Ap2endk I. 

5. B 

w- a he resimwse 0% the Pdfing equation to harmia~~~ic excitati~n 

k a a  received considerable attention. The %ollopabng procedure %e ts 

be fa-2 in ref. 41 and i o  repated bere with only sufficient detail 

t o  nsaka the translotion ts the notation of the present probParn -der- 

atandable. 

The frequency used to  n~ndi~~enssionahbae the tiire w % k L  be 

chosen to  be diM so %hat = iJ,, t and Q: ,= I agci in a&db - 
tion the fr@qu@~%ey in &be deacmiiaation s f  d is; also L ~ L  M . GBLI- 

o i d e ~  the case ~w11sra the coefficient d is a qua~ t i t y  ~rna1.l relative 

&a unity* 

Let forcing f w ~ ~ t i o n  be 

the ratio of t3s drivizag frequency %a the natural Pasqaency of the 



wahere 1 has been added t o  each side of equation 5.6. 

8I.f the investigation is in the vicbity of the natural f~equency 

of the linear systenl, f . e .  , if the bveetigatfon f s to seek the condf - 
tiorno neaP reoonmce, than 2 is close to unity a d  ( ;\' - ) 

be small of order d . ?in tb& caae d1 quantitiee on the  right haad 

aids of equation 5.47 are omaU sf order 6 Under these condi- 

tiona, equatisn 5.33 is an instournen9 for ~Maain i ig  an agpra>tin;.,a&a 

eolasahioa by iteration. Let the iterative solution ba 

where & 4 4 4 First L~t?troduce $= 4 into equation 3.17. 
K -1  

Thew drop terms of order d ~ 9 h  the result 

* 
-4ccoadLng ts Sgcker it cam be shorn that only C O S  3 ' M  (where 1 

is an odd i~tegera) will O C C U ~  fa tha sslutbo33 to tbe systea3 of equa- 

tion 5.17. S s  eqaation 5 . 2 8  may be %=rfLBsn 
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where 4. is a conslat .  Mroduchg ( = +$ into sqra~tion 

5. 47 give8 

The term@ in squara brackets In equation 5 . 2 2  are second order 

terms and as such n3ay be neglectede Then subetitatbg equation 

5.21 into equation 5.22 and expanding tks cosine cubed term 

% the coasficient of @oS 'YM i~ nsn-zero then $ha oslut isa  to 

equation 5.23 will co~rgtsirra, a secular term which is of the form 

c . Since Ohis wodd  be a non-periodic aolutisn i% ia 

not acceptable md is prohibited by sa9tLqg 

[ ( X % I ) A ,  +dq O - 2  3 = 0 .  

Z 
.3olvbg for A 

The aolutioa of equation 5.23 is 
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&% 

Aceorang to S g 0 k 8 ~  the choice of 8etting ,& , 5 hAo $8 ""dg~isive" 

at thi.8 point a d  Qhe iteration may p r a ~ s e d  8tiwaya applying Ohis 

principle. E A, Z at this p i n t *  then 

Gusavea off I A 0 1 ao a gunctisn s f  A , $02 d = 0.04 are sH-oa,m, 

in figure 14, Note that the central curve wlasked 9, = 0 in big- 

upe 14 depicts the free vibration dependence ob 2 on A, as 

d e t s ~ m h e d  by Bhs "D*dfbng9' "eration scheme. To test the rak338 

of validity of equation 5.25 (bvith go = 0 ) it ehsuld be compared 

with tila result 8 sf eqaticra 5.12 us@ #Mbx = . 
Tihen the respsase curve .ha@ multiple values of an3pBituda 

M~fch casrespond to a single value of the driving frequency, or 

in the n & ~ t i o a  used here, to a afngPe value ~f 2 , the gossibfSllty 

of a jm2j% phanepa3ena may exist. The jump csuass the ampleude 

off viibratio~~ to chmge draa~atlcally without a cha9ge in dr%vi&g 

Pgequsncy. B* it t o  not an instability in $Be sense of unbouwded 

mplitude; L~deed, it reduces the amplitade of vibration. T, X. 
t* 

Caughey has chovm that a necessary a d  a d f f c i a t  conditiow for 

the existence sf the J m p  pl1er~omer~a is that the ampli$ude fpequency 

reaponas cumes 2 o a ~ e ~ s  a vertical tangent. Xn addition he haa 

shorn %tat &he 9 ' j ~ m ~ p  instability8' c a n n ~ t  occur if the @%ate off reapoase 
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of verkicd tangent$, The loci of vertied t agency  in the Limitk2g 

case of vmishbgly small a m p i n g  are determined by BHs zelationa 

which btli corn@ ~ C O  the value 'X -. 4 for A, = 0.  

terion cf stability is the following: lot {(y) be a ao la t i~n  of a 

solueion of the sanae equation; and let 5 +lz)  be ahbi t ra~i ly  small 

a( some time TO It S i ( 2 )  coatinuew ta be arbitrarily small 

for all other values of '2' . then fie soPation # (2) i,o said be 

stable, oti~er~vLse it iis ~je3stabla. 

X f  tlis criterion is applied tc equatiori 5. i? vr&h keo = 

= C], cos (/z y ) . the equstiou governling 6 & (Y  1 i s  the 

The harxncnic solution 4~2) ~ v a o  obtained under the tsslrinp- 

tisn tBat d was szma11, thsrsfora this aaaumy%ion maat be carried 

into squs$ion 5.29. h addition rnwt  satisfy equation 5.25.  

Gs:mbiaatLone sg % amd A for which the aslution to equatiou 

5.29 I s  b w d e d  for all vebes  of YH delean36ae the ;stability ~ e g i o n s  

Pos the oclution ( ) . For canvenier%ce 02 mkation the 



-92- 

foJilauiifag t rmefa r~~a t fon  is made 

g =  ZA'CM ) 

then e ~ a t i a n  5.29 becomes 

It equation 5.25 is ueed wigh equation 5 . 3 5  to eliminate in the 
- 

expressions lor $ and Uien 

Due to the s ~ ~ a ~ l n e s s  8f d hence Z app~oximate zepw 

resentaftion s % &be stability hsmdarie o may be obtained, as sham1 

in figure 15. 
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5.8 

Shcs the subharmonic Psspcnae of the W f h g  eqaatlsn i;s 

well docmmentsd for a eubha~rnoni~ of order 1/3, the details s E  $be 

derivati~n will n& be given here, Consider eqaation 3.8 wr&esn 

in the form 

where Y= 43 & ana9 22 = dz/dz. B is desired t o  find the ccn- 

dition mder v~kich a a.olattan of the form 

can exist. Upow htggsdacing equation 5 . 3 5  into equation 5.34 \;3d 

= 02q. 

These may 5e rewrittan in $be form 

'go= 9 &  
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Z 

Now iff is eliminated m d  the iteration of t h e e  equatioshile i s  

started with 

%hie subharanonig: vibration deve10p1 t h ~ ~ a g h  %he branching of the 

harmonic vibration when 

The surprising ~ b s ~ r v a t f o n  that 8x1 uItr&~i$~monig2 of o$de%i" 

2 e m  exist in s nonlinear ay atem of the D d d h g  type has been veri- 

fied by T. X. Cough,-y. h order to study the condiitiona ~ q d a r  

%ich such a soliltion migM exist in &s ~ e ~ g m n ~ e  of a cylindrical 

shell, consider the eqmtion 

V ~ ~ B F B  /Yr, = J L M ~  and x(@) i s  rtlon~idered to be arnsaltl in csmps;9- 

i s ~ n  to unity. To find $be d$r&srmorrzie of Q Z ~ . @ F  2 in the s y ~ t e m  

rspraosnged by equation 5. 4OB it is necessary $0 look for a wr?,o%ion 

of the fa~n2 

(5.44) 
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U @quatian 5.41 is h t r ~ d u e e d  ia~to csquakfon 5 .  $0 =d higher Bar;.- 

monies neglected, the foiBlo%ving resdt is obtained 

Fsr a. nontzi~al aolutisn, the fs11owfng conditions are obtahed 

from equation 5.42 

I t 1 [ 1 + $ q 3 ~  +qfz ]=  0, 

and \with th is ,  equation 5 . 4 3 ~  becoxmes 
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U s e  of equation 5.44 to eliminate q' brsm eqaation 5.63b 

give o 

Now since 2 LL I ha8 already bssa saa-ad it masy be u ~ e d  to 

obtaie an approxDmate aolugioa. n u s  equation 5.45 bscomea 

So db 61? L L I  , then 

terms of $he dsf~rmabion r s s p n e e  gsoblsa?i ag a shell, eqaatiog~ 

5.50 h&cateo that when a circular cylbdr icd  ehall i o  subjected 

to a fore b g  fmetbon a& ona-ha16 the  ata as all frequency 02 the squivo- 

%ant linear system, it i a  p s ~ ~ i b l e  to g e t a  ae3ponss %-at includes o 

pup@ dilatation as wslB ae  %ha P-damant&% and a I a t g a  rsopomas ag 

the ultr&ax~snlc of order 2. "The d&~&z~eatal a,nd the ~l$r&~arn-io~aic 





The sqaatioa~ of motion are not detssmhed kg the nw;"absr 

sf madea u1ed. Therefor@, eguatiwas z~otion are ehe same 

here as usad kg Caai3te~ I%& lt thae its, $he M 0 ~ 1 e y  %~qaa%ians. 

6.2 

Tae b w d a v y  condigioas sf @ecbioa~ 5 .2  are applied awpa- 

ralelg to each d U e  tcro m&e functions S (nt, n ) a8d @, ZJ 

md to the @ s i m p s i t e  stzess fwetion F which 6s essochted wit'& 

The raodaa to bs used are 

The cbcice QS fbs mode parameters ( m j / ,  n, i j  arbitrary 

and will be cs~oidsred after $.ha final eqwtisns ggova~a~g  A and 23 

have bean obkab=ed. 









- A B 4, cnl-~)r (++-) H~ + n B F, - m u  - R B ~ ,  (*td9~ (-1 .,] = ~ 3 :  
L a L a 36 L a 

Xn Ohis the gumtities /-I i are 

H, = SIN (y) C o S  (q), 





* 24 
= c 0s (TX) s I*, (fl.?) cos (2)) 

Silbsn equation 6.2 is weighted with Sr*l (qkO,(g~ and ineegrated 

QVBP the ingern~a 0 6  x L 3 -nd 6 V L r d  the integrated csne~iba- 

%Pons of the H; are used t o  obtain the f i r s t  Galerkin. equation. in  





Now if the ao$.a$Hone 

are used &s squatton obtained L F O ~  equation &. 6 is 

The aacond equation may $8 obgiibined by I ~ e r ~ h a g e  ~f the mode 

n u m b s a v a ~ f a b ~ s s  (m,n) i ( a )  a d v i c s v s r s a .  U$&fs  

is dons and a ,more ~izmplified no%a$%on i n  used then the &WO mode 

equations sre 



and f i s  ~Maincd  faom aquation 6.6a by replacing V by n 

,d by WI , and vice ver~a. 

43.6 

E the natural fsequene tea &H (MI II ) m d  dLLA (A, V)  

are well separated the eouplbg of @quaB%ana 6,9  i o  very V J B ~ C  ax- 

1893 Y{ > > ,d+ and $ >7 ,&$ . % tPd@s@ eoe@I~ienta are oh 

the same order td ~mgwitude and if &She sxcitaeioas ape periodic 

with. a fregaagcy near dLM (m, . POB ingtan~e,  then equations 

6.9 will take on the form 



2 
sbce # > Z 5 under these ccnditioes (see &gar@ ib ) .  The 

main respoapre is in the 4 mode s v h i ~ h  18 oupled from the 

infiuencgs of the & made. At the a m @  0 6 ~ x 1 ~  eke respoass d 

the 6 hnode is excited in part by the d mode, but its aanpli- 

t d s  i~ still a m d l  comps~ed to  its ;iecompaaion mode. ltf the &pace 

df atribate& ag the ~ O T C  in8 Pmctfon P(rJr'; t ) is such that 

QG >> Q_Q than equations 6.14  fuahssr oimplffy to  

Bat in this instance the @ equation admi% s soiliaSon 

v-4th this mode OD@ with 2n8 3x2 or jn [j = 4, 5 , .  . . ) haif wave@ L1 

the ~ i r ~ u d s r s r h t i a L  direction. A sim%r as~o~ia t ion  O ~ B = U F B  -with 

the aaq~ber ~d wave8 i~ "ke axial d%rsc$isn. Udoatumtely this does 

not assure the separation ~ l f  the ~ W Q  fl?deque%;,efes wder C O Q B ~ ~ ~ F B -  

t i ~ n .  k t  figwe 37, a set of irequency cumss de&srn?hed for small 

mpl i$uds,  shgle mode vibrations accorang &;a the ~aetBod oi 
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Araold and TiorbuHon (43) lio presented gar one thickness r&io 

(h/ak = .004. Thia plot show9 qdte dafinigely Ohat f o p  a = Z2 ,  

m rra A nd ( ) = [ ) = 2 zuad t' = 20, the two modal Irequencies 

4 7ra ere - not separated. But POP n = 2, (%+) = (- ) = 5* d = 20 

that gar aa uac ouk~led system. 

The scrppling may alsc be weak if y+ d f+ aae small 

compared tc @+ and 6'4 rsspct ively.  Eavierer, an examina- 

tion of &eee four mrw&er@ iadt~atea %hat in general such a 

rehtioaniahh3 I s  hard $0 aehisvs. 

harmonic f ~ ~ ~ h g  f ~ ~ t i ~ a ~  $qu&tf~a;81 6 .  $ V J ~ %  be p @ ~ ~ i t t b ~ %  6 6  



in which & Cc / and , A , r A4 Ad are not large con-  
1 - 

pared to u ~ i t y .  

Tbs atody 0% &s e g o  modes a y s t s ~ ~  will S018ow the work 0% 

T, K. Gs~ghsy (42) and So ~ X ~ B H T ~ S ~ V ~  ~ @ p & i t i ~ n  of his d @ ~ e l ~ p -  

meno %xi11 be iac1uded. The genera4 m~b50d IB e ~ e n o f o n  ao% the? 

M q P o f g  a d  B ~ g M a b f f  method to the forced respoase of a two 

mods modinear system. h ~olutfan to  B~ULO~BBI 6. % 3 1s fb~~ked  

for in the for,- 

I.n the K ~ y ~ ~ ~ ~ ~ ~ 3 0 g l i ; u b o ~  moBgsis these aol&ions are eubjected 

eo the csndi%ioas 



as a conaequsace of Qhs sequisemant that &a aoPa%los be periodic* 

&a addition A 4 )  44 , <& d f 4 are viawed a a  slowly vary- 

ing functions cf Y . Because of this. & & ,  f l d , < d , & d  and. their 

first desivaei-ases mslr b~ replaced by their average value over one 

cycle in coonputhxg the responoa of the syotsra, Taa average 

vala@8 are deadad by ths eupsrscaipt bars. Thus t h s ~ a  average8 

&F& 





The oteady state condition is 

The parameters 8 4  and g4 may kamedia'rely be set equal to 

seao and J I  &e pBa$e @See& t h ~ ~ w s a  into+ <# md 54 . 3%61 i s  

done sines the &x\eita&foa 0% &he $\TO m d e a  will 0eLdarc be %porn 
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dBf%arez%t or nsn-synchronous sources, The p a ~ a . ~ e t a r s  

d:, jn, h v )  and pnk , 2' , TT, A are propertie3 of 

the ayste2i-i and fixed, { and id+ are prescribed as a part 

of $he forcing $unctions (or .aibra$iain inducing environr62en8) and 
- 

there remainfo~runkaovms. 47, AT , g7 and. f 4 to S r  

detsr~~~frrasd by the four equations 6 ,  19, 

Q, 8 

The criterion for staule t=o$ioa is d.4 o '$sAth the boundary 

at a, = o w h e ~ a  a, 18 defined by 

6. 9 

P' bne Calerkin averaging t e ~ h n i q ~  has been used so far 

ahd 
2,g+ 

to achieve a separation of variables and hence reduce a partial 

. 

difiarentisl equation in the three independent variables x, y, t9 to 

an ordinary dfffarantial equation in the single variable t ,  In 
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view ~f thf s first U B ~  $ ~ $ f  the Gderkin averaging teehiqua it is 

bomobu~iic '$a use the same hechniqas @ ~eduee the o ~ d h ~ y  dff 

ferential sqwtion Qs atia dgebrais squaeioa. 

GnsPder tbs eystem sesprsaentsd by 

a harmonic solution of the foram 

can exist. T22en application 0 4  ebs Gdarkia averaging tecbbqae 

vdll fn t rohcs  equtione 6 . 2 2  into aqwtiono 6.21, weight bhs rssdt 

with cos A?, and integrate over O L  YwL-- %f . This gives 
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When 2 has been eliminated a d  the ratios 

In sqlurtion 6.25 Phe q~puantlties , 4 and R are p h y ~ i -  

c d  pa~jpwaeters %*~hfch depend on the nature af the shell esneidered, 

%,I md 7L depend on mture of the *fibration daduchg sevi~oa-.  

of solution desired. Thus the only t r d y  w h o w n  q 

ticn b. 25 i a  , the annplitude of the roepkxse of the (la. m)- 

mocle , Prom it go , the ampliDude cf respanee of the ( z) ,p )-mode 

ik~ determined iraa%d hence 3 is g o d  ~FOXZJ bquatLoam 6.23 .  





- 7 d a e  evaluation sf this i a a g r a l  rsguirao the c,%raction of the r00ts 

sf a gvVadrPc equation as described in 2~npendix I. Thsee fi-o32.s are 

seEdos;.i~ easy ts obtain and will usually bs oMaincd with b%-=: aid of a 

digital cor:~pulor. 'Xfth-r the POQ%B are ~b%aia~cd  thewe r aaraf ns a 

s i g n i f i c a ~ ~ t  $if$,Riculty in the interpolation of &he elliptic in t ag~a l s  

frosn X L ~ O S L  oxf sting tablee. 0x3 &s other hand, the obvious 

aivrlplici%y sf 2e%ssnar8s  Eorm~ula ,  valid far sn3"alll , 

~ r ~ a k a a  a csrxparison of these reau&s of equation 2. 36 and 7, I - deelrabla, d h i s  eofisparioon, with G 1, i o  presentad i~..t fi$k.te 

18. .I a. valus of = 4 these two C U ~ V C S  difier by appruxirriatrly 

three per cam, ELI this ease equation 7 *  E i o  preferable because 0% 

the great differ ance in difficulty and sixialP diff sssncs In accurae)?, 

U~dcrta.~nately @quatian 7 ,  1 is rmt valid for valties 0f t that are 

i~iuch larger khan one-tenth. In lact, icr t a 0.2 ;md 4 6 6 ,  

equation 7. 1 yields TNL :TL) 1 rihich is not possible f o i  the 

- 7  1- 1 sysOeii considered here. ki. iaen C = 0.2 and = f i  equation 

7, 1 predicts T,- / T -  " 0,  Tlais definitely shovil'e %!!I@ lia:3itsCfaa of 
*-+A L 3.d 

equation 7. 1. Gonseq~ently. Pbare i s  a l s a  ye range of 6 and 6 
Bi lor wkdch equation 2.  38 _~:ust be used to ds ta rz~~ina  J. NLiT . k 



wit11 h ~ m ~ o g e n e ~ u s  baundbry ~ ~ n d i t i o n ~ a  This 8 8rdti?r diff exen- 

$id eqaation I s  reduced t o  two first order differential gquations 

The recurrence equations for fnteg~a%iofn of equation 7. 3 by the 

Runge-Kutta r i ~ e f i ~ d  are 



Bincc Lhe trunc8tion error is proportional to (~e)' for 

the .Range -ZCu.$$a i+~-ia&~d, ti36 %~i?&n~at ion sr ror f n this ~al--;i~puta%io~% 

- 5  
is of the oz*."dar 10 . The3 actual co=putatioa was xnada on an ? 2 2 2 - ~ ~  

704 digital cornputor with print-out :or and 4- a% iiltervals 

of =: O,B4. These data0 for e -- 1 ,  have been presengad in 

various ia iigljares j3gr 20,  21, 22, 24 and 25, 

.Figure P 9 contains partial %ixr*o E s 9 s r i s o  %or varisue 

an,plitudea of tba step Parsnction, r. The response is al~vaye tK1a 

sadne sign a s  the applied step func%ion, The time &O I S ~ ~ X - X X U ~ B  

a~rplii$uda, 1wr a zivsn 11-iagnituda of step, is greater ~ G F  ezxte~naW 

gressuro (r ( "3 &an for internal pressure (r > 0 )  al&ouah the 

ratio 

is greater for r 7 J;;p thax~ $02 r LO, at g$vaaJ r \ .  

F i p a r g - *  .,& e 20 coss1pare~ the phase plane trajcc9ories of the 

linearized sys$sri: ( E: = 0 )  to a step of r = - + 5.. O v ~ i t h  khe 

response oP the nonlinear s y s % e c  ( 6 " 1) ~ub jac t e6  to sgepa a$: 

r = 4- 5. 0 al:d r = - 5, 0, lt i s  clear froiv- this figare %hat the 

a&~~pl i%~de; l :  sf response are strongly liz- ita ad by the nonlinear 

Y C 

3 xguse 21 is the phase p1a:xe $rajector;.y for r =: -. G. I ,  

F- nnis ;t txajecbory doee no$ exhibit the Suckling pbeno~xena, The 

zi~a=;-fz:,~:x~: vaBu3;; of velacity are lircited far this kind ol $rajsc%asr3-. 

TMs is seen . ~ y  coir.parison of 2 1 a I ~ v i t i i i  I #iiiaxe 1, In 



figure 26, for instance, the linear system trajectory has 

I 'e ii~ax 1 = 1 inad) ~ ~ A i l e  fox* the nonlinear sy stei?: rcspor-lse 

curves 2 I p! niaxl , - FOE L%e trajectory of f i gu re  2 1 ,  

I fr n-ax I 4 9 rcsax \. The differen* character of the trajcctorp of 

figure 21 i s  related $0 the sr~~al lnese  of the step lunctton, rather 

than the Back of hckl ing,  since bstb &s buckled and unbucklad 

trajee%o~ies (fiitur%.e 20 )  diifer fron: i igur@ 2% but a%o% ~ H " & B X I I  each 

other in shape, 

XTigure 22 is a farsa.91y of phase plane response curves for 

ez@ernal pressure step loads kvhich exceed the a;iniri.~un> required 

for dyna~ :~ i s  b~xck1irrrg (at 4 = 1) .  Tha rate of increase QB 

a ~ ~ ~ p l i t u d e  of re e p n o a  ~ 4 t h  izacreas e sf step ~~neg~~aitude P s clearly 

i n c r a a ~ e  od loading magnitude, 

The shack z-espszase concept was used in aquakfan 3. 39 to 

predict the value ol r a& "tvbich bu5?cklfng v~iP1 occur &*szcaiically. 

17igure 33 is a plot of t h i s  relztian. The prediction has no fiaeaning 

$or 0 O C 5 8 / 9  since for this range o$ E there is ns buckling. 

-> 2or %nats3ce, if a = 1, = 1, Glen r = - 8,2$6 and 

--. 3 z= 5- 163 Jf 
** 0 6 C O T  * 

This surpris ing result has heen verified by 

tile nur.:er%cal ifieegrati~n as s110w-n in figures 22 and 25 v~here '&.he 
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?raaa>5niW;2 an~pl ibde  and velocity of the step Ewncti~x~ re  S ~ O E I B ~ ~  

+aspsg;%iveLy, have been presented as a Bunctihasa af r (a% G = 1 

7. 4 

The dependence of the period of dbratillrn of the cylinder 

i s  given by equation 5 .  12, 15~$$vever, the c o r n p ~ t a t i ~ n  fa  sirriplified 

by a dffierenl approach, Consider the aquatiion 

H i  equation 7. 3 is integrated once, then 

Mow xzaldng the substitutions 



equation 4. 5 bacanses 

When the in$egratiom is carried out for a lull  cycle, eqeakicaa 7. 7 

beca~~be 8 

where 6 ( 1 ) is the complete elliptic integr J of the fir st kind. 

Eguaeion '7,2 i s  presented for two diigsrent raages of 

in  i lgurea  26 and 27. In order to relate these periods 0% the 

physical parai~leter s ol the pro blern, d in 



Figures 28,  29 and 343 present sq~~a t lon  '7. 9 as a function of a for 

three values of a and thrss values sf (9) - *  a h 3  Thus 

influence of response amplitude on period for ~$frr$&in vi$fu~~;j of 

4 and (2) @' ( d h  )30 

7. 5 C O ~ C ~ U B ~ O ~ S  

The r a i f e r ~ n ~ e  in large aiplli$ude behavior of a=ockplete 

cylindrical shells and of cylindricall panels %vas studied by &be 

application of the shallov~ shell equations, 

Thc curved panel eAibits a Suckling behavior aaskatciated 

with a very sirfipla xzasde ahape wtxila &$a cylinder shows no sslrriilar 

phenesxxena. The response of the curved panel f s periodic for s 

Fa11 cycle but is not periodic for  a hhau cycle, sp~nd ing  ~ O F B  einle 

deflected inward than auward, This verifies results pre~susly 

esMained by Reisxner though a. diffsrent m ~ s ~ o d ,  On hhe d;a%her hand, 

cylindrical shells behave like a Ddfing s y s t e ~ ~ a  having a hard sgrins. 

En the curx~ed panel, the initial stresses are the nr_ain 

i-dluance in deterr~xinizg the magnipade of the nonlinear effects. 

F- approaches the buckling pk-~seurs ,  %he nonlinear effect bacgbx>~ee 
0 
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very large. The csmplate cylinder eA~iMts no sinzilar e%fe~=l, YJhen 

either the curved panel or eylfndsieal shell has a large inecrnal 

pressure, e h e i ~  behavior resemolao %he linear sysfeein. For curved 

panel@, the effect of. an e&eraaal gresoure s t ~ p  is vary isripartant, 

Xt resalgs in d)q~an~ic buckling at a pressure much less than the 

stat ic bucaing  load. 

The aspect ratio af the curved panel strongly idiuences its 

vibrations and farced response characteristics, The eylfndria=a% 

@hell is similarly influsncsd by the aspect of its mode  shape* 

Hn both cases, tha phase plane trajectories rnay ba used to deter- 

mine xt=plitudes of response when $he loading can. be interpretad 

aa a 68% of initial conditioin~ (i. e .  , can aglargy l@val). P%? bath 

pro blez%%s, per$urbatisn msfioda p r o ~ d e  coaasiderabl@ inforxnatiom 

with n i i ~ ~ i r r ~ m  effort. 

Pbitti srlerts fos~alulla for the dependanes of the pcriad of 

vibration on t h e  ai~plbttlsde sf vibration for a curvad panel gives 

galbod results wikh rninim&uz% effort for a linxited r a g e  sf c and 

4 . FOP larger values of G and 6, an exact aolu%itss! for G%e 

dependence of per is^ on axnpltude i s  o~ta ined  in Sea"z6~a~j of c0~2:plete 

elliptic integrals,  The periced gf ~aratioa of &a cylindrical shall 

is also zepresentsd by cornplcte elliptic integrals. 

" i T  
r e  ith curved P ~ T ~ B ~ S ~  ~ f i e c t  of damping rules out 

d3~naaziic i3~cIding eauosd by an Entesazal pressure pulse, Shock 

response fiaethxls were used to aecxrately predict the pressure at 
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-f7:~hich the curved panel. vdL9. buckle dynarilca%ily, h i s  aq~ected  

that similar :11etbods will yield good results vu'hera applied to o&har 

tramsie13t response prr;pblemLs sf the ~a.ar~e systenx. 

If, in the two n?.sds analysis, the spacial distribution of 

the forcing function is such that the resulting generalized force is 

restricted to a single nrzsda, then the  z ~ s d e s  are weakly couplsd, 

Under these conditions a. single mode ansy be excited independently 

of the other ~nsdss ,  This indicates that a careful experJ~~@ntB1& 

Inveatigatian sf large ann~pltada ~ylindrical shell ~bratisns sxillt 

require precise control of the spacial di~tribution sf $ha forcing 

function. 

PS1 &ha Itdsrley equation8 were used to include n = 0,  1, 2 

in the cylindrical shell study. The result indieatas that the 

Ivlcarley correction trs the shallovr shell equations is imp~ttaae only 

when bending and initial presoure, or whsn bending and membrane 

forces, a re  of equal impartance. That is, the NsorJlay correctlorn 

is impartat  far shells that do not b v e  extr@n16?%y lar gs ro&us- to- 

thickness ratios, 
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The necss eary trsnsdormti4on is given in Table &%I. 4, %vbere %he? 

20Uowhg quahi t ias  are used 

(1) when 6 ( f l )  Bas flour r e d  ~ B O & B ;  
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( 2 )  when G ( ~ 1  ha@ txvo re81 ~ o o t  s and a cornpiex 

conjugate pair of roots a 

~ a s e  4%) can  occur ody iif 6 7 819 if K,  5 K s G P *  l%%en 

a s e  ( 4 )  secure there ore twa types 8% vibrationD Ond abaut the 

a1debomsd equifibzfam p s b t  md one a b a t  the bucued equilib- 

r im poiag, thus theye are $wo f&egrals to evdwte. They 

not naesssarilg have the same v&ae. Case ( 2 )  e0ver~ &If other 

poeeibi%itieo, 

A :!&lculati6~ fa;i3u@~@ f0t K, 3.  $ 8  & = 0 ,  4 .  

 mi^ i a  a Case (2) sxa-mple, no example is given fox Case {%). 
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