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ABSTRACT

Large amplitude vibrations and forced responses of
curved panels and shells are studied by the application of the
shallow shell eguation. The Gealevkin procedure is used to
reduce the nonlinear partial differential equations to ordinary
nonlinear egquations. Marked differences are found between the
behavior of curved panels and cylindrical shells., Relations for
the dependence of the free vibration period on amplitude are
given. A two mode analysis of the cylindrical shell problem is
included,

The curved panel is found to exhibit a buckling phenom-
enon for the simple "breathing modes'. Shock response methods
are used to predict dynamic buckling of the curved panel and
the predictions are verified by numerical integzation.

The cylindrical shell vﬁhra&im’;s and responses are found
to be governed by Duffing's eguation and certain of the well-
known properties of Duffing's equation are applied to the
cvlindrical shell dynamics.

The two mode analysis of the cylindrical shell is shown
to exhibit weak'coupling, allowing the separate excitation of the
coupled modes.,

Some numerical results are siven,
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CHAPTER I
INTRODUGCTION

The study of cylindrical shell vibrations dates from 4894,

the second edition of Rayleigh's famous Theory of Sound (1), where

certain displacement modes are assumed in order to compute the
associated frequencies of vibration by the application of the La-
grange equations. This approach has developed into the widely
used Rayleigh~-Ritz method of more recent literature. A review
of the developments from the time of Rayleigh until 4957 is given
in reference 2. To that time Reissner's paper (3) was the princi-
pal shallow shell study of the nonlinear vibrations of cylindrical
shells (panels). In 1958 A. S. Vol'mir {4) used the shallow shell
equations to study the stability of cylindrical shells (panels} with
?ayiﬁiy applied axial loading, and in 4959 V. L. Agamirov and

A. S, Vol'mir (5} again used the shallow shell equations to study
both axial and hydrostatic loads which had been applied dynami-
cally. In 4964 Chu's paper (6) appeared with a discussion of the
influence of large amplitudes on cylindrical shell vibrations, again
utilizing the shallow shell equations. ‘

Even with these several papers using the shallow shell
approach to study the large amplitude vibration or response prob-
lems of cylindrical shells and panels, there were still a2 number
of questions that rernained to be answered by the application of
the shallow shell equations. It is the purpose of this thesis to go

a little further toward the answering of these questions. The
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shallow shell equations are used to study both vibration and re-
sponse problems first for a curved panel, then for a cylindrical

shell. A two mode analysis of the cylindrical shell is presented

awoted that the two
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in Chapter VI. In this conunection it should
mode problem for the cylindrical shell is simpler than the two
mode problem for a curved plate.

The final chapter is devoted io numerical results. These
are not intended to be comprehensive; rather, representative

results are given for gseveral questions of interest.



CHAPTER II

THE CURVED PANEL PROBLEM

2.4 The Equations of Motion

The present analysis will start from the von Karman
large deflection plate equation extended to include an initial cur-
vature. The coordinate system: and nomenclature are repre-
sented in figure 4. A panel (plate) of length L in the x-direction,
width (Ta /—n) in the y-direction and thickness h in the z-direction,
initially lies in the xy-plane. The xy-coordinate system is
located with respect to the panel such that the region of the xy-
plane covered by the panel is —lif, ¢ Y&Td, O&x¢ |, The
plate is given a small positive vertical displacement (positive
displacement is in the upward or z-direction} to form a shallow

eylindrical surface

W (X,Y) = CONSTANT — (¥*/2a). (2.4)

The von Karman plate equations are

V4E= Eh [W':v — Wxx Wey ]— Eh [“’5:« - M}Zxx WZvr],

4
DV (w-w5) =F +FuWor + Ry Wix =2 FRye"y 5> (2.2)

E h®
12 (1-2%)

where D=



—lim

Here the operator v* is defined by

4 34

V4 = }f__? +2 22—+ S
>% YO Y, (2.3
while the stress function is related to the stress resultants

Nx s N\,: and ny by the relations

F = Ny

XX J

F"

,W=Nx 3 F,.xy’:".Nxv. {(2.4)

When 2 cylindrical surface under uniform axial or circum-
ferential strees is to be studied it is convenient to separate the
constant initial stress resultants Nxi and Nvi from N x and

N, Dby defining a new stress function
{ 2
F=F ~£(Y*Nui + x*Nyz ) (2.5)

so that

F;x'“-Nv—Nyi,'F;\,:Nx"in,' Fev = Nyy - (2.6}

When equations 2.4 through 2.6 are used together with the simpli-

fied notation
S=(w-uws) (2.7)

the von Karman plate equations governing an initially curved panel

becomse
2
N V' E = 4 Sy +[ S0~ Sex S

Dv*S = (3,‘§Nvi) + Nxi Syx T+ Nvi Syy -5 Fx (2.8)

3

+[F’<7‘S‘(’Y +F;ysxx '—2 F;W va ] ‘
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Some dynamic problems of very thin walled éylémﬁricaﬁ.
panels will be considered. It is assumed in these problems that
of the deformations { w in the s-direction, u in the x-direction,
v in the y-direction), the flexural deformation, w, predominates.
In reference 3 it has been shown that for the lower (flexural)
modes of free vibration of thin cylindrical shells, when n is not
too small, say n > 3, then the maximum inertial forces due to
accelerations tangent to the surface of the shell (i.e., uﬁ and
7'/‘.‘ m ) may be neglected in comparison to the maximum trans-
verse inertial force ( w- m ). This ability to neglect the Uum
and M sirmnplifies the analytical problem tremendously.
Hence we shall assume explicitly that the only inertial force
which is to be considered is that due to the transverse accel-
eration W M . Under this assumption the load normal to

surface is considered to consist of
R + PWx,vt) - w m (2.9)

% =

where P is 2 uniform constant pressure and Pox,%t)  is
a2 space and time dependent pressure. When equation 2.9 is in-
troduced into equation 2.8, the result is

Dv¥S = (P-zNyi) t+ Pi,vty - Wrwm

+ Nxi Syx + Nvi Sev -~ Y Fxx
4 (2. 40)

+[F;<)<S‘~(\" +F~N5xx'_2-‘:xv3x\’] >

"E_LI‘ V4F= é— S xx +[_Si?" Sxx g\'\’] .



b
If the curved panels studied here were a part of a pressurized
cylinder without other initial stresses, the relation Nyi =RBa
would hold and the term (R — 4 Nyi ) would be zero. Other-
wise, the equations of motion are equations 2. 10,

2.2 Boundary Conditions

Rectangular panels subjected to the so-called ""freely
supported'’ boundary conditions will be considered. These con-

ditions are

t
1}
A
o

ON X=O,L

»

{2.44)

F'— = F‘(Y = O

The condition F, = O on a boundary x = constant requires that
N ¢ be zero on that boundary. The additional condition F = 0
on the boundary % = constant requires that Fyy = O or Nx=0

on that boundary. Since the stress-strain relations may be written

il

Ehex Nx_VNY,

Eh ey =Ny - N, (2.42)

Gh €xy = NxY

the freely supported boundary conditions require that the normal

2
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stress resultants Nx and Ny and the normal strains €« and
€, vanish on the boundaries while no requirements are imposed

on the shear stresses and the shear strains by the boundary con-

ditions.

In a gimilar manner the boundary condition S = 0 on
% = constant requires that Syy =0 on % = constant. The relation

between the moment resultants and the displacement, 8, are
Mx ='D[.5xx + 7)3‘(9]>
My =-D [Sev + VS]] (2.43)

st’ = (I-V)sz‘( .

Thus the boundary conditions on S provide an additional condition
that My ang My be zero on the boundaries but Mxy is not pre-
scribed on the boundaries.

2.3 Mode Shapes

Appropriate modes for the displacement function S and the
stress function F must be selected in order to apply the Galerkin
method. These modes must satisfy the prescribed boundary con-
ditions, equations 2.44. A set of modes which satisfy these bound-
ary conditions (as well as being a solution to the linearized equation
obtained when the nonlinear terms are dropped from equations

2.40) are
S =(w-w;) = Aw) cos () sn(TE),

F - Brocos(%)sm () . (2.19
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The cheoice of these modes carries with it the implicit assumption
that any nonlinearity in the problem will influence only the nature
of the time dependent amplitudes A{t) and B(t) and will in no way
affect the space distributions of stresses and displacements. As
an approximation, this assumption can sometimes be justified
on an experimental basis.

2.4 Application of the Galerkin Method

The Galerkin procedure requires that the modes (equation
2. 14) be substituted for S and F in the equations of motion, 2.40;
that each of these equations be weighted with the appropriate
modal function (in this case Cos(%.!) sin (5%) ) and that the resultant
Eeve 5.

equations be integrated over the domain O <€ X< L, zn

The expressions arising from this procedure are

L *“{-i
B TV, /Y : ny 5|A)(_7.T_7.<
E—L-\[(L)+(a)]COS(a) L>
°® Zra

b L (T feos(B) sw(TX)

— AL E s (F) <o ()

+ Az. (%y(%)zCosz (,%)smz(n_:.) } Cos(%)sw(’—'é)&xd)’

:O)
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418
L2

{[D[(T—{)zw“(%ﬂz + A }Cos (7)Y =i (%)
o g
4 [ DV () s (]~ o (BT B | cos (38) sn()
(2. 46)
- (288 (3 (2 [[cos(at) =) - swr(m) s (2) ]
e cos(Br)swm ()~ [ 2~ 2 N3 + ooy f)]ws(ﬂ-)s.u( )}AXJV
= O.

Evaluation of the integrals of equaticns 2.45 and 2. 16 gives
2"’

fj Cos® () sw*(ZX) dx dy = (La")

o -ar

2

L %1_; .
J j cost(3) sw’(F)axdv = (£2)(3),
o -ai

2n {2.47)
J J QN (YH’)CDS<”V) cos ("X)su\l("x)éxd‘l’— ) )
o

JJ Px, v3t) cos (55 Lysiw(ZEVdxdY = '_{E(-c)
-3

L amr
JJ (P——N\’z)c-o5(“ )5'“(“)47“40"4< ( 'jif\)u)
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Then 2. 45 becomes
z 2 7% [ a2 n\% Py
B=-gh [(E)+@] [$A°GE) + SE)] (2. 18]

and equation 2. 46 becomes
— % _D: (A 713\2 2 T 2 7 ra
mA+ A {D [(L>+('&') ] +in(t-> + N\’i (T;")
| 2 2 2 _E 2
L (ETE- B EVE AR 2. 19
Sy
= (4) (%) Pw) -le(r - aNvi) .
If equation 2.48 is used to eliminate B from equation 2. 49 and if
the following notations are used*
e =DLEE] + N (5 + Nva (B + O

-2

O = BRI LEY+ ()]

™ W
2 -1
= el (Y Qe = [(Ma*Lms] () P,

P4

T 4
Wt =7, | (2.20)
—Q-Zl.. - &\)i/{,«)z,
0T = D%/

% cee section 2.5 where Reissner's work is discussed.
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the equation

2 Po_l_ .
;4? + oz [{+e (¢*+2 ¢D]=Qe) - (::')a(ﬂ.ﬁ.jxm», (2.24

e

iz obtained for the nondimensional amplitude coefficient }L .

2.5 Reissner's Development

In reference 3 Reissner developed, by an entively differ-
ent method, an equation identical with sguation £.24 except for
the last term. Reissner considers an initially pressurized panel
which is represented by the shallow shell equations, 2.8.

Hence the condition Ny; = d 70 is assumed so that the last term
in equation 2.21 vanishes. This agreement between the results
obtained by Galerkin's method and Reissner's method provides
some confidence in equation 2.24.

Reissner, applying the Liad&atedﬁ;ég}uﬁmg perturbation
technigue, obtains the following expression relating the free vi-

bration frequency and the amplitude
=2 v led(-se) (2.22)

where ¥ is the amplitude at ¢ = 0.
He observes
.+« .the remarkable fact that the shell does not spend
equal time intervals deflected outwards and deflected
inwards. Rather, more than half of the cycle is spent
during the inward deflection.
Reissner also shows that for a given maximum outward

deflection amplitude there is an associated larger inward deflection
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amplitude.

2.6 A Curved Panel vas. a Complete Cvylindrical Shell

In Chapter III the analysis of a complete cylindrical shell
is discussed in detail, thus it is sufficiernt to make only a brief
comment here. In order to extend the application of the shallow
shell equations to the complete cylinder, it is necessary to
change the limits of the Galerkin integration to include at least
one full wave, i.e., “"L4<x< L )’l:,é <Y< '—r;?- . Consequently the
results considered in this chapter are not directly applicable to
the complete cylindrical shell. It will turn out that for the com-
plete shell, the guadratic nonlinearity vanishes and with it goes
many of %hé interesting features discussed in this chapter.

2.7 Singular Points

For a single panel executing free vibrations in a vacuum,

equation 2.24 becomes
%r + Q. X_¢ +é(¢‘+ 3 ;lg)] = O. (2.23)

This equation may be rewritten as
%= -fh/e, (2.24)
Fby = @ dli+ve(de 2¢%)]

where
# = 4.

Then equation (2.23) ks known to have singularities when fcé)y=0
and = O , simultaneously. These singularities are located on

the ;/ axis in the phase plane at the points (}Z“ 0)’ (fﬁ) 0)9 and
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(‘4, 0o ) » Where

=30 0- 84 @29

FRREICRGL ]

I and g are complex, then 5{ is a stable center and the

2

only singularity in the plane. If }é_ and }é are real, i.e., if

(1 - ¢)= 0 (2. 26)

then }{ and é are gstable centers and }{_ is a saddle point
{figure 2). The physical interpretation of the instances in which
eguation 2.26 holds is that stable vibrations may exist about:

1) the undeflected equilibrium point ‘,L, with a

limit on the maximum amplitude, | ‘/(1){ - ¢

at which such a vibration may occur;

2} the ''buckled'' equilibrium point Sé: with a limit

on the maximum amplitude, |[{(v)| — | bo| o, at

which such a vibration may eoccur;

3) the saddle point ¢1 , and encompassing the two

equilibrium points ;4 and 5/3 and with a limit on

the minimum amplitude l \I’C’r)— A f at whkich such a vi-

bration may oceur.

For equation 2. 26 to hold, € must satisfy the condition

€z £, (2.27)



dda
or if € is written in full
4 2 21 %
(S8 (E) [ (3)+ (2)]
DB+ 1" + Ralz(®y«(@'1+ (G2 (B LB +(2F]™ (2.28)

Z

ol

It is clear that for a sufficiently thin shell, the bending stiffness
termn  DL(EY + (2} ]® will have a small contribution compared
to the membrane term (%) (7_":)4[({')?' + (%) ]—2; unless (%) >> (%),
and then the controlling influence will be that of the initial pressure
R, . And indeed, the initial pressure can be made zo large that
the inequality 2.28 is never true and then no possibility of a buck-
led state exists. In that event the vibration is about the single
center ;[/: O and is very close to the linear system in its be-
havior.
if, on the other hand, the pressure is negative (external
pressure) it may appréach the value
~{(ER) (Y [ e (2r] + DLEM @r T
(%) Lz(E)+ (3)'] (2. 29)
= Raer

which corzesponds to buckling of the cylindrical panel under ex-

ternal hydrostatic pressure. From this € may be expressed as

2
€ = 6‘3* ‘ - - ) (2. 30}
(Vo= Repe) d[2(T) + (B)]
where — [J,,. is a positive number. A plotof € vs B would

oenerate a hynerbola with € > O for R DOV oo, with € < O for
& ye T

B <R_ _ andwith € unbounded for R Z R.er . K €< O then

CRT
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it follows that Q. < O , i.e., 2, becomes an imaginary

number. I _Q, is imaginary, then periodic solutions do not

exist, even for the linear system. The non-~periodic problem cor-

responding to € < O is not examined here.

2.8 The Enerpgy Integral and Period of Vibration.

Integration of equation 2.24

Macm - - [fodt, .

yvields the energy integral

() + azl#+ e B + $4M)] =2k, (2.

whence the nondimensional velocity is

¢ = _J:LZK—.SL":{¢2+6(%¢3+é¢4)}]l/f 2.

Now if the definition of T is restricted to the special case,

T =dJd.%¢, {Z.

and the frequency «, is replaced by its associated period

™= 5 (2.
ao that
= 2_7;2" ) {Z.
[
and
_ﬂz =/ {2.
da

32}

[
)
L

35}
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then the result of separation of variables and integration is

4

ed) j 24 |
Tg_ - 21 }l {ZK~L¢1+5(-"§¢3+§"¢4)]}'/1 {2.37)

Since the system described by equation 2.23 is conserva-
tive, the half period of the system is represented by eguation
2.37 if ‘/',’ and %z are the extremes of amplitude of the system
represented by equation 2.23 for a particular value of K |,

And so the ratio of the period of one complete cycle of the non-

linear oscillation to the period of the equivalent linear system is

£
Te | J” d¢
= — - (2. 38
¢

T, T {2K“[¢2+€(%¢3+é—}(‘4)]},/1

B
Lot

g

Equation 2, 38 is an elliptic integral and its evaluation is discussed
in Appendix I and the resulis are presented in Chapter V. Equa-
tion 2.32 can also be used to describe the phase plane ( ¢f - SL—
plane) trajectories and, with }Zz, set identically zero, to de-
scribe the maximum displacements for a2 given energy level. In

fact, if eguation 2. 32 is written in the form

2 / .
E(Fd)= 2k-f a2 [P reGEi+ 449] (2.39)
where }[t' is to be taken as zero, then the curve EU/, o) isa
vertical cross section of the energy surface. It also provides a

visualization of how buckling depends on the energy level, on the

initial pressure and on the other nonlincar contributions (see,
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for instance, figures 3, 4, 5 and 06).

2.9 Phase Plane Trajectories

The general character of the phase plane trajectories,
determined from equation 2. 32, is controlled by the two parame-
ters € and K which represent the degree of nonlinearity and
the energy level, respectively. I equation 2.27 holds, there are
two stable centers. The curves which enclose either of these
centers are in turn enclosed by the sep&raﬁ;riﬁg*. If the motion is
at an energy level less than that of the separatrix, then initial
conditions will determine the center with which the motion is as-
sociated. If the energy level is greater than that for the separa-
trix, then the motion will encompass the separatrix and, hence,
encompass both stable centers, independent of initial conditions.

The slope of these trajectories is
+ o ¢ (1+e[$+ 547)
{1K——_Q.ﬁ 5[‘[! +e (3¢ +449)] } ~

where the upper sign corresponds to the upper half plane. 1If the

(2.40}

(% )y

value of € is less than 8/9, the slope of these trajectories is
z8ro only at }Z = O . But the maximum inward deflection, /iﬁ
max, has 2 greater absolute value than does // ocut max. Now
the time of transit from }/in max to /: O and the time of

transgit from }Z:-_ O to }/m};‘% max are determined by

# The separatirix is the integral curve passing through the saddle
point.



o ) )lovrmmt
¢ "f d/ I T
™ 04 0T \/)’Z (2. 44)

1NV AMAX

in the upper half plane. For each value of 543 in the upper half
plane, there corresponds one value of SL in sach of the inward

and outward deflection states. Since the distance ] S[’ in max |
covered by the integral t,, is greater than the distance j y’mﬁ max |
then 4, > € oo A similar argument may be made for other trajec~
tories when € > 8/9. This result has also been verified by direct
numerical integration of the equations of motion. The types of

trajectories discussed are shown in figure 2.
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CHAPTER II1
THE RESPFPONSE OF A CURVED PANEL

3.4 The Response Problem

A few of the many methods of analyzing the response of
a nonlinear system will now be applied. The differential equation

analyzed is
by +_Qi[¢+é($z2+ 24H]= Q) | (2.23a)

Since the discussion of the last section has dealt with the
phase plane, a response problem which may be handled with the
aid of phase plane trajectories will be considered first. I Q (e)
is a delta function and if the initial conditions associated with the
problem are (/(o) = O, 5/:((0) = O , a new problem which is
equivalent to this may be formulated. In the new problem Q(¥)=0
for all values of ¥ and the new initial conditions are $(od=o0 0

¢?’ (o) =7 . The relation between X, v and a pressure pulse

of mggmmﬁe R s
a=v= () e ;

a‘ m 'L {3.14)
where &, is obtained from the fourth of equations 2.47, by set-
ting P(x,v;t)=F . Now the phase plane trajectories discussed
in 2.9 can be used to describe the response of the system to a delta
function of magnitude & by simply finding the point in the ‘/— Ség
plane which corresponds to ¢(0)= o, 54,_, (0) = . The response

wi& simply follow the trajectory passing through that point. A
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special problem of considerable interest is to find the magnitude

of P for which the trajectory will enclose the buckled equilib-

rium point ‘/; N (e Z g). This value of Yo must correspond to the

velocity intercept of the separatrix. Thus the critical value of

¥,  will be determined from setting
E(o,dear) = E (1, 0) .
The equivalent statement is
A TICE R T )
In terms of the physical parameters

3 —
T, .. = deer () a®m O,

CRT

or

L) )3,1‘;:‘ DL

5> _ O<LR-T 4n
ST T+ B2
X
[ 7 cosatysm@maxar
-ua
° Zn

from which

4 AN
< —eeor (%) é“’%{:‘) -

{3.2)

{3.3)

(3.4}

{3.5)

The explanation of the sign in equation 3.6 emerges from

a consideration of the effects of damping. In the absence of damp-

ing, the phase plane trajectories are symmetric with respect to

velocity, thus an internally applied pressure pulse would buckle
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the system as easily as would an external pressure pulse. This
is not physically reasonable. A more careful examination is in
order. Recent experimental work by George ‘%*Jattssﬁ at C.1.7. has
indicated that the damping of the vibrations of thin circular cylin-
drical shells is small-equivalent to fifty or one-hundred cycles to
damp to half amplitude. Damping of such small magnitude is sat-
isfactorily treated as viscous damping. I a viscous damping
term is introduced into equation 2.23, the phase plane trajectories
are no longer like figure 2 but are now like figures 7 and 8, From
figure 7 it is clear that for a trajectory to enter the buckled region,
the equivalent initial velocity must be negative, that is, inward.
Hence, the pressure pulse must be external. This requires the
sign in equation 3.6 to be negative.

3.2 R@ap@ﬂ@e to an Impulsive Loading

It is worth noting that the phase plane trajectories provide
a determination of the maximum amplitude response, of this shell
system, to an applied impulsive pressure loading. The initial
velocity, corresponding to a pressure pulse, identifies a given
phase plane trajectory. The maximum amplitude associated with
that trajectory is the maximum elastic deformation that the shell
can experience.

An iteration scheme may be applied to the response prob-
lem for a delta function loading. A description of the largest non-

linear effect that may be treated with an equivalent linear system

#* Thesis to be published.
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is obtained. Consider the iteration scheme
Y 3 3,7
ny ,;Z;o 7%./‘) ) B, 4 95(,(_0 . (3.7)
Introduce equation 3.7 into equation 2.23 with the initial condi-
tions %(O) =0, %Z(o) = 2 . And further assume %h&tf M¢(o):2)

is a constant. Then y(fo) is determined by
2 2 3 .
g({o> + é ( (c) + —g—éo) > - O’ (3°8}

where the roote are the same as those found in equation 2.25.

When sl/ = yf + 75 is introduced into equation 2.23, there follows

% +_Q:9£m Y_H 2€4, (1+ {::qé,,,)] =0, (3.9

DEt

The solution to equation 3.9 is

Sé,) = C, St/\lp't -+ C’,coSﬂ’Z {3.40)

where

(6/a )= 1+2¢ed, (1+ 5 ds) (3.44)

After application of the initial conditions to }é, ) » the expression

obtained is

5[ v) = [éa) []—CO.S(G’Z} "/'732 SINBTY (3.42)

(1)

This solution can have meaning only if /K is real. ¥ A
is not real, the solution is not periodic. If Sé.,) is taken to be

Zero, @ = (2, » and nothing has been achieved since a linear system
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has been matched to itself. I 95(0) is taken to be the buckled

equilibrium position (for ¢ > 8/9),

é" = — %[_|+<l—§—é— e ]) (3»§3§

)

then the condition,

(8/2.)= | +267§°)(l+"3-5£(o))>/ o (3.14)

determines the values of éﬂ and € which are an acceptable solu-
tion of equation 2. 23 corresponding to equation 3.42. Figure 9
shows several curves representing (f /_Q-l_)l as a function of

éo) for several values of € . It is observed that as € in-

reases above 8/9 that a larger and larger part of the curve in
the region -3 < ¢§°)< O corresponds to unacceptable values for

(@/_Q_,_ )2. But if ¢(o) {—~3 there will always be an acceptable
solution of the form of equation 3.42. For instance, as € be-
comes unboundedly large, the value of ¢( o) tends to -4.5 and
for € =1, ¢/(°) is -3. The region oo > € { can have solutions
of the form given in equation 3. 12 for vibrations about the buckled
equilibrium point given by equation 2.53.

3.3 Response to a Step Function Loading

The next problem considered is the response {equation 2. 23a}
to a step function with zero initial conditions imposed, i.e., ¢(0)=
= %t’ (0) =0, Ry=R for ¥ 2 O, where R is a constant.

The system considered is

séﬁ +_<zf_[¢ +e (¢2+-g— )] =R1iw) . (3. 15)
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Again the iteration techunique is applied, seeking a linearized
solution approximating the action of the nonlinear system. The form

of the iteration i

A\
5471) - Z Qc.i) and By € < Oeiy (3. 18)
j=0
where @, is a constant. The &, must satisfy
2 2
B, 1+€(Bn*+56%)] =v (3.47)

where ¢ = (R/qQ%). The next approximation requires
b A

B, t- 22 B + € (200 *5 61, 8,,]=0. 2. 48)

Application of the initial conditions 9;/ (o) = 542,50) = O yields
}{I) (v) = ‘9@) (/—- cosBY) es. 49)

with /f defined by squation 3.44. To determine the range of validity
of equation 3.149, it is assumed the B () is very nearly the cor-

rect solution, then the true solution, ‘é_r) , becomes

b= & o) + ¢, (3.20)

where }42_) (%) contains all the deviations of the true solution from
T
¢, (%)

The differential equation governing )42)(2:) is obtained by put-

ting equations 3.20 and 3. 19 into equation 3.45. As a comsequence
2 4
£ +_Q2 [H"é (2 8., + Be)— e b, (2+% Broy) cos ¥

ey
\ {3.24)

2 -
+ ‘;‘35 (9(0) cos 2(‘92}] 342_) = 0.
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with initial conditions

.22}

Ly

) @) = 34*’2‘(0) =0 4

Equation 3.21 is a form of Hill's equation. To study this equation it

is rewritten in the form

5{,_,2,2, + fé) [a*— ?Ic.oslgt’ + QICos;l,@? ]= 0. {3.23)

One method of solution for equation 3.23 is to assume a sclution of

the form {ref. 7)

oo .
;{z) = e":;‘? Z b—m e}M(gf
-0

(3. 24)
which, when introduced into equation 3.23, yields
< L (R+mpdT A $&
2 +m
"Z(}H-m/é’) b & AT L et Z(abm
0 % (3.25)
"% Lbmut b J+4 9 b, + Anft = o
2 7 T m-t 4+ 2 311{' "+ bm-z :De -
From this
/ 2
Abm 5L (bt by, ) Y2 G (B, #hoy ) = (At mg) b= 0,
(3.26)

(B~ (1 +mBY Tbm= 23, (B # by )+ 5 Fy (brmse* bme) =0,

is obtained. Associated with these eguations there is an infinite de-
terminant with the central seven by seven determinant. The condition
that this determinant vanish (or for that matter, any finite central
determinant taken from the infinite determinant) is an approximate
condition to determine the values of )\ and Lence the stability of

the solution assumed in equation 3.24. I this solution is unstable,
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then ¥, is not a good approximation to the true solution of equa-
tion 3,15, It is certainly that the vanishing of 1 is the boundary
between stable and unstable values of $41) . blaking use of this

fact the first ovder stability criterion for >l(,) is

z

2 z / 2 A 2 2 _
#4959 -4 (2-7) =0, .20

where

a: —QZ[I+éQ°) (2”"9@))]}
o 12_:[' + 28, (1+ é&,,)]’

?L = __(Z:[-Zé Qfa) (’+%Q[°))])

- e[ L
azz - ..Q‘,[,_é 9(07].
When the necessary operations have been carried out in equation
3,27 the conditions for stability of ¢,, and hence the limiting
conditions under which g[ ¢y can represent the response of the

systens is found to be

-1
€= {gft» [IO +9 B ~ % (Z)(""Qc\)]}) {3.28)

where @, is defined by eguation 3.17. ZILguations 3,17 and 3.27
have been used o construct a stability nomograph which is
presented in figure 10,

A consideration of the energy of the problemw of a step func-

tion loading as represented in eguation 3, 15 yields

5[,; -F,CZZ{SZZJ—é(%S/}‘/"9£¢4)]=2F25[+2}<, {3.29)
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A comparison with equation 2.39 shows that the effect of a pressure
step function is to add a term linear in }Z) to the energy sguation
previocusly obtained for the free vibration. These energy curves
are shown in figure 5. As expected, an internal pressure step sta-
bilizes the cylinder and an external pressure step destabilizes the
cylinder. In addition, there are other, loss expected results. With
an external pressure step, the saddle point moves closer to the
origin, $Z = 0 , and to a lower energy level. The buckled equilib-
rium point moves to a lower energy level and a larger inward dis-
placement. The static equilibrium point moves to a higher energy
level and an inward displacement. Internal pressure has precisely
the opposite effect. Figure 14 shows how the phase plane trajec-
tories are modified. Figure 14a depicts the minimum energy
buckling trajectory (separatrix) for a given @y@%@m. Figure 44b
shows how this trajectory would be changed by an external pressure
step while figure 14c shows the influence of an internal pressure
step.

5.4 Buckling Due to a Step Function Loading

An important and interesting guestion is raised by this
influence of the step function loading. It is clear that the larger
the external step function, the lower will be the energy level re-
guired to cause buckling of the shell, until the step pressure is
equal to the static buckling pressure in which case the shell will
buckle without dynamic effects. The guestion that arises is this:

is there a condition such that an applied external pressure step,
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of magnitude less than the static buckling pressure, will buckle
the shell? To answer this guestion it is necessary to know the
maximum value that ;/ will attain for any external pressure step
and to compare this value with the location of the ssaédﬁe point.
If this maximum response is greater than the amplitude which
corresponds wil the saddle point, buckling is possible.

Application of the work of Fung and Barton (8) for the
shock response of nonlinear systems leads to a solution of the
problem. In their work, Fung and Barton present the concept
of a shock response ratio which is the ratio of the maximum re-
gponse of a nonlinear system to the maximum response of the
equivalent linear system (¢ = O) when each has been subjected
to the same loading. This ratio depends on the nature of the
nonlinearity of the restoring force in the system considered and
on the type of loading to be applied to these two systems. For
a step load, they have shown that the response ratio %A has the
following form

{A =[i+2¢ fﬁ(%”) d ¢ ]‘j

{3.30)

where g ( % *) represents the nonlinearity function of the restor-
ing force. The limit (-1) occurs here since buckling occurs in the

negative displacement domain. For the problem examined here
§(‘Z*) = U[*)z*“;’“[*)s, (3. 34)
where ;/* = }//A
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and A ig the maximum ''allowable'' non-dimensional deflection
of the nonlinear system. The choice for A4 is that deflection
which is the least that will allow buckling to occur, i.e., the sad-

dle point. The critical loading ratic obtained in this manner is

=i
= (11— =€ 3.32
/{ (1- 2£), (3.32)
The associated linear system is

}4? + 22 f/= r 2. Lo,

(3. 33)
vl =R,
with initial copditions
= = O,
feor = 4 o (3.34)

The maximum response of this linear system is l2r]= max H’._w \

But recalling that

/é _ Max ’ ‘;uom.m. l - L

max | o | T max (Yo | 7 (3.35)

the maximum nonlinear response to a2 step input of magnitude y_@2

is found to be
oy -1

15
= |2 f— —
a=lael(1=75) . (3. 36)
The saddle point is located by differentiation of eqguation 3. 29 with
respect to )L and setting the derivative equal to zero, with the

result
el$ 4% +24* 1+2d-2+ =0, (3. 37)



The three roots of this equation will be ordered in the fashion
%Om < é@) £ Séw . The magnitude of 5/¢(,,, must correspond

to equation 3. 39 in order to get the condition on || for buck-

ling, i.e.,

<

4| € =

&l

{3.38)

It is not possible that an internal pressure loading will generate
a dynamic response great enough to buckle the shell, thus an ex-
ternal pressure step may be taken as the physically important
condition. The external loading situation corresponds to v <O .
If equation 3. 38 is introduced into equation 3. 37 after dropping
the absolute value signs, the equation for the value of Vv which

will just allow buckling is

é[ ( se)" "'2(. Sé) P]+Z[l—$é>_|] ©. (3.39)

8

The roots of this equation are ordered as V,, <V, . The value
of Y, will provide the correct magritude (and sign) for the pres-
sure step required to buckle the cylinder, provided only that € > -98-
Figure 17 shows the variation of Y,, as a function of € .

The magnitude of R {and hence v ) can be related to a

phyesical pressure 1 . The relation is
SN i ramd )
Ecp.'r -~ Ech (’4") ( nr €3. %@§

where ?cg—rAO. The corresponding equation in terms of Qp.-r is
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31 + = 4 )
oC:T é )/c‘p_-r (;g-—) ( 4 nr ) . (ﬁ»%ﬁ}

2
Care must be taken at this point since «J. depends on an initial
pressure. The external pressure is not a part of the initial pres-
(8T)

sure which determined «J] . The value of B ar mmay be com-

pared with oPg,lT from equation 2.29 to determine which is

larger at each particular condition.
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CHAPTER IV

A SECOND DEVELOPMENT OF THE CURVED PANEL PROBLEM

4.1 Equations of Motion

In reference 3 Reissner assumed a stress function that sat-
isfied the boundary conditions but which did not satisfy the com-
patibility equation exactly. In section 2.3 et seq. the same procedure
is followed. The equations of motion will be @Mameéluamg an as-
sumed displacement mode shape and the corresponding exact stress
function {which satisfies the compatibility equation in a manner
similar to the work of Chu, (6)). If the displacement S(x,y;t) as
given in equation 2.414 is used and substituted into the compatibility
eguation (the first of equations 2.8) the stress function may be
determined by integration of that equation. The integration gives

EoEAh {2 EFIE (2] sw () cos ()
2% X 2/ a2 2ny (4.1}

b A [(2P(ES cos (3) - (BN(2)"cos (321,
This stress function satisfies the compatibility conditions exactly
but the boundary conditions on ¥ and its second derivatives are
not satisfied exactly, but are satisfied only on the average. None
the leas, the results obtained are expected to be improved if equa-
tion 4.4 is used with the Galerkin averaging technique to satisfy
the equilibriura equation {first of equations 2. 40) under the restric-
tions of section 2.6.

When equations 2.14 and 4.1 are introduced into the first

of equations 2.40, the following equation is obtained:
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{;ﬁ A+ a[piEr@E « EA (e [E @]

T (1

* Ral4(EY+ (Y]] f 5w (8) oo ()

= £ hA* {az (Beoe (58) + 5 (1) ([ (%

(4.2}

e cont () swi(2Y) - & () (B LN+ (2 Tow(®)-

e Cos ( )} + Eh AB{BL[(%) Cos(zmr) (’_ (""v)]su(""‘)(_os(nq)}

Now if the Galerkin averaging is applied to equation 4.2, using

Slx,yst) as in the weighting function, the integrals of equations

2.47 are used along with the integrals
L na

J cos (A7) =i’ (%) cos? ( L) dx dv = (%‘;))

0 -

SR

|

j J Cos (28] cot () st (IX) dx v = (KAL)
s

o

W s
il

@

5]

When this is done it is possible to find that
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4+ a{plEr @] + 5 (EPLEr @] wRali(E)@] f

PR EEETIE T (8% 3

R {ENE- G = Pe(r)

If a pseudo aspect ratio AR is defined by

= At {<.5}
R - mTA& J

and if the notations of eqguations 2. 20 are used, the nondimensional

equation obtained from equation 4.4 is

bo + 22 {1+ B[P QR (+&70-00FT e

= Q%)
But if the coefficient of the cubic term is
X (R) = (2)EE) R (1+ ) (1- &), (4.7)
then equation 4.6 may be written in the form
sé“ + _sz:[sh%é (‘/W—X(msﬁ)] = Q) | (4.8)

4,2 ‘The Influence of Aspect Ratio

The nonlinearity parameter € , expressed as a function

of aspect ratio, is

(4.9)

{l+(t+.¢Rz) [tz(' o (h 1) PR (i (h/d) R (LR ]}
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As R tends to zero, € tends to zero but X tends to plus infinity
4+ -2
and the product & € (R) X(R) tends to 3(1-2%) (m/2) » " (hl2) and

for small R (AR<< 1) equation 4.8 is

-2 m _— .
%M +2F [ EIG) (/“) J3 ] =Q . {4.10)
n* (hla)
Thie is the Duffing equation with a hard spring and hence when the
aspect ratio of the curved panel ig small compared to unity, sgua-
tion 2, 23a may be replaced by eguation 4, 10.
For MR tending to infinity &€ tends to zers as MR while
. e s a :
X tends to negative infinity as AR (see figure 12). The product
7 2
(£) € (R) 2(R)  tends to zero as AR for B different from .
But if ¥ is only slightly different from the buckling condition

o 4 3 " » b
Beaq the product (3 )€ X can become {inite and the eguation of

motion reduces 1o

/,m t o [d-Fer* L ]=qm) (4.11)

which is Duffing's equation for a soft spring. Since equation 4,11
reguires a very restrictive set of conditions on F, and AR, itis

of limited vsefulness. In most instances it will be more appropriate

that the two will give similar results for MR in the neighborhood

m
S
e}
b
g
e
&
ol
=
e
(A%
L)
Yot
]
By
O
]

of 0.9, To carry out the studies of section
equation 4, & in all ranges of the aspect ratio R is not practical for

the present work., But since equation 2. 23a has most of the features
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of equation 4.8, sections 2.7 through 2. 40 may be regarded as de-
picting many of the features of equation 4.8,
A brief examination of the effect of AR on the singularities
of equation 4.8 (with Q¢¥) = O} in the phase plane will point out how
this equation differs from that studied in sections 2.7 through 2. 40.

The phase plane singularities are the roots of the equation

fih) = 22 dli+le($exmé)]=0 (4.12)

which are
¢=0
a
4 =gz~ (- 5],
A4.43)
'
J, == [+ (E)]
Again if
[l—é,;-(-é’-c—)]ZO (4.44)

(/I and Sé are stable centers while )é_ is a saddle point. If

the opposite inequality

["%‘(‘é‘)] < O (4. 45)

is valid, Sé and Sé are complex and S{ is a stable center. Now

note that for QL tending toward zero the latter inequality holds and
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there is no possibility of a solution of the '"buckled"’ type. I the

aspect ratio is large, equation 4.12 becomes

Py = - se R ] (4. 16)

with roots
"/ -z
=2 e &
= O
4=0, .17)
7/

=-2¢6 MR .

ws

From these roots }4_ is found to be a stable center while %, and
%3 are saddie points. An important feature of the large aspect
ratic problem is that both é_//z(fR—P"" ) and R™* are small num-
bers so that as MR tends to infinity the amplitude of the stable
oscillations about the point ¢L diminish to sero. Thus the gscil-
lations for a very long narrow panel become less stable as the
length of the panel increases. Figure 43 shows the variations in
the type of phase plane trajectories that may be expected to accome
pany changing aspect ratios in equation 4.8,

4.3 A Second Treatment of the Step Function Response
Froblem

The inhomogeneous differential eq&aﬁ@é with homogeneous
initial conditions considered in section 3.3 can be treated exactly
by a simple transformation. The differential equation then becommes
homogeneous while the initial conditions become inhomogeneous.

Consider a step function applied to equation 4.8
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Uy + 22 8¢4) = R1),

where

And let the initial conditions be

§Z(0) = }é(o) = 0.

<

Now le
f= s+ 60
where & is a comstant such that
gisy= R/22 =r.

Then

Oy +22[8(60 +586+ L 8% 07]=0,

gib)=¢{+%e] ot myb?]

(4. 48)

{4.22)

where primes indicate differentiation with respect to the argument.

The initial conditions become
Bio)y ==§, By = O.

Phase plane curves are given by

Oe+ 0280507+ 3816 +58(1)6%]-2K.

{4.23)

(4. 24)



Maximum amplitudes may be determined {rom the phase plane
trajectories as a function of § . A given vd ue of R will fix &

value of § and hence a given value of ¥, from

2 3 " )
RK= _Qf [%l(&m)gm + ’3“§?§(¢>) Stry* 2 i(écm)g‘ém . (4.25)

The period associated with equation 4.22 is determined

from
e,
7:“._ | J JG
T ) e (fwnt < 48 87 + mem e W

%

where ¥=O_ t and hence 2.=1 and &, 6, are the maximum and

minimum points on the phase plane trajectory.
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CHAPTER V
THE CYLINDRICAL SHELL PROBLEM

5.4 Eguations of Motion

It has been pointed out in section 2.6 that the manner in
which the Galerkin averaging process is applied makes a funda-
mental difference in the nature of the physical system that cor-
responds to the resulting equation. Indeed, it appears that if the
Galerkin integration of the equations of motion is taken over only
one half wave in both axial and circumferential directions, the
resultant equations cannot be said to apply to a breathing mode
vibration of a circular cylindrical shell. Howewver, if the Galerkin
integration which led to eguation 2. 24 had been carried over a full
wave in both axial and circumferential directions, an equation
quite different from 2.241 would have been found. In fact, the
guadratic nonlinearity would have been gone, leaving a form of
Duffing's equation. And the objectionable moment along the bound-
aries ¥ = constant would have departed with the gquadratic nonlin- |
earity. But, the interesting ''buckling'' phenomena and the difference
of time during inward deflection from time during outward deflection
will also be missing from the analysis. |

If the analysis was to start with equation 4.2 the only
variation being introduced by integrating over the domain -~ ¢ x<L .,
~-% ¢ Y& T2, the resulting equations still would be limited to
a Y"shallow shell mode'', i.e., there would still be the restriction

on the value of M . The analysis would apply only if M > 3 . In
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order to relieve this restriction use will be made of a nonlinear
form of the recently developed Morley equations. In his paper
{(ref. 9) Morley haes shown that a slight modification of the Don-
nell equations leads to a new and simple equation which shows
very good agreement with the Flligge equations even for small
values of N in static problems. This conclusion has been sub-
stantiated in a paper by Houghton and Johns (10) wheve Morley's
eguation is compared not only with Donnell's eguation but also
with the equations bearing the names of Biezenc and Grammel,
Viassov, Timoshenko, Bijlaard, Naghdl and Berry, and Kennard.

It does not appear that there is a mathematically consis-
tent way of arriving at Movrley's eguations mﬁz’?em&y available.
The justification for its use lies in the remarkable agreement
between numerical results obtained from it and Flligge's equa-
tion. With this brief note of caution, the Morley equation will
be applied. I a severe doubt about the Li%é@ﬁéy equations is held
by the reader, he may obtain the Donnell equation results by drop-
ping one term in the final equation. "

It can be shown that the compatibility and eguilibrium
equations which correspond to the Morley equation, with nonlinear

terms included, are

‘ Elfw V'F = é—gxx +[sz¥ - S, /S/w))
D 5) S =P t) == S + Nui Dy +Mei Sy (5.1)

|
-3 Fxx + [Fxxsw +Fyy Sy =2 Fox e | .

#In the final equation the Donnell equation results are obtained by
zeplacing D[(E)+(2)+(&)]"  with DI(E)’+EG)*]™ -
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5.2 Boundary Conditions

The boundary conditions are

SZSxX:O

. ON X = Zt;\L
“‘T-;:a*’ﬂ’)?—) (%.4-"’—%2) (J:OJI:Z"")
Fdy = Fldi=0
. ‘a
~(T 4 912) -(B+5) :

L L on y=*{T+02
Fdx = Fopdx = O (J=oz.m)
-—L 3
~-L

2

The meaning of the boundary conditions on 5 are the same as in
section 2.2. The meaning of the boundary conditions on ¥ are
similar to that of section 2.2, but here they are true on the aver-
age over the entire boundary where, before they were true on a
point by point basis throughout the boundary.

5.3 Galerkin Integration

Now, since a full cylinder is considered, Nyi = dR and
Ny = —',jd B for initial stresses caused by pressurization.

The displacement mode will be taken to be

S = Awycos (F)sw (F), (5.2)



43
and the associated stress function, which satisfies compatibility,

is given by equation 4.4. Substitution of equatiocns 5.2 and 4. 14 into

the sguilibrium eguation from equations 5.1 produces

[0 + a[plErGre T + S 1) (2]

‘ +P°a [3‘;% "'( ]]}S'”(—’)C‘”S( ) E hp* {aa cos(zvx)
b3S LE (8] eost ()20 () (5.3)
-2 (B G LN (2 Tsw() e (%)}
+ELhA? {'s"[(%f‘” (2 )~ (LYeos (BF1) ] T sw(TE) cos(B) 4+ Prgrit).

Equation 5. 3 is to be weighted with equation 5.2 and the Galerkin

averaging integral is to be carried out over the domain—| £ x< |_;

—12< yY< T2 . The following integrals are used

L omd
L

LAT

& SIN (Wx> cos? ( )J’“‘“’ = ( )
-L "na
n
ma

=

cos(A%) sint(IK) cost (2g) dxdv= — (H2T)

5w (5.4)

j [@5 20 cost () s () v = (7))

-L

wa
X J ﬂCo$<%)Sw(lrf) P(x, ‘Rjé)e(xJ? = ]Pl(f),
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where all other integrals in this Galerkin average vanish.
The Galerkin integration of the equilibrium equation then

produces
A+ & {DlEr(@@T + L@ (e T
+aR [2E+ @F T + 2@ @7 GrIA° (5.5)
()
<1_a1r)

Unce again the notation of equation 2.20 is used with the exception

e
that 5 «), is now replaced by

A D =
D[(—) P @@ AR [ EF (@] 4m D, B8
When these expressions are used to simplify equation 5.5, equation
4.5 is used to introduce the aspect ratio, the nondimensional amp-~

litude }L is governed by the eguation

by +2k L+ ENEDNFST R+ RY) 7= Qe), 5 4

{ [ (47))3 ’P,('U) ] .

4
where Qe = = T3 LS =

In a recent paper {ref. 6), Chu has obtained a similar equation by
a different process. Ie collects terms which contain first har-
monics of the space variables from an equation equivalent to equa-
tion 5.3 and neglects the higher harmonic space terms. By this

procedure he obtaing an equation which differs from equation 5.7

* The subscript i is to denote that the horley equation has been
used.
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by a factor of two in the cubic term. However, since the intent of
his paper was to show the trends of frequency dependence on the
amplitude of vibration, the loss of this factor of two should not in-
validate his general conclusions. Of course it must be noted that
Chu's development does not start from the lMorley equation and
so has _Q % instead of _S25m  in his development of the egua-
tion.

Because equation 5.7 is a form of Duffing's equation, a
great deal of information about it can be obtained from the liter-
ature of nonlinear mechanics. Since this information is generally
available, it is unnecessary to repeat the derivations hex’e’k, It
will be the work of the next several sections to make use of the
already known data for Duffing's equation in order to discuss the
shell vibration problem.

5.4 %ﬁnguiarities;

Eqguation 5.7 will be written in the simplified form
EY ! '
%z +_ 2% [‘:L +o"¢ 1= Q' (5.8)

where

o = (L) [ (B & (e &L,

Singularities of equation 5.8 will be at the roots of

* See, for instance, ref. 44.
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flieod]=o (5.9)

But since o2 O the only singularity is a stable center at S/ =0 .

5.5 Energy Equation and Period

2 . { o .
The energy integral for free vibration (Q (v) = O) iz ob-

tained, as before, from

(}@% = -t /% (5.40)

where ‘F(SL) = _Q7, }/[i‘*ﬁ“}“] .

Integration yields

(£) + 0k [Feted’] =2k . (5.1

Then the period may be found as before in the form

£
“Lj d¢
o : (5.42)

) [2K— (£*+4 %)) 72

where the subscript "M" on the period symbol is to designate that
the Morley equation has been used. The limits ,/ and 5{ are

the real roots of

2K =42 —do W=o) (5.43}

and correspond to maximum values of displacement. Hence the

limits on the integral of equation 5.12 are determined from

;/1 = ;2; [(|+4-1<c))l/”——1] (5.14)

/2
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where the sign has been chosen so that 5,/ and z/are real. The

remaining roots of the quartic 5.43 are obtained from

2 /
g,«; -7 ’5’“[(‘+4f<d)/1+!]. (5. 15}

With the aid of equations 5.44 and 5. 45, equation 5. 42 may be eval-
uated following the method presented in Appendix L.

5.6 Harmonic Response

The response of the Duffing equation to harmonic excitation
has received considerable attention. The following procedure is to
be found in ref. 11 and is repeated here with only sufficient detail
to make the translation to the notation of the pfe@em problem under-
standable.

The frequency used to nondimensionalize the time will be
chosen to be LJLM so that 2, = «J,, ¢ and _52_?;_M= | and in addi-
tion the frequency in the denomination of o’ is also “©ru . Con-
sider the case where the coefficient ¢’ is a quantity small relative
to unity.

Liet the forcing function be

Q) =g cos (A7) (5.16)

The forcing function is small of order o and the parameter X is
the ratio of the driving frequency to the natural frequency of the

linearized equation associated with this system. Now eguation 5.8

may be written as



%M + 02 = (A=) f — o Pt g cos A2 (5. 47)

where A° }/ has been added to each side of equation 5. 8.

If the investigation is in the vicinity of the natural frequency
of the linear system, i.e., if the investigation is to seek the condi-
tions near rescnance, then A is close to unity and (A*—( ) can
be small of order o’ . In that case all quantities on the right hand
side of equation 5.417 are small of order o . Under these condi-
tions, equation 5.47 is an instrument for obtaining an approximate

golution by iteration. Let the iterative solution be

"
L, =2 & (5. 18)
=0
where gé <<¢K_/ . First introduce }{z 920{ into equation 2,17.

Then drop terms of order o with the result

5{,{?, FA @ =0, (5.19)

The solution of equation 5.49 is

é = C/, oS R’fu —+ C'Iz S ;\’Z’H ngﬂﬁ

#
According to Stoker it can be shown that only <052 % (where A
is an odd integer) will occur in the solution tc the system of equa-

tion 5.47. So equation 5. 20 may be writter

{5.21)

é:é:Ao cos A Ty

# Ref. 14, page 86.
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where A, is a constant. Introducing 5/,= & +<;'{ into equation

5. 47 gives

¢

w =01 ~2 @4’ + g cos Az,

{5.22)

t 04— (4 347 +3447)].

The terms in sqguare brackets in equation 5.2Z are second order
terms and as such may be neglected. Then substituting equation
5.24 into equation 5.22 and expanding the cosine cubed termn
z 2 “
%?2‘ +;\ ;4 = (;{"/)140 CoSs 2?‘_‘ +‘7)$a coS ACu
{5.23)

3 “ 3
— A. 09—23{ cos ACu — < %cas-?lﬁq .

If the coefficient of doSA ¥u is non-zeroc then the solution to
equation 5.23 will contain a secular term which is of the form
7., cos» ¢, - Since this would be a non-periodic solution it is

not acceptable and is prohibited by setting
3 3 —
LN A. +22,- 2 @Al 1=o. (5.24)

. Z
Selving for A

N= 1+ F oA - 2. (5. 25)

IN

The scolution of equation 5.23 is

3
2A: s IXYu (5. 26)

%(’t’u) = A ecos Aty + 32 :
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#
According to Stoker the choice of setting A |, = A, is "decisive”
at this point and the iteration may proceed always applying this

principle. If A,=Z A,  at this point, then

& As
o ]Cobgl’gﬂ. (5;2?;

5//(,&’) — Aocosi’&-‘ -+ ‘+%°)A: =%/

Curves of | Aol as a function of A ., for & = 0.01, are shown -
in figure 44. Note that the central curve marked %, = O in fig-
ure 14 depicts the free vibration dependence of A on A, as
determined by the "Duffing" iteration scheme. To test the range
of validity of equation 5.25 (with 9, = O ) it should be compared
with the results of equation 5. 12 using A“X =4, -

Whean the response curve has multiple values of amplitude
which correspond to a single value of the driving frequency, or
in the notation used heve, to a single value of A , the possibility
of a jump phenomena may exist. The jump causes the amplitude
of vibration to change dramatically without a change in driving
frequency. But it is not an instability in the sense of unbounded
amplitude; indeed, it reduces the amplitude of vibration. T. XK.
Caughey hag gah@vmmk that a necessary and sufficient condition for
the existence of the jump phenomena is that the amplitude frequency
response curves possess a vertical tangent. In addition he has
shown that the "jump instability" cannot oceur if the state of response

'

corresponds to a point lying outside the region bounded by the loci

* Ref. 41, page 86.
% Ref. 12,
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of vertical tangents. The loci of vertical tangency in the limiting

case of vanishingly small damping are determined by the relations
2 3 2

A~ oA, =1
(5.28)
V-2 AC= |
which both come to the value A = 4 for A. = 0.

5.7 Stability of Harmonic Solutions

In the solution of nonlinear differential equations the cri-
terion of stability is the following: let /‘Z (¥) be a solution of a
nonlinear differential equation; let }Z (e) = Yery+5 #2) ve ancthez
solution of the same equation; and let § Llr) be arbitrarily small
at some time o . ¥ § £ (%) continues to be arbitrarily small
for all other values of T , then the sclution }Z (Z) is said to be
stable, otherwise it is unstable.

If this criterion is applied to squation 5. 47 with ¢(e) =

= Ao Cos (A¥) , the equation governing § ;/ (&) isthe

Mathieu equation,

g%”c?: +[(l+ -3—"—;:-@—:) +(34'-:—,:A§)cos 22ty ] 55[: 0. (.29}

The harmonic solution ,‘/( ) was obtained under the assump-
tion that o was small, therefore this assumption must é@ carried
into equation 5.29. In addition A must satisfy equation 5.25.
Combinations of A and A. for which the solution to equation
5.29 is bounded for all values of %, determine the stability regions

for the solution g/(;. , ,qo) . For convenience of notation the
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following transformation is made

=22 ,
(A
z - . 35&5
4278 = L+ == (5. 30}
4—12 —é = '——'———EG;‘AO )
then equation 5.29 becomes
g%zz«u (§ +C cosz)S¢=o0. (5. 34)

I equation 5. 25 is used with equation 5. 30 to eliminate A in the

expressions for f and € then

2

3 Al

SAY
i

4 i+ 2o A2 - 2907
L+ 2 Ao (5.32)

3’ A
2

4{1+30A — 23]

€ =
Since o is a small quantity, equations 5. 32 may be put in the form

S = Liv Gars B)e]

_ s e (5. 33)
€ ZZ[EA°O)]_

Due to the smallness of o and hence of € , an approximate rep-

resentation of the stability boundaries may be obtained, as shown

in figure 45,



5.8 Subharmonic Response

Since the subharmonic response of the Duffing equation is
well documented for a2 subkarmonic of order 4/3, the details of the
derivation will not be given here. Consider equation 3.8 wrilten

in the form
%gz +_Q_Z'M [SL + %3] = (), cos® (5. 34)

where = «) & and _CZ‘:} = o)[f,/(.)’-. It is desired to find the con-

dition under which a solution of the form
!
{/: ;1//3 605(32) +}IZ<-OS’Z (%.35)

can exist. Upon introducing eguation 5.35 into equation 5. 34 and
dropping of higher order terms (which include higher harmonics)
the following conditions are found to be necessary if a harmonic of

1/3 order is to be obtained

(Dl ~*) Vs “L‘ﬁ“oz““’)(%/: * SZ/3"4 55 %2)

3

- =0 ,
' {5. 36}
(u)i/u—uf)ﬁl, -t—ﬁ_- Oim & (‘74/: + 6 }4/:5/,—#39,/3)
= O'Q.
These mway be rewritten in the form
W = Wi, + 4 zom(}/ ,/,;/,7‘2,%2),
3 , 5 3
_8>’/: u)iao + (“)?__ 95‘3:”)}//—;{'&“):”(/'/3 {5.39)

'7Lé1/3 ’l/+35/3
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2z
MNow if « is eliminated and the iteration of these equations is

started with

i

2
A
W= (3 m and 5/, - —5 =i[
the condition for the existence of a subharmonic  order 1/3 is

W> 30 (1+ 2l ) (5. 28)

This subharmonic vibration develops through the branching of the

harmonic vibration when
%:[—g-,{(o;a)[f (5. 39)

5,9 Ultraharmonic of Urder Two

The surprising observation that an ultraharmonic of order
2 can exist in a nonlinear system of the Duffing type has been veri-
fied by T. ¥. Caughey. In order to study the conditions under
which such a solution might exist in the response of a cylindrical

shell, consider the equation
, ,
{4? + L+ Ayl = g cos i ) (5. 40)

where Cu=uihut and X(R) is considered to be small in compar-
ison to unity. To find the ultraharmonic of order 2 in the system
represented by equation 5. 40, it is necessary to look for a motion

of the foerm

‘/"}/o [Of CoS?M_F/gC’oS—Zé/&‘_/;I], (5. 41)
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¥ equation 5.41 is introduced into equation 5.40 and higher har-

monics neglected, the following result is obtained

(113 22 eor AT e

L T B o et 42

For a nontrivial solution, the following conditions are obtained

from equation 5.42

[ +x2[ 1+ 328 +3£%]= O, (5. 43a)
3 . 3
'}(3544'1[%;5 +‘3.‘°‘F+3F]74 = 7. (5. 43b)
2 z
2474 32 135 + 24 =0 (5. 43¢}

Eguation 5. 43z yields
X
——2[*+3(3 (527) ] (5. 44)

and with this, equation 5.43c becomes

(‘“‘) @ ) [ (H—)L) + Z(H-x) J(@)
5é(1+x) (&) — (@2)‘6(%2>“‘%‘2:,=O .

{(5.45)
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Use of equation 5. 44 to eliminate o f{rom eguation 5.43b

gives
2p4 X FEL RO N s s

Now since X <4 | has already been asswmed it may be used to

obtain an approximate solution. Thus equation 5. 45 becomes
2 28
Ei=2 (&) - (5. 47)

Using this in equation 5.46 and using X << | produces
e iz
¢ =(F)" % 7" (5. 48)

Again using equation 5. 47 with equation 5.44 X is found, for small

22 , to be

xX==~ z0. - (5.49)

So if R <L<| , then

%: (Eizjl/exr/z_%'/a[j_lo cos¥, + (%l)l/zi"z cosét’“]_ (5.50)

In terms of the deformation response problem of a shell, equation
5.50 indicates that when a circular cylindrical shell is subjected

to a forcing function at one-half the natural fg‘equency of the equiva-
lent linear system, it is possible to get a response that includes a
pure dilatation as well as the fundamental and a large response of

the ultrahamonic of order 2. The fundamental and the uwitraharmonic
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are out of phase. The fundamental {cos £ T} is of the order of
unity while the uliraharmonic and pure dilatation are of order

> 773
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HAPTER VI

TWO MODE CYLINDER ANALYSIS

6.4 Zguations of Motion

The equations of motion are not determined by the number
of modes used. Therefore, the equations of motion are the same

here as used in Chapter IV, that is, the Morley equations.

4 ‘ 2 /
(ﬁ)v F =—;—._Sxx+[sx?_gxxgﬂ’])
‘ D(VZJ' 2:'[1)25 = P(x,v;t) - = 3 +Nxi S xx +Ny3 S (6. 1)

“%a F;x + [F;msw + Fov Sxx —2 F'—x? SIXY]-

6.2 PBoundary Conditions of the Two Mode Analysis

The boundary conditions of section 5.2 are applied sepa-~
rately to each of the two mode functions S (o7, n) and S¢ ., )
and to the composite stress function F which is associated with
them.

6.3 Two Mode Displacements

The modes to be used are
4
Stmmy = Aty sm (ZE)ees (F),

HTX 7
Sl v) = B(H) sw(7E )<cos ().
The choice of the mode parameters (™, M M, V) is arbitrary
and will be considered after the final equations goveraning A and B

have been obtained.
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6.4 Two Mode Stress Function

If the total displacement mode is defined as S,,, =
S m, ) +.S (u, 2) and Sqor is used with the compatibility
equation, the associated stress function ¥ is found in the same

manner as previously. The stress function found is
F==A@ L sin(TE) cos(BE) -8B, s () cos (%)

+ Az(f)*&cos (1”11"1’—‘) — A(¢) -f4 cos (?:%E)

+ B “fs‘ cos Cz’d,_’_rx) B*¢) ﬁ cos (Z% 44

(6. 2
+AR)B@) f, cos <£::>_'f_x cos (Y
— Att) Ble) §g cos TEH cos iy
+ Alt) B g cos C:"._-»_:_)}z:‘. cos (vz)f’
- AG)BG) £, cos (WwL)vrx cos gv;»)? )
where
-
= E)EY L+ @]
f= (BIE)[#5 +(/)]
(6. 3a}

£ (D) (= (%) en

L (,z ) (") Eh,



mé{}a

= (B @ (e

o
[

fo= (A& (25 en,

[ Cmrrat)® "z+ (‘D—n)

L J Ehgt

a )
-3
t

4:3 - ("n_;u>1ﬂ1 (-u+n)] E hg

L‘l-
(6. 3a)
- (Cont'd)
£, - [ ey @ Ty

(mta)* T (7)+n)
"'—"'E:':‘_ + 1 E héz)

t

g, = £ (ENEH(HE) + F[(BET+ () ET],

g, = £(aNCEDH(RE) - = )(”)*- =y EY].

6.5 GCalerkin Eme%rati@n,

If equation 4.3 is substituted into the equilibrium equa-

tion the resulting equation takes the form



FAH + 7 B Ha +AD [(@ %+ (47 + @] H, +sol(ary
t <%)“+ (é-YJ + Nyi (—’"A"..FYH‘A +Nx1' (%_E)le-B + H;NYJ' %)1 A

+MNp; (). A + (AL TP, + 88 (B P, — AL, (2 H, - B (B,

- ABY¥, —(lﬂ-%:-)ll Hs +AB%£T—;%Z—”EH; - A §5 C"'"___%E)j”" H

+ AR _Cw ’(—7:1'1:[:;—&2”8] )H[H-{( )Hg 'f‘B'\C ( ) Hio

%)ZA1‘F4 Hoe + FEﬂth& H, - ABH, %—’}YH 3

+ CW"’) _ C—p..‘n) (‘U'Pﬂ)l
AB fet, — AR, (21" g +a L. @, T 6.4

AP BIAL (B Ho + B LB He + AR (B His

B () His - as £ @24, tasf, 2,

~AB £, L”f} H,, +ABE, "’*"’ T

+(%’)ZA [A'Fl (7JEU>1H9 +B¥z (,:JZLT)ZH«O —AZ'FB (%ﬂ)t H7~4

2 eI\ m 4 2”1 _ 2
-BH () e —ABE, ¢ ::) Hi» + AB fg (=0T = LIS

- (mta)’x? %2 '
ABL, 0T o waB £, (—-’ii:{-’—-"—m] +(BVBlAf, (3,



* B'P’-(“{I)ZH"’ —A ":3 (irfl'r)zH:a - B 'gs (Z”AT(.F)? Hae

-, Gedry,, + ARt G

- AB fg (W-f:)’ﬁz Has

—2(F)BA[FEF)E) AHzr +BE () (B Has

i
+ ABF, (12;?_”13]

(6. 4)
{Cont'd)

+AB L, (Mf_am"(z%’)'“zg _ABp, Gr=Om (vam)

L . a H&O

- v
+ AB ‘pe (m—z.u)n' (van) Ha — AB“:cc (""";;L)E ( ;") H‘sz]

(45 (2) B [-(2D)(D)F,AH., +(40)(2)BE Has +ABS (7 Or (wom (v-n) oy
- AB‘f‘a (_’ﬂ_'i.“‘_l’-r (—1%12“35 +AB$9 CZ%M.%’:’_I)Hsz ABEO ("":‘Qll’(v;n) Ha'z]:-P.
In this the quantities |H; are

H =$w( )Cos(

t

H, = 5:»(4%5)405("%'),

e (6. 5)
©.3;

}""4 = <o S(“"’— 3

H = cos I con 200

I, = cos L (WY

= M- )T X (v+n)y
Hq = cos == cos ____L-a ,



_ (P14ed X (v+n)y
H, = Cos —~—_—z‘) Cos ——,
2 ny
Ho = = () cos® (B,

o = S(222) <05 () s () cos (32,

My = cos(RE) s (2 cos ()

¢ X
., = cos (3 )sw (T ces (%’),
H,a = Cos Eﬂ;’:i)ﬂ_x cos (3—'—%)—8 S (TL\T_LE)‘-OS(T%’))

H,, = co3 (:"i:l_ﬂ:é c os c%)_vs.” (=Y cos (47,

H,g= <os .(.."'l?i'—_“H—x— cos (—”—'gusw(’!-'-"‘_f)cos cad ,

H oo = cos T cos @l 5 (28X cos (2g) (Comta)
Hipp = Swz(«a_?f) C"Sz(ya%),

Hig = cos(3) sw(#5%) cos (%),

Heo = COS(Z%/)SIM("?'E}) 405(%),

H,, = cos &%Lﬁaos (_?Za.?l’i s:m(@‘)coS(%g),

H,, © cos (7—"—7—"3!15 C—iﬂ)—? (%‘)605(%?),

i v?
Hyp = Cos T=OIX (o5 (Woml (o5 (42X ycos (),

_ {(mre)TX (V+ '
H,3= coes —— cos ___a’l)_f sw (¥)cos (’Qg),



o CY I

M., = cos () sw(T¥) cos (%),

a4
H,e = cos (RZX) sin (ZEX) cos (%),
Hae = cos (B) s (41X) cos (%),

H,, =<cos () st (),

= X 2y
H.g = cosa(’-e—(—;":-‘)SlM-" *ji_)’

H 20 .—:S,N(;'_"_T:“L_)_‘Ef o - n)Y S<~mrrx)sw(vn\')
Hap = SIN 2O (——-M;) 405(33‘5)5'”(%’), (6. 5)
L {Cont'd)

- (M-a)TX (2-n¢ 103 »

<IN Cmtu)“xsu CM(OS( )SIM( )

Hsa = cos(--)aos () S:u(vy)SM( )

Omta) X

_ (v-n)? X 2y
Hag = Sin T o P eos (1) s (),

” = T X vy
H‘SS - SIN (--—"f_-)—l’s S (—y-;-,—‘)ycos(—-—g*)SlU(a),

- ~-n\v 2
Hy, = ®IN (_"‘__"‘_L_)__"_’ﬁsw Cv—;)—‘ cos "f-,—’z’—()sw(ag),

Hap = S (~————~M+f)wx SN L——-v:)“,c::s (42 sw (%),
When equation 6.4 is weighted with Sw (’"“)60(’! ) and integrated

over the interval O< X € L , -ma £ Y47 the integrated contribu-

tions of the H. are used to obtain the first Galerkin equation in
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Now if the notations

/ /én)
é— (/47)

T= wet,

A O pn = DLEEV+ (B + &+ Nya (B2 +Nws (B

5 oO:
= O (mﬂ‘) K'mfr %
~—Q—L.1M = ‘O?H /001)

2y = Ox /D
=4
Q¢ vy = F(O {(Ery(F= &) (73 1en) ] )

are used the equation obtained from equation 6.6 is

by + 2% (mmy f 4 (BYEE T (Grm) 522 (")“W

@ GEIER) (B (G ) & ¢ 37 = Qo

{6.7)

(6.8)

The second equation may be obtained by interchange of the mode

number variables (wm,n) with (&, v) and vice versa.

If this

is done and a more simplified notation is used then the two mode

equations are
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¢/rz' + 5w Gayn) SL +/‘?¢ }534-)@{/_4_5_2 = Qu,

By + 20 (em) s E> +rd = Q) (6.9)
8, = (B Ga(EER@]
ﬁ )&Zﬁ)(me( ) ”r (ﬁf]
(6. 40}

¢ = '54(%‘\:5’) = (m”) (a /gv’)é‘
W =(z)
- (L () (BR) () (BN GE o,
and <y is obtained from equation 6. 6a by veplacing 2 by n ,

A by »m , and vice versa.

6.6 Weak Coupling

If the natural frequencies «u (71, n) and O.u (A D)
are well separated the coupling of equations 6.9 is very weak un-
less Yy>> gy and Y3 >>/ . Ithese coefficients are of
the same order of magnitude and if the excitations are periodic
with a frequency near ¢« .. (=7, ») . for instance, then equations

6.9 will take on the form

Yy + D2 () £ +4 ¢ = @y (D),
(6. 44)
Por + o) P +/§ = Qo)
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since >> f under these conditions (see figure 16). The
main response is in the 5/ mode which is uncoupled from the
influence of the & mede. At the same time the response of

the & mode is excited in part by the ¢ mode, but its ampli-
tude is still small compared to its companion mode. If the space
distributed of the forcing function Fx¥;t+)  ie such that

Qu>> Qg  then equations 6.44 further simplify to

gé”f _+Q:—/M ('7",7’1)(/' + (f/, (/)3 = Q)é (“OLM("’J")B)

(6.42)
3
Py + Liu (a,0)F + B ¢ =0
But in this instance the P equation admits a solution
P = 0. (6.13)

Thus a possible solution is complete decoupling!
Since such a simple solution c’m exist for modes whose {re-
quencies are well separated, it is fortunate that such problems
are of considerable interest. When a mode shape of n-half waves
around the circumierence is studied, there frequently is associated
with this mode one with 2n, 3nor jn (j = 4, 5,...) half waves in
the circumferential direction. A similar association occurs with
the number of waves in the axial direction. Unfortunately this does
not assure the separation of the two freguencies under considera-
tion. In figure 17, a set of frequency curves determined for small

amplitude, single mode vibrations according to the method of



Arnold and Warburton (13} is presented for one thickness ratioc

{h/a) = .004. This plot shows quite definitely that for a = 2,

(’"’73) ’“”‘?) = 2 and Z) = 20, the two modal frequencies
are not separated. But forn =2, (Z24)= (¥F2) =5, ¥ =20

the frequencics are separated by a factor of almost 2. Accord-
ingly, for certain shells it will be poseible to achieve a repre-

sentation similar to equations 6.42. Then the study reduces to
that for an uncoupled system.

The coupling may aleo be weak if )/¢ and 2(¢ are small
compared to @ and Gy respectively. However, an examina-
tion of these four parameters indicates that in general such a
relationship is hard to achieve.

6.7 Harmonic Motion

In order to study steady state harmonic response to a
harmonic forcing function, equations 6.9 will be rewritten in the

following manner

oo + 4+ G [P+ 148° =4 Ay 2,
- ” {6.43)
LA . -
qéf*g ((AJLM (m,n) é +/§¢[TT<—£3+ A¢ ¢1] =(§A¢ 7,«1)(2))

with the definition



~F0=

/(E ULM (m) ﬂ)f ) Q%(T)Eﬁtf’ﬂ}é jmn(t))

(64 /35 ) , Qe (@)= fy D4 Hn00),

m

(6.43a)
1, (= cos(rre+dy)

ti
=

(Vg /8s)
(7@5/(@)5 [\_) jﬂq)(z)zcas (’MM@))

in which /% << | and TT )A) l") A¢) A9{ are not large com-
pared to unity.

The study of the two modes system will follow the work of
T. K. Caughey (42} and so no extensive repetition of his develop-
ment will be included. The general method is an extension of the
Kryloff and Bogliuboff method to the forced response of a two

mode nonlinear system. A solution to eq&aﬁi@ms 6.43 is looked

for in the form

{Z:ﬂ@ cos Xy | P = Ay co5 Xy
4= Ay swXy, P ="AAssmnXy (6. 14)
X¢=1’Z’+§¢ , ‘Xd,:l’t*'gé,

In the Kryloff- Bogliuboff analysis these solutions are subjected

to the conditions



(.454 )rg cos X¢ - (é‘gl)/t‘ A{Z SIIUX(,/ :O)

{6.15)
(Ag)y cos Xy — P Ag sinXg =0,

as a conseqguence of the requirement that the solution be periodic,
In addition Ad») 2y , S ¢ and é,é are viewed as slowly vary-
ing functions of € . Because of this, A, A,y £ and their
first derivatives may be replaced by their average value over one
cycle in computing the response of the systern. The average

values are denoted by the superscript bars. Thus these averages

Z X E¢ (gil')ft = h‘l’)
2 A @7’%’ = g‘/ )
(6. 46}
AN Z};(éz)@ = "\qu
22 (’44))4_/ = gq;)
with

AT

— 3 — — .
hy = j:;i J{(@cos)@) + TAy cosXy Ag <23 X¢}°"SX¢JX*) (6.47)

[
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g¢ = _{f%_(« j{(ﬁl coSY‘(_,)3+ Tmc"SX\L@COSqus}S‘MX\LJX\#

o

- ({[ Ay 3'M<‘§—¢'<§¢>>)

2

< —~ — =
he = o |{TATcoRy + ARA, cosXyeas 3, Feos¥paz,

{(6.47)
{Cont'd)

__( 2 ‘*-):;\ (Ml”)

Wim (4, ) )Zh ~fy g con(i=£y),

am

§¢ — ,T(?‘ {ﬂ' ,4: C053X4> +AA; ,5:7 cosXycos™® X¢ }SIMX¢dK¢

(=]

— B s sin(E-&,) .

These equations are evaluated to obtain

\

hy =8 [ (E) +rapa; (B gswr&-d)
-TIB— sn2& +3 5“\‘(25; ‘*5&)‘“‘31’15'”2<§$ +"§¢)
+ T%Cosl(é_; -"é-;g)]}"(ﬂi‘l) /Z}‘; (6. 48)

~K¢A¢ 605(5‘-55[))
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hg = Sl T A CE) +AA & 1T+ d=2w26-%)
—dsmiEE) + L sma(Ep+E,)
- Ll +5;) + Teosa(E; -£)]0

55[ ﬂs& Tﬁ'/«ﬁ {-——5102(4{, §¢>) 4+ = <_os1<<¢ {4,)

- _ {6.48)
"5,'2 Coszg%"éqb)}‘f% Ay 5,“({'\»-—54‘)) 4 {Cornt'd)

o

32

g - &

4 :‘ é-‘ COS—l@:’éTp) “'3‘1“’5 2(54» §¢

FLsma(by -E,0F — Prod s (S4-g,).

The steady state condition is
hi=heé =2y =84 =O- (6.49)

The parameters <, and £, may immediately be set equal to
zero and all the phase effect thrown into Sy and & $ . This is

done since the excitation of the two modes will seldorm be from



T
different or non-synchronous sources. The parameters
P4 2 few

‘au((’”,w)/@z_u @p) and /f/} 7 JTT, /v @re properties of
the system and fixed, & / and 44 are prescribed as a part
of the forcing functions (or vibration inducing environment) and
3 @ grogey om B o N " - A — : . 2 3
there remain four unknowns, Ay Ay | é'—/ and £ 4 to be
determined by the four eguations 6.19.

€. 8 Stability of Harrmonic Motion

The criterion for stable motion is Z,40 with the boundary

at d. =0 where d, is defined by

25 28/ 254 25/
N 2 Ag >y ><g

a.= DeT SAY

&
£:3
S
Hig

2hy 2 hy 2ht Ahy
24¢ 24 24y )
>hd 2hd 2 hd 2hd
>AY 244 = ¢4

6.9 Second Avpplication of the Galerkin Integration

b

The Galerkin averaging technique has been used so fa
to achieve a separation of variables and hence reduce a partial
differential equation in the three independent variables x, y,{, to

an ordinary differential equation in the single variable t. In
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view of this first use of the Galerkin averaging technique it is
homobusic to use the same technique to reduce the ordinary dif-
ferential equation to an algebraic equation.

Consider the system represented by

it

9%543 + ¢ —kﬁh SLB 4-3@ 4 ¢

imﬂcos ,ATM)

(6.24)
B +ER+FBsE” 4 FH = 20 cosAy,

where 2
R = W Oy 1)

IR
2= Oem ()

And suppose that it is desired to find the conditions under which
a harmonic solution of the form
4«' = lf/o Cos Aty ,
{6.22)
é = C‘IFO < o5 ;\/KM ]
can exist. Then application of the Galerkin averaging technique
will introduce equations 6. 22 into equations 6.24, weight the result

with cos A<€u and integrate over O< Tu< Zi’f . This gives

Xy = (1, )+ 26 4% +2WE =0
{6.23)

(R-2) = (1u2/8.) +ZF 8] + 2% 47 = O,



Y

When )\ has been eliminated and the ratios

0= & /4,

(6. 24)
7= o/ L,

are used, equations 4.23 reduce to
= [((ﬁ; ~%)- 7 (8s- %)+ (-R) = 9, (- -71 ) (6.25)

In equation 6.25 the quantities ,@l Bé Yy , ¥4 and K are physi-
cal parameters which depend on the r;'xamg’e of the shell considered,
?,,m and 7, depend on the nature of the vibration inducing environ-
ment in which the shell is studied and 7, depends on the nature

of solution desired. Thus the only truly unknown quantity in equa-
tion 6.25 is ;4 , the amplitude of the response of the (o, m)-
mode, {rom it 550 , the amplitude of response of the (2, Y2 Jemode

is determined and hence A is found from equatiome 6.23.



7.1 Gurved Panel Enerpgy Curves

When 54_, is set equal to zevo in eguation 2. 39, the energy
4 b

function E{¥,0) is obtained in the form shown in flgures 3, 4 and

5. These figures, as plotted, represent a total energy level of

o}

K = 0.5, However, an upward shift of the axis, & = 0, by an

Gy

Y

amount equal to 2K in figures 3, 4, and 5 yields the correct energy
curve for any value of XK. These figures may be used to estimmate
the maximum response amplitude when the applied loading can be
interpreted as a zet of initial conditions {which then allows the
identification of the corresponding energy level).

The increase of the nonlinearity parameter, € , provides
a reduction of the outward deflection amplitude while the inward
deflection amplitude increases., In addition, when € > £/9 the
inward deflection can include a low energy buckled vibration as
indicated by the curve marked € =09,1 in figure 4, .E?"iuzwe €is
a schematic representing the connection between E{ 55, ¢) and the

phase plane trajectories.

7.2 Curved Panel Vibration Period,
Hguation Z. 38 describes the dependence of the period on

amnplitude in the form

_TA'JL { A‘("

T T Lk -(Prefaeies T

]
Py
v
L]
Lnd
oD
LN

B
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The evaluation of this intsgral requires the extraction of the roots
of a guadric eguation as described in Appendix . These roots are
seldom easy to obtain and will usually be obtained with the aid of a
digital cornputor. After the roots are obtained there remains a
significant difficulty in the interpolation of the elliptic integrals
from most e existing tables. ©Un the other hand, the obvious

simplicity of Reissner's formula, valid for small € ,

€ ¢2 -I/K
[‘sz("Sé)oJ ) {7.1)
makas a comparison of these results of equation 2. 38 and 7.1

desivable., This comparison, with &€ = 1, is presented in figure
18, At a value of ,(/o = 4 these two curves differ by afmw*s:s zirmately
three per cent. In this case eguation 7.1 is preferable because of

the great difference in difficulty and small difference in accuracy,

Unfortunately equation 7.1 is;“-ma‘t valid for values of € that are

2
much larger than one-tenth. in fact, for € = 0.2 and € SZ 6,
squation 7. 1 yields TE‘EL"; r » 1 which is not possible for the
syster: considered here, When &€ = 0.2 and ¢o = 30 equation

7.1 predicts Ty /Ty =0. This definitely shows the limitation of
equation 7.1, Conseguently, there is a large range of € and Sé

for which equation 2. 38 must be used to determine T, ?Lf

;,N-g

L.

7. 3 Curved Panel Response by Runge-Kutta Integration

o .

The Runge-Kutta method is applied to the equation
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Lo +alf[freld zyn]=arr (7.2)

with homogeneous boundary conditions. This second order differen-
tial equation is reduced to two first order differential gquations
4=2

{,Z = JfZZW—vL*é(sZI-A —;-5/3)]'_

Ry
=
°
Lo

g

The recurrence equations for integration of equation 7.3 by the

Runge-Kutta method are
{
54“ = + L (a +2a,+2q5 + ),

écgﬂ = éi +é(€l +2‘(€z +2 /«3 ’?‘(fq ),

d = S(% h)ot | (7.4)
A, = Z(G+2L 4 Lo
0/3 1‘4‘(?@ +9§?)¢‘+%’_f)éﬂg)

Q/q, = é(fF ’*'AT) S&,‘-f-"(;)A'Z)

B = l[r-doe (f +34)]az,

@lr-(h+ly-e($.+£)- 2e (f4£} Jax

0w
i

Be = or[r-(hthy-e (hrfy-Ze (hr&V]ar,
Be = @r[r-(hsp)—c(htbr-2e Yeth)]ax,

with % =0, 4 =0, £, =0 and &¥ =0.005,
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Since the truncation error is proportional to %&’83‘?" for
the Runge-Hutta me&h@d, the truncation error in this cow {pu‘é:a%
ie of the order 1@“5. The actual computation was made on an 1Bk
704 digital computor with print-out for ¢ and ;/7: at intervals
of ¥ = 0,04, These data, for € =1, have been presented in
various ways in figures 19, 20, 21, 22, 24 and 25,

Figure 19 contains partial tizne histories for various
amplitudes of the step function; v. The response is always the
same sign as the applied step function, The time to maximum
amplitude, for & given magnitude of step, is greater for exnter

pressure {z £ 0) than for internal pressure (r > 0) although the

ratio

mazximurm | &w*@iﬁ:&me[ émi §3
time to maximum amplitude *
is greater for r > U than for r <0, atgiven|r|.
Figure 20 compares the phase plane trajectories of the
linearized system ( € =0)toa stepof v = + 5,0 with the
response of the nonlinear system: ( € =1) subjected to steps of
r = + 50 and r =- 5 0. Itis clear from this figure that the
amplitudes of response are 5%3’@&@@ limnited by the noalineax
system:, even when buckling occurs.
Figure 21 is the phase plane trajectory for » = = 0.1,

This trajectory does not exhibit the buckling phenomena. The

o
maximum values of velocity are limited for this kind of trajectory,

This is seen by comparison of 2 | Sl’t max| with ]}émaw l. In
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figure 20, for instance, the linear system trajectory has
= STy £y y 3 : B5Y% L1y 5
2| % a \ | ¢ roaxp, ¥hile for the nonlinear system response
s 2 . F ; ,
curves ' Ve mas| > ¥ gt~ FoF the trajectory of figure 21,

4\ ‘102?@3,“*’ The different character of the trajectory of

2 { %—' INax
figure 21 is related to the smallness of the step function, rather
than the lack of buckling, gince both the buckled and unbuckled
trajectories {figure 20) differ from figure 21 but not from each
other in shape.

22 is a family of phase plane response curves for

@

Figur
external pressure step loads which exceed the minirnum required
for dynamic buckling {at € = 1), The rate of increase of
amplitude of response with increase of step magnitude ie clearly
shown in this figure to be one which diminishes sharply with
increase of loading magpitude.

The shock response concept was used in equation 3. 39 to
predict the value of r at which buckling will occur dynamically.
Figure 23 is a plot of this relation. The prediction has no meaning
for 0 £ € £ §/9 since for this range of € there is no buckling.

The relation of r to the physical parameters of the system is

=R/ =(5= ) (F) R (& L) (7.6)

For instance, if R =1, € =1, then r =~ 0.286 and

P o= 0,163 P . This surprising result has been verified by
o ocer

the numerical integration as shown in figures 24 and 25 where the

¥ 2
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maximumn amplitude and velocity of the step function responss,
respectively, have been presented as 2 function of r {at € =1),

7.4 Vibration Period of the Cvlinder

The dependence of the period of vibration of the cylinder
is given by equation 5,12. However, the computation is simplified

by a different approach. Consider the equation

{4& + 22 (¢ +2¢32) =0

{7. 3)
If equation 7. 3 is integrated once, then
{ o= ain (b2 142 ()"
¥ e ‘ (7. 4)

Separating variables and integrating again

¢z

fcf | o w
t = - , - {7.5)
S2M (%)Z—-N‘Z)/z[l-(-g_; C,é?._w.z)-]//l (

~€.

Now making the substitutions

?, :‘OLM.é)

QLM = /)



2(1+47%) )

$
F(a,¢) = f(fle

)
AT sinte )Ié'

eguation 7. 5 becomes

When the integration is carried out for a full cyecle, equation 7.7

becomes

F (A) 7.8
Tw _ N {7.8)
%M B ("> (l+a ¥

where E‘zﬁ A) ie the complete elliptic integral of the first kind.
Equation 7. & is presented for two different ranges of
in figures 26 and 27, In order to relate these periods of the

physical parameters of the problem, o A?‘ is



S JCatny =

G+ & * caza (/) o)
2 AT () R R [T ] +(ERRT ()
j20-v%) E

Figures 28, 29 and 30 present equation 7. 9 as a function of n for
2> - 3
three values of AR and three values of (ﬂgp‘ L *(3/nY. Thue
figures 26 through 30 provide a means of determining the
influence of rasponse amplitude on period for certain values of
1% - 3
AR and ("E )AZ (a/h) .

7. & Conclusions

The difference in large amplitude behavior of complete
cylindrical shells and of cylindrical panels was studied by the
application of the shallow shell equations.

The curved panel exhibits a buckling behavior associated
with a very simple mode shape while the cylinder shows no similar
phenomena. The response of the curved panel is periodic for a
full éycie but is not periodic for a half cycle, spending more time
deflected inward than outward., This verifies results previously
obtained by Reissner though a different method. On the other hand,
cylindrical shells behave like a Duffing systemn having a hard spring.

In the curved panel, the initial stresses are the main
influence in determining the magnimde of the nonlinear effects. As

P-4

‘WQ approaches the buckling pressure, the nonlinear effect becomes
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very large. The complete cylinder exhibits no similar effect, When
gither the curved panel or cylindrical shell has a large internal
pressure, their behavior resembles the linear system. For curved
panels, the effect of an external pressure step is very important.
it results in dynamic buckling at a pressure much less than the
static b&ékﬁmg load,

The aspect ratio of the curved panel strongly influences its
vibrations and forced response characteristics. The cylindrical
shell is similarly influenced by the aspect ratio of its mode shape.
In both cases, the phase plane trajectories may be used to deter-
mine amplitudes of response when the loading can be interpreted
as a set of initial conditions (i.e., an energy level). In both
problems, perturbation methods provide considerable information
with minimuom effort,

Reissner's formula for the dependence of the period of
vibration on the amplitude of vibration for a curved panel gives
good results with minimum effort for a limited range of €  and

Sé, . ¥or larger values of € and ¢, an exact solution for the
dependence of period on amplitude is obtained in terms of complete
elliptic integrals. The period of vibration of the cylindrical shell
is also represented by complete elliptic integrals.

With curved panels, the esifect of damping rules out
dynamic buckling caused by an internal pressure pulse. Shock

response methods were used to accurately predict the pressure at
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which the curved panel will buckle dynamically., It is expected
that similar methods will vield good results when applied to other
transient response probleme of the same system,

if, in the two mode analysis, the spacial distribution of
the forcing function is such that i:;fze resulting generalized force is
restricted to a single mode, then the modes are weakly coupled,
Under these conditions a single mode may be excited independently
of the other modes., This indicates that a careful experimental
investigation of large amplitude cylindrical shell vibrations will
require precise control of the spacial distribution of the forcing
function.

The Morley equations were used to include n = 0, 1, 2
in the cylindrical shell study. The result indicates that the
Morley correction to the shallow shell eguations is important only
when bending and initial pressure, or when bending and membrane
forces, are of equal importance. That is, the Morley correction

is impeortant for shells that do not have extremely large radius-to-

thickness ratios.



£

[y

87
REFERENCES

Strutt, J. W., The Theory of Sound, Second Edition, (1945),

Dover, New York.

Fung, ¥. ., Sechler, . K., and Kaplan, A., On the Vibra-

tion of Thin Cylindrical Shells Under Internal Pressure,

JAS, Veol. 24 (1957) No. 9, pp. 650-660,

Reisener, K., Non-Linear Effects in the Vibration of Cyl-

indrical Shells, Aeromechanics Report No. 5-6, Ramo-

Wooldridge Corp., Aug. 4956.

Vol'mir, A. 5., On the Stability of Dynamically Loaded
Cylindrical Shells, Soviet Physics-Doklady, Vol. 423,
No. 5 {1958}, pp. 1287-1289.

Agamirov, V. L., and Vol'mir, A, 5., Behavior of Cylin-

drical Shells Under Dynamic Loading by Hydrostatic

Pressure or by Axial Compression, ARS Journal Supple-

ment {(Jan. 4964), p. 98 (Translated from Bull. Acad.
Sei., USBR, Div. Tech., Seci., Mechanics and Machine
Construction, No. 3, (1959}, pp. 78-83,

Chu, H. M., Influence of Large Amplitude on Flexural Vi-

brations of a Thin Circular Cylindrical Shell, JAS, Vol.

2‘%3 ?‘f@. 8 iﬁ%éﬁ?; p?o @@2“‘%@9}’

Whittaker, 2. T., and Watson, G. N., A Course of Modern

Analysis, Fourth Edition, Cambezidge Univ. Press, (4958)

article 49.44.



&.

il.

Fung, ¥. C., and Barton, M. V., Bhock Reesponse of a MNon-

linear System, Ramo-Wooldridge Engineering Mechanics

Section Report Mo, 10-22, 1960

ovley, L, 3. D., An Improvement on Donnell's Approxima

tion for Thin-walled Circulay Cvlinders, Tuart, Jour.

Mech. and App. Math,, Vol. 12, Part 1 {Feb. 1959),

pp. 89-99.

Lyt

oughton, D. 8., and Johns, D. J., A Comparison of the

Characteristics Equations in the Theory of Circular Cyl-

indrical Shells, The Aeronautical Cuarterly, Vol. 10,

WNo. 3, pp. 228-236,

Stoker, J. J., Nonlinear Mechanics, Interscience Publishers,

Inc., MNew York, 1950,

Caughey, T, K., The Existence of Periodic Motions in Forced

Non-linear Oscillations. Ph.D, Thesis, T.1L. 7., 1954,

Arnold, R, N, and Warburton, G. B., The Flesural Vibrations

of Thin Cylinders, Journal and Proceedings of the

Institution of Mechanical Engineers (London), Vol, 167,

{1953) pp. 178-184.



8%

APPENDIX

Evaluation of the elliptic integral

dery
Tee 1 W
T T NN (AL 1)
¥,
where a. = (€/9)
and Gl = — (whrtew >+ 2 w?) +E K
G w) = (w—a,Y(w=a)[w= (b, +icH][wr = (b =4CDT

« > A,
is accomplished by transformation to the form

¢
/ di ,
/0( \/w {AL. 2}
o

The necessary transformation is given in Table AL 4, where the

following guantities are used

Q/AK = O‘/K——'O(/_ (/(.‘)K:I”Z"S)d—))

(4,875 5Y = (a-7) (B-35)
JE, Y, -
(o-§) (§-¥)
Tand, = -9’-‘—;—9—‘) (AL 3)
[}
—TAUQL:'- ___.f‘f?—_a:;_t-?l-’

D= §—\A~ [6.-6)/2]3 § Tan[(6.+012] F,

Two cases are of interest:

{4) when &G (W) has four real roots;
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(2} when & (w)has two real roots and a complex
conjugate pair of roots.
Case (1) can occur only if € 7 8/9 andif K, < Ksepe When
Case (1) occurs there are two types of vibration, one about the
undeformed equilibrivum point and one about the buckled equilib-
rium point, thus there are two integrals ¢to evaluate. They @@
not necessarily have the same value. Case {2} covers all other
possibilities.
A sample calculation follows for X, =0.4, &€ =20.1.

This is a Case {(2) example, no example is given for Case (4}.

A= 0.4403 | &, = -0 4§35, b, =-2.923,C =9.003

Tany B, = 0.381 | Tanw B, = 0282

oS @ = 0935 | Cos@, = 0.963,

Los (9'-;-9—‘) = 0044
T

47 = 3144

A // —~ KNy

/1/—‘ O /08

Tow o d./os/g 344 = 0.992.

o T
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wo(Y) MEASURED PERPENDICULAR

— TO THE "X-Y-PLANE"

S(X,Y)= (W(X,Y)=wa(X,Y))
MEASURED PERPENDICULAR
TO THE "X-Y-PLANE"

Figure 1
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Figure 15
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