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ABSTRACT

This work deals with the application of an expansion procedure
in terms of two independent time variables for the uniform asymptotic
representation of solutions representing certain mechanical systems.

The method is first applied to systems governed by the equation

2
d7y dy -
—-——~«-dt2 + €£(y, —d—t)—!- y =0

where € 1is a small parameter, and f has the character of a damping
(i.e. v 1is a bounded function of t for allt = 0).

It is shown that the physical problems which can be brought to
the above non~dimensional form possess two characteristic time scales,
one associated with the oscillatory behavior of the solution, while the
other measures the time interval in which the effects of the non-linear
term become apparent.

The dependence of the solution on these time scales is not simple,
in the sense that an asymptotic representation of the exact solution
which is valid for large times cannot be obtained by a limit process in
which a non~dimensional time variable is held fixed. This fact has
motivated the introduction of an expansion procedure in functions of two
time variables, and it is shown that with the use of certain simple
boundedness criteria a uniform asymptotic representation can be de=
rived,

In addition to the above mentioned class of problems a variety of

examples possessing certain boundedness properties is studied by this



method, including, for example, the Mathieu equation,

The main emphasis of this paper is on the constructive rather
than general épproach to the solutions of specific examples. These
examples are introduced in turn to illustrate the underlying ideas of
the method, whose main advantage is its simplicity especially for

computing the higher approximations.
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I. INTRODUCTION

This work deals with the application of an expansion procedure
in terms of t;No independent time variables for the uniform aéymptotic
representation of the solutions of certain mechanical systems.

We will present a technique which applies to a large number of
problems in mechanics. In the first instance we will consider mechan-
ical systems having a predominantly linear restoring force, and a
small non-linear damping. This class of problems is characterized
by the fact that (i) in the absence of the non-~linear perturbing forces,
the motion is simple-harmonic, and (ii) the complete motion is a slowly
damped oscillation,

In particular, we will first illustrate the method of solution by
presenting the detailed calculations for the linear problem, and then
we will discuss the following three examples:

(i) The oscillator with a small cubic damping.

(ii) The small amplitude oscillations of a damped pendulum.

(iii) The general solution of Van der Pol's equation.

We will next consider miscellaneous problems which do not
belong in the above category, but whose solutions possess certain
boundedness criteria.

The following problems will be discussed in detail:

(i) The motion of a charged particle in a slowly varying magnetic
field.

(ii) The problem of beats in forced oscillations.

(iii) The solutions of Mathieu's equation in neighborhoods of the
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transitional curves from stability to instability.

(iv) The drag perturbation of a satellite orbit.

\ (v) Planar orbits in the vicinity of the small body in the re-
stricted three-body problem.

In the non-dimensional formulation of the differential equations
governing both of the above classes of problems, we will find two sig-
nificant time scales. In all cases, the dependence of the solutions on
these two time scales will not be simple, in the sense that eﬁpressions
valid for large times cannot be derived from the exact solution by a
limit process in which only one of the non-dimensional time variables
is held fixed. This fact will motivate the quest for an expansion pro-
cedure in which both non-dimensional time variables appear. As a
consequence, we will transform the ordinary differential equation gov-
erning the motion into a partial differential equation with respect to the
two time variables. The indeterminancy introduced into the solution
by this conversion will be removed by requiring that the asymptotic
expansion for the solution be a bounded function of the two time scales.
This boundedness criterion, which is a property of the initial value
problems we consider, will lead us to uniformly valid asymptotic de=~
velopments.

The main emphasis in this paper will be on the constructive
approach to the solution of specific examples. Although we will derive
certain general forms for the solutions of the damped oscillatory motions,
we will rely on the numerous examples in order to illustrate the under-

lying ideas, and draw comparisons between this method and others.
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In this connection we should mention that the class of problems
having a small damping can be solved by the method of N. Kryloff and
N. Bogoliuboff outlined in reference 1. In a recent paper Kuzmak (2)
has presented a more general technique applicable to this class of
problems. His solution, like ours, is derived from é partial differ-
ential equation with respect to two independent time variables. The
type of equations Kuzmak considers are more general than ours in
the following respect. His method is applicable to systems with a
small non-linear damping and a restoring force term which is an arbi-
trary function of the displacement and time. Thus, the unperturbed
motion is not necessarily simple harmonic. His method, like ours,
is restricted to systems Whére the frequency does not depend on the
time. The main advantage of our method is its simplicity, especially
for computing the‘higher approximations. Moreover, the basic nature

" of the underlying principles allows us to tackle a large variety of
problems whose only common property is the boundedness of the motion

for large times.
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II. DAMPED OSCILLATIONS (FORMULATION OF THE PROBLEM)

2. 1. General Remarks

We will show in Chapter III that the initial value problems govern~
ing the motion of mechanical systems with a small non-linear damping,
and a restoring force departing slightly from linearity, can be brought

to the non-dimensional form:

2

9-%2+ Gf(y,—':—l%f;)+y=0 (2.1a)
dt dt

y(0) = a (2. 1b)
) - o (2. 1c)
dt

In the above, € is a small positive non-dimensional parameter
proportional to the damping coefficient, and y and t* are the non-
dimensional displacement and time respectively.

In order that equation 2.la describe damped oscillations, the
function f must have certain properties which we can easily deduce
bykexam‘ining the trajectories in the phase plane.

Consider the quantity R =/ yz + V2 where V = dy/dt*g Clearly
R = V2E where E is the total non-dimensional energy of the particle.
In the phase plane, the curves R = constant are concentric circles

centered at the origin as shown in fig. 2.1
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Figure 2.1

Now it is easy to show that R satisfies the equation

drR _ _EVi(y, V) (2. 2)
dt y2_¥1V2

where y is a solution of equation 2. la.

Thus for a given function f, equation 2. 2 defines dR/dt* at
every point (y, V) in the phase plane, and the sign of dR/d‘t* deter-
mines whether the trajectory is running into or out of the circle passing
through that point. This is illustrated by the trajectories through the

points P and Q shown in fig, 2. 1L
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In this work we will only consider functions f such that dR/dt*
is always negative whenever R is greater than some finite RL" It
is clear that under these conditions the solution of equation 2.1 must be
a bounded function of 1:>:< for all t* = 0,

There is no loss of generality in assuming, as in equation 2. lc,

that the initial velocity is zero, for this merely fixes the origin of the

time scale for each value of a.

2. 2. Initially valid expansions

Let us now define a limit process which we will use to construct
an asymptotic expansion of the solution of equation 2. L
Let y denote the exact solution of equation 2.1, and let {{:,n(e )}

be an asymptotic sequence as € — 0 with &0 =1l. We say that
N

Mo = ) n e e (2.3)

n=0
is an "initially valid" asymptotic expansion of y with respect to the
sequence {é_—‘.,n} if the h are derived from y by the successive appli-

cation of the following limit process for each N =0, 1, 2, ...

ol
=

e (e, €) - n N e
€V 0 §N(€)
t* fixed

(2. 4)

For a given function y(t*, €) and a given sequence {gn} the hn
can be evaluated uniquely. However, vy is known only to the extent
that it is the solution of the differential equation 2.1, and the sequence

{¢,} is somewhat arbitrary.
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It is plausible (and quite often true) that for physically meaning~-
ful differential equations the hn are the solutions of differential equa~-
tions obtained by the recursive application of the limit process 2. 4 to
the original differential equation. For lack of any precise conditions
on problems where this interchange of limits is valid, we should regard
it as a very plausible assumption.

It is easy to verify that for equation 2.1 only the sequence {E,n}

will lead to non-trivial equations for the hn’ and these are

2

d ho
%y + hO =0 (2. 5&)
dt
dzhl dn_
>'<Z + h, = _f(h 2 '—'—>;'<_) . (2. Sb)
at’ 1 " at
a%h dh  dh dh
2 o] o 1 bS] o
ey t B, =-h (b, —2) - — —a— f(h, —) (2.5¢c)
at 2 2 1 9y o} at’ dt” a( dY) o at
dt
2
d”h dh db__,
= + h =I—I[h,°”,h_, =,
at: 2 n o n-1 ¢ at
an-lf 8m-'lf an~1f (2. 54)
n-17°°"° m-1*""" _dy [JA-1 .
oy n-m,, dy 9(—2-)
8Y 8(_77) dt"‘
dt”

The general term on the right~hand side of equation 2. 5d cannot
be given concisely, but can be computed for each value of n by ex~
panding f in its Taylorl series in the neighborhood of the arguments
h,, dh_/dt".

Equations 2.1b and ¢ imply that the hn satisfy the initial condi-



tions

h (0) = a, hn(Q) =0 n#0 (2. 6a)
dh_(0) \
=0 (2. 6b)
dt”

The solution of equation 2. 5a satisfying the conditions 2, 6 is

e

hO =acost . Since ho is periodic, we may represent the right-hand

side of equation 2, 5b by its Fourier series expansion

dh 00 ,
~f(h,_, F 7‘3 E a_cos nt + b_sin nt ] (2. 7a)
n=1

where

o
i

2m sk %k sk ES
u%g fla cost,-asint)cosnt d (2. 7b)
0

H

. am %k sk sk ok
b - —ﬁ§ flacost ,-asint )sinnt dt (2. 7c)
0

In general the Fourier series 2. 7a will be finite. For example,
this is the case if f is a polynomial in v and dy/dt*.
The solution of equation 2. 5b satisfying the appropriate initial

condition is given below in terms of the known coefficients a and bn"

b1 nbn s
hlz[—z——~ T——Z}smt —[-———-}*}J ]cost
-n n=2 -—n

N a =k b sk = %K b
+ n cos nt‘<+ 2 sin nt -t a.sint +hb,cos t
2 2 1 1
-/ _tl-n lasn -

(2. 8)
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In a similar manner all the hn can be successively computed.

We immediately notice the presence of the "secular® terms
b

A 3% s e
-5 t sint and "Zit cost in equation 2.8. In order to show that

these terms do not arise due to any particular choice of f, but are
merely a consequence of the expansion procedure we have adopted,
let us choose f = Zdy/dt>::.

For this choice of f the first two terms in the expansion for

h are

KR

ho+ Ehl =acost + €a(sin t -t cos t>'=) (2.9)

whereas the exact solution of equation 2.1 is

y = ae”ct [cos V 1—62 t +\/__ET siny 1-€ 2 t*J (2.10)
- 1-€

For this example we can direcﬂy verify that ho + E'h1 is the

initially valid expansion of equation 2.10 to order €, and that the secular
term -€at cost arises from the non-uniform representation of the

e

term ae-Et . Without computing the explicit formulas for the other hn’

let us note that further secular terms will appear in each of the hn’ and

it is easy to verify for this linear equation, that these secular terms
. ) . €t
are contributed by the non-uniform expansion of the terms e t s

sin { 1-€ 2 taﬁ, and cos 1-62 t of the exact solution.

Although the expansion for h is not uniformly valid for large
times, it is a valid representation of equation 2. 10 (for finite time inter=-

val), and is analogous to an inner expansion for a boundary value singular

POy

“That is, for large times.



perturbation problem as defined in reference 3, * To point out this
analogy, let us note that for any fixed value of t*, say T, the differ=-
ence between the exact solution and the asymptotic expansion tends

to zero by the limit process of equation 2. 4. Thus in the t*,ﬁ‘ plane

the domain of validity for h is the shaded rectangular region sketched

sla
5

t =T

in fig. 2. 2.

Y
o

Figure 2. 2

If we now transform the independent variable t to f= Et>'<,

this domain maps into the triangular region sketched in fig, 2. 3.

Figure 2.3

>FIn the ensuing discussion we will assume that the reader is familiar
with the fundamental ideas of singular perturbations.
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This is in exact analogy with the domain of validity of an inner
expansion for a boundary value problem in which t corresponds to a

non-dimensional distance (outer variable).

2. 3. An Expansion Valid for Large Times

In view of the analogy Betweenfthe inner expansion of a singular
pertﬁrbation problem, and our initially valid expansion, it is natural
to ask whether there exists a corresponding strict analogy between an
outer expansion as defined in reference 3 and an expansion which will
for our case be valid for large times. Unfortunately such an analogy
does not exist. Superficially, it is easy to verify that there does not
exist a limit process by which a set of meaningful limiting differential
equations, valid for large times, can be derived from equation 2.1, This
fact is a reflection of the structure of the exact solutions, as can be
illustrated by considering the linear equation with f = Zdy/cjlt*° We see
from the exact solution of equation 2. 10 that for any choice of a modified
time variable tﬁ (where tﬂ = n(€ )t*, and ord € < ord m < ord1l) there
exists no limit for the exact solution whereby t”ﬂ is held fixed and € — 0.

Thus the exact solution does not possess a limit process expansion for
t

large times, because the limit g;)s 1-62 ?’_ﬂ_ does not exist.
eyo °™
t, fixed
1

We note that thé variables - and t = Et* play distinctly differ-
ent roles, at least for this linear case. The former only enters in the
form V 1-¢ 2 t*, in the arguments of the trigonometric terms (and can
be thought of as the variable depicting the oscillatory behavior of the

solution), while the latter is associated only with the damping term.
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The fact that a trigonometric term whose argument is propor-
tional to t , cannot have an outer limit, strongly suggests that an
expansion which is valid for large times must necessarily involve

both variables t and t. We also note that in order to represent

e

uniformly a term such as sin r(€ )t© (where r(€) = O(1) as € — 0)

sk

we must account for the quantity r(€)t by a new variable of the form

tt = (1 + Ezwz + € 3w3 4+ ¢o0 )o In the preceding expression for tt we

have omitted the term Ewlt* because such a term would automatically
be classified as wl? and hence appear as such in the solution.
In effect we are proposing to ignore the relationship between
tT and ?:; and to represent the solution by an expansion in functions
where these two variables ére treated as independent of one another.
Of course such an expansion cannot be a limit process expansion. Never-

theless let us temporarily ignore this difficulty, and attempt to develop

y for large times in the form

N
y=rtTe = ) Rt HE (2.11)
n=0
N
y - F(n)(t"{"%’)en
A
lim n=0 . (2.12)
€Y 0 €
% fixed

and keep in mind that as € — 0 with T fixed t — 0. We will be

better able to clarify the ambiguity of this limit process after we have

)

developed explicit expressions for the F(n .
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In order that F be a valid representation of the exact solution
for large times, we must adduce the following boundedness ériteria
to equations 2.1l and 2. 12.

As a consequence of the restrictions imposed on f in section 2.1,
y must be a bounded function of t* and hence t for all positive values

of 1:+

and t. We will show that y actually obeys the somewhat stronger
boundedness condition outlined below, at least for all the examples we
will diskcuss in this chapter.

There exists a function 6({;), defined for all non-negative values
of t such that

a) 6(?:‘) is continuous and possesses continuous first and second
derivatives.

b) 6(?) > [F(O)(t+,7c‘)[ for all non-negative values of t* ana T.

c) y/6 is a bounded function of £ for all t* = 0 where y
is the exact solution of equation 2. 1.

We will show that these boundedness conditions will allow us to
define all the @, appearing in ¢t completely, and each of the F(n) to
within two arbitrary constants which will in turn be evaluated by applying
a matching condition we will present later on.

Again, if we assume that the .F(n) satisfy equations which are

derivable from equation 2.1 by the limit process 2.12, we obtain the

following set of partial differential equations for F(O), F(l) and F(Z)o

Fi2) 4 % =0 (2. 13a)

Fil) 4 p) = 2pld) - gl (0)) (2.13b)
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P2 1 1) =2l - 0 - 2 {0 - p) 2 el £(0))

11 12 =~ Fo2 2Fu
(1), ~(0), 29 (0) ~(0)
- (Fy 4 F )a_gif(F Fg ) (2. 13¢)
at

In the above equations, and in what follows we have used the

following notation for partial derivatives

(n) (n)
(n) _ OF (n) _ 8F
F = " . Fyo= = (2. 14a)
' 2..(n) 2..(n)
(n) _ n(n) _ 0°F (n) _ 8°F
Fip = Fy S Fi e (2. 14D)
2_.(n)
(n) _ 0°F ,
Foy = 2 (2. 14c)

We have only given the equations governing F(O), F(l) and F(Z),

Although there is no concise representation for the right-hand side of

the equation for F(n), one can compute the right-hand sides for each

value of n in a straightforward manner.

The general solution of equation 2.13a is

Ot 7) = AlDF) sin ¢ + BIOY(F) cos ¢ (2.15)

where A(O) and B(O) are as yet undefined functions of t.
In order to compute F(l) let us replace the given function

f(F(O), F:(LO)) by its Fourier series expansion with respect to t :

Q0
a
g0 F%O)) = 4 Z[ancos ntt 4 b _sin nt*] (2.16)

n=1



~15=

In equation 2,16 the a, and b depend explicitly on A(O)

and B(O), and hence on t implicitly.
© If we now use the expression for F(O) given in equation 2. 15
(0)
12

to compute F and substitute this result together with the Fourier

series expansion for f into the right-hand side of equation 2.13b we

obtain
(0) (0)
Fﬁ) + F(l) = -(2 dff: + al)cos t+ + (2 dB~ - bl)sin ‘c+
dt dt
fo's)
a'o ‘ + . +
- s -Z [ancos nt’ + bnsn’l nt”] (2.17)
n=2

The condition that F be a bounded function of t' requires that
the coefficients of the sin ¢t and cos t’ terms in equation 2,17 must

vanish (for otherwise these terms would give rise to secular terms

proportional to tTcos tt aid t'sin t+‘). This condition has thus pro-

vided the following two first order ordinary differential equations govern-~

ing A(O) and B(O):

(0)
29~ 4o al% Bl -0 (2.18a)
dt
(0)
248 "5 (al9, B9 = 0 (2. 18D)
dt
The general solution of these equations will define A(O) and
B(O) up to one arbitrary constant for each.
L.et us denote these solutions by:
Al =405, ) 8O -s0qF g (2.19a, b)
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With the coefficients of the sint’ and cost' terms equal to

zero, the general solution of equation 2,17 is

F(l)( t) = A(l)( sint’ 4 B(l)(?:‘)cos tt . _;_12_0_

QO
) a bn +
[__2.cos ntt 4 —— sin nt ] (2. 20)
a2 l=n 1-n

In order to compute F(Z) let us again express the terms

F(l) % (F(O), F%O)) and (Fil) + F(ZO)) —%-gr——f(F(O), F%O)) by their Fourier

2
<

dt”
series expansions:
. 00
o pl8 g (0) (0)) _ "o ; + in ot
G = F g {F, Ty )——2—+b/[cncosnt +d sinnt’] (2 21)
n=1
= @)y g0y 8 n(0) (0), _ Fo
dt>,¢
oo
+> [p cos nt + q sin nt ] (2. 22)
n=1

For a given function f the coefficients C» dn’ P, and q, are
known functions of A(O), B(O), A(l), and B(l)., Hence, by virtue of the
relations 2.19a and b these coefficients are known functions of A(l),

B(l), and t. After 'subst'ituting for the various terms appearing on

the right-hand side of equation 2. 13c we obtain the following result:
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(1) db
Fﬁ) + 72 - [sz~ + ____~1 ~ ZwZB(O) +cy p1] cos t'
dt dt
(1) da
dB 1 + 2w A(O) - dl - q]dlnt —lz(co+ po)
d¢ . dt
= Zn(da /dt)
-—z [ —————2— + d + qn]ﬂnnt
n=2
2n(db_/dt) .
+[gn + Pn - T—::Ilz—— :]COS nt (Zo 13C')
Clearly, the boundedness of F(Z) requires that A.(l) and B(l)
satisfy the first order ordinary differential equations
(1) db
2L s 20,8 % 4 e 4p =0 (2. 23a)
dt dt
(1) da
298 4+ 120,40 a g =0 (2. 23b)
dt dt

The solutions of these equations will define each of the functions

B(l)(?:') and A(l)(':c‘) in terms of as By @y and two additional constants

a; and p; in the form:

A A(l)(;mo’, aps By By @) (2. 24a)

51 - B(l)(;;ao, Ay, Bor By ) (2. 24b)

From the form of equations 2.13 it is clear that this process may
be continued indefinitely. The requirement that each F(n) be a bounded

function of tT will provide an ordinary differential equation for A(n—l)

and B(nnl), and the solutions of these equations will define A(n-l) and
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B(nul) in the form

(n-1)_ ,(n-1)7.
A = A (t,qo,ou,an_l, ﬁo"""ﬁnd’ wz,u,,wnﬂ)

(2. 25a)

-1 n-1)
n-1)_ B( )(‘t;o.o, R T {30, oo oy Bn—l’ Woseess wn+l)

(2. 25b)

sl

So far we have made no attempt to evaluate the constants a s
B, and w. We will show later on that a matching condition for each
n will define these constants, so that each A(n) and B(’n) can be coms=
pletely evaluated in succession. |

We are now in a better position to clarify the limit process of
eciua,tion 2.12. Let us note that the condition that F be a bounded
function of t' restricts the appearance of this variable to only trigono-
metric terms, in the general expansion for F. Now, if the exact solu-
tion of equation 2.1 also possesses this special structure (as it does
for the linear case), then the limit process 2,12 is meaningful. For,
even though y does not possess a limit process expansion with T fixed
and € — 0, a matching condition such as 2.12 is still valid as long as
all the terms in y that do not possess a limit, also appear in F.

In short, the artifice of choosing to treat tT and T as separate
variables removes the difficulty of the non-existence of a limit process
expansion for large times, when we make use of the fact that y must
be a bounded function of t,

Since it is not possible to make any general statements about the

behavior of the functions A(n) and B(n) because of the arbitrary nature
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of f, let us again use the linear equation in order to illustrate the pro-
cedure we shall use to define the W, O and ﬁno
For f = Z(dy/dta\) the Fourier series 2,16 only consists of the

term ZA(O)cos 7 - ZB(O)sin t+, and equations 2, 18a and 2. 18b become:

(0)
d‘/'}; C+al® 2 (2.18a')
dt

(0}
dB_ " 4 g0 - (2.18b)
dt

The general solution of this system is

Al =g ot (2.19a')

B(% =g " (2. 19b)

We now propose to evaluéte a, and {30, by matching F(O) with
ho to order unity in a common overlap domain. We must first show
that such an overlap domain exists for the two expansions F and h,
We have already discussed the domain of validity for h in section 2. 2,
so let us examine the domain of validity for F.

Since by construction the difference between the exact solution
and F vanishes in the limit as € — 0 with t fixed (say t= '.F), F
is a valid representation of y in the rectangular region to the right of

the line t = T in the 7(:', € plane as shown in fig. 2. 4.
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V
o+

Figure 2. 4

Even though F 1is not a limit process expansion, and equation
2.1 does not possess an intermediate expansion in the strict sense, wé
note that if ¥ satisfies the initial conditions of the problem, then it
contains h (i.e. the initially valid limit of F is h itself). Hence
the matching of F with h is automatically effected by imposing the
initial condition 2.1b-and 2.1c on F.

Now y and dy/d‘c)‘< have the following expansions

N
oy~ >: FlB)t Hhe? (2. 26)
n=0
N n
%“ ~2 en[an) + F(Zn‘l)+z megn-m)] (2. 27)
n=0 m=2

Therefore the conditions y(0) = a and dy(0)/dt’ =0 are satisfied if:

P

r%0,00=a, #™o,0)=0 =nzo (2. 28)

and
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Fi%0,0 =0, Flo,0) = -F{P0, 0)

' n
Fi™o, 0) = -F{0, 0) - Z S o (2.29)

m=2

If we use the expression we have derived for F(O) and F(l') in
equations 2.15 and 2. 20 in conjunction with the above initial conditions

we deduce the following conditions for A(O),. A(l), B(O) and B(l).‘

A% 0 =0 “ \ (2. 302)
B(%0) = a (2. 30Db)
S nb_(0 0)
A0 =z e )2 - dB(N (0) (2. 31a)
=2 l1-n dt :
1), 20 2, (0)
BU0) = v ) Py (2. 31b)
n=2 "~

The fact that h is contained in F implies in addition, that F

is the uniformly valid expansion of the exact solution.

To illust‘rate these ideas, we will resume our diséussion of the
linear example.

The matching of h_ and F(O) is satisfied if we set a, =0
and (30 = a. This result could also have been obtained by requiring

that F satisfy the initial conditions of the problem. For, the condition

[

y(0) = a implies that F(O)(O, 0) = a, which in turn implies that (50 = a.

Similarly the condition dy(O)/dt='< % 0 provides the relation a = 0.
Let us now proceed with the higher approximations for this ex~

ample. If we substitute the known values of A(O)('E) and B(O)(I) into
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equations 2. 23a and 2, 23b we obtain

~

(1) - :
222 " 24 L (20, 4+ 1aet = 0 (2. 23a?)
&
1
2 d_f’_(.)+ (1) = ¢ (2. 23b")
&

The general solution of these equations is

~ ~

Al - —3'2-- (20, + 1)'¥:'e-t + c,le-'t (2. 24a')

B =gt ' (2. 24b)

By matching F(O) + EF(l) with ho + Eh1 (or by requiring that

F satisfy the initial conditions of the problem i. e. F(l)(O, 0) =0,

F%l)(O, 0) = ~F(20)(0, 0) ) we can show that a =a and ﬁl = 0. Thus to

order €, F is of the form

~ (2w, +1) _'jc‘ ~

F = ae fcos tt 4 €al -—-72—-— te” "+ 1] e “tsintt

(2. 2)

In order to evaluate w, we will make use of the stronger bounded~

o~

ness condition we discussed earlier. We note that the function &(Z) = ae™t

satisfies all the conditions we have set. For:v

~

-t . . . .
a) ae is continuous and possess continuous first and second
derivatives.
-t 0
b) ae = = IF( )l

and to show that y/6 is a bounded function we note that if y is a solu-

tion of equation 2.1 then m =y/8& is a solution of the equation
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a%n 2
| . +(1L-€%m=0 | (2. 2)

and hence is bounded.

~

The important conclusion we draw from the above is that F/e—t

must be bounded, which requires that W, =-1/2.
We have now illustrated all the ideas we need to tackle various
examples for nonlinear functions f, which we will proceed to do in

the next section.



III. .DAMPED OSCILLATIONS (EXAMPLES)

3.1. Dimensional Analysis

In this section we will introduce the various problenis we propose
to solve, in order to convert the equations to the appropriate non~dimen-~
sioné,l forms.

First, let us consider the linear system consisting of a mass,
spring, and dashpot whose solution we have already discussed in the
previous sections. The differential equation for the motion of this system
is

m j§_+ 25% 4Ky = 0 (3. 1a)

and if the motion is started from rest with an initial displacement A

from equilibrium, the initial conditions are

y(0) = A ’ (3. 1b)

ii%%_o_l -0 (3. lc)

The only length scale in this problem is the initial displacement,

hence it is necessary to non~dimensionalize y by A in the form

(3. 2a)

<
H
|

The only non-dimensional grouping of the four constants m, k
and A which is proportional to the damping f is € = ﬁ/(mk)l/z.

Moreover, we can form the following two independent time scales

T = (m/mY? T, =m/p (3. 2b, c)
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It is clear that Tl is a measure of the period of the oscillatory
behavior of the system, while T, measures the period during which
the effects of damping are producevd, We also note that € is the ratio
of these two time scales. Henée, the magnitude of € measures the
relative importance of the damping as compared to the oscillatory be=
havior of the motion. We wish fo regard € as a small quantity in the
sense that B is small and the limit as € - 0 to imply that the damping
disappears from the problem. This choice leads to the definition of
t* as t* =t/ Tl’ and the follow:’gng non-dimensional formulation of

' eéuations 3. L

2 |

d>g’2+ze£1_§; ty=0 (3. 1a')
dt dt

¥(0) = 1 (3.1b')
_51_3;&_% -0 : ‘ (3. 1c')
dt

Let us now consider a more general system in which the damping

is proportional to the cube of the speed, and hence is governed by the

equation
2 3
d”y dy - _
and the initial conditions
v(0) = A (3. 3b)
dv(0
LI (3. 3¢)

By a dimensional analysis analogous to that for the linear case,
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we obtain the following non-dimensional variables

— T
_ v * _t _ 71
y = oy t ==, € = o
A T, T,
m 1/2 m2

and the following non-dimensional differential equation, and initial con-

ditions

Yo 3y hy=o0 (3. 3a)
at at

(0) =1 (3. 3b")
dv(f) =0 | (3. 3ct)
at '

Let us next consider a linearly damped system having a slightly

‘non-linear restoring force., The simplest example that comes to mind

is the small amplitude motion of a damped pendulum.

The general dimensional equation, dand initial conditions for this

system are:

ng—?+ﬁ1%§+mgsin?=0 (3. 5a)
dt .

B(0) = 6, (3. 5b)

ift(_o) - (3. 5¢)

In the above, { is the length of the pendulum, m is its mass,

B the damping coefficient, and g the acceleration of gravity (a constant).
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Since we wish to consider small amplitude oscillations let us
replace the term sin 0 by the first two terms of its power series ex~

pansion, and write equation 3. 5a as

a%7

m!—é—t-z + ﬁlg—? +mg sin @ =0 (3. 5a')

The dimensional analysis of the given constants yields the

following variables

E3
€ =

V:H Foot Tl
A T

T =(E) , T,=F (3. 6)

Equation 3. 5a' and the initial conditions 3. 5b and 3. 5¢c become:

2 .
ii->.,—Y+«E-‘3W‘l 4y -ay =0 (3. 5an)

s
(3 -+

dt dt
y(0) =1 (3.5b")
A =0 (3. 5cm)
dt
2
where a = 60/6.
The problem now involves the two non~dimensional parameters
a and €. In order to treat equation 3. 5a" within the framework we
have established we should regard a to be of the same order as €
by setting a = c€, where c is an appropriate constant. This means
that the non-linearity of the restoring force is assumed to be of the same
order as the damping, which is true for sufficiently small initial dis-

placements.
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We can now rewrite equation 3. 5a" in a form suitable for solution.

2

e -y ey =0 (3. 5am)
dt . dt =

"We will next consider Van der Pol's equation with arbitrary initial
conditions, This is a system Which for a partigular choice of initial
values, possesses a periodic solution, and h;s been studied extensively
in this context.

The dimensional initial value problem is:

2 _ 3
m%%’;- [a%—%’-—%(%)] +ky =0 (3. 7a)
y(0) = A (3. 7b)
9 - (3. 7c)

We have assigned a mechanical interpretation to this equation
even though it has a more natural interpretation for a certain electrical
circuit. We should also note that another equation, also denoted as

Van der Pol's equation in the literature, is:

-
d7y =2,dy | — _
?._e(l-y)a?”-o (3. 8)

1/2 ,
) et | (3.9a)
1/2
‘g(%) -5 (3. 9b)
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As we wish to study equation 3. 7a for arbitrary initial displace=~
ments, we should choose a length scale which is independent of A. A
dimensional analysis of the éiven constants yields the following
characteristic scales:

am m /2 m
L:-B-R— s le(-E) ’ T, = - | (3.ﬂ10)

Hence the appropriate non~dimensional variables are:

Tkt T

Yy =9, t Soos Gz—T—- (3.11)
1 2
and the initial value problemi3. 7a becomes:
2 3
d d 1,d
—,.P,Xz-g[_é’;k_ 3(——2—@] +y=0 (3. 7a")
dt dt 4 dt
ABk ‘ / .

y(0) = c = SBX (3. 7b")
(9 - o (3. 7¢')
dt”

The preceding four examples were chosen because they illustrate
in a simple manner the various types of problems that can be brought to
the form 2.1. In Chapter IV we will consider a variety of examples
which are not strictly of the form given in equation 2.1, but which never-

theless can be solved by our method,

3, 2. Solution of 3, 3%

For this example f = (dy/dt*)s, a =1 and we have the following

expressions for the Fourier coefficients of f(VF(O), Fgo))
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a = 0, n# 1,3 (3.12a)
2 3
a = %A(O)B(Q) 4 %A(O) (3.12b)
5 ,
(0) 2
aj = _éz]:__ - -2 A(O)B(O) (3.12¢)
b. =0, n#l3 (3. 12d)
n .
3,
(0) ‘ 2 :
by == S 4 -ZB(O)A(O) (3. 12¢)
3
(0)~ - 2 _
by = -2 + 2800 (3. 12f)

The solution of equations 2.18 with the initial conditions 2. 30 for A(O)

and B(O) is:
AT =0 | (3.13a)
5O = 2(3F 4 4)"V/2 (3. 13b)
Therefore the uniformify_;?alid solution to order unity is
PO = 25 4 4) /2 cos ¢ (3.14)
According to equation 2. 20 we have
(1) _ a(D)o o, ol 50 o
F*'/=A'Y'sint + B''cost + sin 3t (3.15)

If we use the above to evaluate the Fourier coefficients of G and

H and hence equations 2. 23 we obtain the following fwo first order ordi-

(),

nary differential equations for A(l) and B

(1) 2 5
2%—%— +% B(O), A(l)‘+T%§ B0 _ 2«»23(0) =0 (3. 16a)
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(1) 2
248 "4 2 8l0 M = g (3. 16b)
dt '
The initial conditions for A(l) and B(l) according to equations 2. 31 are:
1 9 |
a0y = 2 (3. 17a)
M0y = 0 (3. 17b)

The solution of the system 3,16 satisfying the conditions 3,17 is

AlE) = 25+ 4)/‘3/2 + 20,53 + 42

15~ -1/2
+ 3 (3t + 4) | / (3.18a)

5(0F) = 0 | | (3. 18b)

Although for this example, the stronger boundedness condition
also applies with 6(?:') = B(O), we need only require the weaker condition
that F itself is a bounded function of t to evaluate Woe Clearly, since
for large values of ?:‘, A(l) behaves like __ZST)T/Z cozz 12 we must set
w, = 0. Thus the uniformly valid solution to order € of equation 3. 3' is

O 4 erl) 2 3 4)"1/2cos £ 1€ {

s [o(3+ 4)"3/2 + 3 (3T 4 4"V 2] gin ¢ } (3.19)

3. 3. Solution of equation 3, 5"

For this example f = dy/dt:'< - cy3, a =1 and we have the follow-

ing expressions for the Fourier coefficients of f(F(O), Fgo))
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a = 0, n# 1,3 (3. 20a)
_ A 00) 3¢, (07, A(0)%.(0) ,
a, =4t - 22 (BT 4 AV B (3. 20D)
¢ 2 (0)2(0)  (0)°
a3 = 7 (3A B - B ) (3. 20c¢)
b =0, n#13 | (3. 20d)
=m0 3e 4 (0, 5(0)%,4(0)
L= o> + BN ALY (3. 20e)
b = < (al0’ 340005000 (3. 20f)
37 4 o * )

According to equations 2.18 and 2. 30, the equations and initial

conditions governing A(O) and B(q) are:

2 d_é.\;(—?-) +al0) 3¢ (3(0)3 + A(O)ZB(O)) -0 (3. 21a)
- .
22?(2) + {0y 3¢ (A.(0)3 4 B(O)ZA(.Q)) =0 (3. 21b)
; ‘
Aal00) = 0 (3. 223)
800y =1 | (3. 22b)

We can simplify these equations by introducing the transforma-

tions
xe~t/2 = g(0) 4 A(0) | (3. 23a)
ve~t/2 2 pl0) _ A(0) (3. 23b)

The system 3. 21 transforms to
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~

8 51;?-{ + 3ce”t x3

(3. 24a)
dt

I
o

83X _3cet ¥ (3. 24b)
dt

H
o

with the initial conditions

X(0) = Y(0) =1 (3. 25)
A first integral, obtained by dividing the first equation in 3. 24
by the second is /

x* 4 y* =2

(3. 26)
If we now substitute this result into either one of the two equations

3, 24 we obtain an integral representation in the form t= g(X, c) or

t= h(Y, c). Unfortunately the functions g and h are not expressible

in terms of elementary functions. Nevertheless, we do derive the very

useful. conclusion from the first integral X4 + Y4 = 2, that Y(?:') and

X('E) are bounded functions of Tc', in fact
0 < x), (i) < 24
In terms of these bounded functions F(O) becomes

F(O) - e:E/Z[P(;)sin t* + Q(’;) cos t*] (3., 27)

where

PH) = LIx - (2 - xHV/*] (3. 28)

Q(?) = %[X + (2~ X4)»1/4] (3. 29)
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and P and Q are bounded functions of t. The important conclusion
regarding this system is the following. In the absence of the non-
linearity in the restoring force the motion would have been exponentially
damped. Hencev the effect of this nonlinearity is to modify the damping
to the extent of multiplying it by the slowly varying functions of E, P

and Q.

3.'4. Solution of Van der Pol's Equation 3, 7a'

sk k.3
Here f =~ dy/dt" +1/3(dy/dt )°, a =c¢, andthe Fourier coef-

ficients a. and b are:
n n

a = 0, n#1, 3 (3. 30a)
A0 L0507
a =2 A B A0 (3. 30b)
3 2
(0) (0),(0)
;=2 - 2B . (3. 30¢)
b =0, n# 1,3 | (3. 304)
1
3 2
(0)™ A (0)",(0) ‘
by =~ 2 oA P y 800 (3. 30e)
3 2
(0) (0),(0)
B B9
b, = B B A (3. 30f)

According'to equations 2.18 and 2, 30, the functions A(O)('E) and

B(O)(Tr:) are governed by the equations

3 2
(0 0 0) (0 |
2 dAN( ) 4 Ai} ) 4 Al 4}3( ) A0 (3. 31a)
& ‘ -
w0 507 (070
2 22 B g0y (3. 31b)

dt
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and the initial conditions
| a0y =0 | (3. 32a)
B(%(0) = ¢ (3. 32b)

The solution of the above system is

aOF =0 | (3. 33a)
B{O)F) = thcz _ (2 - a)et]"L/2 | (3. 33b)

hencé F(O) 1S given by

F(O) = 20[(‘:2 - (c2 - 4)e"‘t] ul/zcos tt

Wé nofe that if c = 2, B(O) = 2, and F(O) reduces to the periodic
solution of equation 3. 7. We also note that this periodic solution is
sfable in the very strong sense that for any value of ¢ the solution
will tend to the "limit cycle" as t = co.

Let us now proceed to calculate the next approximation for F.

We have the following expression for F(l) from equation 2. 20
(00>

) 2 A @)sin ¢t + B E)cos £ + (3. 33c)

The equations governing A.(l) and B(l) are, according to
equation 2, 23

_aall) (0 (0 o a0
' 4

4 128

)5

i + 20,80 =0 (3, 340)
&
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(1) 2 |
zd_dB;_ -84 280 5 =0 (3. 34b)
; .

The initial conditions 2. 31 for this case, reduce to
3¢% - 16
A(l)(o) = _C_(__S_gz‘_‘__l__)_ ‘ (3. 35a)
B)0) = 0 (3. 35b)’

The solution of the system 3. 34 satisfying the above initial con-

ditions is:

(0) 0) (0) 2
AlE) =B 10g (13.(-5- y+ B (B9 4 5c2 - 32
(o)
CBUE (L (3. 36a)
s = o | (3. 36b)

Here again we may impose the stronger boundedness condition
on F(l) by choosing 61(75') = B(O)(&t‘). In order to evaluate W5 it is
sufficient to require that F itself be bounded. For, since the term &

(OT' ~ ~
B (-g + 2w ) approaches t(—lg + sz) for large values of t we must

set "-1
et Y 18

The uniformly valid solution of Van der Pol's equation to order

€ 1is thus:
' 2 0) (0)
F(O) n EF(l) = B(O)cos (1 -_%-)t + €[ -—é-_ log (B )
(0) 2 w
+ %—-—(B(O) + 502 - 32)] sin (1 - -I-6-)t‘\

ep(0)? (2 4
+ ———6~— sin .3(1 - ) (3. 37)
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Again we note that for ¢ = 2 this reduces to the correct periodic
solution, and that for ter 0 and c arbitrary, the general solution
approaches the limit cycle.

The leading terms of the solutions we have derived in the pre-
ceeding three examples have been checked by the method of Kryloff

and Bogoliuboff of reference 1, and the agreement is exact.
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IV. BOUNDED OSCILLATIONS (MISCELLANEOUS EXAMPLES)

In this chapter we will apply the method we have developed for
solving equation 2. la to a variety of problems in which the function f£
has a more general form.

For the sake of simplicity we will not parallel here the general
discussion we gave in section 2.1. We will rather solve each problem
in detail separately, and will again make use of the basic boundedness,

and matching criteria which will, of course, still hold.

4.1. The Motion of a Charged Particle in a Slowly Varying Magnetic

Field.
In reference 4, Broer and Wijngaarden show that the equations
of motion for a charged particle in a slowly varying magnetic field

can be transformed to the linear second order differential equation

2

2
d w(t) _
-—% + @ =0 (4. 1a)
dt % *

where @ 1is the complex variable related to the Cartesian coordinates

X,y by

-—iszdt
uzx-[.iy:qoe , (4‘02)

and w is the cyclotron frequency 'e_%r—(lg .

In the above m is the mass of the particle, e its charge, and
B(t) the slowly varying magnetic field strength.
Let us denote w by 2p and ¢ =§ + in, and consider the equa-

tion for §
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2

A% 20 = 0 (4. 1b)
@

We wish to study equation 4. 1b for functions p which vary
slowly with time. In particular, we wish to consider functions

which are of the form
Tip = plpgt) » p Ty <<1 (4. 3)

where p_ is a characteristic frequency and T; a characteristic time.
We should mention that not all slowly varying functions necessarily
belong to this class, and this particular choice was made in order to
derive some general results for which an explicit knowledge of the
function p is not needed.

Let us choose the initial conditions

£(0) = A (4. 4a)
| iiaé_ti_‘?_) =0 (4. 4b)

The appropriate non-dimensional variables are

als

Sk sk t ~ sk

£ =§, t =__l, € =p T, t=€t (4.5)
Equation 4. 3, and the initial conditions 4. 5 become

2. %
d 2/ %
‘7§Z + p2ME" =0 (4. 6a)
dt
£7(0) =1 (4. 6b)
de(0) _ (4. 6¢)
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It is incorrect to assume that the two-variable expansion proce-
dure we developed earlier applies directly to equation 4, 6 for the follow-
ing reason: With such an expansion we would be tacitly assuming that

F(O), the leading term of the asymptotic expansion was of the form
0¥ ) = A°H)sin pd)t" + BOF)cos p@)” (4. 7)

and in fact that the homogeneous parts of all the F(n) have the "fre-
quency" p.(‘zci).
We can show that this is incorrect (unless p = constant) by

actually carrying out the expansion for §='< in the form

gﬂ‘. = F(tﬂ , t) =

>z

ePp(n)* 3) (4. 8)

n=0
Then equation 4. 6a implies that F(O) is as in equation 4. 7, and

that F(l) is the solution of
1 2~ (1 0
Fgl) + B GHrl) = -2F§2) (4.9)

When we substitute the result obtained for —ZFgg) from equation

4. 7 into the right-hand side of equation 4.9 we have:

~ (0) sk
Fﬁ> s 2P = 20 A7) A0 duy g
dt ) dt
(0 s
-2[p—q§——— +B(O)—d:—v&]sinpt
dt dt
- Zt*pé‘g- [A(O)sin p.ta< + B(O)cos p.t%] (4. 92)
dt

Thus the dependence of the frequency of F(O) on t has intro-

duced the bothersome terms _Zt"‘pﬁ_:p- [A(O) sin p.t$ + B(O) cos p,t*]
dt
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which can only be eliminated by setting A(O) = B(O) = 0.

This is an indirect verification of the fact that the solution of
equation 4. 6 cannot have the fundamental frequency p.&), We can show
this more directly by transforming the variable t* to another appro-
priate variable in terms of which equation 4. 6 takes on the more familiar
form where the restoring force term has a constant coefficient.

If we denote this new variable by 7 = ‘T(t*) we obtain the follow-

ing transformed equation from equation 4. 6

2.k i 2 ; % - 2 J .
d 1 sk
> *‘L Ir ds:z] Tt =0 (4.10)
dTr (—) dt dr
dt” )
dt

Thus if p=c¢ _d_v_:k (where c¢ 1is a constant, say c =1), the solution of
dt
equation 4. 10 will have no t dependent frequency. If we make the sub-

o d ~
stitution p = -—1 and observe that u being a function of t implies

dt
that
ST A A T R R (4.11)
T T2 AT 2§ & |
dt
we obtain a more familiar transformed equation:
2. % ¢
da“g ~ dE
— tEf(t) 2— + £ =0 (4.12a)
.
The initial conditions 4. 6b and 4. bc become
£7(0) =1 (4. 12b)
ag™ (o )
§O -0 ir woys o0 (4.12¢)

dr
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In these variables, the function f represents a slowly varying
damping coefficient, and is positive if p is an increasing function of
t. Therefore, at least for this case, g* must be a bounded function
of 7. However, even if f is negative, the solution should only grow

with ?:', and must be a bounded function of 7 if we hold T fixed.

Let us carry out the solution of the system 4. 12 by letting
N
£ - w(r,7) = 5 i), Ten (4.13)
n—:O

The equations governing F(O) and F(l) are:

A (4. 142)
(0)
2F
(1) (1) _ _2ve(0) 12
Fil) 4 gl - ~(tyF{0) - — (4. 14b)

If the solution of equation 4. 14a

7O 2 AOF)sin 7 4 BOF)cos 7 (4. 15)

is used to compute the right-hand side of equation 4. 14b we obtain

(0) (0)
F(l) s e o a0y 2 4A A B9 2 8B cos 7 (4.16)
[ [

Clearly, both bracketed terms in equation 4. 16 must vanish if F is to
be a bounded function of 7.
The solution of the two first order ordinary differential equations

thus obtained is

1/2 1/2

A9 = a9 (*%L@) , BL9@) = (%0 (%ﬂ)) (4. 17)

The initial conditions imply that A(O)(O) = 0, B(O)(O) =1, hence F(O) is
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given by

02T = (MO s 7 (4.18)
p(t)

This result agrees with that obtained by the WKB method directly
to equation 4. 6a. The higher approximations can be found in a straight-
forward manner, and since no new ideas are involved we will not carry
this analysis further.

The successful application of the two-variable expansion proce~
dure to this example has thus extended the validity of this method to

include functions Gf(y,fil Z)o In the next section we will apply the two-

E34
dt
variable expansion to the linear system having a periodic forcing function

whose frequency is close to the natural frequency of the system.

4, 2. Beats

Consider the following linear mechanical system

2

d _
m?ﬁ +ky =F_cos ut (4. 19a)
v(0) = —@al’t@—) =0 (4. 19b)

where m, k, FO and w are constants.
We wish to study the solution of 4. 19 for the case where w is
close to the natural frequency of the system (k/m)l/zg

Clearly the appropriate non-dimensional variables are:

e

v * € = (k/m)l‘/z

* t -w 7 '
= , t = , , t =€t 4, 20)
TUF K (m/K)Y 2 (k/m)"/ (
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The non-dimensional form of the initial value problem 4.19 is

dz Ko~

——\{3 +y =cos(t -t) (4. 21a)

dt”

VW)=§¥£)=O (4. 21b)
dt

We can of course compute the following exact solution of the

above system:

y = ET%:?)[ cos t*(cos €t - 1) + sin t"sin Et*] (4. 22)
We note that lim y(t*, €)= -tz- sin t*, namely resonant oscillations.
However, for ijoposi‘tive value of €, the motion is bounded and repre-
sents a long period oscillation modulating a short period oscillation.
Let us now construct the asymptotic representation of this solu-
tion. We should note that since for t fixed the leading term behaves

like 1/€ the correct expansion for F must have the form:

~ ~

y= R0 = £ FO T 4 PO T + er(B ) (4. 23)
The equations governing F(O) and F(l) are
A (4. 242)

E{%)+ A u2F§2)+ cost cost+ sint sint (4. 24D)

where the F(n) satisfy the following initial conditions
r(0)0,0) =0, Mo, 0)=0, ¥™)o,0)=0 (4. 252)

r{%0,0) =0, Mo, 0) = -r{)0, 0), F{*)o, 0) = -rP-10, 0)

(4. 25D)
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The solution of equation 4. 24a is
70 2 AOF)sin ¢ + BIODF)cos £ (4. 26)

where A(O)(O) = B(O)(O) = 0 by equation 4. 25.

If we use the above to compute ’ZFZ(Lg)’ equation 4. 24b becomes
~ (0) b4 ~ (O) sk
FS) + F(l) =(cos t - ——)cos t + (sin t + Zd? )sin t
dt dt
(4. 27)

In order that F(l) be bounded we should require that the coef-
ficients of the sint and cost terms in equation 4. 27 vanish for all
values of t. The solution of the resulting equations for A(O) and B(O),

satisfying the appropriate initial conditions are

Al%) = L sin’ (4. 282)

BUO®) = 3 (cos T - 1) (4. 28b)
Thus F(O) is given by

F(O)(t*,q:’) =-1Z sin t sin 1:* + -}2- (cos T - l)cos t* (4. 29)

which is the appropﬁate leading term in the expansion for vy, as can be
verified from equation 4. 22,

The only essential difference between this example and the pre-
vious ones, was the fact that the leading term in the expansion for F

was of order E-'l°
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4. 3. Mathieu's Equation

The non-dimensional form of Mathieu's equation is

2 .
dzy + (6 + € cos trp)y =0 (4. 30)
dt”

In reference 5, Stoker studies the stability of the solution of
equation 4. 30 in the 6,€ plane. He shows that corresponding to transi-
tional values of & and € from stability to instability, fhere exists a
periodic solution of equation 4. 30 with period 27 or 47, and that the
general solutions of equation 4. 30 for these transitional values of & and
€ are unstable. *

Thus by finding all the functions 6&(€) for which equation 4. 30
admits a periodic solution one can define the boundaries of the regions
of stability and instability in the §&,€ plane,

It is especially easy to compute the periodic solutions and their
corresponding tra.nsitionalb curves §(€) if € is small, To summarize
the results given by Stoker and McLachlan in reference 6, we note the
following.

The transitional curves intersect the € = 0 axis at the critical
points 6C = n2/4:, n=20,1 2,... . Through all these points pass two
“transitional curves S(n) and (n)é » except at the origin which admits
only one such curve (0)5. The region to the left of the curve (0)6
corresponds to unstable solutions, and as each of the transitional curves
are crossed the stability of the solution of equation 4. 30 changes.

The asymptotic representation of the first four é(n) and (n)é,

"By stability we mean boundedness for all non-negative values of £
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)

correct to 0(64‘) is given below. For the expansions of all the é(n

and (n)6 correct to 0(66), the reader is referred to page 17 of re=-

ference 6.

(0)5“‘6‘2—*37”264 (4. 31a)
2 .3
€ € € :
o = 345 F -5 e | (4. 31b)
2 3
(). 1 € €% ¢ 1 4
6 =3-3-5 *3z "~ TE5 ¢ (4. 3lc)
(2) e 5 4
6 = 1"1“2—‘ + m‘e ) (4‘.o 31d)
2
(2?6=1+ 5¢” 763 c4 (4. 3le)
2 3
o8 = Tt o € (4. 31f)
2 3
(3). 9 €% 13 4
= 2%t =37 ‘10,290 € (4. 31g)

The regions of stability and instability bounded by the first five
of the above curves is illustrated in fig. 4. L

In this section we will investigate the behavior of the solutions
of equation 4. 30 in neighborhoods of the transitional curves emanating
from the first three critical points 6C =0, %, 1. More precisely,

- we will solve Mathieu's equation with & set equal to 6C + 1—% 5i€i with
6, fixed, and 6, arbitrary. - In:the 6,€ plane the curves & =_é5 4 +‘L'"%l.l6iei
form,k;an n-parameter family of curves passing through 6C for each v;_lue of 6(:'

In order to apply the two-variable expansion procedure to both

the stable and unstable solutions we will make the following assumption

regarding the structure of the solutions of equation 4. 30.
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On the n-parameter family of curves & = 6C + 1%11 éiei the
solutions of Mathieu's equation can be uniformly represe—nted by an
asymptotic expansion in terms of the two variables t*, and t”}: n(€ )t*
for some appropriate m(€) = o(l) as € = 0, The particular n de-
pends on the critical point éco

It can be shown that for each critical point 6C there is only
one order class of functions nC(E) for which the expansion for F has
the following properties, and we will determine 7 by demonstrating
these properties.

i) For values of &, associated with a stable region F will be
a bounded function of the two variables t* and t'ﬂ°

ii} For values of 6i associated with an unstable region F
will be a bounded function of t*, but an unbounded function of tno

The above is our assumption regarding the structure of the solu-
tions of equation 4. 30, and cannot be proved for this case since no t
appears in the differential equation. (Contrast this with the example
in section. 4. 1. )

Assuming the validity of this assumption, the expansion for F
must conform with the results of the general theory in the following
r'espects.

(1) On the transition curves F must admit a periodic solution
for the appropriate initial conditions, and the general initial value prob-
lem must be unstable.

(ii) Since F is presumed to represent y uniformly, the basic

stability, and instability of the solution must be exhibited by the leading



50

term in the expansion for F.

Let us adopt the initial conditions

y(0) = b (4. 32a)
WO -, (4. 32b)
dt’ |

and in the first instance study the solutions of equation 4., 30 in the
neighborhood of the origin of the §,€ plane.

For this purpose let us choose 6 = O(€) as € — 0 in the form
2 3
6:661+E 62+O(€ ) (4. 33)

Equation 4. 30 becomes

2 sk
i:?—r + €[ (6, + cost )+ €S +O(€2)]y=0 (4. 34)
2 1 : 2

We will show by actually carrying out the expansion, that the appropriate

n(€) is in this case €, Let us now expand y in terms of t  and

ate
3R

T =€t thus:

o~ ~

v = F(t,T) = é_ FO* T+ pUET) 4 erl3 ) 4 oo (4.35)

The leading term in this expansion is of order 6—1 in order to

accomodate the non-zero initial condition . Sl_}’_(_(_)_l =a
dat”
The equations and initial conditions obtained by substituting the

expansion 4. 33 into 4. 34 and 4. 32 are:
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Fﬁ)) -0 (4. 36a)
Fil) = 2r{9) - (5, + cos (¥ (4. 36b)
Fl2) = _arl) - (5] 4 cos £rt - F 0 g0 (4. 36¢)
FP) = 2r0 ) (5 4 cos £ )p 7t - (272

| <o pd o s O (4. 36n)
ro,0) =b, F™(0,0)=0, nz 0 (4. 373)

\

Filo, 0) = a - F{P)o, 0), F:(Ln)(o, 0) = -F "0, 0) n# 1
(4. 37b)

We note that the homogeneous solutions of all the F(n) are
F)* 7y = AE) 4 5 (4. 38)

In view of our assumption regarding the boundedness of the F(n)
for large t  we must set all the A(n)('%‘) = 0.

The solution for F(O) is therefore
r0 . g0 (4. 39)
The initial condition 4. 37 for F(O) requires that
B8{%0) = 0 (4. 40)

If we use the fact that F(O) is a function of t only in equation

4, 36b we obtain
Fﬁ) = -61:5(0)(76) - cos t* BLO)F) (4. 41)

Again in order that F(l) be a bounded function of t*, 61 must
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vanish, and this produces the correct stability criterion in the neighbor-
hood of the origin. For to the first order in € the transitional curve
is indeed 6 = 0.

If we now solve for F(l) we obtain

D - 50F) 4 807 cos t° (4. 42)

The initial conditions for F(l) imply that

0
= b, d-l.@.'.(w_._)(_.q_).
dt

B0 =2 (4. 43)

If we now use the preceding expressions for F(O) and F(l) to

evaluate the right-hand side of equation 4. 36c we obtain

(0) 2.,(0)
2) _ 2a'?Y |« [d B 1,.(0) }
F = — t - —— + (6, + 5)B
noC o e w2 1o 2)
- M@ cos t* - (819)/2) cos 2t™ (4. 44)

The bracketed term in the right-hand side of equation 4. 44 is a
function of t only, and hence must vanish in order that F(Z) be
bounded.

The solution of the equation obtained by setting this bracketed

term equal to zero is:

(0)~ 1 -1/2 1 1/2 1
B (t)za(éz-l« 'Z) sin(62+ 7) t if 6, 2~ > (4. 45a)
1/2 1/2
1 1
~ -1/2[ (-6,~) t =(-6,-5) t
B(O)(t) = %(”62"‘ _Z) Le 2 2 -e 2 2 .’if 62 S -
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Thus we have established the correct stability criterion for

§,, and if we proceed with the higher order terms we will successively

2
be able to compute more accurate expressions for the transitional
curve and the solution on either side of this curve. To illustrate the

)

situation it will suffice to evaluate B(1 by considering the next step.

Necessarily our calculation must fall into two categories from now on
. 1 1
depending on whether &, > - ~ or 62 <=5

Let us first consider the stable case 62 > - —12 . The solution of

equation 4, 44 for F(Z) gives

F(Z) = =2a sin p':cJ sin t + B(l)(?;’)cos t* + ga_ sin ptt' cos Zt*
p
+ 9%) (4. 46)

1 )1/2

where p = (5, + > . By applying the initial conditions on F(Z) and

ng) we obtain

‘ (1)
B0y =p, L O ., (4. 47)
dt
If we use the preceding expressions for F(O), ‘F(l) and F(Z) to
compute the right-hand side of equation 4, 36 we obtain:
2.(1) 5,2
3). d"B 1 3 Y - ~
F(ZZ) = -.[ dqu + pB( ) + —p— sin pt] 4+ | 3ap cos pt
1)
a, 1 L~ _(2) «  2aM)
~—§(—1—6—+ 6,)sin pt - B (t)] cost + = sin t

+ }Z (a cos p?:l - B(l))cos 2t + a sin p?:’ sin 2t

- ;é_p_ sin pt cos 3t (4. 48)
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In order that F(s) be a bounded function of t* the first bracket-
ed term on the right-hand side of equation 4. 48 must vanish. Now in
order that the eﬁsuing expression for B(l) be a bounded function of ¢t
we must further require that 63 = 0, and this is in agreement with the
results given in equation 4. 3la. With &, = 0 the solution of the

bracketed term in question is

BUE) = - 2 sin pt + b cos pt (4. 49)

2
p
We may summarize the results as follows. The general repre=-

sentation of the stable solution corresponding to 62 > - —12, correct

to O(1) is

y = < 2 sinpt +.% sin pt(cos t = 1) + b cos pt + O[€) (4. 50a)

ol

The leading term of the unstable solution on the transitional curve is

~

y =22 +b+O(e) (4. 50b)

The unstable solution for §, < - —12, correct to O(%— ) is

A T
v = I I/Z [e - e 1 (4. 51)
26 (= = = 6,)

%)

in the 6,€ plane. On the transition curve we have a periodic solution

These solutions lie on the family of parabolas 6 = 626 + O(Eé

if a =0, butthe general solution with a# 0 is unstable as postulated
by the general theory.

Let us now return to the question of the choice of n(€). If we had
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chosen any m(€) other than n(€) = O(€) as € — 0, éither one of the
following two eventualities would have arisen.

(i) For n(€) =o(€) as € — 0, it would have been impossible to
make F a bounded function of ’cn for values of 61 consistent with

the transitional curve. This can be seen easily if we consider a typical

1 1/2 1 1/2

term in the expansion such as sin (62 -Z (6 Et . If,

for example, we had chosen n(€) = 61/2 (i, e (t"’] = El/zt )) the term

in question would have appeared in the solution in terms of its non-

1/2

uniform expansion in powers of t €/ ", This would have led to a term

12 (62 + —2)1/ in the solution, and to the erroneous

conclusion that 62 = -—12 was the only possible value for stability.

proportional to €

(ii) For € =o(n(€)) as € - 0, it would have been impossible
to make F a bounded function of t* for the following reason. If the
two variables we are expanding in are t*, and tﬂ =€ 2¢* ',, the above
term would appear in the solution in terms of its non-uniform expansion
in powers of Et#= thus: (6 —121/261: + . .

We conclude from the above that if we restrict ourselves to
those solutions which lie on the family of curves to which the transitional
curve belongs, (i.e. the m-parameter family obtained by varying the
non-zero coefficients 61, as oy 6m appearing in the transitional curve)
then we have a unique way of determining the second time variable in
our expansion.

In the preceding example, and in what follows the choice of the
1:(1’1 variable we have used was verified by actually carrying out the ex~

pansions for two other m(€) in adjacent order classes., In all cases the

results were as outlined above.
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Next, let us consider the family of solutions in the neighborhood
of &6 = ! . For this purpose we let § = : + €86, +... , and equation
c 4 4 . 1
4, 30 becomes

2
é—? [Z~+e(6 + cost )+-CXEZ)]y:=0 (4. 52)

dt

e
=

Here again the appropriate function n(€) is €, hence tﬂ: t=€t.

We will expand y in terms of t and t in the form
g =Fe", D = PO ) + erMe T + ... (4. 53)

The equations, and initial conditions governing F(O) and F(l) are

Fﬁ)) + g L0 2y (4. 54a)
Fﬁ Z L F = ap(0) alF(O) - cos t F(0) (4. 54b)
%0, 0y =5, w0, 0)=0 (4, 55a)
{0, 0) = a, ritho, 0) = -¥l0)0, 0) (4. 55b)

The solution of equation 4. 54a for F(O) gives

b3 Sk

0 0)y o t 0)~ t
F( ) = A( )(t) sin —- + B( )(t)cos - (4. 56)
The initial conditions imply that
890y =b, al%0)=2a (4.57)

When this expression for F(O) is substituted into equation 4. 54b

we obtain



(0) (0)
(1, 1 (1)__{ dB (0) . A } ot
F + = F = 5. A + 51
11 Z & I Y
(0) 0 A0
- [ Z‘% + (61 Z)B( )Jcos—z T s1n-§t7
(0) g
- B cos 2 (4.58)

Thus the boundedness of F(l) requires that A(O) and B(O) satisfy

the equations

(0)
-i'lATw + (8 + Z)B(O) =0 (4. 59a)
&

(0)
B (s, - 5al% =0 (4. 59b)
&

The solution of the above equations falls into two categories.

First if 61 > 'lZ or 61 < ——12 the solutions are stable, and we have

(0) 28+ 1 1/2'. 2 1 1/2 5 1 1/2
A = b(i—gi—_—l ) S111 (61"‘—4‘) t + 2a cos (6 "'Z) t (4e 60&)

1/2 25,-1 -1/2 , 1 1/2

(0) _ 2 1 i , j ~
B'" =bcos (67-5) ¢ Za(—zs—ﬁ—l-) sin (6;-%) t (4. 60D)

4

Conversely if ~}2- < 61 < -% , the solutions are unstable, and we have

0y _ [byr + 2as] % -afTs T, (452°- rb%)
2Vs (bVr + 2ays e'\/“_é

A0

(4. 6la)

_ Ib/r + 2a/s] “e 2-2/7s (4sa - rbZ)

s (4. 61b)
2/r (bVs + 2a/s)e ~Vrs t

where r = (61 + -12),, s = (-12 - 61).
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When 61 = - we have
A -2a 0 O Ly 23 (4. 62a)
d for &, = btai
an or 1 = -2 we optaln
Al 220y, B0 -y (4. 62b)

Thus the choice of t"] =€t has led to the correct stability re-
quirements (and this choice is unique). Furthermore, it can be verified
(0)

that the expression we have derived for F possesses the appropriate

properties on, and in the neighborhoods of the two transitional curves
through 6C = %I

By carrying out the next step in the expansion we will obtain the
more accurate criteria for 6(1) and (1)6 as well as the next term in
the expansion for F.

‘The analysis for the third critical point 6C =1 is quite similar
to the preceding with the exception that here we must set tT‘l: € Zt* =%,

We will not carry out the details here, but will simply present

the final results for F(O) the leading term in the expansion for F.

We have for & =1+ 661 + 6262
v = = O % erW 3 4 L (4. 63)
PO F = AD)sin t* + BOF)cos (4. 64)

For the boundedness with respect to £ we must have 61 = 0. The

. . 5 1
solutions are stable if 62 > VA or 62 < - = and
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125,-5 1/2 : . RYE
A0 - b(m) sin [(62- o N6, + ) J T
1/2
4 a cos [(62 - (6, +T%.)] ¥ (4. 653)
1/2

2t

B(O(’% —bcos[(éz-%)(ﬁz-k%z—)] T

125, + 1 1/2 ; 1 /2
- "3*'1'—““—252 =5 ) Sin[(ﬁz- )65 + TZ@ T (4. 65D)

. . 1 5
The solutions are unstable if - VA < 62 < V3 and

A0 - [bvr + avs ] %e 27 + (sa? = b2 (4. 66a)
2Vs (bVr + ays )e‘/_‘S

[bVr + ays ]262\/5‘1-%_ (saz- rbz)

(O)gy _
B = =
2/r (b\fr + aVs )e\/-r_s'ﬂf

(4. 66b)

5 _ 1
where r= gy 62, and s~62+—Izo

5¢ 2

12

On the transitional curve 6(2) =14 . A(O) and B(O) take the

following values

A% - o, BO® -p -:ﬁ (4. 672)
(2
On (2)6 =] - TZ_ we have
Al0@ -4y _1;'_’? , B9% -1 (4. 67b)

Again, it can be verified that the expression we have derived for
F(O) possesses the appropriate properties on, and in the neighborhood of

the transitional curves through the critical point 6C =1,
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As mentioned earlier, this solution (and similar solutions for
the remainder of the critical points) are valid only in limited regions
surrounding the transitional curves. It is not clear whether the two=
variable expansion procedure would apply in regions notdescribed bythe

n .
families of curves 6§ = 6C + 2 616 Y. For example, if we wish to solve
i=1
1,2 i 1 L
+ 2 6,67 (where # & ), the choice of the
2z jop & 2 c
second time variable is not clear, nor is it clear in what sense such a

equation 4. 30 with &

solution should match with the solutions through either of the two
neighboring points 6C = %I and 6C =1, at corresponding points in the

§6,€ plane.

4., 4. The Motion of a Satellite in a Central Gravitational Field and a

Thin Constant Density Atmosphere.

The purpose of this example is to illustrate the application of
the two variable expansion procedure to a wide variety of problems in
celestial mechanics, for which the motion in the absence of small per=-
turbing forces, is Keplerian.

A number of such problems may be solved by Poincare's method.,
These problems are characterized by the fact that the motion can be
described by periodic terms, either in an inertial or in a uniformly pre-
cessing coordinate system.

If, however, the motion does not fall in this category Poincare's
method fails, We will study such an example in this section,

Consider the motion of a spherical satellite in the gravitational
field of a homogeneous, spherical, and non-rotating earth. Let us further

assume that the drag coefficient of the satellite is constant, and that the
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earth is surrounded by a thin constant density atmosphere. Although
this simple model of an earth is not physically realistic, it retains
fhe essential features which serve to illustrate the effect of drag per-
turbation in the two body problem.

Since the earth is stationary, there will be no Coriolis force,
the orbit will remé,in planar, and we can write the equations of motion
in polar coordinates in the plane of the orbit, and centered at the origin

of attraction:

2 2 C 1/2

d d M °DPS arfa z
mét_zr' - mr(gf ) =-m Z Tz a?l(ilffz““ Zﬁ‘@)« (4. 68a)
1/2
2 C..pS
d 2 dep .2 |
mr(zt +2mH£ gt = __.7D_____ %SQ[(%E) rz('c—ltg) _j (4. 68b)

In the above, m is the mass of the satellite, M the mass of the
earth, G the universal gravitational constant, CD the drag coefficient,
p the density of the atmosphere and S the cross sectional area of the
satellite,

We can make some further simplifications in the choice of the

following initial conditions:

£(0) = R (4. 69a)
dr(0) _

% =0 (4. 69b)
©(0) = 0 (4. 70a)

_@%J;L) (GM/R3 1/2 (4. 70b)

In the absence of an atmosphere, the above initial conditions
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correspond to a circular orbit of radius R.

We have the following characteristic dimensions in the problem:

L, =R (4. 71a)
L, = chs/zm (4. 71b)
T, = (R3/Gan/ 2 (4. 722)

CDpSR

T, = D ®%/am?

(4. 72b)

We wish to study the motion in the large, hence the appropriate
length and time scales are Ly and T;e The smalli pvararn.eter in this
problem is € = CDpRS/Zm, the ratio of drag to centrifugal force at
radius R.

Let us introduce the non-dimensional variables

1';‘: =X , ‘(:a< = t s ’; = t :E‘f;‘< ) (40 73)

d
 —

Equations 4. 68, 4. 69, and 4. 70 take on the non-dimensional form

1/2

2% sk 2 * * 2 sk 2
d >:.2 - r (g'ggk) == ];::2 -¢€ dl'* [ ( dr* ) + T Z(id £ ) :l (4. 743.)
dt dt T dt dt dt:
* d% | 2dr" d «[ art 2 x2 a9 .27Y24
T k2 + R '—‘,(é ==tr ( sk ) + T (___(é ) —% (4'a 74b)
at at  dt at at at
£ (0) = 1 (4. 75a)
dr (0) _ (4. 75b)
dt”
©(0) =0 ; (4. 762a)
dp(0) _; (4. 76b)
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The two variable expansion procedure, when applied directly to
these equations, will fail for the following reason.

Let us denote the term

* 2 2 11/2
299 [(dr )+ Ade) } =L 1)

dt:,: dt:,: dt:.:

allowing us to integrate equation 4. 74b to

P 239 - qyert,€) (4. 77)
dt :
where a is a constant. If we now solve for <:1go/dt>'< from equation 4. 77

and substitute the result into equation 4. 74a we obtain

_1/2

AR S sk % 2 2
d*rz'bedr*{(dr*) + >l}2(a+’€£)J +(_1_,2-_9_’_)
dt dt dt T T r
2
2of ef
=€ [“‘;:23 + r‘::‘j: ] (4. 78)

Even though for € = 0 the motion is oscillatory, we note that
because of the nature of the restoring force term l/r*Z - a,/r*, the un-
perturbed motion will not be simple-harmonic. This in turn will intro-
duce t dependent terms in the fr;equency for the representation of r*.,
As we noted earlier in this chapter, the method cannot apply under these
circumstances.

Fortunately from our knowledge of the unperturbed motion we
can deduce the appropriate variables for this problem. We know that

a Kepler ellipse has the following form in polar coordinates

* a{l - ez)
r = (4. 79)
1 - e cos (gg—qpo)
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where a is the semi-major axis, e the eccentricity and ?q the ar-
gument of apogee.

Thus 1/:c'>:< =u must be the solution of a differential equation of
the form

dzu

— + u = constant -+ (4. 80)
de

This immediately suggests that we should let ¢ be the indepen-
dent, time-like variable, and let the dependent variables be t>'<, and u.
If we perform the above transformations, equations 4. 74 and the initial

conditions 4. 75 and 4. 76 become

2

iz_uz tu = u‘*(% )2 (4. 81a)
@
2 £ b 1/2.
2 %t du dat° _ _at' [ 2 . ,du 2

u _(iﬂ_z_;q-Zu-aaE{D—E—-& {u +(a—q—9) ] (4. 81b)
u(0) =1 (4. 82a)
du(0) _

S -0 (4. 82D)
£(0) = 0 (4. 83a)
dt (o) _

=1 (4. 83b)

It is easy to verify that for € = 0 the term u14(c1‘t>'</dqp)2 is a

constant of the motion, equal to the reciprocal of the square of the

angular momentum. In fact for our initial conditions we have

k 2
u4(%) =14 0(€) asé€ —0 (4. 84)

Therefore u is governed by an equation equivalent to that of a
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linear oscillator with an almost constant forcing function, and an ex~-
pansion procedure in terms of the two variables ¢ and 5 =€p will
apply if we can show that u must be a bounded function of ¢. We can-
not prove this latter assumption but will use a physical argument to
justify it.

For € =0, uis a bounded function of ¢ (for our special initial
conditions u is constant). For €# 0 we expect r to approach zero
slowly as 1:>:< approaches infinity. In fact since drag has the same
effect as a damping (c. f. equation 4. 78) one would expect the decay of
r to depend on t= Et*., Since the mean value of ¢ is proportional to
t*, the assumption that the decay of r depends on % alone implies
that u should be a bounded function of @, and an unbounded function of
g;, = €.

We will now expand u, and t* in the form:

~

(g, €) = Vigy 0:€) = VN0, 3 + eV, ) 4.0 (4. 852)
(0, €) = T(g, p3€) = TN, o) + e T, G) 4 ... (4. 85b)

We wish only to solve for V(O) and T(O), hence will only carry
out the expansions to the first power in €. Equations 4. 81 require that

V(O), V(l), T(O) and T(l) satisfy the following equations:

4,2
Vﬁ)) + 0 = y(0) T§°’ (4. 86a)
2
(0)"(0) (0),(0)(0) _
v T§_1 + 2vi Oy ri0) < g (4. 86D)
4
vﬁ) 4 2T§°)V§g) 4 Tﬁ))v(zo) 4 v ayl(0) T&O)Tgl)

4 2 3 2
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2 2 2
0 1) 0) 0).(0) (0)"(0)(0) (0),(1)(0)
v(0) T:(Ll 4+ 2vi Tg T§2 3+ v (Dl Oyl

0),(0) (1 0)<,(0)(0).~(0) (0)4,(1)5,(0)
2 2 21/2
+2v(0p{0 (0 {07 {0 2 0 (4. 87b)

The initial conditions are satisfied if we set

v{9(0,0) =1 (4. 88a)
vio, 0y = 0 (4. 88b)’
vi%0,0) =0 (4. 89a)
vilo, 0) = -v{0o, 0 (4. 89b)
(%0, 0y =0, TW0,0)=0 (4. 90a)
(%0, 0)=1, 0, 0) = -1{0)0, 0) (4. 90Db)

Before solving equations 4. 86, let us note that the two conser-
vation laws of angular momentum, and energy now become statements
that certain groups of variables depend only on ; Thus by integrating
equation 4. 86b with respect to ¢ we have
1

— — 4, 91a)
[a%(@)(1-%(¢))] (4. ot

2
0)“...(0 ~
vio T§ h=4g) = 172

We have introduced the functions a((;) and e(gg) in order to establish
the correspondence between the reciprocal of the angular momentum
and the orbital elements (a = semi-major axis, e = eccentricity) in the

unperturbed problem. For our initial value problem we have

£(0) = 1 | (4.92)
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The "conservation® of enérgy can be derived by substituting the result
for T%O) from equation 4. 91a into equation 4, 86a and integrating with

respect to ¢ to obtain

2 2 (0) ~
V§0) av(O 2V Gy =a? (4. 91b)

The general solution of equations 4. 86 for arbitrary initial con-

ditions can be conveniently expressed in the form:

V(O)(go, q;) = —;u%ez—; [1-ecos (p-B)] (4. 93)

+ cos

C 2
T(O)(QD, (;) N a3/2 {e(l-e )sin(¢@=-B)

-1 cos(@p-B)=e
1-e cos (p~B)

I~e cos (¢-B)
(4. 94)

In the above a, e, B, 7 are the four arbitrary functions of )
introduced by the four integrations of equations 4. 86 with respect to
@. The function B is the argument of apogee, (i. e. the angle from
the axis to that point in the orbit which is the farthest from the center
of attraction). In order to interpret the function 7 it is more con-

venient to invert equations 4. 93 and 4. 94 to the more conventional form

v, 5) = F(a, e; £) | (4. 95)
o ", &) - B = £t™ + G(a, e3£) (4. 96)

where § = a‘3/2(t* - T). The functions F and G are periodic in the
argument £. Thus a slow change in the function T represents a slow
change‘in the period of the orbit. Conversely, a slow change in B
corresponds to a slow precession of the apse.

For our initial conditions we have
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a(0) =1 (4. 97a)
e(0) =0 (4. 97b)
B(0) =0 (4. 97c)
7(0) = 0 (4. 97d)

The problem now is to define the four functions a, e, B and 7
by requiring that V(l) be a bounded function of ¢.

We proceed to solve for V(l) and T(l) by first substituting the
expression for T%O) obtained from equation 4. 9la into equation 4. 87a.
This gives |

2

2 2 -
VO g 4 O pl0) 2y Dy (00 7y 2y (O)y

0)(1)
1 11

1

+ zv(o),vglo)'r(zo) + 2fv§1)v(°)— b 3

~

de

-2 2 2
_ (07 [ (0) +V§0) 1Y/2 (4. 98)

If we introduce the notation

-2 2
80 _ _(0) )

2
3 4 V§0) 11/2 (4.99)

[ v(O

we can integrate equation 4. 98 with respect to ¢, and express the results
in terms of the known function Q as follows:
(0% 1(1) , (0)21(0) | fep (07 (1) | @ el
v e v T 4 2w v+ 22 1 Q(g, @) = clo)

de
(4.100)

In the above c((;) is a function of Q; introduced by the integra-

tion, and is to be evaluated by making V(Z) a bounded function of ¢.
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(1

If we use the expression given by equation 4. 100 for Ty in

equation 4. 87a we obtain the simple result

Vi s vl o vl o2 & - 2s0 4 2tc (4. 101)
de :
The first three terms on the right-hand side of equation 4. 101
contain critical terms of the form gg, h sin ¢, and ¢ cos ¢, where

the cdefficients g, h, g are functions of a, e, B and their first deri~

vatives. (Note: 7 is not involved in these coefficients. )

(0) 9Q

are periodic functions of ¢. Thus in order to evalué_!;e, g, h, and ¢

In-order to evaluate g, h, and ¢ we note that

it is only necessary to compute the Fourier coefficients of the terms
sin ¢, cos ¢ and the "constant” term in -g—g .

We will not give the expressions for g, h, and g (which are
quite lengthy), since for our special initial conditions the solution of the

system of three first order equations obtained by setting g, h, and ¢

equal to zero is éimply

e(() = 0 (4. 102a)

B(g) = 0 (4. 102b)

a(Q) = ZE}T; (4. 102c)
Hence

vi0) - -1 . 2¢ +1 (4. 103a)

(0 = 15) + %%

This result could have been anticipated by noting that since e

was initially zero, there is no mechanism in the problem by which e
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could have changed. In fact, the effect of drag is to equalize any ir=-
regularities in the initial orbit, and make it‘tend towards a circular
\shapee Since the unperturbed orbit had no point of maximum separation,
and e was found to remain unchanged, it follows that B must also be
ZeT O,

According to equations 4.103 fhe orbit, to the first approximation,
is a spiral slowly approaching the center of attraction.

So far, we have not defined the function 7(5), In order to do so,
let us compute V(l) and T(l). With the critical terms set equal to
v

Zero, is simply:

v, ) = A G)sin ¢ + BN (G)cos ¢ + 2¢(2¢ +1)  (4.104)

If this result is substituted into equation 4. 100, and the ensuing

(1)

expression for T1 is integrated, we obtain

. 2
T(l):_[g%+ 4 ¢ J‘/’”"[ 3 s 1)2]%_

dg 2¢+ (2 +1)° (2 +1)°/ % (24 41
-2 {A(l)sin s BMeos o | +AQ) (4.105)
m @ QUJ @

We will set the coefficient of ¢, given by the first bracketed
term on the right-hand side of equation 4. 105, equal to zero, not because
T(l) is to be a bounded function of ¢ (which cannot be since T is the
time) but simply for consistency in notation. We are denoting the vari-
able €¢p by g; hence by setting the bracketed term in question equal to

zero, and solving the resulting first order equation for 7, we will rele~

gate this term to the first order.
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The above also has a definite physical interpretation. As we
mentioned earlier, a variation in 7 denotes a slow change in the period
of the orbit. Clearly the drag perturbation should introduce such a
change. Unfortunately, since c(g;) appears in the equation for 7 this
quantity can only be evaluated after ¢ has been determined.

The purpose of presenting this example here was not to give a
detailed solution for the drag-perturbed orbit. Rather, we wish to
point out the applicability of the two-variable expansion procedure to
all those problems in celestial mechanics, for which in the absence of
small perturbations, the motion is Keplerian. We will formulate

another such problem in the next section.

4.5, The Planar Motion of a Satellite in the Vicinity of the Smaller Body

in the Restricted Three-Body Problem

Considér fhe motion of a body of negligible mass in the gravita-
tional field of two other bodies, one of which (the sun) is much larger
than the other (the planet). It is further assumed that the sun and planet
move in circular orbits about their common center of mass. This is
the statement of the restricted three-body problem (c.f. reference 7,
which contains a systematic introduction to the problem).

The dimensional equations of motion with respect to a Cartesian
frame (&, m, {) centered at the center of mass of the sun and planet,

and rotating with the planet are: (see figure 4. 2)

“The solution of this problem was sponsored by the Douglas Aircraft
Company. A detailed solution for the corresponding three-dimensional
problem will be published in the "Astronomical Journal. "
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DIMENSIONAL COORDINATE SYSTEM



42 Gm €-¢ Gm E-E
d & _pudn 4 % - (—S5y . P (B (4. 1062)
2 2 T 2 T
dt dt T s T P
s P
2 Gm Gm,
dn - 2038 4 WPy - ZS.D_ - (4. 106b)
dt™ dt T r T r
S b
2 Gm Gm
d’t _ s ¢ P ¢
e e e (4. 106c)
t Ty 8 rp P

In the above gp and gs are the distances of the planet and sun respec-
tively from their common center of mass. The quantities rp and Ty

are the distances to the satellite from the centers of the planet and sun

respectively. Thus

2 2, .2, .2 2 2, 2 2
ro=(g -8 ) +n + L ro =B -8 )Ty (4.107)

The quantity w is the angular velocity of the planet about the center of
: : C L ~3y1/2
mass, and since this motion is circular « is simply [ GMD ~] o
Here G 1is the universal gravitational constant, D is the distance
between the centers of the sun and planet, and M is the sum of the
masses of the sun and planet, m and mp respectively.
The only non-dimensional parameter in equation 4. 106 is the
ratio p = mp/M. Clearly for motion in the field of both sun and planet

the characteristic length and time scales are D and l/w respectively.

This suggests the following non-dimensional variables

=g, ¢ = £ (4. 108)

g:k - % 3 n:k -

ot

In order to keep the non-dimensional distance between the sun and planet
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independent of p, we should introduce the variables:

sk

£*

sesk ES sesk sk

=t n =, e (4.109)

In terms of these variables equations 4. 106 take the form:

2 . ksk ek sksie ke
d 2d -1
%{ = ZL + g - M- (1"'“') ;%>;<3 - H(t-;*;::3 ) (4., 1108.)
dt dt T r
5 b
4 % 2d €>:~—:~ s skeske sk
1;?:2 =" Sk + n - (l_P‘) 11{::}:3 - H;;’]*B (4° ]']'Ob)
dt dt r r
5 b
2 g sk skesk
d
. (4. 110c)
dt T T '
5 b
where
ke sksk
swkp el g g K2 2 (4. 111a)
T =§
r;>,.2 - (g:;:;— 1)2 + n:,:a: + é;,:;:z (4’ lllb)

When the motion of the third body is not restricted to the vicinity of
either the sun or the planet, but can range over the entire space, these
are the appropriate differential equations governing the motion. Since
we are interested in planetary satellites, we should not only translate
the origin to the center of the planet but also introduce new "planetary"
variables in terms of which the effect of the sun becomes secondary.

Thus, we translate the origin by:

sk ek ok sk ek ek

x =& =1L y =m , =z =¢ (4. 112)

and introduce the planetary variables:
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(4. 113)

t>‘<
= = VA = PR
*a a ' Ja a’ Ta a’ B " B

We will show how an order of magnitude analysis of the various terms
in the equations will define o and B. If we anticipate the fact that
a =0 and B = 0, the significance of the Xpeoes t, wvariables is clear.

p
We will be taking the limits as p — 0 with Xgsoeos 1:B fixed. This

will imply that the motion is characterized by being close to the planet
and having a time scale which is small compared to the planetary year.
If we rewrite equation 4. 110a in the new variables (and there is

no need at this stage to consider all three equations), we have:

a-28,2 A=
e S S
> = + M Xa +1-p
dt dt
s B s
a =40
(l—p )(p, X(l. + 1) ) XCL

- Za, 2. 213/2 2 21372
(142 % 4“4y 72 [ 4y21 %

(4. 114)

We have at this point set z, = 0 and will for the remainder of this paper
consider only planar motion.

If the planetary gravitation is of the same order as the centrifugal
acceleration due to motion of the planet around the sun, the exponents of
b for the above two terms must be equal and this gives a =1 - 2a.

If further the Coriolis acceleration and the centrifugal accelera-
tion due to the planet's motion are comparable, then the exponent of the
Coriolis term a-f must be equal to a. The above two conditions
uniquely specify the values kof a =1/3 and B =0. These are the variables

that lead to Hill's equation (c. f. reference 8) and in fact Hill's equations
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are obtained by holding the variables x= x1/3, y = y1/3, t=t, fixed
and letting p — 0. The reader can easily verify that the limiting

equations are

ZN ~ ~

d~§< = 24y _ s 7 3% (4. 115a)
dt dt [x“+ v7]

a5 2 d% 7
=3 = - = - Ty o (4. 115b)
dt dt [XZ«%y2]3/Z

In the above, the term 3% is contributed by both the gravitational at-
traction of the sun and the centrifugal acceleration.

We will discuss equations 4. 115 further in the next section. Let
us now return to equation 4. 114. If we assume that the planetary gravi-
tation is the dominant term, we obtain 1~ 204 =0 and a =~ 2B =0
which imply that a =1/2, B = 1/4_. The corresponding planetary vari-
ables are x = Xl/Z’ y = Yl/Z’ t= t1/4, Clearly, x,y,t are more re=
stricted variables than :;, ;,? in the sense that the limiting equations
obtained by holding x,y,t fixed and letting p — 0 are the two-body
equations; thus, the effect of the sun is ignored as a first approximation.

This "restrictedness" is further demonstrated by the fact that as p — 0

ale ate
R SR

with x fixed, x — 0 faster than it does in the limit % fixed and

p =0 (i.e., x is more "planetary" than ;).

1/2)

The equations of motion in x, y,t variables are to Ofu

given below:

2 1/2
.d___?E X 4+ 2}*
2]1/2 dt

dt 2

) S 3u1/2 + Ofu 3’/4') (4. 116a)
[x“+y
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2 1/4
dy- 2. dx 3/4

F Tt —irIr C m + Ol / ) (4, 116b)
dt [X +y ]w

For orbits which are quite close to the planet, it is not necessary to
solve Hill's equations which are much too general. We will show that
the more restricted equations 4. 116 are appropriate, and lead to meaning~

ful results.

Periodic Solutions of Hill's Equations

The brief exposition in this section'is taken from the results given
in reference 7, to which the reader is referred for a thorough discussion
on the periodic solutions of equations 4. 115.

Before proceding with a discussion of the solution of 4. 115, we

note that this system possesses a Jacobi integral, which is simply

d d 2 ~2
(=) +(2) - =g mgry -3 =-c (4. 117)
dt dt [x“+v7]

As equation 4. 117 represents the dominant part of Jacobi's integral for
the complete equations 4. 110, all comments pertinent to Jacobi's integral
apply here, and need not be repeated. The symmetry of the integral
curves with respect to ; is due to the fact that in this limit the sun has

1/3

approached -oo like p— when p — O,
The approximate solution of equations 4. 115 depends upon a small
parameter m = 277, where T is the period of the orbit, Furthermore,

the periodic solutions are completely characterized by this parameter,

and are of the form
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~

) = cos (2k + 1% (4. 118a)

k

78

ax

1]

= Q0

(e 9]

~~ . t
y(t) = z a, sin (2k + 1)_r'n (4. 118b)
k==00

where the coefficients, a, are power series in m and are given below

to O(mS):

;1. = -m’+ O(m’) (4.1192)
(o]

.1 19 2 3

Lo Bt omd) (4. 119D)
o

a = olm’) if [jl = 2 (4. 119¢)
a, = m?/3 1 . 20 4 m® 4 om) ] (4. 119d)

Moreover, m is relatedto C by:

A
- m2/3 8m Tm 3
Thus, if for a given set of initial conditions, ;é(o)’ ;(0), dx(0) dy

(0)
Lard ’ ~
dt dt
a periodic solution exists, the period of the orbit is uniquely defined

by C from equation 4.120.

A graph of the solution would show that the effect of the solar
perturbation is to elongate the unperturbed orbit in the direction along
the tangent to the planet's path. Although for larger values of m no
analytic representation of the solution is available numerical integra-~

tions have shown that increasing m will tend to elongate the orbit
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further until two symmetrically located cusps are formed on the ;
axis. For larger values of m, these cusps develop into small loops

such that a periodic orbit for very large m looks like this (c.f.
y

/
N

ILet us now return to equations 4. 116. Since the unperturbed

reference 9, pp. 104-109):

e

.General Non-periodic Orbits

motion is Keplerian, it is advantageous to introduce the polar coordi-

nates:
X =T COS (@, y =71 sin ¢ (4. 121)
in terms of which 4. 116 takes the form

2 2
d”r %2)"““1‘2
T

ﬂ_/__gg+ 3. 1/2 T COS cp+ Of. /4) (4.122a)

dat?

2 1/4
ri_g X - s 3.7 %2 sin g cos ¢ + O >4 (4 122b)

Q‘I

The perturbations introduced to O(pl/4) due to the Coriolis acceleration
terms can be most conveniently accounted for by introducing the pre=-

cessing frame of reference defined by

Q=@+ ul/4t (4.123)

In terms of ¢ equations 4.122 take the form
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2 _ 2
L2 ng0) + =3 cos?(@ - et) + €%r + O(€) (4. 124a)
dt T

a%G  2r dg dr 2 — _ 3
r + S50 S = -3¢%r sin (@ - €t)cos( - €t) + O(€”) (4. 124b)

dt '

where € = p.l/4.,

The limiting equations obtained by holding r,'{&, t fixed and letting
€ — 0 correspond to the familiar two-body equations in the r,?ﬁ framie,
which by definition preserves its orientation in inertial space as the
planet moves around the sun. The fact that equations 4,124 are free
of terms of order € is a verification of the well-known fact that orbits
will retain their orientation to the first approximation.’

Before proceding with the solution, let us consider the initial
conditions to be imposed. Since we are interested in bounded orbits,
we will have two slowly varying values of ¢ at which dr/dt = 0. For
convenience let us start to measure time when the satellite passes
through applanet, and with the knowledge that the motion has an inherent

precession let us allot an appropriate part of the given initial angular

velocity to this precession. Thus, if we are given the following initial

values:
r(0) =R (4. 125a)
0(0) = @ (4. 125b)
%(_9) =0 (4.125¢)

del0) - q (4. 1254)
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where R, ¢/ and £ have been suitably non-dimensionalized we
may set = ﬁo + € such that the initial conditions pertaining to equa-

tion 4. 124 will be

r(0) =R (4.126a)
@(0) = ¢ . (4. 126b)
E’-’aﬁcﬁ) =0 (4.126¢)
dep(0) _

= =a (4.126d)

As in section 4. 4, we will now transform equations 4.124 and

4,126 to the variables l/r =u =u(p) and t =t(p) to obtain

2 ‘ 2 2
é——%+u-u4(-§£) :-362E.§E(.§—t-) sin (¢ - €t)cos (¢ - €t)
dg do dg dg
a ’ 2 2 at ° 2 |
+u(—) cos(¢p - Et)] + € u(—) + O(e™) (4. 1272a)
do do
a% | ,du dt _ g2 d  in (5 - et D - €t 4.127b
u— + -——:_-d——_—- u( —) sin(¢p - €t)cos (¢ - €t) (4. )
de dg do de
1
wWo,) = 5 (4. 128a)
(8]
t{p,) = 0 (4. 128b)
du(g )
=0 (4. 128¢)
do
dt(e )
Pol 1 (4. 1284)
") 0



For the sake of convenience we will assume that Q= 0, and
will transform R, and —QO to the more familiar expressions in terms

of the orbital elements a and e, to obtain

u(0) = m_j_e_; (4.129a)
t(0) = 0 (4. 129b)
du(0) _ ¢ (4. 129c¢)
dg

ar(o) _ 2®/20 4 %) | (4.1294d)
5 -

Having derived the above formulation of the problem, we had anticipated

a solution by Poincare's method, and indeed this is possible for this

problem.

It is natural to ask whether there exists a precessing coordinate
system, é,nd a modified time variable such that the initially valid expan=
sions of equations 4. 127 and 4. 129 written in terms of th__%ese variables
are uniformly valid. For this problem this is true. Without giving the
laborious calculations we will state the following results.

We can find quantities w, and v, such that u(y, €) is a bounded

function of | where

w, = a3[~I?Z + 2e + O(ez)] s vé = a3/2[——16 - 2e + O(ez)]
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u(y, €) = uo(qj) + O(€ 2) uniformly in 0 < Y < o
ty, €) =t (V) + O(EZ) uniformly in 0 € ¢ € o

and u, and ‘to are the familiar expressions for a Kepier ellipse in
the u, y frame (c.f. equations 4.93 and 4. 94, with B =0 and ©
replaced by ).

In order to point out the significance of wy and v, let us only
consider u, and t,» which represent the solution uniformly in

We have that
2 — 2
b= (1+€%,)(g + €%vt) (a)
From equation 4. 94 it is easy to verify that
3/2
t () =224+ eF(y e) (b)

where F is a periodic function of {, and e, the eccentricity, is a

small number.

Thus

Y= + €2V2a3/2LP + Ezooz_q—p— + szz(eF + O(Ez) ) (c)

If we only consider the mean values of the various functions in (c)

(and denote these mean values by the subscript m), we obtain

2
mel:[l“€2a3 (3+2(e ))].g.é (d)

If we substitute the expression for b, givenin (d) into the

2

equation for U.O(L]J) we see that the quantity 3¢ a_3/4. represents a slow
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counterclockwise advance for the mean motion of the apse. Super-
imposed upon this mean advance, the apse undergoes oscillations which
average out after the satellite makes a complete revolution in its orbifa
The resulting orbit in the inértially oriented r, @ frame Would appear

as in fig. 4. 3 for an exaggerated value of 3€ za?’/l}.

Apse at ¢ = 27

T
_3.1 62a3
o\ % _
- Apse at @ =0
Figure 4. 3

The ‘more systematic approach to this problem is provided by the two-
variable expansion procedure.

As we have shown in the preceding section, the appropriate
variables are ¢ and _5 =€@ . Itis well worth pointing out that if
we apply the two-variable expansion procedure to the equations in the
u(p) and t(p) variables we will be able to derive the result that the
orbit preserves its orientation to the first order.

It is more convenient to start with equations 4. 127, and by a very
simple calculation the results given by Poincare's method can be im=

mediately derived,
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