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An experimental investigation has been made on the stability of

small aspect ratio rectangular membranes ie 2 subsonic flow., The

leading and trailing edges of the membrane were attached to rigid

streamnlined supports while the two streamwise edges were free, Doth
surinces of the membrane were exposed to the airvstream, and the
membrane tension was applied through the trailing edge.

The results of the test show that two types of flutter (instability)

occur, The first to appear as the wind speed wae increased from zerg,

&

2

with a fixed tension level in the mermbrane, was a small amplitude flutter
which has a shallow wave likke motion traveling in the streamwise

direction. At higher wind speeds this motion was damped cut, A
narrow equilibrium zone or boundary existed which separated the first

type of flutter from a second type of motion having a traveling wave of

larger amplitude and greater speed. This second type of flutter had no

tendency to damp out, but became more violent as wind speed was
increased,
The span of the slender membrane is the physical parameter

that uniquely determines and controle the firet flutter boundary; its
mass plays no part here, but does affect the equilibrium zones.
Appendix A contains an obvious formulation of the slender

membrane flutter problem.,
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R = aspect ratio

£
1

a (m + pe ‘53 cee equation 8 - Appendix A
&3
% i 29 ) 2 38
b sece cquation § - Appendix -
o™

o

@ %
c { ~ o= 4 —=) see cguation 8 - Appendix A

Se o !
C wave speed of the membrane in an airstream

wave speed of the membrane in a vacuum

o

£ frequencies - cycles per second

g, eigen function - see equation & - Appendix A

h lateral deflection of the panel

e h ; 4 g s

H 7 = none-dimensional lateral deflection

= wl a3 : 3 3£

28 —= = non-dimensional frequency -« reduced frequency
18,

L kernel function - see page 13 - Appendix &

y membrane length

M free stream

m integer {positive)

n integer {positive)

N_ = = membrane tension per unit span
st

P_ aerodynarmic pressure induced by lateral deflection
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(1/z)p, U% frec strearn dynamic pressure

membrane span

membrane thicknes

speed of flow at infinity

downwash

tension load applied to the membrane
streamwise coordinate

spanvise coordinate

vertical coordinate, posgitive down

b
=
ac
1 = g
b
ac
bmﬂ
mass per unit area of membrane

ratio of amplitude of lateral ogcillation to

P
@am

trailing e

chord

an dimensional 5o e

— = non-dimengional spanwisc parameter
spanwige parameter

2y , .

—t- = nass ratio parameter

ey

edge

nbrane
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iz = non-dimensionzl spanwise coordinate
= non-dimensional streamwise coordinate
mase density of alr in free stream

maes density of membrane

Digenvalue, see equation 6, Appendiz A

— = pon-dimensional time

velocity poteatial

2wf = {requency radius per second



TVTTS T VAT

E}‘?Tw, i,;*ig e & zvm

teelf,

¥
[

The membrane {lutter problem is as old as flag fluttex

The earliest work on the praoblem dates back to Lord Ravieigh's (Ref.
1) investigation of the flapping of flags and sails., More recent
investigations have been made by Greenspan and Goldman {(Ref. 2),
Jordon {Ref, 3), Miles (Ref, 4), Hedgepath {Ref. 8), Thoma (Ref., &),
and Ashley and Zartarian (Ref. 7). The theoretical problem is more

difficult than it first appears, and in certain cases the seewningly
simple membrane problem requires more effort to solve than the
corresponding plate problem {Ref., 8). Since a theoretical solution to
the {lutter of a finite membrane had not yet bean obtained, an experi-
mental investigation was carried out to observe some of the physical
features of the phenomen

B

e
LCIT Merrill Wind Tunnel

The tests were conducted in the G
which has a mazimum operating speed of approxdmately 160 miles per
hour. The rectangular vented test section measures 42 inches wide,
36 inches high, and has z usable length of about four feet,

Rectangular slender membranes were the only models used in
the flutter tests. (4 slender membrane, as used here, means a planar
body with o low aspect ratio, and negligible bending stifiness). This
particular geometry of membrane was chosen beéaﬁsa it appeared that

the experimental results might be compared with the deductions of the

simple slender wing theory.

Guggenheim Aeronautical Laboratory, California Institute of

Technology.
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Moving pictures were taken of the fluttering membranes to

i clarify the types of motion that occurred,

@
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illustrate
ment wae aleo designed to provide information on the frequency and
maximum amplitude of flutter, and the combination of parameters

which define the reglons of flutter.



The membranes were made of 2 Mylar Polyester X

aterizle due to its

@

proved superior to most metal, cloth or paper m

&

greater toughness, excellent uniformity, and availability in several

close tolerance thicknesses, Tests were made on membranss with a

-

common length of 28 inches, spans of 5§ and § inches, and thickneseses

[

of 0,001, 0.063, and 0. 0075 of an inch,

%11 of the membranse formed a small aspect ratio deformable

ot

wing with its leading edge taped behind o MACHA 0018 wing section
spanning the tunnel width., This was done to ensure a uniform flow of
alr over both sides of the membrane, and to eliminate the possibility
of o separated flow caused by a2 sharp leading edge. The trailing edge
of the mernbrane wae fastened to a small rod mounted on bearings

which allowed a horizontal but not vertical movenient ag {lutter

occurred, This moveable rear support was used to help maintain a
constant membrane tension “‘":” {i.e. one which would be independent

]
B

of the flutter amplitude). The tension load in the membrane w
applied through 2 whiffle treec connected to the tralling edge support.

Different tension levels then could be applisd with a damped spring
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gvstem or with free hanging weights., Installa
k4 & &

section i shown in Figures 1, 2, and 3, ‘n alternate attachment was

Ll

develoned to shorten the length of the rear supporiing rod., This was
e fad s &

o 8

done to increase the rod rigidity and reduce its drag (see Figures

and 8), The wing section was mounted at cach end through a point

&

Film is manufactured by . I. DuPont De MNemourse
Wilmington, Delaware.

and Co., Inc., Film Dept.,
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located at its center of gravity. Alignment of the wing and membrane
was then obtained by applying a large tension load, at the whiffle tree,
which snapped the wiag, free to rotate, into the proper position where
it was locked.

Since the flow direction changed with tunnel velocity it was
necessary to rotate the wing membrane combination relative to the
tunnel test section to obtain zero angle of attack at 21l velocities., This
wag accomplished by the haandle on the gear pinion at the rear of the
test section shown in Figure 3. The complete system was also counter-
balanced 2o it could be stopped and locked at any position in which it was
set bﬁr the handle., An airfoil angle of attack wae indicated by 2 mano-
meter whickh measured the static pressure differential, at a chordwise
point, between the upper and lower surfaces of the symmetric wing.

y

The test section dynamic pressure was measured from {wo static

rings built in the tununel wall and connected to a micromanometer, The
true dynamic pressure was then obtained from this recorded data with
the aid of a calibration curve :&f the tunnel. No blockage correction was
used since it was found to be less than 0.1 per cent based on the
model/test section area ratio,

The frequency of the membrane vibration and amplitude of 2
point on ite edge were measured with the aid of an optical oscillograph
which was made for low {requency mezsurcments. A4 schematic view
of the instrument and its principle of operation are shown in Figures 4
and 5, 4 pencil of light was reflected into a lens system: by the
flattened and polished head of a straight steel pin taped to the edge of

the membrane. An image of this pin was then focused by the lens



systern onto photo-sensitive paper rolled on a rotating drum. As the
pin moved with the fluttering membrane in the light field a trace was

-

recorded on the moviag paper. The speed of the paper could be varied
for different spacings of the trace. Figure & illustrates some traces

of amplitude time response at the 75 per cent chord of the membran

14

during flutter, A further discussion of these traces is given in the

"Tast Results' section.



The significant parameters which could be varied in the wind
tunnel test were the dynamic pressure, membrane thickness (i.e.
mass per unit area), span, leangth, and membrane %:az’mé@ﬁ. The
following variations in geometric parameters were tested; 0, 001,
$.003, and 60,0075 inch in thicknesses, two span wi gﬁ‘éh@ of 5 and 6
inches and one length of 28 inches. Membrane teneions ranged from
0 to 20 pounds per foot while corresponding dynamic pressures ranged
from O to 56 pounds per square foot. Tensile stress in the membranes
wae less than 1000 pounds per sguare inch, MMylar film's vield %r@agtﬁ
is around 7000 - 8000 pounds per square inch, OUanly one muaterial was

used for these tests since preliminary investigations indicated that the

Mylar Polyester Film made a good durable light weight membrane.
(Mylar has a specific gravity of 1. 39).

The procedure used to establish a stability boundary was as
follows: After a membrane was installed and a given tension load
applied, the tunnel velocity was increased until the first flutter was
visually observed. The tunnel velocity was increased further until an
upper bound was reached where the flutter was dam: out and the
membrane remained undeflected with no noticeable flutter. The tunnel
velocity was then decreased until flutter agein occurred and then stopped.
In this manner the first stability boundary was approached from both
increasing and decreasing wind speeds,

A wvariation on the above procedure was to increase the tunnel

speed beyond the equilibrium zone and observe the second type flutter
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that occurred, Investigztions were made on the width of the equilib-
rium zone separating the two types of flutter and the effect of
approaching this zone from the second flutter regime.
| The frequency of flutter and amplitude of a given point on the
membrane were determined by using the optical oscillograph described

in the "Model and Instrumentation' section.



Two types of flutter were found for rectangular slender mem-~

branes similar to the model shown in Figures 1 and 2. The {irst to

o

appear ag the wind speed was increased from zero, with a fixed
tension level in the membrane, was a small amplitude flutter having a
shallow wave form which traveled in the direction of the airstream.

& the wind speed wasg further increased, 2 point was reached at which
this first type of flutter appeared to be damped out, leaving the mem-
brane in a flat highly unstable position. The membrane would stay in
this flat state for a2 very narrow range of wind speed. A slight in-

"3 3

crease in speed above this value would cause the membrane to jump
into a larger amplitude traveling wave motion, while a decrease in
gpeed would take the membrane back into the {first flutter zone,
Figures 7 and 8§, taken from movie {ilms of the motion, illus-
trate this first and second type flutter respectively. (The tuft spacing
in the figures is approximately two lnches between rows). The
traveling wave nature of the motions can be scen as well as the
differences in amplitude, wave length, and wave speed. No measure-
ments were made on the lengths of the traveling waves, but for a
given membrane tension and span the length of waves in the second type
flutter appearecd to be smaller than those of the first type flutter. The
width of the equilibrivwm zone was gquite narrow and difficult to measure,
80 no accurate estimates were obtained on the zone dimensions. The

experimental data shown in Figure 10 define only where the first type

flutter was damped out; the second type flutter occurred slightly to the

o u

e

other side of this line.
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During both types of motion the wave amplitude grew as it
traveled toward the trailing edge of the membrane, aad reached a

maximum near the 75 - 85

pauy

per cent chord., This amplitude growth was
more prominent, however, in the second type of flutter.

The first stability boundary was found to be invariant under the
direction of approach. It was not possible in the experiment, however,
to reach the narrow equilibrium zone f{rom above; it seemed m disappear
when approached from the large amplitude {lutter regime.

The trailing edge condition, whether {ree to move horizontally or
completely restrained, seeme to have no eifect on the first type of

o

flutter. This is probably due to the smeall amplitude of motion, For
this reason the restraining of the trailing edge {rom horizontal move-
ment will not change the character or position of the first stability
boundary or the equilibrium zone, The amplitude of the second type
flutter wae, as could be expected, smaller when the trailing edge was
restrained from horizontal movement,

In Figure 6 is shown the behavior of an amplitude time response

at the 75 per cent chord of the membrane. A discrete progression is

made in velocity, for a constant NJ‘& of 36 B.:;/fg , from the first

]

Pigure 10 this represents the

5

through the second stability boundary. In
straight line progression as shown by the dotted arrow. The top four
traces represent the membrane during its first type flutter; while the
fifth trace was taken with the membrane in the narrow egquilibrium zone,

The last two traces illustrate the amplitude response found immediately

upon entering the second flutter regime. I the recording tape were



10
traveling the speed of the wave the traces would be representative of
the true wave shape. OSince this did not occur the traces represent a
distorted picture of the wave.
At the onset of the first type flutter (sce top trace), the motion

g harmonic and a single frequency exists. As the wind speed in-

[

creases the form of wave is perturbed slightly as shown by the second
trace., Further increase in wind epeed causes an unusual shape to
occur on the side of the fundamental wave form {see trace 3), It
appears as though a smaller wave were riding on the side of the larger
one, Shown in trace 4, at a still slightly higher w speed, is an
apparent break-up of the fundamental wave form. A break-up of wave
pattern with increasing air speed has also been ocbserved by Jordan {Ref.
3) in an earlier report,

Figure 1Z shows the {requency and reduced frequency ranges
that occur during a well established first type flutter {(i.e. about mid-
way between the first and second stability boundaries). The

characteristic length in the reduced freguency is the membrane chord,

Shown in Figures 9 and 10 are the two types of boundaries as
defined by the experimental data. The parametere used to determine
the first {lutter boundary (Figure 9) are the membrane tension 2’5%, the

span S, and the free stream dynamic pressure ¢. This first boundary,

defined by

)

x .
—= {, 958

[55]
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is independent of the mass of the membrane. Thus ?‘2‘?” <1l iga

reguirement for the observation of flutter on the membrane,

The second boundary or equilibrium zone is plotted against the

& Lk
game parameters which determined the first flutter boundary (sece
Figure 10)., The experimental data here indicate a dependence of the

A

equilibrium zone on the membrane mass., A suggested form for this

(a8

second boundary is

N

= =1y 2)

fu) > o for any >0

where w« is the membrane mass ratic parameter. No explicit for

weg obtained for the function {(u).
Figure 11 represeats a summary of the membrane stability
boundaries 28 obtained from the experimental study., Table I contains

the experimental data that defines these boundaries.

guation 1 a2 comparison can be made between the wave

Utilizing e
speed of the membrane in a vacuum and the first critical wind speed

i

wave speed of a membrane in a vacuum.

4 540 g N .
a4 = o= = critical dynamic pressure first causing flutter,
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Shown in Figure 13 is a plot of (C@i”@}cv 2s a function of the

1

mass ratio parameter ¢ and the membrane thickness t. Irom this
plot it can be seen that the critical wind speed causing flutter may be
larger, equal to, or smaller than the wave speed of the membrane in a
vacuum.

The effect of the turbulent wake of the wing section on the
membrane flutter and equilibrium boundaries is not known. Reference
9, however, indicates that the frequencies found in the wake of 2 thin
wing are many timmes higher than the flutter {requencies observed in

this experiment.
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Theoretical Formulation of the Slender

Membrane Flutter Froblem

The following is an obvious formulation of the slender mem-
brane flutter problew: for the model shown in Figure 14, The equation

of motion and appropriate boundary conditions assuming small deflec-
zi E b

2 2

Z
. &h, .. & h
P e X ““mg"\& 4 ‘:\éw oy, 2 ) 43%

ot P &
8t B3¢

a(t, v, t) = h(ﬂ 2 Vet)= 0

where hfx, v, t) is the lateral deflection of the membrane, "‘?’q {2, v, €}

the lateral load per unit area due to the acrodynamic pressures, vy its

S 3

mage per unit area, and N_ its tension per unit width,
The aerodynamic pressures on the membrane are determined

from a solution of the following slender wing problemn:

A
g
i
€

& R s Oy g A T .
% z = @‘“ﬁ" =SEwS= q«gg 4+ U »gg? ﬁ(&, Vo 'L? Detwe O WIDY
oz, v, 5, 8) = 0 2. C. off wing (2)

Sl ve B, t) = 0 28 |y |2leo Z.C. at w

3‘}3 - E:;m AN E:;,{“;
kAN = 3 T " =
{ 5 } =2 <~ 4@? + U mz;? Note (g:;sm Q&B

m



This problem formulation is subject to the following parametric

restrictions (Ref. 10):

T<< 1

|56® - 3l<<(m)™¢

R << [g)-t/e
Its solution gives the pressure loading on the membrane io

-

terms of the lateral deflection as

. s/2
i Ya . . el e O .
Ps - *;;,ﬁ L{ys 0 8) (e + U "“:5’:') hise, v, t) dn

where Ly, n 8) 18 a well EA?.@W@

:55
@3
Ll
1}

Ly, m &) = - g’ﬁf

a.[_i gy""f}gz % [\/@/&%2

V*“@BZ’ + [\/4/2}4,

Woting that 7 = - the equation of motion and boundary

g

conditions for the slender membrane take the {ollowing form:
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Q Jiue 32;§ 82‘ . é}az
& : " 8 h, .. h o &7k |
- = Lyl S) | =+ 20 U = dy
- &t 8xdt O%

(3)

a0, v, t) = &( L, yot) = 0

.

Introducing the dimnensionless variables

o

into the equation of motion 3 gives:

-1
/ i”ié—usf}

s

5} oo

with boundary conditions

(0, v)=5{L2,7)=0

The kernel Ly(», 5 ) reduces to:



1- 25 + (1-2%1-7%

Ly{v,s1="La - -
1-25 - (1-291 -5

Lesuming the following formn of solution
H{E, v, T )= ﬁn(%s T %miﬂ )

the equation of motion becomes:

851 '
S . L,{2,5 ) g {5)s +
T e 56 1 “n

,1’; ”E

If the pressure distribution acrose the span of the membrane is
assumed to be directly proportional to the spanwise displacement
gﬁéﬁ b the system: of chordwise modes will be uncoupled from the

spanwise modes and the eqguation of motion & reduced to partial

differential equations with constant coefficicante., IFurther this unknown

dizplacement function gﬁéﬂ ) may be obtained by solving the followiag

dholm integral equation.
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1
Lold, T g (F) ¢ L g () (6)°
B R Eal I o, °n
, )
-1
The eigenvalues in equation & are ordered so that 0y equals
the mininum one in absolute value. The singular kernel Lgﬁzi .5 ) is

real, symmetric, positive definite, and quadratically integrable, i.e.

[ / z,;g’w,fmﬂ a1 < o

Thus the existing eigenvalues are all positive and denumerable, while

the corresponding eigenfunctions are continuous, orthogonal, and form
a complete set. The eigenfunctions also vanish at the end points (-1, 1)
{i.c. the wing tips). The integral equation 6, however, does not seem
; . wE e ,
golvable in terms of known functions ., Fortunately further analysis
k] v .3 g‘.sﬁo%
requires only a knowledge of the eigenvalues 0, - In the subsequent -
&,
investigation, therefore, the unknown eigenfunctions g (2} are used to
£&

epresent the spanwise mode shapes of the membrane flutter to within

& rigid body translation Il of the spanw elemer 3 S
igid body t glation o of the spanwisce clement {see Section !

It is of inte »ﬁ% %@ 7&@&% that this eigenvalue problern is identical to
one that heo arige @mmhty heory - see for example Reference
13, eguation & 3. 16 and Reference 14,

% ibid,

# It has been shown in Reference 13 that 07, ~ 8



Figure 14). Under this assum

motion § ls reduced to:

with boundary conditions.

20, V) = lriﬁ

et

A1 n equations of

o

differ only in their constant coefficients.

and discuss only the solution of the nth equation.

2

X

[

<

. .
N ;0% 8%1

- o dé* § ’ﬁ%« mg
Sq T oag” 4" agsT

are 21l of the Luler type given by:

8°H

R — L
51"

b

5]

and may take one

2. 2w
8 ,‘mm 8% 0

+c e = ()
DEBT 98~

2 , .
b~ -~ ac >0 hyperbolic

d‘fe
b eac = 0 3@&?&@@1&@

b - ac < O elliptic

vy b g
Waere

ption the integral differential ecuatio:

of three forms as defined by thelr coefficients.

&5
©
bty

motions are qualitatively the same since they
It is thus sufficient to obtain

Further the equations

{8)

(9)
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o = g/b( % 0“?\%‘%

{(10)

w
Tn
™
ad 3
c= |- e )
S¢ (7::*2??

The motion at the critical flutter condition may be considered

a8 harmmonic and thus glven by

o iKY
H (&) g (=) e (11}

trpd
fedeg
P Y
Hid
-4
A
w
.{
g
it

Solutions of the form:
i .
e {1z)

arc then assumed for the n partial differential cquations of motion,

Substituting 12 into 7 leads to the eigenvalue problem

ﬂnéab = Eﬁimfiﬁ =0

(A

(£) is the eigenfunction and the eigenvalue of the

differential operator A given by:
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e

. J o . s d
A B c et i ZE D o=
2 & P

The mith eigenfunction and associated eigenvalue of the operator

respectively., Since for each

i chordwise modes.

-
e ey L
(6) = Be ©

ey
ShL & d

with the {ollowing characteristic eguation for Q.
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It is convenient at this point to parallel the two solutions to &

which are clagsified ag hyperbolic or elliptic, In the hyperbelic zone
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The eivenfunctions thus become:

=35 £ 12 £
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g the boundary cond

satisiving

be e =iELE ) .
T 2il e « “sin{ii 48 £) {hyperbolic) {1&8a)

1]

{elliptic) (18b)

vy

oundary condition Efi'if.”lélﬁ.) = 0 vyielda the eigenvalues:
0

K= + 2T s 0 12 3 eee - {ayperbolic) (192)
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Ke 4 joiee mwm=8,1,5,3 ... {clliptic) {19b)
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The final solutions to the equation of wotion 5 may be written in the

y T ) =4 Be gin mwf ggm(—l)) (hyperbolic) (21a)

i Y \J ko gt o I3 -y Q,
HE, 2, T )=+ Be & < sin mwt gwéz)? {elliptic) (21b)
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and repregents a modulated traveling wave on the membrane which

g2 5e & 5
L.

moves upstream (- dirvection) or downstream {+f direction) as « is

BT
&N
‘s . P % 1
wsitive respectively. The coefficient ¢ = {= et )
=4 o, ¥
n
is the quantity that controls the wave direction. When g—=0 {il.e. at

the lower wind speeds})

and the traveling wave moves against the airstream. The waves cease
to propagate against the airstream and move with it a2t the critical speed

2

where the coefficient ¢ wvanishes (l.e. at

L9 3

s T p constant

Sq Oy
el & 2l & E‘ 3 &
The largest value of the constant ¢ ﬁ} represents the lowest possible

wind epeed, {or a given membrane tension and epan, at which waves

s s ~,

start propagating in the direction of the alrstresrn, This largest value

occurs when

{i.e. for the minimuwm eigenvalue of the integral equation &) An

approximation to this first eigenvalue {(see Appendixz B) shows

™T

1

== = 1.81 (22)
247
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ag the critical condition for waves to {irst start propagating with the

&y

airstream. If the coefficient ¢ of equation 8 is considered as an

effective tension, the restoring force of the membrane is:

- Lo e
a4 E 8 ﬂéi!f},
RESTORING FORCE = = 3
a‘i\mwl‘u‘af«.i&%}%ﬁ B ~ € o + 2 Z.‘;?
s Rves (23)

B

The vanishing of the effective restoring force in the membrane is thus
the condition causing waves to propagate with the airstream.

i

At the higher wind speeds, i.e. when

g &
b - ac < 0

Qr

i
1 1 Q&W
T BV
On® M4
o“m’ﬂ'

«

the solution 21b is valid, This represents a divergent motion in time,

[y
I

Figure 15 illustrates the boundaries of the motions associated

with the nth spanwise mode, The motions assocclated with the other
5 4,

n-l spanwise modes are identical but each mode has ite own charac-

-

teristic boundaries which are determined by ite respective eigenvalue
On’

The foregeing analysis failed to predict a divergent oscillation
in time which is associated with flutter. Instead propagating waves of
neutral stability were found which traveled first against and then with
the airstrearn as the wind velocity was increased from zero. Thus the

-

question arises 28 to which of the waves, if any, will be unstable and
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grow to 2 visible size and which will be damped out and thus not observ-
ed, It must be concluded, therefore, that the above f@r:mu}atmﬁ using
lincar equations and slender wing theory, but without other approxima-

3
&

tions, failed to explain the exuperimental features of the problem.
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Dounds on the Minirmum Eigenvalue

2

Although the integral equation

1

e 9 - o L(2.,5)g(5)dg =0
-1

1]

Lo (125 V- 250 - 5%

e
[

1-ws - V(- 250- 59

)

hae not been solved in terms of known functione it is possible to obtain

a bound on its minirmum elgenvalue,

5 lower bound may be obtained f{rom 15:

1

1o
f f L;{:ﬁ,jbéﬂés (2)
-1 Jag

The equality sign holds if and only if the product g () g (5)

1\

=]

is a constant rmultiple of ;Legi-z), < ).
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an integration by parts may be performed giving

i 1
f L €7) S Jég e.:;:‘,’; “"f‘ - QJ'S ) 2 arcsinsds
-1

- 4{l- 2 }f

1o Vi 21 w-sVi-

[ )
1
2 5 o o : 3
1 =
g} 1 (2-5)V1i. s°

The above definite integral may be evaluated by making ﬁ'%c
transformation:

2 cos e

i

S =cog ¢

i

It then becomes

1 . |
o g @ 3 3
erc 8in$ 48 j’ @ d¢
>
21 (w-2%) 1. §° o COBY¥, - coBO
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strates the use of the divergent series

<o
1 5 Z sin n &
prrpeanl i cos n P

cos ¢ - sin &
nsl

for evaluating certain definite integrals.

An evaluation of the above integral by this method yields

R
LY

W
J’ ¢ do _ 4 Z ginne
T =" Thme —z
o n=1, 3,

and
i 0
2 . 2 sin nf{arc cos
f:%;ﬁ-mshs:.’%z 1-2° 2 o = =)
A : n
bl E@gi, 35 ° o
Integrating over the domain again with respect to o gives
1 i 2 i oD
. o N 2 sinnfarccosa) ),
j bgéz),g ¥iw dg = 32 1« » { ; zweév
‘“}i "'E "’E ﬁ.zig 39 e e o .
The integral on the right may be evaluated by applying the transformation
2 = cos e
S = cos ¢

which results in:



i o0 T W o
. 2 sin nfarc co : sin in® .,
3z i 1- 2 Z , img 08 2 %ﬁﬁ = 32 § ' i ne}awe o
gfv—;&:’ @éa
"'3 .ﬁ:?w Ep o ® o o 3’35‘33, 3' s 0 -
but
sinne sine . 1
32 Z s 30 = 128 Z 5
R “13 (4 mé?
o n=1, 3, .. N n=1, 3, .. Ny -

50 the above reduces to

1 1 @
7,& ) e a = 128 ! 2
Mgi »S ) dg = 128 @365/ QZE {3)
‘“:ﬁa "3, :":&ggg -?%9 e ® * -
Since the sum of the above series to three significant figures
is:
]
) ! = 0.326
g e = e
: &

n=l, 3 ..

eqguation 3 has the following numerical value correct to the same

accuracy.
1 i
f f uﬁy),f}ﬁéﬁ ds =4L1.7
-1 -1

Thue the lower bound for the minimum eigenvalue becomes

0. 15¢
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12N
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Further estimates on the minimurm ecigeavalue may be obtained

k

T

from the following {Ref., 1

U

vinip Jdp

4
Pt
]

o = - {52)
AT
=1
1
f 7y ¥ (2)a0
or = - (5%)
f[fmbéay] do
-1
where
1
fﬁwwf L0, 5) v (s )as
-1

and yﬁ( ) for n=1 is an arbitrary fuaction which should not be
orthognal to glég Yo

Since equation 5b is, in general, more accurate than equation
Sa {sce above reference) an upper bound on o’y may be obtained if

the following holds true:

0.155 < 07 lfrom 5b) < 07y {from Ba)
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Assurning the general formm:

sin afarc coe <)

Vi. st

y%f‘? =

gives

1

()=

A
-~ sin nfarc cos )

as a first approximation to the eigeniunction.

An approximation to the minimurn elgenvalue as obtained from

Ba for:
V%fﬁ - sinfarc cos S ) =1
1. s?
fzéz)é = 2w sinfarc cos 2 )
is

% ~ 0,203

while a first approximation from 5b is

(¥

Since 5b yields the more accurate reaults, the upper bound becomes:

O"1 < 0.196

The minimum eigenvalue is thus bounded by:

g. 155 < oy < 0,196 {c)
An approximation to the minimum eigenvazlue will be taken as

oy = 0.176 (7)
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Fig. 3

Model and Installation
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THE STABILITY OF A GRID OF PANELS

IN A SUPERSONIC FLOW
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ABETRACT

A theoretical investigation has been made on the stability of
a grid of panels in a supersonic flow. The problem is formulated by
considering this structure as a limiting case of a2 more general -
configuration composed of a ring of panels (i.e. an axizally stiffened
cylindrical shell) whose outer surface is exposed to 2 supersonic
flow pavallel to its axis. It is shown that the stability analysis of
this more general configuration can be reduced to the analysis of an
"equivalent' single panel using the circulant :matrix idea. The reduc~
tion procedure, applicable to most cyclic configurations, allows for
all types of inter-element (panel) coupling and is subject to the sole
restriction that the dynamic phenomenon be satisfactorily described
by linear theory.

It is shown that at least five different multi-panel configura-
tlons can be obtained from this general problem by taking the
appropriate limiting process. The stability {{lutter) analysis of one
of these limiting cases is discussed for high Mach number flows

where only an elastic coupling existe between neighboring panels,
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LIST OF SYMBOLS

a lim R o(i plate length - Figure Ib
R——ec0
A coefficient - see Table II
A coefficient - see Table II
b lisn RA 1 plate width - Figure 1b
R—e=w
B coefficient - see Table II
¢ h/ V1Z R
C coefficient - see Table II
ﬁmn [(mz + in%é + € mé] / (mZ + lZnZ}E’.
E modulus of elasticity in tension and compression
f known fuaction - see Table I
g known function - see Table I
h plate thickness
H matrix
i integer
integer - used in Appendix A as /-1
kg fundamental solution - see page 81
kl fundamental solution - see page 81
Kij kernels of the integral equations 16 and 17 - see page 80
iii; matrizx
L cylinder length
L Spence function - see footnote Table I

aerodynamic operator

!



integer

I
by

M;(i) bending moment per unit length of the ith shell segment
‘ acting about an axis parallel to the £ axis - see Figure 2

n integer

N Ehaila(i -7 Z) flexural rigidity of the shell or plate

P concentrated load normal to the shell surface

P matrix

] Fourier coefficient and dynamic pressure parameter

R radiug of curvature of the cylindrical shell

t 2mw/ )

[4) s@e@é-@f flow at infinity

W, Vo W longitudinal, circumferential, and radial components of
deflection - positive sense shown in Figure Za

W generalized radial deflection - see Table III

b curvilinear coordinates located on the middle surface of
the shell in the axial and circumferential directions
respectively

y distributed loading normal to the shell suriace

« = %}%, dimensionless axial coordinate

, i

* - B,

oL, shell length - dimensionless

3 = % , dimensionless circumferential coordinate

8, stringer spacing - dimensionless - see Figure la

r CiB +

Kronecker delta
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forward difference operator

e+ 2
EEN 53
; } ,, 2
€ 12(1 - z)éﬁ)RZ a({é/ﬁ%hs L le{l - D7) (%)é 5;;)2.
- ﬁ_:z
n special value of 4 where an edge moment is applied
H special value of 4 where a concentrated load is applied
ei Jacobi Theta Functions
A o
i!ﬁi
A 17BN
A -—-—-H--—-—%h
mass ratio parameter
Po™ ) - B
y2 Poisson's ratioc
£ special values of 9( when an edge moment is applied

/
18,

e

Il

special value of o when a concentrated load is applied

) .
' < - £3d
T A<, £) / e
[o]

g phase angle - positive constant
Po mass density of alr in free stream
Pg mass density of panel or shell
Q & 2qa’
. — =98 . dynamic pressure parameter



Lane (Rei., 1) made an important contribution to the theory of
compressor blades {lutter by showing that the system mode shapes of
an n-bladed system can be obtained in terms of n single equivalent
blades. This result was subject to the sole restriction that the |
phenomencn be satisfactorily described by linear theory, and that the
fluttering elements have a finite number of degrees of freedom.

Stated differently it was showsn that the flutter anslysis of a cyclic%’
arrangement characterized by a large number of identical fluttering
blades could be reduced, with no loss of generality whatsoever, to the
analysis of a2 "single equivalent blade’,

Fuag (Ref. 2) in an unpublished report has made an imp@rtmfz
extension to Lane's principal result by demonstrating that it is readily
applicable to such apparently different problems as the panel fluiter of
the skin panels of & circular semimonocoque fuselage.

In the present paper Fung's reduction procedure will be
employed to formulate the pénel flutter problem of a finite axially
stiffened cylindrical shell whose outer surfiace is exposed {0 a2 super-
sonic airstream parallel to its axis. It is necessary, of ccmrsé, to
assume that the shell geometry is cyclic {i.e. all panels are identical},

and that the flutter phenomenon can be satisfactorily described by linear

theory.

& Veyclic” arrangement is a term used here teo signify the usual
compressor or turbine blade configuration wherein the last or nth blade
iz adjacent to the first blade,
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An approzimate method of solution of the above problem is
outlined for the case where the curvature parameter € approaches
zero, This particular case corresponds to a grid of panels with many )

bays in the spanwise direction (Figure 1b},



The equation of motion of a single fluttering skin panel can be
written in the form:

wie, y) = L1 | (K yixp v ) wiz, y ) dx ) dy (1)

where %,y are curvilinear coordinates on the surface and the integra-
tion interval extends over the entire panel surface, Furthermore

Re [w(x. y)ejwt] is the displacement at a point (%, y). L4 is a real
valued dynamic pressure parameter playing the role of the eigenvalue,
and K({x, Yi¥gs ye) is a complex valued function depending upon Mach
aumber, reduced frequency etc. It will be convenient to think of the
kernel K as the product of an elastic influence fumctionmk times the sum
of an aerodynamic and inertial operator which operate on the deflection
w to yield a lateral loading normal to the panel surface. (see reference
3 for the details regarding the derivation of such an eguation).

To deﬁermine the value of the parameter QL that defines the
flutter boundary the solution of equation 1 is sought for <« real. The
panel ig then neutrally stable and harmonic oscillation is pogsible. The
gide of this neutrally stable boundary which gives a negative imaginary
part for w ie the side of oscillatory divergence (i, e. flutter). The
nature of the kernel in equation 1, however, is such that the sclution
wix, v) and Ll dre in general complex and hence the proper combina-

tion of physical parameters in K must be chosen in order to locate a

An elastic influence function gives the lateral deflection w of the
panel at a peint (%, y) due to the action of a concentrated unit load at

the point (% ‘%’0)"
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real valued eigenvalue. The lack of an exictence theorem for such a
real valued eigenvalue is the basic theoretical difficulty of the flutter
problem.

Disregard for the moment the theoretical problems involved
in the solution of the flutter problemn and consider the stiffened
cylindrical shell shown in Figure la. The orthotropic stiffening,
consisting of two end rings and n axially longerons, is such that it
divides the shell surface into a cyclic arrangement of n identical
panels. Fung writes the equation of motion for this system in the
same form as equation 1 by considering w as a column matrixz of n
clements, and K as a square matrix of nz elements. The jth
component of the column matrix represents the deflection form of the
jth panel, and the clement aij in the n xn square matrix represents
the effect of the jth panel on the ith panel., In physical terms the
element a’ij represents the elastic and aerodynamic caapﬁng& that
occurs between the ith and jth panels for a structure of this type. By
analogy to the single panel case the kernel XK may now be thought of
as the product of 2 matrix of elastic influence functions timees the sum
of an aerodynamic and an inertial operator which operate on the vector
w to yield a lateral loading normal to the shell surface, The inertial
@g&uf&tﬁﬁ‘ takes the form of an identity matrix times the scalar operator
Pg I .w.z the elastic and/or aerodynamic matrices, however, are of

dia emai form only if the elastic and/or aerodynamic coupling vanish.

e

Since for small oscillations of the shell the inertial leading is
proportional only to the local acceleration of the skin, it is not a
coupling element in the problem.
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The equation of motion of this system can be written in 2 more
compact formy (Ref. Z2) by introducing the so called composition product

of ¥ and w defined as:

;% * g = f =, Vi% e Vo ) w(x@. y@) ci;a:@ dy@

In addition the unitary element I is introduced which has the following
property

Isf=£f%l={

~

where { ie any function compatible with the composition product
definition.
Eguation 1 may now be written as the matrix equation:

H#*ws=0 (2)

where

Hs{I - OK).

In view of the fact that a cyclic system has no preferred element
(panel) it is apparent that the coupling effect of the nth element ( panel)
on the first must be the same as the effect of %he first element (panel) on
the second and so on. This result holds true under 2ll forms of imtex;-
element (panel) coupling as long as the system is cyclic and linear,

The matrix X in the general eguation of motion
[a 4



rf.x 3 T W ( ]
“11 gz vt 0 g Y1
Zs H e e o e o }'X W .
4 21 22 2n L 2
< >
o ° L) o [ -] -] ° 9 k-] e o k-] -] * ® = 0
}’;‘g o a e 9 [ -3 (-] o £ H W
nl nn Z&J
\ 7 \ 9
therefore reduces to the circulant form
(.. . . 3 Y
,.«.3 5.52 a » o o o 5’}.n Wi
E':i }z ° 13 (-3 L] o .z-v& W
ﬁ n 1 n-§> 2 g
L] @ o L] 2 ] L] Q £ o L] L] ] & @ ﬁ £ = 0
H é”’g s @& o o o E‘E W
L 2 3 i L 2 |

as a consequence of the cyclic geometry of the panel arrangement.
There are in addition only n independent elements in this matrix; E"”i
represents the total effect of the s panel on the (s+l-i)-th panel.

It was shown in reference 2 that the flutter analysis of this

systemn could be considerably simplified. The reduction process is as

follows:
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Consider the I matrix where
~~

( -1 -2 PYSE
! w@ CJ@ wc
-1 -2
1 a)ﬁ 1
o o B
P = ﬁ
-1 -2 -n+l
\3 “©n-1 “Yn-1 | )

w = elmlp/a)

o p=601,2,...,n=1)

j=J-1
and I is the unitary element introduced above. In the Pl matrix
every element in P is multiplied by the unitary element I. By actual

malgiplication it can be seen that

?I*(S%‘%SWP = (@*Eﬁ)*w {3}

and that

PI#H = B®P] {4)

where B{=, Vix, vy@) is 2 diagonal matrixz of which the ith element on

the principle diag@mk is



&
(b

1

% » e = LT # - T > ® ~2 T
Bi(:&. Vi y‘e) = 5‘21(;‘;;:, VW ‘(j’@) + wi ﬁn(h’ Vi% o yg) + wi ﬁ‘n- f& Vi V@)

-n+l . ,
o o s oo F Cdi AZ(}{, Vi yg)

(i=015 cocop n=1)
Cn combining equations 2, 3, and 4, and letting
Fl#w = p
one obtains
PI*{Z#w) = B*p = 0 (5)
The eigenvalue problems 2 znd 5 are completely equivalent.

By transforming the variables Wis Wos eeees into

p =W1‘°ﬁ"w + W '%'aoco

[+] 2 3
. 4
Py = wy + Wz”wg + ngwz I (&)
é
p, = wy + wa/wz + wga’wz ..

etc., the original eigenvalue problem of n coupled panels is reduced
into solving individually the n uncoupled problems of “egquivalent

single panels':

Bi*g}i = @ (i = 0. E' 2‘, e e o 65 p ﬂ”l» é?)

If a pair of eigenvalues and the corresponding eigeavector p
were found, the flutter mode of the panels are at once given by

i

w = P p
Ead



i.e. by

W1

i
o

(3)

¥
i
g
S
£

etC.
The interpretation of the flutter mode is very simple. For

example, suppose that

$ 0

Py

at the minimurhn flutter speed, whereas zll other p's vanish. Equations
8 then show that the panel deflections w E(}:, vl Wa(ﬁi. gk ... of
successive panels are identical in shape and magnitude but differ by a
constant phase shift o‘;ﬁ, i.¢. each panel lage in phase behind the
preceding panel by an angle 2wk/n, the same as in Lane's case of
finite degrees of freedom. IMore complicated flutter modes might also

occur which are analogous to those discussed in reference 1,

An examination of the transformed problem 7 written in the form

shows that the flutter solution of the ith equivalent panel actually corres-
ponds to the situation in which the original flutter problem is solved for
one g@anei when this panel is under a very special form of influence from

21l other panels; namely all other panels oscillate with the same panel
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mode, the same magnitude of occurrence of this panel mode, and with
a phase shift angle o’i {as yet undetermined) between adjacent panels,
This result, therefore, makes it possible to think in terms of the
original physical problem when solving the simpler equivalent panel
preblem. It is important to realize that this result is valid when all
panels of the original problem flutter at the same frequency but with
different modes and zlso different phase shift between different panels,
as well as when all panels flutter in the same mode shape but differ by
a constant phase shift between different panels. (i, e. all interpanel
interference is correctly accounted for).

The operator B o-'i) in eqguation 9 resembles a finite complex
Fourier series in the undetermined phase angle O‘i. The physical
nature of the original flutter problems, in addition, guarantees that the
coefficients (i.e. the H's) of the higher harmonic terms will diminish
guite rapidly. That is to say the influence of the neighboring panels
becomes quite small with increasing distance. Thus a tremendous
simplification suggests itself for cyclic configurations with a large
number of panels {(Ref. 1), The operation of solving the above n
elgenvalue problems is replaced by a minimization process with
respect to an interpanel phase angle ¢°. In other words a general
complex eigenvalue problem

B{o)p = 0
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is considered wherein the i discrete values of the n roots of unity
are replaced by a parameter ¢ which is temporarily assumed to be
a continunous variable between 0 and 2w. The finite Fourier series
can then be replaced by an infinite series which in some casess will be
summable in closed form to a relatively simple continucus function of .
0” . This new eigenvalue problem: is then solved for a small (relative
to ) number of values of the parameter o°. A plot of the minimum
eigenvalues obtained verses éhe phase angle is drawn as a smooth
curve. The final o-;,“ and —n"i_ ‘are then obtained from this plot by

picking the admissible value g7, closest to the minimum point on the

curve; i, e. by taking

0L = 2u?/n

with o) restricted to be a positive integer less than n. It should be
pointed out that the choice of (7] must be such that the resulting flutter
mode allows each panel to be 'in phase with itself"” as i‘% certainly must
be in actuality.

A justification of this minimization process can be made from a
physical point of view. Briefly it seems reasonable to believe that a
ring panel system with n panels, where n is large, will exhibit a
critical {lutter velocity U and frequency e« which differs only slightly
from a systemn with identical panels, identically supported, but n+1l in
aumber, Thus the critical frequency and eigenvalue parameter O,
which may be thought of as a critical velocity, should vary smoothly
with o”. This in turn implies that the minimization process and the

replacement of the minimizing angle ¢, by its nearest admissible
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value O should be a valid means of determining the critical flutter
velocity and associated frequency.

The o:iginal flutter problem may thus be analyzed, in all
geaerality, in terms of 2 single "equivalent’’ panel. The critical condi-
tions for flutter corresponding simply to the admissible interpanel phase
angle 03 ylelding the minimum eigenvalue Q.p, and to the frequency
and panel mode associated therewith,

It is to be emphasizeé that all forms of elastic and aercdynamic
coupling have been accounted for in the above foermulation, and that the
results are quite general within the realm of linear theory.

Although the formulation of the flutter problens allows for both
types of interpanel coupling, their simultaneous treatment offers some
complications., Thus it is at this poiat that another important simplifi-
cation suggests itsell. Under certain flight a@néiti@nsﬁe. roughly |
speaking when the shell is flying at so called "hypersonic' velocities,
the aerodynamic coupling vanisées and the local air loads are a function
only of the local downwash., The shell therefore retains only its elastic
coupling and the flutter problem is further simplified.

Under these conditions the aerodynamic rmatrix takes on a form

similar to the inertial matrix and the eigenvalue problem 10 reduces to

it

1 A
BloYs,. = b, oyl - [[m iz, w] [ X o, h} AR

with

t ) i ’GU V*l '_'o-a i by, .
K+ K0 +K eV 4K eI 4K
i ]

t
"

See section on Aerodymamic Pressure Lioads,



ok
)
and the elements Ki defined 28 follows:
§

K, = The influence function yielding the Jdeflection
surface of the first panel when a concentrated
load is applied at any point on the second panel,
Due to the cyclic property of the structure it
-also equale the deflection esurface of the nth
panel when a concentrated load is applied in the
same relative position on the firset panel.

a The influence function yielding the deflection

surface of the first panel when & concentrated
load is applied at any point on the nth panel,
Due to the cyclic property it equals the
deflection surface of the second panel when 3
concentrated load is placed in the same relative
position on the {irst panel.

7
#

By referring to Figure 2a it becomes apparent that 21l the elements K;
will be known once the Green's function of the stiffened shell is deter-
roined, For emmgﬁle.' if 2 concentrated load were applied to the first
panel {denoted by the number zero in Figure Z2a} K; and ;;i; would be
given by the deflection surfaces of the panels labeled 1 and -1
respectively. K;gmg and K; would be given by the deflection suriace of
the panels labeled 2 and <2 respectively etc. It is easily seen from this

physical picture that the structural matrixz is not symmetric i, e,

etc,

The function Ei'. appearing in the flutter problem, may be thought
of as a generalized elastic influence function yielding the lateral deflec-
tion surface of the equivalent panel (denoted by the number zero) when
this panel is under a very’ special form of influence from all other
panels (see Figure 5). The concentrated loads in this case are normal

to the shell surface and occupy the same position relative to each panel,
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AEROCDYNAMIC PRESSURE LOADS

The unsteady aerodynamic pressures acting on the outer sur-
face of the shell arise through the interaction of the shell surface
motion and the airstream. This motion differs from that which eccurs
in conventional wing flutter in that it involves only local deformation
of the aerodynamic surfaces; rigid body motions of the shell are not
allowed. Furthermore only infinitesimal elastic deformations in the
neighborhood of an equilibrium state will be considered in the stability
analysis. In the following, therefore, the unsteady flow problem will
be regarded as a small perturbation on a local steady flow,

In supersonic flight the unsteady aervodynamic pressure ac:%;ing
at & point on the shell will in general be influenced by the motion of the
shell at other polnts. This aerodynamic coupling, however, complicates
the flutter analysis and a further simplification {e introduced to eliminate
thie problem. For M >>] the compression and expansion waves
caused by disturbances on the shell surface make small angles with the
undisturbed flow, It follows that gradients transverse to the flight
direction are large compared with those parallel to it. These facts
suggest Hayes' (Rei. 4) hypersonic approximation that any plane slab of
fluid initially perpendiculaz to the undisturbed flow may be assumed to
remain oo as it is swept downstream. The slab thus moves in its own
plane uader the laws of one-dimensgional unsteady motion for the case of
initially planar b@éﬁ@se&. The pressure geﬂe?aﬁéd by the motion of the
body is related to the local normal component of fluid velocity in the

same way that these quantities are related at the face of a piston

Thig unsteady motion will be two-dimensional for noneplanar bodies.

“



70
moving in a one-dimensional channel., The net simplification results
from the fact that the local pressure is a function only of the local
dowawash and no aerodynamic coupling occurs,

The above piston analogy was introduced by Lighthill (Ref. 5)
and later utilized by Ashley and Zartarian (Ref. &) in certain aero-
elastic problems. They concluded that the approximation should be
valid when the local piston velocity does not exceed the local speed of

sound in the undisturbed fluid i.e. when

v“ﬁi‘g + |w) k]< 1
max inax

where M is the local Mach number of the flow, lggl is the maxi-

mum inclination of the shell surface to the airatr@mjj&lw;n ax the

maxdmum displacement of the shell, and k the reduced frequency or

a measure of the unsteadiness of the flow. When the magnitude of the

surface disturbances are such that this condition is satisfied the local

unsteady pressure is given by

pm-pa Uiy B9y ___pUT (w1 ow (11)
. P mTE T~ [z . =TUB
M -1

with x taken as the coordinate parallel to the free strearm direction.
Now for the stability analysis of the grid of panels at high Mach

numbers (M 22) the lateral pressure loading on the structure will be

adequately described by ét&tic piston theory or as it is more commonly

called the simple Ackeret theory given by



p =~ 29 gw
. = e iiadiniii it Er}? L]
M2 -1

Houbolt {Ref. 7) and Hedgepsth {Ref. 8) have shown for flat three- .
dimensional panels in the above Mach nmumber range that there is no
appreciable difference in the {lutter boundaries predicted with Ackeret
theory as compared to those predicted by linear piston theory or even

a more accurate threc-dimensional theory if

EAC A

\/y,gmg i— =3

The results discusged above are based on the assumption of
an approximately plane surface, even though Hayes' approximation is
equally valid for non-planar bodies. Some general cwnéi&@ra&i@n@
regarding hypersonic unsteady flow past non-planay bodies have been
advanced by Eggers (Ref. 9). In the absence of more detailed gtudies
one can only conjecture that equation 1! with g and a calculated
from the undisturbed steady flow, should prove adequate for unsteady

motions involving local deformations of finite length shells if (Ref. 10)

3
L4,

> > 1 .
Lfar 4 E<<1

Thus for non-planar shell structures flying at kipgh Mach numbers the
eigenvalue problem 10 with the time factor removed reducss to the

form

Blo¥p,. =p, ~ 0 f[&g b yisg 3’@][=
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THE GREEN'S FUNCTION FOR THE RADIAL DISPLACEMENT
OF A FINITE aXIALLY STIFFENED CYLINDRICAL SHELL

CGeneral Remarks

Now that the formal reduction of the flutter problem iz complete
it will be conveanient to renumber the panels as shown in Figure 2.

The utilization of the reduction process in the actual flutter
avalysis requires the knowledge of the Green's function yielding the
radial displacernent component at any point on the stiffened shell due to
a concentrated radial load acting on one of the panels. In this section
such a function is derived and the reesults extended to {ive limiting cases
of shell structureg. The solution is based upon the assumption that the
differential equations of equilibrium of the shell are adequately described
by the well known Donnell equations (Ref. 11), and that the complete
stiffened shell can be assembled from freely supported shell segments.
This in turn implies that the stiffeners do not bend in the radial direction
nor offer rotational resistence to the shell,

In Appendix A the results of this section have been used along
with the principle of superposition to compute the elastic influence

function required for the flutter analysis.

Problem Formulation

& cylindrical shell of radius R and length R o, supported by
stiffening rings along its two ends and by straight longitudinal stiffeners
equally spaced along the circumference forme a continucus stiffened

e
shell . When one of the panels of such a shell structure is subjected to

The exact boundary conditions will be defined later.
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a concentrated radial load its deformation pattern will induce deflec-
tions in its neighboring panels which will in turn influence their
neighbore etc. The longitudinal stiffeners, however, tend to damp out
this influence and at a sufficient number of spans away from the loaded
panel no appreciable deflections will be observed. The bending of each
gpan of such a loaded shell can be readily investigated by combining a
solution for a freely supported cylindrical shell segment under a
concentrated unit load with a solution for a similar shell segment bent
by a concentrated unit moment. Thus the Green's function for the
complete stiffened shell may be built up from these two fundamental
solutions. This approach requires oanly that the complete shell be
assermbled from cylindrical shell segments whose displacement
boundary conditions have been properly matched along the longitudinal
stiffeners.

In the following analysis the axial coordinate x and the
circumferential coordinate y of a point on the middle surface of the
cylindrical shell will be denoted by the non-dimensional coordinates

A and B where

L=% 8 =1

b b

The ith panel of the cylinder is degcribed by o« in the interval
(0S XS &) and g in the interval (4 <8< g0HH)
Let the components of elastic displacement of a point on the
(@ i ()
14

middle surface of the shell be denoted by u , and w¥'’. The

inplane displacement cormponents in the axial and circumferential
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directions are aqé) and vﬁ) respectively while the radial deflection
component is w(i) (see Figure 22 for positive sense). A complete set
of boundary conditions for the ith shell segment that are appropriate
to the panel flutter problem is the freely supperted condition zlong the

two end rings.

W (g, 5 @ = 0 W(i)éxa.ﬂ(ik) = 0
ﬁ‘ﬁ;—e@. A B 2—7—2&?(@ sl =0
RO . SO NN S
g%(@wsﬁéi)} - o %zgf’_(ﬂ‘ﬁei)) = 0

and the following 'matching conditions' along the longitudinal stiffeners

W0 = v, s =0 (2)

oft ¥ 1, 0) = ufl,sp =0 ()
(13)

v(i + 13(4 , 0) = V(i)(a( , /3§§ = 0 {c)

owl * s, g) = a4, ) (@

PLERY 53 @
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The freely supported condition along the two end rings will be realistic
for rings that are rigid in their own plane but deform sasily ocut of
their plane,
The following analysis can be considerably simplified if the

matching condition 13c is replaced by

avlt ¥ o o) v, ) )
) 5s @ =0 1<)

The physical meaning of the condition 14 is that the midplane stress
component o-‘y vanishes along the edges (d,0) and (L, 3). Free
extensions in v must therefore occur at these edges to satisfy this
zero stress condition. Obviously a rather special type of stiffener
panel attachment would be required to insure such free inplane exten~
sions. In view of the simplification that is possible in the znalysis,
however, the condition 13c will be replaced by the condition 14. ¥For
the lmiting case of a grid of {lat panels v and v are identically zero
on the longitudinal stiffeners and the solution will be exact.

.The simplest formulation of the problem is one which utilizes
an integral representation for the radial deflection component. This
method has been successiully employed by several authors in rather
complex shell problems related to both stability and deflection analysis
{(Refe. 12 and 13). It was found that in several cases this approach was
more favorable than the direct integration of the differentizl equations.
Proceeding in this manner the radial deflection component of the ith

panel of the shell due to a concentrated radizl load acting on the Oth

panel at (=, H) may be represented by (for notation sece Figure 2)
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1
W, p b, i) =/ mi}?‘“(%) k(4,8 B¢, opat
(5]

(15}

i @

1
- f e (4 6 g apiae + 5k 1 8 B, b,
L&)

The function %{@{a( ’ .ﬁS (i);z . 'é{m) denoctes the deflection of a freely
supported shell segment due to a concentrated unit load acting at
(=, Eéﬁ}) while the kernels 7&344 » /3 (i);ﬁ. 0) and '§«:§€o(. A ‘i’;g, yit 33
denote the deflections of a freely supported shell segment due to a
concentrated unit moment acting at a point (£, 0} and (£, 4 3) of its

edges respectively., The Kronecker delta symbol J, 1o is defined as

S‘ij-—-@ i¥

s,

ii .

Mm(%ﬁ;) are the unknown edge moments along the longitudinal stiffeners
caused by a concentrated load on the Oth panel.

Since the fundamental solutions k@ and }:.3 {i.e. the E{erﬂeig
in equation 15) satisfy the condition of freecly supported edges the
matching conditions 13z, 13b, and 14 are automatically satiafied. The
final matching condition 13d is satisfied by properly selecting the
unknown moments MS’{@} &0 that the radial slope iz continuous across
the supports. In view of equation 15 this matching condition at the ith

support may be written for i $0 or ~1as
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i
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or
g (i)
i+1), .. )T (i-1) -
f ( i N 4&)[&“(&.&&&33&. eza]mn (é)%l(a(.é))é«i-ﬂ
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According to the Mazwell reciprocal theorem the kernels in the integral

equation are symmetric

Kijq,(’ /3 3&:73 = E{jiqg' ?3;0(°/3 ’

and the above equation may be written as
1 , ‘ ‘
f ( M ene s 8 - 20 Ben 80+ el e, a;)da =0
o

o

1
[ ( Kmu.af%z[%u.@«%lu.a;} a+2 [233(«.5»-.&“%&)})%(%)&&
A |

(16)
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where & is the forward difference operator defined by
i

ailibisy oo 051D 00 (8D
% -ﬂf’iﬂ (&) = M, {£) Mﬁ ().

Similarly continuity across the 0th and -lst supports respece

tively gives

i
s—  Iy. WD ¥ e ok, (1), =
f(o(,;.zm»/ ;a::?g Kyg - zmﬂ _agmé»é,fxﬁ {13 ] d6 =0
° (17)

1
«— 0E ,Q“B)fw ?%,4“3’; 96@)» £ e
g(d [ R ] i“,%) "[ 3«@?3 é‘sgg = zmﬁﬂ E‘gigé’ ﬁfa%’g Kls ds;. = @“
9

where
sic_(«, 8 =, )
HA 3=, H) = 1)
o8 -J {o) _ .
BT =4
- ok (o4 8% =, 1) 1
g HRCY = '
58 (o)
o
ﬂ{@) - @

Equation 16 represents a recurrence relation between any three
adjacent support moments Mg)(%) of the stiffened shell for i$ 0 or -1.
It is uncoupled from the syetem of equations 17 and can be solved
independently of them. Its solution yields a relation between the

moments at the axial supports 15 1< -1 and the two applied moments
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Eﬁ,;@)ég) and Evigg’)({;} caused by the concentrated load on the Oth panel
{see Figure 3b). Equations 17, on the other hand, gcverﬁ the solution
of the problem illustrated in Figure 3a.
The {irst of the two conditions that must be imposed on the
solution of equation 16 to make it unique is the physical requirement

that the support moments diminish with increasing number of spans

away from the loaded panel; this may be stated as
el < [l (18)

where the norm of the moments 1 given by

oA

By 4y 2
vl - [ f [ [Mg’egaz .H)] df d= aH.
< 4] [#]

Solutions of the system of equations 16 and 17 will be sought
for the case in which the number of panels n tends to infinity. The

condition 18 implies

I|M§:’(%)”——>@ ag Q-+ w

and that the moments at the right supporte will be considered as ounly
a ﬁe.mcﬁma of M;@)ég) and those at the left supoorts only a function of
M;"”gg). The two unknown support morents mg’%gg and Mgi’m
may be solved from the system of simultancous eguations 17 once

the solution to the recurrence equation 16 has been obtained.
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Under the above side conditions the solution of the systern of

cquations 16 and 17 uniquely determine all of the unknown support

moments Mmﬁsﬁ) and hence by equation 15 the required Green's

function of the stiffened shell,

Kernels of the Integral Equations

To solve the system of equations 16 and 17 it is necessary to

know the functions £{d ;=,H) gl«: =, H) and the kernels E{'_ij(o( e 2}

that are derived {rom the fundamental solutions k{, and }a:i in the

following manner:

Ho 3=, H)

glo(3 =, H)

E{m{o(.%)

%:m(x v &)

B

]

]

?&@(c(. B3y H)

aﬁéa)

@a@@(o( 03 =, H)

5,3 10)
{19)
g lofs G3Es 8 4)

55 WD)

3k (ol s 038, 0)

Y {i+1)
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n

The fundarrental esolutions are defingd a5 follows:

k (o8 5= H) = The radial deflection of a point (A,48 )
© due to a concentrated unit load on a
freely supported shell segment at a
point (=, H) normal to the shell
surface,

E{zia( s B 35 9) The radial deflection at a point {{,4 )
due to a concentrated unit moment on a
freely supported shell segment at a
point (&, v) aad acting about an axis
parallel to the & axis. For positive
sense see Flgure 2,

Furthermore

. o & -k E .
L B[k la it atS ) - kyld B 36 )]

ps-=1 Y
:—a@

or in the limit

é‘i&kﬂéx,/s € )
o

(20)

Ky (408 380 1)

Thus it iz sufficient to discuss the fundamental solution ke B 38, m)
The Donnell equation governing the radial deflection component
may be written in the form {(Ref., 13)

PN
- » F(A, A8
&

c 80(%

£

Z{«4:, 8) (21)

el

Ver(<, )+

4



where

4
wl{d,R) = v F{o, AR ) = radial component of displacement
Flod,A ) = stress function
Z{A.,4 ) = load normal to the shell surface
R

N = R = {lexural rigidity of the shell

12t - 2 )
2 _ B

12R

A solution of equation 21 for the case when the external load
Z{«, B8 ) i a concentrated force normal to the shell and located at

{=,H) ie {Ref. 13)

2,3 L 2% E¥o pin 2
SEA oD gin : mnﬁiﬂ sin "(E &mﬁ}; ¥
ol 83T R = ——L ) Z
3; mai nz=l mmm
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The functions £{d; =, H) glod 3=, H) and ':Ziij( AsE)e given

by equations 19 and 20, arc listed in Table I under "original case',

The first three functions of equation 19 are represented by series that

are convergent at every point in the interval under consideration. The

series representing the function ,‘i{l

except at « =

where it has a loga

{«+ &) is convergent everywhere

rithmic singularity and is divergent

{Rei., 13). For one may write ’:é\iué ds &) in the form

K. (4 E)
H w mﬁi me=l

-€ZZ

/ W W
e EDIDY

n &inmo( im ¢
"‘1 1
T3
24 n%n%®
&'3'* sin fﬂ‘iﬁ’a( i n‘lﬂ'
Ky 41

+7\_ n )a[imz+ a ) + ém%]

m=l n=1
or by using the relation
@ Klzéiﬂ ‘ﬂ’o( sin ui@‘&é .
o n g
eN o w5 amoan O (L +&: %)

in the form
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This splitting up operation is characterized by the fact that the first
series contains the logarithmic singularity and does not depend upén
the radius of curvature of the shell while the second series converges
everywhere in the interval and vanished for a flat plate. The nature of
the kernel Knia( » £) thus implies that the system of integral equations

16 and 17 are singular,

Limiting Cases

The system of equations 16 and 17 not oaly solve the problém
illustrated in Figure 3 but also contain the following special cases
ghown in Figure 4,

{a) Axially stiffened semi-infinite cylinder

{b) Axially stiffened {nfinite cylinder

{c} Rib stiffened infinite plate strip

{d} Rib stiffened semi~infinite plate

{e} Rib etiffened infinite plate
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Cases {a) and {b), for example, are obtained frors the original

o T fes & . .
problem by a special limiting process in which the aspect ratio para-

meter A = /g, tends to infinity with the origin of the coordinates

on the finite shell segments as shown below,

(3 (4
a4inth
) ’

cage {(b) = im A—= oo
d|——> o0

The corresponding infinite series Is then interpreted in the sense of a

Riemonn sum and hence replaced by an appropriate infinite integral.

This method will now be illustrated by considering the special

case (b). Shifting the origin of the coordinates to the middle of the left

hand side of the shell segment and taking the limit as A—=ow gives

the following systemn of equations which govern the solution of the

problem shown in Figure 4b.

This limiting process i similar to the one applied by Cuinlan in
relation to problems assoclated with flat plates {see Ref. 14).
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The appropriate functions £%, g', and K‘ij are obtained from the
"original case' (Table I) by the special limiting process. Due to the
sirnilar form of all these functions it will be sufficient to carry out this
Hmiting operation only on the fundamental function k@{a( s B i€y ). By
interchanging the order of summation and making the appropriate

coordinate transformation %@;@ép( » B i€y ) may be written in the form

23 me MR T, T
4R o{g oo e e w ain(dgd%vﬁmh?ﬁ———g—)
k@z g &133'5“'ﬂ ﬁlﬂ-g:-?’g Z -
w 2%/33 ‘ me=l Bmm

a=l
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Since
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the sum over mm may be split into an even and an odd term
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Now let
and in the first series set
o e ZmT 4 o lm

while in the second series set
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The two series then take the form

(v o] 1 wd g:/ (4 2} 7 & ’
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LR o, 3, 1) may now be written as

2m 8¢ & D sin ¢t o sint_£At
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The limit of the above sume is Riemann's definition of the infinite inte-
gral whea 1/D(t, n) is = function of bounded variation in t in any
finite range, and the resulting integral is convergent. Since these

conditions are satisfied the function koﬁo( »/3 i€, ) may be written as
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(v 33 %l )= s f - sinoi-4 pin oy fmsiﬁgd’gmtg{é% mcag t4cos tEde dt
kgl 8362 )= —gpe PR Dit, n) Dt a)
n=} o *" o
or by combining the two convergent integrals as
2rBF &= o .
‘a.g i ng cos t{ L -& )t
K (X836, 7)) = —eoprme Z sin 223 sin 2Xq [
o T 8, 2, Dlt, n)

n=} ]

Thie last integral has been evaluated in closed form and will be
referred to as 7Tn(a<', §13 in the remainder of the re?@@% {Ref. 25}%@.
The known functions to be used in the solution of the equations for case
(b} are given in Table 1.

Case {c) is obtained from the original problem by letting R—o

and by observing that

gﬁ o %é‘&% shert) B = M*a} plate
£

lim { sheii) s ¢

Re=on b2 B @3?&%@

liza (gsheﬁ)

R0 R Eplate

There iz some qaeamm as to the accuracy of the Donnell equations
when the cylinder length is infinite, or in fact when L/R>10, Therve-
fore if accurate results are required for deflections in these limiting
cases the more exact %@rley or the Flugge equations should be em-
ployed. The results will be identical to the above form i D{t, un) is
defined in the apg}fe‘mmaﬁe manner. The corresponding integral has
" been evaluated in reference 16 for the Morley squations and in
reference 17 for the Flugge equations.
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Rd) —=a RA ghell | Tolate
R AE b R/3 shell s plate
E —=0 atc,

The special cases (d) and (e) are obtained from (c} in the same manner
as cases (a) and (b) were derived from @Im; original problem. Tableld
surmmmarizes the known functions obtained for the diffevent cases shown
in Figure 4.

There is one additional case of interest worth mentioning that
occurs for configurations {b) and (e) when the transverse loading on
the shell does not vary along its length. Replacing the concentrated
load at (= , ) by a line load at 38 (o) = H of constant magnitude and
infinite length in the § direction yields moments at the supports which

are constants, and the governing equations for {¢) take the form

it + i) + M= g
7 - 7
2 2 |
- ate- P VAR + %2403 = 0 (22)
2NB K
2 2
(b} b ={b-m) Yot e 2l =0

2B o 7
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since

o0 o0
Ky (o €) O =5 b, / (s £) 26 = = Fou 2l = (24 /3l
- -0

This particular case is eimilar to that of a concentrated load on an in-
finite beam with equidistant supports (Ref. 18)., The analogue to case
{b) would be that of a concentrated load on a curved beam with equi-

distant supports.

Selution of the System of Integral Equations

The direct solution of the integral equations can be avoided by
replacing the imegrﬁaéﬂf&f@nee equation 16 and the system of two
Fredholm integral equations 17 by a differcnce equation and two
algebraic eguations respectively. This is accomplished by assuming

that the moments along the supports roay be expressed in the form:

15'e)

{i) iy . mw
?‘g * = s ¥
«f%‘? {&) Z q. " sin g

el

and by substituting this expression into the system of equations 16 and
17. A4fter carrying out the indicated integrations and noting the
occurring orthogonality property the following system of equations are

. obtained for the unknown Fourier coefficients:



4 ﬂ oo
(i+1) . .
M S t 3 (i-1) =
sz = 8in A, d[ “ro qu Cm?t %y mm] =0
244
21" By
W ("E) (0) - 4 - %
2 Zsm A [{im m m Com Xmﬁm)'h&m(“’ﬂ)}g@
me=l
{23)
gﬁz}\%/ﬁi 3 Bin —h & {-1) 2C - ¥ B - g +a(=,H) |=0
’S’a’ZN A, Un ( m m m) Uy By T 4=
me=l
where 4, &, B, and C are given by Table II, and
..z)
(1) _ Z (o) mu M( - (-1) ., mwn
M, (E) = ¥_a sia ThM () Ym 9, einTre
=l . m=l

\(*‘n is determined from the solution of the difference equation for the
Fourier coefficients, Since continuity of the slope must exist for

0S oS a(1 the following equations are obtained from 23 for each value

of m.
i+1 i i-1
qin ’Bm_ 2Q§m)cm + q:in )Em =0
-, _ o} . ; A 4= uY = -
Yy Spn ” G (2Qm zf'zrszz’zﬁ o =, H} =0 (24)

~ )-. s + E (=, o= 0
n I TE m ¥
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These results may be extended directly to the case shown in
Figure 4a by the special limiting process described earlier. The

analogue of the Fourier sine series expansion for the woments is

given by
2 m @
M;"qg; = f Mgy sin e g’ at
o
where
q(i)éﬁ) = lim (,%. cgéi))
A—= =0

The function gqt) must, of course, satisfy the hypothesis of the Fourier

Integral Theorem i.e.

m P
/ \qqlb(t)‘ dt < oo
o

and q(i)(t) must be a function of bounded variation in [@, w). The
analogue to the system of equations 23 is then for qu)(t) continuous

on [@, oo}

Bﬁz’sgﬁg * [ gi-1) (i) i-1),._ .
et sin td [q (L) (t)-2q ()T (t)+g magep} dt =0

Q

it ull A Y (0 /
R sintd [q “Yhe)Bie)-g ’qe;(zgqe)- Xmaez») + A(Z, H, t)] dt = 0
o
(25)

2228 vt (@ ,
| ein td’[q‘““gep [zct)- ¥50) +Phuser a5, t)} dt=0

o
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.

where A, 4, B, and C are given by Table II case (b), and

(a9} [» &}
M;“(é) - [ ¥ (£)a%Ne) sin ¢ £ at, M;"Z’gg‘) - f Yieda' " Vie)ein ¢2 at.

Q
O

The method of extending the systern of equations 24 to the case
{2) is now obvious. In fact the system of equations for the moment
coefficients of all the special cases shown in Figure 4 can be written

in the form:
gty _pqlllc 4 gli-By o g

oMe - Plec - yryea

8
o

(26)

-1 - —
" Vec. yry- Oz

1}
©

where 4, A, B, and C are given by Table II. The solution of this

system is

N P Ez]

Ci(a) _ _ AB .- 42C - YB) -
(2C - ¥B)® - B 2 Ve*-5%[c- /e84
-1 4B -TEC - ¥3) _ _ AB-Z [e::: - Vgéog®
; (2¢ - ¥2)° - 8% z \/v{:&—ET[G-\/ cé.p*®
(27}
W [ iz

D [Tz
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where

¥ =C/B +

c/3)° -1, lc/B| >1, -1< ¥<o

The support moments for the original problem and the special
cases shown in Figure 4 can be determined from equation 27 with the

aid of Table II znd the following expressions,

Case Expression for the Moment
& (i) mW
original M g " 8in —=—— {
w p 4] 0&»
(e /
(=) \ maxs gin t €& dt
)
o . (2
{b) \‘ mﬂiﬁ cos t{E - =) dt
]
{c) mu G) g7
¢ 1 Uy a *
© )
{d) % gt () sin t £/b dt
o
i) -
{e} \\ g {t)cos ¢ - = ) dt
o

The requirved Green's functions are then obtained from a generalized

equation 15 written in the form
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io o

where “%;’a“h}(ol s B €"‘"}) and k@ are given by Table III.
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FLUTTER ANALYSIS

In this section an approximate method of solution is discussed
for the flutter problem of an infinite strip plate supported by equally
spaced cross members (Figure 1b).

Writing the equation of motion 12 in dimensionless form and
retaining only the simple Ackeret expression for the aerodynamic

pressure loads yields the "equivalent' eigenvalue problem

P (&', B") =

o)

i1 o
, 8p (=, H)
" " " " . 2 " ” & s . " 7
_O.a:l'f B A= o) etV sl 5 (= ) - a=z"au” Qo
8_---—-:II
o SO

where the kernel K' is obtzined from equation 4.1 for case (c) and the

¢ - 2 ey o &
eigenvalue (2, and dimensionless coordinates are defined as

Ld

&5
X
#

e

427 e “

Q, = 5 2q AJa 8= Alb
w BA T - 't — mn
NVM -1 - = o

= H/b
The stability analysis involves the problerm of finding the smallest value
of the parameter L1, that causes the reduced frequency k to first take
on a negative lmaginary part.

In the following analysis Calerkin's approximate method of solving

differential and integral eguations (Ref. 19) is applied to the homogenecus

¥ In the reinalnder of this section the double primes will be omitted for
convenience in writing.
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flutter cquation 30 to illustrate a method for deterrnining the minimum
¢ =3
L. The procedure ig to write the assumed flutter mode or deflection
=

shape a8 a linear commbination of independent functions in the series form

M N
(4.8 )=Rel ) ) & P (L) L4, (31)
r=a]l s=1

valid in the region 0< A< 1, 0< B< 1, The functions CPr(a() and
%ﬁﬁ B so°) must be continuous, integrable and continuously differenti-
able in the interval of interest. They should in addition, satisfy the
geometric boundary conditions imposed on the deflection amrﬁaca’@.
Substituting equation 31 into equation 30 results in an error function

CUA, 3, ) as follows

M N
E s ) S a | @) Els)
r=l g=l

11
/ 2/ 2z 8 _ _
..Q_J’[ K {, 53.@%)[/3& M ~z-§§]¢rg;;§gz—§,r;@_dﬁ
Q-0

According to the Galerkin method € (4,4 s0~) should be orthogonal
f=] .

tg ?r(o( ) ¢$€/S'0"§ é? = 3. 29 o o e -Ev{i; @ = i‘ 2;, o & 9 33). ﬁhat 5.5 tﬁe

In the integral formulation of the {lutter problem for the "eguivalent’
panel the boundary forces are included as part of the system., The
functions P _(A) and & (B,0 ), therefore, need not satisfy these
natural or fo¥ce boundary conditions.
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average value with respect to the weighting function @ (L) 4 (8,07)

is mero.
1 ‘.!;
[f C(A, B, 0) PUA) E(B,0) aX A = 0 (33)
o o

Substituting equation 32 into 33 gives

MON

i 1
0= Z Z%a [jCPrM)%(ﬁ.f)%(JH@M,o—)éx a8 —
[} o] .

r=l s=l

1,1 1,1
;o
Q f [:R,(a()sf-“(ﬂ,r)[ [ f Kipe® Vado1 - 2oy (=)4 (H,ax éé%i] do 38
o -0 Q /0

This constitutes an eigenvalue problem of the form

[~ "ﬂr}i’i(m] x= 0 (34)

where the vector x is composed of the unknown coefficients ,f%r s and

the matrix D is a function of the unknown reduced {lutter frequency k.
Since the onset of flutter is determined by investigating the imaginary
part of this reduced frequency parameter as the dynamic pressure

changes, it will be convenient to rearrange the equation 34 in the form

(2400 - k2] == 0 (35)
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The reduced {requency now plays the role of the eigenvalue while L~

is considered ounly as & real valued dynamic pressere parameter, For

most regular functions '@r(d } and ¢/§(ﬁ,f} the matrix 3 will be
non-gingular and equation 35 can be transformed into
I
[z’%gﬁ,»k E]Kf—’@ {36)

The elements of the matrix B ~ A are all real since (L, is defined to
be a real valued parameter. In addition the off diagonal terms, represen-

ting the aerodynamic forces, satisfy the relation (Ref. 20}

C

- D
mn -1 c

By’

Since the complex eigenvalues rust occur in conjugate pairs, flutter
enBues once kzﬁ becomes complex. For (L, small the eigeavalues or
characteristic frequencies k‘?’ will be ma.f@. As inérea@ea, how-
ever, two eigenvalues will coalesce into a pair of complex conjegate
roots. The stability analysis thus reduces to an iteration procedure
applied to equation 36 for determining the lowest value of (L, that
first causes two eigenvalues to coalesce,

Franklin (Ref. 21) hae developed a numerical method for compu-

ting elgenvalues for matrix problemes of the form 36. This method has

Thie is a consequence of retaining only the simple Ackeret theory
which neglects aerodynamic damping.
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been programmed by the California Institute of Technology Computing
Center for the Datatron 220 digital computer. 4 few sample calcula-
tions that have been carvied out show that the fletter boundaries can be
obtained numerically by using this routine to foliow the eigenvalues up
to coalescence as the parameter ()L is increased, |

In conclusion a few remarks will be made concerning the proper
choice of the assumed flutter modes. For the problem at hand probably
the most suitable chordwise (streamwise) functions q>r(,() that

satisfy the required boundary conditions are

@r(o(} = ginr ol o if’:laza -=~) (373

It is always necessary to retain the first two modes r =1 and r = 2,
Past experience with the Galerkin method (Ref. &) has also shown that
best convergence is obteined when an even number of thess modes are
used consecutively in the analysis. The choice of epanwise functions

FlB.o) should be such that they satisfy the following

i
t<or<w sbs(g%,cr) = ¢$(®,r) = 0
i
=0 (/‘%( ﬁ”!‘ 0) = 9"@(@. o) =0
o o4,
-E—;—-(&i,@) =§~gi@,@) = {
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A suggested function SIJS{/!. s 77 ) that satis{ies these conditions’'is

F (B.0) =%§sin w4 + |1- -g\[g sin swH ég-i-z sin (842) w-ﬁ] (38)

Experience has again shown that 8 = 1 is the most important mode to
retain, at least for the configurations involving flat single panels. If
it is desirable to use a higher number of these modes they should be
chosen in such a2 way that the envelope of the motion across the span
is symmetric with respect to the center line of the panel. (i.e. there
should be no preferved gpanwise direction.)

It may be possible to find other mode shapes that converge at a
faster rate but these have been suggested because they satisfy certain
orthogonality properties with reepect to the kernel of the integral
equation 30, The choice of V/S( B0 ) ais@ allows for the possibility
of a phase shift acrose the span for 0< 6" <w when only the term
8 = 1 is retained. Preliminary calculations indicate that very little
phase ghift across the span occurs for the case 0°=0 or o =

Figure 6 illustrates some of the results obtained from the
initial computer studies for the problem of interest. In this study a
four mode analysis was employed using the functions 37 for r=1,2
and the functions 38 for s = 1, 3. The investigations were confined to
the neighborhood of o” = w since a local minimum wae found to occur
here, and the assumed modes could be simplified. In addition only
the interval 07= O0—=w is shown since the curve is symmetric with

respect to 0 = w. The results for o’= 0, which can be obtained from
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on the two stream-

&

investigating the stability of a single panel clampe

£

wise edges, are also shown on the plot. These preliminary
investigations suggest that ¢ = v is an absolute as well as a local
minimum, If izhi@ should prove to be the case then at the critical {lutter
speed all panels of the grid would flutter in exactly the same mode
shape, the same magnitude of occurrence of this mode shape and with
a phase shift equal to w occurring between succesgive panels,

A rather extensive numerical program is required to investigate
the remaining features of the above problemn and the stability of the
stiffened shell shown in Figure la., For this reason the actual numerical

analysis will be reserved for a future report.
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Influence Function for the Flutter 4nalysis

The elastic influence function required for the flutter analysis
iz derived in this section by employing t%m method @f superposition.

In the formulation of the flutter problem it wae shown that this
influence function iz represented by the deflection surface of ihe gth
panel of the stiffened shell when the shell is subjected to the special
loading condition shown in Figure 5. (The concentrated loads in this
case are normal to the shell surface and occupy the same position
relative to each span,)

The function W(i’(a( 0 3 m) given E@V Table III for the deflec-
tions of the ith and -ith panels of the stiffened shell due to a2 concentrated

unit load on the 0th panel may be written in the form

nw (i)
N 8iftem A 2l
1 “1

2R % 1-(-1)%; '
Vi ’ﬁa( Bm)" JE Z Z£ ]1 i@)[ Vs m] 5]

" m=lnsl

I

FY sm«-—-— ﬁ( t) sin=

B T e
oyt

wﬂi mel ﬂ_ R

If the Oth panel has a concentrated load of magnitude P the correspond-
ing deflections will be given by

e w4, s

p wii) (4, A (-9,
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By superimposing the effects of the concentrated loads and employing
the cyclic property of the structure the deflection of the Oth panel due

to this special loading may be written for a total of 2N+ 1 pancls as

QJQO){O(- ﬂ 60)) (0( ﬂig) =, *,_E(O)k_, i ?fiipia(, ﬂ (Q))e'j(ia“)

g
2

w4, g 0h i)

Fotv
L]
P

wesuming that it is permisesible to interchange the order of summation

the above rnay be written as:

o a0 )
a s - }
W, 5O S0 }j Y| Y ety gyl @._.,..__.L i
¥ 8Py =1 n=1 L i=1
N n n sinf2E) 3 0 o108 o
_g,,zg,mm ok m(i""“ Ym) A1 <1
# = Xﬁﬁ @i’k’}ﬂ.

Now the series summed over i may be approximated for large N by

N ) -joo
Z - itio") ¥ ]i$ Z @aj(ic')[x i Vle™ - 80 i
m e
i=1 i=1 1-2% coso + "Gm
¥ e’ - T

Z Hio) }i$
= 1-27% cosg + X

E?.‘Zs



168

and hence the deflection function of the Oth panel appromximated by

20 ® @ nein3T) 5Clin(2T) «
ko alz e 21 ~ ). Z[_( i-ifg @J G
o R - :\?ﬂ E}mﬁ
1 =l nsl =
§i. 1)
where

- L
{1 L )

iz, m = o=, —
1-2 b’mc@ssr-% t‘m
(o) . (7% V)
+ o {=,H) -
B l-2Y¥%_coso + Y.
o] T&y
jo
iz m = oz, o)
’ i 1-2 ¥ coso + T“%

(1- ¥ o)
4=, ) = ,
1«2 ¥ coso + ¥°
3 ¥

e

P

The extension of these resulfs to the other cases shown in Figure 2
follows immediately with the aid of Table III,

Eguation A-1 yields the radial deflection surface of an equiva-
lent panel bent by moments distributed along the two straight sides and

concentrated load acting at the point (=, ).
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TABLE 1
‘;5; E 1 qd L4 %g

* . vk Fw)
- dsiﬁzg"«

(9] 4 ] 0 53..2’2,
{jé_gmim@l :%»Z__&w d 1 0(§
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{d)

“otet

-
2r? 2
2Rw n? | T OG- T 4 g
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n=l
oo
Ewiaw ;fi 7 qdlw- £Y)
mel
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LAY uI

0, [i%«oc% »7\]
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case o) - Lite © ) . {e
case {e) i + % 106+5) I@

Zmid 29k

RS- 2 + Z(-£)
e L;Cgie yTdoen Yo ]

La=- Vi (&) = Z2/1-Z 4> £ Lower sign
1

I(! =~ y{l -Z) = LNTj? d< & Upper sign

2eferance 22 for 2 table of these functions,
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TABLE I (Cont'd)
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