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ABSTRACT

The stability to three-dimensional disturbances of three classical steady vor-
tex configurations in an incompressible inviscid fluid is studied in the limit of
small vortex cross-sectional area and long axial disturbance wavelength. The
configurations examined are the single infinite vortex row, the Karman vortex
street of staggered vortices and the symmetric vortex street. It is shown that
the single row is most unstable to a two-dimensional disturbance, while the
Karmaén vortex street is most unstable to a three-dimensional disturbance over
a significant range of street spacing ratios. The symmetric vortex street is
found to be most unstable to three-dimensional or two-dimensional symmetric
disturbances depending on the spacing ratio of the street. Short remarks are
made concerning the relevance of the calculations to the observed instabilities

in free shear layer, wake and boundary layer type flows.

The three-dimensional linear stability of a steady rectilinear vortex of ellipti-
cal cross-section existing in an irrotational straining field is studied numerically
in the case of finite strain. It is shown that the instability predicted for weak
strain persists for finite strain and that the weak strain results continue to be
quantitatively valid for finite strain. Parametric dependence of the growth rates
of the unstable modes on the strain and the axial disturbance wavelength is dis;
cussed. It is also shown that a three-dimensional instability is always more
unstable than a two-dimensional instability in the range of parameters of most

interest.

The radially symmetric Burgers' vortex is an example of a solution to the
Navier-Stokes equations in which the intensification of vorticity due to vortex

stretching is balanced by the diffusion of vorticity through viscosity. We present
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analytical solutions obtained from a perturbation analysis as well as numerical
computations of non-symmetric Burgers' vortices in which the radial flow field
in a plane perpendicular to the vorticity is non-symmetric. We also demonstrate
the linear stability of the symmetric Burgers' vortex to a restricted class of two-

dimensional perturbations.
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1. Overview

In the study of the motion of homogenous incompressible fluids the vorticity,
the curl of the velocity field, takes a prominent place. Many fascinating, impor-
tant and‘ often commonplace phenomena can be described in terms of localized
concentrations of vorticity. The tornado, the bathtub vortex and the smoke ring
shot from a Fourth of July cannon are all examples of vortical flow. The singing
of telephone wires in the wind is due to the period shedding of vortices. The fre-
quency of arrivals and departures at international airports is limited by the
time required for large tip vortices shed from jumbo jets to no longer pose a

danger to smaller aircraft.

The concept of vortices and vortex interactions in fluid mechanics is useful
because in a homogenous incompressible fluid, the velocity field can be given in
terms of an integral of a Green's function times the vorticity distribution. If the
vorticity is localized or, in particular, singular, then the total flow field may be
described economically in terms of the vorticity distribution. For an inviscid
fluid, provided only conservative forces are acting, the dynamics of the motion
are given by the statement that the vorticity moves with the fluid. It is often
convenient to think of the flow field in a Lagrangian sense in which the vorticity

moves according to the velocity which it induces.

Numerous review articles on the subject of the vortex meotion in fluid dynam-
ics have appeared over the past decade (Widnall, 1975, Saffman & Baker, 1979;
Leonard, 1980; Saffman, 1981a, 1981b; Aref, 1983). Methods used to understand
real fluid phenomenon using the concept of vortex motion can be divided into
two broad categories. The first is characterized by the search for steady states
followed by an analysis of stability. The use of the computer is not excluded in

this group and indeed many interesting results would not have become possible
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without the availability of large fast computers. The second approach is to
study the dynamics of the flow directly by following the motion of discrete vor-
tex elements (Leonard, 1980). Both avenues are of use in understanding more
fully the complexities of vortex motion. Our contributions herein will be limited

to the first approach.

In section 2 we discuss the three-dimensional stability of some classical
steady configurations of rectilinear vortices. We consider the single infinite row
of vortices which is a model for the mixing layer, the staggered double row of
vortices or Karmdan vortex street which may result from the periodic shedding
of vortices from a bluff body, and the symmetric double row of vortices which is
a model for the boundary layer provided only symmefric disturbances are
allowed. The results of section R are limited to the case of large vortex separa-
tion and long axial disturbance wavelength with respect to the vortex core size.
The modes of instability discussed in this section relate primarily to those

modes which result from the mutual interaction of the vortices.

We study futher in section 3 the three-dimensional instability of a steady uni-
form vortex in an irrotational strain for finite values of the strain. The steady
solution is known in closed form and we study the modes of instability through
the numerical calculation of growth rates of normal modes of the linearized
equations of motion. These computations have greatest relevance to those
modes of instability of finite area steady vortex configurations in which the vor-
tices are still well separated and for which the wavelength of the disturbance is

on the order of the diameter of the vortex.

The results of section 2 and 3 have most applicability to large scale vortical
structures in fluid flow where the dynamics can be modeled by the inviscid equa-

tions of motion. Section 4 represents some contributions which add to the state
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of knowledge of the interaction between vorticity and viscosity when these
effects are comparable. We present theoretical calculations via perturbation
theory indicating the existence of Burgers’ type vortices embedded in a non-
symmetric irrotational straining field in which vortex stretching and resulting
amplification are balanced by the diffusion of vorticity through the action of
viscosity and show that the perturbation procedure may be continued
indefinitely in principle. We present numerical solutions extending these pertur-
bation results into a larger region of the parameter space. In addition, we show
analytically that the symmetric Burgers' vortex is linearly stable with respect to

a restricted two-dimensional class of disturbances.
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2. Three-dimensional Stability of Vortex Arrays
2.1 Introduction

The linear stability to two-dimensional disturbances of a single infinite row of
co-rotating line vortices and of the symmetric and staggered double rows of
contra-rotating vortices in a perfect fluid was first treated by Karmdn (1911),
Karméan (1912) and K&drmdan & Rubach (1912). Lamb (1932) gives a careful expo-
sition of much of the analysis. It is found that all configurations are unstable to
infinitesimal two-dimensional disturbances éxcept for a single configuration of
the staggered vortex street in which the street spacing ratio (the distance
between the rows divided by the separation of vortices in the same row) is 0.281.
In particular, the staggered street, known as the K&rmdan vortex street, has
attracted much attention (Rosenhead 1953; Wille 1960). The observations of
coherent structures in the turbulent mixing layer has stimulated during the last

decade much study of the single infinite row.

The subject of vortex interaction and stability is currently of great interest
and the correct interpretation of vortex stability calculations with respect to
experimental data is uncertain (Saffman 1981). An understanding of the linear
stability of the above mentioned vortex configurations in an inviscid fluid to not
only two-dimensional disturbances but also three-dimensional disturbances,
including the effects of significant finite vortex cross-sectional area, would be of
much value in interpreting the observed phenomena in real flows, and we pro-
pose to document quantitative results for the three-dimensional linear stability
of the single row of vortices, the KArmAan vortex street and the symmetric dou-
ble row of vortices. The results will be limited, however, in the present section to
the case of large vortex separation and long axial wavelength disturbances

where the distance between the vortices and the wavelength of the three-
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dimensional motion is referred to the radius of the cores. The evolution of the
arrays to three-dimensional disturbances of arbitrary size can then be analyzed
using the Biot-Savart law to compute the induced motion of the vortices and the
cutoff approximation to compute the self-induced velocity of the individual vor-
tices. The behavior of infinitesimal disturbances is obtained by linearizing the
equations of motions about the steady state and then Fourier analysing in both
the vortex axial direction and the row direction to reduce the linear stability
equations to a finite system. The configuration is unstable to disturbances of a
given axial and row wavelength if there exist exponentially growing solutions and
stable (that is, neutrally stable) if there exist only oscillatory solutions to the
reduced system. It should be noted that the wavelength in the row direction
need not be an integral multiple of the vortex separation which is the spatial

period of the undisturbed array.

Schlayer (1928) and Rosenhead (1930) have discussed the stability of the
Karmén vortex street in this limit to three-dimensional disturbances. Schlayer
formulates the problem completely but only gives qualitative results.
Rosenhead's treatment is incomplete as it neglects the influence of transverse
disturbance wavelength except for the stabilizing effect of the self-induction of a
single vortex. Also, both authors introduce the cutoff approximation as an ad
hoc assumption (there is, incidentally, no discussion of three-dimensional vor-
tex stability in Lamb (1932)). Moreover, the complexity of the algebraic expres-
sions and the labor required to evaluate them by hand limited the results to a
few cases. One of our purposes here is to give further data for this flow. For-
mally consistent asymptotic expansions have now been given to justify the cutoff
approximation and find the higher order corrections (Moore & Saffman 1972)
and the stability to three-dimensional disturbances of several other vortex

configurations have been documented in the literature. Widnall (1975) and
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Safiman & Baker (1979) have reviewed much of this work. In addition to the
work of Schlayer and Rosenhead on rectilinear vortex configurations, Gopal
(1963) and Crow (1970) studied the case of a pair of contra-rotating vortices

and Jimenez (1975) examined the co-rotating pair.

Although the effects of finite area are not treated in this section, it is
appropriate to mention what has been achieved in this connection. With regard
to the effect of vortex separations comparable to the size of the vortices,
Saffman & Szeto (1981) have shown there is little effect on the two-dimensional
stability of a single row. On the other hand Christiansen & Zabusky (1973) give
suggestive numerical evidence and Saffman & Schatzman (1982a) show from
linear stability calculations that giving the vortices finite area in a K&rman vor-
tex street can stabililize the vortices to two-dimensional disturbances. See

Saffman (1982) for a review.

For disturbances with axial wavelength comparable to the diameter of the
vortex it has been shown that a rectilinear vortex may become unstable (Wid-
nall, Bliss & Tsai 1974; Widnall 1975; Moore & Saffman 1975). This parametric
instability may occur when the vortex is subject to a straining field if it happens
that the frequencies of two normal modes coincide in such a way as to allow a
standing wave to occur; the external field may then cause the vortex to become
unstable. A similar instability is allowed by the cutoff theory outside its r;mge of
validity and although we ;hall at times show this instability in subsequent stabil-
ity diagrams, it is to be understood that the axial wavenumber, width and mag-
nitude of the instability are to be taken only in a qualitative sense as an indica-
tion of the phenomena as the instability may or may not be real depending on
the internal structure of the vortex filament. A case where the cutoff prediction

is spurious is given by Moore & Saffman (1974).



-7 -

Pierrehumbert (1980, see also Pierrehumbert & Widnall 1982), has examined
the stability to three-dimensional disturbances of the Stuart (1967) solution of
the Euler equations which describes a single infinite row of continuous vortices,
the flow varying from a hyperbolic tangent shear layer profile to a single infinite
row of point vortices according to the value of a single parameter. Two types of
disturbances are considered, one in which all the vortices are deformed in
exactly the same manner and one in which the wavelength of the disturbance in
the row direction is twice the separation and neighboring vortices move in an
antisymmetrical way. The former gives rise to the short axial wavelength
parametric instability, which cannot be calculated properly by the Biot-Savart
induction law. The latter agrees reasonably in the long wavelength limit with the

calculations of the present section.

Our calculations of the long wavelength instability of well separated vortex
arrays are restricted to the cooperative modes of instability which depend pri-
marily on the mutual induction. It is expected that the results will, however, be
at least qualitatively informative for arrays containing vortices of significant
area and determine when two-dimensional or three-dimensional disturbances
are likely to be the more important. Also, the parametric dependence of stability
characteristics relative to arbitrary row-wise wavelength is easily determined;
that is, there is no restriction on the allowed subharmonic disturbance. The
mathematical formulation of the problem is given in section 2.2. The results for
the single row are described in section 2.3, the results for the Kdrmén vortex
street are contained in section 2.4, and section 2.5 describes the case of the
symmetrical double row. A summary and comparison of the three cases is given

in section 2.8.



2.2 Analysis

Our analysis, which leads up to a finite dimensional eigenvalue problem, fol-
lows in the spirit of the previous work of Crow (1970) and Lamb (1932). We give
details for the symmetric double row since the results for the single row and
staggered double row follow immediately. The symmetric double row consists of
two straight rows of vortices with the axis of each vortex aligned with the k or 2
direction. The rows are aligned in the i or z direction. The first row is assumed
to lie in the plane y =0 with each vortex having circulation I'. ‘The second row
lies in the plane y=-h with each vortex having circulation -I" The vortices in
each row are separated by a distance I. See figure 2.2.1 for a sketch of all
configurations. A parametric representation of the position of each element of

each vortex filament is given by
Ry = (ml + Ut + Zp(omt)) 1+ Ymlomt) J + (om +2(pm.t)) k  (RR.1)

Ro=(nl + Ut +2p(pnt)) i+ (=h +Yn(ont))j+ (on +2(pnt)) k (22.2)

where the subscript m denotes a vortex on the first row and n a vortex on the
second row and these subscripts range o?er all integral values. The Lagrangian
variable, p, takes on values in —= < p < +x. U denotes the induced velocity of
the undisturbed vortex street. For a vortex m on the first row the velocity field
is given by

(R’p -Rpy N\ dR,
\R'p ‘Rmis

r
Up, =y —
(Rm) ; i, r,f i

_ _I_‘_(Rq—Rn)/\dR'q
N A T

(2.2.3)

where the summation is over all integral values of p and q. We take as a con-

vention that summation in the dummy variable p refers to contributions from
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vortices on the first row and for contribution from the second row we sum in the
variable ¢. The symbol [¢]p=m indicates that a cutoff length ¢ is implemented
on each side of the singularity in the integrand for p=m. The equations of

mmotion are then

Oz,
Bt tUTum
Ym _
3 = Um (2.2.4)
82y _
ot ™

where Up,(Rp) = Uy, i + Uy, j + Wy, k. For points on the lower row similar equa-
tions are obtained. The equations are linearized to first order in
0x/0p,z/ L, z/ h for all z on both the first and second rows and similarly for
each ¥y and z. Upon doing this zeroeth order terms are satisfied identically. An
infinite dimensional autonomous linear system in z,, Yn, and 2z,, and z,, Y,

and 2, results. Now setting

Zm=Zpme pm. Ym=Tme bm, Zm=Eme pm

o & . & ~
Zp=F,e " yn=gne’ ™, 2p=Epe h (R.R.5)

we specify a sinusoidal disturbance of wavenumber k£ =27/ A in the axial or
spanwise direction at each vortex position on both the first and second rows. A
general disturbance could be represented by a Fourier superposition of solu-
tions. The analysis is somewhat involved but straightforward and the following

equations for points on the first row are obtained.
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02y, I« Tm =¥ T r
— m_ 'R Ip R o
ot 21r§ lz?m * 2m k= wlke) G
+_1_—‘__.2 (g =h® G = (Ign Yg —hZ xq) Tq
_T g Lgm
+_1:—2 lgm R (RZp, — (Xq + 77/":1) fq)
2 i
OFm T« Em —Xp £ r
= = m ARPTR LR =
ot 21\'§ lpzm 2m k* wlkec) Zm
+._1l.2 (ign = h® Zn = (130 Xg —h% ¥y %y
R g Lgm,
_L 2 lam R (RGm — (Xq + %) gq)
271 7 L;;n
O%m T «wihk 4

ot R S Lfm g7
where

x(€) = ¢ Ki(¢)

Y(€) = & Ko(€) + € K:i(6)

[ _ .
Q(S) = _%_ cosgz 1 + Sl?f - a(é)

(2.2.8)

(R.2.7)

(2.2.8)

(2.2.9)

The functions x and ¥ are Crow's first and second mutual induction functions

fespectively and w is his self-induction function. K, K; and Ci are modified

Bessel functions of the second kind and the integral cosine function, respec-

tively. It is easily shown that both y and ¥ have a value of 1.0 at £ = 0.0. The

functions go to zero exponentially for large arguments and are essentially negli-
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gible for ¢ greater that 5.0. A plot of x and ¥ are given in figure 2.2.2. The axial
wavenumber k is assumed from here on to be non-negative to avoid constant
repetition of absolute value signs. The subcripts on 3% and x indicate that the
function arguments are Ilpml k and Ly, k for subscripts p and g respectively
where Ly, = (@ —m)l and L% =1%, + h® with lg, =(g —m)l. The equations
have been put into a form such that in the limit £ -0.0 the stability equations of

Lamb for the two-dimensional case are obtained.

The cutoff length, ¢, is chosen from the formula (Moore & Saffrman 1972)

L
¢ =Yaetf

) L e (2.2.10)
f—eXp(Zf?g”o a'da’)

where v represents the distribution of swirl velocity in the core and we have
assumed no axial velocity in the core. For uniform vorticity f = 1 and all
results presented in tﬁis paper have asgumed f = 1. Since the asymptotic
theory using the cutofl method is accurate only to O(ka)? the function w is

replaced by the leading order terms giving

[
tlkc) & ¥iin 76—3——-—7+ L

- | = 0(ka) (2.2.11)

where y = 0.5772... is Euler's constant.

It may now be noted that the Z and ¥ equations decouple from the Z equa-
tions and that for considerations of stability it is sufficient to work with only the
coupled set. The rest of the analysis follows precisely as given in Lamb for these
modified equations. We now specify disturbances on the first row by
2 = a,e"™? and G, = b,e™? , and for disturbances on the second row by
£, = aze™?, and §, = bye™* where —m< ¢ <. The stability equations for the

first row are
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2ni? da
— = —(A-n)b, ~Bay —Cb,
2 ab N . N (2.2.12)
27;,1 —El—: -(4 +7)a, ~Cag +Bb;
where 7 = (kl)? 9(ka) and for the symmetric double row
- svi=¥(|p ki) e®? g% — K2
A= -
= T _ o Y(pkl) cos (pg) i
e ngl p? ¥ sinh?(icrm) (2.2.13)

B=Y 2q« [X(\/qzﬂczkl) + Y(Vg?+ikl) ]giw
7 (3% + 637 2 J

=2 i Rqk [x(\/q2+fc2kl) + Y(VagP+ikl)
2

=1 (g% + k?)? | } sin(q ¢) (2.2.14)

VqP+iPkl) = EX(VEHERL) i,

v g%
©= qu (g% + i?)?

= - x_(£§£2_+ 2 3 PV qFrikel) — By (VaF+itkl)
K g=1

(4% + 1P cos(ge) (2.2.15)

where k£ = h/ 1 is the ratio of the distance between the rows, A, and the separa-
tion of vortices on a single row, {. A. B, and € are found by interchanging the

symbols x and ¥ in the above equations.

The corresponding equations for the lower row are found by reversing the

signs of [' and « and interchanging the subscripts 1 and 2. Thus
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72 da
27;‘ d_tz-:: (A-n)bg —Ba,; +Cb,

- N L (2.2.16)
27? -EE2—= (A +7) as +Ca, +Bb,

We now look at symmetric and anti-symmetric modes with respect to a plane:

midway between the two parallel rows.

aQy =a, —as, bA=b1+b2 (2.217)

Introducing disturbances proportional to e, the eigenvalue problem reduces to

G as= ~Bas —(A—-C-n)bs
g, bg = —(Z+5+’n)ﬂ.s —gbs
6'; a4 = +B o, —(A+C-7})bA
B < (2.2.18)
0, by = "(A“'C‘F?’])G.A + B by

where 6;=2nl%0/ I is the non-dimensional growth rate based on constant { and
I This transformation reduces the determination of linear stability or instabil-
ity to a question of the character of roots of quadratic equations. Since B = B,

the solution of the equations is especially simple so that we have

6= =B £ V(A—-C-n)(A+C+n)

6= +B £ V(A+Cn)(A-C+n) (2.2.19)

Since B is pure imaginary the stability of the configuration is determined only
by the sign of the products under the radical. If the product is negative the sys-

tem is neutrally stable, if positive the system is unstable.

The variable ¢ must be allowed to vary continuously in the range —-n< ¢ < .
However, since negative values of ¢ simply give the complex conjugate eigenfunc-

tions of those with ¢ positive, it is sufficient to consider values of ¢ only in the
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range 0= ¢ <7 Now g/ I may be thought of as the wavenumber of the distur-
bance in the row direction seo that 2mil /¢ = ul is the wavelength in the row direc-
tion with 2 = t = =, Thus u = 2.0 implies a repetition every two vortices, & = 4.0
a repetition every four vortices, and p = « implies that all the vortices on a sin-~
gle row when viewed in an -y plane cross-section are displaced in the same
direction. It is important to realize that g = = implies a simple translation of
the whole row as a unit only for the case kI = 0.0. That is, the magnitude and
sign of the two-dimensional displacements in a given z —y plane will vary with 2

for finite values of the axial wavelength, A.

In the symmetric mode a, = ag, and b, = —-bz. This mode can therefore be
thought of as a row of vortices near a wall with the second row representing an
image system. In the anti-symmetric mode, a, = —a; and b; = by so that one
may visualize in a given r —y plane each paif of vortices (separated by h in the
y direction) being displaced in opposite z-directions about their common y -2z

plane but equally displaced in the y-direction.

The subscript ¢ on &F and & refers to the way ¢ is non-dimensionalized. A
subscript ! means we base ¢ on constant I and I Changes in £ = h/ I then refer
to changes in h alone. It is equally feasible to non-dimensionalize on A and I" so
that changes in « refer to changes in . In this case ¥ = 0.0 corresponds to an
isolated pair of translating vortices. It is clear that 6, = k% 3, where in the com-

putation of G, we replace kl by kh/ k.

We now pass easily to the case of the staggered double row of vortices or the
Karman vortex street. The disturbances on the first row are given by
Zn =216 and §, = b,;e"™¢ , and on the second row by £, = aze*™*®¥ and
By = bpet®HP where —< ¢ =7 The corresponding stability equations are

exactly the same if we replace g by (g +%) in equations 2.2.13 to 2.2.15. Thus
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A=yi=¥ (lplkl)e“"" 2 (g +§)? — i

F p? (g +8)* + €22
= T _ o Y(pkl) cos(py) _ P
3 zpz-_-l p? cosh?(«m) (2.2.20)
B =Y R(g +¥)k [x(V (g +8)2+e2kL ) +¢(V(q+%)g+?kl)| eil@ly  (2221)
7 ((g+%)? + "72)2 h

= 27320 ((qi(g):ii)’;z)z {X(V(QM)E-*-?IGL) 42-¢(V(q+5s)§+sz)} sin((g +%)¢)

c=y (g +8)*¥(V (g +1)*+xPkt) — KPx(V (g tHP+K%kL) icq e

(g +4)° + £ wa
=2 $ (@G P HkL) = (Vg PAPHPRL) (o0 )

g=0 ((g +4)* + £%)°

with A, 5 and C again found by interchanging the symbols ¥ and x. As before, it
is sufficient for stability considerations to consider ¢ in the range 0<g¢ < or
2 < u < = for both the symmetric and anti—symrﬁetric modes. The geometrical
meaning of each mode can be clarified by assuming a very long row-wise distur-
bance wavelength. The symmetric mode in any z—y cross-section would then
appear only as a change in the y-dimension of the street without changing the
relative row-wise alignment of the street. The anti-symmetric mode on the other
hand would appear in the same section to cause a relative change in the spacing

in the z-direction between vortices on the first and second rows of the street.

The case of the single row of vortices is easily obtained from the above by

dropping all quantities relating to the second row. Thus

2mi? da
T Ti't'l‘ = - (A —’f}) bl
em? dby _ (22.23)

T = = (A +mn)a
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so that

=+ V(4 -n)(A+n)

el - : R S
4=Y 1 w(lpzlkl)e“’“‘ = .71'3___22 -‘w—@]z‘:—llcos(p;ﬂ)
P p p=l r

(2.2.24)

It is again sufficient to consider only the range 2 <u<e for considerations of sta-

bility.

The next sections will be devoted to a description of the stability diagrams
computed from the above formula. When the growth rate is based on constant
I, it is convenient to introduce the notation o; +1i 8 =&2/n°. Then o
represents the real part of the eigenvalue with this growth rate non-
dimensionalized on constant I and I. The factor 2/ 7 normalizes the maximum
growth rate of the single infinite row to the value 1. We define &, in a similar

manner as the real part of Gy.
2.3 Singie Row

The single infinite row of co-rotating vortices is, of course, always unstable to
pure two-dimensional disturbances. The most unstable mode is the pairing in-
stability whereby adjacent‘ vortices are displaced in opposite directions. This
mode corresponds to #=2.0. As p-«=, this maximum growth rate decreases to
zero. Figure 2.3.1 shows that as [/ A =kl/ 27 increases, the growth rates fall
rapidly to zero. This is due to the self-induced straining field counteracting the
induced strain of the other vortices. As !/ XA increases the functions y and ¥ fall
quickly to zero so that mutual interaction effects are soon negligible and only
the zeroeth order strain from the other vortices and the self-induced strain con-
tribute to the stability equations. For small axial wavelengths, as the self-
induced strain goes to zero, the vortex becomes unstable to the straining field of
the other vortices in the row. Figure 2.3.1 is for @/ { = 0.1 This value of a /I

was chosen in order to include the indication of the short transverse wavelength
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parametric instability in the diagram. We stress again that the instability shown
is only representative of a phenomenon which occurs only when the internal
structure of the vortex allows. For smaller vortex area a much larger i/ X\ is
required to obtain the value ko = 1.44 which is the zero of the self-induction
function. The effect of smaller a/ I on the long axial wavelength instability is to
decrease the width of the unstable region near I/ A = 0.0. No qualitative

features are changed as shown in figure 2.3.2.

The stability diagrams shown are consistent with well known observed
behavior in the mixing layer whereby vortices which form from the Kelvin-
Helmholtz instability are observed to undergo a pairing interaction (Roshko
1978). It is seen in the stability diagrams that three-dimensional disturbances
have a smaller growth rate than the pure two-dimensional pairing mode. This
may in part account for the continued strong two-dimensional character of the

mixing layer as it develops through a pairing process.
2.4 Stagpered Double Row or KArman Vortex Street

The staggered double row of vortices which appears in the wake of many
different objects over a wide range of Reynolds numbers has long been an
enigma to both theoreticians and experimenters alike. Kdrmaédn, in his original
papers, predicted two values of the spacing ratio for the staggered vortex street.
In his first paper he allowed perturbations to only a pair of vortices. The value
of the street spacing ratic then obtained by requiring neutral stability to
infinitesimal two-dimensional disturbances was coshem = V3 or £ = 0.365. In
subsequent papers, by allowing two-dimensional perturbations to all of the vor-
tices in the two rows the value of coshenm = VZ or £ = 0.281 was obtained. Both
of these values will appear in the subsequent investigation. It is now known of

course that the street is unstable to two-dimensional finite amplitude distur-
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bances (Schmieden 19386; Kochin 1939; Domm 1956). Indeed there are questions
about the relevance of the stability calculations to the appearance of the street

at all (Saffiman & Schatzman 1982b).

Upon introducing disturbances in the spanwise or axial direction one finds
the stabilifcy characteristics to depend significantly on the axial wavelength. Fig-
ures 2.4.1 to 2.4.3 give important features of the stability diagrams for the anti-
symmetric mode. In figure 2.4.1 for 4 = 4.0 a long axial wavelength instability is
always observed at some value of I/ A even though a pure two-dimensional mode
may be stable. The neutrally stable saddle point moves down to the x axis as
i - 2.0 and the small region of stability below the saddle point disappears. The
saddle point lies at a value ¥ = 0.281 when x = 2.0. This situation is shown in
figure ©.4.2. Tor larger values of u the saddle point moves toward the lower
right hand corner of the diagram and the growth rates to the right of the saddle
decrease to zero. On the other hand as g - o, even though strictly two-
dimensional modes become ﬁeutrally stable, the large growth rates for three-
dimensional modes to the left of the saddle point increase in magnitude as

shown in figure 2.4.3.

The symmetric mode exhibits much simpler characteristics. Figure 2.4.4
shows the growth rate curves for u = 4.0. Note the region of neutral stability to
long wavelength axial disturbances. For u - 2.0 this region decreases to a single
point, ¥ = 0.2B1 as shown in figure 2.4.2. As u - « the stable region grows until

for @ = ~ all long wavelength axial modes are stable.

In figures R.4.5 to 2.4.7 we plot the maximum over {/ A and u of the growth
rates as well as the values of these parameters at which the maximum occurs.
The maximum growth rate occurs for the anti-symmetric mode and p = = for «

less than a value between 0.3 and 0.4. For larger values of £ the dominant insta-
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bility is a two-dimensional mode with u = 2.0. The precise value of £ at which
the characteristics of the dominant mode change is dependent on a/ ! and
increases slightly with decreasing a/ L. Figure 2.4.8 shows the relative size of

the maximum growth rates for the x4 = = and u = 0 long axial wavelength modes.

As I/ A increases the functions y and ¥ rapidly approach zero sc that the
effect of the displacement of the other vortices has little to do with the stability
of the given vortex filament. The growth rate then becomes essentially a func-
tion of £ and the self-induction function. At a value of I/ A such that the
parametric instability is possible the magnitude of this instability is a function
of ¥. The point of zero growth rate, as can be seen from equations 2.2.20 and
2.2.22, approaches the value of x given by coshkn=V3 for large I/ A. This is
essentially the value of the spacing ratio at which the straining field due only to
the zerceth order fields of the other vortices is negligible. As mentioned before
this is the value of the spacing ratio first proposed by Karman (1911). This is
also the value at which two-dimensional vortices of small size change from being
elongated in the tranverse direction to being longer in the streamwise direction
(Saffman & Schatzman 1981). The growth rate for the short wavelength instabil-
ity, computed by neglecting exponentially small terms in 1/ A, is shown by the

dotted line in figures 2.4.5 to 2.4.7.

As in the case of the single row smaller values of 2/ [ have the effect of
decreasing the width in {/ A of the unstable region near 1/ A = 0.0 and also of
increasing the magnitude of the u = = growth rate. The short wavelength insta-
bilities also occur at correspondingly larger values of 1/ A. It is interesting to
note that both long and short axial wavelength modes have maximum growth
rates that are smallest for values of x from about 0.3 to 0.4, For « less than
about 0.3, the dominant long wavelength axial mode is a three-dimensional

mode with x4 = =, Whether this mode or the short wavelength mode has a larger
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grbwth rate depends on the precise value of a/ I. For very small a/ ! the long
wavelength mode is dominant. When « is greater than about 0.4, the two-

dimensional u = 2.0 instability is dominant.

The effect of significant vortex area has still an undetermined effect on the
three-dimensional stability of the vor;ex street. As mentioned earlier larger vor-
tex area will stabilize the street to two-dimensional disturbances for a small
interval about « = 0.281. Whether significant finite area will reduce and/or elim-
inate the instability for a three-dimensional disturbance is unknown but seems
possible, There is no doubt however that the third dimension is of great impor-
tance in discussing the stability of the KArmdn vortex street and must be a part

of any consistent theory for its existence and evolution.

2.5 Symmetric Vortex Street

It is instructive to view the case of the symmetric vortex street in terms of
constant A. Thus changes in « refer to changes in I and we now plot Re &, = a5,
For « = 0.0 we find the results of Gopal and Crow for a pair of co-rotating line
vortices. Figure 2.5.1 gives growth rate diagrams for the symmetric mode. It is
observed that for long axial wavelengths the configuration is always unstable.
For values of « less than one, the most unstable mode has a finite wavelength in
the axial direction. For larger «, a pure two-dimensional mode is most unstable.
It is seen that the most unstable modes are at 4 = 2.0, ie. the pairing mode. As
k increases the magnitude of the growth rate also grows as the induced velocity
of more vortices becomes effective. However, for u near = the growth rate no
longer increases but rather decreases with increasing « as seen in figure 2.5.2.
For short axial wavelengths, no corresponding region of relatively small growth
rate such as in the case of the KArmaén vortex street is found. This is easily seen

from the stability equations for kI large.
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For the anti-symmetric mode, figure 2.5.3 shows that the most unstable
configuration is always the two-dimensional pairing mode for long axial
wavelengths. Larger w only serves to decrease the growth rates until for u ==
the instability is reduced to nought for any value of x. The short axial

wavelength instability has the same characteristics as the symmetric mode.

Figures 2.5.4 and 2.5.5 give growth rates for the symmetric mode if we base
the growth rate on ! instead of h. In this case we cannot allow « to become too
small as the growth rates are based on ! and become infinite as h/ [ goes to
zero. The three-dimensional x = 2.0 mode is most unstable. It is only for larger
values of ¢ that the dominant instability approaches a pure two-dimensional
mode. Increasing the wavelength in the row direction serves only to decrease
the magnitude of the growth rate and in general, except for very long axial

wavelengths, this decrease is slight as in figure 2.5.5.

For the anti-symmetric mode, figure 2.5.6 indicates that the long axial
wavelength instability is present but not as strong as the symmetric mode insta-
bility. It is seen that a change in « has a minor effect and that the characteris-
tics of the long axial wavelength instability are very much like the single vortex

row. The dominant growth rate is for a two-dimensional, pairing instability.

For both the symmetric and anti-symmetric modes the short axial
wavelength instability is always present and the growth rate increases monotoni-
cally with decreasing «. In the case of the symmetric mode fora/ ! = 0.1 and «
small, the long and short axial wavelength growth rate curves merge to give a bi- ‘

modal curve such as seen in figures 2.5.4 and 2.5.5.

The symmetric mode models the effect of a wall on a single row of vortices as
the second row represents an image system of vortices. It is clear from the

figures that the symmetric mode is always unstable. Not only are two-
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dimensional disturbances unstable, but also, depending on the value of x, there
may be a three-dimensional disturbance which has a larger growth rate. More-
over, the row-wise wavelength for the maximum instability is the x4 = 2.0 or pair-
ing type instability. This suggests that provided a real flow may be modeled ini-
tially by a system of vortices of the type considered, one would expect a strong

instability to develop.
2.6 Relative Instability of the Configurations

It is now of interest to compare the magnitudes of the maximum growth
rates for the three different configuration over various values of « for the long
wavelength instability. We consider only the symmetric mode for the symmetric
double row but both the symmetric and anti-symmetric mode for the staggered
double row. In the case of the staggered double row the maximum always
oceurs for the anti-symmetric mode although when ¢ = 2.0 this maximum is

also attained for the symmetric mode.

Figures 2.6.1 to 2.6.3 show the maximum growth rates for the staggered and
symmetric double rows as well as the values of I/ A and 1/ u at which the max-
imums occur. The single row corresponds to the £ » = limit and we see that the
u = 2.0, two-dimensional, pairing instability is the dominant instability. The
most obvious feature of the graphs is that the growth rate of the symmetric
double row is always the largest of the three, while except for a region near k¥ =
0.0 the staggered double row has the smallest growth rate. The symmetric dou-
ble row is most unstable always for the x4 = 2.0 mode with the corresponding
value of A decreasing with decreasing «. On the other hand the staggered double
row is most unstable at the values 4 = 2.0 and {/ A = 0.0 for all « greater than
about 0.3 to 0.4. For smaller values of ¥ the most unstable mode switches to a

u = omode with I/ A of the maximum increasing slightly as « decreases.
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The dependence of the diagram on a/ I is very weak. A smaller value of a /1
has the effect of increasing the magnitude of the three-dimensional mode for
the staggered double row as well as the value of £ at which the two-dimensional
mode becomes dominant. The value {/ A for a dominant three-dimensional

mode decreases with decreasing a/ L for both array configurations.

These results indicate that provided x is not too large, the fastest growing
symmetric disturbances to the symmetric double row, which is a model for the
boundary layer, are three-dimensional, and have larger growth rates than those
of the staggered double row and the single row. These configurations are models
for the wake and the mixing layer, respectively. The mixing layer model indi-
cates maximum instability for a two-dimensional pairing mode. The wake
model, on the other hand, indicates that the wake is most unstable to a three-
dimensional disturbance for small values of the street spacing ratio while for
larger values of the spacing ratio, a two-dimensional pairing mode is most
unstable. The third dimension is thus seen to be a signicant factor in discussing
the stability of configurations of finite area vortices and ought not to be
neglected when discussing the stability of real two-dimensional flows which may

be modeled by inviscid vortex filaments.
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3. Three-dimeunsional Stability of a Uniform Vortex in a Straining Field
3.1 Introduction

The three-dimensional stability of the vortex arrays described in section 2
serves to illuminate the effect of axial disturbances on the modes of instability
which depend primarily on the mutual induction of the vortices as this instabil-
ity is modified by the effect of the self-induced straining field of each vortex.
The analysis is valid only for axial disturbance wavelengths and vortex separa-
tions which are large compared with the diameter of the vortices. It is now of
interest to examine those modes of instability which depend primarily on the
structure of a vortex core interacting with the induced straining field of the

other vortices.

A popular method for analyzing the properties of steady configurations of
finite area two-dimensional vortices is through use of top hat vorticity distribu-
tions, that is, the vorticity is either zero or a constant. The velocity fleld can
then be written economically in terms of an integral equation over the boundary
of the vortex and the problem is reduced from a two-dimensional formulation to
a one-dimensional formulation. Saffman & Szeto (1981) and Pierrehumbert &
Widna.ll (1981), studied the single vortex row using this vorticity distribution. A
pair of rectilinear contra-rotating vortices was studied by Pierrehumbert (1980)
and discussed further by Saffman & Tanveer (1982). Saffman & Schatzman
(1981, 1982a) studied the Kdrman vortex street using this distribution. An espe-
cially significant exact solution was given by Moore & Saffman (1971) where they
showed that a uniform vortex of elliptical cross-section can exist as a steady
state in a straining fleld at infinity. This steady solution was used subsequently
by Saffman & Szeto (1981) to compute the properties of the single infinite row of

finite area uniform vortices by assuming that the orientation and shape of each
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vortex in the array is given by the exact solution for a uniform vortex in an irro-
tational straining field. In this model the irrotational strain seen by one vortex
in the array is computed by summing the contribution of all the other vortices
in the array. The model solution gave very good agreement with the exact solu-
tion found by solving an integro-differential equation for the boundary of the
vortices. It is to be expected that other steady configurations of finite area vor-

tices would also be approximated well by the elliptical vortex model.

The above considerations indicate that an important step in the study of the
three-dimensional instabilities of finite area steady vortex arrays for axial
wavelengths on the order of the vortex core would be a study of the three-
dimensional stability of the solution found by Moore and Saffman. It is expected
that the results of this analysis will be useful in discussing the three-
dimensional instabilities of well-separated vortex arrays and will be especially
significant when the mutual interaction effects become small for axial distur-
bance wavelengths on the order of the vortex core as was discussed in section 2.
The primary mechanism for instability of the steady flow will then be the
interaction of the vortex core with the primary induced straining field of the

other vortices.

It is our purpose here to study for finite values of the strain the three-
dimensional linear inétability of the Moore-Saffman vortex predicted for weak
strain by the arguments of Widnall, Bliss & Tsai (1974) and demonstrated by the
perturbation analysis of Moore & Saffman (1975) and Tsai & Widnall (1978). This
analysis has been further extended to explain successfully the observed instabil-
ity of vortex rings (Widnall & Tsai 1977; Saffman 1978). Tsai & Widnall (1976)
gave numerical results for the Moore-Saffman vortex in‘weak strain. We wish to
extend that analysis numerically for finite values of the strain in order to deter-

mine the persistence and extent of this parametric instability as well as higher



- 26 -

order effects. The growth rates of the instabilities will be given as a function of
of two-parameters: the wavelength of the disturbance in the axial direction and
the magnitude of the external strain. The strain is simply related to the ratio of
the major and minor axes and often it will be convenient to give our results in
terms of this ratio. We discuss respectively in sections 3.2 to 3.7 the properties
of the exact steady solution, the known linearized stability results for special
cases, the formulation of the linearized stability equations and boundary condi-

tions, the numerical method and the results of the computations.
3.2 The Steady State

Moore and Saffrnan (1971) showed that a steady or stationary solution of the
equations of motion fér an inviscid incompressible flow in which a rectilinear
vortex with uniform vorticity, wg, aligned along the axis, exists in an irrotational
straining field at infinity. Although the actual two- dimensional dynamical equa-
tions of motion have now been given by Kida (1981) for elliptical deformations,
our interest lies in the three-dimensional instabilities of the steady vortex. We
shall now describe the analytic form of this steady solution. The equations

which the ﬂowAsatisﬁes are:

-] 0 outside K
Vg = {-— wo insideE ] (3:2.1)

where
¥~ é—e (z?-y?) as|z?+y?| >
v .
— continuous across E

on

¥ = constant on E
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where E denotes the boundary of the ellipse, ¥ is the streamfunction and e
denotes the values the irrotational strain. The solution to the interior equation
is,

2 2 woab
r -, 0= 2 (32:2)

¥ = -10ap
2120 ( b a?+b?

QNI 8

where a and b are the semi-major and semi-minor axes of the ellipse, respec-
tively. Matching the solution to the irrotational outer flow on the boundary of

the ellipse gives a requirement on the shape of the ellipse. If 6= a/b then

e _ g {6-1)
we (+1)e+1)

(3.2.3)

The strain as a function of ¢ has a single maximum, e/wg 2 0.15 at 6, = 2.9.
For e/wg £0.15 there are two possible steady solutions, one more elongated

than the other, and none for e / wq greater than this value.

It will be convenient to give the interior flow field in terms of its representa-
tion in elliptic cylinder coordinates with z = ccoshécosn and y = c¢sinhésing

where ¢ is the semi-focal.length. We have

]

hU, = %= ”‘f (1 — f (8)cosh2£)sin2n (3.2.4)
2

hUy, = - %%— - 3}:"—— (1 — f (6)cos2n)sinh2¢ (3.2.5)

where f(6) =(6# —1)/(6 + 1), h is the line element in elliptic cylinder coordi-
nates and Ug and V, are velocities in the ¢ and % directions, respectively. The
line element is the same for both coordinates, depends on both ¢ and 7, and is
given by h® = -;—ca(cosh2$—cos2n). Note that hU; and hU, are smooth functions

of the coordinates ¢ and 7. This is true in general. That is, suppose in Cartesian

coordinates we have a vector function
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U=U(zy2z)i+ Ulzy2z)j+ U{zy.2z)k (3.2.8)

where Uz, U, and U, are all smooth functions of z, ¥ and z with convergent Tay-
lor series. If we write this vector in terms of elliptic cylinder coordinates then
U= (U.sinhécosn + Uycoshésinn)(c/h)§
+ (Uysinhécosn — Uzcoshésinn)(c/h)H (3.2.7)
+ U2
Thus hU; and hU, are smooth functions of £ and 7. It should perhaps be
emphasized that the velocities are not related to functions of the complex vari-

able £ + in as in inviscid irrotational flow theory.

3.3 Linearized Stability - Limiting Cases

We describe briefly here the results that have already been given for the sta-
bility of the Moore-Saffman vortex to both two and three dimensional distur-
bances. These résults are limited to the boundaries of the parameter space
which we wish to study. In fheir original paper Moore and Saffman computed
the stability of the vortex to two-dimensional disturbances characterized by a
mode number m > 0 giving the angular dependence in elliptic cylinder coordi-

nates. In this special case the growth rate o is given by the formula

o _|[emelf [e=1]®™
= = - (3.3.1)
W F+1)  |o+1]
and in the casem = 1 we have
2 2 2
o _ _&le-1)ff _ef (3.3.2)

w?  (e+1)A(F+1R 0

Thus the m = 1 mode is always unstable and corresponds to a translation of the
ellipse parallel to the outward principal axis of strain. For m > 1 the flow is

stable for 6 < g,.. The vortex is thus structurally stable to two-dimensional
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disturbances provided 6 < 6,.. Moore and Saffman also computed the effect of
long-axial wavelength three-dimensional disturbances on the m = 1 mode and
concluded that the eﬁect is to reduce the growth rate of the instability. This is
exactly the stabilizing effect of the self-induction discussed in section 2 and is

predicted by the cutoff theory.

The other limiting case for which analytical results are known is for 62 1.0.
or a nearly circular or circular vortex. The 6= 1.0 case was discussed many
years ago by Kelvin (1880). For disturbances proportional to exp{ct + img) the
dispersion relation giving ¢{(k,m) which he found for waves on a rectilinear uni-

form circular vortex can be given as follows

I 1m(g) . m _ K\m(ka)

97\m(@) g%y koK, (ka)

(3.3.3)

where m is the angular mode number in cylindrical polar coordinates, k& is the
axial wavenumber, a is the radius of the vortex, g® = (ka)? (1—2)/¥? with
¥ =m/2—-ia/wy. The function J is the Bessel function of the first kind and X is
the modified Bessel function of the second kind. All roots are pure imaginary
giving the frequency of oscillations of the unstrained vortex. The roots arise
from solutions with ¥ in (-1,1) so that =ic/wy=Im(c/wg) lies in

(=1-m/2, 1-m/R2). There are an infinite number of roots for each m and k.

Figure 3.3.1 shows a plot-of some of the |[m | =1 roots as a function of ka.
Tsai & Widnall (1978) studied the effect of weak strain on the eigenvalues at the
crossing points of the eigenvalues shown in the figure. They found that at some
of these points the eigenvalues would become unstable and gave numerical
results from the perturbation theory for the change in the eigenvalues and the
width in & of the region of instability. The resuits of Tsai and Widnall are
significant as they allow precise checks to be made on the numerical method

used to calculate the modes of instability for finite values of the strain.
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3.4 Linearized Stability Equations

The stability of the Moore-Saffman vortex will be studied by finding normal
modes of the linearized equations. As the flow inside the vortex is rotational we
cannot say that the resulting normal modes will be irrotational and the interior
flow must be described by the Euler equations. Outside the vortex the flow is
irrotational and thus according to Kelvin's theorem the perturbed motion will be
irrotational also. We can describe the exterior flow by a velocity potential satis-
fying Laplace's equation. We have also boundary conditions matching the inte-
rior to the exterior flow. The fact that vortex lines on the boundary of the vor-
tex move with the fluid gives a condition on normal velocity. Continuity of
tangential velocity on the boundary of the vortex insures continuity of the pres-
sure. The linearized boundary conditions are derived by expansion about the
undisturbed boundary of the exact non-linear boundary condition satisfied on
the disturbed boundary. The choice of coordinate system is thus crucial to the
simplicity of the analytical statement of the linearized boundary condition as
well as its numerical implementation. Since the boundary of the vortex is an

ellipse it is natural to use elliptic cylinder coordinates.

It is convenient to use an elliptic cylinder coordinate system not only in the
exterior but also in the interior of the ellipse. This makes implementation of
the boundary conditions on the surface of the vortex extremely simple at the
cost of introducing a singularity at |z | =c¢ in the coordinate system in the
interior of the ellipse. However, this poses little difficulty as will be shown. The
Eulerian equation of motion in elliptic cylinder coordinates can be derived from
standard relations for orthogonal curvilinear coordinates (Batchelor, 1967).

They are
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18 a o, _

h—z{f(hue) + 3 (han)t + P 0 (3.4.1)
&Le_*_i;_&u; _12,_6u5+ﬁ26u5 usu,,ah_u,,zah:___l_@

at h 8¢ h oan o7 hR? 8n  h? B h 8¢

Gug | e Buy Uy Dy o Oy g oh  “EOR 1 0P

ot h 8¢ h on 8z h® 8¢  h2 On h on

ou, u bu, u,0um, _ O _ P

& "Th 9t TR oom =3z oz (3.4.2)

The first equation represents the condition of incompressibility and the other

three are the Eulerian equations of motion with the constant density set to

unity. The velocity in the subscripted coordinate directions and the pressure

are, respectively, u¢ un, %, and p. It is now convenient for numerical purposes

to rewrite the equations so that the dependent variables are smooth functions

of £ and 7. To this end we set Z, = hu; and @, = hu, and, for convenience of

notation, £, = £ and zz =7. This allows the use of the summation convention

for the indices 1 and 2. The resulting equations are

108 | %%

h? 6.7:5 dz =0

- — A — =2 _
o  mom o 0m Bt e (1) ap
8t ' hR Bz Bz R 0x; | h? oz,
0%,  W;0m, _ 05, _ ap

3t " REDz, Tz oz

(3.4.3)

(3.4.4)

(3.4.5)

We now look for normal modes of the linearized equations by taking perturba-

tions of the following form,
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= Up(Z1.22) + un(z),20)e% * %, n =12
= U (T, To)e * %= (3.4.6)

= P(z122) +p(z122)e® "%

NS

The steady state velocity and pressure are represented by capitalized quantities.
The steady state velocities are given in equations 3.2.4 and 3.2.5. Inserting
(3.4.6) into the equations and dropping all terms of second order in the pertur-
bations we obtain a set of linear equations for the perturbations u,, up, ©, and
p. Solving for u, in the continuity equation (3.4.3), we can eliminate u, expli-
citly by substitution into the third equation of motion (3.4.5). This gives an
expression for p which we can then eliminate through the first two equations of
motion (3.4.4). The resulting system is a set of coupled linear equations for u,

and 13 They can be simply expressed as follows,
A,,'_j —Icz(C“- +-Dij)}uj =U[k26ij —-B,;j}'u.j ., 1=1.2 (347)

where

as) = 20 o U—a‘”] Bij() =

0z, | h? 0y | h? 8z | [%EQ]

Ox; | h

+ (i“j)wo](') D) =6 n20)

I h? m

The above constitute the linear stability equations for the interior flow.

The exterior irrotational flow is described by a velocity potential, ¢, satisfying
Laplace's equation. Proceeding as before we let ¢ = ®(z,,x5) + ¢(z,,25)e% + %=,

The perturbation ¢ satisfies

Pe | ey = 3.4.8
ang] v =0 (3.4.8)

L1
h2

and the solutions of this equation via the method of separation of variables are
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products of Mathieu functions.
3.5 Boundary Conditions

We describe here the boundary conditions to be satisfied by the normal
modes if we express the solution in elliptic cylinder coordinates. It is clear that
all dependent variables must be 27 periodic in zz; =7, the angular coordinate.
In the radial coordinate, ¢ = z,, the situation is more complicated. At £ =0, we
must require that the velocity be smooth in a nonsingular coordinate system.

From equation 3.2.7 we see that

Tp(bm) = —~Tp(—£—,), m =12

_ — 3.5.1
T (€m) = Tp(—£,—m) (85.1)
This implies the following relations at £ = 0
", an i,
P(0m) = ()0, ), mo= 12
o o™
o, o, (3.5.2)
0n) =(-1)" g,
g (0n) = (1" Z2E(0,m)

for all non-negative integers n. Since the steady flow satisfies these relations

and the relations are linear, the perturbations must also satisfy them.

The linearized boundary conditions at the surface of the vortex require some
care as the exact boundary conditions giving the motion of the vortex are non-

linear. We parametrize the surface of the vortex by
£=fo + F(n)e™ *%= (3.5.3)

where F' is a small quantity. The kinematic condition giving the motion of the

boundary of the vortex is then
-g;(& — & —F(n)e® %) =0 at £ =¢o + F(n)e +%&= (3.5.4)

We also have the dynamic boundary condition for continuity of tangential velo-
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city on the disturbed boundary. Substitution of the assumed form of the veloci-

ties and expanding in small quantities about £, gives the following conditions at

¢o. (See Moore & Saffman, 1971).

% _ 2

3= OREF + O ~{h?F) (3.5.5)
u, = oh?F + Q%-(th) (3.5.6)
gnﬁ—uz = hF (3.5.7)
Py _ _a_qf}__—_ 0 s

The first three conditions are exactly the equations derived by Moore and
Safiman for the two-dimensional stability problem. The last condition requires
continuity of axial perturbation velocity through the continuity equation. That
these are the correct linearized boundary conditions for the full three-
dimensional stability problem is clear since there is no steady axial flow in the

vortex to link at first ocrder with the perturbation quantities.

In the exterior region we require the perturbation velocity to decay exponen-
tially as z® + y® » =, The appropriate solutions to the reduced equation 3.4.8
are products of Mathieu functions, Ke,(£:9)cen(n:—g) and Ko,(&q)se,(n:—q).
where we have used the notation of Abramowitz & Stegun (1972) and the param-

eter g = (ck)?/ 4.
3.6 Numerical Method

The computation of the eigenvalues is accomplished by means of a straight-
forward collocation scheme similar to the kind recommended by Boyd (1978) for

eigenvalue problems of our type and used with success for example by Pierre-

humbert & Widnall (1982) in their calculations.
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An examination of the coefficients in the linearized equations 3.4.7 and 3.4.8
shows that the only 7 dependence is through either cos2%n or sin27. This indi-
cates that the normal modes must separate into m and 2w periodic solutions
just as in the standard analysis of the periodic solutions of Mathieu's equation.
We will study only 27 periodic unstable modes and, of these, specifically the ones
which corresponds to the zero crossings of the eigenvalues in the case of the cir-
cular vortex. These angular modes have azimuthal dependence m| =1 in
equation 3.3.3. There are several reasons to limit the computations to this res-
tricted subcase. First of all, as noted in section 3.3, there exists an infinite
number of pure imaginary roots for each m and k in the unstrained case. For
the 2m-periodic case we may have a pair of physically distinguishable modes with
the same frequency provided that the angular mode numbers are (m;, mp) =
(1,-1),(1,3).(-1,-3),(3,5), ete.. This is seen from the discussion of the location of
the roots given in section 3.3. For the m-periodic case we have similarly (m,m3)
= (0.2).(0,-2),(R,4).(-2,-4), etc.. There is an infinite number of such crossing
points for each pair (m,,m;). Moore & Saffman (1975) give a good discussion of
why such crossing peints may become unstable at infinitesimal strain. They
showed that under assumptions satisfled by the Moore-Saffman vortex, the zero-
crossing eigenvalues of the [m | = 1 modes would become unstable. For eigen-
values which cross at non-zero values the effect of strain may or may not be
destabilizing. Tsai & Widnall (1976) gave specific results for the (m;,mg) = (1, -1)
case as in figure 3.3.1. They found however that the growth rates of the instabil-
ities for the eigenvalues at non-zero crossings were an order of magnitude
smaller than the zero-crossing instabilities. In the (m;m3z) = (0,2),(0,-2) cases
the eigenvalues do not cross at zerb frequency but do cross at non-zero frequen-
cies so that these may also become unstable. Practical considerations dictate

that some decision be made on the eigenmodes and eigenvalues to be calculated.
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We expect only those modes with the least structure in both the azimuthal and
radial directions and with the largest growth rates to be of physical relevance
since presumably viscous effects come into play at the smaller scales. We thus
make the plausible assumption that at finite strain the most important unstable
modes continue to be the ones arising from the zero-crossings of the |m | =1
modes at infinitesimal strain and that the instabilities which may arise from
other resonances in both the 2m and m-periodic cases at non-zero crossing

points of the eigenvalues are of less importance.

Recalling the conditions 3.5.2 on the interior solutions, we now represent the

2m periodic modes in the following form,

U = Clhin Tan +1(£/ Eo)coS(@m+1)n) + dig Ton (§/ £g)sin(@m+1)y), 1= 1.2

K92m+1(£'Q)

Kogm +1(£.9)
=c ——2 X e , +d3 Am +1
¥ m [@2m+1(€0-Q) 2m+1(77 _Q) dm.

—————— SC .
Koampi(baq) So2m+1 (M=)

RRF = chcos((@m+1)n) + disin(@m+1)n) (3.6.1)

with the summation convention used for m =0,1,...Ny~1 and n =0,1,...,Np—1.
T, are Tchebyscheff polynomials. With this representation we now require that

the interior equations (3.4.7) be satisfied at the points (£;,1;) where

& Imoai-

g-o——cos Z Np—1]" i=1.2...Np—-1

L (3.6.2)
ny= B2 5212 2N,
2N,

To accomplish this, the equations represented in compact form by (3.4.7) are
fully expanded and the explicit singularities in the equations removed by multi-
plying through by A8, We also require that the boundary conditions 3.5.5 to 3.5.8

be satisfled at the points ;.
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The above collocation scheme leads to a generalized eigenvalue problem for
the growth rates o and eigenvectors x = (¢,h,, din, ¢2n. d2,, ¢3, d3, ¢, d )T of

the form
Ax = oBx (3.8.3)

with the matrices A and B coming from the collocation equations. The size of
the system is N = 4N (Ng+1). Eigenvalues of interest were computed initially
using the Eispack QZ algorithm (Garbow, et. al. 1977) and the grading portion of
the pre-processor described by Ward (1981). Since the desired eigenvalues are
small, it was convenient to solve for 1/0 rather than 0. The QZ algorithm tends
to produce the largest eigenvalues first so that in this way it was a simple
matter to isolate the éppropriate eigenvalues and eigenvectors. Once a single
eigenvalue and eigenvector of interest was found then the parametric depen-
dence on k£ and 6 was determined by extending the system through the normali-
zation condition x’x — 1 = 0 and solving for both the eigenvalue and eigenvector
via Newton's method. The accuracy of the computations was checked by
.increasing the number of modes in the truncated expansions and by compari-
sion with limiting results. A useful rule of thumb which became apparent was
that the accuracy of a given eigenvalue was on the order of the size of the

coefficients of the higher order modes in the u; expansions.

Some comment should be made concerning the computation of the Mathieu
functions. The characteristic values as well as the functional values of the angu-
lar Mathieu functions were computed from their Fourier series representation
using appropriate routines and/or meodifications of the routines given by Clem
(1969). See also Sale (1970). These routines are based on algorithms given by
Blanch (1986). The radial Mathieu function can be calculated once the

corresponding characteristic values for the periodic solutions are known. The
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equation for the radial Mathieu function is

2
%é% — (o + 2gcosh2€)y =0 (3.6.4)
where g is a positive parameter and « is the characteristic value from the angu-

lar equation. Making the change of variable z = Vgef the equation becomes

[ 2
dy 1y _ 1 S+ Iy = (3.6.5)

dz? =z dz

which shows the correspondence with the modified Bessel function. Now with
the normalization which we have used in the representation 3.6.1 we shall need
to know the values of y'(§)/y and y"(¢)/y at € = & in order to implement the
boundary conditibns. ‘The second ratio is given directly from equation 3.6.4.
The first ratio is equal to zp(z) where p(2) =y'(z)/y and p satisfies the

corresponding Ricatti equation
2
_P_+p2+_.p ( + 2 + 1y = 0 (3.6.6)

for this ratio. An asymptotic analysis of the Ricatti equation as 2 - = gives the

following behavior.
P~ iAnz—ﬂ . Z oo (3.8.7)
n=0

where

-3, 4p=-Ha-1) ., 43=—4,
2
A= ~HHa -1 - Lo -1 +¢7]

and
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(ne2]
A, = %—[(B—n)An_l +2 ki:l Ahn_ |, nodd
N [(n-2)/2] .
Ap = '2“[(2—?1)&—1 +2 Z Achp- + Azs2 | neven

There are actually two asymptotic solutions. The other solution has leading
behavior +1 rather than —1. We choose the minus sign corresponding to the
exponentially decaying solution in y. To compute the value of p(zg) we
integrate backwards from some sufficiently large value, 2., using the starting
value given by the asymptotics. A variable step Taylor's series routine was writ-
ten especially to perform this integration. The number of terms in the asymp-
totic expansion and the value of 2, was chosen according to the usual optimal
truncation rule (Bender & Orszag, 1978) and an error tolerance. This gave a
very good estimate for p(2.). Although the desired solution is not asymptoti-
cally stable for z increasing, it is the stable solution for z decreasing and one
would expect to find good results at zg even for a poor starting value provided
2,2y The values computed by the routine were compared with tables of
Bessel and Mathieu functions (Abramowitz & Stegun 1972; Wiltse & King 1958)
and by a self-consistency check in which p' was computed numerically using the
values of p output from the routine and then checked against the exact value.

Excellent agreement was obtained over a wide range of parameter values.

The equations are non-dimensionalized in the following manner. The time
scale is defined by the value of the vorticity in the undisturbed vortex and the
length scale by the geometric mean of the semi-major and semi-minor axes.
Then we have @ = 0/ wg and k& =k~vab. The value of £o is given by the formula

£ = %—log[(eﬂ)/(e—l)] and c?/ab is equal to (6#-1)/6. The quantities ¢ and k

appear in the equations only as a product squared which gives

g = (ck )2/ 4 = E*(6#-1)/ (46).
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3.7 Results and Discussion

We now describe the results of the computation of the growth rate of the zero
crossing eigenvalues as a function of the axial wavenumber and the axis-ratio.
The eigenvalues ¢ are pure real in the cases to be described. Figure 3.7.1 shows
the values of the growth rate as 8 is increased from very near 1.0 to 2.9 which is
the value at which the strain is maximized for a steady solution. Alse shown are
the values of the growth rate and the region of instability for each mode as
predicted by the perturbation analysis of Tsai & Widnall (1976). It is seen that
the numerical results match the perturbation results extremely well for small
values of the strain. The effect of larger strain is weak relative to perturbation
results but several interesting features are observed. Note that the value of the
axial wavenumber of maximum instability decreases slightly with increasing
strain for the modes with one and two internal radial nodes initiating at
£ =25and 4.35, respectively. These modes are labeled ¢,, and 0,2 where the
first subscript denotes the angular dependence and the second the number of
radial nodes for the nearly circular case. These modes meet at 82 1.4 as the
strain is increased. The growth rate curves then cross as seen in the figure for
6= l.é and apparently also cross at larger @ although these details were not
resolved. The o0,; maximum is always the largest. The o0,¢ and the ¢;; growth
rate curves also meet at about the value of the maximum strain. Notice in par-
ticular that the total range of unstable wave numbers is very large for large
strain and that the magnitudes of the growth rates for a significant portion of
the wavenumber space are quite comparable. This suggests the possibility that
observed instabilities in real flows might be more sensitive to the properties of

external disturbances than to the structure of the vortex.

The stabilizing effect of the self-induction for long axial wavelengths as is
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predicted by the cutoff theory for the helical or 0,9 mode is also seen in figure
3.7.1. The dotted lines indicated the growth rate predicted by the cutoff theory
with

e 2 Ez . 1/2
%= {( E) - (Fin(2/k) -7 + .25])2] (3.7.1)

where we have replaced the length scale for the radius of the vortex in the cutoff
theory by the length scale, Vabd . Note the excellent agreement for small values
of the strain. As the strain is increased the most unstable long-wavelength
mode is no longer purely two-dimensional but has a maximum at a finite value
of the axial wavenumber. However this effect is quite small and the general
characteristics predicted by the cutoff theory are retained for the long
wavelength axial mode even for finite strain. This is a satisfying result relative
to the computations outlined in section 2 since it indicates that the cutoff
theory, which aséumes circular vortices moving in external strain, gives the
correct long-wavelength sta‘bility behavior for steady vortex configurations in
which the size of the vortices relative to their separations need not be very small

and the vortices may take on an elliptical steady shape.

We look now at the steady state for 8=2.9 and show the variation of the
parametric instability with 8. The flow is now unstable to two-dimensional struc-
tural instabilities of m-periodic type but it is of interest to see how the growth
rate for the three-dimensional disturbance varies as 8 increases at least until
the three-dimensional and the two-dimensional growth rates are comparable.
Figure 3.7.2 shows for 6= g, the dependence of the 7,3 and ¢,;, modes on 8. The
most unstable long wavelength mode is seen to decrease in magnitude while still
maintaining its three-dimensional character while the short-wavelength mode is
seen to increase initially as 6 increases above 6, and then decreases as @ is

increased further. For 6 = 4.0 we can see from equation 3.3.1 with m =2 that
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the growth rate for the two-dimensional structural instability is ¢ = 0.1778 and

is thus of the same order as the three-dimensional instability.

In summary we have shown that the effect of finite strain on the three-
dimensional modes studied is to increase the growth rates above the values
predicted by the perturbation theory while altering slightly the wavenumber of
the most unstable modes. The effect of large deformation in the steady solution
thus does not ameliorate the three-dimensional instability. For & less than
about 4.0 the three-dimensional instabilities have larger growth rates than the
two-dimensional instabilities. It is also seen that the characteristics of the long-
wavelength mode are not significantly affected by finite strain. This further
justifies the use of the Biot-Savart formulation as a useful tool to analyze three-

dimensional long wavelength instabilities of rectilinear vortex arrays.
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4, Burgers’ Vortices
4.1 Introduction

G. I Taylor (1938) noted that one of the fundamental processes which con-
trols the dissipation of energy in turbulence must be the interaction of the
intensification of vorticity due to vortex stretching with the diffusion of vorticity
through the action of viscosity. One exact solution of the Navier—Stokgs equa-
tions which typifies this interaction was given by Burgers (1948). The Burgers’
vortex is found by assuming a solution of the Navier-Stokes equations of the

form

U, = —ar + u(r,6t)
Ug = v{r.6t) (4.1.1)
u, =20z

where we divide the velocity fleld into an irrotational and rotational part. Note

that only the z component of vorticity is present. In vorticity-streamfunction

formulation in cylindrical polar coordinates we have the equations of motion

00 (e 1O 0w  10Y 0w = 7R
3t + (~ar 3 )6 + 3 3 2oaw + vVrw (4.1.2)
1 oy &y
Vy=ow, u=—too VS (4.1.3)

A solution independent of 6 and ¢ is the Burgers' vortex

—ar?
w=0Qe (4.1.4)
v s
Ug = a—r(l —-e ) (4.1.5)

The quantity Q is arbitrary and is a measure of the strength of the vortex. We
can also define a Reynolds number R =/ a =I/(2nv) where [ is the circula-

tion.
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4.2 Linearized Stability of Burgers’ Vortex

The question of the global stability of Burgers’ vortex has been discussed by
Leibovich & Holmes (1981) who found that there is no finite viscosity for which
the Burgers vortex is globally stable (from energy considerations) with respect
to the admissible class of divergence free velocity fields. This does not imply
that the vortex is unstable but only that energy arguments could not give an
upper bound for the critical viscosity. The linearized stability of Burgers' vortex
has apparently not been treated before and we wish in this section to make a
few remarks on the stability of Burger's vortex to a restricted class of two-
dimensional infinitesimal perturbations. The more important case of arbitrary

three-dimensional infinitesimal perturbations is not treated.

It is a straightforward matter to compute the linearized normal mode equa-
tions for infinitesimal perturbations about the steady state (4.1.5). The non-

dimensional equations for the perturbation quantities are

Lo + uw = inR[f¥ + %—gw]

Y=o (4.2.1)
where
L() = %—-%_—(r:—r('))—:—:(') + i—;—r('r%))
H() = %_a‘_i;(,. ;_T(.))_’:_:_(.) (4.2.2)
f=e2, g= _1._'(_';53.;:_;;./1

L
where time is scaled on a™! and lengths on (v/ a)2. We have taken out the time
and angular dependence through a factor exp(~uat +in ) in the vorticity and

streamfunction.

For n =0 there is no angular dependence. Batchelor (1967) notes that in
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this case it may be shown that an initial distribution of vorticity will approach
the Burgers' vortex solution. One way to show this is to take the Hankel
transform of the full equations of motion for the radially symmetric case. We

define the Hankel transform pair by

B(k) = fa)(r).fn(rk Yrdr
0

w (4.2.3)
w(r) = [B(k )y (rie)kdk
0
The equation of motion
3 _ a 3(wr?) Pw 18w
ot v or  Ularz " ror (4.2.4)
becomes after the application of the Hankel transform of order zero
8B B8 - e
3 ok e V8. (4.2.5)

This is now a first order wave equations in & and ¢ for the transform & which we

can solve by the method of characteristics. The solution is _

vk
——<2a 1-¢7%F)

& = Bo(ke )e (4.2.8)

where @g is the transform of the initial distribution of vorticity. As f- the

solution approaches the transform of Burgers' vortex.

For the more general two-dimensional stability problem, this suggests the use
of the Hankel transform to find the eigenvalues u of the operator L in equation
4.2.1. Knowledge of the eigenvalues and eigenfunctions will lead to a determina-

tion of the stability of the Burgers’ vortex for small R via perturbation theory.

The use of the Hankel transform of order n can be used to find the exact

solutions of the eigenvalue problem forn = 1 of
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Ly +uy =0
y=0@"), r-0 (4.2.7)
Yy ~Arte T2 p 5w

The boundary conditions can be obtained from a local analysis about the origin
and infinity. Note that the solutions for n < 0 are simply the complex conjugate
eigenfunctions of those for n positive so that there is no loss of generality.
Upon applying the appropriate Hankel transform, integrating the resulting ordi-
nary differential equation once and inverting using standard tables, or by mani-
pulation (in hindsight) of the equations, one obtains the solution with the

required behavior at the origin,
y = H[(u+n+2)/2 ;n+1,; —r?/2] (4.2.8)

M is the regular confluent hypergeometric function in the notation of

Abramowitz & Stegun (1972). The asymptotic behavior as z » —w is

T(p) 1 fsi:‘(a)n(lw-b)n,_

Mla b,z] =eire { z)‘ﬂ+0(|z|"5)}

I'(b-a) 22 1n=0 n!
e;?:)‘” I'(b) :2;: (b —G);(ll—a)n (Z)-—'n + 0(|Z l_T)} (4.2.9)

where (a), = (a)(a+1){(a+n-1). In our case b =n+1 >0 so that I'(b) is never
singular but TI'(b-e)'=0forb—a =(n+l1) —(u+n+)/R=-m , m =0,1,2,....
Thus w=n +2m for m a nonnegative integer gives the values of u for which
the behavior at infinity is exponential rather than algebraic. Then the eigen-

functions are

y =1 M[n+m+l,n+l,; —r?/2]

=rn gr/2 M[-m ,n+1;r?%/2] (4.2.10)
=pn g2 ! __ r)e
e i) Lyl (r2/2)

where we have used Kummer's transformation to identify the solution in terms
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of the generalized Laguerre polynomial L. A more convenient normalization

for the eigenfunctions is
wo(m k) = 2 /2 pn g r¥/2[ (n)(r22) (4.2.11)

corresponding to the eigenvalues ug(n k) =n + 2k. For the case in which the
circulation is zero or R = 0, the vortex is stable. The effect of non-zero circula-

tion can be determined by perturbation theory for small .
We assume a solution of the form

Y = Yo + RYy + RiYpt-
w = wy + Rwy + RPwg+ (4.2.12)
K= po + Ruy + RRup+

which results in the following set of equations for the perturbation quantities

Lowg + pgg =0
R%) Mo = e (4.2.13)

Loy + pgtoy =in(f Y + é—gwg) = Mo
B gy o (4.2.14)

Lwg + pows =in(fy; + ;—901) = M1 = Moty
R MY, = o (4.2.15)

At each stage, once w is found, then ¥ = M'w. For mn =1 the solutions g

corresponding to wq are

Yo(n.0) = —é%n_—ﬁgl(l —e,_1(2)e7?) (4.2.18)
Yo(n k) = —Zwo(n k-1) ke =1 (4.2.17)

where z =7%/2 and e,-;(z) is the truncated exponential function. Now we can
expand «; and the right hand side of equation 4.2.14 in the eigenfunctions wg
because of the completeness of the Laguerre polynomials. The coefficients in

the expansion can be determined by taking the inner product of equation 4.2.14
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with wg(n.l) successively. The eigenvalue u, is determined from the Fredholm

alternative condition. We define the inner product
(uww) = fm?e"z’zrdr (4.2.18)
0

With this definition the operator L is self-adjoint so that the required solutions
and alternative conditions can be given explicitly in terms of the wg solutions.

The F! solution is

w(n k)= zz_:x;g —l)N(k ) [F(n k l)+—G(n k.l)]we(n.l)

Yiln ) = z_;o T ‘li)“’;v(k TyLF( ke L)+ 56 ke Dol L) (4.2.19)
() = G Fin ke D436k )]
where
Finkd) = ( Yolnk) , wo(n 1)) = = bl cponnr (4.2.20)
Gnkl)=(gwe(n k), weln.l)) (42.21)
e G R et
N(n k) = (wo(n k) wg(n k)) =(n+k+1)/(k +1) (4.2.22)

Thus the real part of u is not changed to first order since the shift in the eigen-
values is pure imaginary. We must then go to second order to compute the
change in Rey. The Fredholm alternative condition for uz leads to

Ja(m k) = -ZN?:JC) ly;o (k___l)}v(k’l) (Flnkl) + Lok D) (22.29)

using the orthogonality of the eigenfunctions and the fact that F' and & are
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symmetric in k and i. For & = 0 we have us; = 0 so that the effect of the circula-
tion on the smallest eigenvalue for any n is not destabilizing. For & = 1 we can-
not see immediately from the formula the sign of x4z since we have both positive
and negative terms in the summation. Table 4.2.1 gives some values of u; for
several values of n and & such that n + 2k is small. It is seen that in all cases
except n = 1, &k = 0 the sign of us is positive so that the effect of circulation is to
stabilize the vortex. In the special case n =1, k =0, we have g, and up identi-
cally zero, and examination of the equations shows that this eigenvalue and

eigenfunction are valid for all .

It may seem to be a paradoxical result that the effect of a larger Reynolds’
number is to stabilize the vortex via an increase in the decay rate of the normal
modes. However, since the viscosity and the strain o have been used to fix the
time and length scales, changes in £ must be thought of in terms of changes in
the magnitude of the vorticity or of the total circulation. Stewartson (1982) has
noted that in the study of swirling viscous flows the effect of rotation is often a
stabilizing factor. It appears that for two-dimensional perturbations of the
Burgers' vortex solution the effect of rotation is similar and that at least for
small -circulation the Burgers' vortex is linearly stable to two-dimensional dis-

turbances.
4.3 Non-symmetric Burgers’ Vortices

We wish to discuss now the properties of the vorticity field which arises when
the external irrotational strain is not axially symmetric. We assume the velocity

field takes the form

1 = —oZF +U(EY)
7 =87 +0(&Y) (4.3.1)
@ = (a+8)2

so that we have irrotational exterior strain upon which is super-imposed a
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rotational two-dimensional flow. In vorticity-stream function form the equa-

tions which are to be satisfied for a steady solution are

(—oZ + @)Dy + (—BY + 7)By = (o + H)B + V8 (4.3.2)
V= o=-2% =% (4.3.3)

where @ is the vorticity and 17 is the streamfunction. The equations can be con-

veniently non-dimensionalized by scaling the time on (a + 8)/2 and lengths on

L
(Ru/a+f8)?. In addition we scale the magnitude of the non-dimensional vorticity
and streamfunction on the Reynold's number R = f f wdZdy) / (2mv) so that the

circulation is constant in the scaled form and the Reynold’'s number enters as a

parameter in the equations.

Our equations in these variable are

Wz + Wyy + [(1+E)z—R ulw, + [(1-g)ly-Fv]w, +2w =0 (4.3.4)
Vy=w u= —-g—zg—, v = %% (4.3.5)

N - . :
where ¢ = ;% and f f wdzdy = 2m. The existence of solutions of the above

steady form of the Navier-Stokes equations is to be treated in this section. For

the special case £ = 0 the solution can be given in closed form as
Vis? z* ¥2
w = Vi-g*exp —(1+s)—é—- - (1-¢) 5 (4.3.8)

This solution is also valid for ¢ = 0 and any R. We wish to present the extension
of these solutions for £ and R small and non-zero and show that the perturba-
tion procedure can be extended indefinitely in principle. Solutions are also cal-
culated numerically and matched with the perturbations results. These con-
siderations lend support to our belief that solutions of the type described will

exist for arbitrary 0<e& <1 and 0 <K <« Symmetry considerations also give



-51 -

solutions for negative values of the parameters. It must be noted that with the
scaling we have used it is important to regard ¢ as a measure of the difference
between o and ;3 where these quantities have the same positive sign. Also since
lengths scale with the viscosity, change in R should be considered as change in
the circulation similar to the interpretation given in the previous section on the
stability of Burgers’ vortéx. Other scalings are possible. For example, if a and 8
are of opposite signs and we wish their magnitudes to be comparable or equal,
then other scalings would be appropriate and we might expect to find solutions
similar to the Moore-Saffman vortex discussed in section 3.2, Other cases have

yet to be studied however.

We propose at this point to calculate analytically the first few terms in a dou-
ble series expansion of the solution for small ¢ and R and to show how this
expansion could be continued indefinitely in principle. These results will provide
insight as well as some check on the numerical results to follow. The equations

to be solved in polar coordinates are

- _ Bt . dw RoYdw Ry dw
Lew = —ercos2e a * esin2e 36 r 308 " 7o Be (4.3.7)
Vy=0, L()=v2()+ 2202())
' T or
If we now assume for &, R <« 1 an expansion of the form
W= i i g™ R™ M (4.3.8)
m=0n =0

and a similiar expansion for ¥, we get the following set of perturbation equa-

tions,



m-1i,n ~1ln
Lo™® = —cosR0 T %—f— + sin26 g—gm (4.3.9)

m n-—l m-m'n—-1-n' m'n' m n=l m-m'n—-1-n’' m'n’
-L 3 2 Bu ™™ L LS oy 0w’
T meg nog 00 or T ido nimg OT de

where negative superscripts indicate terms that are not present. We shall con-
tinue in the notation of section 4.2 with the exception that for the operators L
and ¥ we shall now explicitiy show the dependence on n via a superscript n. We
give now the solution of the perturbation equations 4.3.9 up to terms with
m +n = 2. The solution to the homogeneous equation for the w% term is the

Burgers' vortex

woo = &g(0,0) = e /2 (4.3.10)

since there is only one eigenfunction with zero eigenvalue of all the operators L™
which result from a Fourier analysis in 8 of the operator L. Note that at this
point we have imposed the circulation condition f f wdzdy = 2. At subsequent
orders we then impose the requirement of zero circulation. This can always be
satisfied since we have an arbitrary constant at each stage from the zero eigen-
value eigenfunction. At the same time however we have a Fredholm alternative
condition to be satisfied for a solution to exist at all. This condition is that the
inhomogeneous terms should be orthogonal to «®. This is easily seen from
equation 4.2.18 to be equivalent to the requirement that the forcing in (4.3.9)
have zero total area. If we take a Fourier expansion in 6 of the inhomogeneous

terms then this requirement reduces to showing that
[ Colr)rdr =0 (4.3.11)
0

where Co(7) is the constant term in the expansion. We shall show that this con-

dition will always be satisfied automatically at all orders.
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Proceeding in the above described manner, we obtain the solution at the

m+n = 1 order as
w'% = —cos26 w(2,0), &1 =0 (4.3.12)

Note that the w™° terms must give exactly the Taylor expansion of equation
4.3.6 and that the ©% term must be identically zero since & is a solution for all
R provided £ =0. At the next order the only possible secular term is in the

equation for w® where

Lo?0 = él;_-%[rzwo(z,O)] + %cos46 [~ &‘?;o,,(z.o) — 200(2.0)]
= 2w0(0,1) — Rwe(0,R) — cos46 we(4,0) (4.3.13)

The first form of the equation shows why it is obvious that the Fredholm condi-
tion is satisfied and the second form leads to a rapid solution of the equation.

Thus

L

on = —Qo(o,l) + 3

wo(0.2) + %;—coszze 00(4.0) (4.3.14)

One may show that this solution satisfies the zero circulation condition from the
normalization and that it matches the expansion of the exact solution (4.3.8).
The other two equations at the same order have no possible secular terms and

after some labor the solutions can be given by

. = wo(R.k)
“ Sin kgo 2 +R(k +1)*(k +2)

=0 (4.3.15)

which completes the exact perturbation calculations up to order m +n = 2.

We now describe why the alternative condition will always be satisfied at any
order in which it may appear. Secular terms might arise in equation 4.3.9 from
the first two terms on the right hand side provided w™~!'® has a nongzero

coeflicient for the cosR6 term in its Fourier expansion. But then it is clear that
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we can combine the two secular terms from the products into a perfect deriva-
tive as in the first version of equation 4.3.13. Thus the Fredholm condition is
satisfied for the first two forcing terms in (4.3.9). The other summation terms
on the right hand side of (4.3.9) which arise from the non-linear terms in the
original equation can also be matched up in a similar manner in such a way as
to show that the only possible secular terms are perfect derivatives. The easiest
way to see this is to take the complex form of the Fourier expansions for a typi-

cal product term. If

w® = 3 Gir)e®®, yd= 3 Dy(r)e e (4.3.16)

n=— n=—w

then the terms from .corresponding products in the two summations on the

right hand side of equation 4.3.9 give

189° dw® 13y gu® s . 1.d
_;_%% & +.;.%f_ == in =Z{(CaDay + (4.3.17)

n =0

where we have not given the explicit form of terms with ¢ dependence. The
alternative condition 4.3.11 will thus be satisfied provided each product G, 0,
vanishes at zero and infinity. Since there is non = 0 term in the summation in
(4.3.17) this requirement holds since the C, and D, terms come from solutions
of equations with operators L™ and ¥™ with » > 0. Thus, in principle, the expan-

sion may be continued indefinitely.

We now give numerical results for non-zero £ and X and match these results
with the small parameter solution presented above, The numerical solution is
obtained by approximating the vorticity with a double series of sinc functicns
which leads to a non-linear systems of equations via straightforward collocation.
Stenger (198 1) recommends this approach for approximation of functions f (z)
which are analytic in a strip about the real line and which decay exponentially

as |z |.» «. The function f is represented by a finite sum
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+
£(z) = k_fo (kh)S(k 1 )(z) (4.3.18)
where the sinc function is defined by

sin —Z—(z —~kh)

Sk h)(z) = (4.3.19)
T (z—kh)
h
Approximate formulas for integration and differentiation of f are
_f F(&)de uh%} f (kR) (4.3.20)
FoNz) =~ RTY 6 F (1R)S(k ) () (4.3.21)
k 1

where we sum from —N fo +N and, in particular,

_ (= . = _r (=1~ ™
6= C 1 bn) s 58 = =T - —((n—_}m—)z—u-am) (4.3.22)

If h=c/ N? then, for example, the error in (4.3.18),(4.3.20) and (4.3.21) may be

shown to be O(e “‘7”1/2) as N - = where both ¢ and 7 are positive constants.

Since in our problem the vorticity will decay exponentially we expect to be
able to represent the vorticity distribution efficiently using a double series of
sine functions. We represent the vorticity by

+M

w= ), +21:v Sk h)(z) S(LR)(Y) (4.3.23)
k=—M (=-N

and plan to selve for the vorticity via Newton's method by collocation at the
points (ih jh), —-M<i <M, —N <j < N in equation 4.3.4. This will give a non-
linear system for the vorticity at the collocation points provided we have an
expression for the velocities © and v in terms of the w;; through the solution of

the Poisson equation 4.3.5.

The approximate velocities © and v at each of the collocation points can be
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computed by a weighted sum of the values of the vorticity at each of these
points. We now give the derivation of the weights. It will be sufficient to com-
pute the velocity induced by a single sinc function distribution of vorticity since
the total velocity at a point can then be given by superposition. In terms of the

Fourier transform of the vorticity distribution we have

- _By - ne -z —iny g ¢d

u By - @ f‘[éz ""’728 ¢dn (4.3.24)
= 9 = i fa) —éz —iny

v lax L [ f z e d¢dn (4.3.25)

where & is the transform of the vorticity. Now if & = S(k .h)(z) S(I,h)(y) then

since
Sk h)(€) = he ¥ [ H(t+nm/R) — H(E—m/ )] (4.3.26)

we derive the values of the velocities at the collocations points £ = k'R and

y =1l'h as
h h
e = =l ek U = ek i (4.3.27)
where
11
I = ff ?{?—sin(mnf)cos(nnn) dédn (4.3.28)
00

or, in a form more suitable for computation,

.
L= f sin?((mm+nnz)/2) + sin®((mr-nnz)/2) | dz
ma e mmT+nnz MmT-nnT 1 +2z?

1
. [ sin((mmz+nm/2) _ sin®(mrz-nm)/2) | _zdz (4.3.29)
4 mnz+nm MMZ ~nw 1 +z? o

The quantities f,, can be calculated numerically and then stored for subse-

quent use. Several representative values of /i, » are given in table 4.3.1.
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We can now give explicitly the equations which are to be solved numerically

for the vorticity. We have

Fij = h 2368w + h 2% 6P wy + 2oy (4.3.30)
k 3

+ [(1+8)ih =R wy;] PRI wey + [(1—e)jh — R v]Yh 16fPwy = 0
k i

where

3|

h
Uiy = = Lhaieom. vy = =0 Y ks on (4.3.31)
P "% 7

and we sum over —M <k <M and -N<! < N. Now we expect the Jacobian of
this system to be singular as we have not specified the total circulation or the
centroid of vorticity. An examination of the above equations shows if
Fij(wpg) =0, then F_; _;(w_p ) =0 also. Thus the equations are invariant under
the transformation p +» —p and g » —q. If wpy = w5 4, then the equations for
Fij and F_; ; are identical. By looking for solutions with this property the size
of the system is reduced to (RM+1)N+M+1 unknowns. We still need to specify
the total circulation. This is done by multiplying a somewhat arbitrary function
g times the circulation condition and adding this to the /' equation so that the

Jacobian 9G;;/ 8wy, is non-singular where

Gy = Fy +5( ,j)[hzzkal}w,d - 2n] (4.3.32)

with O0<i<M for j =0, -M<i<M for 1=j <N, and wy =w_ . The frac-
tional part of m(i+j+m) is an example of one such §(i.7) which seemed to work
well. The Jacobian of the system can be written down explicitly as well as the
equations for the variation of ¢ with ® and &. Newton's method with Euler con-
tinuation in R and/or & was used to solve for the vorticity. By trial and error

the value of h was chosen to be 1.5/ #/? by comparing the computed solutions
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with the exact solutions for ¥ =0 ore = 0.

Figures 4.3.1 to 4.3.3 show contour plots of the vorticity for £ = 0.5 and
R =0, 10, 100. As R increases it is apparent that the elongated axis of the vorti-
city distribution rotates counter-clockwise. As R increases further the apparent
elliptical cross-section tends more and more towards a circle. This is a typical
behavior for any . Figure 4.3.4 shows the dependence on R and ¢ of the rota-
tion angle, ¢, which would be required for zero cross-moment of the vorticity

distribution in a rotated (z',y') coordinate system. That is, if

o2 =ffz2co dzdy /21
oy = f [ryo dedy/2m (4.3.33)
of = [ [yPwdzdy/2n

and

x x cosg + Yy sing

y' = -z sing + Yy cosp (4.3.34)
then for an appropriate choice of ¢ we have o, = 0 where
20
tanly = ———ﬂ—z =
02 = cos®p 0% + sinl¢ o + sin®y of (4.3.35)

2 — qinBp g2 — ai 2, 2
oy = sin®g 0 — sinkyp g, + cos®y oy

The quantities ¢, g, 0- have no apparent special physical significance but are
given here as a means to characterize the solutions. The value of ¢ depends
strongly on R as ¢ tends from zero to an apparent asymptote of 45 degrees as
increases. The dependence on ¢ is very weak and increasing & serves to decrease
¢. The weak dependence on ¢ in ¢ appears also in the perturbation solution. We

obtain after some calculation for ¢ X « 1,

Ofl+e+e®, Opo—eR/16, 021 —5+6? (4.3.36)
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¢=R/16, ol ol+e+e®, ofnl—g+ ¢ (4.3.37)

so that to the order of the perturbation calculation ¢ depends only on R. The
predicted value of ¢ for small # and ¢ is shown in figure 4.3.4. Figure 4.3.5
shows the variation of gz and oy with R and ¢. Note that for small R we observe
the elongated distribution of equation 4.3.8. For large R in order to satisfy the
dominant non-linear terms in the equation the velocity must become orthogonal
to the gradient of the vorticity. This gives the approach to a circular shape seen
for large K and corresponds to a dominance of inertial effects due to the large

rotational velocity of the vortex.

As & » 1 the elongation of the vorticity distribution tends to infinity so that
our numerical repreéention breaks down and we cannot compute with
confidence in this region. The Newton's method seemed to converge to the solu-
tions described above regardless of the initial distribution of vorticity. The
starting solution was taken to be some point on the boundary of the parameter
space where the solution was known in closed form. Figure 4.3.6 shows the
region of the parameter space where solutions were computed. An Euler-Newton
continuation scherne was begun at & =0 at a given £ and continued using steps
in Rof 1.0 or2.0. For 20 < R < 100, steps of 5.0 were used. As mentioned previ-
ously, larger steps were easily possible but small steps were chosen for better

graphical accuracy.

We have thus computed a new class of solutions of the Navier-Stokes equa-
tions which can be termed non-symmetric Burgers’' vortices. These vortices
depend on two parameters: the difference between the external two-dimensional
strains, &, and the Reynold's number, K. The parameter space was studied
numerically in the rectangle [0<e<.750< R <100] for solutions with

reflection symmetry about the origin. No bifurcation or turning points were
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found although the formulation did not allow for symmetry breaking bifurca-
tions. The numerical results agree well with the small parameter perturbation
expansion, We conjecture that solutions of the type described exist for all £ and

Raseg-»1and/or R - =,
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FIGURE 2.2.2 Mutual-induction functions x and ¢ (after Crow (1970)).
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Corrections to Thesis
Existence and Stability of Vortices and Vortex Arrays

by A. C. Robinson September 1983

. &7 - line 18 - Replace V,, by U,

2m

o-1
6+1

_dmo

2
.28 - (3.3.1) - Should read ~—= -1 2ne.

Wo 4

. 34 - (3.5.7-3.5.8) - Replace h*F by woh?F
.45 - (4.2.8) - Replace 1 —e™® by 1 — e 2
. 47 - (4.2.15) - Second equation should read My; = we

. 4B - (4.2.19) - Replace N(k 1) by N(n ) in first two equations.

48 - (4.2.19) - y(n k) = 'N_(%é')“

[F(nkk) + —é—-G(n,k )]
. 48 - (4.2.23) - Replace N(k,l) by N(n,l)

.51 -(4.3.7) - Replace V¥ = 0 by V¥ = w

. 52 - (4.3.10) - wgg should be w®

. BB - (4.3.368) - Switch = and y; replace 16 by 8

.59 - (4.3.37) - Switch z and v

. 82 - [22] - Should read ... Hoimes, P. 1981 ...



