APPLICATION OF PLASTICITY THEORY TO SOIL BEHAVIOR:
A NEW SAND MODEL

Thesis by

J. P. Bardet

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

1984

{Submitted September 27, 1983)



_ii_.

A mes parents

(To my parents)



-iii-

ABSTRACT

The representation of rheological soil behavior by constitutive
equations is a new branch of soil mechanics which has been expanding for
30 years. Based on continuum mechanics, numerical methods (finite ele-
ments) and experimental techniques, this new discipline allows practic-—
ing engineers to solve complex geotechnical problems. Although all
soils are <constituted of discrete mineral particles, forces and dis-
placements within them are represented by continuous stresses and
strains. Most stress—strain relationships, which describe the soil
behavior, are derived from plasticity theory. Originated for metals,
the conventional plasticity is presented and illustrated simultaneously
with a metal and a soil model. Each plasticity céncept may be
criticized when applied to soil. A recent theory, called "bounding
surface plasticity,” generalizes the conventional plasticity and
describes more accurately the c¢yclic responses of metals and clays.
This new theory is first presented and 1linked with the conventional
plasticity, then applied to a new material, sand. Step by step a new
sand model is constructed, mainly from data analysis with an interactive
computer code. In its present development, only monotonic loadings are
investigated. In order to verify the model ability to describe sand
responses, isotropic, drained and undrained tests on the dense
Sacramento River sand are simulated numerically and compared with real
test results and predictions with another model. Finally the new

constitutive equation, which was formulated in the p—-q space for
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axisymmetric loadings, is generalized in the six—dimensional stress
state with the assumption of isotropy and a particular Lode’s angle
contribution. This new model is ready to be used in finite element

codes to represent a sand behavior.
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CHAPTER 1

INTRODUCT ION

Soil Mechanics is an old discipline in Arts and Sciences. From the
earlieét times, when people started to build, it was necessary to
construct appropriate foundations, Designed with empirical, but
nevertheless adequate techniques, some foundations still support their
structures, after hundreds to thousands of years. The Egyptians knew
how to make a wide horizontal plane almost perfect to start their
pyramids, without the help of optical devices: they covered the founda-
tion area with water and leveled off the emerging ground. The Romans
constructed roads with pavement and a base composed of different types
of aggregates. As in most sciences, the knowledge that Greeks and
Romans accumulated was lost during the Middle Ages and recovered during
the Renaissance,. In Italy, successful wooden pile foundations were
applied in the Lagoon of Venice; less successful were the foundations at
Pisa, but still to our day adequate. In the eighteenth century,
military engineers such as Coulomb (1736-1806) applied his friction
theory to obtain the pressures acting on retaining walls. The major
development of foundation techniques camé later with the expansion of
the railways owing much to famous contributors such as Rankine (1820-
1872) and Winkler (1835-1888). Up to the beginning of the twentieth
century, foundation engineerihg was not disassociated from structural

engineering. Terzaghi (1883-1963) caused Soil Mechanics to gain its
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independence and to be recognized as a particularly important discipline
in Civil Engineering. Since that time, sub—disciplines have emerged in

Soil Mechanics.

From about 1955, a new branch in soil mechanics has been steadily
increasing: the constitutive modeling of soil behavior, By definition,
it describes the soil behavior with constitutive equations wusing the
framework of continuum mechanics. Relations between strain and stress
are used eventually in finite element programs to solve engineering
problems formulated as boundary-value problems, The soil is treated as

an engineering material in the same way as steel, concrete or polymers,

The development of this new branch may be appreciated in Fig, 1.1la
by the number of publications in two soils mechanics journals: a British
Journal, "Geotechnique,” and an American one, 'the Geotechnical Engi-~
neering Division Journal of the American Society of Civil Engineers.”
These two journals of steady popularity for many years in soil mechanics
capture the increasing interest in this new field. However, they
greatly underestimate the total production of papers since the recent
creation of specialized magazines such as the "International Journal for
Numerical and Analytical Methods in Geomechanics,” "Mechanics of Materi-

als,” "Numerical Journal for Geomechanics,” etc.

The different peaks observed in Fig. 1.la correspond to significant
events of the new branch history. Prior to 1940, the soil behavior was

represented by elasticity theory. The plasticity theory, initiated in
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1868 by Tresca and Saint Venant was only applied to metal. Later, about
1945, soil plasticity at its beginning was strictly derived from metal
plasticity. But soil, compared to metal, has a different rheological
behavior, which depends mainly on mean pressure and density. The first
soil models derived from metal plasticity could not describe the differ—
ence and were not successful in soil mechanics, In 1955, Drucker,
Gibson and Henkel [1.11] compensated for this deficiency and proposed
the first ofiginal soil model which disassociated soil from metal
plasticity. In 1956 an important series of experimental data on clays
was produced by Parry [1.19] in Great Britain. A few years later, this
abundant collection of tests, drained and undrained at different confin-
ing pressures, were interpreted by Roscoe, Schofield and Wroth [1.24].
These researchers introduced the concept of "critical sfate” into the
plasticity theory to create a clay model, satisfactory over a wide range

of tests and overconsolidation ratios.

In the 1950's, the soil models were only considered as a unifying
approach to explain the soil respomse during various laboratory tests
and for different initial density. In particular Roscoe, Schofield, and
Wroth [1.24] correlated mnormally and overcomsolidated clay behaviors
during drained and undrained tests. However, the soil models could not
be used to solve practical engineering problems. If these problems were
formulated as boundary value problems, the nonlinear stress—strain rela-
tionships were 1leading to nonlinear partial differential equations,

which could not be solved with the existing techniques, i.e., with
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analytical or graphical methods. About 1965, the development of com—
puter facilities and numerical methods was a turning point in soil
modeling. Most practical and complex geotechnical problems, which had
been approached‘until then with empirical methods, could be solved as
boundary value problems with the help of accurate and rigorous numerical
techniques. Finite element and finite difference methods offered the
solution to nonlinear partial differential equations with complex
boundary conditions and geometries. Simple soil models started to be
used in finite element codes, mostly derived from nonlinear elasticity
or metal-plasticity. They attempted to describe the mnonlinear and
nonreversible soil behavior as simply as possible‘with a minimum number
of parameters. Simultaneously, with the theoretical development of soil
models, the testing technique evolved. The standard triaxial test
became more refined. Although originated in 1936 by Kjellman [1.14],
the true triaxial tests were applied to cubical soil samples in order to
investigate the influence of the intermediate principal stress (e.g., Ko
and Scott [1.15]). 1In 1975, soil modeling was reanimated, mainly due to
the growth of offshore oil production technology. The main challenge in
this area is to describe inelastic cyclic soil behavior occurring around
foundations or piles during periodic wave or earthquake 1loading. The
soil models are founded not only on plasticity theory, but also on
different constitutive theories such as rate—type equations. Their
formulation becomes very theoretical and involves more and more material
constants, The testing techniqﬁes also become more sophisticated. For

illustration, in order to define the strain field within a sand sample,
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X-ray pictures are taken to measure the displacement of 1lead shots
located within the sample., The testing effort is now oriented towards
the effect of rotation of principal stresses either with the hollow
cylinder apparatus (e.g. Symes et al. [1.27]) or with triaxial

apparatus (e.g. Arthur et al. [1.3]).

Recently, as a response to this increase in the number of models
and to demands from industry, international conferences have taken place
all over the world: Montreal (1980), Delft (1981), Zurich (1982),
Grenoble (1982), and Tucson (1983) are examples. In these forums of
material modeling, so many different and contradictory opinions have
been formulated concerning the reliability and capability of existing

models that an attempt at a unifying approach becomes necessary.

As a supplement to Fig. 1.la, Fig. 1,1b illustrates the difference
of activity between Europe and the United States. The British publica-
tions are steadily increasing while the American ones follow the rule of

the free markgt: demand and supply.

Although the soil models are too numerous to be described in
detail, the basic theories, on which they are founded, are more limited
in quantity. To our knowledge, eight main divisions may  be
distinguished in the représentation of the rate—independent behavior of

soil.



Elasticity

Plasticity (single yield surface)
Plasticity (multiple yield surfaces)
Plasticity (bounding surface)
Endochronic

Rate—type

Nonl inear incremental

Empirical model

Theories such as the above have been applied to all kinds of materials.
In this respect, soil has become an engineering material such as steel

or concrete.

For each class of theory, a few examples are given in Table 1.1.
No attempt at an exhaustive presentation has been made; only models
believed to be mostly significant are present. From this table

different information may be extracted:

a Age of the model

a Type of soil it is best qualified to describe, e.g., mnormally
consolidated clays, sand, etc.

& Number of material constants which need to be specified by
experiment to fully characterize the soil behavior. In the
same way that isotropic linear elasticity needs two constants,
E Young’'s modulus and V Poisson’s ratio, all models require
similar constants different for every material. The number of

constants is a sign of complexity, not only regarding the



TABLE 1.1 PRINCIPAL MODELS IN SOIL MECHANICS

General Autho Date of Material Number of
Framework uthors Publi~ Type Parameters Commont s Refs.
cation
Plasticity Schofield 1968 Normally and over— 3 One of the first models for clay. 26
Single Yield Wroth consolidated clay. Large elastic domain for overcon~
Surface Isotropic solidated olay.
Roscos 1968 Normally and over— 4 Similar to Schofield~Wroth model baut 23
Burland consolidated clay. different shape for yield surface,
Isotropic -
DiMaggio 1971 Sands Applied for high confining pressure 10
Sandler 1977 {nuclear blast). 25
Baladi
Lade 1975 Sands 9 2 models for mediuvm range pressure. First 16
or model with threo—~dimensional failunre 17
1977 - 14 surface,
Pender 1978 Normally and over— 4 Attempt to describe the overconsolidated 20
consolidated clay. clay behavior,
Ko consolidated
Plasticity Mroz 1983 Clay - ) ¢ 7 2 models, infinite number of yield sur- 18
Multiple overconsolidated faces (INS), or only 2 surfaces.
Yield Surfaces
Prevost 1978 Clays Depending on 2 models with nested yield surfaces, 21
Sand number on YS, cylinders or ellipsoids. 22
Bounding Dafalias 1980 Normally and over~— 4 Adaptation of Roscoe Burland into B.S. 7
Surfsce (B.S.) Herrmann consolidated clay. framevwork,
Plasticity Aboim 1982 Sands 8 A simple B,S. model for sand. 1
Bardet 1983 Sands 13 Adaptation of B.S, theory to sand,
Eadochronic Valanis 1982 Sands ? Application to sand of new intrinsic time 28
Theory Read messure (critical state).
Bazant 1976 Clays 7 Several models with adapted endochronic 2,4
Sands theory. 5,6
YWo~-¥ang 1980 Sands 11 Another application of new intrinsic time 29
MmEessure. 30
Rate Type Pavis 1978 Clays 12 Application of hypoelasticity to clay 9
Mullenger
Gudechus 1979 Sands A rate~type model from Germany. 12
Kolymbas
Non-lineax Darve 1982 Sands & clays 14 Different from &ll other theories, This 8

Incremental

model is based on combination of tri-
axial paths to simulate the material
memory. All the theoretical framework
has been initiated for soil, but it is
applied at present to concrete.




theoretical notions, but also in the experimental processes
required to establish the constants for a particular theory or

model.
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CHAPTER 1I

THE MATERIAL SOIL AS A CONTINUUM

2.1 APPLICATION OF CONTINUUM MECHANICS TO ASSEMBLY OF DISCRETE
PARTICLES

All soils (sands, silts or clays) consist of an assemblage of many
individual particles with air and/or liquid filling the void between
particles. A sand is composed of approximately rotund particles with
sharp or rounded corners and size varying from 0.06 to 2 millimeters as
usually defined. Silts have particle sizes ranging from 0.06 to 0.002
millimeters. A variety of minerals such as quartz and feldspars may be
found in both materials. The interaction relation between grains is
frictional, Clays consist of small plates with size from 0.002 to 10—6
millimeters held together by short-range interaction forces. Clay
minerals, kaolinite, illite, montmorillonite, etc., are different from
those in sands and silts. A better description of soils constitution
may be found in most soil mechanics textbooks, e.g., Lambe and Whitman
[2.10]. According to their size, the grains of sands and silts may be
observed with the naked eye or a magnifying lemns; clay particles can
only be examined with a powerful microscope or electron—microscope.
Since their physical constitution is more easily observable, our atten—

tion is drawn particularly to the coarser granular media.
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When external loadings, composed of prescribed displacement and/or
forces, are applied to a granular mass as shown in Fig. 2.1a,
redistribution of forces and displacement occurs inside the material
volume, Looking closely in the mneighborhood of a given particle,
neighbor particles form contacts as shown in Fig. 2.1b. Each contact
action, which is distributed over a small area of a grain, may'be
represented by a resultant force and a torque, located at the contact
position. In most microscopic studies, this torque is mneglected
according to the small size of contact area. The positions of contact
forces change during application of loading; eventually the contacts may
be deleted, or relocated. Each grain, which is gemnerally represented by
a rigid body, has a displacement which is characterized by the transla-
tion and the rotation of the centroid. The global mass deformation
results from relative particle motions, slippage of contacts and
reorganization of local structure, i.e., from microscopic changes in

forces and displacements.

Although it corresponds to reality, this description of the physics
of a granular material cannot be applied to solve engineering problems
practically for various reasons: It is impossible to define exactly the
geometry of each graim, corner, edgé, etc., for the volume of material
considered in a geotechnical problem. But even for well-defined grain
geometry such as a regular assembly of uniform spheres, the number of
unknowns constitutes a barrier to any analysis. For illustration

purposes, a cubic meter contains approximately 2.109 to 3.109 spheres of
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()

(a)

1 X

(e)

Fig. 2.1.

Transition from an assembly of discrete particles to a
continuous medium.

(a) Volume of granular material subjected along its boundary
to prescribed forces and/or displacements.

(b) Normal and tangential forces acting on grain contacts at
a microscopic level.

(¢) Translation and rotation of each grain at a microscopic
level.

(d) Approximation of the discrete system of contact forces in
(b) by a continuous distribution of traction vector.

(e) Representation of displacement of each grain in (c) by a
continuous displacement field.
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1 mm in radius, depending on whether they are organized in uniform sim—
ple cubic or closed hexagonal packing (after Deresiewicz [2.8]). Since
each sphere and each contact (force—position) possesses 6 degrees of
freedom, the total number of unknown quantities may reach 4.1010 which
is still a prohibitive number for all present analyses, theoretical,

experimental or numerical.

An alternative way to solve the problem of Fig. 2.1a is to assume
that the discrete distribution of forces and displacement in the
granular mass may be represented by continuous quantities. The dis-
placement of particles in the neighborhood of a particle, at initial
position xtilde in a reference frame, is smoothed by a continuous dis—
placement field denoted utilde(xtilde,t) depending on initial position
xtilde and time t (Fig. 2.1le). In a similar way, the contact forces are
averaged by a continuous distribution of stress vectors, sometimes
called traction vectors (Fig. 2.1d). Each vector depends only on the
position at time t of a particle initially at position x, and on the
unit vector n to some unit area surface on which it is acting. The
stress vector is denoted tautilde. It is assumed to depend only on the

direction of the contact surface where it acts, not on its curvature,

These assumptions of continuity for the displacements and acting
forces within a granular mass raise a few interesting questions which
seem to be regaining favor recently in material modeling. These
hypotheses may be examined with three different approaches; experimental

techniques is one of them. In such an approach, discrete quantities
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such as the displacement of individual particles and forces at the
contacts can be measured on some simpler physical material model. Exam-
ples are assemblies of optically sensitive disks. Forces at contacts
are obtained from photoelasticity effects; displacements are found by
comparison of photographs made at various stages of the experiment.
This method was used by Dantu [2.6], De Josselin de Jong and Verruijt
[2,7], and Van der Kogel [2.18]. In a recent experiment, Luong [2.11]
used infrared thermography to detect localization of energy dissipation

by friction in real sand samples.

Complementing the experimental approach on simplified material
Cundall and Strack [2.3] and Scott and Craig [2.16] propose to use com—
puters to simulate two—dimensional material ©behavior. Numerical and
real experiments on idealized material consisting of two—dimensional

assembly of disks were compared by Cundall et al. [2.5].

The third approach involved general theoretical work, starting from
microscopic behavior to obtain macroscopic response. Such attempts have
given some useful results in terms of physics of material behavior such
as the stress—dilatancy theory, which was originally formulated in 1962
by Rowe [2.15] and mathematically founded in 1965 by Horne [2.9] for
spheres. The stress—dilatancy theory was able to explain qualitatively

and quantitatively how sands dilate when subjected to shearing stresses.

In 1982, recent works, such as Nemat—Nasser [2.13,2.2] and Oda and

Konishi [2.14], prove that the microscopic is regaining favor in
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material modeling, and is especially justified in view of the increasing

complexity of comnstitutive equations for soils.

All the above approaches, experimental, numerical or theoretical,
give results on discrete quantities. Since they are founded on real
physics of materials, their outcome, may be interpreted significantly in
terms of continuous quantities. All transitions from discrete to
continuous involve averaging processes, generally performed on some
finite material volume. For illustration, Cundall et al. [2.5] defines
the deformation gradient (which characterizes ultimately the strains),
in an assembly of discrete disks, in the following way: First, the
equivalent continuous displacement field, at any point xtilde of the
continuum, is defined either by the real displacement of a disk particle
or by the imaginary continuous displacement which extrapolates the
motion of particles surrounding the insterstitial space; this choice

depends on whether or not the point xtilde lies on a disk.

The average displacement gradient tensor with Cartesian component

v, j may be defined as

(i,j=1,2,3) (2.1)

<=
w'm

L

where u, is the ith component of the equivalent continuous displacement

du.

field, E;l is the gradient of continuous displacement field, and V is a
j
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material volume selected large enough to yield significant continuous

results,

It is not certain that all discrete quantities may be averaged
without 1losing some significant physics of the material behavior. For
instance, the averaging process for the deformation gradient may hide
discontinuities in the displacement field, such as localized shear band.
Sugh discontinuities, not always easy to characterize within a discrete
system, make meaningless the transition from discrete to continuous., It
will be interesting to establish criteria for such transitions; they
could yield instructive data on how discontinuities emerge and stress—
localization appears. In a continuum mechanics context, these results
would be wuseful with bifurcation methods applied to boundary value

problems,

However, disregarding the microscopic aspect of material behavior,
the general attitude in soil modeling is more pragmatic. Generally
urged by immediate concerms, practicing engineers do mnot question the
validity of the continuity assumption to represent soil behavior. This
short-term attitude is quite justified by the combined power of
continuum mechanics and of numerical techniques coupled with computers.
The material behavior described in terms of mathematical constitutive
equations is compatible with numerical methods such as finite elements.
Most engineering problems with complex geometries and sophisticated

materials become solvable as boﬁndary value problems.
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Once the continuity assumption has been selected to describe a
soil, all continuum mechanics results may be applied. The first step is
to define the kinematics of the material, i.e., the motion within it in
terms of displacement, velocity and acceleration and the kinetics

acting, i.e., the forces developed compatible with the motion.

2.2 DESCRIPTION OF KINEMATICS

Only the necessary concepts for this presentation are  defined. A
more general description of the kinematics in a continuum may be found
in various textbooks on continwom mechanics (e.g., Malvern [2.12],

Truesdell and Toupin [2.17]1).

In a conventional way, for simplicity, only small displacements are
considered. The deformations are characterized by the infinitesimal

symmetric strain tensor epsilont with Cartesian components eij such that

du. ou.
. L1, 1 ..
sij = 3 [ij + axi] (i, j=1,2,3) (2.2)

where ui(xtilde,t) are the Cartesian components of the displacement

du;
field at time t of a material point initially at position xtilde and Egl

th

are partial derivatives of the i displacement field coordinate with

h

respect to the jt position coordinate.

From this total strain, which describes a state of deformation

within a material, an incremental quantity may be defined as Biot [2.1],
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to represent changes about this state, Between time t and infinitely
close time t+dt increments of strains are defined by substituting the
incremental displacement field between time t and time t+dt in relation
(2.2). Another approach, commonly used in solid mechanics, is to employ
rate instead of increment. Within our presentation both descriptions
are equivalent, since any increment (displacement or other) is a rate
multiplied by an increment of time dt. Increments are used here since

we are only concerned with rate—independent material.
The principal values of the strain temnsor are denoted €1,85,83.

For the special axisymmetric conditions, defined by:

(2.3a)

e = O when i#] (i,j=1,2,3) (2.3b)

two new coordinates are introduced e, and g they are related to

qi

principal components in the following way:

FA =

v g * 283 (2.4a)

= 2 (g -
g, = 3 (8-ey) (2.4b)

These last definitions have been commonly used in soil mechanics for
axisymmetric states since the early soil models were developed in 1960.

As a common convention in soil mechanics, all compressive strains are
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taken positive, and tensile strains negative, i.e., they have the

opposite sign to the usual solid mechanics convention.

2.3 DESCRIPTION OF KINETICS

The forces inside a material are represented by the Cauchy stress
tensor sigmat with Cartesian coordinates Gij at position xtilde and time
t. The increment of stress between time t and t+dt is described by the

incremental stress tensor dsigmat with components dcij'

The principal values of the stress tensor are denoted 01,09 ,03 .

For axisymmetric loading, i.e.,

Og9 = O33 = 0, = 03 (2.5a)
Gij = 0, when  i#j (i, j=1,2,3) (2.5b)
only two stress components are necessary: p and q defined as:
p = 317 (o, + 203) : (2.6a)
9 = 06y - o3 (2.6b)

As for strains, all compressive stresses are positive, tensile stresses
negative. Now, the coefficient % entering the definition of eq in rela-
tion (2.4b) may be justified; it was selected in order to conserve a

simple form for the incremental work dW defined as
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aw - Gijdeij (Sum on i:j=1:2:3) (2'73)

By calculation, using the axisymmetric condition specified in rela-

tions (2.5) and (2.3)

awv = pdsv + qdeq (2.7b)

It should be kept in mind that this representation of stresses and

strains with p, 4q, e, &g is restricted to axisymmetric loading; its

convenience in studying soil behavior in the standard triaxial apparatus

justifies its use.
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CHAPTER III

CLASSICAL PLASTICITY THEORY

The plasticity theory started in 1868 when Tresca presented two
notes dealing with the flow of metals under great pressures to the
French Academy. Saint-Venant (1797-1886), who had to prepare a report
on that work as member of the Academy, became interested in this
subject. He was the first to set up the fundamental equations of
plasticity and to use them in practical problems. Around 1950, famous
contributors like Hill [3.4] completed the mathematical structure of

plasticity.

Originally concerned with yielding of metal, this theory was only
applied to soil around 1960. Its fundamental basis lies in observations
made from the simplest testing on material: the uniaxial test, All the
physical observations, obtained for the simple unidimensional state,
héve been generalized to the combined state of stress (six—dimensional)

in a tensorial form with the help of geometrical consideratioms.

3.1 FUNDAMENTAL PLASTICITY CONCEPTS FROM UNIAXIAIL TESTS

A typical stress—strain curve obtained in a uniaxial test of most
material (metal, soil, etc.) is shown in Fig. 3.la., Only the axial
component of stress and strain is recorded; both are assumed to be
uniformly distributed in the sémple. In the particular example of Fig.

3.1a, three cycles of loading-reloading are performed. In order to be
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€

S
Fig. 3.1a., Typical stress—strain curve in uniaxial test performed on a
real material.

‘0'

Fig. 3.1b., Idealized global and incremental material responses for
development of plasticity theory.
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described with mathematical terms, this complex nonlinear and irreversi-

ble behavior must be approximated without losing significant features.

Such a

schematic material response is shown in Fig. 3.1b and may be

described by the following remarks:

1'

The response 1is reversible around the origin; it may be
represented by an isotropic 1linearly elastic behavior to a
first approximation,

A threshold for reversibility is reached when the stress
exceeds a "yield shear” or elastic limit, Beyond this limit,
denoted o*, irreversibility is characterized by permanment or
unrecoverable deformation after a stress removal (Fig. 3.1b),
Following yielding, more apparent mnonlinear effects manifest
themselves: the stress—strain curve bends towards the strain
axis.

During unloading and reloading, the response is almost parallel
to the initial response about the origin (if the hysteretic
phenomenon is ignored).

At the end of a reloading, the strain ¢ is the sum of an unre-

coverable strain &P and a recoverable strain &° (Fig. 3.1b):

e = g° + &P (3.1)

The response during a reloading phase is reversible wuntil the
stress exceeds a new yield stress: the previous yielding

stress has increased its value to the highest value taken by
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the stress state during the 1loading history. The material
looks harder than it was originally; this phenomenon is known
as "strain hardening.” This remark also applies for successive
unloading-reloading processes,

7. The material exhibits some memory of its previous loading his—
tory. This remembrance ability may be captured by the yield
stress value., Other variables called "internal variables,’” may
be defined to characterize this memory. This terminology comes
from irreversible thermodynamics, In order to fully
characterize an irreversible thermodynamic state, the
"observed” or "external” variables such as temperature and
stress are insufficient; mnew variables, called "hidden" or
"internal” must also be defined.

8. The material fails when the stress reaches a final failure
stress. This failure stress, the limit of the possible stress
for a material, differs from the yield stress which is the

threshold for irreversible strain.

In a different system of coordinates, stress—plastic strain, (the

reversible strain is removed from the total strain) the material

response of Fig., 3.1b is shown in Fig. 3.lc.

At an incremental level, i.e., for an infinitesimal increment of

stress, do, as shown in Fig. 3.1b, the above remarks also pertain,
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The incremental strain de, corresponding to a stress increment do,

from a state o, is equal to:

a) only the elastic strain increment de®, i.e.:

de = de® , de? =0 (3.2)

if the stress state o is less than the yield stress o* or if
the stress increment do is negative.
b) the sum of elastic and plastic incremental strain respectively

de® and deP, i.e.:

de = de® + deP (3.3)

if the stress state o is equal to the yield stress ¢* and the

stress increment do is positive.

In contrast to most materials, which strain—harden in uniaxial tests as
indicated in Fig. 3.la, soils, under some circumstances, present a more
complex behavior, known as "strain—softening,” represented in Fig. 3.1d.
Obtained with strain-controlled testing devices, the stress is observed
to decay as the strain exceeds some value. Although the stress o
decreases, this behavior is different from umloading as shown in Fig.
3.1d. During unloading both strain and stress increments are mnegative,
while during strain-softening these increments have opposite signs.
These two different processes are distinguished by the sign % do, where

S is the slope of the stress—strain curve at stress o. For unloading
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% do is negative, whereas for loading, with or without strain-softening,

% do is positive.

3.2 GENERALIZATION TO SIX-DIMENSIONAL STRESS SPACE

All fundamental concepts, introduced for the simple unidimensional
state of stress and strain, need to be generalized for every possible
combined state in the space of the symmetric Cauchy stress tensor and of
the infinitesimal strain tensor., A conventional stress formulation has
been preferred to a strain formulation (Naghdi and Trapp [3.71, Yoder
[3.131). All generalizations to the six—dimensional stress space are
performed in Cartesian tensorial form, with the help of Fuclidean
geometrical considerations, Two particular simple models, one applied
to metal, the other to soil, illustrate step—by—step the presentation of

each new plasticity concept.

The stress state is represented by the Cauchy stress temsor g, with
six independent Cartesiam components cij’ (i,j = 1,2,3). The increment
of stress is described by the incremental stress tensor dg with
P

components daij (i,j = 1,2,3). The strains, corresponding to a.ee.s in

the unidimensional case, are represented by the following quantities:

£ (total) strain state with components eij ., (i, j=1,2,3)

ge elastic strain state with components S:j , (i,3§=1,2,3)
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gp plastic strain state with components egj , (i,j=1,2,3)

The increments of strains, total, elastic or plastic are denoted by:

dg increment of total strain with components deij , (i,j=1,2,3)

dge increment of elastic strain with components degj , (i,j=1,2,3)

dg? increment of plastic strain with components degj ., (i,3=1,2,3)

The description of total strain into elastic and plastic strain is still

assumed to be valid in the six—-dimensional strain space

or in terms of components

= e P . i=
eij = aij + 8ij » (1.3 1’2:3)

For increments, the same assumption holds:
dg = dag® + dgf
or
de,, = de. +depj . (i,j=1,2,3)

The increment dg is fully characterized by its Eunclidean norm

direction, The norm, denoted ||dg||, is defined such that:

(3.4a)

(3.40)

(3.5a)

' (3.5b)

and its
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Hagll = (ae?, + de2, + del, + 2de2, + 2de2

2 %
23 12 23 + 2d831) (3.6a)

The factor 2 in front of the shear strain, deij’ where i is different
from j, takes into account the symmetry of the infinitesimal strain ten—

sor dg., This last definition may be contracted using Einstein's implied

sum notation:

Hagll = (dey;iae 0® (smm om i,§=1,2,3)  (3.6b)

The implied sum convention is an attractive way to condense equations
and is used frequently in the rest of this presentation, The direction

of dg is defined by the unit vector m with the same direction and the

following components:

dei
m =

ij ITagl| ’ (i, j=1,2,3) (3.7)

The definitions (3.6) and (3.7) applj to any increments, in partic~
ular to plastic and elastic strain increments dg? and dge. To define dg
resulting from an increment of stress dg at a state g, dge and dg? need
to be determined. dge is found by using an elastic model, whereas to
fully characterize dﬁ?, three points remain to be examined:
1) existence, 2) direction and 3) amplitude. These aspects refer in

turn to the yield criterion, the flow rule and the hardening rules,

which are described as follows.
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3.2.1 Existence of Unrecoverable Strain (Yield Criterion)

The yield point o* defined in the uniaxial test, is generalized

into a hypersurface in the six—dimensional stress space, called the
"Yield Surface” (the prefix "hyper” is usually omitted). By definition,
the yield surface encloses a domain in stress space in which any
infinitesimal stress change produces only recoverable strain. This

surface is represented by a general equation:

f(fl,z) = 0 (3-83)
or explicitly

£(o, =0 (3.8b)

1)622 9633 1612)623 .631,1'1 .1‘2, s e ,rn)

where £ or TysTgseeesTy refer to the parameters controlling the size,
shape, etc., of the yield surface., Once the yield surface has been
defined, the presence or absence of unrecoverable strain, at some stress

state, is characterized by the "yield criterion”.
Yield criterion:

a) f(g,x) < 0, the stress state g lies inside the yield surface; any

increment of stress creates only incremental elastic strain dge.

i.e., dg? =0,

b) f(g,r) = 0, the stress state g lies on the yield surface. If dg is
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oriented outwards (loading), irreversible strain results, i.e.

dgP #0; if dg points inwards (unloading) or is tangent to the yield

surface, only elastic strain develops, i.e. dg? =0,
¢) The case f(g,r) > 0 is impossible.

This impossibility is justified by invoking the following argument:
if a state of stress g is allowed to exist outside the yield surface,
then for any increment of stress from this state ¢, irreversible defor—
mation would occur. No unloading with reversible response would be
possible, which is contradictory to the previous uniaxial concept
defined from uniaxial tests shown in Fig., 3.1a. Therefore the yield
surface must change its position, or deform in order to follow the
stress state when plastic flow occurs, so that the stress state g ljes
on or within the yield surface, This condition is known as the

"consistency condition.”

A more precise definition of loading and unloading entering the
yield criterion may be given with the help of the unit vector normal and
pointing outwards from the yield surface at g (see Fig. 3.2). Denoted

B, this unit vector has its components nij such that:

-+ .
of . _3f . _df (i,j=1,2,3) 5.9)
oy 9o 3o (sum on k,{=1,2,3) .

nij
XA x( ij
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Fig. 3.1c., Idealized material response after subtracting the elastic
strain,
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Fig. 3.1d. Typical stress—strain curve in uniaxial test on a strain-
softening soil.
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plastic potential surface
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H ]
yield surface | N

Fig. 3.2. Yield surface and plastic potential surface in stress space.
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where azf is the partial derivative of f(g,r) with respect to the
ij
stress component ¢.., After characterizing the scalar product between g

1]

and dg in the following way:

n'dg = nijdaij (sum on i,j=1,2,3) (3.10)

the loading and unloading, which indicate if the stress increment points

outwards or inwards to the yield surface, may be redefined in the

following way:

loading n'dg > 0 (3.11a)
neutral loading g'dg = 0 (3.11b)
unloading pdg < 0 (3.11c)

Example 1:

The simplest elastic—plastic model, applied to metal, is certainly
the von Mises'’ model. The yield surface is a cylinder in the principal
stress space, the axis of which is parallel to the hydrostatic axis, as
represented in Fig. 3.3. The equation of such a surface is obtained by
stating that the distance to any point on this surface to its axis is

equal to the radius denoted R, i.e.
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Fig. 3.3. von Mises' yield surface in principal stress space.
q
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“““““““““““ compression
k
““““““““ €
1 P
‘L
experimental
o - -e— — predicted
tension
Fig. 3.4. Typical experimental response curves of a real material and

predicted response curves by von Mises' model during two
uniaxial tests (compression and tension).
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(Gij—pﬁij-aij)(aij—pﬁij—aij) = R (sum on i,j=1,2,3) (3.12)

where aij is the Kromecker symbol defined such as

0 if i#j, (i,j=1,2,3)

sij T 1 if i=j, (i,j=1,2,3) (3.13)
and p is the mean pressure defined such that:
= 1 (o,, + + ) (3.14)
P 3 ‘%11 T 933 T o33 .

and aij's are components of a point of the yield surface axis (see Fig.

3.3) such that

ull + ayy + azz = 0 ) (3.15)

Introducing the deviatoric stress tensor § with Cartesian components $ij

such that

equation (3.12) becomes
(s..-a..)(s,.-a,,) = R2 (som on i, j=1,2,3) (3.17)

For convenience, equation (3.17) becomes
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) (sij aij)(sij aij) k 0 (sum om i,j=1,2,3) (3.18)

where k is defined such as

k = B—]’/’R (3.19)

The values of aij's and k may be calculated from the uniaxial loading,

which was specified in (2.5). For this particular 1loading the

deviatoric stress components are such that

S99 = % q (3.20a)
S0 = S33 = ..g- , (3.20b)
sij = 0 , ity (i#j=1,2,3) {3.20¢c)
For convenience, assume that the aij's satisfy the following relations:
@y = G33 (3.21a)
e = o, i#Fj (i, j=1,2,3) (3.21b)

Using relations (3.15), (3.20), (3.21), relation (3.18) becomes:

If two different uniaxial tests, ome in compression and another in
tension, are available, two yield stresses may be chosen such as shown

in Fig. 3.4. The yield stresses in the compressive and tensile tests
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are respectively denoted q. and q,. Since q, and q, satisfy relation

(3.22) for different signs, @, and k are such that

q +q

a, = —°—3——1 (3.23a)
q. - 4

x = —2-—2—4 (3.23b)

All other components aij are generated from (3.21) and (3.15). The unit
vector n to the yield surface may also be calculated. From relation

(3.18) is obtained:

af _
3(Sij—a

ij) (i, j=1,2,3) (3.24)

From (3.9), (3.18) and (3.24), it is concluded that

_oBPs SiiT%j .
nij = B] k (I,J 1:2’3) (3025)

The yield criterion, and specifically relations (3.11), may be

simplified for the uniaxial test, such that

ZJVE

. — l — 3— P
oy dokl = L . [q > “11]“11 (sum on k,(=1,2,3) (3.26)

If q is greater than 9, and less than q, only elastic strain is possi-
ble for any stress increment, If q is equal to 9, or q,, then plastic
strain exists dependent on the sign of the terms in relation (3.26). If

these terms are positive, there is plastic strain; if they are negative,
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only elastic strain occurs.

Example 2:

Lade’s first soil model [3.5] follows closely the concepts of metal
plasticity, but also exhibits some characteristic features of soil

behavior., This model is presented in parallel with von Mises’ model.

The yield surface has for equation:

flg,x) = I’ -3, = o (3.27)

where X is the only parameter which controls the yield surface shape

(i.e., X is equal to ;) and I, I are stress invariants defined in the

following way.

kk = O11 T Oy * 033 (sum on k=1,2,3) (3.28a)

_ - - 2 2 2
I, = det lgl = 033055033 + 2015055031 = 01109370903 103307,]  (3.280)
Such a surface (Eq. 3.27) is a cone, centered on the hydrostatic axis,
with its tip at the origin of stress as shown in Figs. 3.5. The elastic
domain, bounded by this surface, depends on the mean preséure p, i.e.,

on I, Since the unit vector p is lengthy to work out, only the partial

derivatives are given in the following relations:
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FAILURE SURFACE

_— YIELD
deviatoric plane é 9 SURFACES
(b)

0y
HYDROSTATIC AXIS

{c)

VER

Failure surface and two successive positions of yield surface
of Lade’s modet.

a) 1in deviatoric plane
b) in principal stress space
¢) in plane 6,=0,
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aI
e o JURP (i,3=1,2,3) (3.29)
G.. ij do, .
1] ij
| a1,
where all components -—= are generated, by permutation of indices,
1]

using the following relations

o1, 5

da.. 922933 ~ %33 (3.30a)
11

31,

dc %3931 ~ 91233 (3.30b)
12

3.2.2 Direction of Plastic Flow: Flow Rule

Obviously defined uniquely in the case of any unidimensional
state, the plastic flow direction must be characterized in a multidimen-
sional stress space by a "flow rule.” From experimental observations,
contrary to what elasticity theory predicts (see Section 3.5.4), the
plastic flow direction is related to the total stress state and is
independent of the stress increment. Analogously to irrotational fluid
flow, which is normal to the potential lines in fluid mechanics, for all
the stress states and stress increments creating plastic strain (as
specified by the yield criterion), the plastic flow direction is
collinear to the gradient of a function, called the "plastic potential,”
and denoted g(g,s) or explicitly 8(011,095,033.012:09350315S1s00cs5y)+
S with components sk's. k varying from 1 to m, represents the variables

that describe the changes in the function g resulting from plastic flow.
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The gradient direction is characterized by the unit vector normal

to the plastic potential surface passing through the stress state, and

. pointing outwards from this surface. Denoted by m, the components my g
of this vector are given by an expression similar to (3.9), where g is

substituted for f.

The incremental plastic strain dg? is collinear to m (Fig. 3.2),

which is expressed in the following way:

dg? = llagPlln (3.31a)
p = P s o
de} llag Ilmij , (i,3j=1,2,3) (3.31b)
where |ldgPll, amplitude of dgP, is a positive scalar.

For convenience, it is often assumed that the potential surface and
yield surface are coincident. In this case the flow rule is said to be

associative; if they are not coincident, it is termed nonassociative.

Example 1: von Mises’ Model

From observations on metal, an associative rule is selected. The

unit vector m, which represents the plastic flow directiomn, is
coincident with the unit vector B, which represents the normal to the

yield surface.

The plastic volumetric strain de£ is given by the relation:
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P _ 4.P P L 4P
de? de], + ded, + dej, (3.32)

Since the vector m is given by (3.25) and since the deviatoric
stresses also verify the relation (3.15), it can be shown that the plas-
tic volumetric is zero so that von Mises’ model predicts no plastic

volumetric change.

Example 2: Lade’s Model

Lade’s model is nonassociative; the plastic potential surface is

defined as follows:

(3.33)

i
o

= 1 - -
8(g.5) = I' - KI,-¢
where the scalar & is defined so that the potential surface goes through
the stress state and where K, js related to the yield surface (relation
3.7) by the following expression,

K2 = AN + 27(1-4) (3.34)

in which A is a material constant.

In Fig. 3.6 the failure, yield and plastic potential surfaces have
been compared in the p—q space (Section 2.3) for a special stress state

and a particular sand (Monterey No. 0 sand).

!
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Fig. 3.6, Failure, yield and plastic potential surface for Lade's model
(dense Monterey No, 0 sand).
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3.2.3 Amplitude of Plastic Flow, Hardening Rules

The amplitude of the plastic increment is the 1last point which
needs to be specified; it is calculated from the motion of the yield
surface by invoking the consistency condition, In order to follow the
stress state during plastic flow, the yield surface must be able to
alter its shape, position, etc. All these changes are accomplished by
modifying the parameters Tyseeesry of Equation (3.8). All the parame-
ters r, (e.g., radius and center position for von Mises’ model) them-
selves depend upon some different, more fundamental, quantities; that
is, the "internal” or hidden variables., If the evolution law (i.e., the
relation between the parameters r, and the internal variables) is
specified, then all changes in yield surface are described. The cdncept
of internal variables, formulated recently for plasticity by Lubliner
[3.6] is based on the idea of state variables in irreversible
thermodynamics, Since the material exhibits an irreversible behavior,
the state of a body is described at each material point not only by the
values of ‘'observed” or 'external” variables (such as deformation or
stress), but also by values of "hidden” or "internal” variables, These
variables are usually taken to be scalars or components of a properly
invariant second order temnsor; the plastic strain temnsor gp is wusmually
selected as the internal variable, ‘The external variables are the
stresses, since the plasticity theory is formulated in a stress space.
For strain—plasticity (Naghdi and Trapp [3.7], Yoder [3.13]) the strains
are selected. From the consistency condition, applied for the

infinitesimal stress increments creating plastic strains, the following
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relation must hold:

(3.35)

af do + af deP = 0 (sum on k,{=1,2,3)

9o k{ k!
k! aeil

Substituting relation (3.31b) into (3.35) and wusing (3.9), the

amplitude of the plastic strain is such that:

%ni'.dci'
[agPll = —-—i’—f——'?,-a—i— A (3.36)
aap pq.
Pq

(sum on 1i,j,k,f{,p,q=1,2,3)

By definition, the plastic modulus, denoted H, is:

%
B =-[2f . 2f 9f < m  (sm om k,f,p,q=1,2,3)(3.37)
»KP, sde 3 .
P"k( dop(}  aeP Pq
paq

With (3.31b), (3.36) and (3.37) the plastic strain increment

becomes

(ipj=1a2;3)

(3.38)

p = 1
deij H mij(nrsd“rs) (sum on r,s=1,2,3)

The Macaulay's bracket, denoted < >, is defined



(x> = x’He(x) (3.39)

where He is the Heaviside function. The relation (3.38) may be

rewritten with a built—in yield criterion,

(ipj=1’2,3)

(sum on r,s=1,2,3) (3.40)

P - L
deij By H (a gdopgd

During strain softening, H and the scalar product p°dg are both

negative. Strain—softening alters relation (3.40) in the following way:

(i,j=1,2,3)

(sum on r,s=1,2,3) (3.41)

P = 1
dej; mi; <HE Prsd0re?

Example 1: von Mises’ Model

Two different hardening rules are presented successively:

isotropic and kinematic.
a) Isotropic hardening (Fig. 3.7a

The yield surface expands radially about its fixed axis.
By applying the consistency condition to the yield surface

defined in (3.18), there results

3(syy0;5)ds;; = 2kdk (sum om ij=1,2,3) (3.42)

As a result of a stress change, the radius k¥ is altered such

that
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Fig. 3.7. Four successive positions of von Mises’ yield surface in a
deviatoric plane with different hardening rules, and the same
loading path: ‘

a) isotropic hardening
b) kinematic hardening
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k

dk = (sum om ij=1,2,3) (3.43)

Nl

b) Kinematic hardening (Fig. 3.7b)

The yield surface is translated without changing its radius,

The consistency condition implies that

(sjjmayjldsyy = (syqmaygddayy
(3.44)
(sum om i,j,k,(=1,2,3)

The unique relation (3.44) is not sufficient to define all six

daij's. The direction of the incremental center displacement daij
is supposed to be collinear to the plastic strain increment, i.e.,

there exists a scalar A such that

- p . s
daj = xdgij (i, j=1,2,3) (3.45)

Using relation (3.44), A is found such that

(s;:—a;.)ds; .
A = ii i i (sum on i,j,k,{=1,2,3) (3.46)

(s may el

Related to the hardening rule (isotropic or kinematic), the plastic
modulus H depends on the evolution of k or aij's w.r.t. to efj.
The amplitude of the plastic strain increment from (3.6b), (3.25)

and (3.38) satisfies the following relation:
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(s;.~a;.)
eIl = L 3 idi-g,

2 ij

(3.47)

(sum on i, j=1,2,3)

therefore, for isotropic hardening, the plastic modulus is such

that

H = [%]3/2——§l~ (3.48)
I1aePll

Whereas for kinematic hardening, since

1 -
(skl—ak()dekl = | (srs a.J)ds_ .
(3.49)
(sum on k,f{,r,s=1,2,3)
therefore the plastic modulus is expressed
dai. d
B o= —id o ldall (3.50)

D P
daij lldg 1

A common alternate way, particularly for the von Mises’
material, is to fix the plastic modulus H to be constant: the
hardening is said to be linear. The motion is consequently

specified for each hardening rule by relation (3.48) or (3.50).
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Example 2: Lade's Model

Only one internal variable is selected to characterize the material
memory: the plastic work, denoted W,, and defined by integration of an

increment of plastic work de. de is such that

de = o, 'der (sum on i,j=1,2,3) (3.51)

Lade found that the motion of the yield surface is related to the evolu-

tion of the internal variable Wp in the following way:

v
y ft s+ d W - (3.52a)
P
where
d = L1 -
2o Ky - £y (3.52b)
and
{
93
a = Mp [f‘l (3.52¢)
8pa

where r K

£ M, { are material constants, p, the atmospheric pres—

1’ ft’
sure (selected as a reference value) and 53 the minor effective

principal stress,

As plastic work is dissipated, the yield surface expands about the

hydrostatic axis. From (3.52a) the incremental change in yield surface
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X and in internal variable Wp are related as follows

o = adx (3.53)

P 2
~f,

[1 - T /<x-f]
17

The plastic modulus is derived from relation (3.37). Since the follow-

ing relations hold [from (3.51) and (3.52a)]

4
9f . 5%’-*-%. (i,3j=1,2,3) (3.54)
38P3 P J

the plastic modulus H is:

2 ¥a

%t
1 [ t ] 3f  _af
H = -%1 ~1r m..g. o
ol TR ) a0 [a"kx adkl]

(sum on 1,j,k,(=1,2,3)

(3.55)

3.3 [FORMULATION OF ELASTIC-PLASTIC RELATIONS FOR AXISYMMETRIC LOADING
The formulation of elastic—plastic constitutive equations has been

performed in the most general combined state of stress, i.e., in the

six—dimensional space of the Cauchy stress tensor. For some specific

loadings, where only a few components of the stress tensor vary, the

general tensorial formulation becomes redundant and must be simplified.

For instance, in soil mechanics, soil behaviors are mainly
extracted from conventional triaxial tests. During these particular

tests, only the axisymmetric stress states defined by relation (2.5) are
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possible., Since the two—dimensional p-q space represents any
axisymmetric stress states, it may be selected as the mnew simplified
stress space to reformulate the elastic-plastic theories during
axisymmetric loading. Both the yield and potential surfaces, origimnally
hypersurfaces defined in a six~dimensional space, are projected in the
p-q space. The yield surface projection satisfies the following equa-

tions

f‘(P’q.’E) = f(611,0'33 ;633 jO)o’o’I) = 0 (3 c56)

The unit vector normal to this new yield surface has for component np,nq

in the p—q space such that

_ 5
afs . | af* 2 af* 2
n = Ll 4 4 e .
. e 3
. of* . | 8f*2  ofs2 3.57b)
q a | op dq 3.
The terms %ﬁ; and %if, partial derivatives of the yield function

f*(p,q,z) w.r.t. p and q, are calculated by the chain rule from (3.56)

and (2.6) so that

afr _ 1.af 2 of (3.588)
ap 360’11 38%3
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gfr . 8f _, of (3.58b)

dq aoil 6033

Similar definitions apply to a new potential function g*(p,q,8) and its

normal unit vector with components mp,m in the p—q space.

q

Corresponding to the new simplified stress space, a new strain
space is selected with the following restriction: it must not only con—
tain any strain predicted by the model, but also preserve the normality
rule between stress and strain., For instance, the ev—eq space, defined
in relations (2.4), is appropriate only for models which predict
axisymmetric strains obeying relations (2.3). All other models predict—
ing strains outside of the &,~e, space cannot be formulated in the p-q
space. The normality rule between the new stress and strain is
preserved by relation (2.7). The unit vector (mp,mq) normal to the
projected plastic potential in the p—q space is still collinear with the

plastic strain increment (deg,dag) in the e ~e space. In summary,

q
only for elastic—plastic models that predict axisymmetric strains during
axisymmetric stress loadings, may the relations (3.41) be rewritten in

the form:

_ 1
de? = m, < g (2,dp + ndg) > (3.59a)
de®? = m ¢ =L (n_dp + n dq) > (3.59)

q q H* 'p q

where H* is the plastic modulus for axisymmetric 1loading. H* is
different but related to H defined by relation (3.37). Following the

same approach, which leads to the definition of the plastic modulus H in
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(3.37), H* is defined by the following relation:

¥a

2
H#* = e _Q_;‘_:Z_,_ Qﬁ___ _Q_f_‘_m +§-—ﬂ'-m (3.60)
op daq P P p 4
aev aeq

Vhen no ambiguity exists, the superscript "*"” is omitted to avoid an

excess of notation.

3.4 ISOTROPIC ELASTIC PLASTIC CONSTITUTIVE EQUATIONS

In their most general expression, the yield and potential functions
depend on the six independent coordinates of the symmetric Cauchy stress
tensor. These six components are represented by three principal values
denoted %1+ 0, and o3 in a principal stress frame., The three additional
degrees of freedom define the rotation between the principal and the

fixed frames,

Since a function with six variables is difficult to define, most
constitutive laws include hypotheses to simplify the dependence of vari-
ables. As a common assumption, the rotation of principal stresses is
neglected: the three variables, which describe the rotation of the
principal stress frame w.r.t. to the fixed frame, may be disregarded.
The model may then be formulated completely in the three dimensional
principal stress space. Recently, experimental investigations on soils
have been carried out to check this assumption. Using new laboratory
equipment such as the hollow cylinder torsion apparatus (Symes et al.

[3.10]) or the true triaxial apparatus with application of shear stress
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along the boundaries (Arthur et al. [3.1]), the effect of principal
stress rotation has not been found to be negligible. Eventually, when
sufficient and reliable data are available, this phenomenon will be

taken into account in soil models.

3.4.1 Isotropic Elastic-Plastic Models

A more drastic hypothesis to simplify the dependence of yield and
potential functions upon stress components, is to assume that the
material response is isotropic: mnot only the principal stress rotations
are neglected but also the yield and potential functions are taken to
depend only on the stress invariants, i.e., are symmetric functions of
the principal stresses., (By definition, a symmetric function has its
value unchanged by any permutation of its variables.) The stress
invariants, which are commonly used in soil mechanics, are denoted I, J,

and S and are defined here in the following way:

I = %%k (sum on k=1,2,3) (3.61a)
J = (Bs,.s )’l’ (sum on i,j=1,2,3) (3.61b)
ij ij » r4u p .
1
= .].:. 3 i =
S = (3 sijsjkski) (sum on i,j,k=1,2,3) (3.61¢)

where the sij's are components of the deviatoric stress tensor defined

in relation (3.16).
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Sometimes instead of using the third invariant S, a new quantity,

called ﬂ;he's angle and denoted ©, is preferred. This angle is defined

& = §sin {3‘ 3 [? ]3] (3.61d)

The invariants I and J have a representation in a principal stress frame
(Fig. 3.8). If O, M, and m represent successively the stress origin,
the stress state and its projection on the hydrostatic axis, the follow-

ing relations hold:

OM = 1/3’/z (3.62a)
- 2
mM = =7 (3.62b)
3%
ﬂ;he's angle, defined between - % and %, is represented in Fig,

3.8b. Since all stress invariants are symmetric functions of the
principal stress values o, o, and oy, there are six differemt stress
states, obtained by permutation of S1» Oy and o3 with the same stress

invariant values.

Example

Lade’s model is an isotropic model; both yield and potential
surfaces are expressed in terms of stress invariants., However, von
Mises’ model may be nonisotropic: when the yield surface is not centered
on the hydrostatic axis, its equation (3.18) is not symmetric w.r.t. to

the principal stress values.



Fig. 3.8.
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(a) I,J in principal stress space
(b) Lode's angle ® in a deviatoric plane
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Because of the simple dependence of yield and potential functions
on only variables I, J, S (or 6), the isotropic elastic—plastic
constitutive relation presents an attractive formulation, The partial
derivatives of yield and potential functions w.r.t. stress cij may be
expressed as a function of their derivatives w.r.t. I, J and 8 (or ©) by
using the chain rule, e.g., the partial derivatives of the yield func-

tion become

ot = L 3L 9T 8L 38 (1,j=1,2,3)  (3.63)
i ij ij ij
(if 0 is used instead of S, the last term becomes f 08,
EL:) aaij
where the following derivatives a1 ’ aJ R 98 and 36 are
do. do. . dc, . do
ij ij ij ij
calculated from relations (3.61) to yield the following values
al - s s
8y _ Sij L il
30.. 27 (1tJ 1,2,3) (3.64b)
1}
aaij 572 ij = 27 cos (36) 52 3 Tij
(3.64c)
(i)j=1:233)
28 _ L{HEK 2 [3)? s (i,j=1,2,3) (3.64d)
doy; 3l g2 3 IS F3=1.2s '
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3.4.2 Isotropic Models in the p-gq Space

The isotropic elastic—plastic constitutive relations can always
be written in the p~q space for axisymmetric stress loading. For this

special loading, the stress invariants of (3.61) can be calculated

I = 3p (3.65a)
7 = 3% g (3.65b)
e =% , g0 e = -% , qg¢o (3.65¢)
6 6
1
@3
s = -1 (3.654)

Since the deviatoric stress components obey relation (3.20), the rela—

tions (3.64) can be simplified in the following way:

2L = AL - 2L - (3.66a)
%11 %32 %33
31 . o (i#j=1,2,3) (3.66b)
Jdo., .
ij
3y 3y aJ 1
= 22 - o0 - L (3.66¢)
90,4 30), 9034 37k
N S itj , (i,3=1,2,3) (3.66d)
aai
3
0 _ _, 38 _ _, 88 _ 1 . il-sin 30
2 - o 2 2 52 iy (3.66e)
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829 = 0 itj , (i,j=1,2,3) (3.66f)
ij
1
(2) 7
a8 aS 9S8 3
= -9 22 - = (3.66g)
8611 6622 6033 3
aiS = 0 itj , (i,j§=1,2,3) (3.661n)
ij

where the sign "+" is retained in (3.66e) for q positive; for ¢
negative, the sign "-" is chosen, The relation (3.66e) is defined by
continuity and takes a zero value, when © is equal to a4 %. It is

undefined when q is zero, which corresponds to a stress state on the

hydrostatic axis. The partial derivatives a%f may be calculated from
ij
(3.66) and (3.63):
af 3f , 3f..—h , Bf () §
8011 = a1 v 3T 3% +38 3 (3.67a)
(2) &
af of of af .- L af 3
= = = -%lx 73" +3¢ (3.67b)
6022 3633 aI aJ a8 3
f - o it (i,j=1,2,3) (3.67¢)
ad’.. - J 2 J71,4, .
1]

A similar set of relations may be obtained for the potential function g

and its partial derivatives.

From the relations (3.67) and (3.9), the unit vectors respectively
normal to the yield surface and the potential surface conform to the

axisymmetric conditions as defined in (2.5). Therefore, from (3.41) the
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plastic strain increment and comsequently the total plastic strain
(obtained by integrating the increments) corresponds to the
axisymmetric state defined in relations (2.3). The isotropic
elastic-plastic model can be formulated imn p—-q space during
axisymmetric loading. Similarly to relation (3.56), the yield

surface projection in p—q space is defined

£4(,0,5) = #(LT,2 Lo = £3p,3"lal.x L) =0 (3.68)

The unit vector np’nq defined in relations (3.57) becomes

a, = 3%{-%— (3.69a)

1

(2) ¥

- of 3% 3£ 311
n, = #{535 377 ¢ 55 3 I (3.69b)
where
2
(2) 3

E = |9 [%_It_]2+ 4—%—&:34"+%—§- 3 (3.69¢)

The sign "+” or "-" is selected as in relation (3.66e).

A CRITICAL REVIEW OF THE CONVENTIONAL PLASTICITY THEORY APPLICABLE
TO SOILS

So far plasticity theory has been presented, dogmatically, by

enunciating the concepts without mentioning any weakness. Now, when all

the fundamental ideas have been disclosed, the validity of their appli-
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cation to the material, soil, may be studied. Adopting the same
sequence as in the presentation of plasticity theory, the experimental
evidence for yield and plastic potential surfaces (existence and shape)
is examined. The problems related to the hardening rules are also
investigated. Then theoretical constraints on these surfaces, as

enunciated by Drucker, are presented.

3.5.1 Existence of Yield Surface

By definition, a yield surface is a hypersurface in stress space
which characterizes, with the yield criterion, the presence or absence
of irreversible strain (Sectiom 3.2.1). Introduced by generalization of
the yield stress observed in uniaxial test, the existence of such a
surface is difficult to demonstrate experimentally when the soil sample
is subjected to a combined stress state, If a smooth yield surface
exists, a hyperplane tangent to this surface at the stress state g
should be found as shown in Fig. 3.9. This "plane’” separates the stress
increments leading to plastic strain increments during small 1loading-
unloading cycles about the initial stress state, from those giving only
reversible strain, All stress increments étaying in this transition

plane correspond to neutral loading.

According to the Tatsuoka-Ishihara [3.12] tests, described in
Appendix A, such a plane is difficult to exhibit., According to Figs.
A.1, for the stress increment 3G, only reversible straim occurs, but for
XF some plastic strain is preseﬁt. The yield surface would possess a

locally corner—shaped aspect such as represented by Fig. 3.10. A
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Fig. 3.9. Continuous smooth yield surface and its tangent plane in
stress space.

Fig. 3.10, Singular vertex shaped yield surface.

stress increments initiating plastic strain

<Yyield surface
~
~

~N
~

stress increments without plastic strain N

Fig. 3.11. Hypothetical experimental technique to characterize the
yield surface by variation of stress increment direction:
only stress increments initiating plastic strain generate
the yield surface.
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similar result was experimentally observed by Scott and Ko [3.11]. But
a hypersurface with a vertex is difficult to represent mathematically,

and has not been used extensively for soils.

3.5.2 Yield Surface Shape

Once a yield surface is assumed to exist, its shape must be
characterized. This task is even more difficult experimentally and must
be carried out with caution. One hypothetical experimental way to
explore a yield surface is shown in Fig. 3.11, After reaching some
stress state g, the yield surface is determined locally by applying some
specific loading—unloading stress cycles from that stress state. From a
stress increment creating only reversible strain, the stress increment
direction is changed successively. When plastic strains start to appear
during such cycles (neutral loading), the new stress state g+dg lies on
the same yield surface, unchanged since only a negligible or eventually
very small plastic strain was created. If the same process is repeated
about g+dg a surface may be defined globally by iteration. In spite of
its attractiveness, this technique has not been applied experimentally:
it requires a testing apparatus in which the stress direction can be
altered in every possible way. Avoiding this difficulty Tatsuoka and
Ishihara [3.12], in the second experiment presented in Appendix A, have
tried a different technique. From a stress point origimnally located on
the yield surface, the stresses followed a stress path in the elastic
domain (inside the yield surface). This stress emerges from the elastic

domain, i.e., intersects the yield surface, when the strains exhibit
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some "significant” changes (Figs. A.9b and A.9¢). This intersection,
which is the new yield stress, defines another point of the same yield
surface. Since the yield surface moves after the intersection, only two
points of the same surface are found at different stages of loading.
These two points, when close together, characterize the surface locally;
this local aspect, assumed to depend only on stress as in relation
(A.1), is integrated to give the complete yield surface equation in
relation (A.2). However, in order to perform this integration, the
yield surface must have a local aspect independent of internal vari-
ables, This technique cannot be used to define the influence of the

internal variables on the yield surface.

Generally in soil plasticity, the yield surface is smooth for
convenience. The yield surface is commonly extrapolated either from the
failure surface or from the plastic potential surface, The failure
surface is usually fixed in stress space, and is not related to the past
loading history; the yield surface is selected with the same analytical
expression as the failure surface, but with different parameter values.
This method, used by Lade ]1.16] for example, relies on a 1local
coincidence of both surfaces at the failure stress., When both surfaces
coincide totally at failure, this technique generates a large elastic
domain absolutely unrealistic for soil. Furthermore, the flow rule,
which governs the plastic flow direction, must become non-associative to
compensate for this simplification (e.g., Lade's model). Alternatively

to extrapolation from the failure surface, the yield surface is found
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from the plastic potential surface, by invoking an associative flow
rule. This aspect is investigated in the following, All the gquestions
relevant to the existence and shape of a yield surface may be repeated

for a potential surface.

3.5.3 Existence of a Plastic Potential Surface

By definition, a plastic potential surface is a hypersurface in
stress space, which gives the plastic flow direction, Any stress incre—
ment about a stress state, that points outwards from the yield surface,
creates a plastic flow with a constant direction. In other words, the

plastic flow direction is independent of the stress increment direction,

Such an independence is not observed in elasticity. The general
relations of mnonlinear isotropic elasticity may be specified, for
axisymmetric loading, in the p—q space, as follows:

dev = (3.70a)

g

de =
q

2

(3.70b)

where B and G, respectively the bulk and shear modulus, are appropriate
functions of the stress state p,q. The ratio daq/dgv depends linearly

on the ratio dq/dp according to the following relation:

d
-—s—g- = 2 18 dg (3.71)
de 9 1-2y dp
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where V, Poisson’s ratio, may eventually be a suitable function of
stresses, The strain and stress increment directions, respectively
represented by the angles 96 and 98, with tangent dq/dp and dsq/dev, are
plotted in Figure 3.12 for different constant values of Poisson’s ratio.
Oe varies with respect to GG, which indicates that, in elasticity, the
strain increment direction depends upon the stress increment direction.
Experimental results on soil do not corroborate this dependence, and
establish, to some extent, a constant direction for plastic flow.
According to the first experiment of Tatsuoka and Ishihara, especially
from Fig. A.1, plastic flow was found to have not only one but two
different directions, e.g., the vectors OA, OB, OC, and OD have
different orientations than the vectors OF and OE in Fig. A.1. This
result suggests that the potential surface, 1like the yield surface,
presents a vertex located at the stress state, with two different
normals, Each normal depends on the stress increment direction., Such a
result unsettles the fundamental concept of plastic potential, by remov—
ing the smoothness of this surface, and making it dependent on the

stress increment,

3.5.4 Shape of Plastic Potential Surface

Once a smooth plastic potential is asswmed, its shape must be
defined. Only its local aspect about the stress state is relevant. For
instance, in Fig. 3.6, the portion of the plastic potential surface
located inside the yield surface is meaningless: plastic strain cannot

exist there., The plastic potential surface is defined more easily by
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1 |8
180° 270°

Fig., 3.12. Stress increment direction 96 versus strain increment direc—
tion 98 for linear isotropic elasticity with different
values of Poisson'’s ratio.
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experiment than the yield surface. If the plastic flow direction
depends only on the stress state, the following technique may be applied
to characterize its shape in the p—q space. First, from experimental
results obtained from axisymmetric loading tests, the plastic strain
increment is calculated at different stress states. These calculations
are either performed by neglecting the elastic strain w,r.t. plastic
strain or by subtracting the incremental elastic strain dge (calculated
with a selected elastic model) from the total strain increment dg, Then
is

the plastic flow direction, characterized by its unit vector mp,mq,

related to the stress state p,q: m, and m, become known functions of
P, Q. Finally the plastic potential surface is found by integrating the

following equation

mp(p.q)dp + mg(p,q)dqg = 0 (3.72)

3.5.5 Hardening Rules

The motions of any surfaces, yield or plastic potential, as
described by the hardening rules, are strongly related to the surface
definitions. Once an analytical form has been selected for the surface,
such as in equation (3.8a), only the parameters Ty control all
changes, For instance, for Lade’s models, only one parameter controls

the yield surface size and therefore only an isotropic expansion about

the hydrostatic axis is possible,
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Different hardening rules have been used for soils; all are derived
for the isotropic and kinematic hardenings presented for von Mises'’
model. The kinematic motion, certainly appropriate to soil behavior
since it 1imits the elastic domain, requires more effort; a surface
motion must be characterized. For von Mises' surface, this motion was
assumed to be collinear to the plastic flow direction. Generally a
combined isotropic—kinematic hardening allows a better description of

the material response, since it gives more degrees of freedom.

3.5.6 Implications of Drucker's Postulate

While experiments may yield information on the shape of the yield
surface, general principles, such as Drucker'’s postulate [3.3] enforce
constraints which its shape must satisfy. This postulate, well known to
any plasfician. has been the object of a good deal of controversy. It
is enunciated in Appendix B and has three major consequences regarding

the yield surface.

a) "the plastic strain increment dgP points outwards from the

yield surface”

b) "the plastic strain increments dgP must be normal to the yield
surface at g»

¢) the yield surface must be convex

All three consequences are easily proved by considering that the rela-
tion (B.5) must hold for any arbitrary initial stress state go inside

the yield surface. The first consequence does not allow strain—
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softening and the second one prohibits a nonassociative flow rule., Then

Lade’s model, for example, violates Drucker’s postulate.

The major impact of this postulate is to give restrictions on
elastic-plastic models to provide uniqueness in boundary value problems,
But these conditions are sufficient, not necessary, to obtain wunique-

ness.

Drucker’s postulate may be invoked in a different way: some real
materials exhibit nonunique solutions, when subjected to some prescribed
force and/or displacement loading. This nonuniqueness may be expressed
by bifurcation from one mode to a different mode of solution, according
to slight perturbation on some parameters entering the boundary value
problem, This is the case with dense sand which very often switches in
the triaxial test from a uniform mode of deformation to a localized
deformation along a shear plane. In order to describe such an ability
to bifurcate, the model, which represents the material behavior, must
not obey Drucker’s postulate. A nonassociative flow rule may be
sufficient to satisfy this requirement. Rudnicki and Rice [3.9] made
use of this comment to represent localization of displacement with

plasticity in pressure—sensitive materials,



_71_

CHAPTER IV

BOUNDING SURFACE PLASTICITY

Recently, in order to avoid the necessity of defining yield and
potential surfaces and their respective motion, new theoretical frame-
works, such as the "rate—type” constitutive equations, have been used to
describe the rheological soil behavior. The rate—type relations, first
gqualified by Truesdell [4.6] as hypo—elastic, describe the material
behavior in terms of a mathematical series expansion, without any
hypersurfaces. The material behavior is not represented with geometri—
cal analogies, but by more and more mathematics, which renders these new

constitutive models less attractive to practicing engineers,

As an alternate to the option of completely new theories, conven—
tional plasticity has been adapted to give a better description of
material behavior. In 1967, Iwan [4.3] and Mrdéz [4.4] suggested replac-—
ing the single yield surface by several nested yield surfaces. This
theory, called multiple yield surfaces plasticity, was applied to soil

by Prevost [4.5].

In 1976, adopting a slightly different approach, Dafalias and Popov
[4.1] introduced the idea of ‘“"bounding surface.” This new concept
brings new features to conventional plasticity without unduly complicat—
ing the mathematical formnlation.’ To some extent, this last adaptation

can be perceived as a generalization of conventional plasticity which
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brings at the same time more freedom to represent material behavior., In
the following, this new theory is linked with our previous presentation
of plasticity; its new concepts are first defined from a uniaxial test,

and then generalized to a six—dimensional stress space.

4.1 BOUNDING SURFACE IDEAS FROM UNIAXJAL TESTS

A typical material response to a loading-unloading cycle in a
uniaxial test is schematized in Fig. 4.1. (Such a schematic behavior
may represent metals, soils, or other materials.) Although eventually
described by conventional plasticity, this illustrative behavior will be
considered, after removal of the elastic strain, from a new and

different point of view in Fig. 4.2.

At the beginning of loading, the response is elastic. After
exceeding some stress o*, the stress—strain curve approaches asymptoti-
cally and merges with the bound represented by the straight 1lime XX',.
v The slope of the response curve at any point is taken as a function of
the distance AA’, denoted 5§, between the stress state and the bound XX'.
This function decreases continuously and monotonically from infinity to
the slope value of line XX'. The transition between the elastic and
elastic—plastic range becomes continuous. The yield stress o* may be
omitted if the function for the slope takes an arbitrarily large value
when the distance & is less than some quantity amin' The point A' on
the bounding line XX’ (Fig. 4.2) is called the "image point.” During
the plastic 1loading from A to B; it moves to a new position, B’'. The

infinitesimal changes of stress state and image point, respectively



- 173 -

7

-

Fig. 4.1. Real typical material response during a loading-unloading
cycle.
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Fig. 4.2. Idealized material response for development of bounding
surface plasticity.
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denoted do and do, obey the following relation

do = <+ do (4.1)

S

17 o

where S is the slope of stress—strain curve at A, and SB the slope of

bounding line XX' at A’.

During unloading (Fig. 4.2), the image point is selected now on the
other bounding 1line YY', All the ideas{ def ined during the previous
loading, apply to describe the unloading response., Thus two new funda-
mental ideas have been added to conventional plasticity: the bounds and
the response dependence upon the distance between the current stress
state and these bounds. In conventional plasticity, the material
behavior is only described by quantities related to the stress state and
its past loading history (such as the yield surface). In bounding
surface plasticity, the response also depends upon some exterior bounds

corresponding to the maximum admissible stress states.

4.2 GENERALIZATION TO SIX-DIMENSIONAL STRESS SPACE

Applying the same geometrical considerations as in conventionsl
plasticity, the yield stress o* becomes a yield surface; similarly, the
bounds XX’ and YY’' transform into a hypersurface called the "bounding
surface” (Fig. 4.3). The yield and bounding surfaces move simultane—
ously in stress space in a coupled way and possibly deform. They may
come in contact, but do not intersect; this corresponds to the merging

of a stress—strain curve with the bounds in the uniaxial case. All the



Fig. 4.3. Bounding surface and yield surface in stress space.

1
N

Fig. 4.4. Bounding surface and radial mapping rule in stress space.
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internal variables, which control the material memory, are assumed to be

dependent on the plastic strain 5?.

The bounding surface has for equation

£f(g,e?) =0 (4.2)

where g, with Cartesian component ;ij (i,j = 1,2,3), represents the
image point, Among other possibilities, Dafalias and Herrmann [4.2]
chooses this point g such that the yield and bounding surface have
collinear normals respectively at g and E (Fig. 4.3). The distance B
between image, g, and stress state, g, is given by the Euclidean norm of

og and is expressed in terms of coordinates such as:

5 = [(Eij-oij)(;ij-oij)]% (sum on i,j=1,2,3) (4.3)

Once these generalizations have been performed, the plastic strain
increment is defined, as in conventional plasticity, by specifying
successively its existence, direction and amplitude. Plastic flow
occurs if the stress increment and the stress state satisfy the yield
criterion enunciated in Sectiomn 3.,2.1. The fla;tic flow direction is
characterized by the unit vector, denoted g, normal at the image E, and
pointing outwards frum’the bounding surface. This vector is defined by

relation (3.9) with substitution of ;ij for Gij' Consequently, the
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increment of plastic strain and stress increment obey relation (3.41)

specialized for an associative flow rule,

However, the plastic flow amplitude, characterized by the plastic
modulus H, is now related to the distance &. This dependence is
examined in two steps, depending on whether or not the image point and

the stress state coincide,

When both stresses coincide, which corresponds to the merging of
the stress—-strain curve with the bound XX' of the uniaxial test (Fig.
4.2) and to a distance 8 equal to zero, the plastic modulus is found by
enforcing the stress state to remain on the bounding surface. This
restriction, known as the consistency condition in  conventional
plasticity, is derived from equation (3.37), by specifying an
associative flow rule (m = ;) and substituting ; for g, It yields the

following expression

)
H= By = -2 @) 2 @) - @eh ay
90,¢ a;;s aekl

(4.4)

(sum on r,s,k,(=1,2,3)
The modulus H obtained in expression (4.4) is denoted by Hh, where the
lower index "B"” refers to the bounding surface. When the stress state
and image points coincide, there is no difference between conventional

and  bounding surface plasticity. The bounding surface behaves
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simul taneously as a yield and potential surface and the plastic modulus

H, independent of 5, results from the consistency condition.

In the most general case, the image stress g, the stress state g
and their respective <changes denoted by dE and dg, are all different.
However the increments dg and dE become related by the consistency
condition (3.35) applied to the image instead of the stress state.
Using the relation (3.41) specialized for the associative flow rule, and
the plastic modulus Hy gdefined by relation (4.4), the consistency condi-

tion (3.35) yields:

E’%adE = & Bda (4.5)

This expression, where Hy given by (4.4) is generally differeat from H,
generalizes the relation (4.,1) obtained for the unidimensional state. H
is a function of Hy and 5. Additionally, in order to achieve a continu-
ous transition between a purely elastic and an elastic—plastic response,
H is assumed to decrease continuously and monotonically from an
arbitrarily large positive value when & is large, to reach the value HB

when & becomes zero,

4.3 ADVANTAGES OF BOUNDING SURFACE PLASTICITY OVER CONVENTIONAL
PLASTICITY

The relation connecting the plastic moduli H, HB and the distance &
introduces the most important advantage of bounding surface plasticity

over conventional plasticity. In conventional plasticity, the plastic



modulus H is calculated as in relation (3.37), directly from the harden—
ing rules, by enforcing the consistency condition. The amplitude of
plastic flow is therefore essentially prescribed by a hypersurface
motion. But such motions, obviously difficult to characterize, are
generally derived from simple rules inspired from the kinematic and
isotropic rules as observed in Section 3.2.3 for von Mises’
model. Consequently, the plastic flow amplitude cannot be adjusted with
mﬁch flexibility. This remark becomes particularly important during
cyclic 1loading, when the hardening ’rules control essentially the
predicted response. For instance, in Fig. 4.5, depending upon the
selected hardening rule, von Mises’ model exhibits very different

responses resulting from strain-cycles between two extremes, denoted

and ¢

max respectively. For kinematic hardening the stress—strain

g .
min
curve stabilizes on a closed loop, while, for isotropic hardening, the
response becomes purely elastic. In bounding surface plasticity, the
changes occurring for the bounding and yield surfaces must also be
specified. The plastic modulus Hy is calculated from such a surface
motion as indicated in relation 4.4. But now the amplitude of plastic
flow is 1less dependent upon hypersurface motions., The scalar relation

between H, Hy and 8 provides an additional degree of freedom to describe

the material response, even during cyclic loading,

As the second major advantage of bounding surface plasticity, the
yield surface may vanish; it may be shrunk to the stress state, Imn this

eventuality, since a normal vector cannot be defined for a zero-sized
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Fig. 4.5. Predicted response by von Mises’ model with different
hardening rules during strain cycles.

a) kinematic hardening
b) isotropic hardening



surface, & particular relationship, which is called the "mapping rule,”

must connect the stress state g and the image g. For example, Dafalias

and Herrmann [4.2] defined the radial mapping so that

g = xg (4.6a)

or, expressed in terms of components,

(i, j=1,2,3) (4.6b)
where x is a scalar which satisfies the equation:

f(xg,gP) = 0 (4.7)

In equation (4.7), both ¢ and gP are known, while x is the unknown quan-
tity. In other words, the image defined by (4.6) is the intersection of
the bounding surface with the straight line passing through the origin
of stress and the stress state (Fig. 4.4). In order always to obtain a
unique image, the bounding surface must be convex and contain the origin
of stress. Additionally, a rule, which specifies a particular point,
must be defined when several images are possible. For radial mapping
(Fig. 4.4) two points are generally possible: the closest one to the

stress state is selected as the image.

Even without a yield surface, a finite elastic domain may be

created. For instance, if the plastic modulus H takes on a large
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positive value when § is larger than some arbitrary value & then the

min’

response is almost purely elastic,

The radial mapping, as specified in relation (4.6), is only a
particular example, Other choices may be considered such as a radial
mapping with a pole different of the origin, or eventually a mapping

related to the incremental stress direction.

4.4 FORMULATION OF BOUNDING SURFACE THEORY IN P-Q SPACE

The remarks applied to conventional plasticity theory regarding
formulation in the p-q space (Sections 3.3, 3.4) still hold. If the
bounding surface model is expressed in terms of stress invariants, it is
said to be isotropic. In this eventuality, corresponding to
axisymmetric stress states and stress increments, the predicted strain
states and changes are axisymmetric; the p—q stress space and Bv—eq
strain space represent completely the material behavior. The model may

be formulated in the simplified p—q space, as described by equations

(3.59).
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CHAPTER V
APPLICATION OF BOUNDING SURFACE PLASTICITY TO SOIL:

A NEW SAND MODEL

5.1 INTRODUCTION

In 1979, Dafalias [5.5,5.6] was the first to apply bounding surface
plasticity to soil and, particularly, to clays. Imn 1979, his model was
simply derived from the early Roscoe-Burland model [5.20]: He
transformed Roscoe—Burland elliptic yield surface into a bounding
surface, and added an arbitrary relation between the plastic modulus H,
HB and the distance 8. As a result of these adaptations,
overconsolidated clays, which had only elastic responses according to
the Roscoe-Burland model, were now able to exhibit plastic deformation.,
In 1982, Dafalias and Herrmann [5.7] modified the bounding surface shape
in order to improve the description of dilating and strain-softening
responses. This new surface is composed of portions of two ellipses
connected continuwously with a hyperbola. In both model versions, the
bounding surface is a yield and a plastic potential surface for normally
consolidated clays. For a c¢lay in an overconsolidated state, the
bounding surface has a position related to its normally consolidated
state. This influence of the overconsolidation ratio renders Dafalias
models successful for clays. However, since granular materials depend

more on the initial density than on the overconsolidation ratio,
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Dafalias’ model cannot be applied meaningfully to sands without substan—

tial modifications.

In 1982, Aboim [5.1] proposed a simple bounding surface model for
sand, composed of only six parameters. His bounding surface is ellip—
tic, but with a variable aspect ratio, which allows it to match the mea—
sured sand response during the triaxial test at constant confining pres—
sure, Although this recent model has not been studied herein as
extensively as Dafalias’ model, the relation between the plastic moduli
H, Hﬁ and the distance & on it seems arbitrary, and strain-softemning is
not considered. It is therefore adapted to sands in a loose to medium

dense state.

From the literature review, bounding surface plasticity is a new
theory and has not yet been applied extensively to sands. Its success—
ful application to metals and clays by Dafalias demonstrates its poten
tial worth and its superiority over conventional plasticity to describe
a material behavior, especially during cyclic loadings. A good
representation of material cyclic response is particularly important for
offshore technology or earthquake engineering. Heavy sea storms subject
the foundations or piles of offshore platforms to large periodic wave
forces. Although with shorter periods, earthquakes also generate cyclic
loadings or structures. Eventually disastrous phenomena, known as soil

liquefaction, may result from these cyclic loadings. However, bearing
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in mind that complex cyclic loadings is the future goal, the model must

first be developed for simple monotonic loadings.

A particular data set from tests on Sacramento River sand is used
extensively to present the new model. These test results were published
by Seed and Lee [5.12,5.23] and, were personally communicated to the
author by Lade in their original and detailed laboratory data format. '
These experimental results, one of the few consistent set of tests that
have been published on sands, are accepted by most researchers as reli-
able; they truly represent the rheological sand behavior. Although
based principally on this data set, the new model may be applied to any

sand, as it is founded on general observatiomns of sand behavior.

The model presentation is adapted to the available 1laboratory
experiments. Since all the tests were performed in the axisymmetric
state of stress and strain as defined in Sections 2,2 and 2.3, the new
model is formulated in the p-q stress space. First, the elastic
contribution to the elastic—plastic material response is investigated;
most elastic models used for sand are incorrect and need to be altered
in order to conserve energy. Then the plastic contribution is examined
with a new techmique, which consists of following the incremental
material behavior with an interactive computer code [5.2]. The computer
has been used in soil modeling previously mostly to perform step-by-step
integration, which leads ultimately to numerical predictions of soil
behavior, But it has not been used commonly for the elaboration of a

constitutive equation. Here it introduces a systematic exploration of
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test results, and allows us to isolate some particular aspect of the
material response. Although the experimental data were too sparse to be
fully compatible with this new technique, a lot of useful information
was extracted. For instance, the experimental direction of plastic flow
was elucidated by this method and consequently a new bounding surface
equation, different from Dafalias and Aboim’s surfaces, is proposed.
Following the bounding surface definition, its motiom is specified by
selecting an appropriate internal variable., Finally, from the plastic
flow amplitude given also by the computer code, a relation between the
moduli H, HB and the distance 5 is proposed. Arbitrarily selected by
Dafalias and Aboim, this relation is investigated in more detail in this

presentation,

Thus a new constitutive relation is established for sand. Once it
has been fully derived im p-q space, it is extended to the six-
dimensional stress state by invoking isotropy and a specific contribu-

tion of ﬂxhe's angle.

As an illustration, all the model constants are calculated for the
dense Sacramento River sand, Finally the predicted sand behavior,
obtained by numerical integration of the new constitutive equation, is
compared not only to real experimental results, but also to another

numerical predictions given by a different sand model.
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5.2 ELASTIC CONTRIBUTION

According to relation (3.5), the strain increment is the sum of two
simultaneous increments: one elastic and the other plastic. However,
the plastic increment may vanish in some particular conditions and
leaves the strain increment purely elastic. Such conditions are met
exactly during unloading (the stress state moves inside the yield
surface) or approximately at the beginning of loading (the plastic
strain are negligible w.r.t. the elastic one). This last approximation
must be considered with caution for the stress state lie on the yield
surface. All the remarks on how to isolatekthe elastic response from
the total response pertain for bounding surface plasticity: only stress
reversals give accurate experimental data to characterize the reversible

sand behavior.

5.2,1 Preliminary Remarks on Elastic Sand Models

For most of the elastic-plastic sand models, the elastic
contribution is isotropic but mnonlinear. Isotropy is a convenient
hypothesis, since it lowers the number of elastic moduli to two; these
two quantities are selected from Young’'s modulus E, Poisson’s ratio V),
bulk modulus B or shear modulus G, Lame’s modulus A is rarely used in
soil mechanics, All the preceding quantities are related as shown in
Table §5.1. The nonlinearities are wusually related to a pressure
dependence. For instance, the bulk modulus is often selected as the

following power function of the mean pressure p,
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TABLE 5.1. RELATIONS AMONG ELASTIC QUANTITIES [5.25]
G E A B
G.E %6 | 30en
G,V 2G(1+Y) %%%%%%%
B _9GB. 3B-26
! 3B+G 2(3B+G)
E,V 2(1}1\)) 3‘('1%5'\)7
V,B 3B(1=2Y) | 3p(1-9y)

2(1+Y)




B = Bp" (5.1)

where Bo and n are material constants. Since Poisson’'s ratio is always

difficult to measure accurately, it is commonly assumed to be equal to a

is selected between 0.2 and 0.3. In

constant ¥ ; for most soils, V),

this eventuality, from Table 5.1, Young's and shear moduli become also
power functions as in expression (5.1), with the same exponent but

different constants.

However, although commonly used in practice, the elastic models
using relatiom (5.1) and a constant Poisson's ratio are not satisfac—
tory: they dissipate or create some work during a closed stress cycle.
A short proof of this assertion follows in the particular axisymmetric
loading defined in sections (2.2) and (2.3). By definition, the incre—
mental work dW corresponding to incremental strain da:.de: about a

stress state p,q is such as

= e e
av = pdav + qdeq (5.2)

Substituting the elastic relations (3.70), dW is rewritten

= B 4
daw B dp + 3G dq (5.3)

In order for dW, which depends only upon the variables p and ¢q, to be
stress—path independent, dW must have a differential form; the following

condition must be satisfied:



2 fa] . 2 [p
3p e 3q [8] (5.4)
If Poisson’s ratio is constant, and the bulk modulus depends only upon

p, relation (5.4) is not satisfied since each term can be written

219 - 22 4, (5.58)
op G 3 1--2\)o BZ dap *

2 fp] - _ 3B _ 5.5b
aq[B] > 5 (5.5b)

As a consequence of (5.5), some work W is created or dissipated during
closed stress cycles and the work W becomes dependent on the stress
path. This result may be illustrated with two simple stress paths and a
closed stress cycle as shown in Figure 5.1, These paths, located in the
P—-q space, ?onnect an initial state (pi’qi) and a final state (pf,qf).

Along the first path, defined by the successive state (pi'qi)’ (pi,qf)

and (pf,qf), the work dome is

ar Pg
I S pdp
LA 36 j qdq + j E1eS) (5.6a)
qa; P,

Along the second path, which differs from the first omne by the

intermediate state (pf’qi)’ the work is
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Fig. 5.1. Stress paths and stress cycle to calculate energy for a
nonlinear isotropic elastic model.

0.6

P (kgsecm?)
0.5 1 1

0 50 100

Fig. 5.2. Fitting of isotropic unloading test on the dense Sacramento
River sand with the selected nonlinear elastic model.
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By virtue of expression (5.1) and Table 5.1, G(pi) is different from

G(Pf), if p; differs from pg. The work W depends on the stress paths

relating initial and final state. Along the closed stress path, formed

by following the first path and reversing the second path, the work is

. _1r2_2 1 _ 1 1

Since the work W  is positive, emergy is dissipated during this stress

cycle,

This theoretical deficiency of the elastic model may be easily
corrected by changing the relation (5.1). Instead of depending only
upon p, the bulk modulus becomes a function of p and q with the restric-
tion that it satisfies relation (5.1) for the particular isotropic
loading (q = 0). Poisson’'s ratio is still assumed constant. The equa-
tion (5.5) is a partial differential equation: the unknown function B
with variables p and q satisfies the boundary conditions given by rela-
tion (5.1) when q equals to zero and p is positive., The solution of

this boundary value problem is:
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n

1+ 5
- 2,2 o 212
B(p,q) Bo[P *5 12, q ] (5.7a)

where Bo and n are the same constants as defined in (5.1). This result,

obtained for axisymmetric states, was generalized to the six-dimensional
stress space by Loret [5.13]; in this case, the bulk modulus B is such

that:

B n
o 272
Bls) = 3012y ) [a9g)e3 055 = Vo ta?]

(5.7v)
(sum on i,j,k=1,2,3)

The corrections (5.7) apply only when Poisson’s ratio is constant and
when the bulk modulus is a power function of the mean pressure during
the isotropic test. This corrective technique, which involves the solu-
tion of partial differential equation (5.4) with boundary conditionms,
may be generalized to any nonlinear isotropic elastic models, where two
elastic moduli are arbitrary functions of the stress. For instance the
shear modulus G is often assumed to be a function of the mean pressure
p, while the bulk modulus B remains constant, Such an assumption
violates clearly the relation (5.4) and may be corrected. However,
nonl inear elastic models, which are defined from a strain energy func—
tion, always satisfy the expression (5.4). Investigated only by a few

researchers, e.g., Chang, Ko, Westman and Scott [5.4], such models are
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rarely used in constructing elastic—plastic soil models.

5.2.2 Choice of an Elastic Model

The corrected elastic model, as defined in the relations (5.7) is
selected to represent the elastic contribution in the new elastic plas—
tic model. The two material constants, Bo and n, are defined from
isotropic cyclic tests. Poisson's ratio Vo is arbitrarily chosen equal
to 0.2. From relation (5.7a), this particular elastic model predicts
that both the bulk and Young'’s moduli increase with the stresses p and
g. Adopted for convenience and theoretically correct, this assertion
has not been validated or refuted by any test found in the literature.
However, if such a result was found not to comply with experimental

data, Poisson’s ratio may be selected as mean pressure dependent.

5.2.3 Calculation of Elastic Material Constants

The calculation of the material constants Bo and n are performed
for the dense Sacramento River sand from two cycles of loading-unloading
during an isotropic test. During isotropic tests, relations (5.7a) and
(5.1) coincide. The incremental relation (3.70) is integrated from an

arbitrary initial state po,(g:)o to the present state:

e _ evo _ 1 [1-n_ 1-n
e - (e2) 5 [0 S (5.8)

In particular if the unloading is carried to zero pressure, (po is zero)

relation (5.8) becomes:
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e e\ o 1 1-n
— ) 1 A ———————— 5.9
g (e B ) P ( )

After taking the logarithm of (5.9), a linear regression technique
is applied to the experimental data points in order to calculate Bo and
n; it gives for the Sacramento River sand the values in Table 5.2. A1l
the calculations were performed with a small programmable hand calcula—
tor [5.8]. A linear regression analysis was applied successively to
each cycle, then to both cycles. Although the values differ slightly,
relation (5.1) describes with good accuracy the bulk modulus dependence
upon the mean pressure p, as shown in Figure 5.2. The parameters Bo and

n, obtained by Lade [5.10], are also shown in Table 5.2.

5.2.4 General Remarks and Suggestions for Future Elastic Model

Within the context of bounding surface plasticity, the elastic
contribution may be considered from a new point of view. When the
stress state is far away from the ©bounding surface (& large), the
response 1is elastic; the strain increment corresponding to a given
stress increment is small., On the other hand, when the stress state
lies on the bounding surface, the strain increment, essentially plastic,
is large. The continuous transition from the elastic to the elastic—
plastic range, 1i.e., between small and 1large strain increments, is
maintained since the plastic modulus H is a continuous function of the

distance 5.



- 96 -

TABLE 5.2. ELASTIC CONSTANTS BO AND n FOR THE DENSE SACRAMENTO RIVER SAND

B n
o
First unloading only 829.5 0.28
Second unloading only 579.5 0.63

First and second unloadings (average) 729.0 | 0.47

Values given by Lade [5.10] 933.3 0.57

E

2 E =1680 , V) = 0.2

B, =3(1-—2v) * B
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Contrary to general practice in elastic—plastic models, the elastic
contribution may be coupled with the plastic response. The elastic
parameters, such as the bulk and shear modulus, may depend not only upon
the stress but upon the internmal variables. When no plastic strains are
created, i.e., when the internal variables are unchanged, the elastic
model still predicts no energy dissipation or creation, When plastic
flow occurs, the elastic moduli become dependent on the internal vari-
ables, and the elastic model may create or dissipate emergy, which any—

way becomes meaningless since emergy is dissipated at the same time by

plastic strain,

Such an elastic—plastic coupling, if used in the future, will allow
a better description of densification. For instance in order to
represent the densification of Sacramento River sand, the material

constants BO and n may be selected as functions (in addition to stress)

of intermal variables, such as the plastic volumetric strain.

5.3 DIRECTION OF PLASTIC FLOW

Once the elastic contribution has been defined, the plastic strain
increment mneeds to be characterized, successively by its direction, and
its amplitude; its existence is specified afterwards. As mentioned in
section 4.2, bounding surface plasticity theory predicts that the plas-—
tic flow direction is collinear with the normal to the bounding surface
at the image point. As in conventional plasticity, the plastic flow
direction is not related to the stress increment direction, and depends

on the opresent stress state., This stress—dependence must respect, as
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much as possible, well-known and observed aspects of the behavior of
granular material, in particular, the three main concepts known as the
critical state, the characteristic state and the stress—dilatancy rela-
tions, Each of these points, which are first reviewed and then verified
for the dense Sacramento River sand, enforce constraints on the relation
between plastic flow direction and stress state, and consequently on the
possible shape of the bounding surface., Ultimately, a bounding surface
is selected; its prediction of the plastic flow direction is compared
with real values obtained for the Sacramento River sand. Since the
bounding surface equation is established from general observations on

granular material, it may be applied to any sand.

5.3.1 Critical State

As defined by Schofield and Wroth, [5.22] the critical state in
soil mechanics is an asymptotic state, eventually reached during
loading, characterized by no volume change; no stress change and
infinite deviatoric strain: "It is as if the material has melted under

stress.”

For axisymmetric states of stress and strain, this definition is

translated into the following mathematical terms:
de, = 0 , de; = = ‘ (5.10a)

dp = dq = 0 (5.10b)
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According to Schofield and Wroth, the critical state has a location in

the p—q—e space given by the following relations:

@ = Mp , ifgqg>0 (5.11a)
a = Mp , ifq>0 (5.11b)
e = I-fa(p) (5.11¢c)

It is defined only by four material constants:

r value of critical void ratio at unit mean pressure,
A slope of critical state line projection in [n(p)-e plane.
Mc'Me slopes of projection of critical state lines in p-q plane

corresponding to positive and negative deviatoric stress.

For a clay, normally or slightly overconsolidated, the critical
state line is wunique, and its projection in the [n(p)—e plane is
parallel to the virgin consolidation line (response pf a normally
consolidated sample to an hydrostatic compression). It does not depend

on the previous loading history of the material.

For most sands, the critical state is difficult to exhibit experi-
mentally., As observed by Lade [5.11] and other experimentalists, the
strains within a sand sample become often nonuniform, for instance, due
to a strain—localization such as a shear band. The volume measurement,
generally performed with interstitial water saturating the sample,
underestimates the volumetric strain in the shear band, active part of

the sample. The discontinuities, even more accentuated in the presence
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of large deformation (e.g., 20% of axial strain in triaxial test),
render the asymptotic critical state more difficult to determine experi-

mentally in sands.

However, the critical state remains a valid assumption in the case
of the Sacramento river sand., In Fig. 5.3, the experimental points of
void ratio versus mean pressure at critical state obey a relation
similar to (5.11c) for drained and undrained tests at different confin—-
ing pressures, The critical state for sands depends on the initial sand
density, and is not parallel to the isotropic comsolidation response

curve.

By applying a linear regression analysis to the data of Tables 5.3,
corresponding to the equation (5.13), the following values were found

(Fig. 5.4):

dense sand : M 1.38 , I =0.88 , A =0.088

and

loose sand : M 1.35 , '=1.0 , » =0.084

i

Within the context of an elastic-plastic theory, the critical state
requires the plastic strain increment to be parallel to the q axis,
which means that the unit vector defining the plastic flow direction has

the following components:
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CRITICAL STATE DATA FROM DRAINED AND UNDRAINED TESTS ON
DENSE SACRAMENTO RIVER SAND (AFTER SEED [5.12,5.23])

TABLE 5.3a

Initial |Initial Confining
Void Pressure Critical Void P q
. . M
Ratio €5 9 Ratio 2 2
(kg/em”) kg/em” |kg/cm
0.638 1 0.826 1.88 2.64 1.40
0.629 3 0.719 5.51 7.53 1.37
0.61 6 0.691 11.43 | 16.3 1.43
0.592 10.5 0.617 19.53 | 27.09 1.39
0.576 20 0.576 35.47 | 46.4 1.31
0.628 1 0.628 3.82 5.92 tests
0.606 10.5 0.606 23.0 34.7 excluded
0.587 15.1 0.587 31.8 47.5 (cavitation)
0.587 20.2 0.587 30.63 | 43.6 1.42
0.571 29.9 0.571 30.7 43.2 1.41
0.564 40.1 0.564 31.8 41.2 1.30

TABLE 5.3b CRITICAL STATE DATA FROM DRAINED AND UNDRAINED TESTS ON
LOOSE SACRAMENTO RIVER SAND (AFTER SEED [5.12,5.23])

Initial Initial Confining
Void Pressure Critical Void P q
. ) M
Ratio e0 2 Ratio 2 2
(kg/cm ) kgjcm kg/cm

0.867 0.94 0.895 1.7 2.33 1.36
0.860 2.0 0.867 3.72 5.16 1.39
0.850 4,5 0.827 8.19 11.07 1.35
0.830 12.65 0.728 22.52 29.6 1.31
0.883 0.3 0.883 2.3 3.17 1.38
0.874 1. 0.874 3.51 4.87 1.39
0.891 1 0.891 5.21 7.03 1.35
0.859 3. 0.859 - 5.48 7.31 1.33
0.868 3. 0.868 5.25 6.86 1.31
0.860 5. 0.860 6.77 9.13 1.35
0.833 8.44 0.833 11.36 15.41 1.36
0.848 10.80 0.848 7.62 10.41 1.37
0.832 12.65 0.832 7.75 10.79 1.40
0.821 20.00 0.821 9.47 13.10 1.38
0.770 29.9 0.770 11.20 15.0 1.34
0.774 40.1 0.774 11.97 14.0 1.17
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L = 9 (5.12a)

n = 1 (5.12b)

The critical state implies also that the amplitude of the plastic strain

increment is infinite, i.e., the plastic modulus H becomes zero.

5.3.2 CHARACTERISTIC STATE

First observed experimentally by Shibata and Karube [5.24], the
"characteristic state” was defined Luong [5.15] as the stress state
where the rate Pf volumetric strain becomes equal to zero. Different
from the critical state, which is always obtained for large strains, the
characteristic state corresponds to small deformationms. But 1like the
critical state, the characteristic state is independent of the initial
density. The characteristic state separates the contracting and
dilating behaviors (Fig. 5.4). The contraction occurs in the
subcharacteristic region, which is bounded in the p-q plane by the
characteristic state lines, and the dilation takes place in the

supercharacteristic region.

According to Luong’s experiments on Fontainebleam sand, the
characteristic state 1lines are similar to the critical state lines of

relation (5.11):

qQ = M *p , ifqg >0 (5.13a)
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critical state
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B dense
S0k characteristic state
O loose n
® dense

40

Fig. 5.4. Characteristic state line from drained tests at different
confining pressures and critical state line from drained and
undrained tests at different confining pressures; all tests
are performed on the loose or dense Sacramento River sand.
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qQ = M* " p , if ¢ < O (5.13b)

where M‘O,M*e are two material constants, generally slightly different
from M. and M,. The dense Sacramento River sand obeys also relation

(5.13a), as shown in Fig. 5.4.

However Luong's characteristic state is not satisfactory. Tensile
triaxial tests at constant confining pressure performed by Robinet
[5.19] ko2 shown that some dense sands dilate continuously from the
beginning of deviatoric 1loading. This absence of contraction implies
that the subcharacteristic domain does not exist and consequently
violates Luong’s characteristic state. This deficiency may be avoided
if the characteristic state is redefined as the stress state where the
rate of plastic (instead of total) volumetric strain becomes equal to
zero., This new state is still defined by the relations (5.13). But the
continunous dilation observed by Robinet [5.19] in tensile test is now
justified: the elastic volﬁmetric strain may be negative (dilating) and
larger in absolute value than the positive plastic strain (contracting),
so that the total volumetric strain is negative (dilating). Within the
context of plasticity, the characteristic state, 1like the critical
state, requires the unit vector, collinear to the plastic flow, to
satisfy relations (5.12), while the stress state satisfies (5.13). How—

ever, no condition is imposed on the plastic modulus H.

The "characteristic state” is an attractive feature to represent

the c¢yclic behavior of sand, which may be illustrated by the complex
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cyclic test performed by Luong [5.14] and shown in Fig., 5.5. During
this drained test at constant confining pressure, eight successive
series of twenty cycles of deviatoric stress q were applied to
Fontainebleau sand. These c¢ycles had a constant amplitude (0.1 MPa),
are centered for different values of the ratio q/p, and were distributed
on both sides of the characteristic state line (Fig. 5.5a). The result-
ing volumetric strains, which are shown versus q in Fig. 5.5b, change in
agreement with the characteristic state. In the subcharacteristic
domain, when the ratio q/p is between —0.75 and 1.26, densification is
observed, whereas, in the supercharacteristic domain, dilation is
recorded. The characteristic line remains fixed even during such a

complex cyclic loading history.

5.3.3 Stress-Dilatancy Theories

All stress—dilatancy theories have one common goal: to explain
how granular material dilates while it is subjected to shear stresses,
Since they give qualitative and quantitative information on the direc—
tion of the strain increment, they, together with the characteristic and
critical states, are wuseful for characferizing the plastic flow
direction., The first of these theories was developed in 1962 by Rowe
[5.21] and placed on a mathematical basis in 1965 by Horne [5.9]. Since
then, other theories have appeared: Tatsuoka [5.27], Nova [5.17], Momen

and Ghaboussi [5.16].
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Fig. 5.5a. Drained cyclic loading at constant confining pressure on
Fontainebleau sand (after Luong [5.15]).
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q/p=1.26

Fig. 5.5b.

Drained cyclic loading at constant confining pressure on
Fontainebleau sand (after Luong [5.15]).
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As an illustration, only Rowe's and Nova’'s theories are presented.

5.3.3.a Rowe's Stress Dilatancy Theor 1962

Rowe [5.21] considers, experimentally and theoretically, the
behavior of assemblies of cohesionless, spherical particles of uniform
size, arranged initially in regular arrays. These assemblies are
subjected to an axisymmetric state of stress as defined in relation
(2.5), with the axis of symmetry coinciding with the axis of symmetry of
the initial packing. The associated strains satisfy the relation (2.3).
Introducing the angle of solid friction between particles, denoted by du
and assumed to be uniform and independent of pressure, Rowe obtained
experimentally a relation between stress and strain increments in the

following way:

a . EE! 2 [n
5, T T {1 T [Z “”du] (5.14)

where all strains and stresses are defined in sections 2.2 and 2.3.

The validity of Rowe's theory is tested in Fig. 5.6 by plotting
61/63 versus 1 - dev/del in the special case of the loose and dense
Sacramento River sand subjected to drained tests at different confining
pressure, In spite of a noticeable scattering, partially due to fimnite
increments of strain, de; and de,, the experimental points temd to lie
on a straight line, as indicated in relation (5.14). From Fig. 5.6 and
relation (5.14) the average angle of friction dﬂ is found equal to 32°

for this soil.
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Fig. 5.6. Rowe's stress—dilatancy theory applied to drained tests with
constant confining pressure performed on the Sacramento River
sand,

a) loose sand
b) dense sand.
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Within the context of plasticity theory, if the elastic strain
increment is negligible w.r.t. the plastic one, the relation (5.14)
indicates that the plastic flow direction, represented by del/dav,
'depends upon the obliquity of the stress state, characterized by 61/03.
For the loose and dense Sacramento River sand, contraction occurs if the
stress ratio o,/o; is less than 3, followed by dilation if o1/0;3 is
greater than 3 (Fig. 5.6). This result agrees with Luong’s characteris—

tic state.

5.3.3.b Nova's Theory (1982)

Retaining the notion of characteristic state and the dependence
of plastic flow direction on the stress obliquity, Nova (5.17) proposed
a different stress—dilatancy theory based on the experimental work by
Stroud [5.26], and defined as follows:

deg

P de?

q
This relation is not satisfactory for the isotropic state (q=0) since it
predicts a2 plastic deviatoric strain, In order to correct this
deficiency, Nova assumes that, for low values of the ratio %, the

stress-dilatancy is governed by another equation:

1 = -2 (5.16)
p
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where the constant a is found by assuming a smooth transition between

" relations (5.15) and (5.16),

a = Mfay (5.17)

e

This transition is reached when the ratio % is equal to

-

Nova's stress—dilatancy theory is checked by plotting im Fig. §.7
the ratio deg/daz versus 1 = q/p for the dense Sacramento River
sand. All results are obtained by a special computer code [5.2],
which uses the following technique. After selecting the elastic model
in section 5.2.2, the incremental elastic response de:.dez is calculated
for the finite stress increment dp, dq which connects two successive
experimental stress states, Then the plastic strain increments dee. dsg
are obtained by subtraction of the calculated elastic strain increment
from the total strain increment dev' deq which relates two successive
recorded strain states e,» 85 Therefore the ratio dev/deq is available

q
as a function of the ratio n = q/p.

The important scattering in Fig., 5.7 is partially due to the sparse
recordings of the strain and stress states p, ¢, and e, €g which
produce too large strain or stress increments between two successive
states, It is also partially caused by the elastic model selected in
section 5.2.2., However, bearing in mind these sources of errors,
Fig. 5.7 shows that dagldeg depends upon the ratio m and this is notice-

able for any type of tests, drained or undrained, at any confining pres—

sure. In Fig. 5.7b, during the undrained tests (constant volume), the
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Fig., 5.7.
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Direction of plastic flow, represented by dap/dep, versus the

ratio n during different tests on the dense Sacrimento River
sand.,

a) drained tests at coanstant confining pressure
b) undrained tests at constant total confining pressure.
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quantity dsgldea is always positive and smaller than during drained
tests (Fig. 5.7a). This discrepancy results fromkthe elastic model;
during an undrained test, in order to keep the volume constant, the
plastic volumetric strain is equal but opposite to the elastic
volumetric strain, From Fig. 5.7, for 1low values of 1, dsgldsg is
positive (the sand contracts). When n exceeds some fixed value close to
1.4, desldag becomes negative (the sand dilates). After reaching a
minimum negative value, dagldeg increases back to, and stops finally at
zero (critical state). From Fig. 5.7a, the branch, along which dasldeg
decreases is different from the branch where it increases back to zero.
This non—-reversible phenomenon is certainly due to loss of measurement

accuracy for large deformation,

In summary, relations (5.15) and (5.16) describe qualitatively the
direction of the plastic flow shown in Fig. 5.7; however, the scattering
of the experimental results prevents us from calculating the values for

p and M of relation (5.15).

5.3.4 Definition of the New Bounding Surface

So far, from the review of the critical state, characteristic
state and the stress—dilatancy theories, some constraints have been
imposed on the plastic flow direction. These restrictions are sum—
marized in Table 5.4 by using the unit vector, with components np and

n collinear to the plastic flow. Also from the experimental results

q’
on the Sacramento River sand (Fig. 5.4), no difference appears between

the critical and the characteristic states. For convenience, and
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TABLE 5.4 SUMMARY OF CONTRAINTS ON THE DIRECTION OF PLASTIC FLOW

Origin of Nature of Translation in
Constraint Constraint Elastic—Plastic Terms
Characteristic if 9 - p= or M¥*
At the characteristic D e c’
State .
state (relation 5.13) them n = 0 and =1
the plastic volumetric he] an nq
strain dsv equals zero. no condition on H
; q
* i*
In the subgharacteristic if M e < P CH c’
in, d . ..
domain ?v is positive then n > 0
(contracting). P
.o 4 * q %
In the supercharacteris— if ] <M e °F ) > M c’
tic domain, ds* is
negative (dila¥ing). then np <0
Critical At the assymptotic crit— | if % = Mc or Mc’
State ical state (relation
5.11), the plastic thenn =0 and n_ =1
volumetric strain dev P 4
equals zero, and
the plastic deviatoric H=0
strain dez is infinite
Stress— The plastic flow direc— n_ and n_  are functions of 4
dilatancy tion depends on the P 1

a}ress obliquity,

i.e.,

P
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invoking the difficulty of defining accurately both states, the critical
and the characteristic states are assumed to coincide in the p—q space,

i.e., relations (5.13) and (5.11) are identical.

In conclusion, from the experimental observations on the Sacramento
River sand and from the literature review, the unit vector normal to the
bounding surface obeys the following rule: when q is positive, the
component np is positive, zero, or negative depending on whether the
ratio % is respectively smaller than Mc’ equal to Mc' or larger than M;;
when ¢q is negative, the same result holds for np by substituting M, for

M .
c

n

Since the ratio ;2

is only a function of the ratio %. the following
q

equation is obtained

4 _ 2 [4] (5.18)
dp q
which results from equation (3.72). The bar added to dp and dq refers
to the image point lying on the bounding surface. In order to solve the
equation (5.18), a relation between the image and stress state must be
specified. One such a rule is radial mapping, which is specified in

relation (4.6), and becomes here

P = xp (5.19a)
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q = xq (5.19)

where x is scalar. When selecting such a mapping, the equation (5.18)
becomes homogeneous, and may be solved to give the bounding surface

equation, However, according to the experimental scattering observed in

n
Fig. 5.7, the functiom —% [%] is difficult to define. The following

alternative approach is therefore preferred.

Keeping the radial mapping, as enunciated in relation (5.19), a
simple surface, with a suitable normal, is chosen, Composed of portions
of ellipses, it is described by the following equations: if Iql ¢ M;.

(contracting domain),

2 2

F. o
o-A al _ a2 =
lp‘ll + [M] A 0 (5.20a)

and if Iql > Mp, (dilating domain),

_ 2
a(a-2) (3-A)2 + [(a-z)ﬁ + A] - (a-1)2A%2 = o (5.20b)

where M is equal to Mc or Me, depending on whether E is positive or
negative., Plotted in Fig. 5.8 this surface has a general equation

£(p,q,A,M,a,p) = 0 (5.20¢)

From the relations (5.19) and (5.20c) the stress state and the

image points are related such that:
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Fig, 5.8. The bounding surface in the p—-q space.
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a = 9]
q y P
where y is found by solving the following equation:
f(yA: YA% :A;M.G:P) = .0

The equation (5.22) yields the following results

if lql < Mp,
_ +{g— + — h
vy o= 2.2
1+(p-1)“z
and if lq| > Mp,
y = 2(a-z)
a+(a-—2)z2
where
z = ﬁL = -4

The distance 5, connecting the stress state and the image

given as follows

8 = [op?+ (o]

and, by using the relations (5.21), it becomes

(5.21a)

(5.21b)

(5.22)

(5.23a)

(5.23b)

(5.23¢)

point, is

(5.24a)
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= — q 2
5 (-yA) [1 + @ T* (5.24p)

The unit vector normal to the bounding surface at the image point
is calcslated from (3.57), (5.20) and (5.23), in the dilating domain to

have components

np = %? (y-1) (5.25a)
n = i (e-2)yz+1] (5.25b)

where
o= [o2(-12 + ((@-2)yz) 2R (5.25¢)

and in the contracting domain

n, = %—M(y—l) (5.26a)
n = L (p-1)%yz (5.26b)

where
h o= 202+ -2 (5.26¢)

The parameter Me’Mc define the contracting and dilating domain, The

direction of plastic flow is governed by two parameters: one in the
contracting domain, p, and another in the dilating domain, a. The
parameter A, which controls the size of the bounding surface, does not

affect the plastic flow direction.
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The quantities np/nq, calculated from relations (5.25), (5.26), are
plotted versus the ratio % for different values of the constants p and a
in Fig. 5.9. Although no perfect agreement between theoretical and
experimental results is possible, due to the scattering of experimental
points, the plastic flow direction predicted by the bounding surface

agrees with the observed values.

5.4 BOUNDING SURFACE MOTION

Already partially specified by the equations (5.20), the motion of
the bounding surface is completed by defiming an evolution law for the
parameters M,A,p, and a. All of these parameters must be regarded as
depending nupon some internal variables, which characterize the material

memory.

5.4.1 Choice of Internal Variables

The internal variables must always be selected with discermment,
since their contribution is fundamental to a description of the
irreversible rheological behavior, For convenience, only one scalar
internal variable is chosen. As any sand exhibits a behavior strongly
dependent on its density, this variable must be related to the void
ratio. Additionally it must only change when plastic flow occurs.
Among other possibilities, the plastic void ratio eP is retained. It is

def ined

eP = e-e® (5.27a)
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€ the elastic void ratio, which

where e is the total void ratio, and e
depends only upon the selected elastic model and the present stress

state in the following way

P
e _ _ d
e (1+eo)f ETI_’?&T (5.27b)
0

where ey is the initial void ratio.

The plastic void ratio eP and the plastic volumetric strain ag are

related as follows

“eo+e,p
8‘1,) = —i-:;-—— (5.28)
0

Other internal variables may be added to represent the material
memory in more detail; for instance, a second variable is defined later

to describe the cyclic behavior.

5.4.2 Motion of the Bounding Surface

In order to describe the bounding surface motion, the relations
of the variable eP with the other parameters M, p,a,A must be specified.
From experimental observations on the direction of plastic flow, and for
simplicity, M, p and a are assumed to be constanf. The only variable
left to depend on eP is the parameter A; its relation with e? is par
ticular when the stress state reaches the critical state. At this
stage, the stress state has reached its bound, and from relation (5.11)
and Fig. 5.8, it lies on the summit of the bounding surface located at

A, MA, Since the void ratio, and the stress do not change, by invoking
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relation (5.27), the plastic void ratio remains also constant, and has a
critical state of its own, which is described by a relation similar to

the relation (5.11¢):

P =
e f; - A, fnA (5.29)

where r; and hp are two material constants, different from the constants

I' and A defined in (5.11c).

Using the nonlinear elastic model defined in section 5.1, f{from
Tables 5.3, the guantities eP are calculated at the critical state for
the dense Sacramento River sand and plotted versus the mean pressure A
in Fig. 5.10. By applying a linear regression analysis to the experi-

mental points of Fig. 5.10, the following results were obtained: Fi =

0.88 and kp = 0.083. r; and A, differ only slightly from I'.% defined

-]

for the critical state, since e¢“ may be neglected compared to eP.

By extrapolation relation (5.29), which must hold in particular at
the critical state, is assumed to be always satisfied. This relation

describes fully the isotropic motion of the bounding surface.

5.5 AMPLITUDE OF PLASTIC FLOW

Once the bounding surface equation and a mapping rule are defined,
the plastic flow direction is known. Its amplitude mneeds to be
specified by the modulus H as a function of two variables: the distance

& and the modulus HB' The plastic modulus Hp is defined analytically

from the equation and motion of the bounding surface by applying the
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Fig. 5.10. Critical state for dense Sacramento River sand represented
by plastiec void ratio e? versns mean pressure p.
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consistency condition. The relation between H, Hﬁ and & is determined
first by <calculating their respective values during drained and
undrained tests, then by fitting these values with appropriate dimen-

sionless quantities,

5.5.1 Plastic Modulus on Bounding Surface

—_—

The bounding surface depends only upon one internal variable, eP,
which is related to the plastic volumetric strain 33 through (5.31).

Since the relations (4.4) and (3.60) are satisfied, the plastic modulus

HB’ evaluated at the image stress, is given by

3%
e - g -8f + 2£2 (5.30)
: nPaeP{ap q]
v
The partial derivative AL s calculated easily from (5.28) and
aeP
v

(5.29). Since A, the measure of the bounding surface size, is the only

variable parameter in (5.20)

Q>

of

f f A
> Y (1+e0) 5 (5.31)
asv )

@

According to the expressions (5.25), (5.30) and (5.31), the plastic

modulus HB is expressed

A

——

_ 2
HB - .Jf(y'-l)[r-l-r(p 1) 1] - (1+e0) S ,
lsiz(y—l)2 + (p—1)4y22 )

if lal ¢Mp  (5.322)

and
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By - = AM_ZS;(Y-l)(a-Q -~ (1+eq) A, if lal >Mp (5.320)
a“M (y-1)° + [(a-2)yz+1] P

where y and z are given by the relations (5.23).

The modulus H; depends on the stress obliquity, represented by z

(5.23¢c), and on A, the bounding surface size., A dimensionless plastic

modulus, denoted by ﬁB and related only to z, is defined as follows:

B
. —Brp_ (5.33)
B (1+e0)A

=

ﬁh is represented in Fig., 5.11 versus z for different values of the
parameters p and a. ﬁb is maximum and equal to p for the isotropic

stress state (z=0), goes through zero at the critical or characteristic
state (z=1), reaches a negative minimum value, then finally increases to

Zzero when z becomes equal to a.

5.5.2 Relation Between Plastic Moduli H and and Distance &

In order to examine their interrelation, the parameters H, HB and
8 are calculated from discrete experimental data points recorded during
the drained and undrained tests on the Sacramento River sand. These
calculations are performed by the computer code soil [5.2]. The plastic
strain increments dag. deg between two successive stress and strain
states are defined as in section 5.2.3b, At a stress state represented

by p,q, with its succeeding increment of stress dp, dq, the plastic

modulus H may be calculated from relations (5.9)
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Fig. 5.11, Normalized plastic modulus ﬁ versus the ratio z for
different values of p and a Mc=1.4).
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P + P
devdp deqdq
%

Pz P2
dey + deq

Since HB and & are known from the relations (5.30) and (5.24), all three

H = (5.34)

quantities H, H; and § may be calculated simultaneously at any moment of
an experiment, In order to exhibit a relation between H, HB and &,
after several trials, the difference Hkﬂﬁ is plotted versus the distance
§ in Fig, 5.12a and 5.12b, in the respective case of drained and
undrained tests performed at different confining pressures, According
to Fig. 5.12, the quantity B-Hy is always positive when § is positive,
and tends monotonically towards zero when & goes to zero. Consequently,

like Dafalias and Herrmann [5.7], the following relation is suggested.

H = Hy+ n(s) (5.35)

1

where the function h(8) must satisfy the following constraints:

h(8) >0 , whend >0 (5.36a)
h(8) = 0 P when =0 (5.36b)
h(8) large , when d is large (5.36¢)
h(8) is a continuous function of & (5.36d)

The first two constraints come from the previous observations of
Fig. 5.12. The third restriction enforces the material response to be

elastic far away from the bounding surface. Finally, the last
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Fig. 5.12, Values of H- versus the distance & calculated from experi-

mental tests on the dense Sacramento River sand.

a) undrained tests at constant total confining pressure
b) drained tests at constant confining pressure.
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constraint gives a continuous transition from purely elastic to elastic-—
plastic response. From relations (5.35), (5.36) and Fig., 5.11, the
plastic modulus H is in agreement with the constraints mentioned in
Table 5.4. When the stress state is located on the characteristic state
(relation 5.13 or 5.11), the distance & is different from zero: the
plastic modulus H is different from zero whereas HB equals zero. When
the stress state reaches the critical state, the distance & equals zero:
both H and Hy are equal to zero. In additionm, the relations (5.35) and
(5.36) control the strain-softening effect. This 1last phenomemnon,
initiated when the plastic modulus H becomes negative, can only occur in
the dilating domain, where Hy is negative. It cannot occur in the

contracting domain,

The previous general relations between H, HB and & may be detailed
by introducing the dimensionless quantities H and §. H, the normalized
plastic modulus, is defined as ﬁB in relation (5.36). H, which is
calculated simultaneously with H, HB and & is represented versus the
ratio n = % in Fig., 5.13a and 5.13b for drained and undrained tests at

different confining pressures. From Fig. 5.13, H depends on n.

The normalized distance, denoted &, is defined as:

T = 98 (5.37a)

where 8, maximum distance between any stress state and image point,

is the distance between the origin of stress and the image.
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Fig. 5.13. Normalized plastic modulus H versus the ratio n calculated
from experimental tests on the dense Sacramento River sand.

a) undrained tests at constant total confining pressure
b) drained tests at constant confining pressure.
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According to (5.24b), the normalized distance can be expressed as
§ = 1--& (5.37b)

where y is given by (5.23) and A is the bounding surface size., The
stress states corresponding to the same 5 belong to a surface, which is

homothetic to and smaller than the bounding surface.

For simplicity, the variables % and n are assuned to have separate
effects on the function h(8). Then, after the normalization specified

in (5.33), the relation (5.35) becomes
H = Hy+ a(n) * b(¥) ; (5.38)

where the functions a(n) and b(8) describe the separate influence of 1q

and & on the modulus H.

According to Fig. 5.13, the function a(n) must decrease when 1

increases. After several trials, the following form was retained:

a

a
a(q) = Eg{cos (n (#L> 1) + 1] (5.39)
P

where aO'al, and n, are three material constants., This arbitrary rela—

tion has been selected mainly for one reason: it describes a wide ramnge
of variations from a maximum value to a zero'value, when the parameters
3p02q and np Vvary. Such a general variation may be appreciated from
Fig. 5.14, where a(n)/ao has been plotted versus n/np for different

values of 2. The parameter a; offers different types of continuous
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Fig., 5.14. Function a(n) represented by a (n)/a0 versus the quantity
n/np for different values of 2y,

Fig. 5.15. Function g 1 versus 5 for different values of bl'
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decrease for a(n), and is selected in an arbitrary way. The constant 24

maximum value for a(n), 1is chosen from isotropic test since a(0) is

equal to 8,. The constant N, for which a(np) equals zero, is related
to the peak failure stress. M, is larger than or equal to the critical
state slope, M, depending on whether or not strain—softening is present.

For the dense Sacramento River sand, which exhibits strain-softening

during drained tests, the constant "p has been selected, by trial and

error, so that the predicted peak values are close to the experimental
values: ﬂp = 2, The constant a;, independent from a; and 1p has been
chosen so that predicted and experimental isotropic tests are close

enough: a, = 6. Finally aq is arbitrarily selected: aq = 2.

The function b(8), which characterizes the dependence of H upon §

in relation (5.38), is assumed to have the following composite form:

b

b(8) = & 1, exp[bz(g;g

min) JHe (878,:0) (5.40)

min

where bl and bz are two material constants, He(x) is the Heaviside func—

tion and &
m

in is a new internal variable., Only helpful for cyclic

loading, & represents the smallest normalized distance 5 which has

min
been reached during the past loading history. As relation (5.89), rela-

tion (5.40) has been selected to be as general as possible, especially

b —
regarding the first term & 1. During any monotonic loading, & is equal

to Smin‘ The Heaviside function vanishes., In this eventually, the func-

- _b
tion b(d) becomes equal to & 1 and has been plotted in Fig, 5.15 for
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different values of b, varying from 0.1 to 10. From Fig. 5.15, the

by
parameter b, gives different aspects to the function § ~. For the dense

Sacramento River sand, the constant b1 was found, by trial and error, in

order to fit the drainmed tests: b1 =1,

The additional term of relation (5.40), depending upon 6min and by,

controls arbitrarily the amount of plastic strain created during cyclic

loadings. When 8 becomes larger than & the function b(g) takes

min’
larger values controlled by the parameter b2, which implies a larger
plastic modulus and consequently less plastic strain. For the dense
Sacramento River sand, b, was estimated in order to approximate the
plastic strain generated during cyclic isotropic loading: b2 = 8, The

constant b2' has an effect on the predicted response only for cyclic

loadings, not for monotonic loadings.

.Trial and error computations are required to specify the constants

80281 sMpsb1s and b,. The relations (5.39) and (5.40) are the weakest

points of the theory and need to be improved in the future.

5.6 MODEL CONSTANTS

All the material constants necessary to specify a material response
are summarized in Table 5.5. The values given in Table 5.5 are obtained
for the dense Sacramento River sand. The material constants are divided
into four different groups, which characterize separately particular

aspects of the material response.
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TABLE 5.5 MATERIAL CONSTANTS AND NUMERICAL VALUES FOR DENSE SACRAMENTO RIVER SAND
Notation Meaning s Sef Value Unit
ection

Elas;tic Constants
B0 Bulk modulus constaat 5.2 729 kg/cmz
n Bulk modulus constant 5.2 0.47
\)0 Constant Poisson's ratio 5.2 0.2

Direction of Plastic Flow, Bounding Surface
p Aspect ratio of ellipse in contracting domain 5.3.4 3
a Slope of ellipse in dilatiﬁg domain 5.3.4 2

Critical state, motion of bounding surface
['p Critical plastic void ratio for unit pressure (kg/cnz) 5.4.2 | 0.883
A Slope of critical state line in eP-{np plane 5.4.2 |0.0832
P Dimensionless
Mc Slope of critical state for positive deviatoric stress 5.3.1 1.4
Me Slope of critical state for negative deviatoric stress 5.3.1 1.4

Relstion Between H, B, and &
a, Dependence of Hon n 5.5.2 6
ay Dependence of H on n 5.5.2 2
“p Dependence of H on n 5.5.2 2
b1 Depencence of Hon § 5.5.2 1
b Depencence of Hond 5.5.2 8
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The first group, composed of BO’ n, Vg, represents the elastic
contribution to the total elastic-plastic response. BO and n are
calculated by fitting the unloading response during an isotropic test
(section 5.2.3). “0 is arbitrarily chosen equal to an admissible value,

about 0.2 or 0.3.

The second group, comnstituted by p and a, characterizes the plastic
flow direction in the contracting and the dilating domains respectively.
They define the bounding surface shape by giving the aspect ratio of the
ellipse in the contracting domain and the slope of the ellipse in the
dilating domain at the origin of stress, p and a are estimated by
comparing the predicted flow direction of Fig., 5.9 with the experimental

flow direction as shown in Fig. 5.7.

and M., represents the

The third group, made up of r;. Xp. M,

critical state, coincident with the characteristic state. Mc and M,
define not only the relative size of the contracting and dilating
domains, but also the critical state lines for positive and negative
deviatoric stress. Mc and M, are calculated as ‘in section 5.3.1. r;

and Lp specify the location of the critical state, and the motion of the

bounding surface; they are estimated as in section 5.4.1.

The fourth and last set of model constants, ao, 21, My, bl and b2
defines the relation between the plastic moduli H, Bh and the distance

8. The constants 2,, a1, np represent the dependence of H upon the

ratio q/p and are estimated by trial and error as im section 5.5.2. The
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constants b1 and b, define the influence of the distance & wupon the
plastic moduli H, They are also evaluated by trial and error as in sec—

tion 5.5.2.

All the calculations of the model constants have been performed in
Chapter V for the particular case of the dense Sacramento River sand.

They may be repeated for any other sand.

5.7 THEORY VERSUS EXPERIMENT

The new constitutive relations were implemented in the interactive
computer code soil [5.2] in order to simulate numerically isotropic,
drained and undrained shear tests for different confining pressures
given in Table 5.6. To each loading there corresponds a constraint on
stress or strain, For the isotropic test, the deviatoric stress g
equals zero, For the drained tests, the confining pressure is fixed,
whereas for the undrained tests the volumetric strain remains equal to
zero, Each constraint transforms the incremental constitutive rela—
tions, as shown by relation (3.59), into a system of nonlinear ordinary
differential equations, which was integrated step by step by the

interpolation method introduced by Burlish and Stoer [5.3].

For an isotropic test, the incrementing variable is the mean pres—
sure p, while, for drained and undrained shear tests, the axial strain

gy is preferred in order to describe a possible strain—softening. The

increment values, respectively equal to 0.5 for the mean pressure and
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TABLE 5.6 SUMMARY OF DRAINED AND UNDRAINED TESTS ON THE DENSE
SACRAMENTO RIVER SAND

[+

Tests 3 5
(kg/em™)
Drained tests at constant 1,
effective confining pressure oy 3.
6.
10.5
20.

Undrained tests at comstant
total confining pressure o3

.

PO SISOy

R - R
-

O M MWL
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0.001 for the axial strain, may be decreased to a lower value in order

to enforce the numerical convergence.

All the numerical simulations are compared in Fig. 5.16, 5.17 and
5.18 with the -experimental results obtained on the dense Sacramento
River sand. An isotropic test with two loading—unloading c¢ycles is
simulated in Fig. 5.16. In contrast to conventional plastic models, the
new model predicts plastic strain during each reloading. The parameter
b2 controls this nonreversible cyclic behavior and may be decreased in
order to obtain larger plastic volumetric strain, Undrained tests at
different confining pressures are simulated in Fig. 5.17. Although the
predicted and real behavior agree qualitatively well, the simulated pore
pressure are too large (Fig. 5.17¢). This pore pressure excess implies
that the effective stress paths in Fig, 5.17a are mnot vertical enough
before crossing the characteristic line, This discrepancy may be caunsed
by the parameter p, which defines the plastic flow direction below the
critical state line. A larger value of p gives a stress path more vert-—
ic#l. This discrepancy is also due to experimental errors. During
undrained tests, the rubber membrane, which isolates the soil sample
from its surrounding, penetrates between the sand grains. This penetra-
tion is due to difference of pressure between the confining pressure and
the internal pore—water pressure. A correction of the experimental
results which compensates the membrane penetration effect would improve
the agreement between theory and experiment. » For the drained tests

(Fig. 5.18), the theory shows a good agreement with the ekperiment.



- 142 -

PUBS JOATY 0JUSWRIORS JSUSP 0Y3 UO S3S93 oYdoxjosy [wjuwowrzadxe pue pPe3oIpoxg °91°¢ 3149
0Gl1 0oL o )
i : q.

Czwa/By) d

=
juauniadxa

Kioay)y ~—




- 143 -

saInssaxd FUTUFIUOD JUAISIITP IV $3S93 pouywvIpun Jewjumowriadxs pus pelotpoig

0s

*(puws JOATY ojusweIORS 9SULPD)

‘eLT°¢ *814

juswiiadxe @ AV OoenR

Kioay)

Cua/by) b

oc

ov

09

08



- 144 -

*(pu®s JOATY 01UOWBIOBS ISUSPD)

soxnssaxd FuUTIUOO JUSISIFIP 3B $3S03 pautesIrpun Jwjuswrrodxe pusv pojorpory *qLI"S *B1a

0z St o] S 0
T ! _ 0
(%) '3
0¢
ov
.
e 8 X o]
- L ~
° g 5
. . £
wz 709
\ )
juawiiadxs @ AV OOR
Kioayy
08




- 145 -

* (PuUBsS JIJATY OjuOWBIOERS ISUIP)

$oInssoxd JUTUTIUOD JUGIAIIIP I® $3§93 pourBIpun [wjuswrzadxs pur poloIpoIg *o11°¢ 814

0¢ GiL ol S 0
1 _V 1 ' oL
(%) '3
® 2
e ¢ 2 4%
. A
v v ¢
v M ,__
Yy —— v v ¢ " \
®
v (-
VvYy A
\ o]}
) A
4 A : *
A
/1 = 7]
.r Py % L ® & 0c
juswiiadxe @ A Vveoeoen ANE._\mv_u.
Kioayy n
o¢




- 146 -

*(PUBS JIOATY OJuoWBIORE 9SUAD)
sornssard SUTUTJUOD JWIISIFIP 3B $3S0) pauTvIp Tejuowprodxs pue paloIpsag

*e8I°s 814

0c¢ Sl CctL S 0
f T T 20
e e
4 » (%) 4y \\\.\
¥ A —— i ———— S - -,
T m e - T = O O = Q v/ P
(Lt
""" O"',‘IO' 4 \m
I e o——e-—-°"/% oz
, v 4\ _
A4 \v/ 7 !
lllllll vV !
-~ - . 'll'nlln lllll Y, gl - Ds
/
\ —
/ ov
D\ b
/A~
A R b2
AT 3
:::::::::::: A A 7 3,
..... B ~ o9
jusawpadxe A V 0 O O
speq] ~—m—-—----
u@ﬁgmm
Kioayy

012



- 147 -

*(PuUBS JIJATY OjuUIWBIOBG 9SUAD)
soinssoxd SUTUFJUOD JUSISIITP 3B $3S3] pouyeIp [vjuwowiiodxo pue pel1otTpaag

0¢ Gl o] ]

4
~

*q81°s ‘314

o

1
~

- (%) 3

uauwiiadxe A VO O 0O

apen
yap.ieg

Kioay)

GL-




* (PUBS IJATY O3UOWRIOBS 9SUAP)
sernssord FUTUTJUOO JWIISIFIP 3B $IS33 poureap Jeluswrxodxe pue pPo31oIpoIg

.omﬁ..m ‘814
oS ov 0] 0¢ 0] 0
RMW./ . Luwyby)d _ _
190
_ & &
3 9 i
_ o3 i
_ 120
_, 13N
1
1
| N 4
|
'
\ \
juswitadxsa AV O O O ._ m_u
i ¥ 7180
apel - - = - - - 1
yapie g F
S LEITE "




- 149 -

especially to describe the void ratio (Fig. 5.18c) from its initial to
final critical value. As observed experimentally, the stress drop
following the peak stress become less important when the confining pres—
sure is increased; finally the stresses and volumetric strain reach an
asymptotic value for large axial strain, However the simulated response
is softer than the observed ome, which is certainly caused by low values

of the plastic modulus H,

In Fig. 5.18, the new constitutive model 1is compared to Lade’s
second model [5.10], which constitutes a good example of the application
of conventional plasticity to describe the sand behavior, The main
change w.r.t. Lade's first model presented in sectiomn 3.,2.1 is a new
composite yield surface, which is composed of a cone slightly different
of the original yield surface and of an elliptic cap centered on the
hydrostatic axis. The numerical predictions, shown in Fig. 5.18c, was
performed with the fourteen model constants given by Lade [1.17].
Lade’s model predicts a better response for small axial strain, but
forecasts a continuous stress drop after the maximum stress (Fig. 5.18a)
and a continuous dilatancy (Fig. 5.18b). For large axial strain, the
stress drop becomes so large that the deviatoric stress becomes
negative, and the sgil volume keeps increasing to reach a nonphysical

value.

Although the corresponding laboratory tests on the Sacramento River
sand were unavailable, two cyclic loadings were predicted in Fig. 5.19

and 5.20. In Fig. 5.19, ten undrained cycles were performed with the
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deviatoric stress q varying between 0 and 10 kg/mz; the calculated pore
pressure increases until it reaches a maximum (Fig. 5.19¢), which
implies that the stress path (Fig. 5.19a) stabilizes in the p-q space.
The dense Sacramento River sand does not liquefy according to the numer—
ical simulation. For a larger initial void ratio, the parameter b2 may
take a smaller value so that the effective stress path can reach the
failure line (liquefaction). In Fig. 5.20 two sets of five drained
cycles at constant confining pressure were also predicted. The
deviatoric stress q was cycled first from 5 to 10 kg/m2 in the
subcharacteristic  domain, then from 15 to 20 kg/m2 in the
supercharacteristic domain., For the first cycles series, the material
contracts, whereas for the second omne, it dilates. This result is
similar to Luong's experimental results presented in Fig. 5.5 and could
not be simulated by a conventional plastic model like Lade’s model since
no plastic volumetric strain could be created by cycles inside the yield
surface. Both predictions of drained and undrained cyclic responses,
although they could not be corroborated by experimental data, are
encouraging: they represent qualitatively and quantitatively

representative of a dense sand behavior.

5.8 GENERALIZATION FROM AXISYMMETRIC TO SIX-DIMENSIONAL STRESS STATE

The new constitutive equation has been constructed only for
axisymmetric stress states, corresponding to the only available test
results on the Sacramento River sand. In order to be operational in a

finite element data code, where any combined stress state becomes possi-



*PuUBS ISATY OJUIWBIOBS ISUIP OYJ WO 3593 .07[9L0 poureIpun pojelnmig *BEI'C ‘ST

-151-

L oL S 0
T | T 1n T 0
(zwyby) d
!
oL
i+ ]
N
@
< Joz
3
(z
“10€
ov




‘PUBS IOATY OJUSWBIORBG SSUSD Y3 UO 3IS93 OFI[S40 poUTBIPUN PalBINWIS °qgI°S ‘ST
Ot S 0
1

o 777T7°
(%) "3

s
&
_ a
~ ot
2
<
3
(Z
451

0¢



"PUBS JJATY OJUOWBIORG OSUIP OYJ UO 3s03 9F 1942 pouyvIpun polwynwig *961°s ‘814
S 12 € (4 I 0
| r _ m
0
(%) '3

-153-

(zwi/B) N
©

¢t



‘PU¥S ISATY OJUdWRIORG OSUSP 9Y] WO 3S9} OT[9A0 pouUTEIP poyvInmIg

o¢ Gl S 0
1

TN 2 ¥ |

09
wr/6%) b ,

=154~

A

S99’



- 155 -

ble, the new model must be generalized to six-dimensional stress space.
This generalization process, commonly used in any material modeling, can
be illustrated with the transformation of a surface, which may be a
yield, potential or bounding surface, from the p-q space into a
hypersurface in the six-dimensional space. This example is used next to

generalize the new model.

5.8.1 From Surface in p-g Space to Hypersurface in Six-Dimensional
Stress Space

Given a surface in p—-q space, denoted by f*(p,q,L) = 0, a
hypersurface must be found such that its projection onto the p—q space
coincides with the surface f#*, Excluding in particular the nonisotropic
surfaces, such as von Mises’' surfaces not centered on the hydrostatic
axis, two specific classes of surfaces in the p-y space are only
extended into hypersurfaces in six—dimensional stress space, This par-
ticular generalization is performed by creating an isotropic surface,
represented by £(I,7,6,z) = 0, the projection of which is the surface f*

in the p—-q space.

The first category comprises the surfaces symmetric about the »p

axis, which implies that, for any p and q:

f*(p,-9,z) = f*(p,q,x) = O (5.41)

Considering the relation (3.60c), these surfaces are easily generalized
in the stress invariant space into surfaces independent of Lode’s angle

and satisfy the following relation
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§LT,n = f(L3%,0 = o (5.42)

In a principal stress space, such a surface intersects a deviatoric
plane along a circle centered on the hydrostatic axis. For example, the
Roscoe—Burland model [5.20], one of the earliest plastic soil models,

has an elliptic yield surface (Fig. 5.21a) in the p—q space:

2
f*(p.aspy ) = S+ ple-p ) = 0 (5.43)

w2

This surface is generalized according to relation (5.42) such as

312 , IfL _ =
£$(LIp, ) = s +3[3 - ru] = 0 (5.44)

and is represented in Fig. 5.21b.

A more general category is composed of surfaces which obey the

following relation:
f*(p,-q,x) = f*(p,%.;) for q > 0 (5.45)
where B is a positive scalar.

The symmetric surfaces, defined by the expression (5.41), belong to
this category and are obtained for B equal to unity. All the surfaces
satisfying (5.45) are extended into isotropic hypersurfaces which obey

the following relation
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kg N
(aa) pL-—
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(b)
.
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0,

Fig. 5.21. Roscoe-Burland yield surface

a) in p—q space
b) in principal stress space without influence of Lode's
‘ angle.
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£0(1,7,0,5) = ¢+ [} '3%21'6'1,"[3‘)’ , 1 (5.46)

where g(0,B) is a continuous interpolating function of ﬂBde's angle and

B which obeys the following constraints:

g(% , B) = +1 (5.47a)
g(—lg- , B) = B (5.47b)

An example of such a function is given by Dafalias and Herrmann

[5.7] .

- 2.
80.) = T iy In e (5.48)

g(0,B) is represented in Fig. 5.22 for different values of §. This
function of the's angle scales the radial distance of a point on the
surface to the hydrostatic axis, If pB is close to 0.8, Fig. 5.22
presents some similarities with Fig. 3.5a, which represent the intersec—

tion of Lade's yield surface with a deviatoric plane.

For example, the Roscoe—Burland model may be adapted by requiring

the following change in relation (5.46)

il
=

M = M, if q220 M

(5.49)

=Me if q<o0 =M

After such a modification the surface satisfies (5.48) where $ is

e
M L4
c

equal to
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Fig. 5.22. Influence of Lode's angle in a deviatoric plane on yield,
potential or bounding surfaces for different values of B.
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The generalized surface becomes:
2
f(I:J:e,I = ...___J;._...._ +l_I___ _
= 3{3(9.B)Mc] 315 - 2l 0 (5.50)

If M and M, are equal, the relations (5.50) and (5.44) coincide.

Two particular and simple generalizations of surfaces into
hypersurfaces have been presented. This mathematical abstraction,
although convenient, needs to be corroborated by experimental investiga-—
tions, The influence of the ﬁ;he’s angle and the isotropy assumption
should be examined by specifying the influence of the intermediate

principal stress o, and the effect of rotation of principal stresses.

5.8.2 Generalization of New Model

The new model defimed in the p—q space must be extended to six-
dimensional stress space. Since no experimental result was available on
which to base this generalization, the simplest solution was adopted.
The model is assmmed to be isotropic, which implies from Section (3.4)
that its six-dimensional formulation may be derived from stress—

invariant space.

The radial mapping (5.22) becomes

I = x1 (5.51a)

T = x7J (5.51b)
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6 =9 (5.51¢c)

where 1,7,8,1,7,0 represent respectively the invariants of the image
stress and stress state, and x is given by solving the following equa-

tion

f(x I.x I’G)E) = 0 (5052)

The bounding surface, denoted £(I,7,6) = 0 and originally described

by the relation (5.20), becomes according to (5.46)

2 2

w _

{1___] + [1] -3M2% =0 , T4NT (5.53a)
p-1 N

_ 2
ale-2) (T-34)2 + {(a—z) T+ 3A] - (a-1)2(38)2 , T > NI (5.53b)

where
Mc
N = ” g(8,B) (5.53¢)
33
and
Mc
B = ﬁ— (5.534)

and g(6,B) is given by (5.51).

The relation (5.39) transforms into:



a a
0 1
a (%) = '3”{cos n T%"‘ + 1] (5.54a)
p
where
N = 2(0,8) (5.54p
P I )

All other useful relations in the stress invariant space are easily
derived by wusing the expressions (3.60). The final expressions (3.41)

relating the plastic strain increment and the stress increment may be

af
aaij

and differentiating (5.53). Therefore, the new model is formulated in

calculated from the partial derivatives

obtained by using (3.58)

six—dimensional stress space.



- 163 -

CHAPTER VI

CONCLUSIONS

In the past twenty years, the representation of rheological soil
behavior through constitutive equations has been gaining so much
interest among researchers and practicing engineers that it has created
a mnew branch in soil mechanics. With the powerful combination of
continuum mechanics and numerical techniques (finite elements), complex
and practical geotechnical problems may be solved as boundary value

problems.

Regarding the soil, always made of a multitude of discrete mineral
particles, as a continuous medium, permits us to describe the motion of
its grains and the forces acting on them in a simple form., However this
drastic assumption conceals some fundamental physical characteristics of

the material, which should be discovered by further microscope studies.

Among all the constitutive theories treating soil as a continoum,
plasticity remains the most commonly used in geotechnical works.
Although this theory was used successfully for metals, its fundamental
ideas do not fit exactly the more complex soil behavior. In general,
basic concepts, such as yield and potential surfaces, are arbitrarily
mathematical and hardly verified experimentally. When exhibited by
difficult and lengthy experiments, these surfaces are found to possess

irregularities, such as corner or vertices. Even basic plasticity
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requirements, such as Drucker's postulate, do not apply to soils, which

frequently show a strain—softening behavior.

Very recently, Dafalias and Popov brought about some changes in
plasticity theory and recast most of its conventional concepts without
changing its mathematical formulation. This new theoretical framework,
"bounding surface’” plasticity, has been applied to construct a new model
for sand, Step by step, each element of this new constitutive relation
has been assembled, The elastic contribution was described by a truly
nonlinear elastic model. The plastic flow direction was characterized
by a bounding surface composed of two ellipses., Its amplitude was
determined by a relation connecting the plastic moduli H and HB with the
distance 3&. This new model, with eleven material constants, describes
well the behavior of the dense Sacramento River sand. Since the model
is founded on rheological behaviors commonly observed for granular
materials, it is believed it may adapt to any sand by appropriate selec-
tion of the material constants. First, the constitutive equation was
formulated in the simple p—q space (axisymmetric loading) in order to
use the only tests available on the Sacramento River sand, then it was
extended to more general states of stress by invoking the isotropy
assumption and a specific contribution of Lbhe's angle. In its six~
dimensional formulation, the new model is ready to be implemented in a

finite element code to represent the rheological behavior of sand.
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The new model has a certain advantage over any conventional plastic
model: it can describe with more flexibility the complex cyclic behavior
observed for sands. The plastic strain amplitude is now controlled by a
scalar relation between H, HB and 8§ and is not governed by complex
relations describing changes in hypersurfaces., In the present analysis,
the new model has only been validated for momotonic loadings. It had to
represent simple monotonic behavior before complex cyclic responses.
However the new model is believed to adapt to most experimental data set
obtained on sands during cyclic loadings, either by adjusting the value
of the parameter b2’ or by slightly modifying the relation between

plastic moduli H, HB' and distance §.

Although totally completed, and ready to be used, the new model may

still be improved in different ways.

The elastic contribution, and especially the dependence of the bulk
modulus upon the deviatoric stress, was defined by a theoretical correc-—
tion in order to conserve emergy. It could be verified experimenfally.
Additionally, a coupling between the elastic response and the plastic
internal variables may improve the representation of sand densification

during cyclic loading.

Like in conventional plasticity theory, the strain increment direc-
tion predicted by the new model was assumed to be independent of the
stress increment direction., This assumption is contrary to experimental

results found by Tatsuoka and Ishihara [A.1], but could not be modified
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according to insufficient experimental evidence. When further experi-
mental data become available, the plastic flow directions predicted by
the new model may become dependent of the stress increment direction.
The mapping rule (relation between the stress state and the image
stress) may depend on the stress increment. With such a mapping rule,
the plastic strain direction may be related to stress increment direc—
tion, while a smooth form (no vertex) is preserved for the bounding

surface.

The amplitude of the plastic flow, defined by the scalar relation
connecting H, HB and 8, could also be improved. The constants entering
this relation are fitting parameters without physical meaning. They are
difficult to determine, since they are evaluated by trial and error.
Future improvement may come from the introduction of the peak failure
location, where the plastic modulus H becomes zero for any distance &,

and HB.

The influence of Lode’'s angle and isotropy have presently been
assumed for convenience. ﬁgde's angle contribution yields for some
values of model constants, Me’ Mc' a concave bounding surface; this
effect should be studied in three—dimensional tests with different
principal intermediate stresses. The isotropy hypothesis, which brings
a good deal of simplicity for passing from axisymmetric state to six-

dimensional state, could also be reexamined when sufficient data are

available on the effect of principal stress rotation.
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The existing model, in its present state, may be implemented in a
finite element code, with the numerical integration scheme, as selected
by Dafalias and Herrmann [5.7]. This technique involves a predictor
multiple~corrector method, which calculates the equivalent tangential
stiffness and the finite stress increment corresponding to a finite
strain increment, This model implementation constitutes the next
immediate project, and gives meaning to this new constitutive equation.
It will help practicing engineers to represent sand behavior with more

accuracy when dealing with complex geotechnical problems,
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APPENDIX A

TWO EXPERIMENTS BY TATSUOKA AND ISHIHARA

A.1 FIRST EXPERIMENT BY TATSUOKA AND ISHIHARA: (A.1)

The material used in their experiment is the loose Fuji River sand.
Initial samples, all of the same density, were brought to a common
stress point X in the p~q space (see Fig. A.la) through 3 different

stress paths:

a) isotropic consolidation followed by an increase of axial stress
at constant confining pressure 3; this stress path is

represented by OAOX in Fig. A.la,

b) isotropic consolidation followed by an increase of deviatoric
stress q at constant mean pressure p; the stress path is
represented by OBox,

¢) constant stress ratio test, the axial and radial stresses, o

o

and Gy, are increased simunltaneously such that the ratio n =

o

remains constant; the stress path is represented by OX,

After reaching the stress state X, "small” increments in stress, with
constant amplitude but different directions, were imposed on the
samples, Then the stress increments are removed so that the sample was
brought back to state X. All the performed stress path and stress
cycles are presented in Table Al. The volumetric and deviatoric plastic

strain, denoted respectively 85 and ez. which remained after this cycle
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Fig. A.1. First experiment By Tatsuoka and Ishihara on the loose Fuji
River sand

a) stress paths and stress increments about a common stress
state X (see Table A.1)

b) measured plastic strains resulting from stress increments
(see Table A.1).



9°0=1"
£8°1 ¥2'0 12 k) y1S°0+ = dp L = Bp b juejsuos ax .M.n U juwiswos
] 0 #1570~ = dpk = bp U jue3suoo ox X0
wo /9 re=4d
z /39X §* ¢
d juwjsuod
LL*o T5°0 v°0 T="5 ‘0=4dp d juw3iswod ax 1m0
d €0"¥ $0°0- ST'0 bp wm - = dp Yo 3usysuos X
o o]
i 12°6 0" 0~ ov*0 1-=dp ‘0 = bp b juvisuon X 3. T = £
08°0 sP°0 9¢*0 I =4dp ‘0 = bp b jueisuos vY nb JUBISUOD
L6°0 650 8£°0 greo <bp £ = dp €5 jusisuos ox o
(%) (%) Amau\wt
b A JUSWIIOUY $SIIIS Y 3noqe Y SS9X3s Yo8IIX
8/ 3 b A
d d nu nu 9oeds b.d ur ssaxys Jo TO JUTRIISUO) juomd Iouy 03 yaed ssoxilg
JUINIIOUT JOJ UOTIBIOY
VAVHIHSI 4NV VIOOSLIV.L 14
JINIWIYEdXd LS¥T4 FHL 404 SITOSHA ISAL NV SONIAVOT 40 XAVWHOS T1°V T4Vl




- 181 -

were measured and plotted in Fig. A.1b in the form of vectors. A

summary of test results represented in Fig. A.1 is found in Table Al.

A.2 SECOND EXPERIMENT BY TATSUOKA AND ISHIHARA: (A.1

The material is still the loose Fuji River sand. The sample is
subjected to the stress path represented in Fig., A.2a. The measured
values of volumetric and deviatoric strain are plotted in Figs. A.2b and
A.2c versus the stress ratio n = %. The sample, consolidated under a
confining pressure of 2.0 kg/cmz, was sheared to the stress ratio
represented by point 2; and after further consolidation to point 4
following partial removal of the shear stress q, the sample was again
subjected to a cycle of shear stress, Figs, A.2b and A.2c show that,
during this reloading, both the volume and shear strains change 1little
until a certain stress ratio is reached, whereupon appreciable increase
occurs subsequently in each strain component. The stress ratio at which
the appreciable strains begin to take place was determined on the
diagram and designated by the point 5 in Figs. A.2b and A.2¢. This
point is defined as the yield point. The sample was subjected to
further cycles of consolidation and shear stress according to the scheme
of stress paths indicated in Fig. A.2a. In each reloading path, strains
were examined and yield points at each stage were determined as

indicated by the points 9, 13, and 17.

From these tests, two successive yield points located at different

portions of the same yield surface are recorded. For instance, the
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a) stress path followed during the test
b) measured volumetric strain versus q/p
¢) measured deviatoric strain versus q/p.
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points 2 and 5 of Fig. A.3a belong to the same surface, since they are
connected by a stress path in the elastic domain (namely, 2,3,4,5).

Each of these points is represented by the coordinates: P,y and pg,ng.

With a trial and error approach, Tatsuoka and Ishihara plotted the

following quantities (see Fig. A.3).

("B = M) / (pg - py) versus (py + pB)/Z

If the yield points were close enough, the following quantities

respectively represent limits:

dn /dp and »p

Then the relationship established in Fig. A.3 can be expressed as:

dn/dp = f£(p) (A.1)

where f(p) is an analytical function, which describes the curve of
Fig. A.3. By arbitrarily setting reference stresses P, and ng, the

relation (1) yields by integration the yield surface equation

n-n, = [ f(pap (A.2)

‘The results obtained from relation A,2 are compared with the experimen—

tal data in Fig. A.4.
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APPENDIX B

DRUCKER's POSTULATE

Consider a material element, which is in a certain initial state of
stress go. An external agency applies additional stresses to this ele—
ment and then removes them, It is assumed that the changes are slow
enough for the process to be isothermal. Drucker’'s postulate may be

enunciated in the following way:
(i) During loading the additional stresses do positive work.

(ii) During the complete cycle of additional loading and unloading
the additional stresses do positive work if plastic strains

are produced.

Figure B.1 shows a schematic representation in stress space of the cycle
of loading and unloading imposed by the external agency. Consider a
loading path with the following stress steps: go,gandg + dg. From the
stress ¢, the infinitesimal added stress dg produces the corresponding
elastic strain dge and the plastic strain dgP. The stress returns from
g+ dg to g’ by an arbitrary path. According to Drucker’s postulate
(ii), the work done by the additional stresses during the complete cycle

is positive, i.e.,

(t

- cgj)deij > 0 (sum on i,j=1,2,3) (B.1)
cycle

ij



Fig., B.1l.
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where fij's represent the variable stresses during the cycle.

For the closed path, the work done by the additional stresses and

the elastic strains is zero, hence

0 e = .
I ey - ofyees; 0 (sum on i,j=1,2,3) (B.2)
cycle

But since strains are the sum of elastic and plastic strains from

(B.1), it is concluded that

o P 3. 1=
(7ij - “ij)deij > 0 (sum on i,j=1,2,3) (B.3)
cycle

Plastic deformation takes place only in the infinitesimal part

2 a + da. The following equality holds

o p “jg“ o p
(‘cij — o'ij )dEiJ = J (TiJ - Gij )daiJ (B.4)

(sum on i,j = 1,2,3)

Applying the mean value theorem, and assuming that dcij is small

compared to Oij for any i,j, them relations (B.3) and (B.4) yield

— o P i =
(Gij Gij)daij > 0 (swmoni,j=1,2,3) (B.5)

Consider now another cycle, where go is equal to g, By virtue of the

Drucker’s postulate (i) for the loading process g to g + dg, relation

(B.4) becomes
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doij * deij > 0 (sum on i,j =1,2,3) (B.6)

From the second part of the postulate, for the following cycle g to

g + dg back to @, relation (B.6) becomes

. (+) (=) A
dcij daij + dcijdeij Y 0 (swmomni,j=1,2,3) (B.7)

when dg(+), dg(—) correspond respectively to dg and ~dg; but using rela—

tion (B.2) it follows that

. gge(+) . g4.6(-) - s =
doij dgij + daij deij 0 (sum on i,j 1,2,3) (B.8)

Therefore it is concluded that

do,, * deP, > 0 (sum oni,j =1,2,3) (B.9)
1j 1j
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APPENDIX C

LIST OF SYMBOLS

The symbols are ordered in the following groups.

C.1. Kinematics

C.2. Kinetics

C.3. Elastic—-plastic models

C.4. Elastic model

C.5. von Mises’ model

C.6. Lade’s model

C.7. New sand model.
Each symbol is related to the section where it is first introduced.
Some quantities related to kinematics or kinetics and starting with the
letter "d" are not defined in the list of symbols: they refer to an
increment of the quantities defined without a "d"”, e.g., dev is the

increment of volumetric strain € e



C.1. Kinematics
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NOTATION MEANING SECTION
£,x; (i=1,2,3) position of a material parti- 2.1
cle
B,u; (i=1,2,3) displacement 6f a particle 2.1
wo. (i,j=1,2,3) du; 2.1
i,j, 23=1.4s displacement gradient Y .
Ei,j, (i, j=1,2,3) average displacement gradient 2.1
A volume 2.1
E,eij (i, j=1,2,3) infinitesimal strain tensor 2.2
€1,89.83 principal strains 2.2
ev,aq volumetric and deviatoric 2.2
strain
e,e%, el total, elastic and plastic 3.1
uniaxial strain
g%,¢%. (i,j=1,2,3) elastic strain tensor 3.2
1]
g?,egj (i, j=1,2,3) plastic strain tensor 3.2
e:,es elastic and plastic volumetric 3.3
strain
e, e? elastic and plastic deviatoric 3.3
4 strain
98 direction of plastic strain 3.5.3
increment
e.e void ratio and initial void 5.3.1,
Yo ratio 5.4.1
e®,eP elastic and plastic void ratio 5.4.1
Ildgl| norm of dg 3.2
1agPll norm of dgP 3.2.2




C.,2. Kinetics
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NOTATION MEANING SECTION
Z,tij (i, j=1,2,3) Cauchy stress tensor B
Q,Uij (i,j=1,2,3) Cauchy stress tensor 2.3
E’;ij (i, j=1,2,3) stress tensor at image point 4.2
go,ﬁgj (i, j=1,2,3) initial stress B
sij (1,§=1,2.3) deviatoric stress tensor 3.2.1
P,q mean pressure and deviatoric 2.3

stress |
c* yield stress 4.1
LEL n = q/p and its initial value l 5.3.3
I,7,S first, second and third stress 3.4.1
invariant
o ﬁ;he's angle { 3.4.1
1,7,5 first, second and third stress = 5.8.2
invariant at image point
6 ﬁ;he's angle at image point 5.8.2
W work 2.3
wP plastic work 3.3
Z(m,t) traction vector 2.1
96 Qirection of stress increment 3.5.3
in p—-q space
01,0,,03 principal stress 2.3
u pore pressure 5.7
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C.3. Elastic—plastic Models

NOTATION MEAN ING SECT ION

B,nij (i, j=1,2,3) unit vector to yield or bound- 3.2.1
ing surface

m’mij (i, j=1,2,3) unit vector to plastic poten— 3.2.2
tial surface

f(g,n) =0 yield surface equation 3.2.1

L,r; (i=1,n) parameters of yield surface 3.2.1

é.si (i=1,m) "parameters of potential 3.2.2
surface

g(g,s) plastic potential function 3.2.2

H plastic modulus 3.2.3

He(x) Heaviside's function 3.2.3

<> Macaulay’s function 3.2.3

f*(p,q,x) =0 yield surface in the p—q space 3.3

np,nq unit vector to yield or bound- 3.3
ing surface in p—q space

mp.mq unit vector to plastic poten— 3.3
tial surface in p—q space

[ scalar 3.3

S slope in uniaxial test 4.1

Sg slope of bound in uniaxial 4.1
test

£(g.8P) =0 bounding surface equation 4.2

) distance between stress state 4,2

and image point
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C.3. Continued
NOTATION MEANING SECTION
8 in minimum distance & 4.2
sij (i, j=1,2,3) Kronecker symbol 3.1
x scalar 4.2
H* plastic modulus in p-q space 3.3
Hﬁ plastic modulus on bounding 4.2

surface
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C.4. Elastic Models

NOTATION MEANING SECTION
V.VO Poisson's ratio 3.53, 5.2
B bulk modulus I 3.5.3
G | shear modulus 3.5.3
E Young's modulus 5.2
A Lame’s constant 5.2
Bo elastic médel constant 5.2
n 5.2

C.5. von Mises' Model

NOTATION MEANING | SECTION
aij (i, j=1,2,3) center of yield surface ' 3.2.1
k model parameter 3.2.1
9. yield stress in compression 3.2.1
q, yield stress in tension 3.2.1
R yield surface radius 3.2.1




C.6. Lade's Model
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NOTATION MEANING SECT ION
I, third stress increment 3.2.1
N yield surface parameter 3.2.1
Kz potential surface parameter 3.2.2
¢ 3.2.2
A material constant 3.2.2
ft 3.2.3
a 3.2.3
d 3.2.3
T, 3.2.3
Kl 3.2.1
M 3.2.3
{ 3.2.3




C.7. New _Sand Model
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NOTATION 1 MEANING 1 SECTION
I
o Me slope of critical state for | 5.3.1
| positive and negative q |
M*c,M* slope of characteristic state 5.3.2
for positive and negative ¢
Iﬁr; critical state parameters 5.3.1, 5.4
Xolp critial state parameters 5.3.1, 5.4
d‘1 | interparticle friction angle 5.3.3.a
n | scalar 5.3.3.b
! |
A size of bounding surface 5.3.4
a slope of bounding surface 5.3.4
|
y scalar 5.3.4
= 4
z z p 5.3.4
[ aspect ratio for bounding 5.3.4
| surface |
M slope of critical state 5.3.4
h scalar 5.3.4
h(§) H = HB + h($5) 5.5.2
ﬁB normalized plastic modulus on | 5.5.2
bounding surface |
I
H 5.5.2
§ normal ized distance 5.5.2
smax normal ized maximum distance 5.5.2
Y normalized minimum distance 5.5.2

min




C.7. Continued
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NOTATION MEANING SECTION

a(n) function of 5 for relation 5.5.2
between H,HB,s

'f\p model constant 5.5.2

8,84 5.5.2

b(3) function of & for relation 5.5.2
between H,HB,s

b,,b, model constants 5.5.2

g(6,8) function of L.o'de's angle 6 5.8.1
and B

B model constant B = Me/Mc 5.8.1

N,N model constants 5.8.2




