STABILITY OF LAMINAR WAKES

Thesis by

Harris Gold

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1963



ACKNOWLEDGMENTS

The author wishes to express his sincere thanks and apprecia-
tion to Professor Lester Lees for his guidance throughout the course
of this investigation. The author would also like to acknowledge many
helpful discussions with Professor Toshi Kubota and Dr. Anthony
Demetriades. He also wishes to thank Kiku Matsumoto for programming
all the IBM computer computations and Mrs. Geraldine Van Gieson
for her outstanding typing of the manuscript.

The author acknowledges the receipt of a Del Mar Science
Foundation Fellowship for the 1959-60 academic year, a Boeing
Fellowship for 1960-61, and a RAND Corporation Fellowship in
Aeronautics for the years 1961-62 and 1962-63. This project was made
possible through the sponsorship and with the financial support of the
U. S. Army Research Office and the Advanced Research Projects
Agency.

The author would like to express his gratitude to his wife,
Sandra, for her encouragement and perserverance throughout his

studies.

i1



ABSTRACT

This investigation deals with the effects of ’c\ompressibility on
the hydrodynamic stability of wake flows. It is found that the effect
of temperature is two-fold: (1), as the wake core temperature
increases, the range of Mach numbers over which neutral and self-
excited subsonic disturbances can exist also increases; (2) as long
as the relative Mach number is below the critical Mach number the
neutral inv%scid wave number will decrease with increasing core
temperature, implying that a hot wake will be more stable than a
cool one,

The analysis of Batchelor and Gill for fhe inviscid stability
of axi- symmetric incompressible jets has been extended to the more
general problem of compressible wakes and jets. Itis shown thaf. the
results are directly analogous to those obtained for the two-dimensional
problem. The sinuous (n = 1) mode is the most unstable allowable

mode. This unstable mode is observed in a hypersonic wake.
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LIST OF SYMBOLS

The symbols used in the present report are in general those
condmonly used in the literature on hydrodynamic stability. In some
regretable instances a symbol will represent more than one item. To
minimize the confusion, the different definitions of the same symbol

will have listed the section of the report in which they appear.

Dimensional ~ Dimensionless Reference

Quantities ~ Quantities , Quantities
Two-Dimensional
Flows:
Positional
Coordinates:
"longitudinal x* x L*
normal y* y I
Velocity
Components: Ca (% €8 -
‘ —x ! Y+ SO E
longitudinal Utz WT Y w ()
% - 6* - 6*
wW e o (x- ot .
normal VARPSAVAR al v+ &P v
— . Lalx-ck) «
Density S L & $G) + s E Fe
. = o ) euux-ck) .
Pressure PP =P &P PR)Y + TU Pe
‘ \ Lk txe ct) x
Temperature T =T+ T° TG + 8We Te
Axi-Symmetric
Flows:
Positional
Coordinates:
axial x* x Lx*
radial ¥ r L*
angular 9
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Velocity

ix

Components:
% - , Ldlx-ck) tind
axial 9, =W+ W) 9, e ¥
w = a—‘: - Ue‘ % &) rn d <
radial 9* = 9% + 9~ 90 + LWe Y4
_— \ kA(i-c() +\'V\¢ -
‘ a,ngu_]_ar ﬁ‘; < a: + ‘7; ‘74'01 + ‘i‘(ﬂ (A v
Angular Wave Al
Number:
. . CAlxeet) +m ¢
i A e * )+ s()e ;
Density ’ £oo= f +f Fl) + Latn-ch) tin , %
Pressure PP e P P&+ Tf(”)e et band R
< ‘_“ x! v < A Y
Temperature =T +T TG+ 60C Te
Time ' " t A
o y L
Wave Length BREA IN
2cv/ Ve
Wave Number A* = TN/N* A = (N
Disturbance - +
c* c e
Propagation L v
c* - U
Velocity
a speed of sound
b unknown constant (Section IV. 2)
CD drag coefficient
cg* group velocity of disturbance
Eg Cg*/Ue* dimensionless group velocity
cp* local relative propagation velocity ( Eq. (5.20) )
D (d/dy) (Section IIl. 1, Appendix C)
dx* characteristic body dimension
E exp (ia (x-ct) + in®) [Eq. (5. 49)]



G w‘/az T2 ™ [ Eq. (4. 18)]

G defined by Eq. (5. 52)
H 1G (Appendix D)
H* stagnation enthalpy
i;);m Hankel functions of order 1/3, first and second kind
h dimensionless static enthalpy (Appendix B)
e (R (e

Il(a SIr) modified Bessel function of the second kind of order one

i /-

Klv(arﬁ r) modified Bessel function of the second kind of order one

k gradient of density-vorticity product (Section V)

L* characteristic length

L(z) Lommel function (Appendix G)

M V*/ae* relative Mach number

Me local Mach number outside the mean wake

M, local Mach number of disturbance [Eq. (5. 21)]
Mm free stream Mach, number

‘/ub + (nz/rz) total wave number
N° Eq. (5. 68)

P Eq. (5.10)

Q¥(r*, t¥) quantity of total flow
(3*(?*) mean or steady component of flow quantity
Q¥ (F%, t*) fluctuating component of flow quantity

QN (TH) fluctuation amplitude



AT

Uk

b

fluctuation amplitude for nearly parallel flow

» A Ty
v 7n~rci¢ + ?
qr
4 T n
EE - W‘i"

V*L*/3 e* wake Reynolds number
gas constant

Reynolds number based on displacement thickness

local external Reynolds number based on d¥

local external Reynolds number based on x*
local external Reynolds number based on 0%
£03

position\v‘ector

f (dr/g R:) (Appendix F)

temperature excess at centerline of wake

transformed mean velocity component (Appendix B)

mean velocity component in x¥* direction

velocity defect at center of wake

transformed mean velocity component (Appendix B)

characteristic velocity

1-U (Appendix B)

Imag ($9Y') (Section V)

transformed x coordinate (Appendix B)
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N M

> < T]}T] @

&%

= 3

qWOdJ\QCD*

O € ™

(1/ ¢ rT) (Appendix E)

(1/g crcTc)

transformed y.coardinate (Appendix B)
(1/¢)( §w')' (Appendix E)

(wc')l({?’ = (wci a R)1/3 (r_rc)

/azk—iaRc

disturbance vorticity

mean vorticity

~ ratio of specific heats

dimensionless heat transfer coefficient (Appendix B)
tan_l (ar/n) | (Section V) |

ne'é heat transfer (Appendix B)

1/(aR)/?  (AppendixG) |
Do;'odnitsyn—Howarth variable [ Eqs. (2.47) and (2. 56)J

r-r c'/€ (Appendix G)

dimensionless momentum thickness (Appendix B)
momentum _thickness

viscosity |

kinemdtic viscosity

Eq. (5.10)

p-a = aC (Section III and Appendix C)

e | qX" qr' Reynolds shear stress

r-rT
C

I‘q_r

1-M" ¢



Subscripts

c critical point.
e local condition outside mean wake
I imaginary part of quantity
i point at which disturbances begin to amplify
o initial values (Appendix B)
o values at axis (Appendix D)
R real ‘part of quantity
s neutral, inviscid values
0 free stream conditions
1,2... first, second solution, etc.
Superscripts
N

complex conjugate

zero, first, second order quantities, etc.

A bar over a quantity indicates mean value.

Primes generally denote differentiation with respect to y or r.
The few instances where primes denote a fluctuating quantity should
not cause any confusion.
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I. INTRODUCTION

Expe:c'irnenta;lz-4 studies have shoWn that transition in incom-~
pressible free boundary layers is preceded by a linear and non-
linear wave-type instability. The linear instability can be described
by the small distt‘lrbance theory of hydrodynamic stabilit‘y5_3l. The
non-linear instability is a very complex phenomena and is not yet
understood. Recently, the problem of laminar-turbulent transition
in hypersonic wakes hé.s also been of considerable interest. 1 The
purpose of this present investigation is to study the effects of com-
pressibility on the hydrodynamic stability of wake-type flows.

- The stabﬂity characteristics of wake flows are relatively
insensitive to Reynolds number, for sufficiently high Reynolds numbers,
because of the occurrence of a point of inflection in the density
vorticity productzz’ 32, Therefore, interesting and important results
can be obtained by considering the "inviscid limit! of the small dis-
turbance equations, in which the viscosity and conductivity of the fluid
can be neglected to a certain order.

This study will be restricted to subsonic disturbahces, i. e.,
disturbances whose propagation velocity is subsonic with respect to
the free stream velocity. These disturbances have amplitudes that
die out exponentially far from the wake axis. If such disturbances
exist then the mean flow is unstable to small disturbances. The
question of the stability of a flow to supersonic disturbances has not
been resolved32'35.

The inviscid stability characteristics of two-dimensional in-

compressible and compressible wake flows are studied using Gaussian



distributions for velocity and temperature in the Dorodnitsyn-Howarth
variable. The incompressible wake was also studied at low Reynolds
numbers and wave numbers. The results of Batchelor and Gi1136

and Gi1137 for axi-symmetric incompressible wake-type flows have been

extended to include the effects of compressibility.



II. FORMULATION OF THE PROBLEM

An infinitesimally smail disturbance is imposed upon a mean
or a steady flow and the behavior of the amplitude of the disturbance
is examined as time progresses. If, for large valués of time, the
disturbance is damped out’, the motion is said to be stable; if not, the
motion is éaid to be unstable with respect to infinitesimally small
disturbances. It is much easier to prove that a motion is unstable
than §_t_§._13}_§_. If the roW is unéfable to disturbances of any kind, éven
the simplest kind, it is always unstable, but the flow may be stable
with respect to one type of disturbance and not another. In hydro-
dynamic stability theory, the disturbance is assumed to have a wave-
like nature. The problem is to find certain combinations of the wave
number and wave speed of the disturbance and the Reynolds number of

the mean flow for which the fluid motion is unstable, or neutrally stable.

IL. 1. Outline of the Stability Problem

The total flow consists of a time-independent or mean component,
Q%*, and an infinitesimally small component, Q*', which is both space

and time dependent:

Q* (T, t+) = QF (k) + Q%' (B, tX) (2.1)
where

|Q*1’ /led <<1
The total flow, Q% satisfies the conservation equations of mass,

momentum and energy and an equation of state. The mean flow, 6*,

_ satisfies the steady flow equations or some approximation to them,



for example, the boundary layer equations. The conservation equations
for the disturbance are obtained by substituting expressions of the form,
- Eq. (2.1), for the flow variables into the total flow equations and
subtracting out the mean flow equations. The hydrodynamic stability
equations are obtained from this set by neglécting quadratic and higher
order terms of the disturbance quantities. |

The coefficients of the resulting linear partial differential
equations depend upon,the mean flow quantities. Time appears only
as the derivative (8/9t¥) é,nd hence solutions containing an exponential

time factor

~ ~ia¥cktk

Q¥' (T, th) = g*' (T¥) e (2. 2)

may be assumed. The resulting differential equations will contain the
space coordina’tes as the only independent variables.

This study will be limited to parallel or quasi-parallel flows,
i. e., motion in which the mean normal velocity is zero or very small
compared to the main velocity component. The following order of
magnitude relations from boundary layer theory apply to the mean flow
qtiantitiés:

(a)  V¥/T% ~ (1/Rg,) <<1

, (2. 3)

(b)  (8Q*/ax*) / (3Q%/8y*) ~ (1/Rg,) <<1
where

x¥ longitudinal coordinate in two-dimensional flow or axial

coordinate in axi-symmetric flow
v normal coordinate in two-dimensional flow or radial

coordinate, r*¥, in axi-symmetric flow



U*  mean velocity component in x* direction
V*  mean velocity component in y* direction

R

&% Reynolds number based upon displacement thickness.

The mean flow quantity, Q* is a function of the position coordinates,

x* and y*. Expand Q% about the pokint x* = x*p:

Q% y*) = Q(ack %) + (80%/8x%) x K G (2. 4a)

The region adjacent to the point under consideration is taken to be of

the order of a few wavelengths of the disturbance in the x* direction
x¥ - x*p~ A¥ ~ (1/a¥) . (2. 4b)

Then from Eqs. (2.3b) and (2. 4b)

(k=% ) (ab*/ax*)x*=x*p~ (1/0*Rg,) (3Q%/8y*)_y_ .
_ (2. 4c)
*(xk |y
5 Q¥(x* L, v¥)
a R:S*
and for large values of aRﬁ*f,, Eq. (2.4a) becomes
QF (xf, ) = ¥, v0) [ 140 (/aRg, )| (2. 4d)

Therefore all mean quantities can be considered to be independent of
the normal (or radial) space variable to order (1/0.’R6*).
By considering disturbances that are spatially periodic, both
in the direction of flow and in the direction perpendicular to the plane
6f ‘s‘y1nmetry of the mean motion, Squire38 has shown for incompressible

flow that two dimensional disturbances are less stable than three-



39

dimensional disturbances. For compressible flow, Dunn and Lin
have shown, by neglecting dissipation terms and some terms involving

the fluctuating viscosity and thermal _conductivity (which are valid at
moderate Mach numbers), that an equivalent two-dimensional disturbance
is not possible, but that the transformed three-dimensional disturbance
equations are of the same form as those for two-dimensional disturbances.
In/particular, by neglecting viscosity and thermal conductivity, the
thfee-dimensional disturbance equations are exactly of the same form

as the two-dimensional ones. Therefore, important features of the
stability problem can be obtained by considering two-dimensional
disturbances alone. For parallel and quasi-parallel flow, the

coefficients of the equations are independent of x* and consequently

solutions of the form
o jo ko
qF' (x*, y¥) = gx' (y¥) T (2. 5)

might be expected. The exponent is purely imaginary since the dis-
turbance must be bounded for x¥* at both + o and - w. For two-
dimensional flows a disturbance of the form

ia¥(x¥-c¥t*)

Q¥ (3%, y¥, 1) = g¥'(y¥) e (2.6)

will reduce the set of linear partial differential equations to a set of
ordinary differential equations in y*.

There is no direct analogue of Squire's result for axi- symmetric
27

para.llel and quasi-parallel flows. However, Lessen, et a;l21 and Pai

indicate that for rotationally symmetric disturbances, the incompressible

disturbance equations; except for the obvious coordinate scale factors,

are gimilar to those for two dimensional disturbances. Batchelor and



Gi1136 show, by a suitable velocity transformation, that for distur-
bances with an angular dependence, the incompressible equations are
exactly analogous to the two-dimensional ones, again, except for the
obvious coordinate scale factors. In Section V.1 this latter result is
extended to the compressible case. The mean flow quantities for

: parallﬁel and quasi-parallel flows do not depend on the angular coordin-
ate, (f), and depend only on the coordinate normal to the direction of
the mean motion, r¥*, to order (l/aRé*). Since the amplitude of the
disturbance must be single-valued with respect to the angular coordin-

ate, ¢, a disturbance of the form

ia¥(x%-c¥t)+in®d

Q' (%, qS, x%, t%) = q*'(‘r*) e (2.7)

where n is an integer, may be assumed. The resultant set of ordinary
differential equations will have r¥* as the only independent Variablé.

In Eq. (2. 6) [or Eq. (2. 7)] the disturbance amplitude g*'(y*)
[or "q*’(r*)] and the wave velocity c* are taken to be complex. The
main flow is stable, neutrally stable, or unstable to these waves
according to whether the imaginary part of c* is negative, zero, or
positive, respectively. The quantity a* is the wave number of the
disturbance and is taken to be real and positive. The real part of c¥*
is the phase or propagation velocity of the wavy disturbance.

The assumption that the disturbance has the form e-iu.*c*t*
[Eq. (2. 2)] is known as the normal mode approach to hydrodynamic
stability. If there are some values of a*c*, with CI*_ >0, such that a

non-trivial solution satisfying the disturbance equations and boundary

conditions exists, then the flow is said to be unstable; if not, it is



stable. Recently, the initial value problem has been emphasized by

Cas 640-44

45 . C e
‘and Lin ~. An'arbitrary small perturbation is introduced
into the flow at time, t* = 0, and its subsequent motion is followed by
means of a normal mode expansion. If there is a single mode with

c;* > 0 the perturbation grows exponentially with time and is said to

I
be unstable. The normal mode approach should be equivalent to the
initial value method although therey seems to be some inconsistencies
between the two results as the Reynolds number becomes infinite40‘42.
Lin45 has pointed out that these can be resolved by considering the
limit of a normal mode in the viscous theory. This limit is not the
normal mode in the inviscid theory, and vice versa. The normal mode
approach is applicable to diffe/arential operators having discrete eigen-
values while the initial value method should be used with singular
operators and/or continuous eigenvalues. However, it appears that the

modes leading to instability are associated with the discrete eigenvalues.

It is for this reason that the normal mode approach will be used in this

text.
The amplification rate of the disturbance is defined as follows:
(1/Q*") (8Q*'/dt*) = a* cp¥ (2. 8a)
and o
Q*! = Qi*' exp f a* cI* dt* . (2. 8Db)
. -

i
In the laboratory, the experimenter has a quasi-stationary problem. As
the disturbance propagates downstream of its origin, its amplitude

changes in both space and time. One measures the spatial



amplification rate, or the rate at which a disturbance will amplify

with distance in the mean flow direction. The wave speed is a
function‘of both the wave number of the disturbance and the Reynolds
number of the mean flow. If the paralliel and quasi-parallel assumptions
are made, fhen the group velocity of the distﬁrbance, i. e., the velocity‘

46

at which the disturbance energy must propagate™ ", is

(dx*/dt*) = cg* (d/da*) [a*c*]

(2.9)
= c% + (a*dc*/da*)
The spatial amplification rate is
. ,
(1/Q%")( 8Q*!/ox*) = (‘G‘*CI*/Cg*) (2. 10a)
and X* ,
Q' = Q' exp f (akept/c *) dxk . (2. 10b)
x.%

i

The spatial amplification rate is constant for parallel flows. For
quasi-parallel flows, the spatial amplification rate is computed at
each streamwise station by using a mean velocity profile that is
‘assumed to be independent of x at that station. The total amplification
(or decay) of the disturbance as it moves downstream is found by the
piecewise integration of the local amplification (or decay) rates.

For wake-type flows, it is expected that the spatial amplification
rates depend upon the decay of the mean velocity profile. Therefore,
it is convenient to transform from a coordinate system in which the
observer is fixed in the body to one in which the observer is fixed in

a fluid at rest. In this latter system, the observer sees the '"'velocity
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defect' of the wake. | See Sketch 2.1J]

Ue
] vt |
X
Ue W"
- —_ .
wh(y¥) = Uk(y¥) - U
Body-Centered Coordinates Coordinates Fixed in F'luid at Rest

Sketch 2. 1

In this coordinate system the wave has a propagation velocity
(c* - Ue*). Let the mean flow be dimensionally represented by aj
charécteristic length, L*, and a characteristic velocity, V*, and the
temperature, density, pressure and viscosity by their exterﬁal values,
so that [See List of Symbols.j -

w(y)=~—“£v(—,§—r-—)— s ‘c=————v-¥—e—-—- s a = a¥L*

(2.11)
VEL* Vi
R = —— s M= ——
Je [¥R*T _*
V* and L* will be taken to be the velocity defect at the centerline
[w(0) = 1] and the half-width of the wake, respectively [Section 1L 4] .
The disturbance equations and boundary conditions will be derived
for two-dimensional [Section IL. 2] "and axi-symmetric [Section II. 3] flows.

The outer boundary conditions for the compressible problem will be
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discussed in detail in Section IV.1 (two-dimensional case) and
Section V. 2 (axi-symmetric case). The quantities are defined in the

List of Symbols.

II. 2. Two-Dimensional Free Shear Flows. Small Disturbance

Equations and Boundary Conditions

II. 2.a. Viscous, Incompressible Problem

The incompreséible, small disturbance equations are a limiting
case of the complete compressible equations, This case is obtained
by neglecting the viscous dissipation and heat conduction terms in the
conservation equations and assuming that the‘ mean temperature,
pressure, density, viscosity and thermal cohductivify are constants.
In addition, if the gradient of the temperature fluctuation vanishes at
the axis and the outer edge of the mean flow, the temperature fluctuation
and hence the density fluctuation can be set equal to zero32‘. The

*
dimensionless small disturbance equations are3’2

Continuity
Pr+if = 0 (2.12)

x- Momentum

i(w-c)f + w'd = ~im + (1/aR) [f" +a® (i - Zf)] (2. 13)

y~- Momentum

ia?(w-c)p = - 7' + (a/R) [20m + it - a2¢)] : (2. 14)

* Primes indicate differentiation with respect to y for the two-
dimensional case and differentiation with respect to r for the axi-
symmetric case.
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This system consists of three linear disturbance equations in thé three
dependent perturbation amplitudes f{, @ and 7, where the mean velocity
w is determined from the mean or steady-state equations. The
system is of the fourth order in the dependent variables.

| If the mean velocity profile is symmetrical [w'(O) = 0] , then the
disturbance amplitudes can be decomposed into even and odd parts,
each part satisfying Eqgs. (2.12) - (2. 14). The even part of the
longitudinal velocity disturbance, f, corresponds to anti-symmetrical
(or sinuous) oscillations and the odd part to symmetrical (or varicose)
oscillations. | ;

The anti-symmetrical oscillations are analogous to two parallel

rows of equally spaced vortices in alternate positions (Sketch 2. 2. a)
(Kal,rmafn’ vortex street) and the symmetrical oscillations to symmetrically

placed vortices (Sketch 2. 2. b). Ka’,rmafn47 has shown that the symmetrical

\/-\/\/
‘

(a) Flow in Alternate Vortex Street (b) Flow in Symmetrical Vortex Street

Sketch 2. 2

vortex street is unstable for all values of the spacing ratio (ratio of
transverse to longitudinal dimension) and will tend to rearrange itself
{

into the alternate vortex street. The alternate position is stable for

only one spacing ratio and unstable for all others. Physically, the anti-
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symmetrical disturbances are observed more often than the symmetrical
ones; for example, in the wake behind a circular cylinder at very low
Reynolds numbers. This fact suggests that the anti-symmetrical
disturbarylce is more unstable than the symmetrical one and the minimum
critical Reynolds number, below which all disturbances are damped,
will be lower for the former.

Using Eqs. (2.12) and (2. 13) the boundary conditions at the

axis are:

Anti-symmetrical oscillations (Sketch 2. 3. a)

£#(0)=0 , w0)=0 , 0)=0_

(2. 15)
f0)=0 , w(0)=0, P"(0)=0
Symmetrical oscillations (Sketch 2. 3. b)
foy=0 , =(0)=0 , $0)y=0

(2. 16)

f'k”(Oy) =0 , Wl”(o)‘ =0 , ¢H(0) =0 .

[:;L; oL

S T

(a) Anti-symmetric oscillations (b) ;Syxnmyetrical oscillations

Sketch 2.3
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The quantities f and w can be eliminated from Egs. (2.12) -

(2. 14) and a fourth order equation in ® can be found
(w-c)(gb"-,aqut)‘ - w'$ = (1/iaR) [d)w - 2a2¢” + a4¢] . (2.17)

The boundary conditions for large values of y are obtained from

Eq. (2.17). As y —» o, w—>» 0 exponentially and Eq. (2.17)

becomes

e PLp LR P L S (2. 18)

where

52=a2—iaRc .

The solutions of Eq. (2. 18) are:
..*:a » tﬁ
G~ PV - (2.19)

Now ) must be bounded for large values of y (y > 0). If the real part of
B is positive then the solutions with the positive exponent must be

rejected and the outer boundary conditions for Eq. (2.17) are
p~ e, PY (2. 20)
and from Eqs. (2.12) and (2. 13):

£, 7~ ey s e“Fiy . (2.21)

II. 2. b. Inviscid, Compressible Problem

If the solution of the disturbance equations is assumed to be of

the form

Caty) = @9+ (1/ar) Py - (2. 22)
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and the limit aR — o0 is taken, the resulting equations for the

(0)

zeroth approximation,q’ | are called the inviscid small disturbance

equations. They are identical with the equations obtained by ignoring

viscosity and thermal conductivity. The dimensionless inviscid

. 3
equations are
Continuity ,
GOr+if = (TY/T) P -i(w-c) (s/p)

x- Momentum

p [i (w=c) £+ w' SZS] = - (i‘u’/‘&MZ)

y- Momentum

az[p i(w-c) (l)] = - (W'/XMZ)
Energy
0 l:i(w-c) 6+ T qb] = - (%-1)(P+1if)

State

(s/p) = w - (8/T) pT = 1

This is a system of five equations in the five disturbance variables
f, 95, T, 8, and 8, where the mean flow quantitieé p, T, and w are
determined from the mean equations of motion. Upon eliminating
four out of the five dependent variables, the system is seen to be of

the second order.

(2. 23)

(2. 24)

(2. 25)

(2. 26)

(2.27)

Again, as in the incompressible case, if the mean velocity and
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~

temperature profiles are symmetrical, then the disturbance a’mplitudes
can be decomposed into even and odd parts, each part satisfying

Egs. (2.23) - (2.27). The boundary conditions at the axis are:

Anti- symmetrical oscillations

£0) = 0 , w0) = 0 , ¢'(0)= 0
, ‘ (2. 28)
s(0) = 0 , 8(0) = 0
Symmetrical oécillations
£0) =0 , «(0) =0 , PO =0
(2. 29)
s'(0) = 0 , 8'(0) = 0 .

The outer boundary conditions will be derived in Section IV.1

but will be included here for completeness. Itis

w'+a YT =« = 0 y —» o0 (2. 30)

where

2 2

Q=1/-M"c -w<arg§) <m . (2.31)*

II. 3. Axi-Symmetric Free Shear Flows. Small Disturbance Equations

and Boundary Conditions

The same assumptions regarding the derivation of the axi-
symmetric small disturbance equations apply as for the two-dimensional

case and will not be repeated here.

* In this equation, w equals 3.141.... .
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II. 3.a. Viscous, Incompressible Problem

/

The dimensionless small disturbance equations are3
Continuity
14 3 s —
(1/r) [r qr] tigq + (in/a) (qqs/r) = 0 (2.32)

x~ Momentum

2

i(w-c)g + w'qr' = -im 4+ (1/aR)[(1/r)(rqx')'-(a2 +25) qx], (2. 33)
. r

r- Momentum

2

T T

el (w-c)a, = -w+(a/R)[(1/r)xa, V- (eP Dihyg - S 1‘”] (2.34)

QS— Momentum

i(w-c)qg = -(in/a.)('rr/r}-ir(l/o.R)[(l/r)(rng')'-(az-i‘n;t‘ )q¢>+—zg%aqr] ,
(2. 35)

This is a system of four linear equations in four dependent variables
q4. > qu > 9y and w. This system is of the sixth order in the dependent
variables since q(b and qu' can be eliminated algebraically from

Eqgs. (2.32), (2.34) and (2. 35).

For the axi-symmetric wake, the boundary conditions on the
axis are kinematic in nature (do not depend upon viscosity) and can be
derived from the inviscid equations (Appendix A). All the disturbance
amplitudes and the vorticity disturbance must be finite on the axis.

The boundary conditions are:
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n=210 ’ qr =0 R q‘(b =0
q,,T are arbitrary
‘ (2. 36)
n# o0 =0 , w=0

n=1 q(b = -aq, q_ is arbitrary

T

The n=0and n =1 modes are shown in Figure 1.

Far from the axis, the boundary conditions should be the same
as for the two-dimensional case (Section V. 2). These conditions can
also be derived by taking the limit of Eqs. (2.32) - (2.35)asr —s w0 .
The outer boundary conditions are:

w,oa . q, ~ (1/)YF) e, 1/ )F) e PT (2. 37)

ap ~ VT &, )F e P

where the real part of B is positive and

ﬁz = 0.2 - iaRc

II1, 3. b. Inviscid, Compressible Problem

The dimensionless inviscid small disturbance equations are:
Continuity

(l/r)[rqr] '+iqx+(in/a)(q¢)/r)+i(w-c)(s/p)-qr(’I"/T) =0 (2. 38)

x- Momentum

p[ i(w-c) q + w! qr] = - (i'n"/UMz) (2. 39)
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r- Momentum

i ¢ p (w-c)q, = - (W'/XMZ) (2. 40)
(b— Momentum
ip (w-c) q¢ = - (imr/ar%MZ) (2. 41)

Energy
pliw-)o+T'q] = -(¥-1) [(1/n)xa,)! + i, H(in/a)apy/m)]  (2.42)

State

(s/p) == - (6/T) pT =1 (2. 43)

This is a system of six linear equations in six dependent variables
9. 5 9y q(b , 8, 0, andw . As in the two-dimensional inviscid;
compressible case, the system is of the second order.

The boundary conditions on the axis do not depend on the vis-

cosity or compressibility of the fluid and are [Appe’ndix A] :

n=0 q.=0 q¢)=0
Qe » T 8, s are arbitrary

n# 0 g =0 , w=0 | (2. 44)

The outer boundary condition is the same as in the two-

dimensional inviscid, compressible case and will be derived in
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Section V.2. Itis:

d(r q_) | .
__..a.}_l.'___ + a /Q (r’qr) = 0 r —> (2. 45)

where )

Q=1—M2c2 --n'<argQ<-rr .

II. 4, Mean Flow Model

The wake in baék of a blunt or slender body can be divided into
two regions of interest; the ''near' wake and the 'far'' wake. The ''near"
wake refers to the region near fhe body and the 'far' wake to the region
far downstream of the body. At low Mach numbers (Moo < < 1), the
near wake is characterized By the formation of Vortiées and unsteady

phenomena over a wide range of Reynolds numbers48 [Sketch 2, 4.’a] .

— 0, .

-r.o i1 -

(b) Mm>>1

(a) Moo<<1

I

Sketch 2. 4

For Moo < < 1 the boundary layer assumptions do not give an accurate

description at the near wake because Re is low and the gradient in the
P
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streamwise direction (8/6x) is not small compared to the normal
gradient (8/8y). The flow is unstable at low Reynolds numbers and
becomes turbulent. Thus, there is no region of laminar flow when the
Reynolds number becomes large. For flat plates at low Mach numbers,
the vortices and unsteadiness '"disappear' and the wake becomes

49

laminar at low Reynolds numbers”™’. The boundary layer assumptions

apply in this case and an analyticfal solution can be found for the far
wakeSO,

For Moo > 1, or more specifically, Moo >>1, the near wake is
characterized by two free shear layers (or an annulus) shed from the
body surface, that converge into a ”neck”Sl. - For blunt bodies the Mach
number external to the shear layer is ''frozen' at about three, while
for slender bodies it is of the order of the free stream Mach number.

52,53 studies show that a laminar shear

Theoretica123 and experimental
layer is remarkably stable for supersonic external Mach numbers.
This same result applies in the neck region. Therefore, all or part
of the "inner" wake will be laminar over a wide range of Reynolds

L 54. The boundary layer approximations are valid in the inner

numbers
wake region, except very near the neck where the mean profiles
change very rapidly. In the far field, Oseén-type approximations can
be used to linearize the equations and relatively simple analyﬁcal
expre’ssions can be obtained. Since the major trends of the stability
problem are of interest here, these analytical expressions will be
used in the stability analysis.

55 . '
Kubota's™ ™ solution for the two-dimensional compressible wake

with zero pressure gradient will be used (Appendix B):
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w = - e—nz T=1+AT eJI2 . (2. 46)
where
= ’ (dy/T) AT = O T 1 (2. 47)
T( ——j; y = T ¥ ~/(§(*—/(i*,) ’
In Eq. (2.11) the characteristic length
‘ \
od U [UQ W | x
L¥* = (2. 48)

}/Rood. . U W | o

is related to the half-width of the wake, and the characteristic velocity

VE = AUU* = [Ue* - U*(O)] ~ 1/\[(x*/d%) (2. 49)

is the maximum velocity defect in the wake. The quantity d* is a

-

characteristic body dimension. The Reynolds number of the wake

R

_ LAVE ‘ _ Cax
R = —% = (2/[) R, Cp (2. 50)

e ox 2/11'—

is constant. The y coordinate in the stability equations must be

“stretched" by the temperature (Eq. (2.47) ). In the derivation of

Eq. (2.46), it is assumed that AT and M are very small (AT, M << 1),
However, since the relative effects (and not the absolute effects) of
temperature and Mach number are desired, values of AT and M
greater than unity will be used in the numerical calculations.

For the two-dimensional incompressible wake

2
w=-¢e7 T=1 L¥= (2a%/[R_ ) [(x*/a¥)
4%

(2. 51)
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A transformation analogous to Kubota's does not exist for the
axi-symmetric compressible Wake56, The viscous stress term in the
momentum equation does not transform to the equivalent incompressible
form and therefore the momentum and energy equations must be
integrated simultaneously. For the axi-symmetric incompressible

wake

U* = Ue*[l B AU,e—rz] s L% = (Zd*/ /Red* ) ,(X*/d*) ] (Zu 52)

The momentum thickness [or drag coefficient

CD = Dragz ) ] ~ is given by
%pe*Ue* wd*
(2,¢]
o+° = Cp (rax’/2) = 217[ [1- (U*/Ue*)J ¥ dr¥
0

and

C
- 2 1 _ D
AU = (9%/d¥) (Red*/%) T - (Red*/S) F/T) (2. 53)

— 3 P~ b
V¥ = Ue AU le"'

The Reynolds number for axi-symmetric flow is

R ZC

LAxV*

- ed* D 1
Ve* 4 | R, [(xc%/d%)

and varies as the reciprocal of the square root of the distance downstream

R = (2. 54)

of the origin.
The mean profiles for the axi-symmetric compressible case

are assumed to be Gaussian in the Dorodnitsyn-Howarth variable, 7'(,
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w o= - e‘7? T=14+ AT e:)? | ~ (2.55)
where r ;
71:[ (rdz/T) AT, AU ~ ! i (2. 56)

0 (% /d*)

These mean profiles, although not strictly valid (as mentioned pre-
viously),will be used to illustrate the stability characteristics of

slowly varying axi-symmetric velocity and temperature mean profiles.
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III. STABILITY OF TWO-DIMENSIONAL

INCOMPRESSIBLE WAKE FLOWS

Wakes belong to the class of two-dimensional quasi-parallel
flows known as ''free boundary layers', i.e., flow fields in which solid
boundaries are not present. Usually flows which belong to this class of
quasi-parallel flows have one or more points of inflection in the velocity
profile. The presence of an inflection point indicates that the flow is
dynamically unstable in the limiting case of vanishing viscosity,
and that it would become unstable at relatively low Reynolds numbers.
Hence the classical methods of solution for large Reynolds number, or
>more precisely large aR, cannot be used to determine the minimum
critical Reynolds number. The quantity, 1/(aR), is a measure of the
diffusion distance for vorticity during one period. New methods of
solution for the Orr-Sommerfeld equation have to be found for small
values of aR. In addition, the asymptotic methods developed by
Tollmien57,, Heisenberg58 and Lin22 have to be modified for large
values of aR.

Another problem arises in that the quasi-parallel flow assump-
tions leading to the Orr-Sommerfeld equation are not valid throughout
the entire flow field, since the transverse mean velocity component is
of the same order as the longitudinal mean velocity in certain regions
of the field for the small values of Reynolds number of interest in this
problem. Near the trailing edge of a flat plate, for instance, the
transverse mean velocity must be taken into account if a ”preciée”
prediction of the flow stability is desired. However, general quantitative

results are of interest here, and the quasi-parallel assumptions will be
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retained for all values of aR.

The subtleties of incompressible wake-type flows will be
discussed in this section. Section IIL 1 will deal with the solutions of
the Orr—Sommerf‘eld equation for small values of aR. A minimum
critical Reynolds number of 39, based upon the length 6f a flat plate,
is found for anti-symmetrical dist\urbances. The stability character-
istics of a smoothly varying profile at long wave lengths can be found
by using discontinuous. velocity profiles [Section III. 2] In Section III. 3
the inviscid stability of an incompressible Gaussian flat plate wake is
determined by numerical methods. These theoretical results agree very
well with‘the experimental results of Sato and Kurikiz. . The effect of
viscosity on the eigen-value equation for large, but finite, aR flows
comes in through the "inviscid solutions' and does not depend on the
Uyviscous solutions!!. However, the calculation of the disturbance é.m-
plitudes must include the '"viscous solutions', since the 'inviscid
solutions' are singular at w = c. [Section 1L 4]

The Orr-Sommerfeld equation can be derived by eliminating the
pressure and longitudinal velocity perturbation amplitudes from Egs.

(2.12) - (2. 14) (or by considering the disturbance vorticity equation),

2 2 w '
w-c)[u-#},@'“’ R ~2dr g et
( T ¢ T ¢ = % ¢ ¢ +& 9| (3.1)

or
¢lv N ¢l[l°(1"i'&ﬁ(w~c>} + ¢[0(¢ +C&R(W"C>O(X+W1'LJ\QJ (3. 2)

The boundary conditions at the axis are [Eq. (2. 29) and Eq. (2. 30)]:
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¢'(0) = QS'”(O) = 0 anti-symmetric oscillations
‘ (3.3)
@(0) = @''(0) = 0 symmetric oscillations
The boundary condition for large values of y is obtained from Eq. (3. 2).
As y —+ o , w — 0 exponentially, and Eq. (3. 2) becomes
v z
§ (a0 caRgLY L ot g - o9
7

The solutions of Eq. (3.4) are

t a4 re v tay ‘
¢~ € e (3. 5)

)
Now ¢ must be bounded for large values of y (y > 0); if for definiteness,

we take

—Tr<arg(o.2—iaRc)<'rr s - (3. 6)

solutions with the positive exponent must be rejected, and

- /ag"—Ld\RcY Ay

¢ ~ e e

)

or
(a¢/dy) +a = 0

—_— (3.7)
(dd/dy) + fa®-iaRc @ = 0 7 ®

Eq. (3.1) together with the boundary conditions Eq. (3. 3) and
Eq. (3.7) constitute a characteristic-value problem. The characteristic-
values (or eigen-values) are determined by the usual secular determinant,

leading to a relation of the form

E(a, c, R) = 0 . (3. 8)

where E is some general function of the arguments.
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If the imaginary part of ¢ is positive, the disturbances will
amplify with time and the motion is said to be unstable. If it is negé,tive,
the disturbances will eventually be damped out. If cq 1s zero, the dis-
turbances are considered to be neutral. At each Reynolds number, the
spatial amplification rates can be computed. A typical neutral stability
curve for Qake type flows is sketched in Figure 2. The history of a
disturbance as it progressb‘es dqwnstream is indicated in this figure.

For Gaussian wake profiles, the Reynolds number is constant
[Eq. (2. 50)] and thie wave number is proportional to fx_ [Eq. (2. 50)]

The disturbance will be amplified within the neutral stability curve and

damped outside of it.

IIL 1. Solutions for Small a R

Wake-type flows are very unstable because of the occurrence of
a point of inflection in the mean velocity profile, i.e., the minimum
critical Reynolds number, below which all disturbances are stable, is
relatively low. The effect of viscosity is not confined to a thin layer,
as in the boundary layer case, but is felt throughoﬁt the entire flow field.
More precisely, the relative distance that the disturbance is diffused
in one period is proportional to the reciprocal of some power of a R,
and for small values of a R, this distance is of the order of one, or the
full extent of the wake.

An energy balance shows that the rate of increase of the kinetic
energy of the disturbance is equal to the conversion of energy from the
basic flow into the disturbance by the Reynolds shear stress, minus the

. Y . P crs s
viscous dissipation . Viscous dissipation is always a stabilizing
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factor (always leads to a decrease in energy) and for small Reynolds
numbers is very large. Disturbances will be damped out very rapidly
in this region.

Tatsumi and Kakutani“, anticipating a small value of the minimum
critical Reynolds number, have e#panded the solution in powers of a R

as follows:

¢ (y) = Z(i aR)™ 0™ (yia, p) (3. 9)
where |
[32 = az -ia R c.

Substituting Eq. (3.9) into the Orr-Sommerfeld equation, Eq. (3.2), and
matching powers of i a R, the following equations relating the ¢(n)'s

are obtained:
. y . (o)
(D™~ «*) (D=pP) ¢ =0 (3. 10a)

LY o ™ "o -l tn -1
(D=a) (0~ 7 = w[ o g™ _ g -pwd™” (3108

where
D= 9
I
The solutions of Eq. (3.10a) are:

By @
(o) ALY ) LY ) o Y
$ -e , ¢ =e ,'<;'>3 =e ¢ =-e (3.11)

The solutions of Eq. (3. 10b) can be found by the method of variation of
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parameters[Appendix C.]* The general solution of Eq. (3.2) is

p=C o + C.o + Gé + G ¢; (3.12)

where Cl , C2 5 C3 , and C4 are arbitrary constants.

From the outer boundary conditions,Eq. (3. ”I),CZ = C4 =0,

and for a non-trivial solution, §151 and ¢3 , must satisfy the following

characteristic equations [Eq, (3. 3) ] :

Anti- symmetric Oscillations

(o) S
. O (3.13)
é]”l(c) ¢3w(°\
Symmetric Oscillations
¢) (0) (o)
' Sb" (3.14)
= O

4)1 (o) 953" (o)

Eq. (3.9) is substituted into Eqgs. (3.13) and (3. 14) and a com-

plex eigenvalue equation is obtained as a power series in (i a R). **

* The solution Eq. (3.9) converges uniformly for the Gaussian

wake profile, w = - e v , whena<land RI <1 [Reference 31, page

2.70,] where U(T)
I 1

*% Tatsumi and Kakutani®  considered only anti-symmetrical
oscillations. Their method is easily extended to the case of symmetrical
oscillations (Appendix C).

< constant ‘U'(j’) I < constant
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Terms of the fourth order and higher were neglected, because it was
found that these terms did not affect the first term of the asymptotic
behavior of the lower branch of the neutral stability curve. [Appendix C,
Eq. (C. 18) and Eq. (C. 19)] . The eigenvalue equ;a“tion was further

simplified by neglecting terms of order a3 and higher where

p-a = a0 (3. 15)
and
- AT
Ce = R [l + g ]
(3.16)
= — | +//‘+U}z+ E;(CT

Since the anti-symmetric oscillations are more unstable than
the symmetric ones, the minimum critical Reynolds number was
determined only for the former case. Eq. (C.18) ;Appendix C| was
solved graphically for the neutral curve [CI = O] The results are

indicated in the following table for a Gaussian profile:

G,-I R a R CR
+0.40 077 . 120 4.8 -. 022
0. 45 . 095 .16 4.7 | -.034
+0.50 . 125 . 19 4,7 -, 046

Table 3.1

The minimum critical Reynolds number is R = 4.7 at a = 0. 17. At this
point, a R = 0.8 which is exactly the same result found by Tatsumi and

Kakutami31 for a jet.
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For an incompressible flat plate (length d) Gaussian wake

[Eq. (2. 43)} :

e R (.- Ke, - (a,ese > _ 15/ k.
2/t :\f}? /;?_2(‘

g (3.17)

Therefore the minimum critiéal Reynolds number based upon the length
of the plate is Redz‘,< = 39. This value is considerably below the experi-
mental value of about 600 measured by Hollingdales, and about 700
measured by Taneda49, for which oscillations were observed. At low
Reynolds numbers the amﬁlification rate is a strong function of Reynolds
number, i.e., viscous dissipation tends to damp out the distur-
bances. Therefore, oscillations will begin to occur far downstream of
the plate and the Reynolds number at which they are first observed
will be considerably higher than the minimum critical Reynolds nﬁmber
determined by stability.
The asymptotic behavior of the lower branch was found by taking
the limit of Eq. (C.18) as ql — 0, and Eq. (C.19) as UI — - 0 .
Any other limit did not produce any meaningful results. The
first approximation consisted of solving the eigenvalue equations using
only terms up to order a R; the second approximation, using only terms

up to order (a R)Z ; etc. The results are tabulated below:

Anti-symmetric Disturbance

2
Approximation a RZ CR/ o
1st 3. 00 -1.50
2nd 1.48 36.40 -1.64 1.29
3rd 1.51 22.96 -1.57 1. 22
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Symmetric Disturbances

Approicimation a R °R

lst . 0.67 ~-1.05

2nd 0. 47 ~1.26 |
Table 3, 2

For the anti-symmetric disturbances, the fourth approximation in-

volves terms of order (o,R)4, which do not modify the third order approxi-

mation. For the symmetric disturbances, the real part of the eigen-

. : 2_2 . .
value equation has terms of order a R to the approximations made

(even though the imaginary part has terms of order (aR)3), and it is

not obvious that the 3rd approximation will not effect the 2nd approximation.

In the limita —- 0, R —>w , for anti-symmetric distur bé.nces,

the product G.R.Z approaches a constant along two branches. The lower

J\Rz_.» z’l_ﬁb A O

{R*—~ [.5] R—w

Sketch 3.1

of the two branches, in a reference system fixed in a fluid at rest,
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corresponds to a wave travelling in the same sense as the centerline
velocity while the upper branch corresponds to a wave travelling in the
sense opposite to this velocity. The flow is unstable if

-1.57 az <c, <1l.22 az and stable outside this region.

R

Along these two branches Q.R“'/l-l— as a—>0, R—>w,
thus confirming the validity of the expansion [Eq. (3. 9)] . At the
critical point aR = 0. 8; this value is higher so that more terms in the
eigenvalue equation should probably be retained in order to find a more
precise value of the minimum critical Reynolds number. However, the
purpose of the computation was to find an approximate value of the min-
imum critical Reynolds number, and it was felt that any additioné,l cal-
culations were not commensurate with the aims of the investigation.
Moreover, at these low Reynolds numbers, the boundary layer equations
themselves are ﬁot accurate. |

In reviewing the paper of Tatsumi and Kakutani3l, this author
found that terms of order (a R)3 , which were neglected in Eq. (6.4) of
their paper, should have been retained. In the limiting case a —+ 0,

R —+ o , they are of the same order as the terms that were retained.
In addition, the second branch was not recognized rby these authors.
Drazinl4 reported these additional results in 1961.

For the symmetric oscillations, aR and ciR approach a constant
asa—0, R-—+w . The value oflcR| , however, is larger than the
maximum value of lwl . This behavior of the lower branch was first
suggested by Curle12 and verified numerically by Clenshaw and Elliot7
for the Bickley jet, w = sechz' y.

The results obtained by the method of Tatsumi and Kakutan131
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suggest another type of expansion for small values of a R. . Along the
lower branch, R varies from its minimum value to infinity while a is
always very small (a <.2). Another type of expansion, then, would be
to hold R fixed and expand c and ¢ as a power series in a. Howa.rd18
used this method for the Bickley jet and obtained results that are
identical to those of Tatsumi and Kakutani { if the additional terms are
added to Eq. (6.4), Reference 31 ] . This author has used this method
for the Gaussian flat plate wake and also obtained the same minimum
critical Reynolds number, and the same asymptotic behavior of the

two lower branches (anti-symmetric oscillations) as by the method of

Tatsumi and Kakutani.

III. 2. Idealized Profiles at Long Wave Lengths

In both the methods of Tatsumi and Kakutani31 and Howarcil8 ,
the mean velocity profile appears only in integrals, indicating that the
precise shape of the velocity profile is unimportant for small wave-
numbers or large wave-lengths of the disturbances. Drazin and
Howard15 and Drazinl4 have used discontinuous velocity profiles to
find the stability characteristics of flows at low wave-numbers. Some
of their ideas will be presented here as applied to the wake-type flow
stabﬂity problem. |

From Eq. (2.11),

_ (3. 18)
R = (V*L*/U*) a = a* L* >

where the starred quantities represent dimensional quantities, and
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w(y) —> 0O asy ————»f e . The eigenvalue equation, Eq. (3. 8), leads to

a relation between c, a.z , and aR or (R/a), i.e.,
c=c(a, R/a ) . (3.19)

For a fixed a¥* , a —= 0, (R/a) = V% /(a%>%) = constant as

L* —s 0 . Therefore, ¢ — ¢ (0, R/o, ) = f(V*/a*,a*) and

*

VT f (,;Yo*) (3. 20)

As L*¥ —s 0 for a fixed dimensionless velocity profile, w(y),
then w¥(y*) —+ 0 since y = (y¥/L¥*) —& 0 (y* 20 ).

Therefore the two limits, a* — 0, L* and (R/a) = (V¥/a* %)
fixed, and L*¥ —= 0, a* and (V*/3 *) fixed, give the same result
a — 0, R/a fixed. In other words, for w(y) fixed, each limit gives
the same limiting form of the eigenvalue relation, Eq. (3. 20), and the
stabiylity characteristics of the flow are the same for both the limiting
profile w¥(y*) as a* —= 0 . In other words, by using the limiting profﬂes
w¥*(y*) as L* —= 0 , which may be discontinuous, the stability character-
istics of smoothly varying profiles [actual W*(y*)] as a¥ — 0 can be
determined.

Drazin)‘4 derives jump conditions [for a, aR bounded] at the
points where w and/or (dw/dy) are discontinuous and applies them to

the case of a broken line jet.

0 lyt > 1

1 |yl < 1

He finds that three neutral '"branches'' exist for anti-symmetric

disturbances
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aR —> v , a fixed (a) a——-bvtanh-l (7—4J—?>_. )
2 2 2 '
aR~ —— constant a —= 0 (b) aR™ ~ 1, 34 cg —* -1.54 a (3. 21)%*
R—»w
2 2
(c) aR™ ——= 32.4 g —> 1.21 a
and for symmetric disturbances
. 2,2
oR fixed, a —» 0, c—s - [1 +2n" (w /o.R)]
Ant e .
aR = (3. 22)%
‘ [l - -_;-cos\hzm“'\'{"'/l—g&c\nzﬂ“}]
n= 1, 2, 3

The branches (b) and (c) of Eq. (3. 21) correspond to those found
in Section III, 1 and have approximately the same limiting values. The
wave speeds agree to within 2 o/o,, while thé product aRZ agrees to
within 10 0/o on the lower branch (b) and to within 50 0/6 on the upper
branch (c). Thus the use of discontinuous velocity profiles at low wave
numbers is justified at least for qualitative purposes.

The first branch (a) is not meaningful in that the assumption aR
bounded is not met. This branch was not found in Section IIIL 1.
However, this calculation indicates that the flow is unstable between the
branches (b) and (c) and above branch (a). In Section IIl. 3, another
limit is found, namely the inviscid limit, on which aR —+» o , a —» &5 .
Below this branch, the flow is unstable, which leads to the hypothesis
that there might be an '"island of stability' within the unstable region14

This situation is illustrated in the following sketch. It was suggested

* In this text, c is defined as the relative wave velocity and is

R
the negative of the values found in Reference 14.
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Sketch 3.2

by\ Stu.artl4 that branch (a) corresponds to the limit aRP — constant,
R—>w, 0<p<l.

For symmetric disturbances, aR —= constant, cg — constant
as R —» w0, a — 014. This behavior is exactly that found in Section
III. 1 for the smoothly varying profile. For n = 1, CR — - 1.33 and
aR — 59 .

Therefore, for low wave numbbers or long wave lengths, the

stability characteristics of smoothly varying velocity profiles can be

found by using suitable discontinuous velocity profiles.

III, 3. Inviscid Limit

A point of inflection in the mean velocity profile indicates that
the flow is unstable in the limiting case of vanishing viscosity, and
that the main features of the instability mechanism can be obtained by

neglecting the viscous forceszz. The effect of viscosity is a stabilizing
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one and can be taken into account once the inviscid instability mechanism
is understood.
The inviscid limit is formally obtained by expanding ¢ in a

power series in (1/aR),

¢ = 6% (1/ar) p ...,

~ substituting this expansion into Eq. (3. 1), and taking the limit aR —# o0 .
The equation for the zeroeth-order approximation, d)(o) , is known as

the inviscid Orr-Sommerfeld equation and is

(w-c)(P'' - @) -w'd = 0 . (3. 23)%

For neutral disturbances (cI = 0) the wave speed, c is equai to the

R’
mean velocity, w , at the point where w' vanishes. The vanishing of w'
is a necessary and sufficient condition for the existence of a neutral

disturbance22 k, and the disfurbance amplitudes are finite everywhere in

the flow region if this condition holds. The inviscid neutral wave speed

and wave number are commonly denoted by cg and a_ -

2

For a Gaussian flat plate wake, w = - e 7 , the inviscid neutral

wave speed is c = - e‘% = -0. 606, McKoen24 approximated the
velocity profile in three different regions and found that a_ = 2.0, In the
present inve étigation, a_ was detérmined by numerically integrating
Eq. (3.23) ’on an IBM 7090 electronic computer. This méthod is
described in Section IV. 2; a  was found to be equal to 1, 90.

The neutral inviscid wave number is an indication of the extent

of the region of instability (Figure 2) and is of an order of magnitude

* It is understood that the ¢ occurring in this equation is the
zeroth-order approximation, Q° .
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greater than the wave numbers encountered in boundary layer stability
theory. A very important parameter in stability theory is the spatial
amplification rate, [Eq (2. 103.’)] which indicates how fast a disturbance
will amplify in a wavelength. The dimensionless amplification rate
’[Eq. 4. 28] was determined by the method described in Appendix D.
The results are indicated in Table 2 and Figures 3 and 4. The complex
wave velocity determined in this investigation versus the wave number
is Jcompared with the theoretical results of Sato and KurikiB. The
valﬁes of the imaginary part of the complex wave velocity at low wave
numbers obtained by them are considerably higher than those obtained
in the present investigation. For low values of the wave number ;
should decrease, a trend which is not indicated by their results.
Therefore it is felt that the results of the present investigation are more
accurate than those obtained by Sato and Kuriki |

The group velocity of the disturbance must be calculated in a
frame of reference fixed in the body. The amplification rates were
calculated using both the group velocity and the phase velocity of the
disturbance; the maximum value of the former was found to be 0. 33
and of the latter, 0.26 (Table 2). The spatial amplification rate (using
the phase velocity) is compared with the theoretical and experiméntal

values of Sato and Kuriki in Figure 4. The notation of Sato and Kuriki

is used in this figure.* The preferred frequency for natural oscillations

* The wave speed and wave number used by Sato and Ku.riki3
are defined differently in this text. The conversions are

R (Sato and Kuriki) = 1 + . 692 cr (Gold)

a (Sato and Kuriki) = 0,833 a (Gold)
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corresponds to the frequency at which the theoretical spatial amplification
is a maximum. This behavior is similar to that found in free shear

layer and jet ﬂowsz’ 4 and seems to be characteristic of unbounded

flows. The stability characteristics of such flows are relatively
insensitive to the effects of viscosity over a wide range of (large)

Reynolds numbers.

III, 4. Large, Finite Reynolds Number Stability

it is very desirable, although extremely tedious, to determine
the entire neutral stability curve in the a~-R plane. The solution for
small values of the wave number and Reynolds number was discﬁssed
in Sections III. 1 and IIL 2, and the inviscid limit (infinite Reynolds
number) in Section IIL. 3. A description of the problems arising for
large but finite Reynolds numbers will be given in this section.

For channel flows, HeisenbergSS has shown that of the four
independent solutions of the Orr-Sommerfeld equation, two of the
solutions are slowly varying (inviscid solutions) and satisfy the inviscid
equation throughout the channel (except at the singular point), and the
other two are rapidly varying (viscous solutions) and very sensitive
to the effects of viscosity,

For wake type flows, the absence of any solid boundaries
implies that the viscous solutions will not play an important role in
the stability of these ﬂoWs and can probably be neglected in the first
approximation, and that the effect of viscosity must bg found from the
higher order terms of the inviscid solutions. Foote and Lin17 show

that the effect of the viscous solutions does not enter into the eigenvalue
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problem for both free shear layers and wakes of large a R. For free
shear layers, the viscous solutions must be rejected because the dis-
turbance amplitudes must damp out at infinity. For wake flows
(symmetrical velocity profiles), one viscous solution must be rejected
because it becomes infinite for y —+ w0 . However, the other viscous
solution is shown to be of higher order, in the eigenvalue problem,
and can be neglected. However this does not imply that the viscous
solutions are entirely neglected. The inviscid solutions have a
logarithmic singularity at the point w = ¢, which must be '""smoothed"
out by the action of iriscosity. If ¢1 and ¢2 are the inviscid solutions,
and ¢3 and ¢4 are the viscous solutions [()53 and ¢4 become infinite

exponentially as y — - w0 and + o , respectively} then

b=c ¢ +C,0,+C0,4C, 8, . - (3.24)

For symmetric or anti-symmetric disturbances, C4= 0, and Eq. (3. 24)
becomes

¢ =c ¢ +C,0,+C 0, . (3. 25)
The coefficients in Eq. (3. 25) must be chosen in such a way that in the
vicinity of the critical point, w = ¢, the discontinuities in the inviscid
solutions ¢1 and d)z must be smoothed out by the action of viscosity
due to the viscous solution C,f)3 . In other words, even though the viscous
solutions can be neglected in the eigenvalue equation, they must be
retained in determining the distribution of the eigen-functions.

Tatsumi and Kakutani31 have used this apprqa.éh to find the
upper branch of the neutral stability curve, and have shown that the

stability characteristics of the Bickely jet are relatively insensitive to
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the effects of viscosity over a wide range of very large Reynolds
numbers.

M‘cKoenZ{j‘ neglected the fourth-order terms ¢"" in Eq. (3.1)
and perturbed the solution about the inviscid sblution. This procedure
enabled him to find a simple expression for the neutral stability curve
for large values of R. This assumption cannot be justified although his
results look reasonable. However, this method did not predict a
minimum critical Reynolds number. Cur1e13, using an extension of
McKoen's method, approximated the solution by a linear combination
of twé inviscid solutions. Again, this additional assumption cannot be
justified, although it predicts a minimum critical Reynolds number

31

w hich is very close to that found by Tatsumi and Kakutani™ ™ and

Howar d1 8 .
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IV. STABILITY OF TWO-DIMENSIONAL COMPRESSIBLE WAKE FLOWS

Wéke-type flows are dynamically unstable because of the
occurrence of a point of inflection in the density-vorticity productzz’ 32.
Therefore the stability characteristics of such flows are relatively
insensitive to Reynolds number, for sgfficiently high Reynolds numbers,
and interesting and important results can be obtained by considering
‘the "inviscid limit'" of the small disturbance equations, in which the
viscosity and conducti\;’ity_ of the fluid can be neglected to a certain order.

For an incompressible wake, Sato and Kuriki® show that
inviscid small disturbance theory compares very favorably with experi-
mental results, and that natural oscillations occur at a frequency at
which the theoretical spatial amplification rate is a maximum. The
present investigation was motivated by these ideas and was extended
to find the effect of compressibility on the stability characteristics
of wake-type flows.

| Lees and Lin32 considered the inviscid stability of laminar
compressible fluid flow and applied their results to the flat plate
boundary layer. The reader is referred to their paper for a complete
description of the problem. The only points that will be discussed

in this section are those relating to the compressible wake problem.

The nature of the disturbances far from the axis of the wake
was investigatéd. It is found that the disturbances can be classified
as subsonic, sonic and supersonic according to whether the wave
velocity of the disturbance (in the direction of the free stream velocity),
relative to the free stream velocity is less than, equal to or greater

than the external velocity of sound. Neutral and self-excited subsonic
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disturbances are possible only when the gradient of the density-
vorticity product (pw')! vanishes for some -w < (1/M) in a coordinate
system fixed in the fluid at rest. Thus, when M is sufficiently high,
no subsonic disturbances occur. If one assumes that only subsonic
disturbances are ‘important for stability, then many of the transition
phenomena occurring in the hypersonic wake can be explained on this
‘basis.

A numerical method of solving the inviscid compressible small
disturbance equations is presented in Section IV. 2 and Appendix D for
both neutral and amplified disturba‘r‘xces. Numeriéal results are pre-
sented in Section IV. 3 for a compressible wake using the mean flow
model of Kubotass. The amplification rates at four stations of a
hypersonic wake were calculated and the results indicated that the
maximum spatial amplification rate is constant in the streamwise
direction and occurs at one preferred frequency. This amplification
rate is approximately half of that calculated for an incompressible
wake. 'However,‘ for hot wakes, the range of relative Mach numbers
over which subsonic disturbances can exist increases. Therefore,
as long as the relative Mach number is below the critical Mach
number a hot wake will be more stable than a cool one. Finally, the
hypersonic wake stability problem is discussed in Section IV, 4 using

the results obtained in the previous sections.

IV. 1. Inviscid Disturbance Equation and Quter Boundary Condition

The following self-adjoint equation for the pressure perturbation

can be obtained from Egs. (2.23) - (2.27), (Lees and Lin32)‘.
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[

2(w-c) ]

w-C T

[Zw' T] . 2[ M
! - - ' -a 1-

The boundary condition on the axis, for anti-symmetrical

disturbances is Egq. [(2.. 28)] :

w=0 y=0

(4. 1)

(4. 2)

The boundary condition for large values of y must be determined from

the self-adjoint equation. Wheny —> w0, w—= 0, T—= 1, and

Eq. (3.1) takes the limiting form

il -‘,O,ZQ ™ = 0

where

Q =1- M2 cZ
The solution of Eq. (4. 3) is

T =;C'~, e

Following the suggestion: of Lees and Lin3

(4. 3)

(4. 4)

(4. 5)

2
, introduce a ''cut'" along

the negative real axis of the complex Q - plane so that the real part of

am will always be positive as long as - w < arg Q <7.

physical considerations, w must be bounded for large y and must

From

behave like e JQY as y—=w . Therefore the boundary condition

as y—>»o0 is

™'+ amn‘ =. 0

when - w <arg Q_ <w . The self-adjoint equation Egq. [(4. l)] and

the boundary conditions [Eq. (4.2) and Eq. (4. 64 constitute a

(4. 6)
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Sturm-Liouville system with discrete characteristic values.

The product of the asymptotic solution e~a,_§7y and the
y independént part of the disturbance, exp i a (x - ct), represents
progressive waves with the direction of propagation of the wave
- dependent upon the frame of reference of the observer. If a wave
propagates outward and in the negative x direction with respect to an
observer fixed in a fluid at rest, it will propagate inward and in the
positive x direction to an observer fixed in the body, and vice-versa.
It is to be emphasized that the component of the propagation velocity of
the wave frqnt in the x direction, in a reference system in which the
coordinates are fixed in a fluid at rest, ié‘ c ¥ - Ue* ; the component is

R

c,* in a body ~ centered frame of reference [Figu’re 5] . The asymptotic

R

solution for the complete disturbance is

exp [i (ax-am 1 ¥ -ecy t)] exp [clt-amR y] (4. 7)

té an observer fixed in a fluid at rest ( cg < 0 ). The quantities

a m I and Q I take the sign of c; . For amplified disturbances,
C; > 0 and the disturbance is an incoming wave with an exponentially
damped amplitude as y —> o0 . If ¢ = 0 (neutral disturbances), then

§2. = 0 and from Eq. (2.11)

I
2 2
Q- Q=12

‘R

1}

(4. 8)
(c* - Ue*)2

a %
e

= ] =«

0;

ALY

The disturbance can be classified according to whether Q R

: i i * o % % i *® . *® = %
corresponding to subsonic (U_ a * <cp*¥<U ), sonic (U, a, cg*)
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and supersonic (CR* < Ue* - ae*) disturbances, respectively. The
neutral subsonic disturbance is propagated parallel to the x axis and
is exponentially damped in yasy— w.

If cp = 0 and Q R < 0 (neutral supersonic disturbances), the
pressure disturbance is composed of both incoming and outgoing waves,
in general, of unequal amplitudes. Therefore, unless the Sommerfeld
radiation condition (i)ur’e oncoming or outgoing waves) is imposed as
the boundary condition for y — o , the characteristic values will not
be discrete: This problem and the problem of neutral sonic disturbances
are discussed in Lees and Lin32 and will not be treated here‘.

This condition must somehow be related to the conditions on
the axis since the proper frame ofAreference for stability considerations
is one in which the observer is fixed in the fluid at rest and only sees
the velocity defect of the wake. Lees and Lin32 show that the necéssary
and sufficient condition for the existence of a neutral subsonic distur=-
bance is that the wave speed must equal the mean velocity at the point
where the gradient of the mean density-vorticity product vanishes,

namely,

cp=w at (w/T)' =0 (4.9)

and must lie between the maximum and the minimum of the mean

velocity in the interval 0 <y < w0

-1<cp <0 . (4. 10)

The wave speed is a function of both the mean velocity and temperature
profiles, and, as will be shown in Section IV. 3, only depends 6n the

temperature excess AT, since the velocity is normalized to minus one
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on the axis and zero at infinity. The dimensional wave speed in a

coordinate system fixed in the body is

cL¥* = U*[l+c
e

R A U] (4. 11)

R
and depends on cr and the velocity defect of the wake.
This result becomes more evident in a coordinate system fixed

in the fluid at rest. In this system,

C

R (/M) (4. 12)

VHA

corresponding to subsonic, sonic and supersonic disturbances,
respectively.‘ The relative wave speed, CR » is a slowly varying
function of the mean profiles aﬁd temperature excess AT, while the
reciprocal of the relative Mach number is a rapidly varying function of
the velocity defect. This result is very important for the hypersonic
wake problem and vﬁil be discussed in Section IV. 4.

For shear layer type profiles, Lin23 has shown that instability
might occur when the wave speed is subsonic relative to both external
streams. This results in the condition that the difference in the external

velocities is less than the sum of the external speeds of sound, i.e.,

3
— Ul* Ul* > UZ*
— [J_ %
2 - x® * S
U1 U2 <a1 +a2 (4. 13)

IV. 2. Solution of the Inviscid Equation

Since the mean velocity and temperature profilés are functions
of the Dorodnitsyn-~-Howarth variable, n , it is more convenient to

transform the inviscid pressure disturbance equation, Eq. (4.1), and
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the boundary conditions Eq. (4.2) and Eq. (4. 6) to the following form,

using 7’( as the independent variable:

2, dw
Jd 2 dﬁ_asz[l_(Ma/T)(w_c)ZJW:O
dn’ wW-C d7

: (4. 14)

wm=0 TZ=0 3 (d_w/dv))-ka/a'rr:O T(——’oo
where

df] = (dy/T)

The system (4. 14) was solved for both neutral and amplified
subsonic disturbances using two different methods of solution. The
method of solution for the neutral subsonic disturbance will be
described below, while the method of solution for the amplified disturbance
will be described in Appendix D.

Lees and Lin32 show that a necessary and sufficient condition for

the existence of a neutral inviscid disturbance is that the quantity

(w'/T) = (/T) (/e [ /T Naw/ap | = o (4. 15)
must vanish at some value of w = CR The solution for w is regular at
this point if this condition holds. In addition the imaginary part of w is
zero eyerywhere. For numerical purposes it was found convenient to
divide the region of integration into two parts: (1),an "inner region"
between the axis and the critical point, n c (where w = ¢); (2),an
"outer region'' between the critical point and infinity.

In the "inner region', Eq. (4.14) is used. The solution for w

in the neighborhood of the critical point is obtained by a series
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expansion, the details of which are given by Resho‘tk059*:

a2 2 2 2 n
e -Gl nf + SR %
- 2 w 12 24- ) 'T;:-,_;_Tz @
..._32____\’\_/5,_ +3I_lc=_ _ MW, _ °(2c J{U'YU (4. 16)%
W S -

T2 3
+-"—‘§I€b[l v 2 {V-’-:.(qﬂzm--]m-*zc)

where b is an unknown constant.

59

Following the suggestion of Reshotko™ ’ , Eq. (4.14) can be

transformed in a Ricatti-type first order non-linear differential

equation
o Miw-cl 2w’ 2T @ TR
G:[/— ——"—_——_—}—F‘:W—C T :!G'—'D( TG (4.17)
where
G = (n'/a’T °m) . (4. 18)

The boundary condition at infinity then becomes

Tz ot 00 . (4. 19)

Around the critical point

% Reshotko found the expansion around the singular point
using Eq. (4. 1); therefore, Eq. (4.16) is slightly different from that
obtained by Reshotko [Reference 59, Eq. (A—S)] .

*% Primes (') indicate differentiation with respect toTz .
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G=-[n-1] +[b+2%1[7?'7dz

B Ferg Tl e

or inverting Eq. (4. 20a)

b =t | © +(n-n)-2 % ()

(4. 20b)

1Y

A Z
Z Wc I + \A/c, 4 0( T 3
= e - b
( 3 WY I T M (7? )?c)
Eq. (4. 17) has a singular point at infinity. This can be seen
in the following way. The second term on the right hand side tends to

zero exponentially as y —w o . Therefore, for large values of T{ s

Eq. (4. 14) reduces to

G' = (1-M2c%)-a?Gh (4. 21)

whose solution is 20 [\~ M-ch??
2 2
I-uc | C e -
2R J1- Weer q

& C e + )

2 2
G — __1_:_1;_4_9_ (4. 22)
unless C = 0 ; in this case
2 2
G _ l1-M

If the integration of Eq. (4.17) is started at the critical point, for any

arbitrary value of b (unknown constant), all solutions will tend to
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Eq. (4. 22) at infinity. If b is chosen exactly right the solution will tend
to the correct boundary condition (4. 19). The correct method of
integration then is to start from infinity and integrate in towards the
critical poiﬁt.

‘The calculation procedure used to obtain the neutral inviscid
solution for the given profiles W‘(]‘( ) and T(.TZ ) and the relative Mach

number, M , is as follows:

Integration from Infinity to Critical Point

1. Evaluate c and TZC from Eq. (4.15).

2. Assume a value of a and evaluate G{co) [Eq, (4. 19)] .

3. Continue the calculation of G by integration of Eq. (4.17)
to some small positive value of ( T( - TZ C)°

4. Evaluate the unknown constant, b, at (7’( ~ 7( o) from

Eqg. (4.10b) since G is known from step 3 at this point.

Integration from Critical Point to Wall

5. Using the value of the constant, b, from step (4) evaluate w
from Eq. (4.16).
6. Continue the calculation of w by integration of Eq. (4.14) to
the wake axis.
7. Repeat steps (2) to (6) unfil the boundary condition, w = 0,
is satisfied.
The nature of the integral curves for w and G are shown in the

following sketch.
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G
T \\

o~ Different values of a and b

N n

Sketch 4.1

IV. 3. Numerical Results

In order to find the effect of relative Mach number, M, and
temperature excess, AT, on the stability of a hypersonic wake,
the wave‘numbers, wave speeds and amplification rates of a typical
blunt body wake were obtained using the methods described in Section
IV. 2 and Appendix D, The inviscid equations were solved numerically
on the IBM ‘7090 of the California Institute of Technology Computing
Center by the Runge-Kutta-Gill method.

The mean flow model of Kubota (Section IL 4)

2 2 .
W= - e—n T=1+ AT e-Tl (4. 23)

was used in the numerical calculations. For neutral subsonic dis-
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turbances

(w'/T%) = 0 | ' | (4. 24)

and, using Eq. (4.23)
. 2
(1-2ncz)+ A'I‘enc [1+27]C7‘]=o (4. 25)

2
wa(nc)=- enc . (4. 26)

Eq. (4. 25) is a transcendental equation for TZC as a function of the tem-
perature excess, A T. The neutral inviscid wave speed is determined
once Tl c is known and is a function only on AT (independent of M).
As T increases, n o moves out, towards the outer edge, i.e., the
density-vorticity product spreads out and shifts to higher values of
and ¢ increases towards zero; in other words CR* approaches the free
stream x}elocity Ue* . These results are shown in Figure 6 and are
listed in Table 1.

As mentioned in Section IV. 1, the disturbances can be clasgsified

according to whether

VIHA

- C

r 5 (1/M) (4. 27)
corresponding to subsonic, sonic and supersonic disturbances,
respectively. For neutral subsonic disturbances the mean flow is
unstable with respect to small disturbances provided a value - cR < (1/M)

exists for which (w'/T"”)! vanishes. As cp increases, the critical

relative Mach number, M_, = [;er* - U*(OV)]'/ae* = - (l‘/CR) increases

very rapidly. This result is shown in Figure 7. As AT increases,

the wave speed R increases (critical Mach number also increases).
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'This result is also shown in Figure 7.

The neutral inviscid wave number,as, was then determined for
various values of AT and M. For a fixed value of M, the inviscid wave
number dec:‘t'ea‘ses with incréasing AT, implying that a hot wake will
be more stable than a cool one. These results are listed in Table 1
and are shown in Figure 8.

For a fixed value of AT, the inviscid wave number decreases
with increasing M, verifying the results of Lin23. The value of a
seems to be linearly dependent on M2 , the slope being a function of AT.
Corresponding to eacht value of AT, there is a critical Mach number
above which subsonic disturbances are impossible. Therefore as M
increases (for a fixed AT), a critical wave number is reached below
which subsonic disturbances are impessible. This critical wave number
decreases with increasing AT (Figure 8). |

Thus, we see that the effect of temperature is two-fold. As AT
increases, the critical Mach number increases, and the range of
relative Mach numbers over \%Jhich, subsonic disturbances can exist also
increases (Figure 7). However, as long as the relative Mach number
is below the critical Mach number the neutral inviscid wave number, a_,
will decrease with increasing AT (Figure 8), implying greater stabilit‘y
of the wake flow. In order to make this statement more definite, the
amplification rates must be compared at these various conditions. The
amplification rate depends upon the velocity defect of the wake, the
temperature excess and relative Mach number. It was decided to take
a typical hypersonic wake and compute the dimensionless maximum

amplification rate at each station, These results are compared with the
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results of Sato and Kuriki3 for a flat plate incompressible wake.

A hypersonic cylinder wake was considered under the following
conditions: -

Free stream Mach number - 5. 8

Diameter of cylinder - 0.100"

Free stream Reynolds number based on diameter - 8, 280.
Under these conditions, McCarthy54 found that transition from
laminar to turbulent flow occurred 47 diameters downstream of the
neck. He also was able to compute the temperature excess, AT,
velocity defect, AU and the relative Mach number M, as a function

of the downstream coordinate, (x*/d*). At four typical stations

x* [ d% AU AT M

5 . 285 . 500 . 65

10 . 160 . 380 .41

20 . 083 . 300 . 26

40 ' . 049 . 200 .16
Table 3.1

At each station, the Gaussian distributions of Kubota were fitted to the
temperature excess and the velocity defect, and the stability character-
istics determined by the method of Section IV. 2 and Appendix D. The
results are tabulated in Table 2.

For the range of temperatures and Mach numbers considered,
the wave number is almost a universal function of the'complex wave

velocity for a < 0.8. In fact it compares reasonably well with the
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stability characteristics of the incomfpressible wake. For a > 0.8 the
real part of the complex wave velocity is also roughly independent of
the temperature, but the imaginary part is a strong function of tem-
perature; hence the spatial amplification rate is also a very strong
function of temperature. These results can be explained by the
following argument: at low wave numbers, or large wave lengths the
mean profiles become unimportant since the length scale of the dis-
turbance is larger than the length scale of the mean flow; for large
wave numbers, or small wave lengths, the length scale of the distur-
bance is of the order of the scale of the mean flow and the mean profile
then becomes important.

For the four cases considered, the propagation velocity of the
wave was practically equal to the group velocity (within 10 C)/o) and for
calculation purposes, the amplification rate was determined by using
the former. These results are listed in Table 2. The dimensionless
spatial amplification rate is shown in Figure 9 as a function of the
dimensionless frequency. The maximum rate of amplification occurs
ata frequency of between 0.7 and 0.8. This result is remarkably
similar to that obtained by Sato and Kuriki>* for the incompressible
flat plate wake. The natural oscillations seem to occur at a preferred
frequency, and they amplify experimentally with a constant spatial
amplification rate in the streamwise direction (Figure 8). The max-

imum dimensionless spatial amplification rate was found to be 0. 165

* The wave speed and wave number used by Sato and Ku.riki3
are defined differently than in the text. The conversions are
C(Gold) = [c (Sato and Kuriki) - 1 ] x  (L.45)

a(Gold) = {a (Sato and Kuriki) ] (1. 20)
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for the compressible wake under consideration and 0. 330 for the

incompressible flat plate wake. The effect of temperature seems to be

a stabilizing one if the dimensionless amplification rate is a measure of
P

the relative stability between two flows. The ratio of the disturbance

amplitudes (in the linear regime) at two different stations, is given by

b
Eq. (2.10b). X%
X *
' X C 3
Q/Q = galig 3
@) exp[ e e
’Q./J%l
Since
* = * c% = * = *
a* = a/L cff = ¢y V¥=1c AU U
¥ = ¢ 3 = *) = ¢ E
cr Cr Ue cg* (d/da*) (a* CR ) cg Ue"‘
Cp=1+cgAU Eg=ER-t,-~o.(ch/da) AU

where L* and AU are defined by Eqgs. (2.48) and (2. 49), then Eq. (2.10b)

becomes -
X7d* . R
1 K Cy  Seo x X 4. 28)
T/Q =exp | = > Co =2 d ln X/ (4.2
/Q] O B T |
Y\‘_/A"-

The appropriate drag coefficient is not the total drag of the body but
the value of CD in the inner laminar wake, which swallows momentum
defect in the outer flow very slowly. Therefore CD is approximately

equal to the initial drag coefficient at the neck and 'cherefore1

(.*/p %) Cp = (3 / /Red*) . (4. 29)

Eq. (4. 28) then becomes
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Xx/d*'
QW/Q’.:':expf"(_C1 =R [k d/n X}J*  (4.30)
Xfdx G AT

If the dimensionless amplification rate is independent of (x*/d*) as the
numerical results seem to indicate then Eq. (4. 28) can be integrated,

to give the following result 3 > 4 Ca
% - g e. —
g [ S
L =N . . 4. 31
R RYFL ( )
If the disturbance originates 5 diameters downstream of the neck,
and the linear region (region in which the theory of small disturbances

applies) is assumed to extend to the transition point, then for the case

just considered

(Q*'/Q*') = 13 (Red*':: 3 ) . (4.32)

This result is of the same order as the experimental results of Sato and
Kuriki for a flat plate incompressible wake in the linear region.

- Extreme care must be taken in applying these numerical results
to the formulation of a theory of transition for hypersonic wakes,
although these results do indicate some trends (concerning transition)
that are observed in wind tunnel and ballistic range experiments
(Section I1V.4). The mechanism of transition is a very complex one

and cannot be explained fully by a linear theory.-

IV.4. The Hypersonic Wake Problem

In this section some of the laminar-turbulent transition phe-

nomena observed in the hypersonic wake of blunt and slender bodies
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will be explained by the small disturbance theory of laminar stability
using the results obtained in Sections IV. 1 to IV. 3.

If the free stream Reynolds number based upon a characteristic
bociy dimension is very low the wake will be completely laminar. As
the free stream Reynolds is increased, transition occurs in the wake
far down stream of the body, and bégins to move upstream as the

' Reynolds number is further increased. Eventually, transition

Msticks" in the region of the neck, i.e., the transition point approaches
a fixed value over a wide rangevof Reynolds numbers, and the wake
downstream of this transition point is completely turbulent.

The fa.ct‘ that the wake is laminar blelow a certain critical
Reynolds number can be explained by recognizing that there is a min-
imum critical Reynolds number below which the turbulence in the wake
cannot maintain itself against the action of viscous dissipation. Oﬁe
way that this Reynolds number can be found is by assuming that the
effective turbulent diffusivity is equal to the laminar diffusivityl. If
the Reynolds number is below this value the wake will be always lam-
inar; if it is slightly above turbulent fiow is possible. (There is also a
minimum critical Reynolds number in laminar stability theory below
va/hich‘all small disturbances are stable, according to the solution of
the full viscous small disturbance equations. )

The upstream motion of the transition point as the Reyriolds
number is increased is not yet understood. It seems probable, how-
ever, that transition is preceded by linear and non-linear regions
similar to those found by Sato and Kuriki for an incompressible flat

plate wake. Considerations based on Eq. (4.31) may indeed furnish an
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explanation of this phenomenon.

The "sticking'' phenomena is caused by the fact that subsonic
disturbances are impossible in the wake neck region and in the free
shear layer because the relative Mach number is so high there. In
the neck region, the relative Mach number is practically equal to the
local "external'' Mach number, since the centerline velocity is very
small. For blunt bodies the ext’ernal Mach number is '"frozen' at
about three, while for slender bodies the external Mach number is
approximately equal to the free stream Mach number. The velocity
defect and relative Mach number decrease very rapidly downstream of
the neck, while the wave speed decreases to roughly one-half of the
velocity defect. At some point downstream of the neck, subsonic dis-
turbances will,occur implying instability. The length of the stable
region is determined mainly by the external Mach number and the rate
of decay of the velocity defect. The stable region will be longer for
slender bodies than for blunt bodies because the external Mach number
is much larger in the former case. [Sketch 4. 2] This prediction is
verified experimentally by the results of Slattery and Clay60 for
spheres and cones.

The experimental studies of Chapman, et a152 and Larsm153
show that a laminaf free shear layer is very stable for high external
Mach numbers. Lin23 [Section Iv. 1] indicates that instability occurs

if the wave speed is subsonic relative to both streams and from

Eq. (4.13)
. L £ ES
U1 UZ‘" < a; + az‘"

For the free shear layer behind a body, UZ*'?—-' 0 and



S\QT\A?"' BQ& e S

B‘\Pﬁ"’ Boc‘les

NecK N Soentic \\*\e——/

Sketch 4. 2

y £ *
M, <l+(a, /a2 )

If the bordy is adiabatic then the condition for the existence of subsonic
disturbances is that ]tvI1 < 2.5. Again the local external Mach number
for a ’bvlunt body is frozen at about three while for slender bodies it is
of the order of the free stream Mach number. Therefore, subsonic
disturbances will not exist for most cases of practical interest and
the shear layers will be very stable. The free stream Reynolds

number must be raised one to two orders of magnitude in order that

transition jump from the wake to the body boundary 1ayer1.
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V. STABILITY OF AXI-SYMMETRIC COMPRESSIBLE WAKE FLOWS

The stability of inviscid axi~symmetric incompressible jets has
recently been studied by Batchelor and Gi1136. * The more general
problem of the stability of inviscid, compressible fluids will be dis-
cussed in this section with special emphasis on wake flows. This
study will give valuable insight into the stability problem of a real
fluid at very large Reynolds numbers (a R > > 1). It is known from
experience that wake—‘tsrpe flows are very unstable. This suggests
that the dynamical properties of the flow are very important in the
stability problem.

The eigenvalue equation and boundary conditions for the inviscid .
radial velocity disturbance amplitude constitute a Sturm- Liouville
system analogous to that treated by Lees and Lin32 for two-dimensional
disturbances. By transforming the velocity components to a new
orthogonal set, the similarity is even more startling. This fact suggests
that results sirhilar to thosé for the two dimensional case can be obtained
for the axi-symmetric problem. These results are derived in Sections
V.l - V.4.

Agéin, as in the case of two-dimensional flows, it is found con-
venient to classify fhe disturbances as ''subsonic", "sonic' and
”supévr sonic', according to whether the phase velocity of the disturbance
relative to the free-stream velocity is less than, equal to, or greater

than the mean speed of sound in the free stream.

* This work was carried on at the same time as the present
investigations, unbeknown to this author.
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It was also found that neutral and self-excited subsonic dis-
turbances are possible only when ;he gradient of a density-vorticity
product vanishes for some - w < (1/M)(in a coordinate system fixed
in a fluid at rest), which is exactly analogous to the two~dimensional
case.

The energy transfer mechanism between the mean flow and the
disturbance flow is studied in the inviscid limit. It is found that the
Reynolds shear stress is composed of two terms: one asspciated with a
density-vorticity product, which produces a discontinuity in the shear
stress at the critical point; the other associated with a singularity in the
radial disturbance vorticity, which produces a delta function behavior
near the critical point. The latter contribution is a destabilizing
influence,

The special case of an axi-symmetric wake is worked out. | For
incompressible flow only the n = 1, 2 modes are unstable. If the tem-
perature profile is of a '"top-hat' nature then only the n = 0, 1 modes
are unstable; if it is "slowly varying" then the n = 1, 2 modes are un-
stable. The n = 1 mode seems to.be the most unstable mode because
the radial velocity component is free to 'flop'' around on the axis,
giving the motion an extra ''"degree-of-freedom'. These oscillations are
analogous to the anti- symmetric oscillations in two-dimensional flow
which are known to be more unstable than the symmetric ones. How-
ever, it is necessary to calculate the amplification rates of different

modes before a definite statement can be made.
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V.1l. Similarity Between the Small Disturbance Equations and

Boundary Conditions for Axi-symmetric and Two-Dimensional Flows

Batchelor and Gill36 show that by a suitable transformation of
velocity components, the incompressible small disturbance equations
for axi—syinmetric flow become similar to the two-dimensional small
disturbance equations. These results are now extended to the case of
compressible, axi-symmetric flows.

Following Batchelor and Gill, the lines of intersection of the

AX + P = constant

/

T = (OV\§*°~"‘+

Sketch 5.1
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family of surfaces
r = constant, ax+ n ¢) = constant

are circular helices on which the phase of the disturbance wave is

constant [see Sketch 5. 1] . The disturbance amplitudes depend only

on the variables r and ax + n{ and are constant on a helix of this family.
It is convenient to define new orthogonal velocity coordinates

as follows [See Sketch 5. 1}

Ci/: rrr:r 7¢+ :(n 77\
=9, (5. 1)

_ 4 _ \L
73_ ™m Z’ mr 7"

~0
o
|

where 94y is the velocity component perpendicular to both the radial line
and the helix of constant phase [r = constant, ax + n¢ = constant] » A3

is the velocity component parallel to the tangent to the helix of constant

phase, and m = /az + (nZ/rZ) is the magnitude of the total wave number.

The tangent to the helix of constant phase makes an angle, tanﬂl(ar/n)
with the axis of the cylinder.

In this coordinate system, Eqs. (2.38) - (2.43) become:
Continuity

(w-0s +9.7 + F[E(79) + 19T (5.2)

1- Momentum

im0+ Fo5,wlz- o

- | :
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2- Momentum

N r
LCIW-C) G — o (5.4)

3- Momentum

. be) )
f[L(W”C)Ci;“m"}?zW]:O (5. 5)
Energy

T[L(W-C)e '+ T 71]: - [x-/ ][7}(\’72); LCZ,T?H (5. 6)

State
S - e
?—W—? TT=1 (5. 7)

These equations are exactly the same as those for two-dimen-
sional inviscid flow,Eqgs. (2.23) - (2. 27),except for the obvious coordinate
scale factors. q and q, correspond, respectively, to the longitudinal
and normal velocity disturbances in two dimensional flow. The velocity
component q5 appears only in Eq. (5.5) and is determined once q, is
known., It plays the same role as the sweep velocity in boundary layer
theory.

The two-dimensional small-disturbance equations can be reduced
to a single second order equation in w or ) [Section IV. l] , while the
‘disturbance equations for axi-symmetrical flow can be reduced to a
similar single second order equation in m or q. [Section V. 2] . The

boundary conditions on the axis for these perturbation amplitudes are:
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Axi- symmetric [Eq, (2. 44)

n=0 w(0) arbitrary qr(O) =0
n=1 w(0) = 0 q, arbitrary
n>1 w(0) =0 qr(O) =0

Two-Dimensional [Eqs. (2. 28) and (2. 29ﬂ

Anti- symmetrical oscillations w(0) =0
f)(O) arbitrary
Symmetrical oscillations w(0) arbitrary

$(0) = 0

Far away from the axis, the boundary conditions are exactly the same
[ Egs. (2.30) and (2. 45)] . Therefore, the n = 0 mode corresponds
to symmetrical oscillations and the n = 1 mode corresponds to thev
anti-symmetrical ones. There is no direct comparison between the
n > 1 modes and the two-dimensional oscillations. It is expected,
therefore, that the n = 1 mode will be the most unstable mode
[Section V. 6]

Since the small disturbance axi-symmetric flow equations and
boundary conditions are analogous to those for two-dimensional flow,
it is expected that many of the basic results will be the same in both

cases.

V. 2. Inviscid Disturbance Equation and Outer Boundary Condition

A single second order equation in either q, or m can be obtained

from the system of Eqs. (5.2) - (5.5). Since the inviscid disturbances
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are particle-isentropic

pr o Jd+r It

/ LZAPNE LS ‘-—-Q/NW

or

) ' i . \edi
t{w-c) ™ =—‘X[‘.:‘:(rcir) +L1v7] (5. 8)

The variables q and w can then be eliminated from Eqgs. (5.3), (5.4),

and (5.8), resulting in the following self-adjoint equation

(gxy')’_()o+ _°If: )“\’=O (5. 9)
where
Y=<,
/
§‘ \’[ %T—MI(W-L)’] | (5.10)

P [6¥]

The other disturbance amplitudes can be found in terms of \P as follows:

T -0 ()

Y M*

. m( Yy 4 W !

(q, =—5Tw-O2(Zh) - & % &

19, = — w Y (5.11)

mr? w-C |
(s = WO (_V;_/'C) g’(-&'}c) + ;:i_-c ;11
Lo = (DM T(w-0*§ (__ ) ¥

i
=
v T
w-C w-C Y
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A self adjoint equation can also be written for the pressure disturbance

The boundary condition on the axis is
V=0 r=0 . (5. 13)

The boundary condition for large values of r must be determined from
the self-adjoint equation. Whenr —» o0, w—= 0, T—>~1, p—>0
‘ -
§— (1/n) [1 Mm% ¢ 2] . Then Eqg. (5.9) takes the limiting form
Wy - (¥'/r) -'O,ZQ V=0 (5. 14)

where

Q=1-M*c? . (5. 14a)

The solution of Eq. (5.14) is

\P:r[AIl(a/gr)%-BKl(a/’gT r)] . (5. 15)

Following the suggestion of Lees and Lin32', introduce a '"cut' along the
negative real axis of the complex Q - plane so that the real part of

JQ will always be positive as long as - w < arg Q <® . The asymptotic
o(/ \B

-2 Q ¥ (5. 16)

form of the solution (5. 15) is

I,(d&_r) — zr:jﬁ

T
K(M7) — g ©
RI/QQ »oO dﬁf—*‘”




72

From physical considerations q, must be bounded for large r; there-

fore VY must behave like f— 0./]?. ¥ asr—+ o or

Y'e 4/} Y=0 ‘T"‘a"ﬂﬂLT" . (5.17)

This is the same boundary condition as for the two-dimensional case,

E':q. (4. 6)] . A simple interpretation of this result will be given below.
The product of the asymptotic solution, e-u/ﬁ_r , and the r

independent part of the disturbance, exp [io, (x - ct) + in(b] , represents

progressive waves with the direction of propagation of the wave dependent

upon the frame of reference of the observer. If a wave propagates out-

ward and in the negative x direction with re spect to é,n observer fixed in

a fluid at rest, it will propagate inward and in the positive x direction

to an observer fixed in the body and vice versa [See Section IV. ‘1.]

The asymptotic form of the solution (large values of r) is

\/~ exP{ (o<x -~ [T rng -AG Jc)JexP[CIJt A/__S? ] (5. 18)

to an observer fixed in a fluid at rest (¢, < 0). The surface

R

a4 x - um [ +n QS = constant is generated by the circular helix
ax + nfb = constant, for various values of r [See Sketch 5. 2,] . The

quantities Q and Q I take the sign of ¢ For amplified dis-

I 1°
turbances, g > 0, and the disturbance is an incoming wave (for each ¢)
with an exponentially damped amplitude as r —s o0 . If c; = 0, then

QI = 0 and from Eq. (2.11)

%, uv.)"-
Q’“

Q-Q,= 1~ M- /-

(5. 19)
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dx-dmlv +“¢ - (0“5'\'6&'\* .

Sketch 5.2

Perpendicular to Helix

teat of Constant Phase

AX +ng-LaCet =G

't"qv., g:ﬂ
T

Tangent to Helix
of Constant Phase.

- Sketch 5,3
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The disturbances can be classified according to whether QgE 0 3

i i % * * i X . * = *
corre§pond1ng to subsonic {Ue a, < cr ] . sonic [Ue a, CR ]
and supersonic [ cR* < Ue* - a’e‘*] disturbances respectively. This
classification has the following interpretation. Consider two successive
positions of the helix of constant phase, at time tand t+ At (Sketch 5. 3).

The local relative propagation velocity of the front is equ,alvto

U*-Ce

o = (v &) cos (T -8) :/’_:_E | (5. 20)
o(\rl

Asr —» o0, U¥ — Ue* and CP* —_— Ue* - CR* . Thus only distur-
bances propagating at subsonic velocities relative to the free stream

[Ue* - CcL* < ae*] will have amplitudes that vanish exponentially as

R
r — o, The helix of constant phase becomes more and more like a
circle in the x~ planeasr —= w0, i.e., 6= tan-l (ar/n) — (w/2) .
.This situation is illustrated in Sketch 5.4. Eventually, the local wave
front propagates almost parallel to the x- axis, and the outer boundary
condition is the same for axi-symmetric flow as it is for two-dimensional
flow.

The local Mach number of the disturbance is defined as the local

propagating velocity of the disturbance divided by the local speed of |

sound

7._ C:l [U*"C*J

a* [' i A‘T‘H a** (5. 21)
(W-Co)* M*

- nt
(1 + =) T
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Sketch 5. 4
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If '
T = MZ (V\/‘ CR).L

Nt
(14 &%)
the local Mach number is unity, and the denominator of §[Eq (5. 10)]

vanishes. This sonic line is only an apparent singularity of the

differential equation, Eq. (5.9). If

Mz(\/\/— Cr)
(1+ &)

the flow is everywhere subsonic with respect to the wave. If the local

>

Mach number is unity somewhere within the wake then subsonic and
supersonic flow exists within the flow region.

For neutral supersonic disturbances, thé radial velocity dis-~
turbance and the pressure disturbance are composed of both in;:oming
and outgoing waves of unequal amplitudes, in general. Therefore,
unless the Sommerfeld radiation condition (pure oncoming or outgoing
wavés) is imposed as the boundary condition for r — o , the character-
istic values will not be discrete. This problem and the problem of
neutral sonic disturbances are discussed by Lees and Lin32 and will

not be treated here.

V. 3. Singularities of the Inviscid Disturbance Equation

The inviscid equation, Eq. (5.9 ) has a regular singularity at
the critical annulus, w = c, r=r, # 0 in the complex r-plane. The
solution of the equation in the neighborhood of this '"'singular point"
(annulus) is obtained by the method of Frobenius. The two 1inear1y

independent solutions of Eq. ( 5.9) valid in the neighborhood of the
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critical point are (Appendix E)

14

b= Al - ZWI,’ +(°(16><C 6vv’)7( g (5. 22)

/x>0
\-}J’_:K%/n}"IJ-A')(*‘ v (5. 23)

<0

Y o= K*),’[)n/}‘/—i“"] +14+b X -

where
fevow
k= igw’]
w,’ dr C
< 2 2
\L _m
X=1+ == 2% (5. 24)

g-_-_’_.
< T-c'>§c . '
Gje =-[ ke, I

The coefficient b1 is not determined by this method. In going from

Rl (r - rc) >0 to R!(r - rc) < 0 the proper path lies below the point
r=or, for WC‘ > 0 and hence, for proper analytical continuation, the
term /n)(( )(> 0) must be modified to ( /n/){/ -imw) (]( <0) in Eq.
(5. 23) [Appendix G ] . It will be shown in Section V. 4 that k, which
is the gradient of a density-vorticity product at r = ré , must vanish
if a solution of Eq. (4. 1) is to exist for neutral disturbances. The
behavior of the disturbance amplitudes in the neighborhood of the

critical point is sketched on the next page in Sketch 5.5, For k= 0,

\P and all its derivatives are continuous. For k £ 0, "}) is continuous,
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\PR ___K:o \"II
— K<=O0 '
< T ¥-Ye
AV
<\
N\

- Sketch 5.5

"P R has a continuous derivative but a discontinuous curvature at the
critical point, while kPI has a discontinuity in slope. This result is

analogous to that for the two-dimensional case [Reshotko59, page 42] . ®

—_— ) . x>0
7': \'L:-.:"c [K {:'n)]: -iTr} +“] X<0 (5. 25)

~0
2
-0

=EAE §
T T T-Ye - Te
Sketch 5. 6

* This notation is slightly different than in Reference 59.
\PR (Gold) —+ @1 (Reshotko), Y (Gold) —» & (Reshotko),
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This case is identically the same as the two dimensional case
(where q ig similar to f) in which there are no discontinuities in q;
for k = 0, but for k # 0 there is a jump discontinuity in YR and a
logarithmic discontinuity in Y -

[ Lo

B _ in g m X (5. 26)
cis'“ o mcﬁ1[7 + K{lnl](/—dTr{’L"] XL 0O

=¥

Y-Ce
N .;l: O

Sketch 5.7

For n= 0, q3= 0. Whenn# 0and k = 0 there is a hyperbolic-

type discontinuity in 43 - The real part of q3 has a jump discontinuity,

I
n ;! 0and k # 0. There is somewhat analogous to the behavior of 8

[Sketch 5. 9]
m 7o

2 '“7(
I le_iwc,gc[l _ Kdgxc 73{)h W-ur}*’)/“ (5. 27)
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—— 5-%c

v-¥e

Sketch 5.8

w. is continuous for all k for w_ has a jump discontinuity for k # 0.

I R
4 Y o S % P
0= - w | X iyl = < o ¥ Lo (5. 28)
9&’ -—K=o0
— — k<O
T T-Te

Sketch 5.9
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The temperature perturbation amplitude behaves like the q. velocity
perturbation near the critical point for n # 0. This discontinuity must be
modified by the introduction of conductivity in the neighborhood of the
criﬁcal point. [ReshotkoSg]

The density fluctuation behaves exactly like the temperature
fluctuation in this region.

Summarizing, even when k = 0% the fluid viscosity, however
small, must be taken into account when n # 0 to smooth out the dis-
continuity in 43 The effects of viscosity are limited to a thin annulus
of the order of (a R)-l/3 in thickness [Appendix G] . .The dis-
turbance is inviscid in the sense that the gross features of the distur-
bance amplitudes can be found outside of the viscous layer without con-
sidering the effects of viscosity. The temperature and density fluctua-
tions in the neighborhood of the critical point can be smoothed out by
introducing conductivity, analogous to the two-dimensional case
[Reshotkosg] . When k = 0, viscosity smooths out the disturbance
amplitudes between two equal "inviscid' values for r - T So outside
the viscous layer. However, when k ;( 0, the "jump'" in the Yinviscid"
value of qu persists; viscosity merely insures that qu changes con-
tinuously over a small but finite layer. Thus one suspects that the
vanishing of k at some point in the shear flow is a necessary and
sufficient condition for the existence of a neutral, inviscid subsonic
disturbance with ¢ = c_ £0, a= ag # 0 in the limit a R —» oo

[Section V. 4] .

* The quantity k is analogous to the gradient of the density
vorticity product in two-dimensional flow TSection V. 5] .
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There is another singularity at the origin, r = 0, when c = w(0).

In the neighborhood of this point

+’Vl I‘Z n=20

2

- | — | (5. 29)
+~ r— 4 f I’J.?{O °

Integrate Eq. ( 5.9 ) to obtain

i ® 2
g* :-—.(P +—;<7—)“)’4‘” . (5. 30)

7
The only solutions that satisfy Eq. (5.30)are

\P ~ 1 n=0
(5. 31)

¢V ~ r n;fO

and the boundary condition Eq. (5.13) can never be satisfied.

As in the two dimensional case the only possible non-trivial
solution is given by a = 0, n= 0, c = w(0) and V¥ = w(r) - w(0).

The singularity at the point T(1 + '7?’-:21—7-“ ) = M2 (W—C)Z
is an apparent singularity of the differential equation [Eq. (5. 9)] s
since a self-adjoint equation can be written for the pressure disturbance
[Eq. (5. 12)] in which none of the coefficients of the equation become

infinite at this point. At this point the local Mach number of the dis~

turbance is equal to unity [Section V. 2] .
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V.4. Necessary and Sufficient Conditions for the Existence of

Inviscid Subsonic Disturbances

The self-adjoint equation, Eq. (5.9), and boundary conditions,
Eqgs. (5.13) and (5. 17), constitute a Sturm-Liouville system which is
analogous to that treated by Lees and Lin3'2 for two-dimensional flows.
This fact suggests that results similar to those for the two-dimensional
case can be obtained for the axi-symmetric flow problem. Some
general conditions for instability will now be derived using the pro-
perties of this system.

Multiply the self-adjoint equation, Eq. (5.9), by the complex
conjugate of Y (derioted by the super script',\ ) and subtract the com-

plex conjugate of Eq. (5.9) multiplied by ¥ from it to obtain

(£ y-Ev ][ g]l“l’\'l1 —[p-f 1Y 532

Let

W= - ,_;;[g%)- gkrfr]_—_/maj[g@v'] | (5. 33)

so that Eq. (5.32)

w=E[¥] + mlyl (.54

€= T + ]~ wow-cor - 2] slg]

Sl_ [2M1<w Ce) C Hgl

P,? /W 7 [(w CR)(§ w')' - C1(§ ]
=i c/’[(w cn‘(f W)+ CI(S w)]

(5. 35)
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Since W vanishes at r = 0 and r = ao["" = 0 at these end points},
(dY_\f/dr) must change its sign in the interval (0 < r < ). Therefore,
~a necessary condition for the existence of amplified subsonic disturbances
(cI > 0) is that é\ I and/or PI must change their sign in the interval

0<r<w. For incompressible flow,

§I:O;T=l ,§2=’/(|+ IYI%)*‘ and (ng’)'

must vanish at some interior point of the interval if amplified distur-

., 3 . . . .
bances are to exist. 6 There is no singularity along the real axis
since the critical point lies above it when Cq >0.

For a neutral inviscid disturbance, c, = 0, (dW/dr) =0, and

I
W = constant except possibly at the critical point r = T, # 0, orin
other words the Wronskien of the solutions, ﬂ/§R , is constant outside
the critical layer r = T - Consider the jump in W across the critical
layer, w = CR ¢

o O

[\_/_\/] =[\/_Y(fc +0) —\/_}/(*‘c >°)]=11m/7‘[f§1!\?'[24, ' ’['P;!"P’.‘J*J (5. 36)

C obe
1~>0~%-0 o

The only contribution comes from the second integral

€10

(W = Lim? Sl (8w de (5.37)

c. a0l [WC) G5
I o

e

The integrand is essentially a delta function and in the limit Cp —* 0

(W= vlJT- | v €, w), = mE K| (5. 38)
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for wc' > 0. This same answer could also be obtained by using the
expansions around the singular point in the expression for W.

[ Eq. (5.23), Section V. 3] . It is just the discontinuity in ‘PI' in
passing from r - T, >0tor - T, < 0 that leads to the discontinuity in
Ww.

Now W must vanish at the end points. Therefore a necessary
condition for the existence of inviscid, neutral, subsonic disturbances
is that (gR W')! must vanish if \Pc £ 0. The quantity (g R W') is
the density-vorticity product in the q3 direction [Section V. 5J It
must have a true extremum at r = r. and not a point of inflection
[Appendix F] . Denote the value of ¢ = w at this point by cg and let
the corresponding value of a be ‘G's |

To make the previous statement complete it is necessary to

prove that \Pc # 0. Eq. (5.9) can be written in the following form

E(W‘C)l(‘v\t‘-c)'Jl* £ Ot () =0 | (5.39)
Integrate Eq. (5. 39) to obtain
£l ()= [ L L o 5.0

v

Now if § >0, k"/Lw—d will increase or decrease monotonically as
r decreases according to whether its sign is positive or negative,
respectively, for large values of r. Then, Y = ( "Y‘ O

where \Pl and Y , are given by Egs. (5.22) and (5. 23) in the
neighborhood of r = r_. If . =0, then G, =0 [sin'ce Y, =0
and ‘ch = 1l , and the left-hand side of Eq. (5.40) behaves like

(r - I‘C)Z which is inconsistent with the right-hand side. If CZ # 0 then
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the left-hand side approaches a constant. Therefore, if Yisa
solution of the disturbance equation which satisfies the boundary
conditions, then \PC cannot vanish. This statément can also be proved
if § changes sign in the interval (existence of a sonic point in the flow
field).

Lees and Lin?“2 have shown that this condition is not only
necessary but also sufficient for the existence of inviscid, neutral,
two—dir’nénsional subsonic disturbances. The proof of inviscid dis-
turbances of helical form is similar and will not be reproduced here.

In the region adjacent to the neutral disturbance, a = a

3

S
[

[

c=cg, the condition (SR w') ‘= 0 is also sufficient for the existence

of damped or amplified subsonic disturbances. Since ¢ is an analytic

function of (12 except in the neighborhood of ¢ = - 1, a = 0, it can be
expanded in a Taylor series expansion about the point ,az = asz » €= cg ‘{
o= G (a3 (5. 41) |

I Y(r;c, az) is a characteristic function, and ¢ and 0,2 are character-

istic values of Eq. (5.9), then

J‘P: Y- PR 4 . ¥ de (5. 42)
e R DS de ddr

- 2
Differentiate Eq. (5, 9) with respect to a  and multiply it by Y ;

multiply Eq. (5.9) by "hﬁ- and subtract to obtain

S v = - ¥[25 4]

+rl - v (3]

(5. 43)
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Integrate Eq. (5.43) along any path in the complex r- plane between the

end points r = 0 and r = and consider the neutral disturbance,

Y = L}’s, = S,anda2=a2

(Ac] - —[[ (34*) T
R 8 +<;>§>g+;r=l-

(<]
All of the integration can be carried out along the real axis, except for

(5. 44)

the term containing (DP/;)C)S , which has a pole at r = T and must be
evaluated by integrating along a path that passes below this point.

Therefore,

/mag[ [( %%)S!\Ps{lcx(} = I——l—t:&-— (gs w')cn (5. 45)

The numerator is always negative so that the imaginary part of

takes the sign of ( %sw')” . Since M5, £ 0, Imag ( e/ £,

provided ( £ Sw')” # 0 ; and c; must be positive for some value of a
slightly greater or less than a_ . This result proves the sufficiency
condition for the existence of damped or amplified disturbances adjacent
to the neutral disturbance.

The results derived so far correspond exactly to the results
obtained for two-dimensional disturbances and are summarized below.
The vanishing of the gradient of the density-vorticity product in the d3
direction is a

(1) necessary and sufficient condition for the existence of
neutral, inviscid, subsonic disturbances,

(2) sufficient condition for the existence of adjacent amplified

or damped subsonic disturbances,
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(3) necessary and sufficient condition for the existence of
‘ neutral and amplified disturbances in incompressible flow.

A necessary condition for the existence of amplified subsonic
disturbances is that 123 and/or 9 change sign in the interval under
consideration; a specific statement regarding the gradient of the
density-vorticity product cannot be made for this case.

For most problems of interest, § =2 0. By the oscillation

théorem of Sturm (.Ince,61

. 2 . ‘s
, P10.6), if p+ (a”/Tr) is positive then V¥
is monotonic; if it is negative then Yis oscillatory. Since Y must
vanish at the end points, a necessary condition for the existence of

neutral inviscid subsonic disturbances is that

T

/\//a)([p . & ] e | (5. 46)

.T_;
This condition restricts the value of (n/a) to a finite integer, which
depends upon the mean flow profiles» [Section V.6 } i § changes
sign in the interval, these results do not apply. This case has not

been investigated.

V.5. Energy and Vorticity Relations

For a physical understanding of the stability phenomenon, it is
important to investigate the transfer of kinetic energy between the
mean flow and the perturbed flow. Qualitatively the energy transfer
mechanism for axisymmetric flow subsonic disturbances can be

described by the following relation (in dimensionless form)
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<o
o f[ 2 )2 2 ,
L . - Y d *
df | 2 7" i?’ 7,‘ ] N (5. 47)
°
(=]
— d :
= fT o vde [viscous dissipation]
o
where
T = Reynolds shear stress = - f ? ! 7'
4 x ke

d ) P
dt = ou t Uiy ’

and the bar indicates an average over one wave length in the x and one
period in ¢ The term on the left side of Eq. (5.47) represents the
rate of increase of the kinetic energy of the disturbance, while the
first term on the right represents the conversion of energy from the
basic flow to the disturbance by the action of the Reynolds shear stress.
For a neutral disturbance the time rate of change of the kinetic
energy over one cycle must vanish and the viscous dissipation term must
exactly balance the energy conversion term associated with the Reynolds
stress. In order for a disturbance to be unstable the mean flow must
feed energy into the disturbance. Clearly, if there is to be any instability,
the Reynolds shear stress must have the same sign as the velocity
gradient of the mean flow.
In the limit of zero viscosity, the dissipation terms vanish and
the rate of change of the kinetic energy must exactly balance the energy

conversion term. If this Reynolds stress term is positive, energy will

% The primes (') under the bars indicate fluctuation quantities.
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be transferred from the mean flow to the disturbance and the flow will
be unstable; if it is negative the mean flow will absorb energy from the
disturbance and the flow will be stable; if it is zero there is no exchange
of energy between the mean flow and the disturbance and the flow will

be neutrally stable.

Itb will be shown that the Reynolds shear stress is composed of
two components; one perpendicular to a helix of constant phase and the
other tangent to this helix. A necessary and sufficient condition for the
existence of a neutral subsohic'disturbance is that the perpendicular
component of the shear stress be zero everywhere in the flow field.
However, the other component behaves like a delta function in the
neighborhood of the critical point for neutral disturbances, and the
contribution to the Reynolds stress term in Eq. (5.47) is finite.
Therefore, viscous dissipation in a narrow layer [Appendix G} must
balance this excess production of disturbance energy however small the
viscosity may be. In the two-dimensional case there is only one com-
ponent of the Reynolds stress, when this stress vanishes a neutral
subsonic disturbance can exist, and viscous dissipation is not required, *

In dimensionless form, the Reynolds shear stress, T , for

quasi-parallel, axi-symmetric flow is

T=-79'9 (5. 48)

The longitudinal and radial velocity fluctuations are

* Thermal conduction, however, is required (Reference 59,
page 44).
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9 =R E)=L[%F + 9]

o A A (5. 49)*
% RILE) = A[0E - 4]
whe‘re
E = exp[iu(x—ct)+in(]§]
Therefore the shear stress is given by
T=m— — o a 2
Tl E L (1 e
But the average over one wavelength in x, and one cycle in ¢ of .E2
AR
and FE is zero so that
t
e A p ade 2kly A »
T-- (99,431 e —2E  Rp(v) (50

Substituting Eq. (5.11) into Eq. (5.50), the shear stress is given in

terms of W
: adCot

T’°«e2\, [\/\/*G] (5. 51)

where

W= fmag § ¥ '

- [¥* W —a / €T
@_ T | ?[—‘“ w-c]

(5. 52)

*¥ The primed quantities are fluctuation amplitudes.
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_As ¢ —+ 0 , W has a jump of magnitude [Eq. (5. 38)

[/
IE
I

[\_?V_’(rc+0)-V_V(rC-O)}

) 1T§CK H’Clz

(5. 53)

across the critical layer, where

K =—W~‘:-§-c(§w')é » Y #o0

<

. . . 2
This result is analogous to the two-dimensional c:ase3 . However,
T varies as (I/r) so that the W contribution to the shear stress will

have the form

W/r ' Wir
KLO

Sketch 5. 10

G is singular at r = r_ and behaves like a delta function, i.e., (Sketch 5.11)

‘ CSeTy_w | C
le'% [u//'c - : -c}: ] i Lo 12 - (5. 54)
C-‘*O w ,( Y (I + ’er-‘) Cywo0 (W'Cn) + CI
o (e ¢ ¥ - e -

The rate at which energy is transferred from the mean flow to

the disturbance flow is given by
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@D

H f‘z 9, 2 de 4 dx =f~c_ixw4f
;,d\C: ﬁw G

= 2% ﬁ{i T Qi B
(Hﬂ—“)mc

ATVt

(5. 55)

C; -0

where
W.' yo wilo)= =1
wi(®) =0 \,_\_T(Q ro) =
G/e
=T r

Sketch 5. 11

A necessary and sufficient condition for the existence of a neutral

subsonic disturbance is that k = 0 (Eq. (5.53) ) so that the first term
in Eq. (5.55) vanishes but the second does not. Therefore, even for
"inviscid' neutral disturbances, viscous dissipation must balance the

excess production of disturbance energy however small the viscosity
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may be. The contribution from the G term is positive for wc' >0, n#0
and is always a destabilizing influence. For rotationally symmetric
disturbances, n = 0, the contribution to the G term is zero and the
results are analogous to those for the two-dimensional case.

Batchelor and Gi1136 show that the Reynolds shear stress

T = —fﬁ ! ‘z' is composed of two components; one perpendicular to a
N ®
helix of constant phase and the other parallel to the tangent to the helix
(on r = constant) [Sectio‘n V. 1] . Using Eqs. (5.1) and (5. 48), these

stress terms are

o sae [
- rTor - 2R~ N
£y9 == TE— R [ 9, 41
(5. 56)
e Cyt
_ AE , ML
- 2 %W"%/WZW—Q/I-/M«j < (w<)
_ ot
S ORI LY $[ag, - 2
M T R ?P A8 7"]
5.57
;‘,(C.It - ( )
- _ g e 1) {\P) w ] [
2 T\n—:’ T qu:/—%c

respectively. Therefore,

TS0 =] - L[0T
AdCpt

-2 W+ G

as before [Eq. (5.51)1
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A necessary and sufficient condition for the existence of a

neutral, subsonic disturbance is that W = 0 and, therefore,

- j"]?cj’ ‘= 0. Asc¢;—>0, the - 79, ‘13’ shear stress com-

ponent has the behavior of a delta function [Eq. (5. 54)] near r =T _,

and gives a finite contribution to the Reynolds stress term in Eq. (5. 47).
The quantity k and the singularity éssociated with the ds

velocity component at the critical point can also be interpreted in

‘terms of the transport of the mean and disturbance vorticity across the

plane w = c.

The disturbance vorticity components in the r, 525 and x directions

are

PR XY
[p= 149, % (5. 58)
= g tnae

and the mean vorticity in the ¢ direction is

r‘; v | (5. 59)

in the transformed velocity space [Eq. (5. 1)] > Egs. (5.58) and (5.59)

become

= A L)
-

1)

. .-.-I—‘Y ='—-‘LVV\C)3 ‘ (5.60)

_o{_ . . !
‘—13 y\nr‘ m\.‘:‘ = stclvh yi\mip}— Zn

and
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b
N
3
l_;—_ll

(5. 61)

ik
<)

The radial disturbance vorticity is related directly to the 3 velocity

component.

The vorticitix equation in the r direction is
(W= [ ===} 3. (5. 62)

and in the 3 direction is

}

i ]
Am Y‘:;if‘[,ix:' J = Lf(w—C){{; (mz)’ + _‘i:_ 7 + j‘\*"’; 1 —(m & 7\J |
— (5. 63)
— i—v:{: [é— ((%\'>’ + LMCL
Eq. (5. 62) indicates to an observer riding with the disturbance
that the convection of the disturbance radial vorticity component (or
tangential component of disturbance momentum) by the mean flow
balances the convection of the mean vorticity (or momentum) by the
disturbance radial velocity except at the point w = ¢. At this point,
except for the case n = 0, the disturbance radial vorticity is singular.
The fluid viscosity, however small, must‘ be taken into account to
smooth out this discontinuity.
At w = ¢, the right-hand side of Eq. (5. 63) vanishes; the trans-
port of the quantity ('f [;'/wa"r) (density of angular momentum of the

mean flow or density-vorticity product) must also vanish since

Y= rq, cannot be equal to zero at this point [ Section V. 4] . If the



97

gradient of the density—v_c_)rticity product does not vanish at this point,
then the transport of (f ‘:/,,.n*r) can only be balanced by the diffusion of
(f(;‘/m"v) through viscosity. If a neutral disturbance exists, then
(f{;/m‘v )! must vanish and viscosity is not needed to smooth out the
discontinuity in the density-vorticity product ( in the 3 direction).
This is analogous to the two-dimensional case where the direction
perpendicular to the plane x-y is associated with the 3 direction.

These energy and vorticity considerations only emphasize the
fact that even though the vanishing of the gradient of the density-
vorticity product insures the existence of a solution to the neutral
inviscid equations, the effect of viscosity, however small it might be,
must still be taken into account to smooth out the discontinuities in
both the velocity components and the Reynolds shear stress. The
effect of viscosity is limited to a t-hin annulus of the order of
([aR]— 1/3) {Appendix G] ; outside this annulus the disturbance quantities
can be described by the inviscid equations. This situation is analogous
to Prandtl's treatment of the boundary layer, in which the external flow
is calculated by first ﬁeglecti_ng viscosity and conductivity, and then
viscosity and thermal conductivity are taken into account in determining

the structure of the boundary layer.

V.6. Inviscid Stability of Axi-Symmetric Wake Flows

The results of Section IV. 13 will be used to discuss the stability
of incompressible and compressible wake-type flows in the limit
aR — o0 . In order to fix the ideas of this section, it will be assumed

that the mean flow velocity profile is Gaussian



98
we. et (5. 64)

[Section 11, 4] . The effects of temperature upon the stapility criteria
will be deduced using ''reasonable!' profiles.
A necessary and sufficient condition for the existence of in-
compressible neutral and amplified disturbances (using Eq. (5. 64))
is that
-t

(g’R W) %€ - [(Q—g) + (Ar )L‘ (é)z J (5. 65)

2
(1 + =) 4¢3

must vanish within the flow field, i.e.,

(G(Q ‘4 N (o(fc )1_ (-——é—)’-: o "o (5. 66)

\2)

If n = 0 then the quantity (5. 65) can never vanish within the flow field

and the only neutral inviscid disturbance is o = 0, C = wi(o), $=w-cC.

The locus of solutions of Eq. (5. 66) is sketched below

\\\

i 4 ¢ B 10 (é.‘)t

Sketch 5.12

A necessary condition for the existence of a neutral disturbance

is [Section V.4 ] .
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£
Tr

Max (p + =) ¢o (5. 67)

and for incompressible flow, using the Gaussian profile

. _é_\—\".’ 1._\
Max —X ( SR ! N5 we (5. 68)
(

Tt L W, 4 <
U (B e

where rc2 is determined from Eq. (5. 66) as a function of (o./n)z.

Eq. (5.68) was solved graphically as indicated in the following sketch.

N g
v (A)=0 '

4| -~

3

z (L(h)-\.: 2 .

/ P — f'z,‘é [o]
' E—
\\
b

0.5 1.5 2 .5

Sketch 5. 13

The maximum value of n2 occurs for (az/nz) -—+ 0 and is approximately
4.7 at rz = 1.82. Therefore, for n > 2 the wake flow is always stable
and the only modes of instability are those for n = 2.

The n = 1 mode represents the sinuous type instability, i.e.,
the nodal points for the radial disturbance are spaced 180° apart. The
disturbance radial velocity component is not zero on t}_le axis. This
type of instability is shown in Figure 1 and is similar to the anti-

symmetric oscillations in two dimensional flow [Section II. 2, Sketch 2. 3] .
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The n = 2 mode represents a varicose type instability, but with
four nodal points spaced 90° apart. In this case the radial velocity is

zero on the centerline

AHF 7

A -

v - P‘av\e

Sketch 5. 14

Batchelor and Gill36 have shown that only one neutral disturbance

exists for the jet profile

/
(1472)°"

T -

and is the sinuous type oscillation, n = 1, All other modes are stable.
They also show that a '"top-hat'" profile, one in which the velocity is
approximately constant in some central region and then falls rapidly

to zero, is unstable to the n = 0 mode. These profiles and their
derivatives together with the wake profile are sketched in Sketch 5. 15,

It is interesting to note that the sinuous type instability is common to

the wake and jet profiles and is probably common to the ''top-hat'’ profile.

It is reasonable to conjecture that the sinuous oscillations (n = 1)
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)]
-7
w © @) W=-8
\
B W=
@ ¢ Creer)”

Sketch 5, 15

are more unstable than the varicose ones for axi-symmetric flow. The
radial velocity component on the axis is identically zero for n # 1 and
arbitrary for n = 1. The flow is free to move normal to the axis only
for the sinous mode and is restricted to zero motion in the radial
direction on the axis for all other modes. This additional '"degree of
freedom'' hints that the sinuous mode is the most unstable mode. It
also seems likely that if an n = 0 mode is also unstable, the sinuous
instability will still dominate, unlike Couette flow (flow between two
rotating cylinders) instability, where the n = 0 mode always precedes

any other unstable mode.
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A necessary and sufficient condition for the existence of neutral
subsonic disturbances and a sufficient condition for adjacent amplified
disturbances is that the gradient of the density vorticity produce

j_( [:—T—(,TT;—’- )_?:] ' (5. 69)
o

vanish within the flow field for some - w < (1/M). For slowly varying
temperé.ture and velocity profiles, the density-vorticity product will

act like an equivalent incompressible far field wake or jet profile for
purposes of stability, and the flow will be stable for the n = 0 mode and
unstable for the n =1 mode[Figure l] .

This can be illustrated by using the mean wake profiles of

Section IL 4. If [Eqs. (2. 55) and (2. 56)]

w = -e T=144Te"

where

dn = (rdr/T)

then Eq. (5. 69) becomes, for n= 0,

4 [ x A_w]

417 T* 1
which does not vanish within the flow field. For n # 0, Eq. (5. 69) will
vanish at some point in the flow field because of the term in the denominator

[l + (Y’\/o("\""' ) ]
The stability or instability of the other modes will depend upon

the exact profile shape. Now if the temperafure profile has a ''top-hat'
shape and the velocity profile is slowly varying, or vice versa, then the
n = 0 mode will be unstable. These cases are not physically unreason-

able; for example, the velocity wake will decay more rapidly than the
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temperature wake in back of an axi-symmetric slender body flying at
hypersonic speeds. The temperature profile will remain "top-hat"
for many diameters downstream of the neck of the wake, even though
the velocity defect becomes very small in the same region,

The remarks made in Section IV, 4 regarding the two-dimensional
hypersonic wake problem apply equally to axi-symmetric wakes and
will not be repeated. A typical Schlieren photograph of an axi-symmetric
hypersonic slender body wake is shoWn in Figure 10.* The rear wake,
downstream of the neck, is practically straight for about 10 - 15 base
diameters and then starts to oscillate in the n = 1 mode. The wave length
of the disturbance is of the order of the wake diameter and decreases
as the wave progresses downstream. The wake then becomes turbulent
at about 25 base diameters downstream of the neck. This Schlieren
photograph certainly implies that transition is preceded by a wave-like
motion which oscillates in the mode predicted by small disturbance theory.
The oscillations that are visible in the near wake do not seem to
originate in the neck but in a region between 10 - 15 base diameters
downstream of the neck, indicating that subsonic disturbances do not

exist until then.

* These photographs were taken at NOL and were obtained
through the courtesy of Dr. A. Pallone of the AVCO Corporation,
Wilmington, Mass.
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V1. SUGGESTIONS FOR FURTHER STUDY

1. The neutral stability characteristics of incompressible
wake type flows have been determined for two limiting cases;

(1) the "inviscid limit" (aR —> 0 , @ —a

. R —> ) and

(2) the ""viscous limit" (@ R —+constant < <1, a —+= 0, R —» o ).
It is suggested that the Orr—Sommerfeld equation be solved numerically
to determine the complete neutral stability curve (0 < a R < ).

~ An attempt should be made to clear up the problem of the
Misland of stability'! within the neutral stability curve. [Section IIL 2]
Specificaily, the fourth "inviscid" branch should be determined using
smoothly varying profiles. If this branch exists then the extent of
this "island of instability' should be found.

The behavior of the neutral stability curve is different for
anti-symmetrical disturbances than for symmetrical ones. This
fact, obtained by approximate methods, is not yet understood.

For large values of a R the '"viscous solutions'' do not enter
the eigenvalue problem, yet they must be retained in determining the
disturbance amplitudes around the critical point. Accordingly it is
suggested that the viscous corrections around the singular point be
found to smooth out any discontinuities in the inviscid disturbance
amplitudes.

2. The problem of supersonic disturbances should be studied
in great detail to determine if a mean flow is unstable to them, or not.
Miles34 has found that unstable supersonic disturbances may occur at
low wave numbers (vortex sheet probiem). A similar analysis should

be made for smoothly varying profiles.
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3. Actual wake profiles, starting from the neck of the wake,
should be used in determining the streamwise location at which sub-
sonic disturbances are possible. It would be of some interest to
compare this distance with the "sticking distance'' observed in hyper-
sonic blunt and slender body wakes.

4:-. The effect of temperature and Mach number in the spatial
amplification rate should be investigated more completely by using
larger values of AT and M than was used in this investigation.

5. It is suggested that the equation for the amplification ratio
[Eq. (4. 31)] be examined in detail in order to furnish an explanation
of some of the transitionkphenomena observed in hypersonic wakes.

6. The inviscid stability characteristics of axi-symmetric
wake flows should be calculated by using a method similar to that
describéd in Section IV, 2 and Appendix D, The amplification rates for
the n = ] mode should be compared with those for the n = 2 mode to
determine which is more unstable. Numerical calculations for

compressible wake flows should also be made.



106
VII. CONCLUDING REMARKS

1. The effect of temperature on the inviscid stability of two-
dimensional wake flows is both stabilizing and destabilizing. As the
temperature increases, the critical Mach number increases, and the
range of Mach numbers over which subsonic disturbances can exist
also increases. However, as long as the relative Mach number is below
the critical Mach number the neutral inviscid wave number will decrease
with increasing temperalture.

2. The numerical calculations indicate that a heated wake will
be more stable than a cool one if the relative Mach number is less
than the critical Mach number. For a typical hypersonic blunt body
wake, using Gaussian profiles for temperature and velocity in the
Dorodnitsyn-Howarth variable, the maximum dimensionless spatial
amplification rate is constant in the downstream direction and occurs
at one preferred frequency. This result is similar to that for the
incompressible flat plate wake.

3. The inviscid stability problem for axi-symmetric compressible
wake flows is directly analogous to the two-dimensional problem in a
transformed orthogonal velocity space, except for a delta function
singularity associated with the Reynolds shear stress near the critical
point. This stress is always a destabilizing influence. It is also
found that a necessary and sufficient condition for the existence of
neutral subsonic disturbances is that for some w = - cg < ‘/M
[in a system fixed in the fluid at re st] , the gradient of the density-

vorticity product in a certain direction must vanish.



107

4, For incompressible axi-symmetric wake flow (using a
Gaussian), the only modes that are unstable are then=1andn =2
modes. For slowlying varying temperature profiles the same modes are
unstable. However, for a 'top-hat' temperature profile, then=20, 1
modes are unstable. By physical arguments it is shown that the n =1

mode should be the most unstable mode for wake-type flows.
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APPENDIX A
BOUNDARY CONDITIONS FOR THE AXI-SYMMETRIC PROBLEM

For the axi~symmetric wake the boundary conditions on the axis
are derived from the purely kinematic condition that all disturbance
amplitudes and the vorticity disturbance must be finite there, regardless
of the viscosity or the compressibility of the fluid. The three components

of vorticity fluctuation are

(—\“:%(ix “L*clq, (A. 1)
[3=i49, = 9 (A. 2)
[ = -T'—(r'ctd’)' - -i—\‘éi 9. | (A. 3)

For n = 0, the continuity equation [Eq., (2. 38)] shows that
q.~T as r —s 0 if q, and S are to be finite on the axis and q¢)~r
if F"X is to be finite on the axis[ Eq. (A. 3)] . Therefore, 9,(0) = §,(c)=0;
9., ™y , sle) and 6 () are‘aribtrary.
w®

Forn# 0, let q, —* A asr—+0. Then from Eq. (2.38),
B A ()Y A. 4
Te™ = (A. 4)
Substituting Eq. (A.4) into Eq. (A. 3) one obtains
Lol * €-1
—, {€) ~ YT o
Px = A [(‘ € “] = 0

Then € = n - 1 and for
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B
vV
Yot
0
G
|

r = q¢(0) = 0

0
<
=
1

iagq,(0)

From the d)-momentum equation, ‘w(0) = 0 when n 7( 0, and from

Eq. (A.1), q ~71 (n # 0) or qX(O) = 0. Therefore, s(0) =6(0)=0

when n £ 0. In addition, Eq. (2.40) shows that 7'(0) = 0 when n > 1.

(A. 5)

(A. 6)
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APPENDIX B
TWO-DIMENSIONAL WAKE MODEL

The mean flow quantities are assumed to satisfy the boundary -
layer equations. Using Kubota's method55 for a zero external pressure

gradient, the following set of equations are obtained for the compressible

wake behind a flat plate or hypersonic vehicle:

Continuity
2U ., 2V o
2X DY
Momentum (B.1)
2U QU _ 30
U * Vi 37
Energy
dh oh _ 1 2%h Y M (2Y
Y3y +Vigrg oy (QY)
with the boundary conditions
U=U.0N , 2Jxo-o
h(avY)=h(¥) D—Y(X.°)= (B. 2)
Ul h —0, [Y—o
where
- Lo b= *\1 M, = e
he Qe

vA
( X*) = fe: Uex/(/’e* X‘(
X fa, Uq:/ua: dx




116
. , g
Y =Y [p 3
Uq: &x:“ Te" J"‘
(@]
T = Prandtl number = constant

d* = characteristic body dimension
[ Ue S0 d”
‘3* /C(c:;

PL¥,, X K, %
Fu7= f e = constant ; Chapman-Rubesin relation

* *
J’)e N Ue = constant

The above equations are linearized by using Oseen type variables
W =1-U <«
h el

(B. 3)

Retaining the lowest order terms, the following equations are obtained

W _ W
2X T OY? (. 4)
Qr__)._b_. :'_:‘.):b. .
% oY*
with the boundary conditions
W (0,Y) = W.(T) %,J— (¥,0)= 0
(B. 5)
, o, = l’\o(\() oh (X) = 0
W (oY) v o)

By using Laplace transforms, the solutions of Eqs. (B.4) subject to the

boundary conditions, Eqs. (B.5) are obtained, as follows:
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_(5+ Y)*
(XY)-—/_: % d€

W (5,Y) = 2 /rrxfh () exp — “(i*\') d€ (B. 6)

The momentum thickness (or drag coefficient, C_ = Drag

SR AV

)

is given by

9$(X‘)=CDJ :f;xg* [!_%J c‘yx
e

Ut d
Jf = fw (2)d¢ (B.7)

= coanstant

and the net heat transferred to the body by

5" -[r‘o*w*~H:] J

-

_ 235G dhe {w-)M[W (918 [L.,,(%Hg} (B. 8)
= |
[Re

o

= constant

where H¥ = stagnation enthalpy.
Let
X pe % *
@ < fe Ue e R‘W*
Ic“ Oﬁ* d* Tr

(B.9)

__ S
2B AN AN

T Koy

Then from Eqgs. (B.7) and (B. 8)
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o

jwo (2) 42 = 2/ @

| fh‘,m i :;r/—j%—{ﬁ”—‘w’?@‘ A}

If the initial conditions are assumed to be point sources (delta

(B. 10)

functions), i.e.,

W, ()= RS(®

(B.11)
ho(3) = B8C%)

then from Egs. (B. 10) and (B. 11)

A-3[r O |
DI Me ®- A (B. 12)
B= &/‘Ej“iﬁ (-1 }

The solutions [Eq. (B. 6% then become

. @ YI
W(%Y) = F‘ C¥PTYX
X <y (B. 13)
(+DMe @ ~ Y
N KY) =4S . 4 evp-zt

Let the characteristic'length scale, L*, of the mean flow field

be defined as



119

w f ) Ud: X *
L - A o J
-Te* Ue* Rwé,&

- x 7% (B. 14)
IS X O [ A E
/Eq: Ce® \/ Um“‘]:‘ﬂ: 47
d'\
For a flat plate incompressible wake,
L 2 %
= R (B. 15)
gexﬂ
For convenience, the following notation is adopted:
AU = U= Ut ®&
Ue* JX .
(o) - T, $-0 ) -
AT '-'-—_-.—TO%TQ = [/:( )49@ ] (B. 16)
T, /X
v XY
vx: UQ*AU , 722__::/51_!_
2[R 4T
so that
U U 7
w22 --¢@
AVAcREEE (B. 17)
« 0
T = h™ . ] +ATE g=1
he" ’
e
V* is the velocity defect of the wake and L* is the Y position at which
Ut -U. _ /
UX-U" e
The Reynolds number of the wake is
% %
% A Rep G
R = L - Reg* = B (B. 18)

Q% [F e
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APPENDIX C
31

METHOD OF SOLUTION OF TATSUMI AND KAKUTANI"" FOR SMALL aR

The Orr-Sommerfeld equation can be expressed in the following

form[Eq. (3.2)] :

¢" - ¢I'[aoﬂ FLaROw-0] 4 $lyt 4 LaR(W-0 k™ saR W | (C.1)

subject to the boundary conditions, Eqs. (3.3) and (3. 7),

_ Jar - e Re vy Ay
¢ ~ € ) Cf \{—5 @
(C. 2)
- (oxi(*"- cale) ¢ 7
Anti- symmetric Disturbances
¢l(°) - ¢(H(o) = O (C. 3)
Symmetric Disturbances
Plo) = ¢"(e) = © (C. 4)

Tatsumi and Kakutan131 expand the solution in powers of aR

as follows:

P :Z (L R)“ 95(“) (v, dP) (C. 5)

where

Substituting Eq. (C.5) into Eq. (C. 1), and matching powers of i a R, the

following equations relating the ¢(n)'s , are obtained
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2 & ' v
(D*-&*)(D*-F*) ¢ = O | (C. 6)
n N (ry-t) - " . (n-1)
(Di—d\) (D.L' (31) ¢ = W[D ¢ - ¢6’)J - W ¢ (C. 7)
The solutions of Eq. (C. 6) are
o %Y @ e ™ @ e
$“-e P =e e ,4 e (C. 8)

! 2
The solutions of Eq. (C. 7) can be found by the method of variation of

parameters and are

Y
(n? - ! :
_ 1 AN, () n-1) ;
b, _Mm{e/we [qg e ]dY}

(C.9)

forn>» 1, Jj =1, 2, 3, 4. The general solution of Eq. (G 1) is

4
C. 10)
95 =Z G ¢,— ( ,
J =t
where the Cj's are arbitrary constants.
- Since the solution Eq. (C. 8) must satisfy the outer boundary
condition [Eq. (C. 2)] , C,_ = C4 = and for a non-trivial solution,

¢l and 953 must satisfy the following eigenvalue equations:
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Anti-symmetric _disturbances {Eq. (C.3)]

$'(o) 4t

@) (C.11)
¢ (o) %, (o)

Symmetric disturbances [Eq, (C. 4)]

¢; (o) ;63 (o)

- (C. 12)
% "(0) 953"(_@\

)
For convenience, let A((I)f )s B((}g("’ )s C(¢J “ ) and D(QSJL“) )

be the terms in the bradkets of the solution (k(m [Eq. (C. 9)] ,

respectively, where the lower limit is taken to be infinity, so that

¢(n) _ A(@m)) + B(¢Jcm) _ C(‘é(m) - D(%m}) ' (C. 13)

J

and further introduce the notation

I"(8) = [B(4™) - A",

T = o™ - 4],
k(m(%) B} [ B(‘f}m) . R("’,m)]“o (C. 14)*
L) = [ D(8™) (8™,

; * This definition differs from that of Eq. (6.3), Reference 31,
by the factor (1/iaRc).
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Then

¢ (o)
9}":)'(0)
%(ﬂ) "(O)

):II

(L) (0)

K™lg) - 17 ()
« T74) -2 T (4)
G = FL() - wio 7

o

i}

(C. 15)

1l

<O~
fl
[N
+—i
—~
oe~
g
1
@
w
~
3
~
e
+
13
~~
e
a2
~
]
~/

Substituting Eq.. (C. 5) into Egs. (C. 11) and (C. 12) and using

Eg. (C.15), the eigenvalue relations can be reduced to the following form

Anti- symmetric Disturbances

" = . "o W)
- ‘LZC“‘R) I () Z(‘“e) T (4

(C. 16)

ch\e) J I+iu«fé)“fm(¢s)

=t

Symmetric Disturbances

| ,._Z e K () Z (caR)” K™(H)

d.z (L R)" \.(“‘(4%) | ~Z(L¢E)“ Lm)(%)

=0 (C.17)

Egs. (C.16) and (C. 17) are then expanded and only terms of the third
and lower order in L a R are retained. The quantities in Eq. (C. 14)
were evaluated using Eq. (C.9) with w = + e-y2

Since the complex wave speed is of order unity, or less, then
B - a will be of the order of a R. In order to be consistent with the
approximations used, the coefficients in the eigenvalué equations were

expanded in powers of B - a = a¥ ( ¢ complex) and terms of the order

0’3 and higher were neglected. The complex eigenvalue equations then
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become

Anti-Symmetric Disturbances

-20\[/+0’][2+G’] + LA R(IFG‘ - 30&(\4—6‘)(210‘)"

+ (iaR) [ /_(l+2c)—3o&(|+0)(1+G)J

(C. 18)
+ (L4R) [ (7.+<r)(\\*7(7)] +(w~?)/“l"”’ (8-70)

3 3
+20-—=(1+20) +
2 ZfZ—(

3
gﬁ__(?.i-SG")J:o

Symmetric Disturbances

(2 +7) +(Ld\R)[/’TT - .;‘_A(z +G)

+ (LaR) [/:(_5_ - )
T
+—§—-c/\(2 +cr)} +(L dsf?)-sf'r?[‘ %g +4i -4_’75_'2_+§/I—§_] = © (C.19)

where

I

G,
_/+\//+G—12+'eo(

The asymptotic behavior of Egs. (C.18) and (C. 19) was determined
by a trial and error method. The correct limiting processes and

reduced equations are as follows for ¢y = 0:
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2
Anti-symmetric disturbances Ty +~©°, d—+0, Gp—~ ..GZL
N 2 2. ?3 q
Real parti-4 + Gy R + /= R* + &0y [m o
3 R IS (C. 20)

- ______]_

3
f—i: 2 48

k3
Imaginary part: - 6Cxy +[‘E7'—£l - (gd\] R - 4Gy Rz[£~ g_ﬁr]

—Aiﬁr—}?{‘g*i“f‘i] = ©

2 43

Real part G +

s
_i‘“&ﬁ —DQ[E (__ - 3) +8i°( @PJ R? - o

Imaginary part Gy + [/’l—; - 2« G‘E.} R - «° Gy 3 p? (C. 21)

~o<zl?3/1‘—r[-‘7_ﬁi+__3_-/_5__,__/_
48 4 A 83 }
The equations are solved simultaneously and the results are given in
Table 3. 2.% Since the coefficient of (iaR)3 in Eq. (C.19) is real, the
coefficient of R3 in Eq. (C. 21) [Real part] is zero to the order of the
approximation used. '
Eq. (C. 18) was solved graphically and a minimum critical

Reynolds number was found [Table 3.1 ] .

2

* Since the profile w = ¢ 7 was used in these calculations, the
sign of R as computed from Eqgs. (C. 20) and (C. 21) must be changed

to conform to the notation in the rest of the text. This was done in
these tables.
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APPENDIX D

SOLUTION OF THE INVISCID EQUATIONS

FOR AMPLIFIED DISTURBANCES

For amplified subsonic disturbances, the solution of Eq. (4.14)
and Eq. (4.17) is regular everywhere on the real 7? axis. Since G is
singular at the axis [va(l/'rr) ] , it is convenient to make the following

transformation
H = )’Z G (D. 1)

Eq. (4.7) then becomes

! Miw-c)* 2w’ 7T o W H
H*??[" ”?‘“J +[w-c T }“‘* I e

Eq. (D.2) is a complex equation. Its real and imaginary parts are

He‘ =7[I—%4_—[(w-cﬂ)’~c;u + [Zw(W—ca) 2T H.

w-C) 4 €3 T

' 2
_ ZW C-[ H - AIT 2 Y HR
(w-(n)1+ CJ’ I 72 l‘/l? - ['/1 ] + —7?

(D. 2)

A/II:T?[Z_IW_Z(W"CR) CI] + Z._\A_/_’_C_}_ I‘LR

T (W)t 4 C

2w'(w-C) 5T ~ -2 He g )
+[(u)—CR)1-\-C]" - T J/"II e 20’\ T 77 + )71
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The boundary conditions as 7[ — o0 aTe

N N ‘ / ivicrer
U oMren 1 [ S
fe /74 \/ R -3 | ERGEE

Using a power series expansion about the axis, and satisfying the con-

dition w(0) = G,

HE Frp(_i—-roz + qzr).z_‘_

' (D. 5)*
Hr =0 [by + by

where

_ !
Qo - 0{7_ Toz

_ T
A= 3 A+ ae(Bom )]

/ !
542_5__[0, +#C.0, +C G, 4 b, (B,- zg.z_z;F’)J

* Primes (') indicate differentiation with respect to 7’( .
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B = - 2w, (14 Ca) _, T
(14Ca)" + Cy® T
C - Z‘-Uo" CI

(+Cr)™ + Ct

C - / wulv CI 4 I
B I (T e 2 [

”2
we (14 Ge) Cq
U +C)* + cjgl1

_ 2MM1+Ce) Cq
D, +
MZ T”
- C‘ °|l o
D‘ T I[w + (14 Cg) T ]

There are only two integral curves that will simultaneously satisfy
the boundary conditions at the axis and at infinity for a given set of

eigen values; a , cR and cy - These are sketched below.

‘JR) ul

Sketch D.1
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If the given set is not consistent, the boundary conditions will not be
satisfied and the integral curves oscillate very rapidly near the axis.
For this reason, the integrations were started from the axis and
infinity and the values of HR and HI were compared at a point within
the domain. The matching point was taken to be the point at which
W = CR.'

) The calculation procedure used to obtain the inviscid amplified
soluti;m for the given profiles w(]’( ) and T(]’I ), the relative Mach

nuniber,, M, and the wave speed, R » is as follows:

Integration from Infinity to the Critical Point and from the

Axis to the Critical Point

(1) Assume a value of a and Cq and evaluate the boundary con-
dition at infinity from Eq. (D. 4) and the boundary condition for a small
positive value of Tz from Eq. (D.5).

(2) Continue the calculation of H, and H_ by the simultaneous

R I
integration of Eq. (D. 3) to the critical point, TI c

(3) Compare the values of H_ and HI at 7(C obtained from the

R

inner and outer integrations.

(4) Repeat steps (1) through (3) until the values of HR and HI

are simultaneously matched at )?c
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APPENDIX E

EXPANSION ABOUT CRITICAL POINT - AXI-SYMMETRIC CASE

-The solution of the inviscid equation [Eq. (5. 9)] in the neighborhood
of the "singular point'' in the complex r-plane (w = c) is obtained by a
Taylor Series expansion (method of Frobenius). Egq. (5.9) can be

rewritten in the following form

L}J" + Ef_xyl_;[_‘_(_ 4_,<’XJ\}/:O

3 w-C (E. 1)
where /
X = gf T
(E. 2)

| 0!
Y = gw)
= (
Let /( =r-7r, and assume a series solution of the form

kl/ - ]S[a‘, +Q, %+ 01)("4-71 (E. 3)

Since (w-c) and T are analytic functions of r everywhere in the finite
region of the complex r plane the coefficients of Eq. (E. 1) can be

expanded in a Taylor Series about the point r = r (w=c¢):

S5 (5]

c
I A 45 S (E. 4)

_’-[Yc P ) J
Wc'f 2 We

a(-LXc: b

< =<

¢
9]

b N
»
>

]
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Egs. (E. 3) and (E. 4) are substituted into Eq. (E. 1) and the coefficient
of each power of P is set equal to zero. The two linearly independent

solutions, q”l and ¥ valid in the neighborhood of the critical point

along the real axis arezas follows:

B IR P S B
120

LpizK\Hln)(?b,Yf*i”’l?(z*' (E. 6)

f<o

G IV

where
/ !
= — w
K w‘v gc (§ )C
N PR R 10
Xc T T & e P 4™ (E. 7)
g T N [ - g
S T % Xe
[ Y owe" 2
E =l B K = -—c
b'}. Z[w;' (2 W;'+K) + d XCJ
The coefficient b1 is not determined in this method. The proper path

for analytical continuation of Y in passing from X > 0to ¥ <0,

2 2
lies below the point r = r_ for wc' >0 [,Appendix G] .
The other disturbance amplitudes can be found in the neighborhood

of the critical point by using Eqs. (5.11), (E. 5) and (E. 6) :
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i =_w;§c[/ Kk o by ]

2 [z

L73 = YE—Z[}IL + Kln)( ]

Lt s = Te [~/_ +Kln7( 4-.]
ew' T.* 7 .

7. /
8 = =L —_
L o W X +K)n)(+..
Note that for

Yooy ing

o~
~0
1]

\,‘U{l—f.’ﬂ"

)(Lo ‘“)( —

in Eq. (E.8).

(E. 8)
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APPENDIX F
EXTREMUM OF DENSITY-VORTICITY PRODUCT

For the case of neutral disturbances, (§w') must have a true
extremum at r = T, and not a point of inflection, This can be shown
in exactly the same way as in the incompressible case36 in the following
way. Add the complex conjugate equations, instead of subtracting them

(in derivation of Eq. (5.32) ) to obtain
S IV de + [(p +A) 14/ Nde = 0 (F. 1)

For most problems of interest, §r? 7?1 O | so that

fP,?/q»/ze/r ¢Lo (F. 2)
/ !
R = o (&w) (F. 3)
and
f | (%) 19 Y Lo
w-Ce (F. 4)

o

A necessary and sufficient condition for the existence of neutral dis-

turbances is that

(g, w') =9 (F. 5)

and CR=WwW=cg at this point,

Let 47 - defe, g, % © (F. 6)
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so that
. @ -
{ zW
— dr L O
w-Ce dv?

For most profiles, ( §rlw")' and hence W[4 changes sign only
once in the infinite interval and from Eq. (F. 7)) (w - cR) and 47w/d

must have opposite signs. Therefore, for neutral disturbances,

|4/iz

t
( d3 W/df3>3:§c° and consequently, ($g W')rﬂ.‘ + 0

This result cannot be shown for amplified disturbances except in the

limiting case of incompressible flow

~
must have a maximum with respect to r, i.e.

(F. 7)

~
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APPENDIX G
VISCOUS CORRECTIONS IN THE CRITICAL LAYER

In considering inviscid neutral disturbances, a critical point
occurs in the flow field, across which some of the disturbance amplitudes
are singular [Section V.3 ] . In a real fluid these singularities must
be smoothed out by the action of viscosity and conductivity in the
neighborhood of this critical point. These viscous corrections are im-
portant for the amplitude distributions but they do not affect the eigen-
value problem for a R > > 1. However, if aR is not very much greater
than unity, the viscous corrections around the critical layer may
extend to the axis and the splitting of the solutions into inviscid and
viscous types is not valid. In addition, the temperature and density
fluctuations are singular at this point, and the thermal conductivity of
the fluid must be included in the vicinity of this point to smooth out these
discontinuities. It is to be expected that the viscous solutions for the
axi-symmetric case are similar to those for the two-dimensional case
except for the new element associated with the singularity in 4, since
the curvature effects in a thin annulus in the neighborhood of the
critical point are unimportant. The incompressible case will be the
only one considered here. The compressible problem is the same as
the incompressible one in the Tollmien varia.ble59 and will not be
discussed.

The solutions corrected for viscosity are given by

[corrected solutions] = [inviscid solution] - [singular terms}
+[viscous replacement term

[regular inviscid solution]
+ [viscous replacement term) ,

’

L]
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where the viscous replacement function is obtained by solving the full
viscous disturbance equations in the vicinity of the critical point, i.e.,
retaining only the leading viscous terms in this region. This function
must be such that it approaches the singular terms in the inviscid
solution "far away' from the critical layer. The viscous replacement
terms are found using the convergent series rnethodzz° Introduce the

parameter
€ = 1/(aR)1/3‘ , (G. 1)

as in the two dimensional case, and the new independent variable

N = )¢ - (G. 2)
The mean flow quantities are expanded in a Taylor series about the

critical point

w=C =l (en) + 2L (€M’

(G. 3)
UU\ = W' o+
Egs. (2.32) - (2..35) then take the following forms -
Lg’ Eme . G. 4

"‘W°’Ecif[’*"j=‘,<‘fe_ JT'[:*--]+€[‘L" +..} (G. 5)

LW, € 13[/ +--]- we' 9. m‘:(c [u- ] =€ [73"# ] (G. 6)

i qwc'ej,[l " ] y we' 7,%[1 +..] =T ‘n'[m} + €[‘1"+~] (G. 7)

[4
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where TN, = \/akz + e

In order for Eqgs. (G.4) - (G. 7) to be consistent, the disturbance

amplitudes must be of the following form

(o) )
ﬁl = ?l + e 7{ +-

?r = é‘?:“ + 617:0 +

3T,y et Y,

§l

™

NI AR N

3
Substituting Eq. (G. 8) into Eq. (G. 4) - (G. 7) and eliminating the

pressure,the following zeroeth order equations are obtained:

' {vne g (@
qr L= d\ ?'
' . ) 1o (o)
?30 ~ lwe' ?3(0 N W 3-To
, ™ fe
! ‘ ' o
Cl/ - LW rz (7,(’ - O

The solutions of Eq. (G. 10) are
2

671“” :ft,,(z) dz
(o) “ z
9, =fmcm%

-~

ﬁlto) - 1

3

f
0

()
.

(G. 8)

(G. 9a)

(G. 9b)

(G. 10)

(G. 11)
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where s

2= (w7 = (aRwe) (e

- ) 3/1 ) 5
( = :L; L ; /’L
h, 1)’ [3( z) ] /—/,/3 [%(w) J
N (G. 12)
o [1] 4y
N A @)
and [/73 [%lta J and  Hy [ %Li%f/zj are Hankel

functions of order (1/3) and the first and second kind respectively. The
asymptotic expansions of the Hankel functions of order (1/3) are valid

in the following region (Linzz).

Y.
ST ¢ arg T 0 e (G- 13)

The solutions obtained by means of an asymptotic series (of the
full viscous equations) can be formally related to the asymptotic
expansions of the four solutions obtained by the method of convergent
series (Linzz). The solutions of the inviscid equations are two of the
asymptotic solutions of the full viscous equations. Therefore in order
that the inviscid solutions represent valid asymptotic solutions of the
full viscous equations, the correct path of integration around the
singular point should follow the same criterion as Eq. (G.13), and
should lie below the singular point for w,c' > 0 and above for wc' <0.

If cq > 0, the singular point of the inviscid equation lies above

the real axis, and the effect of viscosity can be neglected inside the

fluid for sufficiently large Reynolds numbers. If = 0, the two lines

-0/, L avy (w«‘>'/“7 L/
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intersect at a single point on the real axis, and the inviscid solutions

can never hold along the entire real axis. Viscosity cannot be

neglected at the singular point no matter how large the Reynolds

number may be., For cq < 0 the two lines intersect the real axis at two

points and viscosity is important all along the real axis between the two

intersections.

o)
‘7: can be determined directly from Eq. (G.9) and Eq. (G. 11)

) * *
o _ £mc
@ @
k3 z
(3] me
?& = = Tyl juf b (=) {2 (G. 14)
- -a
o) (me

c{fs - J\(Wc‘)lls

[T}

9.0 -

The solutions Egs. ( G.11) and ( G.14) are identical to those for the two

dimensional case.

Rewrite Eq. ( G9b) in terms of the independent variable %

21g o) '/3

d ‘5( ¢ ¢o) -N (_Wc') (o)

LI U 1 —

ey L (G. 15)

By the method of variation of constants, the solution of Eq. (G. 15) is
,n(wol)‘lsm < )
g, < c ho (B W (D) 97 d 2

3 W( h (), ‘HL%))

@ (G. 16)
" :

L] b d2

o
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where W[ hl(z) hz(z) ] is the Wronskian of the functions h (z) and

1
hZ(Z) , and -(2/3) v <arg (i z) <(2/3) 7w or ={Tn/6) < arg z < (w/6).

)
For qro = q:; = 1, q(:) is a Lommel function, IL(Z),

[Benney,éz] The real part of the Lommel function is even and
the imaginary part is an odd function of z. The graphs of LP (tz) and

[{(t2) are shown below

Le(t®
LILL?:)
Sketch G. 1
For large values of Z
. !
Ly (L’O—*-? *e (G. 17)

/4

' -t
The viscous corrections which apply for z = 0(1), r - r.~ 0 (4R)
will remove the singularity at the singular point, and the disturbance

amplitude, q3I , in the vicinity of r = r. will look like

N

, I

Y- <c

N

rd
’

¢
K an\sc-J

Sketch G. 2
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The discontinuity is smeared out by the action of viscosity.

If the phase velocity is taken to be equal to the velocity of the
mean flow on the axis, then the solution is singular at that point, and
does not satisfy the boundary conditions. Again, a viscous replacement
term must be found. The reader is referred to Lian22 and Gill37 for a

discussion of this problem.



NEUTRAL, INVISCID STABILITY CHARACTERISTICS
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TABLE I

T cR 7]C M
0 -0.607 0.707 0 1.919
1 1.803
2 1. 684
2. 1. 618
0.25 -0.565 0. 753 0 1.564
1 1.467
2 1.370
3 1. 266
0.50 -0.531 0. 795 0 1.335
1 1. 251
2 1.169
3. 1. 035
0.75 -0.502 0.830 0 1.202
1 1.126
1.0 -0.478 0. 860 0 1. 057
1 0.992
2 0.928
4. 0.782
2.0 -0. 405 0.951 0 0. 849
3.0 -0.356 1.017 0 0. 730
4.0 -0.320 1. 068 0 0.674
5.0 -0.292 1.109 0 0. 633
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TABLE II

AMPLIFIED, INVISCID STABILITY CHARACTERISTICS

Case AU AT MZ
1 0. 692 0 0

2 0. 285 0.50 0. 42

3 0.160 0. 38 0.17

4 0.083 0. 30 0.07

5 0. 049 0. 20 0.03

Case a c c a(c-!—ci‘ ALz A Ce ac

R I dd ER —53 R
1 1.92 -0.61 0 -0. 35 0 0 1.11
1.80 -0.58 0.02 -0.32 | 0.06  0.10 1.08
1. 60 -0.55 0.06 -0.32 0.16 0. 24 0.99
1.40 -0.51 0.10 -0. 28 0.22 0.31 0.91
1.20 -0. 47 0.14 -0. 24 0. 25 0. 33 0.81
1.00 -0.43 0.18 -0.20 0. 26 0.32 0.70
0.80 -0.39 0. 23 -0.20 0.25 0. 30 0. 59
0. 60 -0.33 0,26 -0.15 0. 20 0.23 0. 46
0. 40 -0.26 | 0.28 ~-0.17 0.14 0.16 0.33
0. 20 -0.15 0. 25 -0.13 0.06 0. 06 0.18
2 1.32 -0.52 0 -0. 34 0 0 1.12
1.20 -0.49 0. 04 -0. 31 0.05 0. 05 1.03
1. 060 -0.44 0.11 -0, 26 0.12 0.13 0.88
0.80 -0.39 0.18 -0.21 0.16 0.17 0.71
0. 60 -0.33 0.23 -0.17 0.15 0.16 0. 54
0. 40 -0.27 0. 26 -0.18 0.11 0.12 0.37
0. 20 -0.15 0.25 -0.15 0.05 0. 06 0.19
-3 1.43 -0.55 0 -0. 36 0 0 1,30
1. 20 -0.49 0.07 -0.30 0.08 0. 09 1.10
1.00 -0, 44 0.12 -0. 25 0.13 0.14 0.93
0.80 -0.39 0.18 -0.20 0.15 0.16 0.75
0. 60 -0.34 0.23 -0.18 0.15 0.15 0.57
0.40 | -0.26 0.27 -0.16 0.11 0.12 0. 38
0. 20 -0.15 0. 25 -0.12 0. 05 0. 05 0. 20




144

TABLE II (CONTINUED)

4Cr A Cq 4Cq -

Case a CR cI *TQ T, _%% acp
4 1.51 -0.56 0 -0. 38 0 0 1.44
1.40 -0.53 0. 03 -0. 35 0.04 | 0.05 1.34

1.20 -0.48 0. 09 -0. 30 0.11 0.11 1. 16

1. 00 -0.43 0.14 | -0.25 0. 15 0.15 0.96

0.80 -0. 38 0. 20 -0. 20 0.16 | 0.17 0. 77

0. 60 -0.33 0.24 | -0.21 0.15 0.15 0. 58

0. 40 -0.25 | 0.27 -0.15 0.11 0.11 0. 39

0. 20 -0.16 0. 25 -0, 12 0. 05 0. 05 0. 20

5 1. 63 -0.58 0 ~0. 37 0 0 1.59
1.40 -0. 54 0. 06 -0.32 0.08 0,08 1. 36

1. 20 -0.48 0.11 -0. 28 0.13 0,13 1.17

1.00 -0. 43 0.16 -0.23 0.16 0.16 0.98

0. 80 -0. 39 0. 20 ~-0.20 0.16 0.17 0.79

0. 60 -0. 33 0. 25 -0.19 0.15 0.15 0. 59

0. 40 -0. 25 0. 28 -0.18 0.11 0.11 0. 46

0. 20 -0.15 0. 25 -0.13 0. 05 0. 05 0. 20
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