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Abstract

The steady-state shape of.a finger penetrating into a region filled with a
viscous fluid is examined. The two-dimensional and axisymmetric problems are
solved using Stokes’s equations for low Reynolds number flow. Since the viscos-
ity of the fluid inside the finger is assumed to be negliglible in comparison with
the viscosity of the fluid exterior to the finger, boundary conditions for a liquid-

gas interface are applied on the free surface of the finger.

The two-diménsional case is solved analytically. by using singular perturba-
tion methods. Inner and outer expansions are developed in terms of the small
parameter wU/7T. An ordinary:difierential equationfor the shape of the finger is
solved numerically in order to determine the inner solution. The method of

matched asymptotic expansions is used to match the inner and outer solutions.

To solve the fingering problem numerically, an initial guess for the shape of
the finger is made by using the perturbation solution. Since the shape of the
finger has been fixed, we are forced to drop one of the three boundary condi-
tions on the curved interface. The normal—stress’ boundary -‘conditibn is
dropped. To solve the resulting problem;: the domain is covered with a compo-
site mesh. It is composed of a curvilinear grid which follows:the curved inter-
face, and a rectilinear grid parsllel to the straight.boundaries. These cverlap-
ping grids are stretched so that the number of grid points is greatest in regions
where they are rnieeded most.: Interpolation equations connect the two grids,

Finite difference methods are used to caleulate the numerical solution.

The curved interface of the finger is expanded in terms of Tchebychefl poly-
nornials and the known asymptotic behavior of the finger ag 2 » —~. Using the

golution calculated on the fixed domain, the expansion of the interface, and the
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normal-stress boundary condition, the correct shape of the finger is determined

using Newton's method.

When the axisymmetric finger moves through the tube, 2 fraction m of the
viscous fluid is left:behind en the walls of the tube: The fraction m was meas-
ured experimentally by Taylor [15] as a function of the parameter pU/T. The
numerical results show excellent agreement with the experimental results of

Taylor.
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I. Introduction

We consider the penetration of a finger of fluid into a region which is ini-
tially filled with a fluid more viscous than that of the finger. The steady-state
shape of the finger is studied. Two different geometries are examined: a finger

moving in a Hele-Shaw cell and in a tube.

A Hele-Shaw cell is composed of two closely spaced parallel plates separated
by a distance 25 . The sides of the cell are a distance 21 apart, whereli>> b, A
finger, shaped like a tongue, moves through the Hele-Shaw cell with constant
velocity 7, The thickness of the' tongue is 28b and its width is 2Al, where the
parameter B is equal to (thickness of finger)/(distance between plates) and the

parameter A is equal to (width of finger)/(width of cell).

The determination of the value of A has been a subject of much interest.
Experiments examining the shape of a finger in & Hele-Shaw cell have been per-

formed by Saffman and Taylor [13] and Pitts [B]. It was found that unless the

1

flow is very slow the value of A is close to > Since the three-dirmmensional prob-

lem is difficult to solve, the shape of the finger in the plane parallel to the plates
is examined mathematically by averaging the velocity field in the direction
between the plates. This leads to equations in which thé components of the

mean velocity in the plane parallel to the plates are given by

__b*8p L __b%4p

3u 0z 3u Oy

where 2b is the distance between the plates and u is the viscosity of the fluid.

The finger moves parallel to the z-axis.
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These equations are identical to the equations for a two-dimensional porous

2
media, where %-— is equal to the permeability of the medium; thus, there is an

analogy between a finger in a Hele-Shaw cell and a finger in a porous media. In
certain methods of oil recovery, water or steam is pumped into the ground te
forece the cil towards the wells. If the velocity of the water is too large, then
fingers of water will penetrate the oﬂ. A mixture of oil and water is then
extracted from the well. To avoid this, it is important to understand the condi-

tions which determine the shape of the fingers.

If the fluid is incompressible, then the velocity potential ¢

Oz oy

must satisfy Laplace's equation

2 2
&y, B¢ .
fz®  By?

It is assumed that the viscosity of the fluid inside the finger is negligible when
compared with the viscosity exterior to the finger. This allows us to solve for ¢
enly in the region exterior to the finger. The boundary condition on the sides of
the celly =+ is given by

g‘i"_:D
9y

On the surface of the finger, ¢ satisfies

Be _ U cosd
n

where ¥ is the angle:between the z-axis and the outward normal to the interface.

@ also salisfies
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where pg is the constant pressure inside the finger. £, is the radius of curva-
ture in the plane parallel to the plates, and Fj is the radius of curvature in the
plane perpendicular to the plates. The curvature 1/R; is much larger than

1/E,. This last condition on the interface has been a subject of controversy.

Saffrman and Taylor [13] assumed that the surface tension T could be
neglected (7 =0) and were able to derive a closed form scolution. This solution is
used to test a numerical method and is given in section 3.8. They also found
that the difference between the shape of the finger determined from their closed
form. solution and the shape observed from the experimental results is consider-

able unless A iz cloge to —é— The parameter A is not determined by their analysis.

McLean [7] has taken into account the effect of the surface tension T in his
examination of the fingering problem. In his analysis, he has assumed that the
value of K, is equal to a constant (Rp=b). If R, is constant, then it is simply an
additive constant to the velocity potential ¢, and has no effect on the solution.
The shape of the finger determined by McLean with a given value of A is in ciose
agreement with the shape given by experimental results with the same value of
A. A comparison between a plot of A versus #U/T using McLean’s results and the
same plot using the experimental resu1t§ shows an appreciable difference

between the two,

In an attempt to improve the agreement between the plots, Romero [11]
has assumed that A, is a function of the normal velocity at the interface.
Numerical results were calculated for 1/R, proportional to the nermal veloeity
at the interface and the square of the normal velocity. By using these interface

conditions, Romero modified the plot of A versus uU/7T in a way that was a
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qualitative improvement over McLean's results when compared with the experi-
mental plots. The actual dependence of F; as a function of the velecity was not

known,

To better understand the relationship of Fp to.the veloeity of the fluid, we
examine the narrow: shape of the finger that can be seen by looking between the
two plates. The determination of the value of Ry as a function of uU/T can pos-
sibly be used to develop a better interface condition for the velocity potential

and bring the plot of A versus puU/7T in closer agreement with experiments.

If the distance b<<!, then a two-dimensional approximation to the flow is
valid. Stokes’s equations for low Reynolds number flow are applied in the plane
perpendicular to the plates and parallel to the z-axis, The no-siip condition is
applied at the solid plates. Since the viscosity inside the finger is set equal to
zero, the boundary conditions for a liquid-gas interface are used on the free sur-

face of the finger.

The above problem is solved analytically by using singular perturbation
methods. The inner and outer expansions are developed in terms of the small
parameter pl//T. An ordinary differential equation for the shape of the finger
needs to be solved numerically at each order of the inner solution. The method
of matched asymptotic expansions is used to show that the inner and outer
solutions match in an appropriate overlap region. In addition to the perturba-
tion solution, a solution as z » —« is found in terms of an eigenfunction expan-
sion. This leads to a relationship between g, uU/7T, and k, the exponential decay
rate at which the shape of the finger asymptotes to its constant value. These

analytical results are compared with the numerical results.

To solve the fingering problem numerically, we begin with an initial guess

for the correct shape of the finger. This can be found by starting with a small
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value for the parameter uU/7T and using the perturbation solution. Since we
have fixed the shape of the finger, we are forced to drop one of the three boun-
dary conditions applied on the curved interface. The normal-stress boundary
condition is dropped. A system of equations equivalenf. te the biharmonic equa-
tion must now be solved on a fixed domain. It is important to use a numerical
method that not only gives accurate results in the interior of the domain but
also gives accurate results on the curved interface. To accomplish this, we use a
composite mesh to cover the domain. It is composed of a rectilinear grid, which
is parallel to the straight boundaries, and a curvilinear grid, which follows the
curved interface. These overlapping grids are stretched seo that the number of
grid points is greatest in regions where they are needed most. Interpolation
equations are used to connect the two grids. Finite difference methods are used

te caleculate the numerical selution.

The curved interface of the finger is expanded in terms of Tchebycheff poly-
nomials and the known asymptotic behavior of the finger as z » —e., Using the
solution caleulated on the fixed domain, the expansion of the interface, and the
normal-stress boundary condition, a new shape for the interface is determined
by Newton's method. After several iterations, the normal-stress boundary con-

dition is satisfied.

The numerical results agree with the perturbation solution for very small
values of uUU/T. A comparison of the numerical and analytic results in regard
to the relationship between 8, pU/7, and k, determined from the eigenfunction

expansion as x » —, shows agreement for a larger range of pU/7.

The numerical methods used for the two-dimensional problem are applied
to the penetration of a finger into a viscous fluid in a tube. The diameter of the

tube is 2b and the diameter of the finger moving through the tube with
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constant velocity U is 28b. The parameter B is equal to (diameter of
finger)/(diameter of tube). When the axisymmetric finger moves through the
tube, a fraction m of the viscous fluid is left behind on the walls of the tube,.
The value of m. is related to S by m = 1—B%. The fraction m was measured exper-
imentally by Taylor [15] as a function of the parameter uU/T. The numerical

results are nearly identical with the experimental results of Taylor.



II. Analytic Solutions of the Fingering Problem

2.1 Formulation of the Problem

We consider the penetration of a finger of fluid into the narrow region
between two closely spaced parallel plates. The region between the plates is ini-
- tially filled with a fluid more viscous than that of the finger. The steady state
problem is examined where the finger is moving with constant velecity U. The

plates are separated by a distance 2b and the finger has width 28& (see Figure

1).

Bb y

-Bb

Figure 1

We examine the flow in a plane perpendicular to the plates. If the distance
256 is much smaller than the dimensions of the plates, then a two-dimensional
approximation to the fiow is valid. The conservation and momentum equations

for incempressible two-dimensional flow are
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uz+v, =0
p (g tuity +ury) = —Dg Hi (Ugp + Uy ) (l1a.b,c)

p (v tuv, +'U'uy) = =Pyt (Ver + 'Uyy)

where p is the pressure, y is the viscosity, and p is the density of the fluid. The
velocities « and % of the fluid are in the z and ¥ direction respectively. The tip

of the finger moves along the z-axis.

Boundary conditions must be applied on the plates ¥ =+ b and on the inter-
face between the two fluids. On the solid boundaries, the no-siip condifion is
applied. To find ‘the appropriate interface conditions, it is assumed that the
viscosity of the fluid inside the finger is negligible when compared with the
viscosity of the fluid exterior to the finger. For exaruple, a finger of air being
blown into glycerine. This allows us te solve equations (1a,b,c) only in the region
exterior to the finger and to use the boundary conditions for a liquid-gas inter-
face. It is also assumed that the fluids remain completely separated along the
interface; thus, the relative velocity normal to the interface must be equal to
zero. The other two boundary conditions for a liquid-gas interface come from
balancing the difference in stress across.the interface to the normal force due
to surface tension. Let n=(n,,n,) be the normal vector to the interface pointing
into the finger and t= (tz,ty) be the tangent vector to the interface. The three

boundary conditions that must be satisfied on the interface are
(u=U)n,+uny, =0
Ugty g+ —;—('u.y g ) {Egy +Ey Mg ) Fuytyny, =0
7
PR [uznze“*'(u‘y g ) Mgy +Uyn;] =PoT g

where pg is the constant pressure inside the finger, T is the surface tension, and

K is the radius of curvature.



-0 -

We now change to a reference frame moving with the finger. The tip of the
finger is fixed at the origin. In this new reference frame, the velocities are

independent of time. Dimensionless variables are introduced by

A._.'.C—Ut --__g__ A__.R;
=Ty ¥=3% k=3
g=2f gz p=E_

% ~T P77

In the perturbation analysis of the fingering problem, it becomes clear that the
appropriate scalingfor p is 7/b and not uU/b. We substitute these new vari-

ables into equations (1ab,c) to get

&.__ Ub “1‘!.-..!.1,“.\ - __._i p...+1‘£~.+1'[.m
[ )U; ( z y) lu:U < &

erob Ub Vet UUua)=— __i“....;.“......;.‘.-...

}{U'Ux 'U'uy) i py Uz TJ'W

We make the further assumption that the inertia terms can be neglected in
comparison with the viscous terms. This implies that the Reynolds number is
much less than one {Re=pU/b/1<< 1). We drop the hats in the above equations

to get

Uyt Uy =0
By = CO (g + Uy ) (2a,b.c)

Py = Ca ('Uzz""uyy)

where Ca =uU/T. The capillary number Co is the ratio of the viscous force to
the force of surface tension. The parameter 8, which is the ratic of the width of
the finger to the distance between the plates, is a function of the capillary

number.
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Since it is assumed that the shape of the finger is symmetric in the ¥ direc-
tion, it is only necessary to solve equations (Ra,b.c) for ¥ = 0. The symmetry

conditions on the centerline ¥ =0 are

u, (z,0)=0 v(z.0)=0 {(3a.b)

Figure 2 gives the new geometry for the problem.

i
B
y
[ o e e o e e e — — — — i —— — — g X
/
Figure 2
In the new reference frame, the no-siip condifion becomes
uw(z,1)=-1 v({z,1)=0 {4a.b)
and the boundary conditions on the interface become
unz+uny, =0
u,tzn,+é—(uy+ U ) (tany ity ) tuy tyny, =0 (5a,b,c)

. .
P =2 Ca [unl+(uy, +v,) ngny, + v, n?] =Po~ s

Since the pressure can only be determined up to a constant, we are iree to set

the pressure inside the finger equal to zero.

It is important to know the behavior of the solution as z » . As z > —e=,
the width of the finger approaches a constant; thus, we get a constant velocity

between the finger and the solid boundary. Pouseuille flow develops asz - =
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u+—1 and v-0 as x4 —=

u“’%‘ﬁ(l“'yg)—l and w0 as -

2.2 Perturbation Soluation

Inn this section, we treat the penetration of a finger into & viscous fluid as a
singular perturbation problem. The solution is expanded in terms of the dimen-
sionless parameter § . The parameter d is a convenient length scale in the nar-

rew region between the finger and the wall and is related to the capillary

number by §=Co :_ An outer expansion is developed in terms of the primary
reference variableg in the problem. Dimensionless inner variables are found by
stretching the primary reference variables by appropriate funections of the
dimensionless parameter. These inner va_riables are now of order unity in the
region of nonuniformity of the outer expansion. An inner expansion is
developed and matched to the outer expansion by the method of matched
asymptoiic expansions. A more detailed explanation of singular perturbation

metheods in fluid flow can be found in Van Dyke [16].

This analysis of the penetration of a finger inte a viseous fluid is related to
the work of Bretherton [2] and his analys:ls of the motion of long bubbles in
tubes. This work differs from Bretherton’s work in that it outlines a procedure
to develop a complete asymptotic expansion in terms of 6 . It also constructs
the equations properly in the boundary layer region in terms of scaled coordi-
nates of order unity. The method of matched asymptotic expansions is used to

show that the outer and inner solutions match in an appropriate overlap region.
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In the perturbation problem, the interface is best described as a function
of z. 1f y =h(x) is the equation for the interface, then the interface conditions

(5a,b,c) are
v = h,u
0= (uy +u, ) (1= f2)—4uh, (6a,b,c)
E]
p =—Ca[Rus+th, (uy'["uz)]'*‘hzz[i'*'hzz] 2
The equations have been simplified by using the continuity equation (2a) and by
adding part of equation (5b) to equation {5¢).

To get the leading order term in the outer expansion, we let Ce - 0 in equa-

tions (2a,b,c). The simplified version of these equations is given by
pE=0  p=0

This implies that the leading order approximation to the pressure, p%z.¥) is a
constant. To determine the constant, we examine the interface condition {6c)

as e -0
0. _ .1 _z0 -—
P “'—Rg —ha:::[l'i'(h'z)]

From this equation; the leading order term of the radius of curvature is also
equal to a constant. In the limit as Ce -» 0, the finger fills the entire region
between the two plates (-~ 1). The angle of contact at the wall must be zero:
thus, #%=1. The leading order approximations to the pressure and to h(z) in

the ouler expansion are given by
pl=-1 RUz)=Vi~(z+1)* (7a,b)

Before finding higher order terms in the outer region, we first examine the
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equations in the inner region.

In the inner transition region, the dependent and independent variables
must be scaled so that the new variables are of order unity. The region of
nenuniformity of the outer solution is located near {(z,y) =(~1,1) where the free
surface given by the outer sclution contacts the wall. lLet d =1—8 be the dis-
tance between the finger and the wall as z » —=. We introduce the parameter ¢
as a length scale for the distance d. The parameter ¢ is related to the original
parameter Co by Co =48™ where m must be determined., Clearly, ¥v—1 and h~1
are of the same order as d in the inner region and thus must be scaled by §.
The new z coordinate is centered at the position where the interface, deter-

mined by the leading order outer solution, contacis the wall; thus, we expect the

form (z+1)/6™ for this inner coordinate. In the inner region, g% is much less

than 1 as 4 » 0 which implies 0< n < 1.

The inner variables for the velocities are given by (z+1)/6% and v/8%*1° ™,
The scaling for the velocity v iz chosen such that both terms in the continuity
equation {2a) are of the same order. The pressure p is asymptotic to -1 in the
outer region and is equal to 0 as z - —e; thus, the pressure is already 0(1) in
the inner region.

If the inner variables are given by Z, ¥, k, &, ¥, and §, then boundary con-

dition {Ba) is written in terms of these variables by
5% T = hy (—1+6%T)

Since h; is not equal to 0 in the inner region, the value of £ must be equal to O;

thus, it is not necessary to scale « in the inner region. Equation (2b) is given by

—_— — . +1—2 —
Pe =0T U + 6T T Uy
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Since n is less than 1, the coefficient in front of Uy 18 the larger of the two
coefficients; Uz must balance with the pressure term. This implies that

m+n~2=0 and m —n > 0, Finally, boundary condition {6c) is given in terms of

the inner variables by

)
7= _5_m—n{2 Ty + Py (T + 67777 '175)] + 6V Ry (1463 PR RE) B

Since m—-n > 0, the pressure term can only balance with A,,. This gives n =-21-
and m =28—n = %—, which completes the determination of the inner variables,
The inner variables can now be written as -
-1 _ —
E=m-};1 ?=y5 h=h§1
5?
(8)
_ _ v —
w=u vET P=p
52

A
and the new parameter ¢ is related to the original parameter Co by o =62

Substitution of the inner variables (B) into equations (2a,b.c) gives

]

+

E ]

p-z:ﬁﬁgg'i'ﬁgg (Qa,b.c)

— x2— -
Py= 6 Ty + 6'I)W
In terms of the inner variables, the boundary conditions (4a,b) become
TZ(Z,0)=-1 T(Z,0)=0 {10a,b)

and the interface conditions (6a,b,c) evaluated on 7 =& () become



0= (Zy +0T, (1~ 0R2)— 46 Tyt {11a,b.c)
i
T =—ROUy—(6Ty+ 6% Up) g thpy (146 AS) 2

Setting § equal to zero gives us the leading order approximations to the inner

equations. The following versions of equations (9), (10), and (11) result:

2 (12a,b.c)

Z%Z,0) = —1
(13a,b)

7oZ,0)=0
7%z, RO =R u (%, A")
0==(z, k") (14a,b,c)

Pz, R =hg

This system of equations can now be solved. The following selutions of equations
{12a,b,c) satisfy all of the boundary conditions except conditions (i4a) and

{14c):

7%z, 7)=P%zZ)
Z%(Z.g) = -PH(F) [gP-2g R°]-1 (15a,b,c)

7%2.9) = PL(Z) [~ +7°+ L7 RO [+ PR(2) [ L 7°A

o

]

L]

These three solutions still have two unknown functions, P%(Z} and A%(Z). Sub-
stitution of the velocity solutions (15b.c) into the boundary condition (14a)

leaves us with an equation for P% and A%
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Pfy (R°Y + 8P (R°2 Ry = —3k)

This equation can now be integrated once and combined with the boundary con-

dition (14¢) to give an equation for A°®

~ —-3(A%+d)
hgm = (Eg)s (16)

where the constant of integration is given by R®-» —d ag £ » ~=. Equation (18)

is an ordinary differential equation for 2° that is solved numerically.

In order to integrate equation (16) numerically, the asymptotic solution as
T -» —= jig determined. This leads to a solution with three independent con-
stants as expected. Two of these constants multiply exponentially growing selu-
tions as £+ —= and must be discarded. The third constant is writlen as a
translation in T since equation (16) is an autonomous equation. The resulting

asymptotic behavior is

[ L L
- — (T +x 2:33(z+%
RO(E) ~ —d|1+exp ( = o) —exp (_ o +
d d
If we now make the change of variables
1
~ RO .~ 3¥T+3zg)
h= — x = =
d d
then as £» —w=
R(EY~ --1—exp(’z“)+-§-exp(2§)+ cee (17)

and {18) becomes

~ —{h+1
hﬁ'&'= JETL le)
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In order to match to the outer selution, it is necessary to find the asymptotic

expansion of equation (18) as Z -» =. This asymptotic behavior is given by

R(Z)~ aZ24b §+c+0[

| o

B

. The unknown constants o, &, and ¢ are determined by numerical intergration of

equation (18) with the initial condition (17). The results are
o = —03126 b =-0.006 g =~2.9

Transforming equation {19) back to inner variables gives

2
3

ol ( +.':'C'0)z

d

3]}

1
ROY(E) ~ +b 33 (T +T)+e d+0

8y |s—'

| @0)

The method of matched asymptotic expansions requires that the inner solution
as ¥ » = match with the outer solution as z » —1. The matching can be done
using an intermediate variable between = and X or'more simply in terms of the

original variables. In outer variables, equation (20) becomes

g 2
Y 2 licagsiz L
ROz} ~ 14 28EZHD" | —a-é.m‘?—wsﬂ (z+1)
2 (R1)
38 zR L _ 3
+6]= = L +53%Z e d|+0(67)
and the asymptotic behavior of (7b) as £ » —1 becomes
ROz) ~ 1— 2 (z+1)2+0((z +1)%) - (22)

Since we only have the leading order behavior of the inner and outer solutions,

only the first two terms of (21) and (2R) can be matched. This determines the
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value of d.

2
d = ~2a3% = 13375

To determine T, the other unknown constant in the leading order behavior of
the inner solution, it is necessary to examine the next term in the outer solu-

tion.

To develop a complete expansion, the dependent variables are expanded in

1
a series in powers of 8%,

3

L
p =p%+6%pl+dpR+62pSt - -
1
w = w4 8Pul+sul+ - -
1

w =ul+s2yleguis - - -

L
h = R%+32R1+GRF+ -

3
Substituting these expansions into (2a,b,c) with Cz =¢*, we find that both p’
and p? are also equal to a constant. From the interface boundary condition
(8¢), the radius of curvature is also a constant up to order 6. This leads to the

following equations for A}{z):

-

hi(:r:) = -mm (®3)
and as z » -1,
Alz) ~ ri—ri(z+1)+0({z +1)7) (R4)

ES
Comparing equation (24) with the O(6?) terms in the inner expansion of equa-

tion (21), we find that the inner and outer expansions can only be matched if
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L
r;=0. This implies that 2*(z)=0. The coeflicient of the 0(d?) term in the inner
expansion must also be set equal to zero. This determines the value of Z; .
o= ——%8 = —0.138
2:(3)%a

—

. 1
The second term in the outer expansion is thus 0(8) and not O(8%). Since the

1 -
0{6?) vanished, the expression for h*(z) is equivalent to (23) and (R4) with 7,

replaced by 7, . Matching with the inner expansion determines 7.

We could now continue by expanding the inner variables &, 7, %, and A in

L
powers of §2 . An ordinary differential equation would appear at each order that

could be solved numerically. The asympiotic expansion of these selutions as

T = o would be matched to the outer solution as z -» —1.

In summary, we have found

z
g~ 1.0—1.3375[1‘-"-??]3
2
B~ 1.0—3,9{&2?1]3 | (25a.b.¢)

cafra

P~ —1.0-3.9{ETQ]

Unfortunately, the expansions for the inner and outer variables are in powers of

1
(wl7/ TY3. This means that unless U/ 7T is very small the errors from the terms
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left out cannot be neglected. The above expressions will be compared with the

numerical results.

2.3 Analytic Solution asz » —«

Instead of using the formal perturbation expansion in the parameter 4, we
expand the seoluticn as z » —» in.powers of exp (kz). This will give us a relation-
ship between %, the decay rate as z » —~=, d, the distance between the finger
and the wall as £ » —e, and Ca =uU//T. The relationship is valid for arbitrary
Ca, unlike the solution in section 2.2 which was only valid for very small values

of Ca.

The velocities and pressure take the form

u(zy) ~ —1+e* f (y)+ 0(e*)
v(z,y) ~ e g(y)+ 0(e®)
plzy) ~ Coe*h(y)+ 0(e™)

Substituting the above expressions into equations (2a,b,c) and eliminating two

of the unknown functions, we get an equation for g(y).
Gyy *RER gy +E2 g =0

The solution to this equation is a combination of the functions sin(ky), cos(ky ),
v sin(ky ), and ¥ cos(ky). The functions f(y) and h(y) are found in terms of
g(y). If we satisfy the boundary conditions on the wall {4a,b) then the veloci-

ties, pregsure, and shape of the interface are

w(z,y)~ —1+e®|A[—k(y—1)sin(k (y ~1))]
+ Bsin(k (y —1))+& (y —1) cos{k (¥ —1)}]
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w(zy) ~ ¥ 4]k (y 1) cos(k {y ~1))+sinlk (y ~1))]
+ B[k (y—1) sin(k(y -1))]]

p(zy)~ Ca 2% [A[—2k cos(k (y ~1))]+B[ -2k sin(k (y —1))]
h{z)~pB—-D ek¥

where 4, B, and D are unknown constants. The above expressions are substi-
tutedinto the interface boundary conditions (6a,b,c). If we keep only terms of

O(exp(kz)), then the three equations for 4, B, and D are given by the matrix

equation

—k d cos(kd) + sin{kd)

k d sinlkd k
(k) ra] To
2k*d cos(kd) Rk cos(kd) ~R2k*d sin(kd) ©O Bl=]|0
D o
Ca(2k cos(kd)+2%%d sin{kd)) 2 Ca k*d coslkd ) —k®

where d =1—8. The determinant of the matrix must be set equal to zerc for a
solution other than the trivial solution. This leads to an equation for g =k d

2q —sin(2q)+Ca (4g%— 4cos?g) = 0 (28)

The asymptotic solution of equation (28) as Co -+ 0 is given by

A 1
(8Ca;® 3%
k 5 ~

_ 1
d 6%
3 -
where Co =8° and d ~ dd. This leading order term checks with the singular

perturbation result in section 2.8, This relationship between k, d, and Co will be

compared with the numeriecal solution.
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IiI. The Use of a Compaosite Mesh to Solve the Fingering Problem

3.1 Grid Construction

In solving the partial differential eguations (2a,b,¢), it is important to
develop numerical mmethods that not only give accurate results in the interior of
the region, but alsc give accurate results at the boundaries. To solve the
normal-stress boundary condition (6¢), it is necessary to compute the pressure
anad the stresses accurately on the boundary. To accomiplish this, we use a com-
posite mesh to cover the domain. This is composed of a rectilinear grid which is

parallel to the strajight boundaries, and a curvilinear grid which follows the

curved interface.

Kreiss [5] has developed a numerical code that constructs a curvilinear grid
using spline interpolaticon that follows the smooth boundary of a simply con-
nected domain. The rest of the domain was covered with a uniformly spaced
reclilinear grid. A hyperbolic system was solved on these overlapping grids.
Reyna {9] has used a composite mesh to solve an ocean circulation model in a
circular basin. A grid using polar coordinates was used on the boundary and a
uniformly spaced rectilinear grid was used in the interior. We have modified and

improved these methods to best solve the penetration of a finger into a viscous

fluid,

To sclve the fingering problem numerically, we resirict the infinite domain
given by == < 2z < = and 0=y =1 to a finite domain given by Zpn< =5 .y
and 0=y = 1. If the values of = and =g, have been chosen preoperly, the

difference between the numerical soluiion caleulated on this domain and the
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solution calculated on an even larger domain will be small. As stated in section

2.1, the domain is further restricted to the region exterior to the finger.

In many problems, it is important to distribute the grid points in a2 nonuni-
form way to properly resolve the solution. In the fingering problem, a smaller
mesh size is needed near ¥ = 1 where the fluid moves into the narrow region
between the finger and the wall. The grid poinis are conveniently distribuled in
the rectilinear grid to place a smaller mesh size where it is needed.

We begin with a square grid with uniformly distributed grid points given by

(%) = {_?ﬂ_ Aot S

N1 -1 . wherei =12, - N and j = 1,8, -+ N,. N: and N, are

the number of grid peints in the Z and ¥ directions respectively. The rectilinear

grid is defined by a transformation T.

3y
il

F(=z) #=g(y) (27)

which maps the square grid with uniformly distributed grid points onto the
domain. An example of a stretched rectilinear grid is shown in Figure 3. The

functions f and g used in the fingering problem are given in section 3.3.

To construct the curvilinear grid, we start with another square grid with

uniformly distributed grid points given by (§.75) = [%}%} where

i=12-"Nandj =12 ' ' M. There are N grid points in the § direction and
M grid points in the 7 direction. The curvilinear grid is defined by mapping this
square grid onto a region which follows the curved interface using the transfor-
mation T,. This transformation is one-to-one and its Jacobian is never singular,
To construct the transformation 7,, a set of N grid peints is chosen along the
interface. Cubic spline interpolation is used to approximate the shape of the

curved interface through these grid points. The boundary 7 = 0 of the square
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Figure 5
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grid is mapped onto the interface curve €, by
z(5,0) = X(§) ¥(5,0) = ¥,(5)

where X; and ¥, are cubic spline functions. Another set of N points is chosen
on a curve that lies in the interior of the domain under consideration. The
transformation of the boundary 7 = 1 onto the interior curve Cp is also done by

cubic spline interpolation and given by
z(5,1) =Xx(5)  y(51) = Ye(5)

The curves, C; and Cy, form the two curved boundaries of the curvilinear grid.
The corresponding grid points on these two curves are connected by straight

lines. The complete transformation 7 is

z(§7) = (1-7) X1(5) +FXg(5)
- - (28)

¥ (&, (1-F) 71 (F) +7 Yp(5)

To simply the interface condition (8c), it is convenient to use the arclength
parameter s along the interface. As in the rectilinear grid, stretching is used in
the curvilinear grid to place more grid points at the tip of the finger and fewer
grid points where the width of the finger approaches a constant. Stretching is

intreduced by the transformations
§=F(s) = G(r)

where F and & are functions that produce a cne-to-one mapping between the
two sets of variables. The iransformation 7; that allows for stretching in the
curvilinear grid is

z(s,7) = (1-r) X (s)+r Xg(s)

(29)
y(s,7) = (1-7) Yi(s)+7 Yals)
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with,
s = F7Y(5) r = G7U7) {(30)

where the cubic spline functions are functions of the variable s. The function &

is chosen such that G{1) = 1. A typical curvilinear grid is shown in Figure 4.

Many of the grid points shown in Figure 3 are in the interior of the finger.
These-points are not used in the computation of the solution. Figure 5 gives an
example of a rectilinear grid that shows only the grid peints actually used. It is
important that the grids overlap so that all grid points on Cy lie in the interior
of the rectilinear grid. Also, the grid points on the jagged boundary of the rectil-

inear grid must lie in the interior of the curvilinear grid.

3.2 Interpolatiop. Between Grids

In solving partial differential equations on a composite mesh, the grid
points can be divided into three categories. At interior peints of each grid,
difference equations that approximate the partial differential equations are
applied. At grid points that lie on the boundary of the domain, boundary condi-
tions are applied. The third type of grid points are those that lie on the interior
curve Cy of the curvilinear grid and those that lie on the jagged boundary of the
rectilinear grid. It is at these grid points that interpolation equations are used
to connect the solutions on the two grids. The interpolation equations are dis-

cussed in terms of a smooth funclion «.
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Kreiss [5] finds the approximate value of 4 at a grid point on the jagged
boundary of a rectilinear grid by a four point infterpolation formula that uses
the value of © at the four closest grid points in the curvilinear grid. A nine point
interpolation formula determines the approximate value of u at a grid peint in
the curvilinear grid by using the value of © at the nine closest peints in a uni-
formly spaced rectilinear grid. In the first case, it was necessary to search four
adjacent gquadrilaterals to find the one in which the rectilinear boundary point
was located and then use an interpolation formula using the values of u at the
corners of the c;uadriiateral. A nine point interpolation formula using the
values of u at the corners of the four adjacent guadrilaterals would be more
accurate, but would also be guite complicated. In the second case, a different
nine point formula must be used if the rectilinear grid is not uniform, as is the
case when stretching is used. To avoid these problems, we use interpolation for-
mulas based on the uniformly distributed grid points of the two square grids

discussed in section 3.1.

Each grid point on the curve Cy. given by (s;,1), can be located in the inte-
rior of the (£,4) square grid by using equations (29} and (27). If (Z; o) is the
location of one of these grid points, then the approximate value of « at this grid

point can be found by using the four point interpolation formula

2 2
u (Zg,Go) E Z rx)c 5)“(331“—1:'9’;4-1 1) (31)
i=1j=1
cyfe) = 1—a colo) = o
oz ZoT T _ G
T~ Xy 'yJ+1 'y.f

where (Z;,4,) is the lower left corner of the rectangle in which the point (Zp. %)

is located. A nine peint interpelation formula is given by
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u (%o, o) = i ESI a)d (B (Frrioe Yrsj—z) (32)

=151
dyi(a) = —;—a(l—a) do{a) = (1—e)(1+a) dg = -lz-a(l+ o)

where (. 4,) is the grid point closest to the point (%, %,). The values of o and £

are the same as for the four peoint formula,

To find the approximate value of u at each (z,y) grid point on the jagged
boundary, we locate each of these grid points in the interior of the {5,7) square
grid. These values are found by using Newton’s method on equations (29) and

(30). Once these points are located, the interpolation formulas are identical

with equations (31) and (32) where Z and ¥ are replaced by § and 7.

3.3 Test of the Composite Mesh Technique

Safiman and Taylor [13] have derived a close form solution for the penetra-
tion of a fiuid into a Hele-Shaw cell containing a more viscous liquid. The solu-
tion iz derived by first averaging the velocity field in the direction between the
plates. The equations for the components of the mean velocity, in the plane

parallel to the plates, are given by

where the distance 256, between the plates, is much smaller than the width of
the cell. Since the fluid is incompressible, the continuity equation given by

ou, ou

dx By =0



- 29 -
must also be satisfied. The components of the mean vel‘ocity can be expressed
in terms of a velocity potential ¢ and a stream function ¢

ox dy By dz

The velocity potential and stream function satisfy the Cauchy-Riemann equa-
tions; thus, o = ¢+ 11 is an analytic function of 2 = z+4y. The closed form sclu-

tion satisfying the apprepriate boundary conditions is

1T W

z = .;z.+i_lz — (33)

1 0
log §l1+exp

where w i given as an implicit function of 2. The parameter A is equal to the
(width of the finger)/(width of the channel). The boundary conditions on the
interface are ¢ = 0 and ¥ =y. Substitution of these values into equation (33)

gives an equation for the free surface

_ [
z = al—ﬁlloglcosﬂ (34)

2R

Though it was shown by Saffrman and Taylor that the difference between the
above solution and their experimental results is considerable uniess A is close to

%. their closed form solution is very useful in testing the use of a composite

mesh to numerically solve for the stream function 9. It should also be noted
that the Saffman-Taylor solution is for a finger moving in the plane parallel to
the plates and not in the narrow region between the two plates, which is the

focus of this thesis,

Since w is an analytic function of 2z, its real and imaginary parts must

satisfy Laplace’s equation:; thus,



- 30 -

2 2 .
M+ M =0 (35:,
dz*  dy*

The boundary conditions for ¢ are

Yz,0)=0 for O z<eo (36a5)
a-r
?ﬁ(z,i):)\ fOr o < g S Do

and on the interface

Yzy) =y (36c)

where the shape of the interface is given by equation (34). The asymptotic

behavior of Y asx » —w is

Wry)-> A (364)

and the behavior asz » = is

wz.y) - Ay (36¢)

These asymptotic behaviors are used as boundary conditions at some finite T,

and Ty

The resulting problem is fo solve Laplace’s equation on a domain with an
irregular shape, where the value of % is given con the boundary. Teo solve the
problem numerically, equation (35) is replaced by difference egquations at the
uniformly distributed grid points of the iwo square grids. These grids are
related to the rectilinear and curvilinear grids through the transiormations 7,

and T;.

We write equation (35) in terms of T and ¥ coordinates by using equation

(27).
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[ ]
1@ gElr @ +g'(y>§§lg'(y>%‘§} =0 (37)
where
z =f %) y =g7(¥)

As previously discussed, stretching functions f and g are introduced to avoid
placing extra grid points where they are not needed. In the z direction, fewer
grid points are needed ﬁear 2 pmin énd T max Where the solution tends to a function
of ¥ only. The r dependence is a decaying exponential. The stretching is
accomplished by using a mesh size k, near the boundaries and a smaller mesh
size h; in an interior region centered about the point zg. The function f takes

the form.,

F=f(z)=Az +B+CEtanh m";”] (38)
where the first derivative is given by
AT _ oy = ] e
=7 (z) = A+C sech [ T (38)

The constant B is chosen such that f (z4,) = 0. The other constants are given

by

&
mlb-

oy
fi
Fr‘l =
1)
Oy
H
|
)l IHBT'I
=
H

7|
[~]
&

where A, is chosen such that f(Zq.x) = 1. The number of grid points and the

mesh size in the Z direction of the square grid are

Ny = integer

:jf—-i- 1.6
hZ
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s~

where h, is approximately equal to h,. An examination of (39) shows that %zm is

-~

h
approximately equal to }—5— when z is near zg. It also shows that g—z— is approxi-

h
mately equal to h—x when z is near the boundaries. Notice also that if we set
(2]

h; = h,, then equation (38) is a linear transformation and no stretching is done.

In the perturbation problem, it was found that for Co small the finger
near1y~ fills the channel. To numerically solve the fingering problem for (o
small, it is necessary to have a small mesh size near y = 1. To avoid a small
mesh size in the entire y direction, we use a mesh size hy, awayfromy =1 and a

smaller mesh size h, near ¥ = 1. The stretching in the ¥y direction takes the

form

y=gly)=4y+CFE Iexp[j—%ﬂ]—exp :j_lEi’H_L (40)
where the first derivative iy given by
9]‘r—:;’?-zg’(y)::Jﬁl-!-{l'fexr_a[“{1”1‘ +exp ________--(1+y)” (41)
dy l E B
The constants are given by

where Ey is chosen such that g(1) = 1. The number of grid peints and the mesh

size in the ¥ direction of the square grid are

N, = integer| 2—+1.5

where h, is approximately equal to 2,. An examination of equation (41) shows



-33 -

7 h,,
that -SzyL is approximately equal to —£. when w is close to 1, and -}j- is approxi-
hy

hy

mately equal to . for ¥ away from 1. As before, if we set hy = hp. then equa-
b

tion (40) is a linear transformation and no stretching is done.

Using the notation %4.; = 9% (%;,¥;), a second order difference equation for

equation (37) is given by

. ['¢1+1 5 1101. i ] f, [’%.5— '5[’1‘.—1._1' N
hy it hy

ol e — s ol
g ; . 1[’1.,_14-1 'w'r,,;r] R ['501.3’ 10'5,.1"1]] —
+ = g |} —_— S ) = 0
by {g J+?[ by 73 Py

I
hz

]
lf
(42)

2

where we define the expression f Lol by
R

s B @D+ ()

This difference equation is used at all interior grid points of the (Z,%) square
grid.

A second order difference equation for equation (35) at the uniformly dis-
tributed grid points of the (§,7) square grid is found by using equations (29)

and (30). If we first define

= ey 08 = ey B8
a(s.r) = F(s) P b(s,’r)-F(s)a
(43)
N - ey BT
cls,r)=G'(r Py d(s,r) = G'(r) oy
then equation (35) becomes
8| 8y, 8y o B
aas[ as+c8:r' Te ““as+car
(44)

o 2o yq 28],
s ds or

b%d@az.]zn
A= ar
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The partial derivatives in equation {43) are caleulated at each grid peint by first

8z By Oz 0

calculating 3’ Bs' ar’ and _6% from eguation (R9). The first derivatives of

X1 Xy, Y1, and Yy at the grid points are already known from cubic spline inter-

pelation. The formulas connecting the two sets of partial derivatives are

oy 9z oy 8z
O . or B or or__ s Br . 8
o A 3y A z A dy A

Az 028y | 0z 3y
gz or dr os

In the s direction, we use a stretching transformation that produces more

grid points in the region near the tip of the finger. The transformation is given

by
- hs F &
F=F(s) = —{s +(R-1)Dtanh| = (45)
hy D
where the derivative is
-—E-:F'(s) . rl-i-(.ﬁ.’—l)secl:Lz == (48)
ds h-N D

The input parameters used to specify the transformation are &, the number of
griéd points, R, the ratic between the largest and smallest mesh size, D, the
decay rate from one mesh size to the other, and s,,,, the largest value of s used

in the grid. The constant A, is the mesh size in the § direction of the square grid

and is given by he = —f-v—i-}— The largest mesh size hy is determined by satisiying

h
F(Smax) = 1. The smallest mesh size by is by = -;g—
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On the free surface, there is no boundary layer to reseclve by stretching.

The function G{r) is given by 7 = G{r} = 7 where the mesh size in the 7 direction

1

is }L,. = -j‘;——l_

If we define ¥, ; = (s, mi) and oy = a,(s.;,rj), then second order diflerence

formulas for typical terms in equation (44) are

LB | 0] B Fm, Yirrni= Vi |_ Yig— Yi-1j
85 | 85| hs [ i+l b i-dj Py
and
8| v _ Ga! N ¢i+1,5+1“'¢’i—1.j+1]_ ¥ T Yemg
° [a a‘s‘] = Thy [“"J“ Fig |7 Frg

The expression a. 1. is defined by

[# =
i+l g

1]
L 7% R STAN |

The second order difference equation for:equation (44) is applied at all interior

points of the {§,7) square grid.

The numerical solution for 4 in eguation (35) can be found by using these
difference equations, the interpolation equatiens from section 3.2, and the
boundary conditions {38). We compare the numerical solution with the clesed
form solution for A = 0.5, 0.8, 0.7, 0.B, and DQ The mesh sizes and number of
grid points used for the curvilinear grid are given in table 1. The error e, is the
maximum error at any grid point in the curvilinear grid. Table 2 gives the data
used for the rectilinear grid for each value of A. The maximum error at any grid
point in the rectilinear grid is e,,. Both four and nine point interpolation for-

mulas worked equally well in this problem. The nine point formula was used to
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determine the data in tables 1 and 2.

As an alternative to simply setiing ¥ equal to its asymptotlic value at

T = Zpay the boundary condition
¢ [ ]
™ +|¥—Ay| =0

was applied at = = z g,y This boundary condition allows the first eigenfunction
with the slowest decay rate as x » « to be present in the solution at = = T ey,
The error in the numerical zolution showed some improvement very near
T = Xmey When using the improved boundary condition. In the fingering prob-
lem, the eigenfunctions decay exponentially as z - + =; thus, it was deemed

unnecessary to use an improved boundary condition.
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Curvilinear Grid

N h-1 hﬁ S max
0.5 51 .04 .08 3.0 1.9E-04
0.6 51 .035 07 2.5 1.2E-04
0.7 g1 05 05 2.8 1.1E-04
0.8 51 .04 04 2.0 1.3E-04
0.9 81 .03 .03 1.5 5.6E-05
Table 1
Rectilinear Grid
A Ny hy ho X min Tmay Ny Ry fy oy
0.5 45 .07 14 -2.8 2.0 25 .05 04 2.2E-04
0.6 4] .07 .14 ~2.2 2.0 25 .05 04 1.6E-04
0.7 40 a7 14 -2.1 2.0 =9 .05 .G3 1.8E-04
c.8 49 05 10 -t.4 2.0 33 05 .02 1.4E-02
0.9 88 .03 10 -0.8 2.0 37 .05 01 9.3E-05

Table 2
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IV. Numerical Solution of the Two~dimensional Problem

4.1 Stream Function and Vorticity Formulation

In solving the fingering problem numerically, it is convenient to express the
equations in terms of the stream function and the vorticity. We substitute the

stream function ¥

and the vorticity w defined by

W = Uy Uy

into equations (Ra,b,c). If the pressure is eliminated from the equations, we

obtain

'¢'zz+¢yy =w

(4Ba,b)
Wy + Wy =0

On the interface, it is convenient to use an arc-length coordinate s equal to
0 at the origin and increasing along the curved interface. Using the arc-length
coordinate, the tangent vector t is equal to (z,(s.0),%s(s,0)), and the normal
vector n, pointing into the finger, is equal to (—¥.(s,0),z,{(s.0)). These values

are determined from equation (28). The interface conditions (5a,b,c) become
Zs Yot Ys Py =0

(ysz"‘xsz) ('ﬁbyy—'l,lfzz) +4 25 Ys Yoy =0
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p-2Lo (ysa_xsz)qp?y_zs Ys {wyy“"wzz) :-—%:f:

where Co equals pU/T and

'ﬁ;" = Xy Yss—UYs Xss

These three interface conditions can be rewritten as

¥=0
W +RTss Yo + 2 Yss 'Qby =0 (49a.b.c)

p—2Ca [ (Y~ 25) Yoy — s Ys ( Yy — Vi )| + T Yoo ~Ys Tss =0
The symmetry conditions for z= 0 are
$%{z,0)=0 w(z,0)=0 {50a,b)
and the boundary conditons on the wall are
V() =-(1-F)  Y(z.i)=-1 (51a,b)
The asymptotic behavior of the fiuid flowas z - —= is
Y- —y+g w0 {52a,b)
and the behavior as £ » = is

v 2ely-Lve-y  w--3py (532.D)

To solve this problem numerically, we begin with an initial guess for the
correct shape of the finger. The initial guess is found by starting with a small
value for the parameter Ca =uU/7 and using the perturbation solution. Since

the shape of the finger has been fixed, we are forced to drop one of the three
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interface conditions (49a,b,c). The normal-stress boundary condition {49c¢) is

dropped. This condition will be used o find the corract shape of the finger.

4.2 Numerical Scolution on the Fixed Domain

The system of equations givén in section 4.1 is solved in the same way as
the equation for % in section 3.3 was solved. A curvilinear grid is consiructed
that follows the curved interface of the finger, and a rectilinear grid is con-
structed parallel to the straight boundaries. These grids are related to the two
square grids with uniformly distributed grid peints through the transformations
T and T, given in section 3.1. The same second order finite difference methods
used in the square grids in section 3.3 are used for equations (48a,b}. except for

the addition of w on the right-hand side of equation (4Ba).

The computational boundary conditions for the twe-dimensional fingering
problem discussed in section 4.1 must be chosen carefully. We consider the
boundary conditions at ¥ = 1, where, for simplicity, the case with no stretching is
examined (hy =h;). A common method for applying the boundary conditions
(5ia,b) is to construct a grid where the boundary ¥ =1 is centered between the
top two grid lines. This allows us to give the value of 9 on the top two grid lines

r
"pi.Ny='¢lxﬁ!1+ %"

= Pz 1) + gy (2,,1)

"l’i,Ny—z =y

z;, 1- %r_] =1 (z;,1) —%y“%(mi-i)

where hy, is the mesh size in the y direction. The error in applying these two
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boundary conditions is O(hf ¥y (x:.1)). If the value of ¥ is now given at = =Zmax.
then the discontinuity in the value of ¢ is O(R®) at the corner £ =z, and ¥ =1.
It was found that this leads to an O(1) error in the vorticity near the corner.
This can be predicted by examining the difference equations for equation (48a).
A more detailed explanation of the problems associated with these boundary
conditions and an examination of a model problem-can be found in the appen-
dix. If the boundary is a simple smooth curve, then these computational boun-
dary conditions can be used and no discontinuity will develop. Also, if the value
of 1,bw(:zi.1) equals zero at the corner, then the discontinuity in the value of ¥ is
not O(h#) and the vorticity error is 0(1). The driven cavily problem is an exam-
ple of this last case. Unfortunately, the value of ¥, (€ may.1) is not equal to zero
in our problem; thus, the computational boundary conditions discussed above

should not be used.

We constuct the rectilinear grid with the top grid line coincident with the
boundary ¥ =1. The boundary condition (51a) gives the value of ¥ on the top
grid line. A second order boundary condition for the vorticity w at y =1 is
derived by using the values of ¥ on the top three grid lines and the value of 4, at

1y =1. This boundary condition is given by

~TYi N, BN~ ViN~2 3¢, (x.1)
wi N, = > +
¥ B hy

where h, is the mesh size in the y direction. To use stretching, the boundary
conditions are transtormed to the square grid, and similar difference equations

are applied,

On the interface, the curvilinear grid is constructed with the grid line (#=0)
coincident with the shape of the interface curve. The boundary conditions

applied on the interface are written in terms of s and » coordinates by
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¥=0

w + 2[zsgrz+ys,rv}'¢t,.=0

¥y is equal to zero on the interface. The value of ¥, is calculated to second

order by using the first three grid lines in the r direction.

As discussed in section 3.3, the asymptotic behaviorscf Yy and w as z » & =
are applied at 2 =2 . and = =T ;. The value of z 4y, is decreased and the value
of T,z is increased to verify that the shape of the interface curve does not
change. An examination of the contour plots shows that the contour lines
flatten out rapidljr away from the tip of the finger; thus, the size of the domain

need not be excessively large.

4.3 Calculation of the Pressure and the Stresses on the Curved Interface

To determine the degree to which the normal-stress boundary conditon is
satisfied, it iz necessary to find the pressure and the stresses on the interface.
The pressure is calculated from the vorticity selution by integrating aleng the

interface. The pressure is given in terms of the vorticity by
Pz = Ca wy Py =—Co w,

Using the transformation 7, and these relationships between the pressure and

the vorticity, the derivative of the pressure with respect to arc length is

Ps =Ty Pzt Ys Dy

= (a | Zs Wy— Ys Wy
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={a xs[syws-i-rywr] - {a yslsm’ws*'?'xuf‘r]

={a [a:s'ry—ys Tyl Wet+ Ca [xs Sy~ Ys sz]ws

If we define
Ca &'
A{s,r)z—a?,(;()—qr)—{_zsry—-ysrz] B(sr)= CaEzs sywyssz]

then the pressure equation written in 5 and 7 coordinates is
ps=Alsr)ws:+B(s r)ws
An explicit second order difference equation for the pressure is

[ _
3wi+%-.1+4wt+§-.a i+l

2Ry,

Pi1=Pis1— hsAi+-§~,1 —'5“__5_'1 [Wirt1 ™ Wi

where expressions like Ai 41, are defined by
=

YRRULT VICENEVICNES

1'+E'1

as in section 3.3. The value of py,, the value of the pressure in the region where
the finger flattens out, is set equal to the constant pressure in the interior of

the finger, which has been set equal to zero.

The stresses Y, Yz and Yy aré calculated at each grid point on the

curved interface from the matrix equation

¢ Yy f 3 , \

1 0 1 Vez w

2 2 — 1
s 2 s Ys Ys "ﬁmy = E’w

z 4
‘zs Ly s Ur+Trls  UslUr ) L"py-y , k1][;‘,1;,,_-—(_7,-3.‘,'1--z~1~f‘1,($.rf,--y,)1[/.,.. ,
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The second and third equations are expressions for ¥ and ?s. They have been
simplified by using the interface conditions (49a,b}. The values of ¥, and ¥ are
calculated to second order on the interface by using the first three grid lines in
the r direction. The derivatives = and y,s of the transformation 7. are deter-

mined from equation {29).

We substitute the initial guess for the shape of the interface and the values
of the pressure and stresses at each grid point on the interface into the normal-
stress boundary condition (49¢c). If this boundary condition is satisfied, we have
found the correct shape of the finger. Normally, the right-hand side of the
normal-stress boundary condition is not equal to zero at each grid point, but a
residual R, is present. If the residuals B, ¢=1,2, -+ N, are all smaller than a

chosen error tolerance, then the correct shape of the interface has been found.

4.4 Expansion of the Interface in Terms of Tchebycheff Polynomials

To change the shape of the interface, it is convenient to expand the inter-
face in terms of a set of functions and unknown parameters. The shape of the
finger is determined by the numerical values of these parameters. The form of
the expansion greatly effects the amount of computing time needed to converge
to the correct interface shape that satisfies the normal-stress boundary condi-
tion. In fact, if the expansion is not chosen properly, the problem may never

converge.

The interface could be expanded in terms of cubic spline functions and the

coordinate values at the grid points on the interface. The residual at each grid



-45 -

point would be a function of these coordinate values-

Ri(zllyllxztyZl' "IN, 'UN) (54)

The advantage of using cubic spline interpolation is that part of the construc-
tion of the transformation T, would already have been done. One disadvantage
is that there are 2 N parameters in equation (60); thus, calculation of the Jaco-
bian needed in the iteration method would be very time consuming. A furthur
disadvantage is that a small perturbation added to a coordinate value has a
local effect on the shape of the curve. The iteration method using these local

effects is unsatisfactory.

In order to avoid these problems, the interface is expanded in such a way
that a perturbation of each parameter produces a global change in the shape of
the finger. This allows for the use of fewer parameters which will reduce the
computation time. One possible expansion of the interface would be in terms of
the arclength s

z(s)= 3 o5 F5(s)

i=0

m
y(s)= 3 dsg;(s)
3=0
where if is necessary to satisfy the extra condition

(z)+(y =1

Both fj(s) and g;(s) are global functions of s. This is a satisfactory representa-
tion for the interface, except that it requires choosing the ¢;'s and dy’s to satisfy

both the the normal-stress boundary condition and the extra condition.
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To avoid introducing extra conditions, the interface is expanded as a fune-

tion of y. The expansion for the shape of the finger is given by
I 211 g m
_ 1 Y % ¥ ]
z(y) = =1lo 1- 1+ c: To: (55)
0= Froe{ |1 8] | [2] Eeomult]
where 8, k,eq, ¢y, * ' Cp are the parameters that determine the shape of the

interface. The expansion is constructed so that the tip of the finger is located at
the origin and z(-y) is equal to z(y). The functions 7p; are the even Tche-
bychefl polynomials, If the grid points on the interface are projected onte the
y-axis, there are many more points near the ends of the interval, —f=y < 8,
than near the center of the interval. This is characteristic of the so-called Tche-
bycheff abiscissae. The Tchebycheff polynomials are chosen because it is
expected that they will converge rapidly given the distribution of grid points

used in the fingering problem. This is indeed found to be the case.

The asymptotic behavior of the shape of the finger as x ~» —w is
y~ B~ Aexplkz)

This relationship is inverted to give

as ¥ » 8. The expansion is constructed so that this agymptotic behavior is
included. If this is a good expansion, the value of ¢; will decrease as j increases.
This allows us to use the finite series from 7 = 1 to m as a good approximation to

the infinite series.
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4.5 Iteration Method Used to Determine Shape of the Interface

For a given value of Ca =pU/T, the correct shape for the interface is deter-
mined when we caleulate 8, &, ¢4, €4, ' ¢, such that the residual of the

normal-stress boundary condition is approximately equal to zero
R(B.k, cocy - Cpr) RO (58)

for+=1,82, -+ N. We use Newton's method fo determine the parameters that
satisfy this equation. Since the values of the pressure p and the stresses ¥,
Yoy, and Yy, depend on the parameters in some unknown way, there is not a
simple functional relationship between ‘F; and the unknown parameters. In
order to calculate the Jacebian of equation (58), a small step size h is added to
each parameter independently and the value of F; is determined. For example,

we caleulate

E;(B+h,k, co, 0y, " Cp)
which is used to determine the entries of the Jacobian

0f, _ R {(f+h, - )-R(B8 )
g 3

E; is calculated m + 83 times, once for each of the parameters, The amount of
computing time needed to calculate R; can be greatly reduced if we do not solve

the entire system of equations directly each time.

We begin with an initial shape for the interface defined by a set of parame-
ters and the interface eguation {55). We construct the prids and difference
equations as previously discussed. This leads to a large sparse system of linear
equations for the values of 4 and w at the grid points of the rectilinear and cur-

vilinear grids. If v is the vector that contains 4 and w, then the system of
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linear equations is written
Av=D

To golve this system of linear equations, we determine the LU decomposition of
the matrix A, where L is a lower triangular matrix and U is an upper triangular
matrix. This linear system of equations now decomposes inte two triangular

gystems that are solved by forward substitution and back-substitution. This

decomposition of A involves a major portion of the computation time.

In order to calculate the value of R {(B8+h, k,cq ' Cm) and the value of
the /;'s found by perturbing the other parameters, it is necessary to solve a new

system of linear equations

Av=b

Since this new system of equations is a perturbation of the original system of

equations, it can be rewritien as

(A+A;)¥={b+b;)

where A and b are the matrices in the original systermn. The matrices A; and b,
contain the small perturbations to the original systern for small values of A, If

we set

V=vEv gty t -

then the solution to the new system of equations can be determined by solving

the following equations:

AVI =b1""'AIv
AVE = —A1V1

AVS = ""Al V2
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Since the LU decomposition of A is known and the right hand side of each of
these equations is known from the previous step, these equations are easily
solved by forward substitution and back-substitution. In practice, the value of ¥
is determined te six places by solving only two or three of these equations.
Using this method, the computation time necessary to compute the Jacobian is

essentially equivalent to the time needed to solve the original system.

We use Newton’s method to find the new interface curve. The equation is

given by
8R, B8Ry AR | o)
3f ok e, | |98 !
0Rp O0Ry  0Ry || — Ry
a8 ok 8¢, |-
0y OFw o O Ry
aﬁ ak acm Lﬁcﬂh _RN

Since the number of parameters is smaller than the number of grid points on
the interface, the least-squares selution to the matrix equation is determined.
The new set of parameters is determined by adding &8, 6k, dcy - - oy, to the
cld values of the parameters. This process is repeated until the values of 7,

©=1,2, - N are smaller than a given error tolerance,
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4.6 Numerical Calculations

In corder to determine the appropriate interpolation formulas needed to
accurately solve equations (48a,b). an exact solution to these equations is exam-
ined. The exact solution does not satisfy the boundary conditions used for the
fingering problem. Even though the fingering boundary conditions cannot be
used for the test problem, we use boundary conditions that have the same form.

For example, on the interface we set

¥=751(s)

w+ 2 zssrzq"yssr'y]"pr:fz(s)

where f; and f, are chosen such that the exact solution satisfies these two con-
ditions, Three different combinations of interpolation formulas are
examined. In case 1, the four peint interpelation formula is used for both ¥
and w, In eage 2, the nine point formula iz used for ¥ and the four point for-
mula iz used for w. Case 2 uses the nine point formula for both % and w, We
find that the error in ¥ and w in cases 2 and 3 is an order of magnitude smaller
than the error preduced in case 1. Case 3 is used to calculale the data given in

Table 3.

Three different rectilinear grids are used to deterrnine the seclution. For
each grid, stretching in the x-direction remains the same. The values of the

parametlers used are
hy=0.08 f, =0.18

Zomex = 1.0 and ., = 2.0 are used for the right-hand boundary. In both cases,
the shape of the finger is the same. The value of ., is determined by the

choice of Spax Zmin 18 approximately equal to —3.5. The three different sets of
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the parameters that determine the stretching in the y-direction are

Mesh 1 hy =0.060 R, =0.01
Mesh 2 Ry =0.055 R, =0.02
Mesh 3 Ry =0.050 hy =0,03

The mesh with the smallest grid size near ¥ =1 is used when the value of § is
close to cne. In the s-direction, the mesh size near s.,; is three times larger

than the mesh size near the tip of the finger

hy=0.04 hy=0.12

where Sy is equal to 4.0. The typical number of grid points used in each direc-

tion of the curvilinear and rectilinear grids is

30

N=51 H=1 N, =35 Ny

The shape of the finger is determined by using nine parameters (m =8) for
the expansion of the interface given in equation (55). The megnitude of the final
coefficient cg is O(1.£—4). The inclusicn of a greater number of parameters has

very little effect on the shape of the finger.

The numerical results are calculated by beginning with pwU/7T=0.01 and
using the known shape of the perturbation seolution. Several iterations are
needed until the normal-stress boundary condition is satisfied. The value of
4U/7T iz then increased by small increments. The shape of the interface at the
previous value of uU/7T is used as the basis for determining the new interface
shape at the subsequent value of #U/T. Three or four iterations are needed for
the nermal-stress boundary condition to be satisfied al each value of LU/T.
Table 3 gives the values of 8, iy and Ap at each value of nU/7 for which the

numerical solution is determined. Fp is the radius of curvature at the tip of the
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finger which has been normalized by b, and Ap is the drop in pressure across
the tip of the finger which has been normalized by I'/b. The value of RyAp is

not equal to ~1 because of the normal stress contribution.

Finger profiles and contour plots of the stream function and the vorticity
are shown in Figures 8, 7, B, and 9 for the values of uUU/T equal to 0.04, 0.10,

0.40, and 1.00. As z - =, the velocity in the z-direction is
3 2
w- 2p(1-y?) -1

When the value of g8 is greater than -g— the fluid near the z-axis moves with a

velocity greater than that of the finger. In this case, an additional stagnation
point is present on the interface. For all values of 8, there is a stagnation peint
at the tip of the finger. ' Both of these stagnation points are seen by examining
the contour plots of the stream function. The largest stresses cccur where the
fluid is forced into the narrow region between the wall and the finger. This is

particularly evident when the finger nearly fills the cell.

Figure 10 is a plot of q =k {(1—8) versus ulU/T. Curve 1 is a plot using the
numerical solutions. Curve 2 is a plot of equation (26} which was determined by
expanding the solution in terms of eigenfunctions as £ » —=. The third curve
was determined from the perturbation solution. As mentioned in section 2.3,
the equation that determines the third curve is equivalent to the leading order
behavior of equation (26). An examination of Figure 10 shows that the pertur-
Bation solution is valid only for very small values of pU/T. The plot of k (1—8)
versus pl//T calculated from the numerical solutions is very close to the analyt-
ical result plotted in curve 2. The small discrepancy belween the two curves is
due to the difficulty in caleulating the value of k, the exponential decay rate as

T - -, Of all the parameters used to determine the shape of the interface, the
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value of k& is the most sensitive to changes in the grids, while g is the least sensi-
tive. Figures 11, 12, and 13 are plots of . g, and Ap versus ul//7. To demon-
strate the range of validity of the perturbation selution, a plot of g determined

by the perturbation solution is also shown.
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wt/T g Ry Ap
0.01 0.946 0858  -1.15
0.02 0920 0795  -1.22
0.04 0.884 0714  -1.33
0.06 0.860 0.660  -1.43
0.08 0.840 0620 --1.51
0.10 0.824 0588  -1.58
0.15 0.794 0530  -1.74
0.20 Q772 0491  -1.B7
0.25 0.754 D0.461  -2.00
0.30 0.940  0.438  -2.12
0.35 0.729 0419 -2.23
0.40 0.719 0404  -2.33
0.50 0.708  0.379 -2.53
0.60 0.680  0.3681 -2.71
0.70 0680 0347  -2.89
0.80 0.672  0.336 -3.06
0.90 0.665  0.328  -3.21
1.00 0.859 = 0318  -3.87
1.20 0649 0.305 -3.67
1.40 0.642 0.208  -3.97
1.60 0.638 0.2BB  -4.25
1.80 0631  0.2B2  -4.53
2.00 0.627 0277 -4.B1
3.00 0814  0.261  -B.17
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V. Numerical Solution of the Axisymmetric Problem

5.1 Formulation of the Problem

In this chapter, we consider the penetration of a finger into a tube initially
filled with a viscous fluid. As in the two-dimensional case, the steady state prob-
lem is examined and the finger moves parailel to the z-axis with consiant velo-
city U. The diameter of the tube is b and the diameter of the finger is 28b.

The parameter § is equal to (diameter of finger) /{diameter of tube).

Dimensionless variables are introduced in a form similar to that of the two-
dimensional case. The assumption that the inertia terms can be neglected in
comparison with the viscous terms is also made. .Under this assumptlion, the
conservation and momentum equations for incompressible axisymmeiric fiow

that correspond teo equations (2a,b,c) are given by

1
%““;(y”)y:o

{
P = Ca luzz + %-(yuy)y} (57a,b,c)
py = Ca va+ -;L—(y'uy) A
ot S =

The variable ¥ is used for the radial cocrdinate to avoid confusion with the r
coordinate used in the curvilinear grid. The geometry of the problem is identi-

cal to Figure 2.

The stream function ¥ is defined by
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and the vorticity w defined by

W=, — U

These expressions are substituted into.equations (57a,b,c). The pressure is

eliminated from the equations to give

Vaz + Yy — é—-% =y w
(58a,b}

Way + Wy, + ;—wy—;—zw =0

The interface is deseribed by (z(s,0), ¥ (s.0)) where s is the arclength along

the interface curve. In the axisymmetric case, the boundary conditions on the

interface are given by

¥=0
YW+ R Yo TR Yss Yy =0 (59a,b.c)
p-la ryszuz — 25 Ys (U +u’y) +msavy] =Po— L"*’" L
l Ry Fa
where
=L =Ll L
(80a,b,c,d)
= - !'— = - l‘.. e ——
Vg = ¥ sz 'Uy_ y "pzy yg "Jbz
The principal curvatures for the axisymmetric problem are
Rl § F58 ys 85 Rz y
. The

The pressure pg is the pressure inside the finger and is set equal to zero
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boundary conditions on the wall of the tube are
Y(z.1) == +(1-8%) Py (2, 1) = -1

and the symmetry conditions on the centerline are

Wz, 0)=0 w(z,0)=0
The asymptotic behavior of  and w asx -+ —= is

Yo -2 (y* =6 w0
and the behavior as.z - = is

¥ Sa%(2yt-yh)- oy w > ~48%y

As in the two-dimensional case, the normal-stress boundary condition is
dropped, and the numerical solution is computed on a fixed domain, The pres-

sure is calculated from the vorticity solution by integrating along the interface

Bs = TP +Ys Dy

= Ca g |wy + % +Cays[-wz]

(o

= Ca 5 |8y Ws +7, W, | —Ca Y [Szws +7, Wy | + _;fs_:t_u_
&

=(a {Zs Ty —Ys Tz]'w'r +{la [-T's Sy —Yg Sy | We T =5

The values of the derivatives of 4 are computed at each grid point on the inter-
face as in section 4.3, The stresses are now calculated using equations

(80a,b,c,d). At the tip of the finger, it is necessary to examine the stresses in
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the limit as ¥ » 0. The interface is expanded using Tchebycheff polynomials and

equation {55).

5.2 Numerical Results and Comparison with Experiments

The curvilinear and rectilinear grids used for the axisymmetric problem are
the same as those used in the two-dimensional case for a given value of nU/T.
Table 4 gives the values of 8, Ky and Ap at each value of uU/T for which the
numerical solution is determined. Ry is equal to the radius of curvature at
the tip of the finger which is equal to both R, and ‘Kz, Fp has been normalized
by b. Ap is the pressure drop across the tip of the finger which has been nor-
malized by T/b. Finger profiles and contour plots: of the stream function and
the vorticity are shown in Figures 14, 15, 16, and 17 for uU//T equal to 0.04, 0.10,

0.40, and 1.00. As x - =, the velocily in the z-direction is
- 2B%(1-y®) 1

For § greater than ;If? the fluid near the z-axis moves faster than the finger.

Taylor [15] discusses the two simplest types of flows that might occur: a stagna-
tion peint at the origin with a stagnation ring on the interface of the finger or
two stagnation points on the x-axis, one of which is-at the origin. By examining
the contour plots for the stream function, it is clear that a stagnation ring is

preseni for £ greater than :}5’ Figures 18, 19, and 20 are plots of 8, 5, and Ap

versus puUU/T. There are no major differences between the two-dimensional

and axisymmetric results.
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When the axisymmetric finger moves through the tube, a fraction m of the
viscous fluid is left:behind on the walls of the tube. The fraction m was meas-
ured experimentally by Tayler as a function of uU/T. Figure 21 compares the
numerical results with the experimental results where m is equal to 1— 8%, The

numerical results are in excellent agreement with the experimental results.
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pU/T 8 Rq Ap
0.01 0.947  0.855 -2.29
0.02 | 0922 0792 243
0.04 | 0889 0.712 -2.65
0.08 | 0.888 .0.859 -2.82
0.08 | 0.848  0.620 -2.97
0.10 | 0.833  0.590 3.10
0.15 | 0.808 0.5386 -3.40
0.20 | 0788  0.500 -3.65
0.25 | 0.772  0.473 -3.89
0.30 | 0.780  0.452 -4.10
0.85 | 0.749 ° 0.437 -4.30
0.40 | 0.741  0.424 -4.49
0.50 | 0.728  0.4083 -4.85
0.80 | 0.718  0.388 -5.20
0.70 | 0710 0.376 -5.53
0.80 | 0.703 0.366 -5.85
0.90 | 0.898  0.358 6,16
1.00 | 0.894  0.351 -8.47
1.20 | 0.886 0.341  -7.08
1.40 | 06881  0.331 -7.85
1.60 | 0.676  0.325 -8.23
1.80 | 0873  0.320 -8.79
2.00 | 0.870 0315 -9.36
3.00 | 0.660 0301 -12.13
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Contour Plot of the Vorticity w
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V1. Discussion

In solving the fingering problem, we have used a composite mesh to cover
the domain. The resulting numerical solution is not only accurate in the inte-
rior of the region but also on the boundaries of the domain. The amount of
computing time necessary to construct the grids is a very small percentage of

the time necessary to compute the solution to the fingering problem.

The employment of a composite mesh creates enough flexibility that it can
be used to treat problems with many different types of geometries. It can also
be used in determining solutions that exhibit singular behavior. The composite
mesh can be composed of as many grids:as necessary to solve a given problem.
The grids are easily constructed to include stretching which places more grid

points where they are needed most.

In this thesis, the solution is calculated by solving a large sparse system of
equations that includes the solution on both the rectilinear and curvilinear grid.
If we had used a single grid to solve the problem, then the sparse matrix would
be a band matrix, When two grids are used, interpclation equations are
needed to connect the solution on the different grids. The interpciation equa-
tions change the structure of the sparse matrix such that it is no longer a band
matrix. This increases the storage and -computation time needed to seolve the
system of equations. It would:be useful to sclve a smaller system of equations
on each grid separately and then iterate back and forth between the two grids
until the correct solution to the entire problem is determined. The smaller sys-
tem of equations on each grid is banded and thus could be solved more quickly.

This could be done for Laplace’s equation using the interpolation formulas used
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for the fingering problem. It should be noted that the convergence rate would

depend on the size of the overlap region of the two grids.

The numerical methods employed in this thesis work very well in the treat-
ment of a free surface problem. Many .other free surface problems could be
examined by extending the methods to include the effects of the inertia terms.
The methods could: also be extended to handle time-dependent free surface
problems. In these problems, the curvilinear grid would move with the interface

at each time step of the calculation.

There are various fingering problems that can be examined using these
methods, The effects of gravity on the shape of the finger {or the two-
dimensional and axisymmetric geometries can be calculated. Now that we have
golved the two-dimensional problem belween the plates, we can apply the results
to possibly improve the interface boundary condition used to examine the finger
in the plane parallel to the plates of the Hele-Shaw cell. It is hoped that an
improved interface: condition will bring the plot of A versus pl//7T into agree-

ment with experiments.
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Appendix

To fully understand the problems associated with using the computational
boundary conditions given ai the beginning of section 4.2, we examine squations

(48a,b)

Yz + Yyy =W

Wy + Wy =0

on a rectangular domain given by 0< z < zp and 0< y < 1. One solution of the

equations is

v(z,y)=ycoshy sinz
w(zy)=2R2sinhy sinz:

To solve this problem numerically, the appropriate values of ¥ and w are
specified on all boundaries except ¥ =1 where ¥ and %, are given. The following

five point difference equation is used for the two partial differential equations:

'¢1+1 7 2'7!01. 1+’¢1. -1,7 '(lb’é,j+1_z’¢i.j+¢i.j—l
hi hif

Vox +'§l’yy

The grid is constructed with the boundary ¥ =1 centered between the top two
grid lines. This allows us to give the following values of 4% on the top two grid
lines:

h
Yin, = ’4#[5&;-1 + __7;_3_;_} =P (z, 1)+ ‘éi"ﬁby (2. 1)

wi.wy_lw[x‘-.l—»%;] Y (1) - 2y (201)
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where hy is the mesh size inn the ¥ direction. The leading order error in applying

these two boundary conditions is equal to é—h.yzww( z;,1).

To explicitly demonstrate that the vorticity error is O(1) near the corner
where z =z, and ¥ =1, we calculate the vorticity w at the grid point

(x_N:_l,'yNy._l) using the difference equation for 9. The value of ¢ at each of the

five grid points needed to calculate @ =W N, -1,4,~1 CAD be expanded in terms of

@=1!’A;—1.Ny—1
VN -1.8, =+ Ry By + SR + O(R)
Va1 =F—ha Ty + L RE Vg~ LRZ Ty 4 O By 1Y)
VN, -1,8,-1= = Shf Dy + O ()
Vi, 01 =+ By Vg + TR + O(RS)
Vi -1.N,-2 =¥ ~Fy Uy + 3R Yy + O(Ry)

The first four values of ¥ given above are specified by the boundary conditions.
As discussed above, the first three values contain & leading order error equal to

é—h.yz Yy (25, 1), The last value 'glsz_l_ N,z is determined by caleulating the numer-

ical solution to the problem. Due to numerical error, the actual computed value
will differ slightly from the exact value given above. If we substitute the above

expressions into the difference equation for 4, we get

_ 1 Bp
Vyry 11+ﬁ-’— +o(1)

=

gl
1}
&
]
+
<
]
+
mil—l

where an O(1) error for the vorticity 4 is present. If we make the assumption
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that the computaticnal errer for ";’Nx_llNy._a is clese to -é—-hyzww(zﬂz_l.l), then
the -é-%y term in the expression for @ will not be present. Even this assump-

tion does not eliminate the O(1) error in the vorticity.

h
We now consider a grid point on the grid line y =1— -éf—- in the center of the

interval 0= z < zy. In this case, all the values of ¥ needed te calculate the vorti-

city will have an error close to -é—hqf'a,i/w(xi, 1). Since the error in ¢ is a smooth

function, the error in the vortiecity is now o(1). It is a discontinuity of O(h?) in

the value of ¢ that produces O(1) errors in the vorticity.

We now determine the numerical solution which will demonstrate the prob-
lems discussed above. In the following fables € .y is the maximum error of the
\-forticity at any grid point. The location of the maximum error is (z;,¥;) where
the value of i and j are given in the tables. N and N, are the number of grid
points in the z and v directions. In table 5, 4 and w are given on all boundaries
except on ¥y =1 where ¥ and 9, are given. For zg=1, the error in the vorticity is
0(1) and changes only slightly as the mesh size is decreased. When zy=m, the
discontinuity in %, which is due to the computational boundary conditions, does
not occur. The error in the vorticity is now O(kh?). In this last case, the results

are similar to those found when the boundary is a smooth curve,

In many problems whicl;l have equations similar to {48a,b), the values of ¥
and ¥, are given on the boundaries. The value of ¥ will also have an O{(R?)
discontinuity at the corners for these boundary conditions. In Table 8, ¥ and ¥,
are given on x =%, ¥ and ¥, are given on ¥ =1, and '¢' and w are given on the
other boundaries. The boundary x =z, is centered between two grid lines, The
computational boundary conditions used on z =zy have the same form as those

applied on ¥ =1. Again, the error in the vorticity is 0{1) near the upper right-
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hand corner. If zg=1m, then ¥y, Yyyy. and ¥, are all equal to zero in the corner
where z =7 and ¥ = 1; Yz is not equal to zere. This produces an O{kJ) discon-
tinuity in 4 for the numerical problem. The vorticity error near the corner

should now be O(h,). This result is confirmed by examining Table 6.

Finally, we determine the solution by using the computational boundary
conditions used for the fingering problem. The boundary y =1 coincides with
the top grid line of the mesh. The computational boundary conditions on y =1

are

Y=9(z;, 1)

~?Y.N, F B N -1~ Y N, -2 . 8 Yy (2, 1)

w=¢u(mir1)+ ah; h"y

The values of % and w are applied on the other boundaries. Table 7 gives the

results of these calculations. The vorticity error is small.
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Zp Nz Ny h, h.y 2 max i j
1.0 9 g .125 .133  0.578 8 B
1.0 17 17 .083 085 0.551 18 16
1.0 383 33 .031 .032  0.540 32 32
T 28 ¢ .26  .133 B.17E-02 13 8
- 51 17 .063 .085 7.81E-03 26 16
Table 5

Zg Nz Ny hz hy € max 1 j
1.0 9 8 .133  .133  0.484 7 8
1.0 17 17 085 .085  0.524 15 18
1.0 33 83 .032 .032  0.547 32 31
n‘ 26 © .i28 133 B.54E-02 25 7
n 51 17 .083 085 4.37E-02 50 15

Table 8
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zo N, N, R hy € max i g

1.0 9 9 .15 125 423F-08 6 9
1.0 17 1Y  .083 063  1.B2E-03 14 17
1.0 83 33 .081 .081 B.41E-04 31 33

Table 7
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