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ABSTRACT

The equations of motion are developed and solved numerically
for the trajectory of a spherical particle passing through a Prandtl-
Meyer expansion fan. The effect of a change in y and 1 is shown,
where vy 1is the ratio of specific heats of the gas, and n/2 is the
exponent in

n/2
£ = () .
o} o
the assumed viscosity temperature relationship.

It is demonstrated that for particles the order of a micron in
diameter, slip flow will exist, and a proposed correction to the drag
to account for this discontinuous nature of the flow is investigated.

The results are plotted showing particle trajectory profiles
and the components of the relative velocity or slippage velocity of

the particle for flow deflection angles up to 70 degrees.
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I. INTRODUCTION

Heterogeneous flow of a solid particle - gas mixture has been
a topic of increased interest in recent years. The addition of light
metals to solid rocket fuels has focused attention on the non-equilibri~
um nature of two~phase flows in expansion proéesses, and numerous
papers have been written regarding this phenomenon.

Early studies of two-phase flows were involved with investi~
gations of water droplet trajectories arouﬁd a variety of body shapes
in connection with icing of aircraft surfaces. More recently, hetero-
geneous nozzle flow has been examined. Gilbert, Davis, and Altman
(reference 1) related rocket thrust losses to solid particle sizes and
solved linearized nozzle equations assuming Stokes drag law. Kliegel
(reference 2) treated simultaneous velocity and thermal lag along with
the effect of particle lag on gas properties in a one~dimensional noz=-
zle. Rannie (reference 3) showed that for mors‘t cases of interest,
results of equal accuracy to numerical intégration can be obtained
through a perturbation analysis of temperature and velocity lags in a
one-dimensional nozzle. Rannie also introduced slip flow corrections
for drag and heat transfer. An excellent summary of recent advances
in heterogeneous nozzle flow was presented at the American Rocket
Society, Solid Propellant Rocket Conference in January 1962, by R.
F. Hoglund (reference 4).

Several problems relating to supersonic flow of two-phase
systems have also been examined. Carrier (reference 5) investigated
a solution to particle flow through normal shocks, and oblique shocks

were treated by Morgenthaler (reference 6).
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The behavior of a single particle passing through a Prandtl-
Meyer expansion furnishes an example of heterogeneous flow that can
be analyzed in a straightforward manner, and serves to illustrate
some of the problems and important parameters of two-phase flow in
general, This paper presents the development of the equations of mo~ .
tion of small spherical particles flowing with a gas that experiences a
Pré.ndtl-Meyer expansion, and the numerical solution of these equa~
tions. The effects of the temperature dependence of viscosity, changes
in the ratio of gas specific heats, y, and slip flow correction to the
drag coefficient were investigated by varying these factors in succes=
sive solutions. The results of this investigation have direct bearing
on the exhaust of an underexpanded rocket nozzle as the flow expands

around the lip of the nozzle.
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II. DEVELOPMENT OF BASIC EQUATIONS

An ideal two-~dimensional Prandtl-Meyer expansion about a
sharp corner in a semi~infinite channel is the assumed model for
this investigation. A cylindrical coordinate system with origin at
the vertex of the expansion fan is used to describe the position of a
spherical particle passing through the fan. Denoting the radial dis-
tance from the origin to the center of the particle as r , and the
angular displacement of the particlé from the initial characteristic

as €& (Fig. 1), the conservation of momentum equations can be

written v
L(m?) = nﬁ_:ﬁlg, femapu(uy-¥) (1)
fg(mrié) = femTT M ("’5 ‘""’9‘)"' (2)

It is assumed that the only force acting on the particle is a drag force
which can be represented by Stokes drag law modified by the factor
f - The radial and tangential components of the gas velpcity are U,q
and ’U} respectively, and M is the local value of the gas viscosity.
The particle has mass MM and radius g .

| It is convenient to rewrite the equations with & the independ-

ent variable. Choosin L= mr2.8 the angular momentum, and
g g

)

-;-: as the desired dependent variables, the time derivative can be

written
' d ()

= AR

L
4t mr2 de

Equation 1 then becomes



(er’- )fg [m(n:rz)jir_] - ""'FG’?T‘O_/“‘U“S'

- f 6Tr O M (er'l)_d_r

dé
Putting dr = - rt d( /) and multiplying by mr?
2 d'(4) () (dLy L
L Ser + L= (5)+ L + femoumry,
’ J( ) 3
+ o lLréd 2 LY — o ) (3)
fé # d e
Equation 2 is simply
dL mr3 1’5 2 4
£ 6ma - r ) (4)
o= = fomap( ; .
Replacing é__‘-; in the second term of equation 3 by equation 4 we
4 &
have
z/ ) ? )
d& r o dé
+feMTmriuy = O . )
Non~dimensional parameters are defined as
= - —L
R \S and N= mc s b (6)

where ) = s ¥ is the ratio of gas specific heats, and C

)’*H

is the theoretical maximum expansion velocity determined by the

equation

cé= ZCPT;(H- -——’-'-'—Mf)

> ) (7)

The characteristic length, ‘S , has the value

m c A (8)
GMT Mo

‘g:
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The subscript zero indicates initial conditions of the gas or particle

as they enter the expansion fan.

Introducing equations 6 into equation 5, we obtain

L® d( Jd(k) -
S 2] ppensune o s ) o
and dividing by ‘SZ 6WT,M/xa c ,
2(d?(R) | 2/»6 3 (‘/Q) u
LB L) sepfe Bl 4]0 o

Equation 4 can be written in terms of the dimensionless parameters

as
mex 4L =f oo /?zfa(-&ﬂ—')
s & M AN C
or
I _ £ R? /“ "? "’5 A (10)
d & - .
The conservation equations of frictionless flow yield “_é..i ’
V3 » and L as functions of € . The equations may be writ-

c T
ten in terms of our assumed coordinate system as

d

Continuity: F(ug + j/‘;’)“' ’U§ Jg = O (11)
viodus ot (12
: g d e r
Momentum: <
e 2
3 dws y . &7 d (13)
S (uy + 25 )_ X de
r (Us J & Y Je




-

Energy: a?®=x Ry T = E—Zf—i (CZ - u; - 4}52) ) (14)

Equations 11 and 13 can be recombined to eliminate the term in the
parentheses and show that

vy o= Qs | (15)
Using this réesult in equation 14, ’\/73 can be found as a function of

Ugq which can, in turn, be used in equation 12 to give

%i:—_ sin (A0 +o)
| (16)
/%i::_ >\COS<>\9'+O{> .

The value of the constant o can be found by evaluating equations 16
at the initial conditions ©=0 , Vg = &, , and using equation

14 to give
l‘
N(MST 1)+

CoSZo{ = S (17)

The quantity —77_-: .can be found by applying equation 14 to show that

(Y

u
r_ - (%)
Py - (:Y
C [e) C (2]
or by equations 16

(18)

It is assumed that viscosity varies with temperature raised to a frac-

tional power, hence

Z=(z)" (19



T

or from equation 18

K cos(re+t)

P | o

where n will normally be between 1.0 and 2. 0.

The equationsof particle motion (9 and 10) can now be written
entirely in terms of the dimensionless variables R , A, © , the
drag correction factor “F » and the constants & and A . Letting

( )’ denote d ) they become

d &
21V ] 4[R2 Cos”(AGMO[;Q(—,%)’/\cos(>\9+0()'
A (%) + R} u Cos™ o | |
+ Sin ()\9+0()J = O ) (21)

: 2 COSHO‘GH’(){E—Acos(>\9+°‘\)">“k =0
A-fR cos" A

(22)
A value of 1C for spheres in the subsonic slip flow regime has

been proposed by W. D. Rannie (ref. 3) which, for relative Mach num-

bers less than unity and for Reynolds numbers less than about 0. 5,

takes the form

— = LO + 4.05/Y —=— > (23)

where A, and A, are the relative Mach number and Reynolds

number respectively,
M
Re

path to the sphere diameter can be evaluated as follows:

, which is related to the ratio of molecular mean free
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%ol (N

From equations 15 and 16

o oS5 A
G _ c ] (25)
L Cos(ANEe+a) :

Isentropic relationship between density and temperature along with

equation 19 gives

2

(J _ Cos X ¥l 26
% | coshe+e) . (26)

Using equations 20, 25, and 26 in equation 24, we get

Y2 — N
Me e Cosat 73
E— 2P e T cos (N6 + ) ? (27)
and equation 23 becomes
'lxi"h
G, 2.02/% M [ CoOS 6)
£ O, O T Lcos(ne +d) :

The drag correction factor cannot be written in terms of the dimen-
sionless similarity parameters R and /\ , butis dependent on the
particle size and initial conditions.

It is convenient to relate the trajectory of the particle to that

of a particle having zero relative velocity, i.e., moving along a gas

streamline. Designating this path as g = I3 (6) , We can write
dry _ L. — 9% de
— = g = —= )

T dt

o

t

0.
¢



do

and since - = 73 we have
dt r
dry oy Ug (29)
d & Vs

Integrating this equation we obtain

\
s Ry [cos >4 }7\‘2

CoS (A& +K)

o R,

From the definitions of /R and A it follows that

Vs Ry = N
Ve Re No

which, when combined with equations 16 and 30, gives

l-—-
/\3_[ COoS o ! (31)

Noe | COS(ND+X) .

Two new dimensionless parameters are defined

(32)

from which it follows that

DX [c<>s(xe+o<§]‘71

cos «

R R

/ J— .
(_'_)_—_ 1N {COS(A9+O<)]’\Tx’——3<~tan(2\e+oq} .
R/IT Rl cos A (34)



e

, |
7 Nz y %/
(F;) | [Cos(%@ﬁ—o()})\[x/_ 2;< 't.ar’)(>\6+0()

Rol cos o
+X{(—‘A—L—I)fan2()\e+o<)—lﬂ , (35)
S _\_1_"
Cco A
= ° ) (36)
4 T [Cos(kewx)]
~ -
/ CoS A= / o\
N = Aolm [Y*'\/( X >\)JEG.I’Z<}\9+O()} . (37)

Also from equations 6 and 16

No = Ry Cos o . (38)

Writing equations 21 and 22 in terms of X , Y parameters

using equations 33 through 38, we obtain the result

X+ X (3~ ')tan2<kxe+°(> - Q‘Axltah (Ao +)

n

« 1\ (cos o)™
+'F>\Ro< ) Al (39)

X3Y?/(Cos(ne +a)



w1l

Y+ Y{x = MNtan(ie +x)

| -
\—XY)(COS)Wa )

—{/\R)"( XTY J(cos(re+o))rT

Frl — O

" (40)

It is assumed that the particle is moving with no relative velocity prior
to reaching the first characteristic line of the expansion. The initial

conditions are then

X (0) = 1.O
x'(0y = ©

Equations 28, 39, 40, and 41 constitute the complete statement of

the problem.
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III. AUXILIARY EQUATIONS

In order to specify the trajectory, the velocity as well as the
position of the particle should be known. The important parameters

in terms of X and VY are then

v - ARy = 42
v R A, XY ) (42)
R_E & :L[._C.*___OSC’{ e

R, Rs R, X[ cos(re+«) ’ (43)
L tde_ M A 1 dR

Uy Ugdt vz yy R de

which, by 33, 34, and 16, is

% = xy{\— 3)—2- A cot (MO +0<)} , (44)
g

The relative velocity or slip velocity of the particle relative

to the absolute gas velocity is simply

Vs _ LoV
Us uﬁ - U
u% - uﬂ

The relative Mach number is then

2 -

o= JES - (2




or

=] 3

(46)
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IV. SOLUTION OF EQUA TIONS

Since equations 39 and 40 are non-linear, a numerical solu-
tion is indicated for arbitrary valuesvof R, . For either R, >7 1.0
or R, << 1.0 , the i)ossibility of a small perturbation solution
exists; however, this possibility was not investigated.

Equations 21 and 22 were first solved utilizing a desk calcu-

lator and a simple iteration procedure where

’ ’
A, = A+ L[/\| +  Ng, D&
: ‘ 2 (/Rn) (:= A+ A, AG) ’

For these calculations it was assumed that [ = /.0 (Stokes drag law
applies), w=1.4 , n=20 , and M, = E . Various values
of K, between 0.1 and 100 were investigated; however, it was
found that the iteration interval | A &, had to be decreased as R
increased to keep the process convergent. For K, very small, the
iteration interval had to be made very small again to get meaningful

result (proper divergence from the zero deflection line).
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To eliminate much of this difficulty, equations 39 and 40 were
developed. A similar iteration procedure to that of equations 47 was
initially used to investigate the new equations, and it was found that
an iteration interval of 0. 01 radians gave satisfactory results for R,
between 0. 01 and 100,

Equations 39 and 40 appeared to be the more satisfactory of
the two sets of equations for programming on a digital computer, since
the starting solutions of numerical methods are closely related to the
simple iteration procedure.

A Fortran statement for the solution of equations 39 and 40
was written utilizing a subroutine prepared by Mr. K. H. Redner of
Computer Sciences Corporation. The subroutine applies the method
of Runge~Kutta~Gills as a starting solution, and the Adams~Moulton
predictor = corrector formulas as a continuing solution. The facilities
of the Computer Center at the California Institute of Technology were
used in writing the program, and the IBM 7090 computer at the Jet
Propulsion Laboratory was used for the actual solution. A Fortran
statement is included as Appendix A.

To investigate the general effect of changes in ¥ and 1,
Stokes drag law was assumed to apply, and solutions were obtained
for six values of /, between 0.01 and 50 for three sets of assumed

constants.
1) Mo =V2 , ¥=1L4 | n=2.0 ,

2) Mo =NV2 , ¥= 1.4 | n=1/.0 |,

3) Mo=\/2

Y=1.2 , n=2.0 .

)



wlbem
The exhaust conditions of a typical large rocket were assumed
as initial conditions for the investigation of the effect of allowing -F

to vary according to équation 28. The initial conditions chosen were:

M, = 3.0 »

Uo = 9.55 X107 ‘-'Ef—é-;f—i :

P, = o0.0138 1%”—,} s

G, = 3,100 f£ps (To =2820°R)
¥ = .25

n = 1.0

Solutions were obtained for ~, of 0.1, 1.0, and 50 for two par=

ek

ticle sizes, O° = 3 micron and J = 2.0 microns.
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V. RESULTS AND DISCUSSION

The results of this investigation are plotted on Figs. 3 through
10 for 0° to 70° of ‘ﬂow deflection angle. Flow deflection angle, S .,
was chosen as a more meaningful parameter than £ for plotting and
analyzing the results since it is determined solely by the physical
boundaries of the flow. The fan angle and deflection angle can be re-
lated by the usual Prandtl=Meyer functions.

Figure 2 is a graphical representation of equation 6 giving &,
as a function of (. and ¢ for particles having a density of
210 lb/ft3 (as for A{’ZOS ). Initial gas characteristics plotted are for
air at 100°F and 1000°F and for the assumed rocket exhaust conditions
given in the previous section. /, is not greatly affected by a change
in initial gas conditions, but is primarily a function of ¥, and J .
For particles between 1. 0 u and 4. 0 4 in diameter and initially dis~
placed by several cm. from the flow boundary (as in the case of a
rocket exhaust), [, will normally be greater than 10.

The data plotted in Figs. 3, 4, and 5 is based on the assump~
tions that M, = \/E—l s ¥=1.4 , n = 2.0 , and Stokes drag law ap~-
plies with the factor £ = /.0 . For these conditions, particles with
R, > 50 will have little deviation from the streamline, and slip
velocities will be low. For R, < 0.0| there will be large tan~
gential slip and very little deviation from its original flow direction
through the first 25° of gas deflection. Radial slip is small compared
to tangential slip, being a maximum of . 164 for A/, = 0.0/ at about

25° flow deflection. Near this point the maximum relative Mach
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number is . 993 and maximum Reynolds number for a 4., 0 | particle
is 8.38. For R, =10,the maximum radial slip is less than one per
cent while the maximum Mach number is only 0. 151 and maximum
Réynolds number for 4.0 y particle is 2,02, The Mach ﬁumbers and
Reynolds nqmbér both drop sharply on either side of the maximum
values.

The assumed viscosity - temperature function, equation 19

-t

is a well-established approximation that applies over a limited tem-
perature range When N is assigned the constant value appropriate to
this range. By allowing +n to take its expected limiting values, its
effect on the solution can be observed. Figures 6 and 7 show curves
for which Stokes drag, Y=/ 4 , and M, = \/? where assumed for
N=10and N=2.0 . A small change in trajectory path and tan-
gential slip velocity aﬁd a negligible change in radial slip velocity
were observed. Thus, little error is introduced by the selection of
an average value of 17 over an extended temperature range.
A change in ¥ from 1.4 to 1. 2 does have a fairly large ef-

fect on the trajectory path which is due principally to the change in
the gas streamline. The tangential slip velocity is increased also,
which tends to increase the path deviation from the streamline, but
this is a small effect. Radial slip velocity is not appreciably affected.

| The drag correction factor, £ , which allows a departure from
Stokes drag law to compensate for slip flow or free molecular flow

effects, was proposed by Rannie (ref. 3) as an analogue to a similar



development for heat transfer coefficients. Although it has not been

verified experimentally, it does give proper results for the extreme

values of .g-s- yy 1.0 and _/gi ¢¢' 1.0 > and should give a good
[ ’ e

approximation for intermediate values, The factor —£ can be

Re
shown to be (ref. 7)

M 8 R
— = 0.499 /) —/—— — 3
Re myY Qg

where ,? is the mean free molecular path of the gas. Thus, if

_",/’.,5_ >> 1.0 , free molecular flow exists, and if Ms << 1.0
Re v Re

continuum flow exists. The area between these limits is the slip
flow regime.

From équation 27 we have, for ¥=1.2 and h=1t0 ,

f‘.ﬁ _ k( cos o<fﬁ )’0 ' | | (48)
Re Cos (A& +X) ;
For air or rocket exhau;c;t gases at moderate temperatures, and for
particles the order of a micron, K will lie between 0. 03 and 0.3 .
Thus, a particle of this general size, passing through a Prandtl-
Meyer expansion, will start in the slip flow regime and pass into free
molecular flow at large expansion angles as the enclosed cosine func-
tion in equation 48 becomes large compared to unity.

Figures 8, 9, and 10 show the effect of f ‘on the trajectory
paths and slip Vélocities for 1.0 micron and 4; 0 micron diameter
particles. The deviation from the uncorrected Stokes drag law tra=-

jectories is large for particlés as small as 4. 0 micron diameter,
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and increases markedly as the particle size is reduced to 1. 0 micron.
In the case of a 1. 0 micron diameter particle, an R, = 50 does not
closely follow the streamline as it did for Stokes drag, and R, = ©O.|
now shows little deflection from its original flow dil;ection. For
R, = 0.1 a maximum relative Mach number of 0, 924 and maximum
Reynolds numbe‘r of 6. 73 is reached for a 4. 0 micron particle. This
compares to maximums of 0.853 and 6. 51 respectively for Stokes
drag.

The maximum values of Reynolds numbers obtained are greater
than the limits set on equation 23 for the determination of £ . A
Reynolds number of 8. 0 would change the equation to

| M
= 0.63 + 405/% —/55— )
. e

L

s
(ref. 3), which would make a 23 per cent error in £ for a Mach num-
ber of 0. 95 . While this is an appreciable error, it is effective over
a small portion of the total expansion and diminishes rapidly on both

sides of maximum ’Qe ; S0 it should not greatly affect the overall

results.
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VI. CONCLUDING REMARKS

In the flow regime where Stokes drag law applies, the tra=-
jectories of spherical particles passing through a Prandtl-Meyer ex-
pansion fan can be specified by a single dimensionless parameter, Ro s
which is a function of initial gas conditions, initial radius, and particle
diameter. If the Reynoldé number is greater than about 0.5, the tra-
jectories are also a function of Re . When the mean free path of the
gas molecules is of the same order or large compared to the particle
diameter, Stokes drag law must be modified to correct for the dviscon-‘ ‘
tinuous néture of the flow, and the trajectories then become functions
of three parameters, R_ s Re, and Ms/Re .

It was found that the temperature dependence of viscosity need
not be precisely known to ensure satiskf‘actory results, but changes in
the specific heat ratio, y , do-appreciably affect the trajectory paths.

The radial velocity lags are in general very small compared
with the tangential velocity lags, and can, in many cases, be neglected

completely.
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APPENDIX A = Fortran Statement

CIMENSICN Y(1C), YCCT(3), C(1C)s C(10)

CIVENSICN Y(10}, YDPCT(3), C(1C)y C(1C)
5CG FCRMAY (TF10.4)
51C FCRMAT (10H1 GAMMA = E12.6, 13F MZERC = E13.6,
19k N = F5.2, 13H RZERC = El3.6, 13H DELTA = E13.6/7)
1C READ INPUT TAPE 5,5G0, CGAMMA, CMZERGy CNy RZERG,DELT, CMRE, CO
WRITE CUTPUT TAPE 6, 510, CGAVMMA, CMZERO, CN, RZERO, DELT

Y{1l) = 1.C
Y{2) = 1.0
Y(2) = 0.C
T = 0.0
KAY =}

CLAMCA = SQRTF({CGAVMMA-1.0)/(CCAVMMA+1,0))

B = (1.0/(CLAMCA®%2))~CN+1.C

ARG = SQRTF (1.0+CLAMDA#CLANDA®(CMZERG#CMZERC~1.0))
ALPHA = ACOSF(1.0/ARG)

C(1) = (1.C/CLAMCA)-CLANDA

C{2) = C{1)/CLANCA

C(2) = CCSF (ALPKA)

Cl4) = CLAMDA®{C(3)#%(B-1.0))=RZERD
C(5) = 2.,0/CLAMDA

Cle) = CMRE / CD

WRITE CUTPUT TAPE 6,5C00+CLANMCA+B4ARG,ALPHA

WRITE CUTPUT TAPE 5,5CC,C(1),C(2),C(3),C(4),C{5), Cl6)
CALL CEG(Ky3,T,Y,YDCT,.C01,5.CE~T7)

GC TG (1060,20C,2C0,300)+K

1CC C{1) = CLAMCA=T+ALPHA
C(2) = TANF(C(1))
C(3) = CCSF(C(1))
C(4) = (1.0/(C{3)=xB})
C(5) = 1.0/(1.,04C(6) = ({(C(3)/C(3)) =#(B-1.0)))

YOOT(1) = Y(3) ) , .
YCCT(3) = (CI5)) #Y(3) #D(2) - C{2)=Y(1)=D{2)=D(2)
1-(Cl4)#Y(3)/((Y(L)»%3)%¥{2)=Y(2}))sD(4) * DI5)
YDCTI2) = =C{L)%Y(2)*D(2)+C(4)*D{4)#(1.0/({Y{1) #»3)5Y(2))
1-1.0/1Y{1)#Y(1})) =C(5)
IF (KAY-2) 150, 160, 16C

160 CALL DEG2 »

15C WRITE CUTPUT TARE 6, 50C, C(1}, D{2), Cf3)}, D{4),0D(5)
WRITE CUTPUT TAPE 6, 60C .

6CC FCRMAT (//6F THETA,9H Xy 14H Y,
114k Z, léH V/VS,y14H u/sus,
214k R/RC, 13k MS, 13H RE//)
KAY = 2
GC TC 160

200 Y(4) = Y(1)*Y(2)
YES5) = Y{4)#{1.0-CLAMDA#YDCT(1)/{Y{1)%D(2)))
Y(&) = ({CU3)/C(3))==(C(2)+1.0))/Y (1)
YU9) = ({1.C—Y{4))#22)+{((1.0-Y{5))*D(2}/CLAMDA) 2]}
Y(7) = SGRTFLY(9)) ,
Y(8) = Y(7)=((C(3)/C(3))=2(B=1.0))

WRITE CUTPUT TAPE 6, 61Cy Ty (Y{JACK)},»JACK = 1,8)
61C FCRMAT(/F7.3,8E14.6)
2C5 IF{T1-3.0)21G,210,22¢
210 CALL CEQ1
GC TC 205
220 GC€ TC 10

CIMENSICN Y(1C)y, YDCT({3), C(1C), D(10)

3CC WRITE CUTPUT TAPE 6, 620

620 FCRMAT (22H ERRCR RETURN FRCM CEQ)
GC TC 10
ENC(14050+040,04040,0,1,0,4C40,C»0)



