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ABSTRACT 

This investigation deals  with the effects of compr essibility on 

the hydrodynamic stability of wake flows. It is found that the effect 

of temperature is two-fold: ( I ) ,  a s  the wake core  temperature 

increases,  the range of Mach numbers over which neutral and self- 

excited subsonic disturbances can exist a l so  increases;  (2) a s  long 

as the relative Mach number is below the cr i t ical  Mach number the 

neutral inviscid wave number will decrease with increasing core  

temperature, implying that a hot wake will be m o r e  stable than a 

cool one. 

The analysis of Batchelor and Gill for the inviscid stability 

of axi- symmetric incompressible jets  has been extended to the more  

general problem of compressible wakes and jets. It is shown that the 

resul t s  a r e  directly analogous to those obtained for the two-dimensional 

problem. The sinuous (n  = 1) mode is the most  unstable allowable 

mode. This unstable mode is observed in a hypersonic wake. 
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LIST OF SYMBOLS 

The symbols used i n  the present report  a r e  in general those 

commonly used in the l i terature on hydrodynamic stability. In some 

regretable instances a symbol will represent  more  than one item. To 

minimize the confusion, the different definitions of the same symbol 

will have listed the section of the report  in which they appear. 

Dimensional Dimensionless Reference 
Quantities Quantities Quantitie s 

Two- Dimensional 
Flows : 

Positional 
Coordinates: 

longitudinal 

normal 

Velocity 
Components : C A  (x- c t )  

longitudinal 
- 

\n/. = u* - 5; 
LA t w- ct) - 

normal ys = V' + v * ~  "(7) 4- 9(4e v " 

Density 
- cd(w-ck)  

Pressure  pX = px + p XI P(Y) c ~ ( ~ 1  e P," 
L A  t w -  ct) 

Temperature 7% = TX + T* '  T ~ Y )  + QCV) e 7." 

Axi- Symmetric 
Flows: 

Positional 
Coordinates: 

axial 

radial 

angular 



Velocity 
Components : 

- ~ ~ ( s - r t )  tin+ 

axial 9: - w' + w(*) q x i r )  e 
- - - 
w*: q,X - 0; 

- - ,Acy.- ct) + c n  4) 
radial 7, = 9: 4 3:' qvcy~ 4- 9vCq) e 

- 
angular 7 = 91 + 9;' 

Angular Wave 
Number: 

Density f *  = f w  4 f r '  
- 

Pressure  px . p" + p'' 

Temperature 

Time t" t 

Wave Length A* A 

Wave Number A* = 2q/hY = I*/\ 

Di s tur banc e - 
C 

Propagation 
c' - v e x  C 

Velocity 

a speed of sound 

b unknown constant (Section IV. 2 )  

C~ 
drag coefficient 

group velocity of disturbance 

c */u,* dimensionless group velocity 
g 

local relative propagation velocity ( Eq. (5. 20) ) 

Section III. 1, Appendix C )  

characteristic body dimension 

exp (ia (x-ct) + in#) pq. (5.49)] 



G n'/a2 T' n [ Eq. (4. 18)] 

G defined by Eq. (5. 52) 

H 1 G (Appendix D) 

H* stagnation enthalpy 

HZ=) Hankel functions of order  1/3, f i r s t  and second kind 

h dimensionless static enthalpy (Appendix B) 

~ ~ ( a f i  r)  modified Bessel  function of the second kind of order  one 

K ~ ( ~ E  r)  modified Bessel  function of the second kind of order  one 

k gradient of density-vorticity product (Section V) 

L* characteristic length 

L(z) Lommel function (Appendix G) 

M v*/ae* relative Mach number 

Me local Mach number outside the mean wake 

M~ local Mach number of disturbance [Eq. (5. 21)] 

Moo 
f r ee  s t ream Mach number 

m total wave number 

N~ Eq. (5. 68) 

P Eq. (5. 10) 

a*(>, t*) quantity of total flow 

6*(;*) mean or  steady component of flow quantity 

Q * ~  (;*, t*) fluctuating component of flow quantity 

<*I(;*) fluctuation amplitude 



q(y) I 
fluctuation amplitude for nearly parallel flow 

v*L*/~ e* wake Reynolds number 

gas constant 

Reynolds number based on displacement thickness 

local external Reynolds number based on d* 

local external Reynolds number based on x* 

local external Reynolds number based on 0* 

L* , position vector 
r 

r (Appendix F) 

AT temperature excess a t  centerline of wake 

U transformed mean velocity component (Appendix B) 

U* mean velocity component in x* direction 

A U  velocity defect a t  center of wake 

V transformed mean velocity component (Appendix B) 

V* characteristic velocity 

W 1 - U (Appendix B) 

W b a g  ( 3 ? Y" ) (Section V) 

X transformed x coordinate (Appendix B) 

xi 



X (1/ ?$ r T) (Appendix E) 

Y transformed y cowdinate (Appendix B) 

Y ( 1 / ~  )( sw' ' (Appendix E) 

r disturbance vorticity - - 
I '  mean vorticity 

% ratio of specific heats 

A dimensionless heat transfer coefficient (Appendix B) 

6 tan' l (ar/n) (Section V) 

6* net heat transfer (Appendix B) 

c l/(aR) 1/3 (Appendix G) 

Dorodnitsyn-Howarth variable Eqs. (2. 47) and (2. 56) 

r - rCic (Appendix G) 

C 

dimensionless momentum thickne s a (Appendix B) 

momentum thickness 

viscasity 

kinematic viscosity 

S Eq. (5. 10) 

G p - a  = a G  (Section 111 and Appendix C) 

T - - JqX'qr i  Reynolds shear s t r e s s  

f r - r  c 



Subscripts 

c critical point 

e local condition outside mean wake 

I imaginary part of quantity 

i point a t  which disturbances begin to amplify 

o initial values (Appendix B) 

o values a t  axis  (Appendix D) 

R rea l  part of quantity 

s neutral, inyiscid values 

00 f ree  s t ream conditions 

1, 2.. , first ,  second solution, etc. 

Super scripts  

A 
complex conjugate 

0 ,  1 ) , 2 )  zero, first, second order quantities, etc. 

A bar over a quantity indicates mean value. 

P r imes  generally denote differentiation with respect to y or  r. 
The few instances where primes denote a fluctuating quantity should 
not cause any confusion. 
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I. INTRODUCTION 

2-4 
Experimental studies have shown that transition in incom- 

pressible f ree  boundary layers  is preceded by a linear and non- 

linear wave-type instability. The linear instability can be described 

5-31 
by the small disturbance theory of hydrodynamic stability . The 

non-linear instability is a very complex phenomena and is not yet 

understood. Recently, the problem of laminar: turbulent transition 

in hypersonic wakes has a lso  been of considerable interest. The 

purpose of this present investigation i s  to study the effects of com- 

pre  s sibility on the hydrodynamic stability of wake- type flows. 

The stability characteris t ics  of wake flows a r e  relatively 

insensitive to  Reynolds number, for sufficiently high Reynolds numbers, 

because of the occurrence of a point of inflection in the density 

vorticity product 22' 32m Therefore, interesting and important resul ts  

can be obtained by considering the "inviscid limit" of the small  dis- 

turbance equations, in  which the viscosity and conductivity of the fluid 

can be neglected to a certain order.  

This study will be restr icted to subsonic disturbances, i* e* , 

disturbances whose propagation velocity i s  subsonic with respect to 

the f ree  s t ream velocity. These disturbances have amplitudes that 

die out exponentially far f rom the wake axis. If such disturbances 

exist then the mean flow is unstable to small disturbances. The 

question of the stability of a flow to supersonic disturbances has not 

been resolved 32-35 

The inviscid stability characteris t ics  of two-dimensional in- 

compressible and compressible wake flows a r e  studied using Gaussian 



distributions for  velocity and temperature in the Dorodnitsyn-Howarth 

variable. The incompressible wake was a l so  studied a t  low Reynolds 

numbers and wave numbers. The resul t s  of Batchelor and Gill 36 

and ~ i 1 1 ~ ~  for  axi-symmetric incompressible wake-type flows have been 

extended to include the effects of compressibility. 



11. FORMULATION OF THE PRQBLEM 

An infinitesimally small disturbance i s  imposed upon a mean 

or  a steady flow and the behavior of the amplitude of the disturbance 

i s  examined a s  time progresses. If, for large values of time, the 

disturbance is damped out, the motion is said to be stable; i f  not, the 

motion is said to be unstable with respect to infinitesimally small  

disturbances. It is much eas ier  to prove that a motion i s  unstable 

than stable. If the flow i s  unstable to disturbances of any kind, even 
P - 

the simplest kind, i t  i s  always unstable, but the flow may be stable 

with respect to one type of disturbance and not another. In hydro- 

dynamic stability theory, the disturbance i s  assumed to have a wave- 

like nature. The problem is to find certain combinations of the wave 

number and wave speed of the disturbance and the Reynolds number of 

the mean  flow for which the fluid motion i s  unstable, or  neutrally stable. 

11. 1 .  Outline of the Stability Problem - 
The total flow consists of a time-independent or  mean component, 

- 
Q*, and a n  infinitesimally small  component, Q*', which i s  both space 

and time dependent: 

- 
Q" (F*, t") = Q* (?*) S Q*' ($*, t*) 

where 

( ~ * i  /lad < < 1  

The total flow, Q*, satisfies the conservation equations of mass ,  

momentum and energy and a n  equation of state. The mean flow, s*, 
satisfies the steady flow equations or  some approximation to them, 



for example, the boundary layer equations. The conservation equations 

for the disturbance a r e  obtained by substituting expressions of the form, 

Eq. ( 2 .  l), for the flow variables into the total flow equatisns and 

subtracting out the mean flow equations. The hydrodynamic stability 

equations a r e  obtained f rom this  set  by neglecting quadratic and higher 

order  t e rms  of the disturbance quantities. 

The coefficients of the resulting linear partial  differential 

equations depend upon the mean flow quantities. Time appears  only 

a s  the derivative (a/&*) and hence solutions containing a n  exponential 

t ime factor 

hl - ia*c*t* 
Q * T  (y*, t*) = q*' (;*) e 

may be assumed. The resulting differential equations will contain the 

space coordinates a s  the only independent variables. 

This study will be limited to parallel o r  quasi-parallel flows, 

i. e., motion in which the mean normal velocity is zero  o r  very small 

compared to the main velocity component. The following order  of 

magnitude relations from boundary layer theory apply to the mean flow 

quantities: 

where 

longitudinal coordinate in two-dimensional flow or axial 

coordinate in axi- symmetric flow 

nor e in two-dimensional flow or radial 

coordinate, r*, in  axi- symmetric flow 



6* mean velocity component in x* direction 

* mean velocity component in y* direction 

R6* 
Reynolds number based upon displacement thickness. 

The mean flow quantity, G* is a function of the position coordinates, 

x* and y*. Expand Q)k about the point x* = x* - 
P ' 

The region adjacent to the point under consideration is taken to be of 

the order of a few wavelengths of the disturbance in the x* direction 

Then from Eqs. (2. 3b) and (2. 4b) 

and for large values of aR6* , Eq. (2.4a) becomes 

- - 
Q* (x*, y*) = Q*(x ** Y*) [ 1 + 0 (l/aRsL )] (2.4d) 

P 

Therefore a l l  mean quantities can be considered to be independent of 

the normal (or  radial) space variable to order  (l/aR6+). 

By considering disturbances that a r e  spatially periodic, both 

in the direction of flow and in the direction perpendic'ular to the plane 

38 
e t ry  of the mean motion, Squire has  shown for incompressible 

that two dimensional disturbances a r e  l e s s  stable than three- 



dimensional disturbances. Fo r  compressible flow, Dunn and Lin 39 

have shown, by neglecting dissipation t e rms  and some t e rms  involving 

the fluctuating viscosity and thermal conductivity (which a r e  valid a t  

moderate Mach numbers), that a n  equivalent two-dimensional disturbance 

i s  not possible, but that the transformed three-dimensional disturbance 

equations a r e  of the same fo rm a s  those for two-dimensional disturbances. 

In particular, by neglecting viscosity and thermal conductivity, the 

three-dimensional disturbance equations a r e  exactly of the same form 

as the two-dimensional ones. Therefore, important features of the 

stability problem can be obtained by considering two-dimensional 

disturbances alone. F o r  parallel and quasi-parallel flow, the 

coefficients of the equations a r e  independent of x* and consequently 

solutions of the fo rm 

rV 

q*' (x*, y*) = 

might be expected. The exponent is purely imaginary since the dis- 

tur bance must  be bounded for x* a t  both 4- co and - go. For  two- 

dimensional flows a disturbance of the form 

Q*' (x*, y*, t*) = q*I(y*) e ia*(x*- c*t*) 

will reduce the set  of l inear partial  differential equations to a set of 

ordinary differential equations in  y*. 

There i s  no direct  analogue of Squire's resul t  for axi- symmetric 

parallel and quasi-parallel flows. However, Lessen, et a12' and Pai 2 7 

indicate that for rotationally symmetric disturbances, the incompressible 

disturbance equations, except for the obvious coordinate scale factors, 

a r e  similar to those for two dimensional disturbances. Batchelor and 



36 
Gill show, by a suitable velocity transformation, that for distur- 

bances with a n  angular dependence, the incompressible equations a r e  

exactly analogous to the two-dimensional ones, again, except for the 

obvious coordinate scale factors. In Section V. 1 this latter resul t  i s  

, extended to the compressible case. The mean flow quantities for 

parallel and quasi-parallel flows do not depend on the angular coordin- 

ate, $b, and depend only on the coordinate normal to the direction of 

the mean motion, r*, to order  ( l / a ~  . Since the amplitude of the 6* 

disturbance must  be single-valued with respect to the angular coordin- 

ate, a disturbance of the form 

Q* (r*, 0, x*, t*) = q*l(r*) e 
ia*(x*- c*t)+inq) 

where n i s  a n  integer, may be assumed. The resultant set of ordinary 

differential equations will have r* a s  the only independent variable. 

In Eq. (2.6) or  Eq. ( 2 .  7)] the disturbance amplitude qw(y*) [ - 
[ o r  q*'(r*) and the wave velocity c* a r e  taken to be complex. The I 
main flow i s  stable, neutrally stable, or unstable to these waves 

according to whether the imaginary part  of c* is negative, zero, or  

positive, respectively. The quantity a* i s  the wave number of the 

disturbance and is taken to be rea l  and positive. The rea l  part  of c* 

is the phase or  propagation velocity of the wavy disturbance. 

-ia*c*t* 
The assumption that the disturbance has  the form e 

pq. ( 2 .  24 i s  known a s  the normal mode approach to hydrodynamic 

stability. If there a r e  some values of a*c*, with cI* > 0 , such that a 

non- t r  ivial solution satisfying the disturbance equations and boundary 

conditions exists, then the flow is said to be unstable; i f  not, i t  is 



stable. Recently, the initial value problem has been emphasized by 

Case 
45 

40-44 and Lin An a rb i t ra ry  small perturbation is introduced 

into the flow at time, t* = 0, and i t s  subsequent motion i s  followed by 

means of a normal mode expansion, If there is a single mode with 

c * > 0 the perturbation grows exponentially with time and is said to I 

be unstable. The normal mode approach should be equivalent to the 

initial value method although there seems to be some inconsistencies 

between the two resul ts  a s  the Reynolds nurnber becomes infinite 
40-42 

4 5 
Lin has pointed out that these can be resolved by considering the 

limit of a normal mode in the viscous theory. This limit i s  - not the 

normal mode in  the inviscid theory, and vice versa, The normal mode 

approach i s  applicable to differential operators having discrete eigen- 
I 

values while the initial value method should be used with singular 

operators and/or continuous eigenvalue s. However, i t  appear s that the 

modes leading to instability a r e  associated with the discrete eigenvalue s. 

It is for  this  reason that the normal mode approach will be used in  this 

text. 

The amplification ra te  of the disturbance is defined a s  follows: 

and 

Q*' = Qi*' exp i" a* cI* dt* * 

ti* 

In the laboratory, the experimenter has a quasi- stationary problem. As 

the disturbance propagates downstream of i t s  origin, i t s  amplitude 

changes in  both space and time. One measures  the spatial 



9 

amplification rate,  o r  the ra te  a t  which a disturbance will amplify 

with distance in the mean flow direction. The wave speed i s  a 

function of both the wave number of the disturbance and the Reynolds 

number of the mean flow. If the parallel and quasi-parallel assumptions 

a r e  made, then the group velocity of the disturbance, i. e., the velocity 

46 
a t  which the disturbance energy must  propagate , is 

The spatial amplification ra te  i s  

and 

The spatial amplification ra te  i s  constant for parallel flows. For  

quasi-parallel flows, the spatial amplification ra te  is computed a t  

each streamwise station by using a mean velocity profile that i s  

assumed to be independent of x a t  that station. The total amplification 

(or  decay) of the disturbance a s  i t  moves downstream i s  found by the 

piecewise integration of the local amplification (or  decay) rates .  

Fo r  wake-type flows, i t  is expected that the spatial amplification 

ra tes  depend upon the decay of the mean velocity profile. Therefore, 

i t  i s  convenient to transform from a coordinate system in  which the 

observer i s  fixed in the body to one i n  which the observer is fixed in 

a fluid a t  rest .  In this latter system, the observer sees  the tfvelocity 



defect" of the wake. [See Sketch 2. 1J 

Body- Centered Coordinates Coordinates Fixed in Fluid a t  Rest 

Sketch 2. 1 

In this coordinate system the wave has  a propagation velocity 

(c* - Ue*). Let the mean flow be dimensionally represented by a 

characteristic length, L*, and a characteristic velocity, V*, and the 

temperature, density, pressure  and viscosity by their external values, 

so that [see List  of Symbols. : 

V* and L* will be taken to be the velocity defect a t  the centerline 

[w(o) = I ]  and the half-width of the wake, respectively [section 11. 4 1 . 
The disturbance equations and boundary conditions will be derived 

for two-dimensional [section 11. 2'1 and axi-symmetric [section 11.31 flows. 

The outer boundary conditions for the compressible problem will be 



discussed in detail in Section IV. 1 (two-dimensional case)  and 

Section V. 2 (axi-symmetric case). The quantities a r e  defined in the 

List  of S p b o l s .  

11.2. Two-Dimensional F r e e  Shear Flows. Small Disturbance 

Equations and Boundary Conditions 

11. 2. a. Viscous, Incompressible Problem 

The incompressible, small disturbance equations a r e  a limiting 

case  of the complete compressible equations. This case i s  obtained 

by neglecting the viscous dissipation and heat conduction t e rms  in the 

conservation equations and assuming that the mean temperature, 

pressure, density, viscosity and thermal conductivity a r e  constants. 

In addition, i f  the gradient of the temperature fluctuation vanishes at 

the axis  and the outer edge of the mean flow, the temperature fluctuation 

and hence the density fluctuation can be set equal to zero32. The 

dimensionless small  disturbance equations a r e  
3 2* 

Continuity 

x- Momentum 

y- Momentum 

* Pr imes  indicate differentiation with respect to y for the two- 
dimensional case  and differentiation with respect  to r for the axi- 
symmetric case. 



This system consists of three linear disturbance equations in the three 

dependent perturbation amplitudes fa 6 and n, where the mean velocity 

w is determined from the mean o r  steady- state equations. The 

system i s  of the fourth order  in the dependent variables. 

If the mean velocity profile i s  symmetrical [wl(0) = 01 , then the 

disturbance amplitudes can be decomposed into even and odd parts,  

each part satisfying Eqs. (2. 12) - ( 2 .  14). The even part of the 

longitudinal velocity disturbance, fa corresponds to anti- symmetrical 

(or  sinuous) oscillations and the odd par t  to symmetrical (or  varicose) 

oscillations. I 

The anti- symmetrical oscillations a r e  analogous to two parallel 

rows of equally spaced vortices in al ternate positions (Sketch 2. 2. a) 

( d r m i n  vortex street)  and the symmetrical  oscillations to symmetrically 

I 
placed vortices (Sketch 2. 2. b). ~ a r r n ~ n ~ ~  has shown that the symmetrical  

(a) Flow in Alternate Vortex Street (b) Flow in  Symmetrical Vortex Street 

Sketch 2. 2 

vortex s t ree t  i s  unstable for  a l l  values of the spacing rat io ( ra t io  of 

t ransverse to longitudinal dimension) and  will tend to rearrange itself 
/ 

into the alternate vortex street.  The a l ternate  position i s  stable for 

only one spacing rat io and unstable fo r  all others. Physically, the anti-  



symmetrical disturbances a r e  observed more  often than the symmetrical 

ones; for example, in  the wake behind a circular cylinder a t  very low 

Reynolds numbers. This fact suggests that the anti- symmetrical 

disturbance i s  more  unstable than the symmetrical one and the minimum 

critical Reynolds nurnber, below which al l  disturbances a r e  damped, 

will be lower for the former. 

Using Eqs. (2. 12) and (2. 13) the boundary conditions a t  the 

axis are:  

Anti- symmetrical oscillations (Sketch 2. 3. a) 

Symmetrical oscillations (Sketch 2. 3, b) 

-- 

r9 "t, c' L* 

(a) Anti- symmetric oscillations (b) Symmetrical oscillations 

Sketch 2 .  3 



The quantities f and n can be eliminated f rom Eqs. (2. 12) - 
(2.14) and a fourth order  equation in b can be found 

The boundary conditions for large values of y a r e  obtained from 

Eq. (2. 17). As y - m , w ---+ 0 exponentially and Eq. (2. 17) 

becomes 

where 

2 P2 = a - iaRc . 
The solutions of Eq. (2. 18) are :  

Now $D must be bounded for large values of y (y > 0). If the r e a l  part  of 

f3 i s  positive then the solutions with the positive exponent must  be 

rejected and the outer boundary conditions for Eq. (2. 17) a r e  

and f rom Eqs. (2. 12) and (2. 13): 

11. 2. b. Inviscid, Compressible Problem 

If the solution of the disturbance equations is assumed to be of 

the form 



and the limit aR ---p oo i s  taken, the resulting equations for the 

zeroth approximation, q(O! a r e  called the inviscid small disturbance 

equations. They a r e  identical with the equations obtained by ignoring 

viscosity and thermal conductivity. The dimensionless inviscid 

3 2 .  equations a r e  . 

Continuity 1 

9' + i f = (Tt/T) Q) - i (w-c) ( s /p )  

x- Momentum 

2 
p[i  (w-c) f t w' $1 = - ( ~ B / % M  ) 

2 Momentum 

Energy 

State - 

This is a system of five equations in the five disturbance variables 

f, $, a, s, and 8, where the mean flow quantities p, T, and w a r e  

determined from the mean equations of motion. Upon eliminating 

four out of the five dependent variables, the system is seen to be of 

the second order. 

Again, as in the incompressible case, if the mean velocity and 



temperature profiles a r e  symmetrical, then the disturbance amplitudes 

can be decomposed into even and odd parts, each part satisfying 

Eqs. ( 2 .  2 3 )  - ( 2 .  27). The boundary conditions a t  the axis  are :  

Anti- symmetrical oscillations 

Svmmetrical oscillations 

The outer boundary conditions will be derived in  Section IV. 1 

but will be included here  for completeness. It i s  

where 

11. - 3. Axi-Symmetric F r e e  Shear Flows. Small Disturbance Equations 

and Boundary Conditions 

The same assumptions regarding the derivation of the axi- 

symmetric small  disturbance equations apply a s  for the two-dimensional 

case  and will not be repeated here. 

* In this equation, n equals 3. 141. . . . . 



11.3. a. Viscous, Incompressible Problem 

/ 

36.  The dimensionless small disturbance equations a r e  . 

Continuity 

x- Momentum 

r-  Momentum 

6- Momentum 

This i s  a system of four linear equations in  four dependent variables 

qr , q g  , qX and a. This system is of the sixth order  in  the dependent 

variables since q @ and q b '  can be eliminated algebraically f rom 

Eqs. (2. 321, (2. 34)  and (2. 35).  

For  the axi-symmetric wake, the boundary conditions on the 

axis a r e  kinematic in nature (do not depend upon viscosity) and can be 

derived f rom the inviscid equations (Appendix A). All the disturbance 

amplitudes and the vorticity disturbance must  be finite on the axis. 

The boundary conditions a r e :  



n = O  q r = o  q @ = o  

q n a r e  a rb i t r a ry  x ' 

n f  (I q x " o  3 w = O  

= l q@ = - aqr q s i s  a rb i t rary  

n > l  q q J = o  , q r = O  . 

The n = 0 and n = 1 modes a r e  shown in Figure 1. 

F a r  f rom the axis, the boundary conditions should be the same 

a s  for the two-dimensional case  (Section V. 2). These conditions can 

a lso  be derived by taking the limit of Eqs. (2. 32) - (2. 35) a s  r ---. co . 
The outer boundary conditions a r e :  

where the rea l  part  of p is positive and 

1x1. 3 .  b. Inviscid, Compressible Problem 

The dimensionless inviscid small  disturbance equations a r e  : 

Continuitv 

x- Momentum 



r- Momentum 

6- Momentum 

2 
i p (w-c) q+ = - (ins/ar % M  ) 

Energy 

State 

This i s  a system of six linear equations in six dependent variables 

qr s qX 9 q @ ,  s, 8 , and s . As in the two-dimensional inviscid, 

compressible case, the system i s  of the second order. 

The boundary conditions on the axis do not depend on the vis- 

cosity or compressibility of the fluid and a r e  Appendix A : I 
n =  0 

, s ,  8 ,  s a r e  arbi t rary  

n # o  (2.44) 

n =  1 9$ ' - a 9, q is arbitrary r 

The outer boundary condition i s  the same a s  in the two- 

dimensional inviscid, compressible case and will be derived in 



Section V. 2 .  It is: 

where 

2 2 
Q = ~ - M  c - n < a r g  fi < n  

II. 4. Mean Flow Model 

The wake in  back of a blunt or  slender body can be divided into 

two regions of interest;  the "near" wake and the l ffar"  wake. The "near" 

wake r e f e r s  to the region near the body and the ' 'far" wake to the region 

far  downstream of the body. At low Mach numbers (Ma < < l), the 

near  wake is characterized by the formation of vortices and unsteady 

phenomena over a wide range of Reynolds numbers4' [sketch 2.4. a] . 

(a) Mm < C 1 (b) M > > 1 
I a 

Sketch 2. 4 

F o r  Mm < i 1 the boundary layer  assumptions do not give a n  accurate  

description a t  the near wake because Re is low and the gradient in the 
X* 



streamwise direction (a/ax) is not small compared to the normal 

gradient (a/ay). The flow is unstable a t  low Reynolds nurnbers and 

becomes turbulent. Thus, there i s  no region of laminar flow when the 

Reynolds number becomes large. Fo r  flat plates a t  low Mach numbers, 

the vortices and unsteadiness "disappear" and the wake becomes 

laminar a t  low Reynolds numbers49. The boundary layer assumptions 

apply in this case  and a n  analytical solution can be found for the far 

50 
wake * 

F o r  M > 1, or  more  specifically, M > > 1 , the near wake i s  
00 00 

characterized by two f ree  shear layers  (or a n  annulus) shed from the 

body surface, that converge into a "necktt5'. F o r  blunt bodies the Mach 

number external to the shear layer is "frozen" a t  about three, while 

for slender bodies i t  is of the order  of the f r e e  s t ream Mach number. 

2 3  
Theoretical and experimental 52' 53 studies show that a laminar shear 

layer is remarkably stable for super sonic external Mach numbers. 

This same resul t  applies in  the neck region. Therefore, all o r  part  

of the "inner" wake will be laminar over a wide range of Reynolds 

numbers 
1 ,54 . The boundary layer approximations a r e  valid in the inner 

wake region, except very near  the neck where the mean profiles 

change very rapidly. In the far field, Oseen-type approximations can 

be used to linearize the equations and relatively simple analytical 

expressions can be obtained. Since the major t rends of the stability 

problem a r e  of interest here, these analytical expressions will be 

used in  the stability analysis. 

5 5 
Kubota' s solution for the two-dimensional compressible wake 

with zero  pressure  gradient will be used (Appendix B): 



where 

In Eq. (2. 11) the characteristic length 

is related to the half-width of the wake, and the characteristic velocity 

i s  the maximum velocity defect in  the wake. The quantity d* i s  a 

characteristic body dimension. The Reynolds number of the wake 

i s  constant. The y coordinate in the stability equations must be 

"stretched" by the temperature (Eq. ( 2 .  47) ). In the derivation of 

Eq. (2.46), i t  i s  assumed that A T  and M a r e  very small (AT,  M < < 1). 

However, since the relative effects (and not the absolute effects) of 

temperature and Mach number a r e  desired, values of AT and M 

greater than unity will be used in the numerical calculations. 

For  the two-dimensional incompressible wake 



A transformation analogous to Kubotals does not exist for the 

axi- symmetric compressible wake56. The viscous s t r e s s  t e r m  i n  the 

momentum equation does not transform to the equivalent incompressible 

form and therefore the momentum and energy equations must  be 

integrated simultaneously. Fo r  the axi- symmetric incompressible 

50. wake . 

The momentum thickness or drag coefficient , 1 
- Drag 

C~ - ] i s  given by 
f P e * ~ e * 2  ~ d *  

CO 

@a2 = CD (~ rd*~ /2 )  = 2r  1 [ 1 - (U*/ue*)] r* dr* 

0 

and 
/T 

The Reynalds number for axi- symmetric flow i s  -. 

and varies  as the reciprocal of the square root of the distance downstream 

of the origin. 

The mean profiles for  the axi- symmetric compressible case  

a r e  assumed to be Gaussian in the Dorodnitsyn-Howarth variable, T ,  



T = 1 +  A T e  3' 
where 

7. 

These mean profiles, although not strictly valid (as mentioned pre- 

viously),will be used to il lustrate the stability characteris t ics  of 

slowly varying axi- symmetric velocity and temperature mean profiles. 



111. STABILITY O F  TWO-DIMENSIONAL 

INCOMPRESSIBLE WAKE FLOWS 

Wakes belong to the c l a s s  of two-dimensional quasi-parallel  

flows known as I1free boundary layers"', i. e . ,  flow fields in  which solid 

boundaries a r e  not present.  Usually flows which belong to this  c l a s s  of 

quasi-parallel  flows have one or  m o r e  points of inflection in  the velocity 

profile. The presence of a n  inflection point indicates that the flow is 

dynamically unstable in the limiting case  of vanishing viscosity, 

and that i t  would become unstable a t  relatively low Reynolds numbers.  
, 

Hence the c lass ica l  methods of solution for  la rge  Reynolds number, o r  

m o r e  precisely la rge  aR, cannot be used to determine the minimum 

cr i t ica l  Reynolds number. The quantity, I / ( ~ R )  , is a measure  of the 

diffusion distance for vorticity during one period. New methods of 

solution for  the O r r -  Sommerfeld equation have to be found for  small  

values of aR. In addition, the asymptotic methods developed by 

~ o l l r n i e n ~ ~ ' ,  ~ e i s e n b e r ~ ' ~  and U n Z 2  have to be modified for  la rge  

values of aR. 

Another problem a r i s e s  in  that the quasi-parallel  flow assurnp- 

tions leading to the Or r - Sommerf eld equation a r e  not valid throughout 

the ent i re  flow field, since the t r ansve r se  mean velocity component is 

of the same order  as the longitudinal mean velocity in cer tain regions 

of the field for  the smal l  values of Reynolds number of in te res t  in this 

problem. Near the trail ing edge of a flat plate, for  instance, the 

t r ansve r se  mean  velocity mus t  be taken into account if a "precise" 

prediction of the flow stability i s  desired. However, general  quantitative 

r e su l t s  a r e  of in te res t  here,  and the quasi-parallel  assumptions will be 



retained for  all values of aR. 

The subtleties of incompressible wake-type flows will be 

discussed in  this  section. Section 111. 1 will deal with the solutions of 

the Orr-Sommerfeld equation for  small  values of aR. A minimum 

cr i t ica l  Reynolds number of 39, based upon the length of a flat  plate, 

is found for  ant i -symmetr ical  disturbances. The stability charac ter -  

i s t ics  of a smoothly varying profile a t  long wave lengths can be found 

by using discontinuous velocity profiles [section 111. 23 In Section 111. 3  

the inviscid stability of a n  incompressible Gaussian flat  plate wake i s  

determined by numerical  methods. These theoretical r e su l t s  ag ree  very 

2 
well with the experimental r e su l t s  of Sato and Kuriki . The effect of 

viscosity on the eigen-value equation for  large,  but finite, a R  flows 

comes  in through the "inviscid solutions'' and does not depend on the 

"viscous solutionstf. However, the calculation of the disturbance am-  

plitudes m u s t  include the "viscous solutions", since the "inviscid 

solutions" a r e  singular a t  w = c. [section 111.41 . 
The Orr-Sommerfeld equation can be derived by eliminating the 

p res su re  and longitudinal velocity perturbation amplitudes f rom Eqs. 

(2 .  12) - (2. 14) (or  by considering the disturbance vorticity equation), 

The boundary conditions a t  the axis a r e  Eq. (2. 29) and Eq. (2. 3 0 )  : I 



= 0 anti- symmetr ic  oscillations 
(3.3) 

0 symmetr ic  oscillations . 

The boundary condition for  la rge  values of y is obtained f rom Eq. (3. 2). 

As  y - ca , w -4 0 exponentially, and Eq. (3. 2) becomes 

The solutions of Eq. (3. 4) a r e  

Now $?I must  be bounded for la rge  values of y (y > 0 ) ;  if for  definiteness, 

we take 

solutions with the positive exponent must  be rejected, and 

Eq. (3. 1) together with the boundary conditions Eq. (3. 3) and 

Eq. (3. 7) constitute a character is t ic-value problem. The character is t ic-  

values (or  eigen-values) a r e  determined by the usual secular  determinant, 

leading to a relation of the fo rm 

E ( a ,  c ,  R )  = 0 (3.8) 

where E i s  some general  function of the argurnents. 



If the imaginary par t  of c is positive, the dis turbances will 

amplify with t ime and the motion is said to  be unstable. If i t  is negative, 

the disturbances will eventually be damped out. If c is zero, the dis- 
I 

turbances a r e  considered to be neutral. At each Reynolds number, the 

spatial  amplification r a t e s  can be computed. A typical neutral  stability 

curve for wake type flows is sketched in  F igure  2. The his tory of a 

disturbance a s  i t  p rogresses  downstream is indicated in this  figure. 

F o r  Gaussian wake profiles, the Reynolds number is constant 

[Eq. (2. 501) and the wave number is proportional to  [Eq. (2.50)] . 
The disturbance will be amplified within the neutral  stability curve and 

damped outside of it. 

111. 1. Solutions for  Small  a R 

Wake-type flows a r e  ve ry  unstable because of the occurrence of 

a point of inflection in  the m e a n  velocity profile, i. e . ,  the minimum 

cri t ical  Reynolds number, below which all disturbances a r e  stable, is 

relatively low. The effect of viscosity is not confined to a thin layer,  

as  in the boundary layer  case,  but is felt throughout the ent i re  flow field. 

More  precisely, the relative distance that the disturbance is diffused 

in  one period is proportional to  the reciprocal  of some power of a R, 

and for  smal l  values of a R, this  distance is of the order  of one, o r  the 

full extent of the wake. 

An energy balance shows that the r a t e  of increase  of the kinetic 

energy of the disturbance is equal to  the conversion of energy f r o m  the 

basic flow into the disturbance by the Reynolds shear  s t r e s s ,  minus the 

22 
viscous dissipation . Viscous dissipation is always a stabilizing 



factor (always leads to  a decrease  in energy) and fo r  small  Reynolds 

numbers  is very  large.  Disturbances will be damped out very  rapidly 

in  this region. 

31 Tatsurni and Kakutani , anticipating a smal l  value of the minimum 

cr i t ica l  Reynolds number, have expanded the solution in  powers of a R 

as  follows: 

L 
YI=o 

where 

Substituting Eq. (3. 9)  into the Orr-Sommerfeld equation, Eq. (3. 2), and 

matching powers of i a R, the following equations relating the $(n)'s 

a r e  obtained: 

where 

The solutions of Eq. (3. 10a) a r e :  

The solutions of Eq. (3. lob)  can  be found by the method of variation of 



C. * The general solution of Eq. (3. 2) is I 

where C , C2 , C3 , and C a r e  a rb i t r a ry  constants. 4 

F r o m  the outer boundary conditions,Eq. (3. 7),C2 = C 4 = 0 ,  

and for  a non-trivial solution, 6 and @ must  satisfy the following 1 3 ' 

character is t ic  equations [ E ~ .  (3. 3) 1 : 
Anti- symmetric Oscillations 

Symmetric Oscillations 

Eq. (3. 9)  i s  substituted into Eqs. (3. 13) and (3. 14) and a corn- 

plex eigenvalue equation is obtained a s  a power se r i e s  in (i a R). ** 

* The solution Eq. (3. 9)  converges uniformly for  the Gaussian 
1 
L 

wake profile, w = - e - Y  , w h e n a  < 1 andRI  P C 1  Reference 31, page 
270, where I < constant 1 u f ( ~ )  I < constant 

- - 
** Tatsumi and 3Sakutani5' considered only anti- symmetrical 

oscillations. Their method is easily extended to the case  of symmetrical 
oscillations (Appendix C). 



T e r m s  of the fourth o rde r  and higher were  neglected, because i t  was 

found that these t e r m s  did not affect the f i r s t  t e r m  of the asymptotic 

behavior of the lower branch of the neutral  stability curve. Appendix C, [ 
Eq. (C. 18) and Eq. (C. 19)] . The eigenvalue equation was fur ther  

J 

simplified by neglecting t e r m s  of order  c3 and higher where 

and 

Since the anti-  symmetr ic  oscillations a r e  m o r e  unstable than 

the symmetr ic  ones, the minimum cri t ical  Reynolds number was 
r 3 

determined only fo r  the f o r m e r  case.  Eq. (C. 18) Appendix C was 

solved graphically for  the neutral  curve 
I J 
The r e su l t s  a r e  

indicated i n  the following table fo r  a Gaussian profile: 

Table 3. 1 

TI 
- --.-- 

+O. 40 

SO. 45 

4-0.50 

The minimum cr i t ica l  Reynolds number is R = 4. 7 a t  'a = 0. 17. At this  

point, a R = 0. 8 which is exactly the same resu l t  found by Tatsumi and 

KakutaniS1 for  a jet. 

R 

.077 

- 0 9 5  

. 125 

a 

.- 

. 120 

. 16 

. 1 9  

R 

4. 8 

4. 7 

4. 7 

c 
R 

-. 022 

-. 034 

-. 046 



F o r  a n  incompressible flat  plate (length d) Gaussian wake 

Therefore the minimum cr i t ica l  Reynolds number based upon the length 

of the plate is Red+ = 39. This value is considerably below the experi- 

5 
mental  value of about 600 measured  by Hollingdale , and about 700 

measured  by ~ a n e d a ~ ~ ,  for which oscillations were  observed. At low 

Reynolds numbers  the amplification r a t e  is a strong function of Reynolds 

number, i. e . ,  viscous dissipation tends to  damp out the distur- 

bances. Therefore,  oscillations will begin to occur f a r  downstream of 

the plate and the Reynolds number a t  which they a r e  f i r s t  observed 

will be considerably higher than the minimum cr i t ica l  Reynolds number 

determined by stability. 

The asymptotic behavior of the lower branch was found by taking 

the l imit  of Eq. (C. 18) as  $ --- 0 , and Eq. (C. 19) a s  rI ---+ - rn . 
Any other l imit  did not produce any meaningful resul ts .  The 

f i r s t  approximation consisted of solving the eigenvalue equations using 

only t e r m s  up to o rde r  a R; the second approximation, using only t e r m s  

2 
up to o rde r  (a R) ; etc. The r e su l t s  a r e  tabulated below: 

Anti- symmetr ic  Disturbance - 

Approximation 
/ 

1 s t  

2nd 

I 3rd 1 

2 
a R 

2 
cR/a 

3. 00 

1. 48 
- 

1. 51 

-1.50 

, -1.64 

-1.57 

36.40 

22.96 

1. 29 

1. 22  



Svmmetric Disturbances 

Table 3, 2 

Fo r  the anti- symmetric disturbances, the fourth approximation in- 

4 
volves t e rms  of order  ( a ~ )  , which do not modify the third order  approxi- 

mation. For  the symmetric disturbances, the r e a l  part of the eigen- 

2 2 
value equation has t e r m s  of order a R to the approximations made 

c R 

-1.05 

-1.26 

Approximation 

1st  
- 

2nd 

5 
(even though the imaginary part  has  t e rms  of order  (aR) 1, and i t  i s  

-- 

a R 

0. 67 

0. 47 

not obvious that the 3rd approximation will not effect the 2nd approximation. 

In the limit a - 0 , R - co , for anti- symmetric disturbances, 

2 
the product aR approaches a constant along two branches. The lower 

Sketch 3. 1 

of the two branches, in a reference system fixed in a fluid a t  rest ,  



corresponds to a wave travelling in the same sense a s  the centerline 

velocity while the upper branch corresponds to a wave travelling in the 

sense opposite to this velocity. The flow i s  unstable if 

2 2 - 1. 57 a < c < 1. 22 a and stable outside this region. 
R 

Along these two branches a ~ - F  a s  a -4 0 , R - m , 

thus confirming the validity of the expansion [ E ~ .  (3 .9 j  . At the 

cr i t ical  point aR = 0. 8; this  value i s  higher so that more  t e rms  in the 

eigenvalue equation should probably be retained in order  to find a more  

precise value of the minimum critical Reynolds number. However, the 

purpose of the computation was to find a n  approximate value of the min- 

imum critical Reynolds number, and i t  was felt that any additional cal- 

culations were not commensurate with the a ims  of the investigation. 

Moreover, a t  these low Reynolds numbers, the boundary layer equations 

themselves a r e  not accurate. 

In reviewing the paper of Tatsumi and ~ a k u t a n i ~  l, this author 

3 
found that t e r m s  of order  ( a  R) , which were neglected in Eq. (6.4) of 

their paper, should have been retained. In the limiting case  a ---+ 0, 

R ---s. co , they a r e  of the same order  a s  the t e rms  that were  retained. 

In addition, the second branch was not recognized by these authors. 

14 
Drazin reported these additional resul ts  in 1961. 

Fo r  the symmetric oscillations, aR and c approach a constant 
R 

a s  a - 0 , R - w . The value of lcRl , however, i s  larger  than the 

maximum value of [wl . This behavior of the lower branch was f i r s t  

suggested by cur le l '  and verified numerically by Clenshaw and Elliot 7 

L 
for the Bickley jet, w = sech y. 

The resul ts  obtained by the method of Tatsumi and Kakutani 
31 



suggest another type of expansion for small  values of a R. Along the 

lower branch, R varies  from i t s  minimum value to infinity while a i s  

always very small (a < . 2). Another type of expansion, then, would be 

to hold R fixed and expand c and 0 a s  a power se r i es  in a. Howard 
18 

used this method for the Bickley jet and obtained resul ts  that a r e  

identical to those of Tatsumi and Kakutani if the additional t e r m s  a r e  I 
added to Eq. (6.4) , Reference 31 This author has used this method 1 
for the Gaussian flat plate wake and also obtained the same minimum 

critical Reynolds number, and the same asymptotic behavior of the 

two lower branches (anti- symmetric oscillations) a s  by the method of 

Tatsumi and Kakutani. 

III. 2. Idealized Profiles a t  Long Wave Lengths 

18 In boththemethods of T a t s u m i a n d ~ a k u t a n i ~ l a n d H o w a r d  , 

the mean velocity profile appears  only in integrals, indicating that the 

precise shape of the velocity profile i s  unimportant for small wave- 

numbers or  large wave-lengths of the disturbances, Drazin and 

15 
Howard and ~ r a z i n ' ~  have used discontinuous velocity profiles to 

find the stability characteris t ics  of flows a t  low wave-numbers. Some 

of their ideas will be presented here a s  applied to the wake-type flow 

stability problem. 

F rom Eq. (2. ll), 

R = (v*L*/~*) a = a* L* , 

where the s tar red  quantities represent  dimensional quantities, and 



k 
w(y) 4 0 a s  y - - 00 . The eigenvalue equation, Eq. (3.  8), leads to 

a relation between c, a' , and aR or (R/a), i. e., 

c = c (a, R/Q ) (3. 19) 

F o r  a fixed a* , a - 0 , ( ~ / a )  = W/(a*3*) = constant a s  

L* ---o 0 . Therefore, c - c (0, R/a ) = f (~*/a*a*) and 

As L* - 0 for a fixed dimensionless velocity profile, w(y), 

> 
then w*(y*) ---A 0 since y = ( y * / ~ * )  --p. oo (y* < 0 ) . 

Therefore the two limits, a* --+ 0 , L* and (R/a) = (v*/a*a*) 

fixed, and L* - 0 , a* and (v* /~  *) fixed, give the same resul t  

a --A 0 , R/U fixed. In other words, for w(y) fixed, each limit gives 

the same limiting form of the eigenvalue relation, Eq. (3 .  20), and the 

stability character is t ics  of the flow a r e  the same for both the limiting 

profile w*(y*) a s  a* - 0 . In other words, by using the limiting profiles 

w*(yJF) as L* - 0 , which may  be discontinuous, the stability character-  

i s t ics  of smoothly varying profiles actual w*(~*)]  as a* - 0 can be 

determined. 

[ 

~ r a z i n l *  derives jump conditions for a, oR bounded a t  the [ 1 
points where w and/or (dw/dy) a r e  discontinuous and applies them to 

the case  of a broken line jet. 

He finds that three neutral " b r a n ~ h e s ' ~  exist for anti-symmetric 

disturbances 



aR 4 co , a fixed (a)  a ,,p- tanh " ( 7  - 4 5  ) 

2 2 
aR -constant a - 0 (b) aR - 1.34 cR--4-1 .  54 a 

2 
(3. 21)* 

R-co 
2 

(c)  aR - 32.4 cR 4 1.21 a 
2 

and for syrnmetric disturbances 

2 2 
aR fixed, a ---r 0 , c --r - [l + 2n (n / a ~ ) ]  

The branches (b) and (c)  of Eq. (3. 21) correspond to those found 

in Section 111. 1 and have approximately the same limiting values. The 

2 
wave speeds agree  to within 2 O/o, while the product aR agrees  to  

within 10 O/o on the lower branch (b) and to within 50 O/o on the upper 

branch (c). Thus the use of discontinuous velocity profiles a t  low wave 

numbers is justified a t  least  for qualitative purposes. 

The f i r s t  branch (a) i s  not meaningful in that the assumption aR 

bounded is not met. This branch was not found in Section 111. 1. 

However, this calculation indicates that the flow is unstable between the 

branches (b) and (c)  and above branch (a). In Section III. 3, another 

limit is found, namely the inviscid limit, on which aR - oo , a ---e dS . 
Below this branch, the flow is unstable, which leads to the hypothesis 

14 
that there  might be a n  "island of stability" within the unstable region 

This situation is il lustrated in the following sketch. It was suggested 

9 In this text, c is defined a s  the relative wave velocity and i s  
R 

the negative of the values found in Reference 14. 



Sketch 3. 2 

14 P 
by Stuart that branch (a) corresponds to the limit aR - constant, 

For  symmetric disturbances, aR + constant, c - constant R 

a s  R --L , o - 014. This behavior is exactly that found in Section 

111. 1 for the smoothly varying profile. For  n = 1, cR - - 1. 33  and 

Therefore, for low wave numbers or long wave lengths, the 

stability characteristics of smoothly varying velocity profiles can be 

found by using suitable discontinuous velocity profiles. 

111. 3. Invi scid Limit 

A point of inflection in the mean velocity profile indicates that 

the flow i s  unstable in  the limiting case of vanishing &scosity, and 

that the main features of the instability mechanism can be obtained by 

neglecting the viscous forces2'. The effect of viscosity i s  a stabilizing 



one and can be taken into account once the inviscid instability mechanism 

i s  understood. 

The inviscid limit is formally obtained by expanding 56 in a 

power se r i es  i n  (l/aR), 

substituting this expansion into Eq. (3. I), and taking the limit aR 4 0 0  . 
The equation for the zeroeth-order approximation, , i s  known a s  

the inviscid Orr-Sommerfeld equation and is 

For  neutral disturbances (c - 0) the wave speed, I - C~ ' i s  equal to the 

mean velocity, w , a t  the point where w" vanishes. The vanishing of w" 

is a necessary and sufficient condition for the existence of a neutral 

distur banceZ2 , and the disturbance amplitudes a r e  finite everywhere in 

the flow region if this condition holds. The inviscid neutral wave speed 

and wave number a r e  commonly denoted by c and a s  . 
2 

For  a Gaussian flat plate wake, w = - e -' , the inviscid neutral 
1 

wave speed i s  cs  = - emZ = -0.606. ~ c ~ o e n ' ~  approximated the 

velocity profile in three different regions and found that a = 2. 0. In the 
S 

present investigation, a was determined by numerically integrating 
S 

Eq. (3. 23) on a n  IBM 7090 electronic computer. This method i s  

described in  Section IV. 2; as was found to be equal to 1. 90. 

The neutral inviscid wave number is an  indication of the extent 

of the region of instability (Figure 2) and i s  of a n  order  of magnitude 

* It is understood that the 9 occurring in this equation i s  the 
zeroth-order approximation, (Po . 



greater  than the wave numbers encountered in boundary layer stability 

theory. A very important parameter  in stability theory is the spatial 

amplification rate,  [ E ~ .  . ( 2 .  10a)l which indicates how fast  a disturbance 

will amplify in a wavelength. The dimensionless amplification r a t e  

[ E ~ .  4. 28 was determined by the method described in  Appendix D. I 
The resu l t s  a r e  indicated in  Table 2 and Figures  3 and 4. The complex 

wave velocity determined in  this investigation versus  the wave number 

3  
is compared with the theoretical resul t s  of Sato and Kuriki . The 

values of the imaginary part  of the complex wave velocity a t  low wave 

numbers obtained by them a r e  considerably higher than those obtained 

in  the present investigation. F o r  low values of the wave number c I 

should decrease, a trend which is not indicated by their results.  

Therefore i t  is felt that the resul t s  of the present investigation a r e  m o r e  

accurate  than those obtained by Sato and Kuriki . 
The group velocity of the disturbance must  be calculated in  a 

f rame of reference fixed in the body. The amplification ra tes  were 

calculated using both the group velocity and the phase velocity of the 

disturbancej the maximum value of the former  was found to be 0. 33 

and of the latter, 0. 26 (Table 2 ) .  The spatial amplification ra te  (using 

the phase velocity) is compared with the theoretical and experimental 

values of Sato and Kuriki in Figure 4. The notation of Sato and Kuriki 

is used in this figure. * The preferred frequency for  natural oscillations 

* The wave speed and wave number used by Sato and Kuriki 3 

a r e  defined differently in this text. The conversions a r e  

cR (Sato and Kuriki) = 1 + . 692 cR (Gold) 

a (Sato and Kuriki) = 0 . 8 3 3  a (Gold) . 



corresponds to the frequency a t  which the theoretical spatial amplification 

i s  a maximum. This behavior is similar to that found in f ree  shear 

layer and jet flows2' and seems to be characteristic of unbounded 

flows. The stability characteris t ics  of such flows a r e  relatively 

insensitive to the effects of viscosity over a wide range of (large) 

Reynolds numbers. 

111. 4. Large, Finite Reynolds Number Stability 

It is very desirable, although extremely tedious, to determine 

the entire neutral stability curve in the a-R plane. The solution for 

small values of the wave number and Reynolds number was discussed 

in  Sections 111. 1 and 111. 2, and the inviscid limit (infinite Reynolds 

number) in Section 111, 3. A description of the problems aris ing for 

large but finite Reynolds nurnbers will be given in this section. 

Fo r  channel flows, ~ e i s e n b e r ~ ~ ~  has shown that of the four 

independent solutions of the Orr-Sommerfeld equation, two of the 

solutions a r e  slowly varying (inviscid solutions) and satisfy the inviscid 

equation throughout the channel (except a t  the singular point), and the 

other two a r e  rapidly varying (viscous solutions) and very sensitive 

to the effects of viscosity, 

For  wake type flows, the absence of any solid boundaries 

implies that the viscous solutions will not play a n  important role in 

the stability of these flows and can probably be neglected in the fir st 

approximation, and that the effect of viscosity must  be found from the 

higher order  t e r m s  of the inviscid solutions. Foote and ~ i n l ~  show 

that the effect of the viscous solutions does not enter into the eigenvalue 



problem for both f r e e  shear layers  and wakes of large a R. For  f ree  

shear layers,  the viscous solutions must be rejected because the dis- 

turbance amplitudes must damp out a t  infinity. For  wake flows 

(symmetrical velocity profiles), one viscous solution must  be rejected 

because i t  becomes infinite for y -----A m . However, the other viscous 

solution i s  shown to be of higher order,  i n  the eigenvalue problem, 

and can be neglected. However this does not imply that the viscous 

solutions a r e  entirely neglected. The inviscid solutions have a 

logarithmic singularity a t  the point w = c, which must  be f'smoothedf' 

out by the action of viscosity. If o1 and $ a r e  the inviscid solutions, 2 

and o3 and @4 a r e  the viscous solutions [ $b3 and $4 become infinite 

exponentially a s  y ----+ - m and f m , respectively] then 

Fo r  symmetric or anti- symmetric disturbances, C4 = 0, and Eq. (3. 24) 

becomes 

The coefficients in Eq. (3. 25) must be chosen in  such a way that in the 

vicinity of the cr i t ical  point, w = c, the discontinuities in the inviscid 

solutions o1 and (b2 must be smoothed out by the action of viscosity 

due to the viscous solution $3 . In other words, even though the viscous 

solutions can be neglected in  the eigenvalue equation, they must  be 

retained in  determining the distribution of the eigen-functions. 

Tatsumi and ~ a k u t a n i ~ l  have used this approach to find the 

upper branch of the neutral stability curve, and have shown that the 

stability characteris t ics  of the Bickely jet a r e  relatively insensitive to 



the effects of viscosity over a wide range of very large Reynolds 

numbers. 

A4cKoenZ4 neglected the fourth-order t e rms  @"' in Eq. (3 .  1) 

and perturbed the solution about the inviscid solution. This procedure 

enabled him to find a simple expression for the neutral stability curve 

for large values of R. This assumption cannot be justified although his 

resul ts  look reasonable. However, this method did not predict a 

13 
minimum cri t ical  Reynolds number. Curle , using an  extension of 

McKoenl s method, approximated the solution by a linear combination 

of two inviscid solutions. Again, this additional assumption cannot be 

justified, although i t  predicts a minimum. critical Reynolds number 

which is very close to that found by Tatsumi and ~ a k u t a n i ~ l  and 

18 
Howard * 



IV. STABILITY OF TWO-DIMENSIONAL COMPRESSIBLE WAKE FLOWS 

Wake-type flows a r e  dynamically unstable because of the 

occurrence of a point of inflection in the density-vorticity product 2 2 , 3 2  

Therefore the stability characteris t ics  of such flows a r e  relatively 

insensitive to  Reynolds number, for sufficiently high Reynolds numbers, 

and interesting and important resul ts  can be obtained by considering 

the "inviscid limit" of the small  disturbance equations, i n  which the 

viscosity and conductivity of the fluid can be neglected to a certain order.  

3  F o r  a n  incompressible wake, Sato and Kuriki show that 

inviscid small disturbance theory compares very favorably with experi- 

mental results,  and that natural oscillations occur a t  a frequency a t  

which the theoretical spatial amplification ra te  i s  a maximum. The 

present investigation was motivated by these ideas and was extended 

to find the effect of compressibility on the stability characteris t ics  

of wake-type flows, 

3 2  Lees and Lin considered the inviscid stability of laminar 

compressible fluid flow and applied their resul ts  to the flat plate 

boundary layer. The reader i s  refer red  to their paper for a complete 

description of the problem. The only points that will be discussed 

in this  section a r e  those relating to the compressible wake problem. 

The nature of the disturbances far from the axis  of the wake 

was investigated. It is found that the disturbances can be classified 

as subsonic, sonic and supersonic according to whether the wave 

velocity of the disturbance (in the direction of the f ree  s t ream velocity), 

relative to the f ree  s t ream velocity i s  l e s s  than, equal to or  greater  

than the external velocity of sound. Neutral and self-excited subsonic 



disturbances a r e  possible only when the gradient of the density- 

vorticity product (pw')' vanishes f o r  some -w < ( 1 / ~ )  i n  a coordinate 

system fixed in the fluid a t  rest.  Thus, when M i s  sufficiently high, 

no subsonic disturbances occur. If one assumes  that only subsonic 

disturbances a r e  important for  stability, then many of the transition 

phenomena occurring in  the hypersonic wake can be explained on this 

basis. 

A numerical method of solving the inviscid compressible small  

disturbance equations is presented i n  Section IV. 2 and Appendix D for 

both neutral and amplified disturbances. Numerical resul ts  a r e  pre- 

sented in Section IV. 3 for a compressible wake using the mean flow 

model of ~ u b o t a ~ ~ .  The amplification ra tes  a t  four stations of a 

hyper sonic wake were  calculated and the resul ts  indicated that the 

maximum spatial amplification ra te  i s  constant in  the streamwise 

direction and occurs a t  one preferred frequency. This amplification 

ra te  is approximately half of that calculated for a n  incompressible 

wake. However, for hot wakes, the range of relative Mach numbers 

over which subsonic disturbances can exist increases. Therefore, 

as long a s  the relative Mach number i s  below the cr i t ical  Mach 

number a hot wake will be more  stable than a cool one. Finally, the 

hypersonic wake stability problem i s  discussed i n  Section IV. 4 using 

the resul ts  obtained i n  the previous sections. 

IV. 1. Inviscid Disturbance Equation and Outer Boundary Condition 

The following self-adjoint equation for the pressure  perturbation 

32 can be obtained from Eqs. ( 2 .  23) - (2. 27), (Lees and Lin ) ;  



The boundary condition on the axis, for anti- symmetrical 

disturbances i s  Eq. 

The boundary condition for large values of y must be determined from 

the self-adjoint equation. When y - m , w - 0 , T - 1 , and 

Eq. (3.  1) takes the limiting form 

where 

2 2 
Q = 1 - M  C 

The solution of Eq. (4. 3 )  i s  

32 Following the suggestion of Lees and Lin , introduce a "cut" along 

the negative real  axis  of the complex - plane so that the real  part of 

will always be positive a s  long a s  - n < a rg  fi < n . From a 

physical considerations, a must be bounded for large y and must 

behave like e -ny a $  y - WJ . Therefore the boundary condition 

when - a < a r g  i n  . The self-adjoint equation Eq. 

the boundary 



Sturm-Liouville system with discrete characteristic values. 

The product of the asymptotic solution e 'fly and the 

y independent part of the disturbance, exp i a (x  - ct), represents 

progressive waves with the direction of propagation of the wave 

dependent upon the f rame of reference of the observer. If a wave 

propagates outward and in the negative x direction with respect to an 

observer fixed in a fluid a t  rest, i t  will propagate inward and in the 

positive x direction to an observer fixed in the body, and vice-versa. 

It i s  to be emphasized that the component of the propagation velocity of 

the wave front in the x direction, in a reference system in which the 

coordinates a r e  fixed in a fluid a t  rest,  i s  c * - U * ; the component i s  R e 

c * in a body - centered f rame of reference Figure 5 . The asymptotic R 1 
solution for the complete disturbance i s  

to a n  observer fixed in a fluid a t  r e s t  ( c < 0 ). The quantities R 

a I and I take the sign of c For amplified disturbances, I' 

c > 0 and the disturbance is an  incoming wave with an exponentially I 

damped amplitude a s  y - rn . If cI = 0 (neutral disturbances), then 

fl = 0 and from Eq. (2. 11) 
I 

= 1 -  (c* - u,*)' 
ae*2 

z- 
The disturbance can be classified according to whether RRz 0 ;  

corresponding to subsonic (Ue* - a * < c * < U ), sonic (Ue* - ae* = cR*) e R 



and supersonic (c  * < Ue* - ae*) disturbances, respectively. The R 

neutral subsonic disturbance is propagated parallel to the x axis  and 

i s  exponentially damped in y a s  y ---P oo . 
If cI = 0 and < 0 (neutral supersonic disturbances), the 

pressure  disturbance i s  composed of both incoming and outgoing waves, 

i n  general, of unequal amplitudes. Therefore, unless the Sommerfeld 

radiation condition (pure oncoming o r  outgoing waves) is imposed a s  

the boundary condition fo r  y - oo , the characteristic values will not 

be discrete* This problem and the problem of neutral sonic disturbances 

a r e  discussed i n  Lees  and   in^' and will not be treated here. 

This condition must  somehow be related to the conditions on 

the axis  since the proper f rame  of reference for stability considerations 

is one in  which the observer is fixed i n  the fluid a t  r e s t  and only sees  

the velocity defect of the wake. Lees  and   in^^ show that the necessary 

and sufficient condition for the existence of a neutral subsonic distur- 

bance i s  that the wave speed must equal the mean velocity a t  the point 

where the gradient of the mean density-vorticity product vanishes, 

namely, 

C~ 
= w a t  (w'/T)' = 0 (4.9) 

and must l ie between the maximum and the minimum of the mean 

velocity i n  the interval 0 < y < co 

- 1 < C R < O  0 

The wave speed i s  a function of both the mean velocity and temperature 

profiles, and, a s  will be shown in  Section IV. 3, only depends on the 

temperature excess AT, since the velocity i s  normalized to minus one 



on the axis  and zero  a t  infinity. The dimensional wave speed in a 

coordinate system fixed in the body i s  

and depends on c and the velocity defect of the wake. 
R 

This resul t  becomes more  evident in a coordinate system fixed 

in  the fluid a t  rest .  In this  system, 

corresponding to subsonic, sonic and super sonic disturbances, 

respectively. The relative wave speed, cR , i s  a slowly varying 

function of the mean profiles and temperature excess AT, while the 

reciprocal of the relative Mach number i s  a rapidly varying function of 

the velocity defect. This resul t  i s  very important for the hyper sonic 

wake problem and will be discussed in Section IV. 4. 

F o r  shear layer type profiles,  in^^ has shown that instability 

might occur when the wave speed is subsonic relative to both external - 
streams. This resul ts  in the condition that the difference in the external 

velocities is l e s s  than the s u n  of the external speeds of sound, i. e., 

IV. 2 .  Solution of the Inviscid Equation 

Since the mean velocity and temperature profiles a r e  functions 

of the Dorodnitsyn-Howarth variable, , i t  i s  more  convenient t o  

t ransform the inviscid pressure  disturbance equation, Eq. (4. 1) , and 



the boundary conditions Eq. (4. 2) and Eq. (4. 6) to the following form, 

using 7( a s  the independent variable: 

n = O  77 = O  ; (%/d?) + u ,/6n = 0 T - ~  
where 

d q  = (dy/T) 

The system (4. 14) was solved for both neutral and amplified 

subsonic disturbances using two different methods of solution. The 

method of solution for the neutral subsonic disturbance will be 

described below, while the method of solution for the amplified disturbance 

will be described in Appendix D. 

3 2  
Lees  and Lin show that a necessary and sufficient condition for 

the existence of a neutral inviscid disturbance is that the quantity 

(4. 15) 

must  vanish a t  some value of w = c R ' The solution for n i s  regular a t  

this point if this condition holds. In addition the imaginary part  of n is 

zero  everywhere. Fo r  numerical purposes i t  was found convenient to 

divide the region of integration into two parts:  ( l ) ,an  "inner region" 

between the axis  and the cr i t ical  point, 77 (where w = c); (2),an 

"outer region" between the cri t ical  point and infinity. 

In the "inner region", Eq. (4.14) is used. The solution for a 

in  the neighborhood of the cr i t ical  point is obtained by a se r i es  



expansion, the details of which a r e  given by ~ e s h o t k o ~ ~ * :  

where b is a n  unknown constant. 

Following the suggestion of ~ e s h o t k o ~ ~  , Eq. (4. 14) can be 

transformed in a Ricatti-type f i r s t  order non-linear differential 

equation 

Z 
~'1w-c  2w' 2T']G-az iG z z 

G'=[I- I+[- w-c - J 

where 

2 2 
G = (al/a T r )  . 

The boundary condition a t  infinity then becomes 

4 

Around the critical point 

* Reshotko found the expansion around the singular point 
using Eq. (4. 16) i s  slightly different from that 
obtained by 59, Eq. (A-8)] . 

** Primes ( I )  indicate differentiation with respect to  . 77 



or inverting Eq. (4. 20a) 
C 

Eq. (4, 17) has  a singular point a t  infinity, This can be seen 

in the following way. The second t e rm  on the right hand side tends to 

zero  exponentially a s  y --+ oo . Therefore, for large values of , '-i' 
Eq. (4. 14) reduces to 

whose solution i s  

G = 
+ - I 'I 

There foreas  -oo 

unless C, f 0 ; in this case  

If the integration of Eq. (4. 17) i s  started a t  the cr i t ical  point, for any 

a rb i t r a ry  value of b (unknown constant), a l l  solutions will tend to 



Eq. (4. 22) a t  infinity. If b is chosen exactly right the solution will tend 

to the correc t  boundary condition (4. 19). The correc t  method of 

integration then i s  to s tar t  from infinity and integrate in  towards the 

cr i t ical  point. 

The calculation procedure used to obtain the neutral inviscid 

solution for the given profiles w'( ) and T( ) and the relative Mach 

number, M , i s  a s  follows: 

r7 r7 

Integration from Infinity to Critical Point 

1. Evaluate c and qc from Eq. (4. 15). 

2. Assume a value of a and evaluate G(m) [Eq. (4. 19)] . 
3. Continue the calculation of G by integration of Eq. (4. 17)  

to some small  positive value of ( q' - q' c)- 

4. Evaluate the unknown constant, b , a t  (77 - 7 c) f rom 

Eq. (4. 10b) since G i s  known from step 3 a t  this point. 

Integration f rom Critical Point to Wall 

5. Using the value of the constant, b , f rom step (4) evaluate a 

f rom Eq. (4. 16). 

6. Continue the calculation of a by integration of Eq. (4. 14) to 

the wake axis. 

7. Repeat steps (2) to (6) until the boundary condition, a = 0 . 
is satisfied. 

The nature of the integral curves for a and G a r e  shown in the 

following sketch. 



Sketch 4. 1 

IV. 3. Numerical Results 

In order to find the effect of relative Mach number, Ma and 

temperature excess, a T s  on the stability of a hypersonic wake, 

the wave numbers, wave speeds and amplification ra tes  of a typical 

blunt body wake were obtained using the methods described in Section 

IV. 2 and Appendix D. The inviscid equations were solved numerically 

on the IBM 7090 of the California Institute of Technology Computing 

Center by the Runge-Kutta-Gill method. 

The mean flow model of Kubota (Section 11. 4) 

was used in the numerical calculations. For neutral subsonic dis- 



tur banc e s 

and, using Eq. (4. 23) 

Eq. (4.25) is a transcendental equation for q c  a s  a function of the tem- 

perature excess, A T. The neutral inviscid wave speed is determined 

once 77 i s  known and is a function only of A T (independent of M). 

As T increases, moves out, towards the outer edge, i. e., the 

density-vorticity product spreads out and shifts to higher values of , 

and c increases towards zero; in other words cR* approaches the f ree  

s t r  eam velocity U * . These results  a r e  shown in Figure 4 and a r e  e 

listed in Table 1. 

As mentioned in Section IV. 1, the disturbances can be classified 

according to whether 

corresponding to subsonic, sonic and super sonic disturbances, 

respectively. For neutral subsonic disturbances the mean flow is 

unstable with respect to small disturbances provided a value - c < ( 1 / ~ )  R 
2 

exists for which (w'/T ) '  vanishes. As cR increases, the critical 

relative Mach number, Mcr = [ U  * - u*(o)] /a * = - ( l / c  ) increases e e . R 

very rapidly. This result is shown in Figure 7. As T increases, 

the wave speed cR increases (critical Mach number a lso  increases). 



This resul t  is a lso  shown in Figure 7. 

The neutral inviscid wave number, a s ,  was then determined for 

various values of AT and M. For  a fixed value of M, the inviscid wave 

number decreases  with increasing A T, implying that a hot wake will 

be more  stable than a cool one. These resul ts  a r e  listed in Table 1 

and a r e  shown in Figure 8. 

F o r  a fixed value of AT, the inviscid wave number decreases . 

23 
with increasing Ma verifying the resul ts  of Lin . The value of a s  

2 
seems to be linearly dependent on M , the slope being a function of AT. 

Corresponding to eacuvalue of DT, there is a cr i t ical  Mach number 

above which subsonic disturbances a r e  impossible. Therefore a s  M 

increases (for a fixed AT), a cr i t ical  wave number is reached below 

which subsonic disturbances a r e  impossible. This cr i t ical  wave number 

decreases  with increasing AT (Figure 8). 

Thus, we see that the effect of temperature i s  two-fold. As A T  

increases, the cr i t ical  Mach number increases, and the range of 

relative Mach numbers over which subsonic disturbances can exist also 

increases (Figure 7). However, a s  long a s  the relative Mach number 

is below the cr i t ical  Mach number the neutral inviscid wave number, a s a 

will decrease with increasing h T (Figure 8), implying greater  stability 

of the wake flow. In order  to make this statement more  definite, the 

amplification r a t e s  must  be compared a t  these various conditions. The 

amplification ra te  depends upon the velocity defect of the wake, the 

temperature excess and relative Mach number. It was decided to take 

a typical hypersonic wake and compute the dimensionless maximum 

amplification ra te  a t  each station. These resul ts  a r e  compared with the 



3 
r e su l t s  of Sato and Kuriki for  a flat  plate incompressible wake. 

A hypersonic cylinder wake was considered under the following 

conditions: T. 

F r e e  s t r eam Mach number - 5.8 

Diameter of cylinder - 0. 100" 

F r e e  s t r e a m  Reynolds number based on diameter  - 8,280. 

Under these conditions, ~ c ~ a r t h ~ ~ ~  found that transit ion f rom 

laminar  to  turbulent flow occurred 47 d iameters  downstream of the 

neck. He a l so  was able  to compute the temperature excess,  AT, 

velocity defect, AU and the relat ive Mach number M, as a function 

of the downstr eam coordinate, (x*/d*). At four typical stations 

Table 3. 1 

At each s tat  ion, the Gaussian distributions of Kubota were  fitted to  the 

temperature excess  and the velocity defect, and the stability charac ter -  

i s t ics  determined by the method of Section IV. 2 and Appendix D. The 

r e su l t s  a r e  tabulated in  Table 2 .  

F o r  the range of tempera tures  and Mach numbers  considered, 

the wave number is a lmost  a universal function of the complex wave 

velocity for a < 0. 8. In fact i t  compares  reasonably well with the 



stability charac ter i s t ics  of the incodpress ib le  wake. F o r  a > 0. 8 the 

r e a l  par t  of the complex wave velocity is a l s o  roughly independent of 

the temperature,  but the imaginary par t  is a strong function of tem- 

perature; hence the spatial  amplification r a t e  is a l s o  a very strong 

function of temperature.  These r e su l t s  can  be explained by the 

following argument:  a t  low wave numbers, o r  la rge  wave lengths the 

mean profiles become unimportant since the length scale  of the dis- 

turbance is l a rge r  than the length scale  of the m e a n  flow; for  la rge  

wave numbers,  o r  smal l  wave lengths, the length scale  of the distur- 

bance is of the order  of the scale  of the mean flow and the mean profile 

then becomes important. 

F o r  the four c a s e s  considered, the propagation velocity of the 

0 wave was  practically equal to the group velocity (within 10 /o) and for  

calculation purposes, the amplification r a t e  was determined by using 

the former .  These r e su l t s  a r e  l is ted i n  Table 2. The dimensionless 

spatial  amplification r a t e  is shown in  Figure 9 as a function of the 

dimensionless frequency. The maximum r a t e  of amplification occurs  

at a frequency of between 0. 7 and 0.8. This resu l t  is remarkably 

3 s imi lar  to that obtained by Sato and Kuriki * for the incompressible 

flat plate wake. The natural  oscillations seem to occur at a prefer red  

frequency, and they amplify experimentally with a constant spatial 

amplification r a t e  in  the s t reamwise direction (Figure  8). The max- 

imum dimensionless spatial  amplification r a t e  was  found to be 0. 165 

* The wave speed and wave number used by Sato and Kuriki 3 

a r e  defined differently than in  the text. The conversions a r e  

C(Go1d) = c (Sato and Kuriki) - 1 [ ] x (1.45) 

a(Go1d) = [a (Sato and Kuriki) I (1. 20) 



for the compressible wake under consideration and 0.330 for the 

incompressible flat plate wake. The effect of temperature seems to be 

a stabilizing one if the dimensionless amplification ra te  i s  a measure  of 
r 

the relative stability between two flows. The ratio of the disturbance 

amplitudes (in the linear regime) a t  two different stations, i s  given by 

Eq. (2. lob). xXh 

Since 

a* = a / ~ *  cI* = cI Y* = cI A U U * 
e 

- 
cR* = CR Ue* c * = (d/da*) (a* cR*) = c U * 

g g e 

- - - 
C~ 

= 1 + c R A U  c = c R +  a (dcR/da) A U 
g 

where L* and A U a r e  defined by Eqs. (2. 48) and (2.49), then Eq. (2. lob) 

becomes 

a 

The appropriate drag coefficient is not the total drag of the body but 

the value of CD in the inner laminar wake, which swallows momentum 

defect in the outer flow very slowly. Therefore CD i s  approximately 

equal to the initial drag coefficient a t  the neck and therefore 
1 

Eq. (4. 28) then becomes 



If the dimensionless amplification ra te  i s  independent of (x*/d*) a s  the 

numerical resul ts  seem to indicate then Eq. (4. 28) can be integrated, 

I f  the disturbance originates 5 diameters downstream of the neck, 

and the linear region (region in which the theory of small disturbances 

applies) i s  assumed to extend to the transition point, then for the case 

just considered 

This resul t  i s  of the same order  a s  the experimental resul ts  of Sato and 

Kuriki for a flat plate incompressible wake in the linear region. 

Extreme ca r e  must  be taken in applying these numerical resul ts  

to the formulation of a theory of transition for hypersonic wakes, 

although these resul ts  do indicate some trends (concerning transition) 

that a r e  observed in  wind tunnel and ballistic range experiments 

(Section IV. 4). The mechanism of transition i s  a very complex one 

and cannot be explained fully by a linear theory. 

IV. 4. The Hypersonic Wake Problem 

In this  section some of the laminar-turbulent transition phe- 

nomena observed in the hypersonic wake of blunt and slender bodies 



will be explained by the small  disturbance theory of laminar stability 

using the resul t s  obtained in  Sections IV. 1 to IV. 3. 

If the f r e e  s t ream Reynolds number based upon a character is t ic  

body dimension is very low the wake will be completely laminar.  As 

the f r e e  s t r eam Reynolds is increased, transition occurs  in the wake 

fa r  down s t ream of the body, and begins to move upstream a s  the 

' Reynolds number is further increased. Eventually, transition 

"sticksu in the region of the neck, i. e., the transition point approaches 

a fixed value over a wide range of Reynolds numbers, and the wake 

downstream of this transition point is completely turbulent. 

The fact that the wake is laminar below a certain cr i t ical  

Reynolds number can be explained by recognizing that there is a min- 

imum cri t ical  Reynolds number below which the turbulence in the wake 

cannot maintain it  self against the action of viscous di s sipation. One 

way that this Reynolds number can be found is by assuming that the 

1 
effective turbulent diffusivity is equal to the laminar diffusivity If 

the Reynolds number is below this value the wake will be always lam- 

inar;  if i t  is slightly above turbulent flow is possible. (There is a l so  a 

minimum cri t ical  Reynolds number in laminar stability theory below 

which a l l  small  disturbances a r e  stable, according to the solution of 

the full viscous small  disturbance equations. ) 

The upstream motion of the transition point a s  the Reynolds 

number is increased is not yet understood. It s eems  probable, how- 

ever, that transition is preceded by linear and non-linear regions 

s imilar  to those found by Sato and Kuriki for a n  incompressible flat 

plate wake. Considerations based on Eq. (4. 31)  may indeed furnish a n  



explanation of this  phenomenon. 

The "sticking" phenomena is caused by the fact  that subsonic 

disturbances a r e  impossible in  the wake neck region and in  the f r e e  

shear  layer  because the relative Mach number is so  high there.  In 

the neck region, the relat ive Mach number is practically equal to the 

local "external" Mach number, since the centerline velocity is very 

small. F o r  blunt bodies the external  Mach number i s  "frozen" a t  

about three,  while for  slender bodies the external Mach number is 

approximately equal to  the f r e e  s t r eam Mach number. The velocity 

defect and relat ive Mach number decrease  very  rapidly downstream of 

the neck, while the wave speed dec reases  to roughly one-half of the 

velocity defect. At some point downstream of the neck, subsonic dis- 

tur  bance s wil1,occur implying instability. The length of the stable 

region is determined mainly by the external Mach number and the r a t e  

of decay of the velocity defect. The stable region will be longer for 

slender bodies than for  blunt bodies because the external Mach number 

is much l a rge r  in  the fo rmer  case.  4 .2  This prediction is I 
verified experimentally by the r e su l t s  of Slattery and claybo for 

spheres  and cones. 

The experimental studies of Chapman, e t  a152 and Larson  5 3 

show that a laminar  f r e e  shear  layer  is very  stable for high external 

Mach numbers.  Lin Section IV. 1 indicates that instability occurs  I 
if the wave speed is subsonic relative to  both s t r e a m s  and f r o m  

Eq. (4. 13) 

U1* - U2* < a  * + a2* 
1 

F o r  the f r e e  shear  layer  behind a body, U2*z  0 and 
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If the body i s  adiabatic then the condition for the existence of subsonic 

disturbances is that M1 < 2.5. Again the local externalMach number 

for a blunt body i s  frozen a t  about three while for slender bodies i t  i s  

of the order  of the f ree  s t ream Mach number. Therefore, subsonic 

disturbances will not exist for  most cases  of practical interest and 

the shear layers  will be very stable. The f ree  s t ream Reynolds 

number must  be raised one to two orders  of magnitude in order  that 

1 transition jump from the wake to the body boundary layer . 



V. STABILITY OF AXI-SYMMETRIC COMPRESSIBLE WAKE FLOWS 

The stability of inviscid axi-symmetric incompressible jets has 

recently been studied by Batchelor and ~ i 1 1 ~ ~ .  * The more  general 

problem of the stability of inviscid, compressible fluids will be dis- 

cussed in this section with special emphasis on wake flows. This 

study will give valuable insight into the stability problem of a r e a l  

fluid a t  very large Reynolds numbers (a R > > 1). It i s  known from 

experience that wake- type flows a r e  very unstable. This suggests 

that the dynamical properties of the flow a r e  very important in the 

stability problem. 

The eigenvalue equation and boundary conditions for the inviscid 

radial velocity disturbance amplitude constitute a Sturm- ~ i o u v i l l e  

32 
system analogous to that treated by Lees and Lin for two-dimensional 

disturbances. By transforming the velocity components to a new 

orthogonal set, the similarity i s  even more  startling. This fact suggests 

that resul ts  similar to those for the two dimensional case  can be obtained 

for the axi-symmetric problem. These resul ts  a r e  derived in Sections 

v. 1 - V. 4. 

Again, a s  in  the case  of two-dimensional flows, i t  is found con- 

venient to classify the disturbances a s  "subsonic", "sonic" and 

"supersonict', according to whether the phase velocity of the disturbance 

relative to the free-  s t r eam velocity i s  l e s s  than, equal to, or  greater  

than the mean speed of sound in the f ree  stream. 

* This work was carr ied  on a t  the same time as the present 
investigations, unbeknown to this author. 



It was a lso  found that neutral and self-excited subsonic dis- 

turbances a r e  possible only when the gradient of a density-vorticity 

product vanishes for some - w < ( l / ~ ) ( i n  a coordinate system fixed 

in  a fluid a t  rest),  which is exactly analogous to the two-dimensional 

case. 

The energy transfer mechanism between the mean flow and the 

disturbance flow i s  studied in the inviscid limit. It i s  found that the 

Reynolds shear s t r e s s  is composed of two terms:  one associated with a 

density-vorticity product, which produces a discontinuity in the shear 

s t r e s s  a t  the cr i t ical  point; the other associated with a singularity in the 

radial disturbance vorticity, which produces a delta function behavior 

near the cr i t ical  point. The latter contribution i s  a destabilizing 

influence. 

The special case  of a n  axi-symmetric wake is worked out. For  

incompressible flow only the n = 1, 2 modes a r e  unstable, If the tem- 

perature profile is of a lrtop-hattl nature then only the n = 0, 1 modes 

a r e  unstable; i f  i t  i s  "slowly varying" then the n = 1, 2 modes a r e  un- 

stable. The n = 1 mode seems to be the most  unstable mode because 

the radial velocity component i s  f r ee  to ltflop" around on the axis, 

giving the motion a n  extra "degree-of-freedom". These oscillations a r e  

analogous to the anti-symmetric oscillations in two-dimensional flow 

which a r e  known to be more  unstable than the symmetric ones. How- 

ever, i t  is necessary to calculate the amplification ra tes  of different 

modes before a definite statement can be made. 



V. 1 .  Similarity Between the Small Disturbance Equations and 

Boundary Conditions for h i -  symmetric and Two-Dimensional Flows 

Batchelor and ~ i 1 1 ~ ~  show that by a suitable transformation of 

velocity components, the incompressible small disturbance equations 

for axi-symmetric flow become similar to the two-dimensional small 

disturbance equations. These resul ts  a r e  now extended to the case  of 

compressible, axi- symmetric flows. 

Following Batchelor and Gill, the lines of intersection of the 

Sketch 5. 1 



family of surfaces 

r = constant, a x f n $I = constant 

a r e  circular helices on which the phase of the disturbance wave is 

constant see Sketch 5. 1 . The disturbance amplitudes depend only [ I 
on the variables r and a x  + n@ and a r e  constant on a helix of this family. 

It i s  convenient to define new orthogonal velocity coordinates 

Sketch 5. 1 

where q i s  the velocity component perpendicular to both the radial line 
1 

and the helix of constant phase = constant, ax  4- n$b = constant] , q3 

is the velocity component parallel to the tangent to the helix of constant 

phase, and m = i s  the magnitude of the total wave number. 
1 

The tangent to the helix of constant phase makes an angle, tand1(ar/n) 

with the axis of the cylinder. 

In this coordinate system, Eqs. (2.38) - (2.43) become: 

Continuity 

1 -  Momentum 



2- Momentum 

3- Momentum 

Energy -- 

State 

These equations a r e  exactly the same as those for  two-dimen- 

sional inviscid flow,Eqs. (2. 23) - (2. 27),except for  the obvious coordinate 

scale  factors.  q and q correspond, respectively, to  the longitudinal 1 2 

and normal  velocity dis turbances in two dimensional flow. The velocity 

component q appea r s  only in  Eq. (5. 5) and is determined once q is 
3 2 

known. It plays the same  ro le  as  the sweep velocity i n  boundary layer 

theory. 

The two-dimensional small-di s tur  bance equations can be reduced 

to a single second order  equation in n o r  b [section IV. 11 , while the 

'disturbance equations for  axi-symmetr ical  flow can  be reduced to a 

s imilar  single second o rde r  equation in  IT or  q Section V. 2 The r I 
boundary conditions on the axis for these perturbation, amplitudes a r e :  



Axi- symmetric [ E ~ .  (2.44)] 

n = O  s(0)  a rb i t r a ry  qr(o) ' 0 

n =  1 n(0) = 0 qr arbi t rary  

n > l  s (0)  = 0 qr(0) = 0 

Two-Dimensional Eqs. (2.28) and (2. 29i [ 
Anti- symmetrical oscillations s (0 )  = 0 

@(o) a rb i t r a ry  

Symmetrical oscillations n(0) a rb i t r a ry  

$(0) = 0 

F a r  away from the axis, the boundary conditions a r e  exactly the same 

[ Eqs. (2. 30) and (2.45)] Therefore, the n = 0 mode corresponds 

to symmetrical oscillations and the n = 1 mode corresponds to the 

anti-symmetrical ones. There i s  no direct comparison between the 

n > 1 modes and the two-dimensional oscillations. It is expected, 

therefore, that the n = 1 mode will be the most  unstable mode 

[section V. 61 . 
Since the small  disturbance axi-symmetric flow equations and 

boundary conditions a r e  analogous to those for two-dimensional flow, 

i t  is expected that many of the basic resul ts  will be the same in  both 

cases. 
- 

V. 2. Inviscid Disturbance Equation and Outer Boundary Condition 

A single second order  equation in either q o r  n can be obtained r 

from the system of Eqs. (5. 2) - (5. 5). Since the inviscid disturbances 



a r e  particle-isentropic 

The variables q and .rr can then be eliminated f rom Eqs. (5. 3),  (5.4), 1 

and (5.8), resulting in the following self-adjoint equation 

where 

The other disturbance amplitudes can be found in t e r m s  of ? as  follows: 

i 'TT  + I 
2 

- = W - C )  5 (=) 
'd MI" 

4 w  - - ~ T ( W - C ' ~ ( & ) ' -  m 4 i"t - 
n I +  i?, z - - (5. 11) 

mr2 v ~ - C  
1 

L S  = M ' ( w - c ) ' ~  (Zc)' + - -  + T 
T W-C r T' 

.I. T' ' e  = (%-\> M ~ T [ w - ~ ) ~  5 (2)' - - - 
W-c w-c r 



7 1 

A self adjoint equation can a l s o  be written for  the p res su re  disturbance 

J 

The boundary condition on the ax is  is 

The boundary condition for  la rge  values of r mus t  be determined f rom 

the self-adjoint equation. When r -4 co , w -- 0 , T - 1 , p ---L 0 
-I # --a ( l / r )  [ 1 - M' c 2 ]  . Then Eq. (5.9) takes the limiting fo rm 

where 

The solution of Eq. (5. 14) is 

3 2  
Following the suggestion of Lees  and Lin , introduce a "cut1' along the 

negative r e a l  ax i s  of the complex 0 - plane s o  that the r e a l  par t  of 

f i  will always be positive as long as - a < a r g  < a . The asymptotic 

f o r m  of the solution (5. 15) is - 



From physical considerqtions q must  be bounded for large r; there- r ,  

fore  must  behave like e 
-&r 

a s  r -  ar or  

This is the same boundary condition as for the two-dimensional case, 

kq. (4. 6)l . A simple interpretation of this resul t  will be given below. 

The product of the asymptotic solution, e - aJFr , and the r 

independent part of the disturbance, exp ia ( x  - ct) 4- in@] , represents  [ 
progressive waves with the direction of propagation of the wave dependent 

upon the f rame  of reference of the observer. If a wave propagates out- 

ward and in the negative x direction with respect to an  observer fixed in  

a fluid a t  rest ,  i t  will propagate inward and in the positive x direction 

to an  observer fixed in  the body and vice versa  See Section IV. 1. . [ 
The asymptotic form of the solution ( large values of r)  i s  

I 

to a n  observer fixed in a fluid a t  r e s t  ( c  < 0). The surface R 

a x - a JR I r + n 6 = constant i s  generated by the circular  helix 

a x  + neb = constant, for various values of r See Sketch 5. 2.1 The 
r 

quantities fl I and JR I take the sign of c For  amplified dis- 
I '  

turbances, c > 0, and the disturbance i s  an  incoming wave (for each 9) 
I 

with a n  exponentially damped amplitude as r -+ rn . If cI = 0, then 

I = 0 and from Eq. (2. 11) 
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Perpendicular to Helix 
* + a t  

\ f of Constant Phase 

Sketch 5. 3 



> 
The disturbances can be classified according to whether Qg 0 ; 

corresponding to subsonic [u,* - a e * < c R * ]  , sonic [ue* - ae* = cR*] 

and super sonic [ cR* < Ue* - a,*] disturbances respectively. This 

classification has the following interpretation. Consider two successive 

positions of the helix of constant phase, a t  t ime t and t + At (Sketch 5. 3).  

The local relative propkgation velocity of the front is equal to 

As r - rn , U* -4 Ue* and c * -r Ue* - cR* . Thus only distur - 
P 

bances propagating a t  subsonic velocities relative to the f ree  s t ream 

[u,* - cR* < ae*] will have amplitudes that vanish exponentially a s  

r --9. oo . The helix of constant phase becomes more  and more  like a 

-1 c i r c l e i n t h e x -  p l a n e a s r - o o ,  i , e . ,  6 =  tan ( a r / n ) ~ ( ~ / 2 )  

This situation i s  i l lustrated in Sketch 5.4. Eventually, the local wave 

front propagates almost  parallel to the x- axis, and the outer boundary 

condition i s  the same for axi-syrnmetric flow a s  it i s  for two-dimensional 

flow. 

The local Mach number of the disturbance is defined a s  the local 

propagating velocity of the disturbance divided by the local speed of 

sound 
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( I +  % a )  
the local Mach number i s  unity, and the denominator of C[E~. (5. 101 

vanishes. This sonic line is only an apparent singularity of the 

differential equation, Eq. (5. 9). If 

the flow i s  everywhere subsonic with respect to the wave. If the local 

Mach number is unity somewhere within the wake then subsonic and 

supersonic flow exists within the flow region. 

For  neutral supersonic disturbances, the radial velocity dis- 

tur bance and the pressure  disturbance a r e  composed of both incoming 

and outgoing waves of unequal amplitudes, in general. Therefore, 

unless the Sommerfeld radiation condition (pure oncoming or  outgoing 

waves) i s  imposed a s  the boundary condition for  r ---e oo , the character-  

istic values will not be discrete. This problem and the problem of 

neutral sonic disturbances a r e  discussed by Lees  and   in^^ and will 

not be treated here. 

V. 3 .  Singularities of the Invi scid Disturbance Equation 

The inviscid equation, Eq. ( 5. 9 ) has  a regular singularity a t  

the cr i t ical  annulus, w = c, r = r # 0 in the complex r-plane. The 
C 

solution of the equation in the neighborhood of this "singular point" 

(annulus) is obtained by the method of Frobenius. The two linearly 

independent solutions of Eq. ( 5. 9 )  valid in  the neighborhood of the 



cri t ical  point a r e  (Appendix E) 

where 

The coefficient b i s  not determined by this method. In going from 1 

RI (r  - rc) 1 0 to RI (r - r ) < 0 the proper path l ies  below the point 
C 

r = r for w ' > 0 and hence, for proper analytical continuation, the 
C C 

t e rm  / n l ( ( ) ! ~  0) must  be modified to ( /n$f/  - i r ) (f < 0 ) in  Eq. 

(5. 23) [ ~ ~ ~ e n d i x  G ] . It will be shown in Section V. 4 that k, which 

is the gradient of a density-vorticity product a t  r = r must  vanish 
C 

if a solution of Eq. (4. 1) is to exist for neutral disturbances. The 

behavior of the disturbance amplitudes in the neighborhood of the 

cr i t ical  point is sketched on the next page in  Sketch 5. 5. F o r  k = 0, 

J/ and all i t s  derivatives a r e  continuous. F o r  k # 0, i s  continuous, 



Sketch 5. 5 

9 has  a continuous derivative but a discontinuous curvature a t  the 

cr i t ical  point, while has a discontinuity in  slope. This resul t  i s  I 

analogous to that for  the two-dimensional case  [ ~ e s h o t k o ~ ~ ,  page 421. * 

Sketch 5. 6 

* This notation is slightly different than in Reference 59. 
$R (Gold) - GI (Reshotko), *I (Gold) - GR (Reshotko). 



This case  i s  identically the same a s  the two dimensional case  

(where ql i s  similar to f) i n  which there a r e  no discontinuities in q 1 

for k = 0 a but for k f 0 there i s  a jump discontinuity in % and a 

logarithmic discontinuity in 
?Ia 

Sketch 5. 7 

F o r  n = 0,  q3E 0 . When n f 0 and k = 0 there i s  a hyperbolic- 

type discontinuity in  q The r ea l  part of q has  a jump discontinuity, 
3~ 3 

n $ 0 and k 0 . There i s  somewhat analogous to the behavior of 8 

[sketch 5. 91 



Sketch 5.8 

IT is continuous for all k for n. has  a jump discontinuity for k # 0. 
I R 

Sketch 5. 9 
\ 



The temperature perturbation amplitude behaves like the q velocity 
X 

perturbation near the cr i t ical  point for n # 0. This discontinuity must be 

modified by the introduction of conductivity in the neighborhood of the 

critical point. [Re ~ h o t k o ~ ~ ]  

The density fluctuation behaves exactly like the temperature 

fluctuation in this region. 

Summarizing, even when k = 0* the fluid viscosity, however 

small, must be taken into account when n # 0 to smooth out the dis- 

continuity in q The effects of viscosity a r e  limited to a thin annulus 3' 

of the order  of (a R) 
- 

in  thickness Appendix G The dis- I 
turbance i s  inviscid i n  the sense that the g ross  features of the distur- 

bance amplitudes can be found outside of the viscous layer without con- 

sidering the effects of viscosity. The temperature and density fluctua- 

tions i n  the neighborhood of the cr i t ical  point can be smoothed out by 

introducing conductivity, analogous to the two-dimensional case  

[Re shotko 5 9 ]  . When k = 0, viscosity smooths out the disturbance 

< amplitudes between two equal tfinviscid'l values for r - r > 0 outside 
C 

the viscous layer. However, when k # 0, the ttjumpf' in  the "inviscid" 

value of q persis ts ;  viscosity merely insures that q changes con- 
l R  1~ 

tinuously over a small but finite layer. Thus one suspects that the 

vanishing of k a t  some point in the shear flow i s  a necessary and 

sufficient condition for the existence of a neutral, inviscid subsonic 

disturbance with c = c # 0, a = a # 0 in the limit a R --+ FK) 
S S 

[section V. 4 I . 

* The quantity k i s  analogous to th gradient of the density 
vorticity product in  two-dimensional flow Section V, 5 . P I 



There i s  another singularity a t  the origin, r = 0, when c = w(0). 

In the neighborhood of this  point 

Integrate Eq. ( 5. 9 ) to obtain 

The only solutions that satisfy Eq. ( 5.30) a r e  

and the boundary condition Eq. (5. 13) can never be satisfied. 

As  in the two dimensional case  the only possible non-trivial 

solution is given by a = 0, n = 0, c = w(0) and = w(r)  - ~ ( 0 ) .  

n" 2 The singularity a t  the point T ( l  C ) = M (w-c) 2 

i s  a n  apparent singularity of the differential equation [ E ~ .  (5. 9 ) ]  , 

since a self-adjoint equation can be written for the pressure  disturbance 

[Eq. (5. 121 in which none of the coefficients of the equation become 

infinite a t  this  point. At th is  point the local Mach number of the dis- 

t u r b a n c e i s e q u a l t o u n i t y  SectionV.2 I 



V. 4. Necessary and Sufficient Conditions for the Existence of 

Inviscid Subsonic Disturbances 

The self-adjoint equation, Eq. (5. 9), and boundary conditions, 

Eqs. (5. 13) and (5. 17),  constitute a Sturm-Liouville system which i s  

analogous to that treated by Lees  and   in^^ for two-dimensional flows. 

This fact suggests that resul ts  similar to those for the two-dimensional 

case can be obtained for the axi- symmetric flow problem. Some 

general conditions for instability will now be derived using the pro- 

pert ies  of this system. 

Multiply the self-adjoint equation, Eq. (5. 9) ,  by the complex 
A 

conjugate of (denoted by the superscript ) and subtract the corn- 

plex conjugate of Eq. (5. 9) multiplied by y from i t  to obtain 

Let 

so that Eq. (5. 32)  

where 
2 

lR = T[ I  + - M ~ [ w - c ~ \ ~  - c:] 151 
5, = - [ Z  M'W- cR) C, r I 151' 



Since W vanishes a t  r = 0 and r = a[+ = 0 a t  these end points , - I 
( d ~ / d r )  must  change i t s  sign in the interval ( 0  < r < or,). Therefore, 

a necessary condition for the existence of amplified subsonic disturbances 

(c1 > 0 )  is that ( I and/or P I  must  change their sign in the interval 

0 < r c: or, . F o r  incompressible flow, 

must  vanish a t  some interior point of the interval if amplified distur- 

bances a r e  to exist. 36 There is no singularity along the rea l  axis  

since the cr i t ical  point l ies  above i t  when c > 0 . I 

For  a neutral inviscid disturbance, c - 0 , ( d ~ / d r )  = 0 , and I - - 
W - = constant except possibly a t  the cr i t ical  point r = rc # 0 , o r  in 

other words the Wronskien of the solutions, lV/ , is constant outside 

the cr i t ical  layer r = r Consider the jump in _W a c r o s s  the cr i t ical  
C 

layer, w = cR : 

The only contribution comes f rom the second integral 

The integrand is essentially a delta function and in the limit c --c 0 R 



for w ' > 0. This same answer could a l so  be obtained by using the 
C 

expansions around the singular point in the expression for W. - 
[ Eq. (5. 23), Section V. 31 . It is just the discontinuity in qI1 in 

passing f rom r - r > 0 to r - rc < 0 that leads to the discontinuity in 
C 

w. 
Now W - must  vanish a t  the end points. Therefore a necessary 

condition for the existence of inviscid, neutral, subsonic disturbances 

is that ([ W') '  must  vanish if y c  # 0 . The quantity (5 W f )  i s  

the density-vorticity product i n  the q3 direction [Section V. 5 1 . It 

must  have a t rue  extremum a t  r = r and not a point of inflection 
C 

[ ~ ~ ~ e n d i u  I?] . Denote the value of c = w a t  this point by c and let  
S 

the corresponding value of a be a . 
S 

To make the previous statement complete i t  is necessary to 

prove that q c  # 0. Eq. (5. 9) can be written in the following form 

Integrate Eq. (5. 3 9 )  to obtain 

Now if 5. 2, 0 , 9/04 will increase or decrease monotonically a s  

r decreases  according to whether i t s  sign is positive or negative, 

respectively, for  la rge  values of r. Then, = c, c C, y2 

where 9 and 9 a r e  given by Eqs. (5. 22) and (5. 23) in the 

neighborhood of r = r . If Y, = 0, then C2 = 0 since = 0 
C [ C 

and qzc = I] , and the left-hand side of Eq. (5. 40) behaves like 

L 
(r  - rc) which is inconsistent with the right-hand side. If C2 # 0 then 



the left-hand side approaches a constant. Therefore, if 9 i s  a 

solution of the disturbance equation which satisfies the boundary 

conditions, then % cannot vanish. This statement can a l so  be proved 
C 

if changes sign in the interval (existence of a sonic point in the flow 

field). 

3 2  
Lees  and Lin have shown that this condition i s  not only 

necessary but also sufficient for the existence of inviscid, neutral, 

two-dimensional subsonic disturbances. The proof of inviscid dis- 

turbances of helical form i s  similar and will not be reproduced here. 

In the region adjacent to the neutral disturbance, a = a 
S J  

c = c the condition ( t ' 
s ' S R W ) C  

= 0 i s  a lso  sufficient for the existence 

of damped or  amplified subsonic disturbances. Since c i s  a n  analytic 

2 
function of a except in the neighborhood of c = - 1, a = 0, i t  can be 

2 2 
expanded in a Taylor s e r i e s  expansion about the point a = a , c = c 1 

S S 

2 2 If '-f ( r ;  c, a ) i s  a characteris t ic  function, and c and a a r e  character- 

istic values of Eq. (5. 91, then 

- 3 9  d q - y ,  - -  39 dc 
- 4" - + - -  

dx "  3 64% 
3 C  do(= 

2 
Differentiate Eq. (5. 9) with respect to a and multiply i t  by 9 ; 

multiply Eq. (5. 9) by and subtract to obtain 



Integrate Eq. ( 5 . 4 3 )  along any path in the complex r- plane between the 

end points r = 0 and r = m  and consider the neutral disturbance, 

2 2 y = q s ,  C = C  a n d a  = a s  , 
s '  

-a 

0 

A11 of the integration can be carr ied  out along the rea l  axis, except for 

3P the t e rm  containing ( / S c ) ,  , which has a pole a t  r = rc and must  be 

evaluated by integrating along a path that passes below this point. 

Therefore, 

The numerator i s  always negative so that the imaginary part of 

takes the sign of ( 5 w I)" . Since ' - ! '~c#~ , Imag(dc /adr )  # O ,  

provided ( 2 wl)" # 0 ; and c must be positive for some value of a I 

slightly greater  or l e s s  than a s  . This result  proves the sufficiency 

condition for the existence of damped or  amplified disturbances adjacent 

to the neutral disturbance. 

The resul ts  derived so f a r  correspond exactly to the resul ts  

obtained for two-dimensional disturbances and a r e  summarized below. 

The vanishing of the gradient of the density-vorticity product i n  the q3  

direction i s  a 

(1) necessary and sufficient condition for the existence of 

neutral, invi scid, subsonic disturbances, 

( 2 )  sufficient condition for the existence of adjacent amplified 

or  damped subsonic disturbances, 



(3)  necessary and sufficient condition for the existence of 

neutral and amplified disturbances in incompressible flow. 

A necessary condition for the existence of amplified subsonic 

disturbances i s  that p and/or q change sign in the interval under 
I I 

consideration; a specific statement regarding the gradient of the 

density-vorticity product cannot be made for this case. 

For  most  problems of interest, 3 a 0. By the oscillation 

2 
theorem of Sturm (lncebl, l o .  6) ,  i f  p + (a  /T*)  i s  positive then \t. 

is monotonic; if i t  i s  negative then i s  oscillatory. Since must  

vanish a t  the end points, a necessary condition for the existence of 

neutral inviscid subsonic disturbances i s  that 

This condition res t r i c t s  the value of (n/a) to a finite integer, which 

depends upon the mean flow profiles [section V. 6 ] . If 5 changes 

sign in the interval, these resul ts  do not apply. This case has not 

been investigated. 

V. 5. Energy and Vorticity Relations 

Fo r  a physical understanding of the stability phenomenon, i t  is 

important to investigate the t ransfer  of kinetic energy between the 

mean flow and the perturbed flow. Qualitatively the energy transfer 

mechanism for axisymmetric flow subsonic disturbances can be 

described by the following relation (in dimensionless form) 



[viscous dissipation 1 
where 

I 

= Reynolds shear  s t r e s s  = - 
J' 7,' 5,' 

and the bar  indicates a n  average  over one wave length i n  the x and one 

period in  $. The t e r m  on the left side of Eq. (5. 47) r ep resen t s  the 

r a t e  of inc rease  of the kinetic energy of the disturbance, while the 

f i r s t  t e r m  on the right r ep resen t s  the conversion of energy f rom the 

basic flow to the disturbance by the action of the Reynolds shear  s t r e s s .  

F o r  a neutral  disturbance the t ime r a t e  of change of the kinetic 

energy over one cycle mus t  vanish and the viscous dissipation t e r m  must  

exactly balance the energy conversion t e r m  associated with the Reynolds 

s t r e s s .  In o rde r  for a disturbance to be unstable the mean flow must  

feed energy into the disturbance. Clearly, if there  is to be any instability, 

the Reynolds shear  s t r e s s  must  have the same sign as  the velocity 

gradient of the mean  flow. 

In the l imit  of ze ro  viscosity, the dissipation t e r m s  vanish and 

the r a t e  of change of the kinetic energy must  exactly balance the energy 

conversion te rm.  If this  Reynolds s t r e s s  t e r m  is positive, energy will 

* The p r imes  (') under the b a r s  indicate fluctuation quantities. 



be t ransfer red  f r o m  the mean flow to  the disturbance and the flow will 

be unstable; if i t  is negative the mean  flow will absorb  energy f rom the 

disturbance and the flow will be stable; if i t  is z e r o  there  i s  no exchange 

of energy between the mean flow and the disturbance and the flow will 

be neutrally stable. 

It will be shown that the Reynolds shear  s t r e s s  is composed of 

two components; one perpendicular to a helix of constant phase and the 

other tangent to  this  helix. A necessary  and sufficient condition for  the 

existence of a neutral  subsonic disturbance i s  that the perpendicular 

component of the shear  s t r e s s  be z e r o  everywhere i n  the flow field. 

However, the other component behaves like a delta function in the 

neighborhood of the c r i t ica l  point for  neutral  disturbances, and the 

contribution to the Reynolds s t r e s s  t e r m  i n  Eq. (5. 47) is finite. 

Therefore,  viscous dissipation in a narrow layer  Appendix must  [ 
balance this  excess  production of disturbance energy however smal l  the 

viscosity m a y  be. In the two-dimensional case  there  is only one com- 

ponent of the Reynolds s t r e s s ,  when this s t r e s s  vanishes a neutral  

subsonic disturbance can  exist, and viscous dissipation is not required. * 
In dimensionless form,the Reynolds shear  s t r e s s ,  7. , for 

quasi-parallel, axi- symmetr ic  flow is 

The longitudinal and radial  velocity fluctuations a r e  

* Thermal  conduction, however, is required (Reference 59, 
page 44). 



where 

i a (x - ct) + i n  

Therefore the shear  s t r e s s  is given by 

But the average over one wavelength i n  x, and one cycle in d, of E 
2 

4 

and E~ is z e r o  SO that 

Substituting Eq. (5. 11) into Eq. (5. 50), the shear  s t r e s s  is given in  

t e r m s  of 9 
adc,* 

where 

* The primed quantities a r e  fluctuation amplitudes. 



A s  c ---+ 0 , W has  a jump of magnitude I - 1 

a c r o s s  the c r i t ica l  layer,  where 

32 This  resu l t  is analogous to the two-dimensional c a s e  However, 

T yar i e s  as (1/r) s o  that the W contribution to the shear  s t r e s s  will - 
have the f o r m  

Sketch 5. 10 

G is singular a t  r = and behaves like a delta function, i, e., (Sketch 5. 11) r~ 

I 
I l W J  t CI 

C, -c 0 W-C (5. 54) 
Cx-to ( W - C ~ ) ~  4- czZ 

r -r re. y. -L Cc 

The r a t e  a t  which energy is t ransfer red  f rom the mean flow to 

the disturbance flow is given by 



where 

Sketch 5. 11 

A necessary and sufficient condition for the existence of a neutral 

subsonic disturbance is that k = O (Eq. (5. 53) ) so that the f i r s t  t e rm 

in  Eq. (5. 55) vanishes but the second does not. Therefore, even for 

"inviscid" neutral disturbances, viscous dissipation must  balance the 

excess production of disturbance energy however small the viscosity 



may be. The contribution from the G_ t e rm  is positive for wc' > 0, n # 0 

and i s  always a destabilizing influence. For  rotationally symmetric 

disturbances, n = 0 , the contribution to the t e rm is zero  and the 

resul ts  a r e  analogous to those for the two-dimensional case. 

Batchelor and ~ i 1 1 ~ ~  show that the Reynolds shear s t r e s s  

: - f C1_' 7%' i s  composed of two components; one perpendicular to a 

helix of constant phase and the other parallel to the tangent to the helix 

(on r = constant) Section V. 1 ] . Using Eqs. (5. 1) and (5.48), these [ 
s t r e s s  t e rms  a r e  

respectively. Therefore, 

a s  before [ E ~ .  (5. 51)j . 



A necessary and sufficient condition for the existence of a 

neutral, subsonic disturbance is that W_ E 0 and, therefore, - 
0 . A s  cI - 0 , the - f 7: 4; shear s t r e s s  com- 

ponent has the behavior of a delta function [ E ~ .  (5. 54)l near r = r c '  

and gives a finite contribution to the Reynolds s t r e s s  t e rm in Eq. (5. 47). 

The quantity k and the singularity associated with the q 3 

velocity component a t  the cr i t ical  point can a lso  be interpreted in 

t e rms  of the transport of the mean and disturbance vorticity a c ro s s  the 

plane w = c. 

The disturbance vorticity components in the r, P and x directions 

a r e  

and the mean vorticity in  the 9 direction i s  

i n  the t ransformed velocity space [ E ~ .  (5. 1)]  , Eqs. (5. 58) and (5.59) 

become 

and 



The radial disturbance vorticity i s  related directly to the q3 velocity 

component. 

The vorticity equation in the r direction is 

and in the 3 direction i s  

Eq. (5. 62) indicates to an  observer riding with the disturbance 

that the convection of the disturbance radial vorticity component (or  

tangential component of disturbance momentum) by the mean flow 

balances the convection of the mean vorticity (or  momentum) by the 

disturbance radial velocity except a t  the point w = c. At this point, 

except for the case  n = 0 , the disturbance radial vorticity is singular. 

The fluid viscosity, however small, must be taken into account to 

smooth out this discontinuity. 

At w = c, the right-hand side of Eq. (5. 63) vanishes; the t rans-  - 
port of the quantity ( 9  r/mar ) (density of angular momentum of the 

mean flow or density-vorticity product) must also vanish since 

= rqr  cannot be equal to ze ro  a t  this point Section V. 4 . If the I I 



gradient of the density-vorticity product does not vanish a t  this point, - 
r then the t ransport  of ( 7  (/war) can only be balanced by the diffusion of 

( 3c/mzr ) through viscosity. If a neutral disturbance exists, then - 
( f G/rnty )' must vanish and viscosity i s  not needed to smooth out the 

discontinuity in the density- vorticity product ( in  the 3 direction). 

This is analogous to the two-dimensional case where the direction 

perpendicular to the plane x-y i s  associated with the 3 direction. 

These energy and vorticity considerations only emphasize the 

fact that even though the vanishing of the gradient of the density- 

vorticity product insures  the existence of a solution to the neutral 

inviscid equations, the effect of viscosity, however small i t  might be, 

must sti l l  be taken into account to smooth out the discontinuities in 

both the velocity components and the Reynolds shear s t ress .  The 

effect of viscosity i s  limited to a thin annulus of the order  of 

([a~]- 1/31 [ ~ p p e n d i x  G] i outside this annulus the disturbance quantities 

can be described by the inviscid equations. This situation i s  analogous 

to Prandtl 's  treatment of the boundary layer, in which the external flow 

i s  calculated by f i r s t  neglecting viscosity and conductivity, and then 

viscosity and thermal conductivity a r e  taken into account in determining 

the structure of the boundary layer. 

V. 6. Inviscid Stability of Axi-Symmetric Wake Flows 

The resul ts  of Section IV. 1 3  will be used to discuss the stability 

of incompressible and compressible wake- type flows in the limit 

aR --A co . In order  to fix the ideas of this section, i t  will be assumed 

that the mean flow velocity profile i s  Gaussian 



[Section 11. 4 . The effects of temperature upon the stability cr i te r ia  I 
will be deduced using "reasonable" profiles. 

A necessary and sufficient condition for the existence of in- 

compressible neutral and amplified disturbances (using Eq. (5. 64)) 

i s  that 

must vanish within the flow field, i. e, , 

If n = 0 then the quantity (5. 65) can never vanish within the flow field 

and the only neutral inviscid disturbance i s  d z: 0, C = L ~ C O )  , = W - C  . 

The locus of solutions of Eq. (5. 66) i s  sketched below 

Sketch 5. 12  

A necessary condition for the existence of a neutral disturbance 

i s  1 section V. 4 . I 



and for  incompressible flow, using the Gaussian profile 

2 
where rc2 is determined f rom Eq. (5. 66) a s  a function of (a/n) , 

Eq. (5. 68) was  solved graphically as  indicated in  the following sketch. 

Sketch 5. 13 

2 2 2 
The maximum value of n occurs  for  (a /n ) --a- 0 and is approximately 

L 
4. 7 a t  r = 1.82. Therefore,  for  n > 2 the wake flow is always stable 

and the only modes of instability a r e  those for  n = 2. 

The n = 1 mode rep resen t s  the sinuous type instability, i. e. , 

the nodal points for  the radial  disturbance a r e  spaced 180° apart .  The 

disturbance radial  velocity component is not ze ro  on the axis.  This 

type of instability is shown in F igure  1 and is s imilar  to the anti- 

symmetr ic  oscillations in  two dimensional flow Section 11. 2, Sketch 2. 3 1 * 
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The n = 2 mode represents  a varicose type instability, but with 

0 
four nodal points spaced 90 apart .  In this case  the radial  velocity is 

ze ro  on the centerline 

Sketch 5. 14 

36 
Batchelor and Gill have shown that only one neutral disturbance 

exists for the jet profile 

and is the sinuous type oscillation, n = 1 .  All other modes a r e  stable. 

They a lso  show that a "top-hat" profile, one in which the velocity is 

approximately constant in  some central  region and then fal ls  rapidly 

to zero, is unstable to the n = 0 mode. These profiles and their 

derivatives together with the wake profile a r e  sketched in Sketch 5. 15. 

It is  interesting to note that the sinuous type instability is common to  

the wake and jet profiles and is probably common to  the "top-hat" profile. 

It is reasonable to conjecture that the sinuous oscillations (n = 1) 



Sketch 5. 15 

a r e  m o r e  unstable than the varicose ones for axi-symmetr ic  flow. The 

radial  velocity component on the axis i s  identically z e r o  for n # 1 and 

a r b i t r a r y  for  n = 1 .  The flow is f r e e  to move normal  to  the ax is  only 

for the sinous mode and is res t r ic ted  to  ze ro  motion in the radial  

direction on the ax i s  for all other modes. This additional "degree of 

freedom" hints that the sinuous mode is the most  unstable mode. It 

a l s o  s e e m s  likely that if a n  n = 0 mode is a l so  unstable, the sinuous 

instability will s t i l l  dominate, unlike Couette flow (flow between two 

rotating cylinders) instability, where the n = 0 mode always precedes 

any other unstable mode. 



A necessa ry  and sufficient condition f o r  the existence of neutral  

subsonic disturbances and a sufficient condition for  adjacent amplified 

disturbances is that the gradient of the density vorticity produce 

vanish within the flow field for some - w < (1/~). F o r  slowly varying 

temperature and velocity profiles, the density-vorticity product will 

ac t  like a n  equivalent incompressible  far field wake o r  jet profile for  

purposes of stability, and the flow will be stable for  the n = 0 mode and 

unstable for the n = 1 mode 

This can be i l lustrated by using the mean wake profiles of 

Section 11. 4. If [ E ~ s .  ( 2 .  55) and ( 2 .  5611 

where 

d 7 = ( r d r / ~ )  

then Eq. (5. 69) becomes, fo r  n = 0 , 

which does not vanish within the flow field. F o r  n # 0, Eq. (5. 69) will 

vanish a t  some point in the flow field because of the t e r m  in  the denominator 

The stability o r  instability of the other modes will depend upon 

the exact profile shape. Now if the temperature profile has  a fltop-hat" 

shape and the velocity profile is slowly varying, o r  vice versa,  then the 

n = 0 mode will be unstable. These c a s e s  a r e  not physically unreason- 

able; for  example, the velocity wake will decay m o r e  rapidly than the 



temperature wake in back of a n  axi- symmetr ic  slender body flying a t  

hyper sonic speeds. The tempera ture  profile will remain  "top- ha t t f  

for  many d iameters  downstream of the neck of the wake, even though 

the velocity defect becomes very  smal l  in the same  region. 

The r e m a r k s  made i n  Section IV. 4 regarding the two-dimensional 

hypersonic wake problem apply equally to axi- symmetr ic  wakes and 

will not be repeated. A typical Schlieren photograph of a n  axi- symmetr ic  

hypersonic slender body wake is shown in F igure  10. The r e a r  wake, 

downstream of the neck, is practically straight for about 10 - 15 base 

d iameters  and then s t a r t s  to  oscil late i n  the n = 1 mode. The wave length 

of the disturbance i s  of the order  of the wake diameter  and dec reases  

a s  the wave p rogresses  downstream. The wake then becomes turbulent 

a t  about 25 base d iameters  downstream of the neck. This Schlieren 

photograph cer tainly implies  that transit ion i s  preceded by a wave-like 

motion which osci l la tes  i n  the mode predicted by smal l  disturbance theory. 

The oscillations that a r e  visible in  the near  wake do not seem to 

originate in  the neck but in  a region between 10 - 15 base d iameters  

downstream of the neck, indicating that subsonic disturbances do not 

exist  until then. 

* These photographs were  taken a t  NOL and were  obtained 
through the courtesy of Dr. A. Pallone of the AVCO Corporation, 
Wilmington, Mass.  
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VI. SUGGESTIONS FOR FURTHER STUDY 

1. The neutral stability characteris t ics  of incompressible 

wake type flows have been determined for two limiting cases; 

(1) the "inviscid limit" (aR - co , a -a R - oo ) and s '  

(2) the lrviscous limit" (a R +constant < < 1, a - 0 , R - co 
It i s  suggested that the Orr-Sommerfeld equation be solved numerically 

to determine the complete neutral stability curve (0 < a R < a). 

An attempt should be made to clear  up the problem of the 

"island of stabilityt1 within the neutral stability curve. Section 111. 2 I 
Specifically, the fourth i'inviscidt' branch should be determined using 

smoothly varying profiles. If this branch exists then the extent of 

this "island of instabilityrr should be found. 

The behavior of the neutral stability curve i s  different for 

anti-symmetrical disturbances than for symmetrical ones. This 

fact, obtained by approximate methods, i s  not yet understood. 

For  large values of a R the "viscous solutions" do not enter 

the eigenvalue problem, yet they must be retained in determining the 

disturbance amplitudes around the cr i t ical  point. Accordingly i t  i s  

suggested that the viscous corrections around the singular point be 

found to smooth out any discontinuities in  the inviscid disturbance 

amplitude s. 

2. The problem of supersonic disturbances should be studied 

in  great  detail to determine i f  a mean flow i s  unstable to them, o r  not. 

34 
Miles has found that unstable super sonic disturbances may  occur a t  

low wave numbers (vortex sheet problem). A similar analysis should 

be made for smoothly varying profiles. 



3. Actual wake profiles, starting f rom the neck of the wake, 

should be used in determining the streamwise location a t  which sub- 

sonic disturbances a r e  possible. It would be of some interest to 

compare this distance with the "sticking distancef1 observed in hyper- 

sonic blunt and slender body wakes, 

4. The effect of temperature and Mach number in  the spatial 

amplification ra te  should be investigated more  completely by using 

larger  values of b T and M than was used in this investigation. 

5. It i s  suggested that the equation for the amplification rat io 

[ E ~ .  (4. 31)l be examined in detail in order to furnish an  explanation 

of some of the transition phenomena observed in hypersonic wakes. 

6. The inviscid stability characteris t ics  of axi-symmetric 

wake flows should be calculated by using a method similar to that 

described in  Section IV. 2 and Appendix Do The amplification ra tes  for 

the n = 1 mode should be compared with those for the n = 2 mode to 

determine which i s  more  unstable. Numerical calculations for 

compressible wake flows should a lso  be made. 



VII. CONCLUDING REMARKS 

1. The effect of tempera ture  on the inviscid stability of two- 

dimensional wake flows is both stabilizing and destabilizing. As  the 

tempera ture  increases ,  the c r i t ica l  Mach number increases ,  and the 

range of Mach numbers  over which subsonic disturbances can exist  

a l s o  increases .  However, as long as  the relative Mach number is below 

the c r i t ica l  Mach number the neutral  inviscid wave number will dec rease  

d t h  increasing temperature.  

2, The numerical calculations indicate that a heated wake will 

be m o r e  stable than a cool one if the relative Mach number is l e s s  

than the c r i t ica l  Mach number. F o r  a typical hypersonic blunt body 

wake, using Gaussian profiles for  tempera ture  and velocity in the 

Dorodnitsyn-Howarth variable, the maximurn dimensionless spatial 

amplification r a t e  is constant in  the downstream direction and occurs  

a t  one prefer red  frequency, This resu l t  is s imilar  to that for  the 

incompressible flat  plate wake. 

3. The inviscid stability problem fo r  axi-symmetr ic  compressible  

wake flows is direct ly  analogous to  the two-dimensional problem in a 

t ransformed orthogonal velocity space, except for  a delta function 

singularity associated with the Reynolds shear  stres's near  the c r i t ica l  

point. This s t r e s s  is always a destabilizing influence. It is a l s o  

found that a necessa ry  and sufficient condition for  the existence of 

neutral  subsonic disturbances is that for  some w = - c < '/M R 

[ in  a system fixed in  the fluid a t  rest]  , the gradient df the density- 

vorticity product i n  a cer ta in  direction must  vanish. 



4. F o r  incompressible axi- syrnmetric wake flow (using a 

Gaussian), the only modes that a r e  unstable a r e  the n 2 1 and n = 2 

modes.  F o r  slowlying varying tempera ture  profiles the same modes a r e  

unstable. However, for  a "top-hat" temperature profile, the n = 0, 1 

modes a r e  unstable. By physical arguments  i t  is shown that the n = 1 

mode should be the mos t  unstable mode for wake-type flows. 



108 

REFERENCES 

1. Lees,  Les ter :  Hypersonic Wakes and Trai ls .  Paper  No. 2662-62 
presented at the ARS 17th Annual Meeting, 13- 18 November 1962, 
Los Angeles, California (to be published). 

2. Sato, Hiroshi: Experimental Investigation of the Transit ion of 
Laminar  Separated Layer ,  Journal of the Physical Society, 
Vol. 11, No. 6, pp. 702-709, June, 1956. 

Sato, Hiroshi and Kuriki, Kyoichi: The Mechanism of Transit ion 
in the Wake of a Thin Fla t  Plate  Placed Para l le l  t o  a Uniform 
Flow. Journa lof  FluidMechanics,  Vol. 11, P a r t 3 ,  pp. 321-352, 
November, 1961. 

Sato, Hiroshi: The Stability and Transit ion of a Two-Dimensional 
Jet. Journal  of Fluid Mechanics, Vol. 7, Part 1, pp. 53-81, 
January, 1960. 

Hollingdale, S. H. : Stability and Configuration of the Wakes 
Produced by Solid Bodies Moving through Fluids. Philosophical 
Magazine, Ser ies  7, Vol. 29, No. 194, pp. 209-257, March, 1940. 

Chiarulli, P. : Stability of Two-Dimensional Velocity Distributions 
of the Half- J e t  Type. Technical Report No. F- TS- 1228- lA, 
Headquarters  Air Mater ia l  Command, Wright Pa t te r  son Air  F o r c e  
Base, June, 1959. 

Clenshaw, C. W. and Elliott, D. : A Numerical Treatment  of the 
Orr-Sommerfeld Equation in  the Case of a Laminar  Jet. Quarter ly 
Journal of Mechanics and Applied Mathematics, Vol. 13, Pt. 3, 
pp. 300-313, 1960. 

Curle, N. : A Note on Hydrodynamic Stability in  Unlimited Fie lds  
of Viscous Flow. Aeronautical Research  Council, Report No. 
17953, 21 October 1955, 

Curle, N. : Hydrodynamic Stability of Laminar  Wakes. Aero- 
nautical Research  Council, Report No. 18275, 5 March  1956. 
See also,  The Physics  of Fluids, Vol. 1, No. 2, pp. 159- 160, 
March-April, 1958. 

Curle, N. : Hydrodynamic Stability of the Laminar  Mixing Region 
between Para l le l  Streams.  Aeronautical Re sea rch  Council, 
Report No. 18426, 9 May 1956. 

11. Curle, No : On Hydrodynamic Stability of Unlimited Anti- symmetr ical  
Velocity Profiles.  Aeronautical Re sea rch  Council, Report No. 185 64, 
10 July 1956. 

12. Curle, N. : Symmetr ical  Oscillations of Unlimited Two-Dimensional 
Para l le l  Flows. Aeronautical Research  Council, Report No. 18590, 
31 July 1956. 



13. Curle, N. : On Hydrodynamic Stability in  Unlimited Fie lds  of 
Viscous Flow. Proceedings of the Royal Society of London, 
Ser ies  A, Vol. 238, No. 1215, pp, 489-501, January, 1957. 

14. Drazin, P. G. : Discontinuous Velocity Profi les  for the O r r -  
Sommerfeld Equation. Journal of Fluid Mechanics, Vol. 10, 
pp. 571-583, June, 1961. 

15. Drazin, P. G. and Howard, L. N. : The Instability to Long Waves 
of Unbounded Para l le l  Inviscid Flow. Journal  of Fluid Mechanics, 
Vol. 14, pp. 257-283, October, 1962. 

16. Esch, Robin E. : The Instability of a Shear Layer Between Two 
Para l le l  Streams.  Journal  of Fluid Mechanics, Vol. 3, P a r t  3, 
pp. 289-303, December, 1957. 

17. Foote, J. R. and Lin, C. C. : Some Recent Investigations in 
the Theory of Hydrodynamic Stability. Quarter ly of Applied 
Mathematics, Vol. 8, No. 3, pp. 265-280, October, 1950. 

18. Howard, Louis N. : Hydrodynamic Stability of a Jet. Journal  of 
Mathematics and Physics,  Vol. 37, No. 4, pp. 283-304, January, 
1959. 

19. Lessen, Martin:  On the Stability of the F r e e  Laminar  Boundary 
Layer  Between Pa ra l l e l  Streams.  NACA Technical Note No. 1929, 
August, 1949. 

20. Lessen, Martin: Note on a Sufficient Condition for the Stability 
of General, Plane Para l le l  Flows. Quarter ly of Applied Mathe- 
matics,  Vol. 10, No. 2, pp. 184-186, 1952. 

21. Lessen, Martin; Lew, Henry G. ; Pai, Shih I. ; Fanucci, Je rome B. ; 
and Fox, John A. : Hydrodynamic Stability. Pennsylvania State 
University, Department of Aeronautical Engineering and Department 
of Engineering, Technical Report No. 2, May, 1954. 

22. Lin, C. C. : The Theory of Hydrodynamic Stability. Cambridge 
University P r e s s ,  1955. 

23. Lin, C. C. : On the Stability of the Laminar  Mixing Region Between 
Two Para l le l  S t reams in  a Gas. NACA Technical Note No. 2887, 
January, 1953. 

24. McKoen, C. H. : On the Stability of a Laminar  Wake. Aeronautical 
Research  Council, C. P. No. 303, 1956. 

25. Pai, S. I. : On the Stability of Two-Dimensional Laminar  Je t  Flow 
of Gas. Journal  of Aeronautical Sciences, Vol. 18, No. 11, 
pp. 731-742, November, 1951. 

26. Pai, Shih-I. : On the Stability of a Vortex Sheet i n  a n  Inviscid 
Compressible Fluid. Journal of the Aeronautical Sciences, Vol. 2 1, 
No. 5 , pp. 325-328, May, 1954. 



27. Pai, S. I. : On the Stability of Axisymmetrical Flows. General  
Elec t r ic  Missi le  and Space Division, Space Sciences Laboratory, 
R62SD75, July, 1962. 

28. Pai, S. I. and Li, H. : On the Stability of Axi-symmetrical Wakes 
of a Binary Mixture of Compressible Fluids. General  Elec t r ic  
Missi le  and Space Division, Space Sciences Laboratory, R62SD79, 
August, 1962. 

29. Savic, P. : On Acoustically Effective Vortex Motion in Gaseous 
Jets.  Philosophical Magazine and Journal  of Science, Vol. 32, 
pp. 245-252, 1941. 

30. Tatsurni, T. and Gotoh, K.: The Stability of F r e e  Boundary Layer s  
Between Two Uniform Streams.  Journal  of Fluid Mechanics, 
Vol. 7, P a r t  3, pp. 433-441, March, 1960, 

31. Tatsumi, T. and Kakutani, T. : The Stability of a Two-Dimensional 
Laminar  Jet. Journal of Fluid Mechanics, Vol. 4, P a r t  3, 
pp. 261-275, 1958. 

32. Lees,  Les te r  and Lin, Chia Chiao: Investigation of the Stability of 
the Laminar  Boundary Layer  in  a Compressible Fluid. NACA 
Technical Note No. 11 15, September, 1946. 

33. Landau, L. : Stability of Tangential Discontinuities in Compressible 
Fluid. Akedemiia Nauk S. S. S. R., Comptes Rendus (Doklady), 
Vol. 44, No. 4, pp. 139-141, 1944. 

34. Miles, John W. : On the Disturbed Motion of a Plane Vortex 
Sheet. Journal  of Fluid Mechanics, Vol. 4, P a r t  5, pp. 538-552, 
September, 1958. 

35. Hatanka, Hiroshi: On the Stability of a Surface of Discontinuity in 
a Compressible Fluid. Journal  Soc. Sci. Culture, Japan, Vol, 2, 
pp. 3-7, 1947: cited by Applied Mechanics Reviews, Vol. 2,  
p. 897, July, 1949. 

36. Batchelor, G. K. and Gill, A. E. : Analysis of the Stability of 
Axi- symmetr ic  Jets.  Journal of Fluid Mechanics, Vol. 14, 
P a r t  4, pp. 529-551, Dec., 1962. 

37. Gill, A. E. : On the Occurrence of Condensation on Steady 
Axisymmetsic Jets ,  Journal  of Fluid Mechanics, Vol. 14, 
P a r t  4, pp. 557-567, December, 1962. 

38. Squire, H. B. : On the Stability for  Three-Dimensional Disturbances 
of Viscous Flow Between Para l le l  Walls. Proceedings of the Royal 
Society of London, Ser ies  A, Vol. 142, pp. 621-628, 1933. 

39. Dunn, D. W. and Lin, C. C. : The Stability of the Laminar  Boundary 
Layer  i n  a Compressible Fluid for  the Case of Three-Dimensional 
Disturbances. Journal  of the Aeronautical Sciences, Vol. 19, No. 7, 
p. 491, July, 1952. 



40. Case, K. M. : Stability of Inviscid Plane Couette Flow. The 
Physics  of Fluids, Vol. 3, pp. 143-148, March-April, 1960. 

41. Case, K. M. : Stability of a n  Idealized Atmosphere. I. Discussion 
of Results. The Physics  of Fluids, Vol. 3, No. 2, pp. 149-154, 

, March-April, 1960. 

42. Case, K. M. : Edge Effects and the Stability of Plane Couette Flow. 
The Physics of Fluids, Vol. 3, No. 3, pp, 432-435, May-June, 
1960. 

43. Case, K. M. : Hydrodynamic Stability and the Inviscid Limit. 
Journal of Fluid Mechanics, Vol. 10, P a r t  3, pp. 420-429, 
May, 1961. 

44. Case, K. M. : Hydrodynamic Stability and the Initial Value Problem. 
Proceedings of Syrnposia in Applied Mathematics, Hydrodynamic 
Stability, American Mathematical Society, Vol, 13, pp. 25- 33, 1962. 

45. Lin, C. C. : Some Mathematical Problems in the Theory of the 
Stability of Para l le l  Flows. Journal of Fluid Mechanics, Vol. 10, 
P a r t  3, pp. 430-438, May, 1961. 

46. Whitham, G. B. : Group Velocity and Energy Propagation for  
Three-  Dimensional Waves. Communications on P u r e  and Applied 
Mathematics, K. 0. Fr i ed r i chs  Anniversary Issue, Vol. 14, No. 3, 
pp. 675-691, August, 1961. 

47. von Karman, Th., and Rubach, H. : Uber die Mechanismus des  
Flussigkei ts  und Luftwider standes. Physik. Z,  , 13:49, (1 912). 

48. Roshko, A. : On the Development of Turbulent Wakes f r o m  
Vortex Streets.  NACA Report 1191, 1954. 

49. Taneda, Sadatoshi: Studies of Wake Vortices (11), Experimental 
Investigation of the Wake Behind Cylinders and Pla tes  a t  Low 
Reynolds Numbers. Reports  of Research  Institute for  Applied 
Mechanics, Japan, Vol. 4, No. 14, pp. 29-40, October, 1955. 

50. Schlichting, Hermann: Boundary Layer  Theory. Translated by 
J. Kestin. 4th Edition, McGraw-Hill, 1960. 

51. Dewey, C. F. , Jr. : Measurements  i n  Highly Dissipative Regions 
of Hypersonic Flows: I. Hot Wire Measurements  inLow Reynolds 
Number Hypersonic Flows. 11. The Near Wake of a Blunt Body a t  
Hyper sonic Speeds. California Institute of Technology, Ph. D. 
Thesis, June, 1963. 

52. Chapman, D. R. ; Kuehn, D. M.; and Larson, Hp Ko : Investigation 
of Separated Flows in Supersonic and Subsonic S t reams with 
Emphasis  on the Effect of Transition. NACA Report 1356, 1958. 



53. Larson, H. K. : Heat Transfer  in  Separated Flows. Journal  of 
the Aerospace Sciences, Vol. 26, No, 11, pp. 731-738, 
November, 1959. 

54. McCarthy, John F., Jr.: Hypersonic Wakes. GALCIT Hypersonic 
Research  Project,  Memorandum No. 67, July 2, 1962. 

55. Kubota, T. : Laminar  Wake with Streamwise P r e s s u r e  Gradient 
- 11. GALCIT Internal Memorandum No. 9, April, 1962. 

56. Pai, Shih-I.. : Viscous Flow Theory. I - Laminar  Flow. 
D. Van Nostsand Company, Inc., 1956. 

57. Tollmien, W. : Asymptotische Integration d e r  Storungsdifferential- 
gleichung ebener laminarer  Stromun en bei hohen Reynoldsschen 
Zahlen. Z. angew. Math. Mech. 25727, pp. 33-50, 70-83, 1947. 

58. Heisenberg, W. : On the Stability of Laminar  Flow. Proc. 
Int. Congr. Math., pp. 292-6, 1950. 

59. Reshotko, Eli: Stability of the Compressible Boundary Layer.  
GALCIT Hypersonic Resea rch  Project,  Memorandurn No. 52, 
January 15, 1960. 

\60. Slattery, R. E. and Clay, W. G, : Reentry Physics and Pro jec t  
P r e s s  Programs.  Semmiannual Technical Summary Report to 
the Advanced Research  Pro jec ts  Agency (U), pp. 11-11 to 11-17, 
Lincoln Laboratory, Massachuset ts  Institute of Technology, 
30 June 1962. 

61. Ince, E. L. : Ordinary Differential Equations. Dover Publications, 
Inc., 1956. 

62. Benney, D. J. : A Non- Linear Theory for  Oscillations in  a 
Para l le l  Flow. Journal  of Fluid Mechanics, Vol. 10, No. 2, 
pp. 209-236, March, 1961. 



APPENDIX A 

BOUNDARY CONDITIONS FOR THE AXI-SYMMETRIC PROBLEM 

F o r  the axi- symmetric wake the boundary conditions on the ax is  

a r e  derived f rom the purely kinematic condition that all disturbance 

amplitudes and the vorticity disturbance must  be finite there,  r ega rd le s s  

of the viscosity o r  the compressibil i ty of the fluid. The three  components 

of vorticity fluctuation a r e  

F o r  n = 0, the continuity equation [Eq. (2. 38)] shows that 

q r 
- r as r --a 0 i f  q and S a r e  to be finite on the ax is  and q z (b- ' 

if r is to be finite on the ax is  Eq. (A. 3)] . Therefore,  qc(o )  = %(ul =o; 
X 

?*c.), Tr (o1  , s L d  and eCOj a r e a r i b t r a r y .  

€ 
F o r  n # 0, let  qr + r A as r --r 0 . Then f rom Eq. ( 2 .  38), 

Substituting Eq. (A. 4) into Eq. (A. 3)  one obtains 

Then € = n - 1 and for  



F r o m  the (#)-momentum equation, n ( 0 )  = 0 when n # 0 , and f rom 

Eq. (A. l),  qx- r (n # 0) or  qx(0) = 0. Therefore, s(0) = e(0) = 0 

when n # 0. In addition, Eq. (2. 40) shows that ~ ' ( 0 )  = 0 when n > 1. 



APPENDIX B 

TWO- DIMENSIONAL WAKE MODEL 

The mean flow quantities a r e  assumed to satisfy the boundary 

layer equations. Using Kubota's for  a zero  external pressure  

gradient, the following set  of equations a r e  obtained for the compressible 

wake behind a flat plat'e or hypersonic vehicle: 

Continuity 

Momentum 

Energy 

with the boundary conditions 

where 



'T = Prandtl  number = constant 

d* = character is t ic  body dimension 

TY/*: fey: = constant : Chapman-Rubesin relation 

h i  , G' = constant 

The above equations a r e  l inearized by using Oseen type variables  

W : I - U  < (  I 

Retaining the lowest order  t e rms ,  the following equations a r e  obtained 

with the boundary conditions 

W(O,Y) = 

By using Laplace t ransforms,  the solutions of Eqs. (B. 4) subject to the 

boundary conditions, Eqs. (B. 5) a r e  obtained, as folldws: 



Drag 
The momentum thickness (or drag coefficient, 'D =' 3 ~ u e s x ~ ~  

a e  
is given by 

r; u; 
0 

and the net heat t r ans fe r red  to the body by 
-m 

= constant 

where H* = stagnation enthalpy. 

Let 

Then f rom Eqs. (B. 7) and (B. 8 )  



If the initial conditions a r e  assumed to be point sources (delta 

functions), i. e. , 

3 )  = R s(9) 

then from Eqs. (B. 10) and (B. 11) 

The solutions then become 

(B. 11) 

(B. 12) 

Let the characteristic length scale, L*, of the mean flow field 

be defined a s  



For  a flat plate incompressible wake, 

Fo r  convenience, the following notation i s  adopted: 

so that 

(B. 14) 

(B. 15) 

(B. 16)  

(B. 17) 

V* i s  the velocity defect of the wake and L* i s  the Y position a t  which 

The Reynolds number of the wake i s  



APPENDIX C 

METHOD O F  SOLUTION O F  TATSUMI AND KAKUTANI~' FOR SMALL aR 

The Orr-Sommerfeld equation can be expressed  in  the following 

f o r m  ~ q .  (3.211 : [ 

subject to the boundary conditions, Eqs. (3. 3) and (3. 7), 

- JLm y - A  -f 

9 -  " J C 'f4a, 

- T  <a+ dL- c 4 Rc) L W 

Anti- symmetr ic  Disturbances 

Symmetric Disturbances 

Tatsurni and ~ a k u t a n i ~  expand the solution in powers of aR 

a s  follows: 
w 

where 

Substituting Eq. (C. 5) into Eq. (C. l), and matching powers of i a R, the 

following equations relating the (b(n)ls , a r e  obtained 



The solutions of Eq. (C. 6) a r e  

The solutions of Eq. (C. 7) can be found by the method of variation of 

parameters  and a r e  

for  n >/ 1 , j = 1 ,  2 ,  3, 4 .  The general solution of Eq. (C. 1) is 

where the C. 's  a r e  a rb i t r a ry  constants. 
J 

Since the solution Eq. (C. 8) must  satisfy the outer 

(C. 10) 

boundary 

condition Eq. (C. 2 )  , C, = C4 = O and for a non-trivial solution, [ I 
$bl and $b3 must satisfy the following eigenvalue equations: 



Anti- symmetric disturbances [Eq. (C. 3)] 

Symmetric disturbances [Eq. (C. 44 

(C. 11) 

(C. 12) 

For  convenience, let  A($:,:") ), B($'*' ) c ( @ ~  'n' ) and D($ 'n) ) 
J 

be the t e r m s  in the b r b t s  of the solution $I,'*' [ Eq. (C. 9)] , 

respectively, where the lower limit is taken to be infinity, so that 

and further introduce the notation 

(C. 13) 

* This definition differs f rom that of Eq. (6. 3), Reference 31, 
by the factor ( l / i a ~ c ) .  



Then 

(C. 15) 

Substituting Eq. (C. 5) into Eqs. (C. 11) and (C. 12) and using 

Eq. (C. 15), the eigenvalue relations can be reduced to the following form 

Symmetric Disturbances 
rD 

Anti- symmetric Disturbances 

~0 (C. 17) 

- 1  + f ( i *a In  I"' 
n = I  

n 21 

- In) - c i  *QJ" J (+,I I + y ) L A ~ ~ n ~ " '  (031 
*I 

la = I  

Eqs. (C. 16) and (C. 17) a r e  then expanded and only t e rms  of the third 

and lower order  in  i a R a r e  retained. The quantities in Eq. (C. 14) 
2 

were evaluated using Eq. (C. 9) with w = + e-Y 

Since the complex wave speed i s  of order  unity, or  less,  then 

p - a will be of the order  of a R. In order  to be consistent with the 

approximations used, the coefficients in the eigenvaluk equations were 

expanded in  powers of P - a = aQ ( d complex) and t e rms  of the order  

3 
G and higher were neglected. The complex eigenvalue equations then 

rO 
(C. 16) 



become 

Anti- Symmetric Disturbances 

Svmmetric Disturbances 

& ( z + G )  ~ ( L A R )  

I + + A ( ~ + G )  (c. 19) 

where 

The asymptotic behavior of Eqs. (C. 18) and (C. 19) was determined 

by a t r ia l  and e r r o r  method. The correc t  limiting processes and 

reduced equations a r e  a s  follows for  c = 0 : I 



3 - - 3 (C. 20) 

F 2 4 8 

 magin nary part: - Gr + [ - 
-L L A ]  R - ~ G R ~  

Symmetric disturbances Ci; -, -0 , GR - - CT , CK -L o 

3 R e o l p a r t  CR + - - d 5 ~ [  2 - 3  - 4  8 p 2 = Q  1 
3 2 Irnaginarypart  GI c [ f i -  $ * t P ] R  - d Z r x  8~ (C. 21) 

The equations a r e  solved simultaneously and the resul t s  a r e  given in 

3 Table 3. 2. * Since the coefficient of (iaR) in Eq. (C. 19) is real,  the 

3 
coefficient of R in  Eq. (C. 21) Real part] i s  zero  to the order  of the 

approximation used. 

Eq. (C. 18) was solved graphically and a minimum cri t ical  

Reynolds number was found  a able 3.1 ] . 

L * Since the profile w = e-Y was used in these calculations, the 
sign of c a s  computed f r o m  Eqs. (C. 20) and (C. 21) must  be changed R 
to conform to the notation in  the r e s t  of the text. This was done in 
these tables. 



APPENDIX D 

SOLUTION OF THE INVISCID EQUATIONS 

FOR AMPLIFIED DISTURBANCES 

F o r  amplified subsonic disturbances, the solution of Eq. (4. 14) 

and Eq. (4. 17) i s  regular everywhere on the rea l  axis. Since G i s  

singular a t  the axis  [G-(l/a) 1 ,  i t  is convenient to make the following 

transformation 

Eq. (4. 7) then becomes 

Eq. (D. 2) i s  a complex equation. I ts  r ea l  and imaginary par ts  a r e  



The boundary conditions a s  )7 ---, rn a r e  
I I 

C: 

[/ - M'( CnZ- c:)] (D. 4) 

Using a power se r i es  expansion about the axis, and satisfying the con- 

dition n(0) = G , 

where 

(D. 5)* 

* Pr imes  ( ') indicate differentiation with respect to 4 



2 w*" CZ c, = 
(I 4- cRIZ ,- CTZ 

There  a r e  only two integral  curves  that will simultaneously satisfy 

the boundary conditions a t  the ax is  and a t  infinity for  a given set  of 

eigen values; a , cR and cI . These a r e  sketched below. 

Sketch D. 1 



If the given set i s  not consistent, the boundary conditions will not be 

satisfied and the integral curves oscillate very rapidly near the axis. 

Fo r  this reason, the integrations were started f rom the axis  and 

infinity and the values of H and H were  compared a t  a point within 
R I 

the domain. The matching point was taken to be the point a t  which 

The calculation procedure used to obtain the inviscid amplified 

solution for the given profiles w(q ) and T( ), the relative Mach 9 
number, M, and the wave speed, 

C~ ' i s  a s  follows: 

Integration f rom Infinity to the Critical Point and from the 

Axis to the Critical Point 

(1) Assume a value of a and c and evaluate the boundary con- I 

dition a t  infinity f rom Eq. (D. 4) and the boundary condition for a small 

positive value of from Eq. (D. 5). 

(2)  Continue the calculation of H and H by the simultaneous R I 

integration of Eq. (D. 3)  to the cr i t ical  point, 
C 

(3 )  Compare the values of H and HI a t  q c  obtained from the 
R 

inner and outer integrations. 

(4) Repeat steps (1) through (3)  until the values of H and H 
R I 

a r e  simultaneously matched a t  
q c  



APPENDIX E 

EXPANSION ABOUT CRITICAL POINT - AXI- SYMMETRIC CASE 

The solution of the inviscid equation [ E ~ .  (5. 9)]  in the neighborhood 

of the "singular point" in  the complex r-plane (w = c)  is obtained by a 

Taylor Ser ies  expansion (method of Frobenius). Eq. (5. 9) can be 

rewritten in the following form 

where 

Let # = r - r and assume a se r i e s  solution of the form 
C 

Since (w-c) and T a r e  analytic functions of r everywhere in the finite 

region of the complex r plane the coefficients of Eq. (E. 1) can be 

expanded in a Taylor Series  about the point r = rc (w = c): 

Y - I - . - [Y, +PC'- x *''I 1 
w-c  2 w,' + I  



Eqs. (E. 3 )  and (E. 4) a r e  substituted into Eq. (E. 1)  and the coefficient 

of each power of f is set  equal to zero. The two linearly independent 

solutions, and 9 , valid in the neighborhood of the cr i t ical  point 1 

along the rea l  axis  a r e  as follows: 

where 

The coefficient b i s  not determined in this method. The proper path 
1 

for  analytical continuation of , in passing f rom 7 > O to # < 0 , 

l ies  below the point r = rc for wct > 0 [ ~ ~ ~ e n d i x  G . I 
The other disturbance amplitudes can be found in  the neighborhood 

of the cr i t ical  point by using Eqs. (5. ll), (E. 5) and (E. 6) : 



Note that for 

7 ' O  
1- 7 - \ -  7 

7 L o  I n  r \ h l ) ! l -  il-r 

in Eq. (E. 8). 
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APPENDIX F 

EXTREMUM O F  DENSITY -VORTICITY PRODUCT 

F o r  the case  of neutral  disturbances, ( 2 ~ ' )  must  have a t rue  

extremum a t  r = r and not a point of inflection. This can be shown 
C 

36 in  exactly the same  way as in  the incompressible case  i n  the following 

way. Add the complex conjugate equations, instead of subtracting them 

(in derivation of Eq. (5. 32) ) to obtain 

0 

F o r  most  problems of interest ,  gR 0 , so that 

and 

A necessary  and sufficient condition for  the existence of neutral  dis-  

turbances i s  that 

and cR = w = c a t  this  point. 
S 

Let  47 = dr/g, 



so that 

For  most profiles, ( 7 r ~ ' ) '  and hence d 7% changes sign only 

once in the infinite interval and f rom Eq. (F. 7)) (w - cR) and 4' w/d7' 

must have opposite signs. Therefore, for neutral disturbances, 

C 

Idw/471 must have a maximum with respect to r, i. e., 

I I 

( d 3  W/d'3)F=%: and consequently, ( f  w'),=,~ it 0 

This resul t  cannot be shown for amplified disturbances except in the 

36 limiting case  of incompressible flow . 
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APPENDIX G 

VISCOUS CORRECTIONS IN THE CRITICAL LAYER 

In considering inviscid neutral disturbances, a cr i t ical  point 

occurs in the flow field, a c ro s s  which some of the disturbance amplitudes 

a r e  singular Section V. 3 . In a rea l  fluid these singularities must I 
be smoothed out by the action of viscosity and conductivity in the 

neighborhood of this cr i t ical  point. These viscous corrections a r e  im- 

portant for the amplitude distributions but they do not affect the eigen- 

value problem for a R > > 1. However, if aR i s  not very much greater  

than unity, the viscous corrections around the cr i t ical  layer may 

extend to the axis  and the splitting of the solutions into inviscid and 

viscous types is not valid. In addition, the temperature and density 

fluctuations a r e  singular a t  this point, and the thermal conductivity of 

the fluid must be included in  the vicinity of this point to smooth out these 

discontinuities. It i s  to be expected that the viscous solutions for the 

axi- symmetric case a r e  similar to those for the two-dimensional case 

except for the new element associated with the singularity in q since 
3 

the curvature effects in a thin annulus in the neighborhood of the 

cr i t ical  point a r e  unimportant. The incompressible case will be the 

only one considered here. The compressible problem i s  the same a s  

the incompressible one in  the Tollmien variable59 and will not be 

discussed. 

The solutions corrected for viscosity a r e  given by 

[corrected solutions = inviscid solution singular t e rms  I -  1 [ + ~ v i s c o u s r e p ~ a ~ e m e n t t e r ~ ]  
= [regular inviscid solution] 

I 
+ [viscous replacement termj a 
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where the viscous replacement function i s  obtained by solving the full 

viscous disturbance equations in the vicinity of the cr i t ical  point, i. e., 

retaining only the leading viscous t e rms  in  this region. This function 

must  be such that i t  approaches the singular t e rms  in the inviscid 

solution "far away" from the cr i t ical  layer. The viscous replacement 

22  
t e rms  a r e  found using the convergent s e r i e s  method Introduce the 

parameter 

E = l/(a~) 1/3 , 

a s  in the two dimensional case, and the new independent variable 

The mean flow quantities a r e  expanded in a Taylor ser ies  about the 

critical point 

Eqs. ( 2 .  3 2 )  - ( 2 . , 3 5 )  then take the following forms 



where TO, = ,/a2 + "%/rCx 

In o rde r  fo r  Eqs. (Go 4) - (G. 7) to be consistent, the disturbance 

amplitudes m u s t  be of the foLLowing form 

Substituting Eq. (G. 8)  into Eq. (G. 4) - (G. 7) and eliminating the 

pressure, the following zeroeth o rde r  equations a r e  obtained: 

The solutions of Eq. (G. 10) a r e  
a 

(G. c)a) 

(G.9b) 

(G. 10) 

(G. 11) 



where 
'1'3 y3 3 = ( w c l )  = ( A P N C ' )  (r-rc) 

(G. 12) 

( 1 )  

and //,,3 (21 
and )-Iy3 [ f f i Z)~''J a r e  Hankel 

functions of order  (1/3) and the f i r s t  and second kind respectively. The 

asymptotic expansions of the Hankel functions of o rde r  (1/3) a r e  valid 

22 
i n  the following region (Lin ). 

The solutions obtained by means  of a n  asymptotic s e r i e s  (of the 

full viscous equations) can be formally related to  the asymptotic 

expansions of the four solutions obtained by the method of convergent 

22  
s e r i e s  (Lin ) The solutions of the inviscid equations a r e  two of the 

asymptotic solutions of the ful l  viscous equations. Therefore in order  

that the inviscid solutions represent  valid asymptotic solutions of the 

full viscous equations, the co r rec t  path of integration around the 

singular point should follow the same cr i te r ion  as Eq. (G. 13), and 

should l ie  below the singular point for  w ' > 0 and above for wc' < 0 . 
C 

If c > 0, the singular point of the inviscid equation l i e s  above 
I 

the r e a l  axis,  and the effect of viscosity can be neglected inside the 

fluid for  sufficiently la rge  Reynolds numbers. If c = 0, the two l ines  
I 



intersect  a t  a single point on the r e a l  axis, and the inviscid solutions 

can never hold along the entire r ea l  axis. Viscosity cannot be 

neglected a t  the singular point no mat ter  how large the Reynolds 

number may be. F o r  c < 0 the two lines inter sect the r e a l  axis  a t  two I 
points and viscosity is important a l l  along the r e a l  axis  between the two 

inter sections. 

(6) yv can be determined directly f rom Eq. (G. 9) and Eq. (G. 11) 

(G. 14) 

; Yn, 4:; = - - 
d, cw: )"3 

t 

The solutions Eqs. ( G. 11) and ( G.14) a r e  identical to  those for the two 

dimensional case. 

Rewrite Eq. ( G.9b) in t e r m s  of the independent variable 3 

(G. 15) 

By the method of variation of constants, the solution of Eq. (G. 15) is 

(G. 16) 



hl(z)  h2(z) is  the Wronskian of the functions h (a )  and I 1 
hZ(z) , and -(2/3) n < a r g  (i z) < (2/3) rr or  -(7n/6) < a r g  z < (n/6). 

O - lo) (0) 
F o r  q. - qr* = 1 , q ,  is a Lommel function, L(Z)  , 

X 

. The r e a l  par t  of the Lommel function is even and 

the imaginary pa r t  i s  a n  odd function of z. The graphs of L, (L't ) and 

L T  ( i t  ) a r e  shown below 

Sketch G. 1 

-- 

F o r  la rge  values of Z 

The viscous correct ions which apply for  z = 0(1), r - r -- 0 (dR) 
- '13 

C 

will remove the singularity a t  the singular point, and the disturbance 

amplitude, q i n  the vicinity of r = r will look like 
3, ' C 

Sketch G. 2 



The discontinuity is smeared  out by the action of viscosity, 

If the phase velocity is taken to  be equal to the velocity of the 

mean flow on the axis,  then the solution is singular a t  that point, and 

does not satisfy the boundary conditions. Again, a viscous replacement 

37  
t e r m  m u s t  be found. The r eade r  is r e fe r red  to    in^' and Gill for  a 

discussion of this  problem. 



TABLE I 

NEUTRAL, INVISCID STABILITY CHARACTERISTICS 



TABLE I1 

AMPLIFIED, INVISCID STABILITY CHARACTERISTICS 

Case  

Case  

1 
2 
3 
4 
5 

A U  

0.692 
0. 285 
0.160 
0. 083 
0.049 

A T  
- 

0 
0. 50 
0. 38 
0. 30 
0. 20 

M~ 

0 
0. 42 
0. 17 
0. 07 
0. 03 
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TABLE I1 (CONTINUED) 

d C, - - 
CR 

0 
0.04 
0.11 
0. 15 
0.16 
0. 15 
0.11 
0.05 

0 
0.08 
0. 13 
0.16 

4 Cl - - 
= 2 

0 
0.05 
0.11 
0. 15 
0.17 
0. 15 
0. 11 
0. 05 

0 
0.08 
0. 13 
0.16 

d c, A- 
d 4 

-0.38 
-0. 35 
-0.30 
-0. 25 
-0.20 
-0. 21 
-0. 15 
-0. 12 

-0.37 
-0.32 
-0. 28 
- 0 - 2 3  
-0.20 

- 
a C~ 

1.44 
1. 34 
1. 16 
0. 96 
0. 77 
0. 58 
0. 39 
0. 20 

1. 59 
1. 36 
1. 17 
0. 98 

0. 46 
0. 20 

Case  

4 

5 

-0, 19 
-0.18 
-0. 13 

0.60 
0.40 
0.20 

a 

1.51 
1.40 
1.20 
1.00 
0.80 
0.60 
0.40 
0.20 

1.63 
1.40 
1. 20 
1.00 
0.80 

I 

C~ I C~ 

-0.56 
-0. 53 
-0.48 
-0.43 
-0.38 
-0.33 
-0. 25 
-0.16 

-0.58 
-0 .54  
-0.48 
-0.43 
-0.39 

0 
0. 03 
0.09 
0. 1 4  
0.20 

1 0. 24 
0. 27 
0. 25 

0 
0.06 
0. 11 
0.16 
0.20 

-0.33 
-0.25 
-0. 15 

0. 25 
0.28 
0. 25 
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TYPICAL NEUTRAL STABILITY CURVE FOR WAKE-TYPE PR0FiLk.S 





FIG. 4 FREQUENCY VS REYNOLDS NO. AND SPATIAL AMPLIFICATION RATE 
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o EXPERIMENTAL - SATO AND KURlKl 
-- THEORETICAL - SATO AND KURIKI 
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