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ABSTRACT

An investigation is made of the drift motion of small particles
under the influence of acoustic oscillations. The investigation is made
to determine if the motion has a magnitude great enocugh to produce
significant changes on the fuel distribution in the chamber of a
liquid propellant fociket motor. The calculations are made for the :
motion in both a rectangular and a cylindrical chamber. ;,

In the rectangular chamber the gas oscillation is restricted
to the fundamental transverse mode and motion in only one dimension
is considered. The particle drift velocity, that is the non-oscillating,
non-damped term in the expression for the particle velocity is found
in the solution of the second order equation.

For particle motion in the chlindr:’lcal enclosure, only gas
oscillations in the first transverse or sloshing mode is considered
and motion is i'efstricted to a transverse plane of the cylinder. The
particle drift vel‘ocity, again a second order term, is determined.

The magnitude of the driftvelociﬁy is calculated using condi-
tions found in a liquid propellant rocket combustion chamber. Dis~
tances a typical fuel droplet would move during its average life time
are calculated. The distances are small compared to the size of

most rocket combustion chambers.
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I. INTRODUCTION

It is a well known fact that liquid propellant rocket combus~
tion chambers often experience a phenomenon called unstable com-
bustion. The gas properties, such as pressure, density and
temperature, fluctuate during periods of unstable combustion.

The fluctuations are nof random and definite correlation exists
between the fluctuations at different positions in space or different
instants in time. Characteristically, the fluctuations have a fixed
frequency and the amplitude of the variations can grow to values
comparable to the steady state value of the property.

The regularity and the large amplitude of the fluctuations
distinguish the property variations observed during unstable
combustion from the random variation in gas properties observed
during "steady" operation of a combustion chamber.

The observed frequencies of oscillation vary from 10 to
as high-as 10,000 cycles per second and depend on the driving
mechanism or phenomenon and the chamber size. The frequen-
cies can be divided into two general categories: (1) a low fre-
quency or chugging instability with frequencies in the neighborhood
of 100 cycles per second and (2) a high frequency or screeching
instability with frequencies in the range of 1000 to 10,000 cycles
per second. .

‘The low frequency phenomena are often caused by an
interaction between the rates of propellant injection, combustion

and rate of ejection of material from the chamber.
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In the high frequency case the variations of gas properties,
during unstable combustion, are accompanied by motion of the gas
in thé chamber. In general, the motion of the gas and variations
of properties are similar to the conditions which would be gener-
ated by a strong acoustic oscillation. This observation suggests
that the large amplitude variations observed during high frequency
unstable combustion are a result of a resonance which occurs
-when a driving me'cﬁanism, associated with the combustion phe-~
nomenon, is in phase with the natural acoustic modes of the com~
bustion chamber. For example, in cylindrical chambers, the
oscillations occur-in the radial, tangential and longitudinal modes
plus their various combinations. The first transverse or sloshing
mode is the mode of oscillation most frequently found experimen-
tally(1>’ (2) in combustion chambers with high frequency instability.

The present investigation will be concerned with the high
frequency instability. A complete and satisfactory answer to the
question as to why this instability occurs has, as yet, not been
found. In the attempt to answer the above question, many mech-~
anisms have been proposed that are based on the interaction of the
pressure and temperature oscillations with the combustion process.
The interaction depends on the existence of a time delay which is
essentially the delay time in the response of the burning rate
to a change in temperature or pressure.

Since the delay times in combustion syétems are very

sensitive functions of the fuel-~oxidizer mixture ratios, a systematic
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variation of the mixture ratio in the chamber may set up conditions
that are favorable for unstable burning. The suggestion has been
made that variations in the fuel-oxidizer ratio can be produced by
the relative mean motion of droplets of fuel and oxidizer under
the influence of acoustic oscillations in the combustion chamber
gas.

This investigation is concerned with the initial require~
ments for the production of the mean particle motion mentioned
above. The requirements are first, that a particle drift motion
does eccur in a chamber with acoustic oscillations and, second,
that the magnitude be large enough to result in the appreciable
particle motion which would be x;ecessa.ry to produce significant
changes in fuel composition in the chamber.

The following two idealized problems will be solved.
First, as a simple example, particle motion in a rectangular
chamber with acoustic oscillations in the fundamental transverse
mode is considered, In the second, more complex problem the
calculation is carried out assuming a cylindrical enclosure with
acoustic oscillations. The small particle drift velocity induced
by the first transverse mode of oscillation is determined. |

To calculate the particle drift velocity the equation for
the velocity of the gas undergoing acoustic oscillations in the
chamber is combined with Stokes drag law to calculate the forces
acting on small particles. The resulting equation is linearized
by introducing a perturbation expansion in powers of a term

proportional to the amplitude of the drag force acting on the
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particle as a result of the gas motion. It is necessary to go to
second order terms in the solution for the particle position in
order to obtain a mean drift velocity.

‘Representative values of the drift velocities are calculated
using conditions found in a liquid propellant rocket combustion
chamber. Directions and distances the droplets would move, in
their average life time, are determined. Finally, an upper limit
is obtained for a maximum variation in particle density as a re-

sult of the drift velocity.
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II. RECTANGULAR CHAMBER

Developmerit of the Equations. Before proceeding to the more

complex and more realistic problem of the investigation of par-
ticle motion in a eylindrical enclesure with acoustic oscillations
it will be illuminating to look at particle motion in a rectangular
enclosure containing acoustlic waw’res. The rectangular case will
illustrate the important features of the problem in a straight-
forward manner since motion in just one dimension need be con-
sidered. |

The method of solutibn for the particle drift velocity will
be as outlined in the introduction.

In solving the problem for the case of the rectangular
chamber the following idealized assumptions will be made:
1, The fluid medium is considered to be at rest and in a uni-
form state except for weak isoenergetic fluctuations in §elocity
and state properties.
2, The small particles are considered to be spherical and to
éxperience Stokes law forces,.
3. The particles have negligible effect upon the gas motion in
the chamber. :

Consider a rectangular chamber, as shown below, with

acoustic oscillations in the fundamental transverse mode.
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Gas motion is restricted to oscillations in the o direction. The
linearized partial differential equation for the gas pressure dis-
turbance in the chamber, under the conditions considered here,

is a simple wave equation of the form;

P - 1 ¥

| ,
- : 2.1)
oy C* yt* . (
The well-known solution to equation 2.1, restricting the solution

to real values, is;
P = E,s[n —C—}f cos wt | ’ (2.2)

Here, Po is the amplitude of pressure fluctuations of the gas in
the chamber, C 1is the local velocity of sound, W is 2T times
lency. V rd Tie ity ‘ ; mre -
the frequency,V , and T is the time. (O must be E)a to sat-
isfy the boundary condition that the gas velocity and, hence, the
pressure gradient vanish at the chamber walls (’ﬁt:t,e ). For the
first transverse mode considered here ~7 is 4. The velocity and
pressure fluctuations of the gas are related by the following equa~
tion:
o oU

W - _gp = -p .
T VP (2.3)

Y -
The velocity of the gas in the chamber is given by integration

of 2.3 as;

U = —_e%; cos (i)é-fi% sin (,Qt . | (2. 4)



[y S
Equation 2.4 shows that the gas velocity is zero at the chamber
walls and a maximum at the center of the chamber. The ampli~
tude of the gas velocity oscillations is prcportiqna,l to cos 5{% .
If the location of the particle is given by § , and if assump-
tion 2 holds, then the drag force on the particle is given by Stokes

law and is:
; o 3
67‘7//46\(053‘;) . (2.5)

The equation of motion for the particle is obtained by equating the

inertial forces and drag force, and is;

mdE = dmue(U-H) (2.6)

It is:important to note that the gas velocity must be evaluated at
the position of the particle; that is U = ()(f,t) . If assumption
3 holds, the gas speed, |J , can be eliminated biy substituting equa~-

tion 2.4 into 2. 6; this gives:

I - _ 67uc Ry TE i ot - o d
rmd—;} = - £ZUB cos 77 S/nwt—kéﬁ/xs‘ﬁ @

This result can be simplified by the use of the following dimen~

sionless variables:

gz% aﬁd rj= %é/ = % k TV(Z_S)

»

(2.9)
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Here, the constants are defined as:

/

K 's ij_gé;‘l/_g. and € = ’%@ ) (2.10)
The_ solution to equation 2.9 Wﬂl give the position of the small
particles, Z‘, at any time,’J) , while they are under the influ-
ence of the oscillating gas in the chamber.

NOté that equation 2.9 is non-linear due to the appearanc‘e
of Z inthe trigonometric function on the right hand side of the
equation., Because of this nonlinearity, an approximate method
of solution of the equation must be‘ used. The approximation used
depends on the fact that the ﬁerm E " can be held to small values
by limiting the magnitude of the viscosity, or other flow proper~
ties appeariﬁg in £ ’ . Note that this restriction on the calculation
is independent of that required to obtain a linear acoustic equa~-
tion (2.1) in the first place. Thus, when the expansion in terms
of £ ’ is continued to terms of higher order than the first, there
is no obligation to extendthé approximation in the acoustic equa-
tion to higher powers of pressure or velocity amplitude. By re~
stricting the analysis to arbitrarily small values of ~8/ y it is
possible to linearize equation 2.9 by introducing a perturbation

expansion of the form:
2@) = Z(W) +EZN €2 + ---- (241

Substituting the expansion into equatioh 2.9 and separating the
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equation into equations for the various orders of € - gives:

Pz vdz -
& ’ ’
jgi +}<;H<L§g = cos %2, sinard (2.13)

2 L L A7
DR

1

- %'2’ </ % z, sinranY . o (2.14)
In making the above substitution, Cos 25_2 is-expanded as

S 5 R R SO -1 TNy g \/ o %
COS%Z = (COSgZa)(/— %[Z%-;-EZZ_?]-/‘— --)—(S/rz %Z‘,)(ﬁg‘?,-rfg%"').

«For a particle at rest at J=0 and at the point Z 5. -the

appropriate initial conditions are:

Z (0) ;_ jfo (_0) :0 k ,

Z,(0) = %2’(0) = 0 (2.15)

Z (o) = 92 (0) = 0.

Solutions i:o‘eq’ua;tiohs 2.142, 2. 13,’ and 2. 14 contain ter:n:is
which are constant, oscillatory, exponential and linear functions
of the time. The purely‘oscilla‘toryMsolutions to the above equa~-
tions are not of ixiferest sinée ‘nb ﬁet transport of particles is |
involved and the solutions involving decaying e:;ponentials have
a negligible effect on the drift velocity after a few oscillations.

Hence, the only pai‘ts’ of"the solution that are of interest and that
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result in a particle drift velocity are those solutions which are
proportional to time.

Looking at eéuations 2:."12 and 2.13, it is seen that the so-~
lutions to these equations are of the form of constants, decaying
equnentials, and sinusoidal terms. However, equation 2.14
has Z,, multiplying the right hand side so that the product of the
trigonometric solutions of Z, with [s/n 2?’3;] will produce a
constant term. - The solution for 7, will then contain the first
and presumably most important term proportional to time.

In the following p”a;iy'agrap’hs the "solutioﬁs foi' Zo , Z,
and Z, Willvbe-found; ~The chief aim of the analysis is to ob=
tain the single term which is proportional to time so that the
drift velocity, as defined here, can be evaluated.

- Solutions to the Equations. By inspection it is obvious that the

solution to equation 2,42, with the given boundary conditions,
is %, = =Z7— = constant.

Substitutihg Z,=2 in equation 2.13 leads to:

dZ +k dZ: — cos & ZSm 2rT (2.16)
d’J'Z

The solution to the homogeneous equation ist
T e KT
=C +C,c ‘ (2.47)
The trial particular solution is:

= C, Sinamwd +C, cos am” (2.18)
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Substituting equation 2. 18 into 2. 16 gives:

_ 477;03 sinawd - 4#7C,cos 2T + k’;ang cos 27y (2.19)

'_K";#C‘F sin 2rJ = [Cos %? Sir 0273”] )

Equating the coefficients of like terms gives the following values

for the constants:

_ cosZZ C - K'cos T Z (2. 20)
gt k= ’ +  —kZ=r-vyrd .

The solution for #, can now be written as:

KT cosFE ktos BZ
Z,=IC,+C, &  + 2227 gnands 222 cosard 2,21
' = i B A ( )

The initial conditions that Z (o) = j

Z (9 = (0 are used to eval~
uvate the constants C, and C.z . The following expression is

obtained for the complete solution to equation 2,13:

| arcos FZ 5 KeosZ2 2mcosZZ _kY
S e KZr 573 ~47°k’— K7

= ‘ 7z
cos 5.,«/2 simanrd + if__g_g_s_é_f_ cosanrJ |
477 K2 ~kZr-g77 (2.22)

The differential equation for Z, can be found by sub-

stituting 2.22 and Z, =Z into equation 2. 14:

dJZJ ‘dz, = |- g/nZLZ :'2_77;625—-—— - Kcos 22 ; 7
JT? * /(;/_37 T2z 47k K3 k227 £ 873 sin 27y

,77‘005%2 k\T

TS CDSzZ_ . < )
~Z sin ZZ (W—i—ﬁ) (Sire ;/73’) (2.23)

ZZ -
1»7' S//L/Z M S 2 cos 2r] ] .
kg7
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The above equation may be simplified slightly by using the follow-

ing trigonometric identities:

Sin g? Cos Z =

W\~

S wZ

Sin 27 cosard = 5 sirna4rd” (2,24)
L ;
(sin2rT) = L - Lrcosanr T
Equation 2. 23 reduces to:
- kT

d°z, ' dZ., C Ay ? .
5+ + K Iy - (F+G)sinzzrd -Fe sireanrd

+ %‘._ % cos 47T + £ sin 4#3] ' ‘ (2.25)
Here, :
D'= Tsin rZ | £ ‘" KSiemZ
Farirf=) T Je(amie kR )
F L wSie A E ' G /: /(g/ﬂ rF

~F(ars?)
The solution to the homogeneous equation is again:

k'

T 2k (e k “) ’

2 =C +C, e~
The following trial solution will be used to find the particular solu~

tion to eQuation 2.25,

Z, = [Cs:r - c‘f‘s/;z 27T + C, cos 20T

_ KT, kT (2. 26)
+Cé e Siear I+ C, e  cosand

+ Cy cosand +C, sie 477 ]



-13-
Substituting 2, 26 into 2,25, equating coefficients of like terms,
and solving for the constants gives:

-/(IO' W Sin I P ,2»*0+,(’£
Zz = [Cz * C:Le v& (a7 /('2)0/4- 14’7‘3 &} )6”5477?

| KD 4 rt ,77(/»’»6)
+(A;—~—-3-——j—7—r— )5/4477 sin 273"

2 3 27 k'z
A TR (2.27)

(k(Fle) | 2nF N\ kT
# kA a3 cos anrJ - s Y S/ez ;;77*3/

KoF
(m)e ws”f ]

Here it is unnecessary tq évaluate the constants C, and C‘z
since ; C, is a constant and will disappear when the derivative
with respect to time is taken to find the particle velocity and C‘z
is mult‘iy;plying a decaying exponential which will not confribute
ito the steady state particle drift velocity. The non-oscillating,
non~decaying term, a second order term, is 7, = ?/Zi;;i]j“
Using equation 2.14, the non-~oscillating and non~decaying part._
of the expression for the particle position can be written as:

Z = Z + gzy_____mz) T - - f )  (2.28)
Or, using 2.8, equation 2.28 can be written in terms of the origi-
nal variables as:

AT T IR

YK (4774 7)
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Now taking the derivative of 2.29 with respect to time, the mean

particle drift velocity is obtained:

f - = £ m_zf__,__}[ ~E]
f = -7 [?k’(m&k?) S = ) (2.30)
Remember here that £'= P B A and K; .?4"‘77//{@—}/.
77?7 Q c3 27

Equation 2.30 gives the steady state drift velocity of the
particle which is at a point f in the chamber, The drift term
is second order in E/ and depends sinusoidally on position. The
greatest drift velocity occurs at an initial particle position of
y -t |

The fact that the drift velocity" is second order can be juss=
tified by the following argument. The drift velocity exists because
of the gradient in the amplitude of the gas oscillations. Consider
the forces acting on a particle due to the difference between par-
ticle and gas velocity. The gas is oscillating at a fixed frequency
but with an amplitude that varies spatially. "Thus, during a
single oscillation, the particle moves from a region in which the
amplitude of gas motion is large to a region in which the amplitude
of gas motion is smaller. During that part of an oscillation when
the particle is near its maximum excursion in the direction of in~
creasing amplitude of gas motion forces act to accelerate the
particle toward the direction of decreasing amplitude. Similarly,
when the particle is on the opposite side of its mean position,
forces act to accelerate the particle in the direction of increasing

amplitude of gas motion. However, since the force acting on the
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particle is proportional to the difference between the gas speed
and the particle speed, the forces acting on the particle are higher‘
in the regions of higher amplitude of gas motion. Hence, over a
number of oscillations of the particle, a net force acts to accel~
erate the particles toward the direction of decreasing amplitude
of gas oscillations. The net driving force depends on the differ~-
ence between the forces acting "on the particle on either side of
the mean particle position and thus depénds on the mean difference
in the gas speed on either side of the particle mean position.
Hence, the driving force and the resulting drift velocity is pro-
portional to the product of the gradient in amplitude of gas motion
and the amplitude of particle motion. Since both of these quan-
tities are first order, tI;e reSuIting particle drift speed is second
order. .

| The gradient in the amplitude of gas oscillation is pro~
portional to sin 'g—? and the amplitude cﬁi the particle oscillation
is proporticnal to cos %? » €.g. see equation 2.22. Thus, the
maximum drift speed would be expected at the value of j?: which
maximizes (cosZT Z)(sinZ Z) orZ=+4%.

Digcussion of Solutions. It is of interest to determine the man~

ner in which this drift depends upon the particle size. To do

this, it is convenient to use the fact that 8/ can be written as a
,_ —4RK
nated from equation 2. 30 to give the following expression for the

function of K , (g > . Therefore, £’ can be elimi~

drift velocity:



l?a[ygﬁr o

53 - Sin 2,31
40 C's (%)J_F J / . ( )

) =

To make the dependence upon pa,rticle radius explicit, write the

; , o % K'_ 9#8
particle mass as 7= QF éWG“ ; then P ée, o e In these

terms the drift velocity is given by:

p* [ wf

- e uda
(= e | Sin (2.32)

As the particle radius, o>, gets large it is evident from equation
2.32 that the drift velocity approaches zero. If equation 2.32 is

rewritten as:

2 : E‘p/c’[(‘/l : .
i .
v = oo epc%” Sir 7_{ (2.33)
( I g

it is evident that as the pa.rticle radius gets small, the drift ve~
locity again approakc‘heAs;"zei'o. Therefore, a maximum drift
velocity exists for some finite value of particle radius. This op-
timmum radius, 6“%, resulting in maximum drift velocity, can be
found by examining the first and second derivatives with respect to

. The result of the calculation gives:

R | ~ .
T Vger - (224

Substituting the optimum particle radius, 2.34, into the

drift velocity expression, 2,32, gives the following expression

for the maximum drift velocity:



P
v o= <~—————?ch3) Sin 7?— . - {2.35)

In terms of the chamber pressure, B , the maximum drift s:

nr‘*’: 5_)%; (g"_rsm ? . (2.36)

Note that while the optimum particle radius is a function of
the chamber dimension, } , the maximum drift velocity, m‘_),é is in-
depéndent of the chamber size. Therefore, the drift motion is less
important as the chamber size increases.

Note also that the maximum drift velocity is independent of
droplet properties and only depends on the gas properties through
the speed'éf sound C , specific heat ratio JA and pressure ratio

2

L
[

The ratio of drift velocity for arbitrary particle radius to
the driit velocity for optimum particle radius is simply obtained

from equations 2.32 and 2, 34 and is given by

v 2 (%) . (2.37)
ol |+ () .

The drift speed drops rapidly for particle radius different from

optimum radius. For example, for 6 = ;Z'/rxor 026—:% the ratio

s 1
ﬁr/* is about 5 .
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III. CYLINDRICAL CHAMBER

Development of the Equations. The techniques used in Section II

are now applied to the solution of the problem of particle motion
in a cylindrical geometry. The problems are quite similar except
that with the cylindrical geometry, (A) motion in two directions
must be considered and (B) centrifugal forces may be important.
To investigate the motion of small particles in a cylindri~
cal enclosure under the influence of acoustic oscillations, the
same assumptions that were made for the rectangular enclosure
will be used; namely:
1. The fluid medium is considered to be at rest and in a uniform
state except for weak isoenergetic fluctuations in velocity and
state properties,
2, The small particles are spherical and experience Stokes law
forces.
3. The particles have negligible effect upon the gas motion in
the chamber.
For the conditions given in assumption 1, it can be shown
(3) that the gas motion is governed by the wave equation which is
written below in cylindrical coordinates for the pressure distur-

bance:
e ¥ ¥ L 1dp o 1LY
eP + 9P +‘§7§1’+/L'7E" = 023’1% ’(3.1)

Since we are interested in finding a particle drift velocity
in a cross sectional plane of the cylinder, in analogy to the simple

transverse waves considered in the rectangular chamber, only



-19-
oscillations independent of = will be considered in this analysis.,
The solution tb equation 3.1 for a circular cylinder with standing
acoustic oscillations is given by:

_2mpvT

P =R (me) 3. (2™ e (3. 2)

Here, as in the previous problem, the frequency, ) , is % R

W.The

and, in this case the angular Velocity, W, , is =

X .. arise from the condition of zero radial velocity at the cyl-
inder walls. The subscripts +7 and ~z specify the modes of vibra-

tion in the ¢ and A directions. At the walls X

v 18 @ solution

to

d I, (rx)
d - .

(3.3)

For each value of .»»¢z there exists an infinite number of solutions
to equation 3.3 since ., is an oscillatory function of its argument.
Characteristic values of & are listed in reference 3.

For oscillations restricted to a transverse plahe of the
cylinder the ‘sim_plest cases are the first radial mode (m=0 ,77= 1/,
o, =1, 22),  and the first transverse or sloshing mode (o= /, 72=0,

e, = .586). In investigating the possiblé parficle drift velocities
induced by the acoustic oscillations only the effect of the ‘sloshing
modé will be considered since it is this mode which is most often
observed in liquid and sélid propellant rocket systems experiencing
high frequency instability. o | |

With the restrictions to oscillations independent of‘ Z | and

to real solutions, equation 3.2 can be written;
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_p = E cos ¢ J, (:qfr‘k’;z"’@) cos 2wyl (3.4)

The coordinate system used in this problem is shown in the follow-

ing diagram:

In this case:

7P = toff an) 3 (Z52) o vt

/77‘9(,0 012’ T ‘o .
{P(cos ¢)(cos 27VT) )[ 3, () - T, ("'1;_3)]} (3.5)

An expression for the gas velocity can be obtained from equation
3.4 in a manner analogous to that used in the case of the rectangu-

lar chamber. The result of the calculation is:

U.: z‘? 5;,%—,;) sin f T, (“f:_(w"’*) S/r JWPZ‘]

N R
+ / [ 4»9@ CUSCP S//?ZW“}-}T{T {’7’1"//0’2) (3.6)

Fig. 1 shows the magnitude and direction of the gas velocity,
as a function of . - P/p .» for various points in the cross section of
(<)

the cylinder. The calculations "are: made for a time such that
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sin 27Vt = 1. Since the cross section is symmetricél, only the
first two quadrants are shown in the plot. It can be seen in Fig.
1 that there is a gas velocity :node at § equals 0° and 180° while
the pressure node occurs at (f = 90° and 270°.
Using assumption 2 the drag force on the particles is given

by:
677“//6‘*(5—/77') . (3.7)

Here, as before, |J is the gas speed and A~ is the particle speed.

The particle position is given by T,Z Jt , the particle velocity by

v~ ¢ dr z‘ ____qj , and the particle acceleration by
ST I '

=8 (] nfete o r g%

d 72 dT c/t JT J 7>

The equation of motion for the part1cle can be ob‘camed by equating
the particle inertial fo-rces to the drag force obtained from Stokes

law. ’The result is:

5—?—3 /L—Jg)]"'é /)7’1/02&?27/"? J{.z]

Ny

— - /30 M , 70 3.8
= 6mie [7 [ Sin T () sin amiT 2 Y | .8

+7L{;§£’—” Cos ¢p sin zvfuf[j;(zf#)_ j;(zgﬁ)]_%b}]

In the above equation the same symbols are used for gas position
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as for particle position since the gas velocity must be evaluated
at the position of the particle (by assumption 3). Eqpation 3.8
can be separated into two more useful equations corresponding to
the Z,b and 2\4, directions:

{» component

d*z 6 dn _ p [dP)T
Jez T Tom ra /Z(Z/'zé'g)

- (3.9)

= 3o o=, B frroo,/z /L]
S eva C05¢P5/n27rVZ’ T.( ) )

?@ component

;z;i_a_yz _fe é%b"/ch_f_z‘{? [%%%E—S/MPSMMWTI(LL)] (3.10)

As in the case of the rectangular chamber it will be conven~
ient to “'nondimensionalize equations 3.9 and 3.40; the following

dimensionless variables are used:

_ 2 t. _ tc
Z= 7 J= %=z  ¢=9. (3.11)

Introducing the dimensionless variables into equation 3.9 and 3.10

gives:
—

L, component

a_

4z +/(Q’_Z-’Z(£i_@)a’:

7 I - (3.12)

~ET%e cos ¢ sin 27T [j: (e, 2) = T, (7=, z)]



FW compeonent

(3.13)
£ sin¢ Sin 3—71—”5%-:7 3 (7ro<,,,2)]

Here, £ :/)_,zée@_;_c@ and K = %ﬂ are parame‘ter? of the I?rOb"
lem and, except for constants, are the same as the £ and K in
the rectangular chamber problem.

'Equations 3.12 and 3.13 are non-linear due to the appear=-
ance of Z in the argument of the Bessel functions and are analo~
gous to equation 2.9 in the case of the rectangular chamber. Since
£ is proportional to F) » 4, and other flow pr-opéft‘ies, an argu-
ment similar to that made about equation 2.9 is valid. The follow-

ing perturbation expansion in powers of & 1is introduced to linearize

equations 3.42 and 3. 13,

Z(T) = ZAT)+ € Z(T) + EZ(T) +--- (3. 14)
0@ = 9,(T) +E 43{, () + 5243, () oo (3.5

In substituting the above expansions in equations 3,12 and 3.13,

sin c)) is expanded as Siz ¢ = (Sin ¢)( /- %J[CP, rEG ] v - - )
+ (cos¢,)(E ¢, | +E%¢, - ---) and cos ¢ is expanded as
CoSs d) = (COS¢0)(,-%2[¢|+8¢‘3]1+ - ‘") - (S/ﬂ ¢o)(8¢r +£2¢2 - ‘)

The Bessel functions are expahded in a Taylor series about the point

Z, to get:
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I (73(9(/02—), = [j; (wdloz"’) - 8 Z/ e j-; (7?,“” 20);“5122 7?/ I(W Vo ’)

g2 e 2 =
' (m=,) T (W) + SFSEE T (7, )

Tire?) = [T(rm) + ETE T (v - ER 3, 2,)

e 2 £°Z ’z" oy
e, Z, T, (7=, Z.) - = T(7r ) + (7ro4,,,) 7ro(-2) J(nr=,2)

JZ, 2 o -
%—;;—u j-o (W%,Z‘,) ‘

Ja (e, 2) = [I(%e,.z,) + EZ e,y 3, (M0, 2, Z)

+ € F, 7, T, (et u 2 - 2;2’ T () + E2 2 s,V 3, ()

o

2 /: -
-%m> T (7,2 + 352 3;(77%20].

o

The results of substituting 3. 14 and 3.15 into equations

3.12 and 3. 13 and separating the results into orders of £ are:

Zb/L component

’24, JdZ _ J¢. ) —
jj"? ‘/" k Ij: Z(;%:) =0 (3.16)
K'C-‘-*- o/¢ J4, (_d_@.

a7 o/:r Jd0 z

(3.47)

/aS”z JW’VGTCOS 4) [j—('yro( vZo) + j; (7?“%%)]}
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S +k§—§-§-’ _a2zd.db -Z(g—%)z“ Qz,i@c’_‘l’z -‘Zg(d-@?)l

—
——

T JT JI J7 dT 47
T 5/ "2——~——————7”é"“ J 2 2 T, co:s ¢, T, (. Z)

Pl

T E;Cos ¢ L(T=.Z) + @ sin ¢O{I(Wo{,af‘,)~l(7fo<'mz,)}] (3. 18)

Z:p component |

223—?% +Zlfgfig +Z,Z/<§%J—: =0 | (3.19)

d9,dz JZ, J0 dZ db | 2 d% 49,
2,575 AT IT TPEIT T TR tRLE

(3. 20)

12 k9% +okzz 4B = [I(’Ifoﬂ.,fz) sin b, sin 2722

e
1

ddZ; 547 J9, 4% d ¢ 44,42 JZ,
2Z +,zz,g.5,j§i, 22,929 27 4895 407295
¢

Sis
IK

2 d% 49,
t2Z, 52

oo

+z;"i'7-i¢) 22294 _;;z,z'd’% +f,2.i”fﬁ’ + k2"
TR 477 74T JT?

N
S

!

l

2 +IKZZ

A
Q
S
Q

+°7kfi%c5;’-‘;’-s+/<z’5’gé = {z sindy [10, T (e, %) - £ T(mez)  (3.21)

+ @, co8 ¢, I, (W, Z;,)}g;h Q.I.G?.".@-g) . o
If a particle is considered to be at rest at J =0 and at a

point Z ) ¢, then"t;he gppropriate initial conditions are:

= Z -1 P d....—--z" = CJ__Q- g Pl 5
: | — dZ N = | - c"P, = 0 (3. 22)
Z (0) == (o) = ¢ (o J"O’(O)

>

LY
s
i
o

2,0 = 901 = Qo) = 9

Q
«Q
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It is noted again that purely éoznstant, damped or oscillatory
solutions will not be of interest since no net transport of particles
is invelved.

The form of equations 3.16 to 3. 21 can be compared with
equations 2.12 to 2,14. Since d), » and 7, multiply the right side
of the second order equations it is expected that any terms in the
solution which are proportional to time will again appear in the sec-
ond order equations 3. 18 and 3. 21.

'The expectatioh that the drift velocity will be second order
in €, specifically for the radial motion of the\ particles, also fol-
lows from the physical arguments given on page 14. However,
for the geometry considered here, centrifugal forces also act on
the particle. Since the centrifugal forces are proportional to the
square of the particle Velocity and the particle velocity is first
order in £ , the driﬂ: which results from centrifugal forces is
aiso a second order terms,

Solutions to the Equations, - A solution to the zero order equations

3.16 and 3.19 is Z, = constant = Z and ¢, = constant= § . The
constant £ is closeiy rélated to a drag force and can be called

an interaction parameter so that to zero order in € there is no
drag or interaction between the particles and the gas in the cham-~
ber with the result that the partlcle position is :Elxed That is to
zero order in &€ , the part1cles are not moved by the gas but are
at a f1xed positlon Using these su'nple zZero order solutions , the

solutions for Z, Z

5 (P, , and (]52 can be found by the same
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method used in solving equations 2,13 and 2. 14 in the rectangular
chamber problem. The complete solutions to equatiens 3.17, 3. 1’8,
3.20 and 3.21 are discussed in more detail in Appendix A,

The first and presumably most important non~oscillatory

and non~damped terms appear in the solutions to the second order
equations 3.48 and 3.24. These non~oscillatory and non~decaying

solutions are:

Z 0* - L (FE+DG)
K[ k2 (2222)]

(3.23)
4 -5 (EH+DI)
Kk
Here,
D = j_—_'-__(_l;:?_@_?:) sin ¢
E - ’T_%’_(g cos 5[3}(77'0(102) —-j—b(’lTD(’,pé)J

Foo= Cosp[(mes T (ree?) - e T(7re, 7))
6 = ”fgﬁ Sin § [I, (e Z) = T (T, Z)]
Hoo= Sin@[Tes, T,(me2) -4 T (e, F)
I = Cosé T (e, 2)

Differentiation of equation 3.23 with respect to time will
give the particle drift velocity. The objection might be made that
the decaying exponential terms in the solutions to the first order

equations may contribute appreciably to the particle motion. A
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calculation to determin.e, the magnitude of the first order decaying
exponential terms, compared with the steady state drift kve’l‘,oci‘ty,
is shéwn iniAppe’ndix B. In general, these terms appear to be neg-~
ligible for reascﬁable values of the parameters.

Moreover, the terms which decay exponentially in time
arise from certain assumed initial conditions of the particle posi-
tion in a certain phase of the motion. Since there is no physical
way in which one initial condition dr phase may be preferred over
another, these can occur at random and hence the decaying terms

can not contribute to the mean motion of large masses of particles.
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IV. RESULTS AND DISCUSSION

The Drift Vélocity. Ignoring the oscillatory terms and decaying

exponentials the drift velocity of the particles can now be written
down using the solutions listed in 3,23. Remember that the velocity
of the particles is 4~ = 7, 92 Cp h d¥

or in the dimensionless expanded form is:

Jy "~ JT I
(4.1)
'f'gz,dd)l + d‘bc Cld) d¢’ d A
R RS R R
The ?4 component of the drift velocity can be written as:
_ §fg[§02~(/-‘5+0@)] ., &%c| & D~ (Fe+D6) 4.2)
2 Lk[k? e amey] 2| KK+ (2 | T

in terms of the oi‘iginal variables. Note that [%D'?' (FE +D@)]
is a constant for any given %Z , (J and cylinder radius and does
not depénd on the particle dimensions. Let [% D*- (FE+DG)] =@,
then the /2 component of drift vvelocity is rﬁore conv?nientlyzu P
written as -

_ _E'a@
Vi = Zk[ed GZEeF]

(4. 3)

To see how the 2 coinponent of particle Velbcity varies with par~
ticle size the expressions for 8 and K can be substituted into

N, 3 this substitution gives:
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3 uRge
v = 76 Q‘”V‘*?ﬂam  (4.4)
(_Z(__-a -+ | .

Or, since the mass of the particle equals QP 4/37f & , 4.3 can

be written é.s

[ 9 wP%
AN F 3 R
o = L eVIrae (4.5)

As 6 > in equation 4.5,2,—> 0 and as 6~ 0 , 4 — O}
therefore, as in the case of the rectangular chamber, there is an
optimum particle radius, 6\,*, which results in a maximum 2/, .
This optimum radius is again found by examining the first and
second derivatives of the velocity with respect to 6~. The result

of the calculation gives:

A/
°2 T Vaevw | (4.6)

‘The same arguments can also be made for the (.P component,

Thus, the (P component of particle velocity is

_E%|-Z(EH+DT) ] gc[ E(E//HLD‘Z), (4.7)
N e | e et

in terms of the original variables. Again, ﬁ/a, @’#*DI) is constant

for a given X , (J and cylinder radius. ﬁ/a (EH+DI) =

then the { component of drift velocity ‘can be written as

| -e%cs ‘ '
P | (4.8)
¥ | ak[k? ~ (2222)%]
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Since the expression for the /Z component of drift velocity (equa-
tion 4. 3) differs from the (/ component of drift velocity (equation
4. 8) only by a multiplying constant, it is evident that the optimum
radius for maximum Vo will again be 5‘(:2 \A%—-—; .

Since the optimum particle radius is the same fog the /2
and ¢/ component\s of drift velocity, a particle of radius & will
indeed experience a maximum resultant drift velocity. Note that,
since V= ZF% bin the case of the rectangular chamber, the optimum
radius given in 4.6 agrees exactly with the optimum radius found
in equation 2.34 for particle motion in a rectangular chamber,

Again, in analogy with the rectangular chamber problem,
it will be interesting to see whether or not the maximum particle
drift velocity is independent of the cylinder radius, @ . The par-

ticle drift velocity can be written as:

" 2K[ K (R222Y ] ? 2Kk (2229 ’

Here @ and { contain the cylinder radius in the ratio ﬁ/a, and
for a given ﬁ/;:. they are independent of the radius. It remains to
be shown that £ , K and (3—1(’;—25‘) are independent of the cylinder
radius. Since P ;_‘_';,’Q , it is obvious that ) varies as the in-
verse of the radius, and that (27—7.’(-;_’_)-3) does not vary with the
radius. Since the optimum particle radius varies as a% and the
mass of an optimum sized particle varies as a% ,» it is evident that
£ = ﬁ%%@ and K= é/_)_i/_f’_cf"_cl- are both independent of the cylinder

radius. Therefore, while the optimum particle radius is a function

of the cylinder size, the magnitude of the maximum particle drift
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velocity is not. This result is in agreement with the result ob-
tained for the rectangular chamber problem.
Another comparison with the r‘ectangular chamber problem
can riow‘ be made. If the optimum particle radius, equation 4. 6', is
substituted into the particle drift velocity expression, equation 4.9,

the following is obtained:

2

P W(%) [Z;@__z‘q,g] . (4. 10)
For (P= O’, the constant $ is O and the particle motion is en~
tirely in the radial direction. Fig, 1 shows that the gas velocit*j
in the cylinder is also entirely in the radial direction when @ is 0.
Since motion was restricted to one dimension in the rectangulé,r geometry
problem, a comparison of the maximﬁm particle drift velocities is
most meaningful if compared for a (@ of 0’ in the cylindrical ‘problem.

When (= 0 is substituted into equation 4.10, the equation reduces to:

x

=i, 935 (%)’2{_ [I(W"S,/}) —-7—;.';:,—% 'J;(W%%L)][:[I(%%%)fj;(ﬂf%kﬂZ(z;, 11)

For comparison, equation 2.36 is rewrittenhere:

¥_ ¢ (R, of
= Sy"(/@) s/qu | (2. 36)

The expressions are the same except for the terms on the right re~

sulting from the geometry difference in the two problems.
It is also noted that the ratio of particle drift velocity for
arbitrary radius to the drift velocity for particles of optimum radius

varies in exactly the same manner as given in equation 2. 37 for the
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rectangular chamber problem.

Magnitude of the Drift Velocity and Discussion. Thus far, with the

assumptions listed in Section II and the restrictions mentioned for
£, the expressions for particle drift velocity are perfectly general.
The expression for particle drift velocity, equation 4.9, will now
be'uéed to calculate the drift velocity of small liquid droplets in a
liquid propellant rocket combustion chamber. Although the fluid
medium in the combustion chamber is not at rest, the Mach number
of the gas relative to the particle is usually low near the injector.
Stokes law drag will hold if the droplet shape remains nearly spher-
ical and if the Reynolds number of the flow is less than one which,
for reasonable values of the parameters, means that the particle
radius must be less than ten microns. The results of these drift
velocity calculations will not be exact, but will give an indication
of the mean motion the droplets experience in a combustion cham-
ber.

The following properties, for the droplets and gas in the
chamber will be assumed:

For the particle:

QP‘ = 2,1 slug/ft. 3

The particle radius will be picked to
maximize the drift velocity and for
the values ligsted here:

f*x 2.75 x 107> ft. = 8.4 microns

For the gas in the chamber:

C = 2360 ft./sec.

M = 41,54x 1070 slug/sec. ft.

-4

€ =4.16x 10 slug/ft. 3
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X\ =1.3
T = 2500° K.
Y =692 1/sec.
For the chamber:
a = 1 ft.

In substituting the above values in the equations the form of £
| e R
VP E
Here, 8 and e are the mean chamber pressure and density.

was changed to £ = by substituting ) % for Cl .

In calculating the magnitudes of the drift velocities, values of
Jz of .1, .5, and .9 ft. were chosen for the initial particle posi~
tion, and since the drift velocities are completely symmetrical,
values of ¢ in the first two quadrants of the cylinder cross sec-
tion were considered. In particular, angles of 0°, 22. 5°, 45°,
67. 50, 900,“ and the corresponding angles in the second quadrant
were used. Table I shows the results of the drift velocity calcu-
lations. In both Table I and Fig. 2 the magnitude of the particle
drift velocity is divided by (pya)z . Since the amplitude of
pressure fluctuations in an unstable rocket chamber is a parameter
which varies quite drastically, it is convenient:to multiply the values
listed in Table I andvFig. 2 by the square of any desired ratio of
pressure amplitude to mean chamber pressure to determine the
‘actual drift Velocity,

Fig. 2 shows the directions and magnitudes of the drift
velocities in the first two quadrants of the cylinder cross section.
It is seen that the drift near the wall of the cylinder is greatest at

g = 90° which is to be expected since at this value of (f there
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is a pressure node and, as can be seen in Fig. 1, the gas velocity
is entirely in the (P direction. The drift velocities are generally
in the radial direction, due to the centrifugal force exerted on the
particles by the oscillating gas. The drift velocities are greatest
when the initial particle position is at the mid-radius of the cylinder.
Since the drift velocity is a second order phenomenon, it is difficult
to find any correlation between the drift direction and magnitude,
and the pressure and velocity distribution of the oscillating gas in
the chamber except for that mentioned above.

To obtain a range of values for the magnitude of the drift
velocity, g. value of .3416 is chosen for % ; that is, a pressure
amplitude amob.nting to 34.6 per cent of the mean chamber pres-

sure. Then (B/B):" is 0.1 and with the values shown in Table
| I, the particle drift velocity varies from .39 to 4 feet per second.

As mentioned earlier, the magnitude of the first order de-
caying exponential terms in the solution of the cylindrical chamber
problem are investigated in Appendix B. For this numerical
example, ﬁhe results show that after just two oscillations the mag-~
nitude of the velocity contribution of the decaying exponential
terms is less than one-one hundredth of the magnitude of the second
order drift velocity.

It is also interesting to determine how far the particles
move in the combustion chamber. In .01 seconds, which is close
to an upper limit for liquid droplet life times in a rocket chamber

(4), the droplets can move from .05 to .48 inches depending on their
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initial position in the cylinder. This is a very small distance when
compared with the size of most rocket chambers.

In comparison, the drift velocity in the rectangular chamber
will reach a maximum of 17.4 feet pér second at an initial position
in the center of the chamber. In .01 seconds the particles could
move 2 inches which is considerably greater than in the cylindrical
chamber, b;:;t still not significant when éompared with chamber size
or wave- length of the oscillation.

Variation in Particle Density. Although it is not the aim of this

present work to calculate in detail the variation in fuel-oxidizer
ratio which results from the relative'drifts of fuel and oxidizer par-
ticles, it is of interest to calculate a few representative values for
the chahge of particle density with time. The variation in particle
density, m , can be computed directly from the continuity equation

for nonsteady flows. The equation, in vector form, is
i/: + Ve (mAH) =0 (4.12)

2 is the particle drift velocity and mt=x (t,~,¢f) is the droplet density
in number per unit volume. If the pfoblem is restricted to the cal-
culation of variations in density over short periods, then the varia~

tion of M with time may be approximated by

, m,
m = 2 (r ) 2 (T2 8) Y, <<
Also, for short periods, the effects of evaporation of the particles

may be neglected and hence the particle radius will be constant.

With the above restrictions equation 4.12 reduces to
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A/ﬂ/ﬂ?. r - (v.7)al . (4.13)

Values of A%o are calculated for the chamber conditions given

in the previous seétion, The calculation is carried out for the cyl-
indrical chamber at /Z/a, = 0.1 and = 0 and for the rectangular
chamber at % = 0.1. A time éf about 1/5 of the particle life time
of 0.01 seconds is assumed and a radius equal to the optimum value
for particle motion is used in the calculation.

A 3 per cent reduction in particle concentration is obtained
for the cylindrical chamber and a 10 per cent reduction‘for the
rectangular chamber. Theée values of density variation are the
maximum which can be obtained for the chamber conditions used.
For the cylindrical chamber, the changes in particle density appear
to be too small to cause a large change in oxidizer~fuel ratio and
in fact ther variations of the order of 5 per cent are much less than

the variations which occur because of the injector design.



=38«
V. CONCLUSIONS

It has been demonstrated that small particles in an oscil~
lating gas field experience a steady state drift velocity in both
rectangular and cylindrical enclosures. This result is based on
the assumptions that i(i) the fluid medium is at rest and in a uni-
form state except for weak isoenergetic fluctuations in velocity and
state properties, (2) the particles are spheriealiand experience
Stokes law forces, and (3) the particles have negligible effect upon
the fluid motion.

The particle drift velocity is a maximum for certain opti-
mum sized particles. The optimum particle radius is given by
o“*r ;’ez:—\‘ﬁ, where V is the frequency of acoustic oscillations
in the combustion chamber.

The maximum particle drift velocity is independent of the
chamber size although the optimum particle radius is a function
of the acoustic frequency and hence of the chamber dimension.

| The magnitude of the particle drift velocity in a typical
liquid propellant rocket chamber varies from .4 to 4 feet per sec-
ond and in an average particle or droplet life time the actual
movement will amount to just a few tenths of an inch.

It is concluded that, for rocket chambers of reasonable
size, the drift movement of particles has‘ a small, if not negli-~

gible, effect on the distribution of fuel or oxidizer in rocket com=~

bustion chambers.
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TABLE 1
PARTICLE DRIFT VELOCITIES IN THE CROSS SECTION OF A

CYLINDRICAL ENCLOSURE

% Y C N (Y (D)
| (degrees) (ft/sec) (ft/sec) (ft/sec)
A 0 11.8 0 11.8
A 22.5 10. 6 -.3 10.6
A 45 7.5 -4 7.6
A 67.5 4.5 -.2 4.5
.1 90 3.9 0 3.9
5 0 37.4 0 37.4
.5 22.5 34. 4 -5.3 34.8
.5 45 27.1 -3.7 - 27.4
.5 67.5 19.7 -2.6 19.9
.5 90 16.7 0 16.7
.9 0 10.9 0 10.9
.9 22.5 12.2 -6.9 14.0
.9 45 15. 4 -9.8 18.2
.9 67.5 18.5 -6.9 19.8
.9 90 19.9 | o 19.9
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APPENDIX A

SOLUTIONS TO EQUATIONS 3.16 TO 3. 21

In this appendix solutions are obtained for equations 3. 16

to 3. 21 which are developed in Chapter III.

If a particle is considered at rest at J= 0 at a point 2, (P ’

then the initial conditions for the equations are:

Z,(0) = Z » (0) = $ 92 '-',‘2’._@9
/ ; $olo ¢, te) 7 (0

Z(o) = dz’(o) = CP (0) = d¢'(o)

2.0 =92 = 6,0 28 0= 0

Zero Order Equations.

The zero order equations, 3.16 and 3. 19
are:

dBo deO adz% 2 _d_@‘? =
o Z T + 25K i 0 (2)

(3)

Z,dqu -+ MOE(_ZE’ . é{)&?l:
Jd 3% K2 5 T % (JO’ 0

Z, = constant = 2 and CPO = constant = 47 satisfy equations 2 and

3 and will be used as the solution.

First Order Equations. The first order equations reduce to the fol-

lowing upon substituting Z and ¢ into 3.17 and 3. 20:

L@ component:

A
iji"}-f k‘m ET (wZ) Sin ¢ 51/2"‘7’(;33351"j |

J
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{ » COmponent: '

Jd°2, . wdZ wet o amvad .. —[ oy .
;""3""_,"“_’1 “f‘/\;«wj:» =\ T Sin C CODC}) :l;(?rcvz) j:(wogz_z/-{ (5)

The solution for ¢, is obtained first and then the solution for Z,

is found.
N TR Z) T
If: D& |Sgz— s 9 j (6)
the ?¢, component equation may be rewritten as -
2 r N
oo, aryad
gw,g—i + K Sgi' = LD sin - | (7)

The solution to 7 is determined by the usual technique of finding the
complementary and a particular solution and adding the two. The
constants appearing in these solutions are then eliminated by use
of the initial conditions.

The complementary solution tq}equation 7 is:

N L aKY
d)lc - icl + (’Q. < { (8)
For the particular solution try:
_ i ooamyad 2mva T
¢‘P = Ly Sin c -+ C4_ Cos C (9)

L

In this appendix, the subscript ¢ will pertain to the comple-~
mentary solution of the equation and the subscript p will pertain to
the particular solution.

The {first and second derivatives of equation 9 are:

/ iy T , .Y
2rva ~ _ _awvad _awrve ;o oo 2TVaed
= 1 s g BULDE e N S I e o
CP,P C Lz €05 =7 a2 c (10)
I o i <. ]
” i . - AR e 03 YRR 4 . .
9 =) (2022Y7C  sin aryad _ (210a)C, cos 51%&.,3,“ ’ (11)
1p L |9 S | __! :
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Subst1tut1ng 10 and 11 into equation 7 results in:

- (azz.%) C, sin QWWS’ (37»@)"‘“@4 cos ”g%.g’

— ,,“ reremr e iy

C

+;<ac C C;(;)S‘Q“"“)Q':r !(3%:8.9: C4an ;%‘ff:g’:{g)?);ﬂ ﬂT_C)%@_g’T. (12)

Equating coefficients of like terms gives:

“(apeyic, kapE G o= D, e

and ‘
TV - a4 -

K:z 4 a C3 (J'Z‘Pa,) C4_ = 0 (14)

The solution of equations 13 and 14 is:

¢ = =0 [ = ——KD (
3 T prameay T ampa 2 15)
k +(WC ) , 4 o'?CP [Kz_‘_(i'zér_;ig)]
The complete solution for ¢| is then:
KT -p s 2red KD cos ,;_T/_y__g_;]'
¢ =c, +C,¢ D L —;Wm co (16)
k# _,_( e [ Jwa,)]
To determine C' and C_l the initial conditions are used.
—_ i I<D
6, (0) =0 =10 *+ Ca "y, s, 5a] .
222 i (2]
, N , jz.mrpa, N
- — — e -— Cn
(P‘(O)—-O = |-K(C, e n,)“ J (18)

The solution of 17 and 18 is:
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D 331)35&
2 k [k’ .177')20.)1]
(19)
c - 0¥, KD
KRR R (B
The complete solution for ¢, is then
¢ = DT + KD . a.g.zi@ o= K
K EER] SRk B kIR EREY
= - .
k? 4+ (2Tra)? Qmﬂk +(,;f,,,,u,)—/ ‘ (20)

A similar process to that carried out above leads to the solution of

Z, from equation 5.
I‘F E _{fﬁlxi:_.&(ﬂ’&’z‘)COS‘p - Jo(vdE)cqs ¢‘]J (21)

then equation 5 reduces to:

a__, E,-m-—‘

d 7 J T ooip amva T

S2L o+ kdE :{ sin Arrad (22)

Since this is exactly the form of equation 7 and since the initial condi-

tions on (Pl and #Z are identical, the solution can be written down

immediately by analogy and it is given by:
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. ,_r K E _ E;z'g))a. C-K'J'
i e +<”“’"‘)J o[ (BB2P] K[y (@)
(23)
E sin LC’-,)QT _ KEcos 'Wavoj
[K"’* (; 'n;Vq,)lT B_Z_'_)’_% [k2+ (3_1%)3&)1]

Second Order Equations. The second order T component equation,

3.18, reduces to:

-

, 22 (db\* = |7 (10 T (7o) cos §
S kg T =[2G s B e

- ];(W“E)VOOSEJSM&Z,’—EE;" + @, ['-’—a’;fi S, (MxZ)sin

et Sy o0 5] s, 2028 g 24
- T jﬁ(‘n‘a’f)bln’fﬁjb 7 | (24)
when zero order solutions are substituted.

i3 -

F ;}Z(Wo()a]"('/roé)CoSE’ - %‘3’ T.(7=2) cos 4’_{ (25)
and | —
- o

G = Fg T, (weE) sin§ - T T, (rR) sin @ | (26)

~ then equation 24 may be expressed as:

x;,f'.z Jg.? - Jd’) — o V}j T . R “7]“)) f},
JTZ +l<r.:’3~ 2(25’?“ 2—'—' [ /n"‘tj’x + d:), (D Sin ’i_zd.?m ] (27)

The values for % » Z, »and @ can be obtained from the solu-

tions given in equations 20 and 23. Thus, from equation 20:
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[ jamray) o~k ¥ . arpa
do, |D(FEE) e - 2T cos VAT + kD sin 2Tp

SO |

P

!
1
- i
‘ Z (28)
g < |
_aky 2 'z?rka’)‘ _KY
(da) Z ) - 20 (3 ) cos e €
<
2 rya\t
| D< - (2pee)]
ryad 2IVeN\t 2, 2 gppaY
+ P e
anyayz]*®
j.l< * amw))/
- ;/(D””'Vo‘ Sin "i.”é’f‘i“-?)c o5 5-73'3‘39 + KkK3D*sin® arpad
(29)
= z
Lk’z+ (:ﬂ)ﬂ*)‘[
Substituting 29, 20 and 23 into equation 27 gives:
e A awpad L -2KTY 5 I
P25 gdEe o FOERA T - 220 BT coo i
dwuz A i f 2 I e a ol
: z, [ ]
L AZKD ATV T 0™ " gfn, “%’-’3«3’ + 2(47”""') Dces &.K)ii,::"
N -a‘
(K70 (G2
_ 2_21«& bmwf’;al’,ﬂs,mwaj' - 0 sin @f;}ad
) -y 5 L7 e
[k e (£&7)7]
E’. F ;271':»;"‘” sin fﬁrjg + KEF s/ 3;; oa ¥ _ E[:QJ“”' :;‘k'ry ézrya.}’
kL;\, + (2Tt ] Jg*“-[ ] K[ K? +(:mf.,@wj
- . o . P - Y ‘ = P " L 4 -
— EFsm 2%7f‘lf _ D(gé?,hfz’,fsad K < Jl(ﬁi.g’ +Q(D&;}g’.ﬁ'z :;mi"faéi’ﬁ,;

(K5 (@ZF] K LK (2P k[k*+ @z2ey]
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_ KEF Cos &Eﬂf&g . %&&gf C oG s ;rpk:’, e ZEFPQT
27‘(“’&%[& Y (Lmy 2)* .f gwalk :zmzd)j [ K3+ @ .,]
KD@Gcos ﬂfwﬁ? < in &w)&; -

270 [ 2TPay: )
22 [k

Equation 30 can be simplified by using the following trigonometric

identities:
. gwpal awrpad - L oo 4TVaT
Sin =g €05 —-—ag? 5 Sin B

.2 rpad
Sin :172)’9,3' = (’(z 0054 pe ) (31)

J = / ! 4rpa T
Cos* 3XE2Y = (4 + 4 cos 11P2T)

The results of substituting the above identities into equation 30 is:

- kY — 2 kT
JJi-’ + k dZ; - EZDI(:Z%‘E&)G - X220 (3—%}-{— Cos 2mveyY
2 Jr | TV R -
7 ! [+ (Z222Y ]
= _ -
T n .7'»2’4’3‘ 4 ;.f (zwcua,):o.z - ?/.2(2?‘*)0 co547rpa.j’

[k« (22

-ZKD (’QZ}"{“‘"’ sin iZélZ&Q’ + Z KD _ Z4 k*DRcos gyl
- i ‘Q‘.,
Lk (2222)

FE +06)( ;WQ) S/A;EK&; 4+ (FE+DG)K sin 9477’5_‘&.:3’

KLk (£57%) 2IPE | R, (2TPeR]

L

- (FE+DE Y (H™ q""k $ip 3MPAT L (g +D6) + b (FE+DG) Cos 2T22T

Lot

KLt (23240 L+ (222 )]
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(FE +D L'B) LZR 5 /7 ‘f’_h’V&«;
LI L ) K A—f 2 7{* v, cb) _{

I
[

(32)

Equation 32 is the linear second order differential equation which
must be solved. The solution is obtained in the same manner as
was used in the previous section to obtain values of the first order

functions ¢, and Z,

The solution of the complementary function is: \

Z, =|C + Ca e k7] - o 39)

<G

and the trial particular solution is:

sy . _w?kj— " - Kfy arp 3?' _k(.‘]i , - 3_,
Zop = Lj I+l e CesTET C, e s arpa;
L
e o F C)_. - .t - - - - . g‘ y . Y
+ (./7 L8 ilz&“‘ ‘4‘(//8 Sin ti-%mji + Gq oos ‘2‘-%“3.« -+ C/IDS”?' '?,’?:gfﬂw ‘ (34)
The first and second derivatives of Z—"P are:
s D | -"?K‘y ~»-K‘T ol 103 3’ ;?27)’))&. SR, : - Iy
—_ 17 - 2k - / - RIPQ. o Wy & o S)n 2Wve
;?WF..;L\; ,zk(,4a, K(,,FL’, cos - = (,gu 47¥
- -/&Ji ,ngpaj’ o L A -KT J’P‘Vﬁw i?’f"ug sih 4y
kG smETST s L, 80 oS e 5 Gy St =5~
m
47v2 0 o o5 4T24T arva ¢ s #.ﬁ;wz;‘* ¢ 2LEE C,, cos 'Z_Zg_’g; J§(35)
) 44

— 1, Rk 2, kT ) ) kT o~
2, = [&% K Cee™  + K Cp€ Ces —fi‘f*”f 2rva o & smdTres
: [am
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2 -k 2 KT  gyye’
+KETEL o e sim gt J - (AW e @7 tos B
3 gy -
. -, ..kJ’ , KT 2, —f( _ame¥
vy $°8 -kJ_ a S . ajt o p o ¥ V25 <, 4 T
@y, o T e - (Epreey cos 1T (AR22) 0 oin I

 (36)

o

-(3m)*C, cos 24T — (2 T‘ya) c, sin R’T}Jaj’j

Substituting 35 and 36 into equation 32, and equating coefficients of

like term results in the following evaluation of constants:

, Z D - L L e +06) |
KC, = (-2 / (37)

2 - z
2k ii = L.,«-’—”M“; - (38
kK Cy e T )

2 :7"#@ ,:/7’;»’::@
2mvay s [Amya “;ZEKD (72) - (FerD6) 3
K £ s 74 (39)
( e )b T E /Cu U— +(97c}:.’:€: ”’“ kLk ‘”' Q’):
L
- arpa\®
(’Wa) - k(-«,ﬂfa@) ¢ = _:QZW.E{( B )‘L (40)
[K*+ (BZE) |
o 2 = 2 . s
4Hw<¢> GV po 0 = | z/,z ("%i%) Dlﬂf/’? K*p” +z% (FErDE) = (41)
o "y [k.'z*‘ (:“;“Z“—vwgf)i}lz l;_“ka_,_(:g,?giﬁf)ij
T e [’y o ~ oy K )
woa o o jemvay - |TEKD(RE?) - (FE +DG) V2
—i}?}:@‘ /‘1{,7 -(igfi@) e {K,z (zrru)‘( .77!‘)’4[‘( JH":)HJ (42)
zzg.;{r%)lig? + 2% g, = 0 (43)
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L 0 LS G- L R (Fe +D&) 2724 4 (FE+DG)Y K - (44)
O KDk (RTE) 2T pa(ameey)

Solving equations 37 to 44 for the constants gives:

%392’"§<F£+%5) C _{:Zgﬂ(mgﬁs
)

KZ'A/.? (xu ,,,,, )J

| (45)
o [22D°-(Fe06) A [ R20
- [_ pER (i’%})&)jl 3 k L kR A/rwq,)j (46)

- Ba (Yt s 2nkp S L AT (pg 1)

[ Gy [V (o cezsy)] [ o))

+ K% (FE+DG)

[ e ]

| %33 kD> - 25kD% + % k(FE +DB) } o
s (B e [, cempey) [k G B [ (Y]

C. - - (FE +D6) ;] C _[--(FE-+DG)
9= (i%&ﬂ)sz“ﬂi’éﬂﬁ_l o 7| K (AT ke (2222)] . (49)

(47)

The complete solution for 22 can now be written as:

) -kT =3 2 __@:& -2k
Z,=1C, +CC 2, 0*Y -4 (FE+D6) T+ 20°(*2

L KLKJ (M:,?,_Q)J AKA] sz(gmu)“/

o e ,-Kv ey kI gypal
+[20 - (rerve)]e Lo T | (e (RE ) e Lin 3

[kRe (322707 K[ K+ (i@vo>j‘

ot

= a‘ff A ) P . T
- £~ 77{ ( ‘.3,/ 4 ff”“« -+ - Z !\ L““/r} Q_‘/ 1‘77‘%}’} gg’y«i G’}. [l )u‘m g

/D7 ST - e <
[ (e s [o (1] [k (v




-53.

/; (h: +D6) 5 - ?”u‘) -f—!;/’ (;rya}i/ D*- 2‘z/ﬂ.k LJ, n AP
';?ﬁ"?“ik (2)7’)‘\4)]47"”'[&.(47?’)4)] [_L /57?!/{)‘/1/4-7}'}—'4”[-}‘ (g,r;ﬁg;j’]

4/]’)J¢u

+ “/Z !'\ H: +De) sin? (H“‘“D/”) >”4’T‘

e U 50)

(F& #bm) ces L

‘{ik, _,gﬁ')f 4/\‘;/4"!)”)”421# T(v‘,z"y.c.(/g:g (,-( irr}t} [k +(g—,?£;}",‘ k ( ‘/l}""* \l l

To determine C, and C_z the initial conditions are substituted into 50:

; 2y Ay )’.’/’/‘)"»’ft. § &
Z (o) = c rc, + 200 )\; 2Z0% ~ (FE+DB)
Ak 1A4+(=2?:’1’“)jj [ K7+ (BT *

e

[ 27/;(;,(1;’/«) b24~7rw_ L 2P K "L“’”Z/

Lk _f.(d??'r’«)dr-?/ éu«.)[/( +(4FV4JJ

ek

K2 - e D) -y
t % (Fetbe) «_?( e = w,“”'f 2] (51)
AV e omsan2 )T r« AN T < ‘N ]
Sk (e i S KA (FTP9)

‘. k , 2 0% -4 (Fe+L6 7o (8Tret
ST L TS TN Tl
K LKA+ ('i 8| Y R )

Kk [‘}:zzo - (FESDE)] 4 (Fe+D5) (P23, [% 5 (2o Z KDY
[ K2 '775,,1)] KLK2+(;‘%’5‘E’>]” [K% (lerrdj *[k% (Wya)J
_,_/d&(%_:y::wLLw) - (FE+DG) i (52)

[kr(rey Lo (REF) k[ke GREAS] |

Solving for C, and C, , rfsults in:

C _;'f/,; p? - 4 (Fe+Ds) _ FoA (222 [2ZpR- ~(FE+D6)]
. - - " - " - : ads
KAk (“—”—E”)‘J k2| k2 (2] k2t (R7E<)* |
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(Fe+D6) (Aa)* , [92 % (BI*) D - % K% :3;;;, (FE+DB)
A AR S [Kl-f- ‘Qm‘\’ﬂ); ay K‘?"‘f (ﬁ:?{y%/) ii wa}ﬂjik+£n-gg)'}

(53)
+[(s ) x
127
b
o rimle LA e
7:_ &,l:} ’: + (&?Pa J ”k W&.(ﬁﬁkg}” ;f k&_f_(iwa)a
4 (FE+DE) ;g o’ (2EF 7"*‘*)& _ gf_,,zgmuf{ (Fe+06)] 4 (FE+DG)
) - [ ;? - " . \:r‘
Kaikaﬁ_@pg}i 2K ik +t€_7;rpa>2 { KA+ {&F?a\a-j (.ZWQ k+(¢»;gg7
Lg www&wb;4ﬁ& +2% +“”WQFE+L@
L ; . S 3747 3/
k +£mﬁﬂ4)3 m”?"’"’“}dg + (‘fzz ) Lj\, L (27 'nym 1 W }& iw*");‘
— i‘;“; Vot L 93 SRR (54)
mi*ﬁ‘ﬁa.: Tr a7 fq—“vm 471‘;?4)»‘ i
=T LCHAL L """"" /

The complete solution for Z, is obtained by substitution of equations

53 and 54 into 50 and is:

' P
5, | -LRD-kE ¢ o Feerel]
Y R - o)
o zm knékz'f (;’2”‘. ?_,} _j kw h ‘f AQW“):—{ ia Kr}-_’,_ Q.‘!ﬂ:}"“&\, —3
v (amva V@ e amald & E. #‘;:‘C’M 2y +DE
- (Fepe) Fe ) - e Z(BCT - - %4 (FE+DB)
K[k ( L,’ K7 \ifg}u\;; ! k%(ﬁw«\ IH{E *’)’f
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(FE+DB) _ Z p?(2¥e)” [220”-(F£+D$ﬂ

Kricezmay] kol @ Lka e (220)1 )7

S NEY ARV Y (o “
L ¥ N{ 2 {'J »ag' ¥ ,J‘/ 4?‘? K (17-» ¥ )aj

4 (Fe ﬂ%)(‘m”) ety

j R {'37’*’“*HJ‘“”

£

g

(F'W”PE”&/ &

K ke (20

+ EA (FMQ{;;)
)& + ﬁ’;u‘g ?kf(

LakT

#oo

(Fe+ é:w?)( e ﬂw"@k amred

T ogira amwye S
_ = = (Febi)) o3 T Lk
: &

+ "‘;’/ {'
Jm’@i (HW)

w

TE = z!f}&\
+ L2

??fr/” EIE L NESE N [
[Ke(Emay ] Ry

zsrwa Y

?f}/u J

3, k(e +06) s FTXET_ (bEaDr) oo =9’1§-}“‘ 7

!F{:: + [ s’m 5/12

+ (
27 'f‘*?rt’r’a« R > . .
U‘*( r‘a)j H\m 4»7rm)J (,17’/‘ }\3 ( “gzge).l lx( j“\ ?@/mﬂ/«) J

(55)
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The second order (yp component equation can be treated
in a similar manner. Thus, substitution of zero order solutions in

3. 21 leads to:‘

-

P a5z S6 kFE 1okl =
2% +agz +kF g% +,;zkﬁ.f,§i%; -

e
Nt
m“}_

25
3T

\3..

@"%( Sing |3, (7 Z) ~7ep (T2 ) |sin2P2T 4 ¢ T, () cos wn””“rf (56)

If

H = sind [T, (meZ)—& T, (=) | (57)

and

I [ C(MAZ ) (..,aglt‘:] | (58)

then equation 56 can be expressed as:

vdE a4 329 b L=l or e 4O
wpdted + 30 raz £ Y 4k e yak7 7,48

[ o "

5,71 H sin "‘WVQ"’ ?"q*), T sin i_@}““‘j . | (59)

Terms involving Z, and @, are evaluated by use of equations 20 and

23 and are given by:

JZ I (éﬁ%ig\% E@"kg" ﬂ,w@? cos Y 3‘ + !\t; sin 7% Pl —I

‘;-:r»f — TN LT v .

R e i T — (61)
\_ LK gm % ) J - -‘
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J2.d0, | DE BE=)e 7~ aD(Epef ¢ Moo 2P0
3
4 47 | [K7+ (22r2)7]

kT 2 2 al
+JD(°L7C’,:’KS~)1<E e sin 972’“3“ —-f-(""'gV‘*) DE cos B_Igm

[k?+ (2Zxa)*]*

) (;;gm.) DKE Sin i?;’;;:life?fcos ;ﬂé{i?:j%r + KCE sin’ 2_1%{;%.? ‘
[k?+ (2722)7]°

e e
o~
o -
N
S

2 ; - 508 .3
53%@; = ! T KD (2TX2 ) ¢ “kY (2LE2X)" D sin imal  am D Cos iﬁﬁ’a_’;é?’)
3’ ii !' - k) ‘.’1‘1'7
jL L2+ (2TP ) |
kK ED(AIYeyT kT WL arpay | (2 _Ztﬁi ;;5‘
3 [TRED(EE) e T )0 sin T (2 ppeos
M kfk ‘{_(a}?’y&)_/*)‘

o - KJ 2 27 1 o TPt .“"
—kvi?&{ﬁ@”“‘}f:z +(-f”~} Iu::[) wm 7,”L$ «f"””’ KR L,e:gvﬁ’” :

gﬂf‘z‘)khlja cp ‘;m{uj’

;‘.‘.”m—_,.

e PP -KT . 2wped gz ey
+KeD(ETX) @™ " Tain T - (L) D sin” 272
Aabe PN K
[k*e (2 )4
ATP4) KE[ sin mva Yoy hvad ke (;’ff?”“) e~k ces 37%1".‘:—.9
- s . L bt V.- SR
[y ow ; ag & 2ye v, PR S PR
ke e (22 SIPE Y
o 2 7 Tra'y ‘ e 5 TR
(BT K ep sin ATEST o5 BTYET L (FTRO) k3 oo™ ATHET

2
g {
«EZ(:H Lk?+ Eue)
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. - 2, . P
2mpar - KJ _ (iw) £ cos gwua_g‘+ KED;‘?:’””A‘ sipn 2rred

£ D (22 ;
k{_ k%4 ,zmm) ! &

e e o _‘jm:l{:l e 7[’&2“
s o et

- /72 = AT '»"3‘ R kﬂ’
SED(E) e "‘lﬂz) EDe” Cos ”i?ri:} 22 - KeD AV E gin mrz’m%,?

P S

KLk*+ (2772)7]

~ED(EE) e

.—j\“: 7 ‘Z;l,-a

(65)
s g a8, = | -2DE(FF) e T KT g0 (Ee) o s 21rad
'Z; f ;75 ? [K."* ( ‘7:},@)4;,;2,

—‘}D(ygﬂm)KEe—m;"” arved _ 2(EY?pE cos® 2T¥aT
Z 2
F Lk )]

- ) . 2n 2 ampad
+ 4222 p ke sindme T cos ATL2T ~ 2k 7DE sin” ATLES
— 2 2”,y¢2 -
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(7pe'e - KT - a6 (222’0 570 227 - 222 ys cos 2T
ZF K [k2+ (32 [

+$2/< E[“(Q”-»—» e T - C?"*) KED sin _Mga_’f’ “"(:—"‘Vajk £D cos ,,nrpaﬁ'
2’ »f‘? ........ (K'? mrwa» 27

o et e 2K T g Y 2T ) kT el
akep (e % 2 (1 oe ¢ Tin Ty e kere o R

i o o E e
| k2 (205

. - kT
~2kED(EIYH 0T g

27pa)R ,
+2(2Z ke D sin —'Z-%&Q’cas«:—'%ﬁ? +2 (Z2)KED 005’-”2’07

F (2 [k a2e2)]

-2KED (2722) e~ KTy 2 k (%E2)°ED cos 2Z22Y _ 2k D (225 2002
" oy a
2 2
Z K [K?+ (3Z22) ]

2 ' T - «
-2kED (EE%) e~ KT 4 2 (22X2) ke p cos APET -3KED sip TR

(.?’wa.) L KR+ (; __________ )J

+IKED (2 ““) ::-» (2 L ) KEDE kT, 272aY

e

h“\“ ("”“U
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’ B . % o J . - a5
FaKAED (Y e M 5in 2728 4 Qe (20 e Y g/p 2Tred

=i

FhLk s (2e) )

-2 (.,Jm) KED cos2® 2 Ege,.:" sin élg;ﬁ" 2KED s/a” 2TraY

[ ”';V » o i )
Zlk*+ (éﬁ:ﬁﬂj ]

Z [k @ey)*

—(M%Jj ,/f 4’“"‘3’ {t:H"a"LZ)/\x,ﬁg

’F” ,4,5
LK"*(“EW} sg )" ggj

Using trigonometric identities, equation 66 is simplified to the

following:
S Lkt = |m2DE FEPe T 4 4 (T pe o 2o
'° ”.,2 "T = E [ A A
I3 <~ | 2 [kAy (2Tpa )T
o & ok

o
s

F . - e , 1AV ey . FTEA J
o &

Vo) oet
< 4 (“‘)7.‘?'..}” )“ij
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+3(21P8)KED Sind12aT — 2 (APR)TED sin 2Tp2Y
Z Lk (2RO ]7 2 K[k @)™

. 3 -KT . .
4322 keD sin ATPAT 1+ 9 (RTER)gp €7 sin 2me-

PN Z K[ k% (amee)?]*

-2K’ED sin 3T ;mm’r + ke psin £ 47”’ I+ (EH+DI)(2EE)sin __—-———3""’“:"
2 @) 237 kLo (22

KT .
+(f:ff+e’“ K s ﬂg'r(ya‘}‘ (I:Pwl\i(g—mm"}c i 2may

- gﬁ:m /& L;Jmﬁ Ai k2 ff-;» ,,) /
~h(ek+D1) 4 (EH+0) as:’-ﬁ:wf?’” - Ra(eK+0T) sin P ]
7 7"74 ‘Z,!
D”w(www ﬁ}[,/x . (2 ;Wjj, |

The complementary solution is again:

A P
CP% “[@L«. + L, & 1 . (68)

The trial particular solution is:

=1C - KT -k _KY .
¢=p‘[633’+c46 +Cs € @5%?’4—&6 Vs /n zvgﬁg’

+C, cas‘ﬂ{—g+ Cg Sin 4”P“j+C cos 2242 274 Cp sin 22T :‘ (69)

L

The derivatives of 4)2,0 are

/
= - -akd ~K3’ amyaeY _ KT, ampe
¢, [C_-,. 2K G, €Mk Cp € 05 AMPaT - Amvac, ek, apel
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-kCoe K7sin ampal +ampe C e kI cos amad_gmpa ¢ sin 47027

HT26 (¢, gos 48T - 2TV Cqgjn 22227 +2P2 G, Cos amped ](7 0

v 7 . =kT =KT _ampad N e o
e = }"H(Q € FKACse T cos T +APAKGE “Sin 2T

2p ~ % u‘
A ; . - "k’ﬁ—‘ . "y s /y
kEDe o e KT ama (2197 ¢ Moo 2T

Py K 2 :j} ~ KT SIVAT L Ay S o
+ < Lé(: ‘; /_rz ?zlr)’ ;2’!!?,2. k(_ % - 005 °5~L: R, 2{1 £

a,, L~KJor mppar 3 Ampa)
- @Y, ¢ k S 2TV (J:WVJ\ C, L,oss’*WGj <4‘fz>«"@>"gﬁm e
- (TP e AP mwad | '
(BIPRC cos 28T - (AZENTC,, Sin 2T | e
Substituting the above results into equation 67 and equating coeffi-
cients of like terms we get:
1 ]
- L +D1 ) |
KCy = | ';"th | (72)
Ll 249
2KC, = (73)
Ve mu. ATPAY ~ 2P 7} ‘
Y. e AT ng | =k E D (= )4. \E *‘i.,J:. Cl+
KR )Cs - >C’$ ( 2% )L J(EH+DT) (74)

EZ[K# (222 KRG (oY f? w& (212 U
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(e, k() C, \ 4DE (2pe)” ] (15

Z[k*repeey]”

-(&IPe’C, + K (£172) C, 2 () DE DE + 4 (EH_'*DI._L)W i
) ( ) [,2 [k (22 )’ j Lk/" + (817=) J

KA, - (BB, = ZEPH)KED - he (bW DT)
¥ ¢ ’ fl/s f- WV‘?)] ,4]",’-»‘3 k }'( ?TV»}V) ]

gg(czé,lgfw)waz* (f’}%&ﬂﬂl ] ( : )

- (ﬁ,gf;@)ﬂ Cy + k (fgﬂw;; Cu = { ) 78)

—hidmeay o _{amva s =i T
k(» o) g (\NQ) (}m

4.‘1.., (sﬂ H ‘}’ {,1/ o ! E / (79)

-
P

o

EHOT) |
( | “#
N

,,L”ﬂ («!ra«* _fl \ |
f}\ [k H‘JWQ)J“‘M; , (80)

!mm —

.- ~20E (ATPY)T - (Em+DI) - AK'ED
S B e et P e T 2 [k (aree)’ [
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(82)

C = 2(3T9PDE  + EH+DI)(@LS) - 2 KED (372%)
; zkfmﬂ*’*‘)? K[KC+ERE)T 2 [ )

C,=):282 ) ED 4 (EH+DT) -3, K'ED
k=+(=w~>J (] J?k RG] ST (]

- e e

+ K2 EH+DI) - K ED )
4 ?wa;\ Kﬂwr)m&'; K H\ﬁ?rwh J i\c}i ﬂﬁmﬁa akwm‘va)“; '*(Wmfi;

(83)

z.M..“ d

| - akeD ’W‘Wﬁ)"“ +F31 (EH+DI) =2 BT KED

‘EE ’if}mh ﬂgvykz) il "’ _,,(gwaj (‘.’—ﬂ‘w} 4 J}’Qﬁ[k ’{&C“J ﬁ;i‘@(zﬁ" Wj‘jikﬁ(ﬂ V“fj

f
!
=
}
Lo

- KED | + K2 (EH+DT)

Z EIKEQ 3&:«4’ :z‘mza.) gil ka /‘}‘E;‘Pa}&'; (;mﬁa ’{}.a (,,Wycb};i K +<,§,»,”;u\.ii

P

| o

(
v‘

) - e SR ; T
< !\ D {a ?TP;L) ~<[.,- .4% i'\i: L; 'T:__“ kmh* *!i‘ L h] N
r k% ( 3 ’ir;&l £ f

-4 ! 5 o . m - A:y,,, /= iy ';:\':2 -
m\ +f=nf”’“} FOENesEer ZEmeY

o

- K*(EH+DT)

[,m:ﬂ,a&\ 5& tur 1\

L

(85)

LSV

o AEPYRED o+ S‘ikstﬁf
ZLK *(9.43'7”}3.&,)

L_,_J

A

-
_ (B 01 FDY - RL«H?‘LI)F o (86)
Ag ég + (ﬁﬂrrré) Jw (3. L;‘* +€a!“?’~‘-)“"“ j

The complete solution for (Pa is obtained by substituting the above

constant into equation 69 and adding the complementary solution.
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-kT _ 4 (EH+DI)T - DE () eKY

K[k (222e)?] ZK[k*+ (RTeey' ]

Q)a: .C' +C;LC

- - KT
2D (F22Ye K% s AM0T _ gk p e 705 2TXAT (gepp e s a1

? [k (2p ] PCTIE

kT . ) _ZEX. - 3’
:WH)D . K Sin ﬂgg’;}‘ + (En+DI) ;, )c’:’ K :szQJ‘

EPNPRYEEE k [k* (2222) ]

—d kE[ ('V.:’L‘if}?p& "”\Q }n ‘27);:){4%3' + x(g(”‘PJa EL\ o ilnrwuﬂy

i‘? 1: 1?/&/&;,7: 7_L}, _}_(__g;MjJ K+(?‘NML«.

ot

~d(EH+DI) cos 2T _ 35 KPED cos 4TP2Y L KZ (EH+DT)costnRad

[+ ke ] Z[cve TR @] e e y]

~K'ED cos #ray - 2KED (2ZY%) 5jn 28T 4+ 57 (EH+DT) sin 4T22T

Y 2T e enry) HePI TR 2] (9l (]

_3 :WQ)KED o X 474’ a T — K f:D sin i@:&aﬂ"’ + ’(‘/Q. {/:H*DI) sin 3 cfum»e‘_,
Z [kae ) [ 2 DAL G Tl y] (20 k@]

27p4 Jcos 7747

+ K r[ (—
. A i = - TR T
fk Lk ( 1r G N 3 J 2=

. WY zrral’ ¥ / g3 .
—(EH+DI)cos ::&,,,.:__ -k (eH+01) "J?W,P 2y 'i“vléi?{‘vﬁﬁ Sin g—%&‘?‘g
o2 27 oy T E e 3
LK+ (22ee) (B ke (20 7 ZK K (222 ]
+ (AN e sjn AP o QKR D sin BT (g 401) (2108) g i ATPRY
=L 5 e 3 ’ 2738 L - a
2 [K*+ (2724 )7 ZEIEORSEDT K[ (2ne]
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7 7
(EH +DI)Ksin #E2
o

A (87)
(«zl:rﬂr‘ l)zl ,.gzrm),»j __}} .

To determine C’ and C’?‘ the initial conditions are used;

t o g o .. . ‘;Q K
Go)=0 =10+, - PECTU " — 208 (BF) -2 (6K +0I)
o “ z ] R ;’kﬁ‘{k%(if’l’sﬂﬁl ;:'/:ka?+(£gga)~15 Lkn (J?}’pq)z]

+2CPED  _ sh(ensrn - 3 KEC

L5 'l"_ : .2,,”..“..7., v,y«w,__«.,..;_;
LZ[_ k ﬂ,_gﬁ@)} Li“ 7(:%2342)] f. K (,_22[){0;} j “( e (433?’3 ,_Ji Z k +(27)’H’q'} K3+ 441%)
AL - KYED *3E0 (Y

53 a . N = . -3
(;m Q)ii’m"t) k«? a(\’mﬁ }\lﬂk (ﬂ:‘h‘ka) i J'I!Pa Q,Wj:filk +(gwra) 71(5_(1:_?21)-27 F i; k;*('f-‘-‘%@zf

corer st e ]
iU\ f‘-(-«’lf,«}q ,z‘;s ,—?(&; ‘,kz»,(.:w@}aﬁ (2222« (.z;_ggajj_/

+ 2DE (P4 + 4K%ep
ZR[kA+(22EP]T 2 (KA (2]

~ 2KE D (208 -+ ko (ER+DT) - 3(AT¥%)(4M8) kg p
23 I (T KRR ERE] E e wpe Tk ey
- <f‘f; k‘?e‘.ﬁ . tHa (W ‘*) (waz» + 4@ ke |

Q)j zz[;(-r.,g.fm’a) ] 73 “$89)

The constants (,’2 and {, are found from 88 and 89 and are:

C. = | -4(En+01) _ + 206 (¥ +4x’D
) L Ki[kre@pes)]  EkTice(amep]t Z [k (2pe))’
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_3(JTrPa)(47rpa.) ED

— 26D (22)* + L (en+D3)
kaaf(zwa)J [l( +(t__9)] [k+<:7rpa Jp“ 4-17'»4] Z[K +(:7ryu)] !tk ,(4%;}@)]

- a 2TV N
(i’r):m)k ED (&H+DI) +4{ A7 f‘) ED | (90}

2RI, (v (2 [onzmeef [T 2k (2per ] J

(FTvey®  _4K%ED

r oo | k(EH+DL) - 2Dk (3T
T ;' Fra ;;,. SRy N Z [ k3 +(aTra ays
(ke Ezeey]  ER ]t 2 [k
+%;:.Cg.4!rr" -k (EH+DI) -+ (LL N2 D
k:_f(.e?rr’@)‘ 1’(“ (‘!‘7}'3«’«1‘3 ;? + A Q)J Lk,,(“} _________ )aj

ELK _v,.(dwwx\z oy [i? @_ﬂn)a,)i: g_

+ (324 K kp - (En+01) 4 (A1
z[K (e ]’

Z ?-Trv-“)[k WL j[kﬁ,(fgﬁg)] [k (zmm)][,( (410’4)J

+ DE (a;gﬁ'a:)z +‘20E (%1 + L (EH +DI) -2 (%&@)JED
2k ey 2kt @] [k QETT 2o o ezey]

+ 34 K°ED - K% (EH+DI)

% (EH+DI) B
[ioamey] fetvigesy ] ZlewpaTicemy] Amiamghe ey

]

- ;zeo(-llr*’“) - AKEU
+(

___ +kK*EDp

z(aﬂrﬁm %mm i.k + m/a) Zk (iwa) %l:k ?ZO_-_’E-) J ;"3’ Zk_ﬁ+ (:”3;7_?%)'2]3
_— 2kfeL .+ KE#rDI) 5 1)
e 5 2 R I P I 3 / ” , % “
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The solution for @*‘1 is then obtained from 87, 90 and 91 and is
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KO o ’ ar
-2K ED& co "‘%,”’“ —(EH+DI)e” Kcos‘za
= . -3
ZZ fK +<,«2ﬂ")’«1) ]3' [K.2+ (&%23)2]

-l (":2 """"""" 2 pe c,'K§/¢ ’W*’igty (£H+b“_‘z2w@”ri‘l‘% -k ,:’Lg:i&&?"
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SO TR EERC BT L ]

+ B4 (e +DI) 5in 4128 _3(2TE)KeD sip £T2RT
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Flawea, g Ampayr |3
2 () Th (2T

Zh K7 (AT ] 3

+,?l‘xi:b("7"?“2/tfs‘2m}fﬁ +4 i\Z’b cos 2%

~(EH+DI) cos i".g?&i?’ -
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. oy :;i"' :
— (EH+DI)K sin AP
(nroD)K sin 2T .

/ 47 l o2 e 7?' Q'l
@) K (R

{

The terms proportional to time in equations 55 and 92 are

circled and are the terms used to find the particle drift velocity.
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APPENDIX B
A DETERMINATION OF THE MAGNITUDE OF THE FIRST ORDER
DECAYING EXPONENTIAL TERMS OF THE PARTICLE VELOCITY
The first order decaying exponential terms in the solution

for the particle position in the'cylindrical enclosure are:
LU PA kT
. CF ( c )8 ¢
T : panz ]
K[k + (2222)]

Z

-DfF) e

e @

{

Here, ‘
D = 37(1:?029 Sir @
E = T2 cos§ [T () - TlwonD)]
_ WM A
l< - é,;y?c R

From equation 4.1 the expression for the particle velocity, contain~

ing just the first order decaying terms, can be written as;

3 - |72 Jz Lz = 44
v [zﬂ,cedyﬂm,cgzzag] . (2)

Substituting the expressions for Z and 47, into equation 2 the fol-

lowing is obtained:

2ava\l _- KJ = _[z7p - KT
k? - (,?WG’PQ)’Z ¢ k2« (;Z’V&)Z

For an initial position of the particlé of Z= 2: .5, d) = 450, for

Pa/P = , 316 and for gas and particle properties evaluated for the
e .
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conditions used in the calculations for Table I, the following ex~
pression is obtained for the particle velocity due to the damped

terms:
. O _¢350C . _ 43507
W:E(W./@ >+L4,(C7/.3€ ) (4)

For T = .0023 seconds, which is time for approximately two os-

‘ —4#350T  _ p
cillations in the chamber, & = € , and the velocity amounts
to:
o= (- 003) + ly (- 0o4) sec, (5)
For these same conditions the steady state drift velocity as calcu-

lated in Table I is:

G o= (a7) <7, (~37) e (6)
Comparing equations 5 and 6, it is seen that after just two oscil~
lations the velocity contribution of the decaying term is negligible

compared to the drift velocity.



