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ABSTRACT 

The equations of motion a r e  developed and solved numerically 

for  the t rajectory of a spherical particle passing through a Prandtlr  

Meyer expansion fan. The effect of a change in y and n i s  shown, 

where y i s  the rat io  of specific heats of the gas, and n /2  i s  the 

exponent in 

the assumed viscosity temperature relationship. 

It  i s  demonstrated that for  part ic les  the order  of a micron in 

diameter,  sl ip flow will exist, and a proposed correct ion to the drag 

to account for  this discontinuous nature of the flow i s  investigated. 

The resul ts  a r e  plotted showing part ic le  t rajectory profiles 

and the components of the relative velocity o r  slippage velocity of 

the particle for  flow deflection angles up to 70 degrees.  
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I. INTRODUCTION 

Heterogeneous flow of a solid particle - gas mixture has been 

a topic of increased interest  in  recent years. The addition of light 

metals to solid rocket fuels has focused attention on the non-equilibric 

um nature of two-phase flows in expansion processes,  and numerous 

papers have been written regarding this phenomenon. 

Early studies of two-phase flows were involved with investi- 

gations of water droplet trajectories around a variety of body shapes 

in connection with icing of a i rcraf t  surfaces. More recently, hetero- 

geneous nozzle flow has been examined. Gilbert, Davis, and Altman 

(reference 1) related rocket thrust losses  to solid particle s izes and 

solved linearized nozzle equations as  suming Stokes drag law, Kliegel 

(reference 2) treated simultaneous velocity and thermal lag  along with 

the effect of particle lag on gas properties in a one-dimensional noz- 

zle, Rannie (reference 3 )  showed that for  most  cases of interest, 

results of equal accuracy to numerical integration can be obtained 

through a perturbation analysis of temperature and velocity lags in a 

one-dimensional nozzle, Ramie  also introduced slip flow corrections 

for  drag and heat transfer.  An excellent summary of recent advances 

in  heterogeneous nozzle flow was presented at  the American Rocket 

Society, Solid Propellant Rocket Conference i n  January 1962, by Re 

F. Hoglund (reference 4). 

Several problems relating to supersonic flow of two-phase 

systems have also been examined, Car r i e r  (reference 5) investigated 

a solution to particle flow through normal shocks, and oblique shocks 

were treated by Morgenthaler (reference 6). 
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The behavior of a single particle passing through a Prandtl- 

Meyer expansion furnishes an  example of heterogeneous flow that can 

be analyzed in a straightforward manner, and serves  to i l lustrate 

some of the problems and important parameters  of two-phase flow in  

general. This paper presents  the development of the equations of mo- 

tion of small  spherical particles flowing with a gas that experiences a 

Prandtl-me ye r expansion, and the nume rccal solution of these equa- 

tions. The effects of the temperature dependence of viscosity, changes 

in the ratio of gas specific heats, y , and slip flow correction to the . 

drag  coefficient were investigated by varying these factors  in succes- 

sive solutions. The resul ts  of this investigation have direct  bearing 

on the exhaust of an underexpanded rocket nozzle a s  the flow expands 

around the lip of the nozzle. 



11. DEVELOPMENT OF BASIC EQUATIONS 

An ideal two-dimensional Prandtl-Meyer expansion about a 

sharp corner  in a semi-infinite channel i s  the assumed model for  

this investigation. A cylindrical coordinate system with origin at  

the vertex of the expansion fan i s  used to describe the position of a 

spherical particle passing through the fan. Denoting the radial dis- 

tance f rom the origin to the center of the particle a s  r , and the 

angular displacement of the particle f rom the initial characteristic 

a s  0 (Fig. I ) ,  the conservation of momentum equations can be 

written 

It  i s  assumed that the only force acting on the particle i s  a drag force 

which can be represented by Stokes drag law modified by the factor 

f . The radial and tangential components of the gas velocity a r e  U g  

and 'U3 respectively, and /A i s  the local value of the gas viscosity. 

The particle has mass  m and radius . 
It i s  convenient to rewrite the equations with 8 the independ- 

ent variable. Choosing & = m r2 4, the angular momentum, and 

1 - a s  the desired dependent variables, the time derivative can be 

written 

Equation 1 then becomes 



Putting .S!..E - 
de - - r d ( % ) and multiplying by m r 

d 4 

Equation 2 i s  simply 

Replacing d in the second t e r m  of equation 3 by equation 4 we 
d 0  

have 

Non-dimensional parameters  a r e  defined a s  , 

and 

where ), =,/= , ?f i s  the ratio of gas specific heats, and C 
Y+ I 

i s  the theoretical maximum expansion velocity determined by the 

equation 

The character is t ic  length, \g , has the value 



The subscript zero  indicates initial conditions of the gas o r  particle 

a s  they enter the expansion fan, 

Introducing equations 6 into equation 5, we obtain 

and dividing by ' y 2  6 n r m ~ * o  C 

Equation 4 can be written in t e rms  of the dimensionless parameters  

Theconservationequations offr ict ionless  flowyield 5 , 
C 

r -7- . -  , and - a s  functions of 0 . The equations may be writ- 
C z 

ten in te rms of our assumed coordinate system a s  

Continuity: 

Momentum: 3 



Energy: a 2 =  8 R J T  = x- 1 7 ( c 2  - U; - ds2) t 14) 

Equations 11 and 13 can be recombined to eliminate the t e r m  in the 

parentheses and show that 

w 3 =  Q .  (15) 

Using this resul t  i n  equation 14, vg can be found a s  a function of 

U g  which can, in  turn, be used in equation 12 to give 

The value of the constant C( can be found by evaluating equations 16 

a t  the initial conditions 0 = 0 , V3 = , and using equation 

14 to give 

2 I 
C o S  d = X"(h/ld-t) +- I 

T 
The quantity - can be found by applying equation 14 to show that 

r, 

o r  by equations 16 

It i s  assumed that viscosity varies  with temperature raised to a f r ac -  

tional power, hence 



o r  f r o m  equation 18 

f A  c o s "  ( A @  +a) F' 9 

c 0s" a 

where n will normally be between 1. 0 and 2. 0. 

The equatiomof part ic le  motion ( 9  and 10) can now be written 

entirely in t e r m s  of the dimensionless var iables  R , A , 8 , the 

drag  correct ion factor  f , and the constants H and . Letting 

( ) *  denote ' they become 
d 5 

A value of f for  spheres  i n  the subsonic slip flow regime has 

been proposed by W,  D. Rannie (ref. 3 )  which, for  relative Mach num- 

b e r s  l e s s  than unity and fo r  Reynolds numbers  l e s s  than about 0. 5, 

takes the f o r m  

where lVI, and Re a r e  the relative Mach number and Reynolds 

number r e  spec tively. * , which i s  related to the rat io  of molecular mean f r ee  
Re 

path to the sphere diameter  can be evaluated a s  follows: 



F r o m  equations 15 and 16 

Isentropic relationship between density and temperature along with 

equation 19 gives 

Using equations 20, 25, and 26 in  equation 24, we get 

and equation 23 becomes 

The drag correct ion factor  cannot be written i n  t e r m s  of the dimen- 

sionless s imilar i ty  pa ramete r s  f? and A , but i s  dependent on the 

part ic le  s ize and initial conditions. 

I t  i s  convenient to relate  the t ra jectory of the par t ic le  to that 

of a par t ic le  having ze ro  relative velocity, i. e . ,  moving along a gas 

streamline.  Designating this path a s  Tg = rg ( 8 )  , we can write 



and since d G - -  - - 
d t  

"-% we have 
rq 

Integrating this equation we obtain 

c o s  0( 

ro C O S I X ~ + O O  

From the definitions of f? and A i t  follows that 

which, when combined with equations 16 and 30, gives 

"3 - = [  c o s  O( 
A, 

Two new dimensionless parameters  a r e  defined 

f rom which i t  follows that 



c o s  0( 

A = y n 0 [ c o i ( h e  + oi )  1 " -  ? 

Also f rom equations 6 and 16 

A 0  = Ro C O S  

Writing equations 21 and 22 in  t e r m s  of X , Y paramete r s  

using equations 33 through 38, we obtain the resu l t  

A x ' t a n  ( A @ + + )  
X 

+ -n  

+ + ~ f ? ~ ( ~ )  x3 Y 2  (cos(xQ+,))+-~ ( C O S  o ( )  + '  9 (39) 



It i s  assumed that the particle i s  moving with no relative velocity prior  

to reaching the f i rs t  characteristic line of the expansion. The initial 

conditions a r e  then 

X ( 0 )  = 1.0 5 

Equations 28, 39, 40, and 41 constitute the complete statement of 

the problem. 



111, AUXILIARY EQUATIONS 

In order  to specify the trajectory, the velocity a s  well a s  the 

position of the particle should be known. The important parameters  

in t e rms  of X and )/ a r e  then 

which, by 33, 34, and 16, i s  

- = X Y [ \ -  -$ X c o t  
u5 

The relative velocity o r  slip velocity of the particle relative 

to the absolute gas velocity i s  simply 

The relative Mach number i s  then 





IV. SOLUTION OF EQUATIONS 

Since equations 39 and 40 a r e  non-linear, a numerical  solu- 

tion i s  indicated for  a rb i t r a ry  values of Q, . F o r  ei ther  Po 77  1-0 

o r  Ro << I .  0 , the possibility of a smal l  perturbation solution 

exists; however, this possibility was not investigated. 

Equations 21 and 22  were  f i r s t  solved utilizing a desk calcu- 

la tor  and a simple i terat ion procedure where 

F o r  these calculations i t  was assumed that .& = I. o (Stokes drag  law 

applies), '6 = 1.4 , n = 2 .  o , and = Various values 

of R, between 0. 1 and 100 were investigated; however, i t  was 

found that the i teration in t e rva l ,  A 8, had to be decreased a s  /? 

increased to keep the p rocess  convergent. F o r  F?, very  small ,  the 

i terat ion interval had to be made very  smal l  again to get meaningful 

resu l t  (proper  divergence f r o m  the ze ro  deflection line). 
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To eliminate much of this difficulty, equations 39 and 40 were 

developed. A s imi lar  i teration procedure to that of equations 47 was 

initially used to investigate the new equations, and i t  was found that 

an iteration interval of 0. 01 radians gave satisfactory resul ts  for  F?, 

between 0. 01 and 100. 

Equations 39 and 40 appeared to be the more  satisfactory of 

the two se ts  of equations for  programming on a digital computer, since 

the starting solutions of numerical methods a r e  closely related to the 

simple i teration procedure. 

A For t r an  statement for  the solution of equations 39 and 40 

was written utilizing a subroutine prepared by Mr. K. H. Redner of 

Computer Sciences Corporation. The subroutine applies the method 

of Runge-Kutta-Gills a s  a starting solution, and the Adams-Moulton 

predictor  3 correc tor  formulas a s  a continuing solution. The facilities 

of the Computer Center a t  the California Institute of Technology were 

used in writing the program, and the IBM 7090 computer a t  the Je t  

Propulsion Laboratory was used for  the actual solution. A For t r an  

statement i s  included a s  Appendix A. 

To investigate the general effect of changes in  ?f and n , 

Stokes drag  law was assumed to apply, and solutions were obtained 

for  s ixva lues  of Ro between 0.01 and 50 fo r  three s e t s  of assumed 

constants. 
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The exhaust conditions of a typical l a rge  rocket were  assumed 

a s  initial conditions for  the investigation of the effect of allowing f: 
to vary  according to equation 28. The initial conditions chosen were: 

7 Ibf - sec  po = 9 .55  x io-  
f tZ  

1 

Ibm (30 =0 .0138  - 9 

-F t  

= 3,100 f p s  (T. = 2820°R) . 
= 1.25 , 

ul = 1.0 

Solutions were  obtained fo r  R, of 8. 1 , 1.0 , and 50 for  two par-  

ticle s izes ,  CT = * micron and (5" = 2. 0 microns.  



V. RESULTS AND DISGUSSION 

The resul ts  of this investigation a r e  plotted on Figs. 3 through 

10 for  oo to 70° of flow deflection angle. Flow deflection angle,  & , 

was chosen a s  a more  meaningful pa ramete r  than 0 f o r  plotting and 

analyzing the resu l t s  since i t  i s  determined solely by the physical 

boundaries of the flow. The fan angle and deflection angle can be re- 

lated by the usual Prandtl-Meyer functions. 

Figure 2 i s  a graphical representat ion of equation 6 giving Q, 

a s  a function of r0 and 0- fo r  par t ic les  having a density of 

3 
210 lb / f t  (as  for  AL203 ). Initial gas charac ter i s t ics  plotted a r e  for  

0 0 
air at 100 F and 1000 F and for the assumed rocket exhaust conditions 

given in  the previous section. R, i s  not greatly affected by a change 

in  initial gas conditions, but i s  pr imar i ly  a function of r, and 6 . 
F o r  part ic les  between 1. 0 p and 4. 0 in  diameter  and initially dis-  

placed by severa l  cm. f r o m  the flow boundary (as in the case  of a 

rocket exhaust), I?, will normally be g rea te r  than 10. 

The data  plotted in  Figs. 3, 4, and 5 i s  based on the assump- 

tions that M, = , '6 = 1.4 , n = 2 ,  o , and Stokes d rag  law ap- 

plies with the factor f = 1. 0 . F o r  these conditions, par t ic les  with 

Q, > 5 0 will have l i t t le deviation f rom the streamline,  and slip 

velocities will be low. F o r  Q, < o. 0 1 there  will be l a rge  tan- 

gential slip and very  l i t t le deviation f r o m  i t s  original Row direction 

through the f i r s t  25O of gas deflection. Radial sl ip i s  smal l  compared 

to tangential slip, being a maximum of . 164 fo r  Q, = 0.0 1 a t  about 

25O flow deflection. Near this point the maximum relative Mach 
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number i s  .993 and maximum Reynolds number for  a 4.0 particle 

i s  8. 38. F o r  Qo = 1 0, the maximum radial slip i s  l e s s  than one pe r  

cent while the maximum Mach number i s  only 0. 15 1 and maximum 

Reynolds number f o r  4.0 y, part icle  i s  2. 02 .  The Mach numbers and 

Reynolds number both drop sharply on ei ther  side of the maximum 

values . 
The assumed viscosity - temperature function, equation 19 

i s  a well-e stablished approximation that applies over a l imited tern.- 

pera ture  range when n is assigned the constant value appropriate to 

this range. By allowing n to take i t s  expected limiting values, i t s  

effect on the solution can be observed. Figures 6 and 7 show curves 

fo r  which Stokes drag, = 1. 4 , and M0 = where assumed for  

= I .  o and n = 2 .  o . A small  change i n  t rajectory path and tan* 

gential sl ip velocity and a negligible change in radial slip velocity 

were observed. Thus, l i t t le e r r o r  i s  introduced by the selection of 

an average value of n over an  extended temperature range. 

A change in '2( f rom 1 ,4  t o  1. 2 does have a fair ly  la rge  ef- 

fect on the t rajectory path which i s  due principally to  the change in 

the gas stream?.ine. The tangential sl ip velocity is increased also, 

which tends to increase  the path deviation f rom the streamline, but 

this i s  a small  effect. Radial slip velocity i s  not appreciably affected. 

The drag  correction factor, F , which allows a departure f rom 

Stokes drag  law to compensate for  slip flow or  f r e e  molecular flow 

effects, was proposed by Rannie (ref. 3 ) a s  an analogue to a s imi lar  



development fo r  heat t ransfer  coefficients. Although i t  has not been 

verified experimentally, i t  does give proper  resul t s  for  the extreme 

values of - Ms , s ! . o  and 3 c I I .  o , and should give a good 
R e  Re 

M s  approximation for  intermediate values. The factor - can be 
ee 

shown to be (ref. '3) 

where 1 i s  the mean f r e e  molecular path of the gas. Thus, if 

- lYls ., 1.0 f r e e  molecular flow exists,  and i f  3 << 1.  0 
Re Re 

continuum flow exists. The a r e a  between these l imi ts  i s  the slip 

flow regime. 

F r o m  equation 27 we have, for  '6= 1.2 and h = 1. 0 , 

Ms cos  a - = k (  
Q e  c o s  ( A @ + @ )  

F o r  a i r  o r  rocket exhaust gases a t  moderate temperatures ,  and for  

part ic les  the o rde r  of a micron, 1( will l ie  between 0. 03 and 0. 3 . 
Thus, a particle of this general size, passing through a Prandtl-  

Meyer expansion, will s t a r t  in the slip flow regime and pass  into f r ee  

molecular flow a t  la rge  expansion angles a s  the enclosed cosine func- 

tion in equation 48 becomes la rge  compared to unity. 

Figures 8, 9, and 10 show the effect of f on the t rajectory 

paths and slip velocities for  1. 0 micron and 4. 0 micron diameter 

particles.  The deviation f rom the uncorrected Stokes drag  law t ra-  

jectories i s  la rge  f o r  part ic les  a s  small  as 4. 0 micron diameter,  



and increases  markedly as the particle s ize i s  reduced to 1. 0 micron. 

In the case  of a 1. 0 micron diameter  particle,  an  I?, = S O  does not 

closely follow the s treamline a s  i t  did for  Stokes drag, and R, = 0 -  \ 

now shows li t t le deflection f rom its original flow direction. For  

Q, = o . I a maximum relative Mach number of 0 .9  24 and maximum 

Reynolds number of 6. 73 i s  reached for  a 4. 0 micron particle. This 

compares to maximums of 0.853 and 6. 5 1  respectively for  Stokes 

drag. 

The maximum values of Reynolds numbers  obtained a r e  grea ter  

than the l imits  se t  on equation 23 for  the determination of f . A 

Reynolds number of 8. 0 would change the equation to 

(ref. 3 ) ,  which would make a 23 p e r  cent e r r o r  in f for  a Mach num- 

b e r  of 0. 95 . While this i s  an  appreciable e r r o r ,  it i s  effective over 

a small  portion of the total expansion and diminishes rapidly on both 

sides of maximum Re , so  i t  should not greatly affect the overall  

results.  



VI. CONCLUDING REMARKS 

In the flow regime where Stokes drag law applies, the tra-  

jectories of spherical particles passing through a Prandtl-Meyer ex- 

pansion fan can be specified by a single dimensionless parameter, R 
0 ' 

which i s  a function of initial gas conditions, initial radius, and particle 

diameter. If the Reynolds number i s  greater than about 0. 5, the tra-  

jectories a r e  also a function of Re . When the mean f ree  path of the 

gas molecules i s  of the same order or large compared to the particle 

diameter, Stokes drag law must be modified to correct  for the discon- 

tinuous nature of the flow, and the trajectories then become functions 

of three parameters, Ro , Re . and M~ /Re . 
It was found that the temperature dependence of viscosity need 

not be precisely known to ensure satisfactory results, but changes in 

the specific heat ratio, y , do appreciaEly affect the trajectory paths. 

The radial velocity lags a r e  in general very small compared 

with the tangential velocity lags, and can, in many cases, be neglected 

completely. 
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APPENDIX A - Fortran Statement 

C I P E h S I C h  Y ( 1 0 ) i  Y C C T ( 3 ) i  C ( 1 C ) .  C ( 1 0 )  

C I C E h S I G h  Y ( 1 0 ) i  Y C C T ( 3 1 i  C ( l C 1 i  C ( 1 C )  
5 L G  F C P P P l  ( 7 F 1 0 . 4 )  
5 1 0  F C R C P T  ( l O H 1  G A C Y A  = E 1 3 . 6 .  1 3 P  M Z E R L  = E 1 3 . 6 .  

19k N = F 5 . 2 #  1 3 H  R Z E R C  = E 1 3 . 6 1  1 3 H  D E L T A  = E 1 3 . 6 / / )  
1 C  R E P 0  I h P U T  T A P E  5 1 5 C 0 1  C G A C P A ,  C M Z E R O l  C N i  R Z E K G I D E L T i  C M R E i  C O  

h R I T E  C U T P b T  T P P E  6 1  5 1 0 1  C G P C P A i  C C Z E R O i  C N r  R Z E 9 0 1  D E L T  
Y ( 1 )  = 1.C 
Y ( 2 )  = 1.0 
Y ( 3 )  = 0.C 
T = 0 . 0  
K P Y  = 1 
C L P V C P  = SORTF((CGACCA-1.0)/(CCAYCA+l1O1) 

= ~l.O/~CLACCA**2))-Ch+l.C 
P R G  = S Q R T F  ( l . O + C L A P D A * C L P C D A + ( C M Z E R G * C H Z E R C - 1 . 0 ) )  
A L P H A  = A C O S F ( l . O / A R G l  
C ( 1 )  = ( l . C / C L A Y C A ) - C L A C D A  
C ( 2 )  = C ( l ) / C L P P C A  
C ( 3 1  = C C S F  ( A L P k A )  
C ( 4 )  = C L P P G A * ( C 1 3 ) * c ( B - l . C ) ) * R Z E R C  
C ( 5 )  = Z . U / C L A P D A  
C ( 6 )  = C V H E  / C C  
h R I T E  C U T P U T  T A P E  6 1 5 C 0 ~ C L A P C A 1 B 9 A R G 1 P L P H A  
h R I T E  C U T P L T  T P P E  6.5CCiC(l)rC12)rC(3),C(4)rC(5)1 C ( 6 )  
C A L L  CEC(K131T1Y~YDCTl.C115.CE-7) 
GC TC ( 1 C 0 , 2 0 C 1 2 C 0 , 3 0 0 ) 1 K  

1 L C  C ( 1 )  = C L A P C A * T + P L P h P  
C ( 2 )  = T A k F ( C ( 1 ) )  
C ( 3 )  = C C S F ( C ( 1 ) )  
C ( 4 )  = ( l . C / ( C ( 3 ) * + E ) l  
C ( 5 )  = 1 . 0 / ( 1 . O + C ( 6 1  * ( ( C ( 3 ) / C ( 3 ) )  * * ( B - 1 . 0 ) ) )  

1 6 U  C A L L  C E S Z  
1 5 C  k R I T E  C U T P U T  T A P E  6 .  5 0 0 ,  C ( l ) t  D ( 2 ) .  C ( 3 ) .  D 1 4 ) . D ( 5 )  

h R I T E  C U l P L T  T P P E  6 1  6 O C  
6 C O  F C R M A T  1 / / 6 t  T h E T A l ' 3 h  Xl 1 4 H  Y  1 

1 1 4 P  2 1  16H V / V S  1 1 4 H  U / U S l  
2 1 4 1 -  R / R C 1  1 3 h  M S t  1 3 H  R E / /  

K A Y  = 2  
GC T C  1 6 0  

2 C 0  Y ( 4 )  = Y ( l ) * Y I 2 )  
Y ( 5 )  = Y14)+(1.0-CLAPDA~YCCTIl)/tYtl)*D(Z))) 
Y ( 6 1  = ((C(3)/C(3I)**(Cl2)+1.O))/Y(l) 
Y ( 9 )  = ((1.C-Y(4))*~2)+1((1.C-Y(5lI*D(2)/CLAPDA)**2) 
Y ( 7 )  = S Q K T F ( Y ( 9 ) )  
Y ( 8 )  = Y(7)*((C(3)/C(3))**(B-l10)) 
k R I T E  C U T P U T  T I P E  6 .  6 1 6 1  T V  ( Y ( J A C K ) , J A C K  = 1 1 8 )  

6 1 0  F C R M A T T / F 7 7 3 3 8 E 1 4 4 6 6  
2 C 5  I F I T - 3 . 0 ) 2 1 0 ~ 2 1 0 1 2 2 C  
2 1 0  C P L L  C E O 1  

GC T C  2 0 5  
2 2 0  G C  T C  1 0  

C I P t h S i C k  Y I l C ) ,  Y D C T ( 3 ) .  C I 1 O ) i  D ( 1 0 1  

3 C C  C R I T E  C U T P L T  T P P E  6 1  6 2 0  
6 2 0  F C R Y A I  ( 2 2 t -  E R R C R  R E T L K h  F R C C  C E Q I  

G C  T C  1 0  
E ~ C ( 1 i 0 ~ 0 ~ 0 i 0 ~ 0 ~ O i O i O i 1 ~ 0 i C i O i C ~ O 1  


