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ABSTRACT

An investigation was made into the advantages of using a
discontinuous thrust program to escape from a c¢ricular satellite
orbit when using a low thrust propulsion unit. To rnake maximum
use of the applied thrust, the perigee distance was chosen at a
point where the atmospheric drag was negligible and this distance
wasg held constant throughout the escape maneuver. A numerical
integration was made of this method and the gpiralling method.

The appendixes show a comparison of these two methods.
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TABLE OF SYMBOLS

(. semi major axis of orbit

9 gravity at the surface of the earth (32.2 ft/ sec2§
R, mean radius of the earth (4000 miles)

U radius to any point in the orbit

Mo radius at apogee

radius at perigee

o

gravitational force per unit mass
angular momentum of satellite
kinetic enérgy

potential energy

thrust time

velocity at any point

eccentricity of the ellipse
derivative with respect to time
dérivative with respect to time

angle of the radius measured from the periapsis

w oo v < TS HNY Y

angle the velocity vector makes with angular velocity vector

S, thrust angle
Us angular velocity component
(Ur radial velocity component

L
{\/] absolute value of acceleration due to thrust
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INTRODUCTION

As man's scientific and engineering advances in space sci~
ences expand, the ageless desire to explore interplanetary space
has become not only a possibility, but a distinct probability. To
provide the propulsion for such flight many new types of engines
are being developed. Most of these engines are of the low thrust
to field force type (i.e. of the order of 102 o iO'ég).v These
thrust devices are especially adapted to long space flight because
of the high specific impulse and long burning times that they can
provide. Specific impulses of 500 to 20, 000 seconds can be devel-
oped by certain low thrust engines, and burning times are prac-
tically unlimited. These featurcs allow for more flexibility in
space flight than high thrust chemically powered rockets. Using
a low thrust vehicle, adjustments in trajectory can be made easily
thereby reducing the need for extremaly high precision in estab-
lishing the original flight path. Other advantages of the low thrust
engines over the chemical engiﬁes are their small size and low
propellant consumaption. In certain types of low thrust propulsion
uniéa the power can be taken directly from the sun and thereby re-
duce the amount of propellant which must be carried from the
earth. With this practically unlimited power source it will be pos-
sible to discard the present concepts of using minimum energy
 orbits. Also, by having power available for the whole flight, long
space flights can be accomplished in much shorter time than with

a chemical engine. For example a vehicle traveling to the vicinity
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of Saturn using a low thrust for most of the flight can make the
trip in about two and a half years, whereas the same trip using
a high thrust chemically powered rocket and minimum energy
transfer trajectory would take about six and a half years.

“The one important job that the low thrust engine cannot
accomplish is that of lifting off from the launching site and reach-
ing the initial parking orbit. This job must be left to the high
thrust chemically powered engines.

Once the vehicle is placed in the parking circular orbit,
the first major task that the low thrust engine must accomplish
is to escape from the gravitational sphere of the earth. It is
the investigation of this pbase of the space flight with which this
thesis is concerned.

The problem of providing escape velocity for a vehicle
from a circular orbit has been invéatigated by many people. It
has been shown that the least energy is required when a single
high thrust impulse is applied tangentially to the flight path of
the vehicle. This requires a thrust of the order of 4 g Also,
various authors have investigated the use of a continuous low
thrust applied tangentially producing a circular spiral of ever
increasing radius. This spiralling technique although requiring
less time to escape is not the most efficient §r6m an energy
standpoint.

A somewhat more efficient method to use to reach escape

velocity with a low thrust propulsion device, is to apply an infinite
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number of infinitesimal impulses at perigee. This would result
in an elliptical trajectory with an ever increasing semi major axis.
It would require the same amount of energy as the single high
thrust impulse method previously discussed. HHowever, the infinite
number of impulses would require an infinite tirne to produce es-
cape velocity.

This paper is devoted to developing a technique which lies
somewhere between the spiralling and infinite impulse methods.
Since it takes movre than twice the energy for escape using a 10“4 g
thrust spiralling method than using the infinitesimal impulses at
perigee method, it is apparent that there is a method of applying
a 10™% g thrust over a finite portion of the elliptical path near
perigee which is more efficient than the spiralling method.

To obtain maximum effectiveness of the applied thrust,
the perigee is held constant since in any low thrust acceleration
program emphasis should be placed on maximizing the rate of
increase of kinetic energy. This can best be accomplished by
keeping the perigee as low as possible. In this papet a parking
orbit of 300 miles is chosen to insure that no energy is lost due
to at_masg;héric drag. Thie is an arbitrary choice but does not
| alter the basic theory. The perigee is maintained at 300 miles,
because allowing it to decrease would put it into an area where

- atmospheric drag would use up the applied energy.
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1. BASIC ORBITAL MECHANICE EQUATIONS

In the development of the basic orbital equations of motion
and resulting parameter relationships, the usual assumption of
the earth being spherically shaped with homogeneous mass dis-
tribution is used. Also, the assumption iz made that the other
celestial bodies do not exert a gravitational perturbing force on
the vehicle. The equations can then be derived for a point mass
{vehicle) moving in an inverse square gravitational field of another

larger point mass (the earth).

<

Fig. 1

Using the Lagrangian method, the equations of motion are:

L= T-V =z & (RP+néY) - 2=

Je
£ (38)-89)= © = & (v¢)
j’%;( 3L> o = j{/——/z,él—F_/‘;A—_ 1.2
jLQ"

where L =g, RZ (the gravitational force per unit mass).
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The solution of equation 1-1 gives

L]

72 6= Comnst. = A 1-3

That is, the angular momentum is conserved. Now using equation

4-3 and solving for ]

6 = _ﬁ_— | i-3a
}'z?-
which upon substitution into 4-2 gives
PRI 1-4
T T

Since the two most appropriate generalized coordinates for this
problem are r and & it is best to eliminate the variable t ex-

plicitly from the equations. This can be done by writing
JT ( dn d G d./dn d 6>
d £ > dzr d 6(51 6 A+
A=od (drg) =47 d (Lcop_)
equation 1-4 then becomes
d 7y %ﬁ,\ N 1-5
de\m 46 7 7
If a change of variable is made, i.e. U =7%; » equation 4-5 becomes
1u .
= AL
et T E

the solution of which is
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U= _IA%_JF A Cos(6-60 = 7‘: 1-6

Now the general equation of a conic section is

Jr = P 1-7

| + € Cos(6-6v)

If we compare equations 4-6 and 4-7 we see that by letting be

A‘:%éi. equation 1-6 is in the form of a conic section, i.e.

J= % 4-7a
|+ &€ Cos(6-8,)

From elementary analytical geometry the parameter P for an el-

lipse can be written as
P= a(l-e)
Combining this with equation 1-7 we get the general equation for

an elliptical orbit

ST = Q(' - 61) 18
|+ & Cos(e-6&)

where G- is the semi-major axis, € the eccentricity, © the angle
measured from the periapsis, and r the distance from the ceniral
focus {the earth). Using this equation and the solution to the gen-
eral orbital equation {1-6) certain identities can be expressed,
These identities will be used in the derivation of the equations for

the solution of the problem with which this thesis is concerned.



2a = Na t e 4-9
ra = A(lt€) 1-40

rep = ali-é) 1-44

0= Jialt-e)  4-12

Fig. 2.

Lx 820 —> r= a(1-€) 143
[t & Cos ®
The one remaining basic equation needed to begin the solution of

the thesis problem is an energy equation. Writing the equation

for total energy we get
E=T+V = & (FP+re?) - 4 1-14
e

but ( R+ N éﬂ)% is simply the absolute value of the velocity vec-

tor. Therefore this equation can be written

g

E= o V- & 1-15
S

Ik can be shown that*

= 22 (o)

L R XX RN K

* Goldstein - Classical Mechanics, page 78.
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- Therefore the final energy relationship can be obtained by com-
bining equation 1-12 into equation 41-46 giving an equation for the

total energy of any orbit, i.e.

—_ AL
if 1-47 is then substituted into 1-15 we get the familiar Vis Viva
equation which relates velocity to the radius and semi major axis

of a conic section, namely

xS &

Vi= (EL - .L_> 1.18
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2. THRUST VECTOR ORIENTATION FOR CONSTANT Rp

Using the basic orbital equations the problem now becomes
one of orienting the thrust vector such that the perigee distance
remainsg constant. In this way the optimum use of the applied
energy will be accomplished. I should be recalled that the par~
ticular perigee distance was chosen as the distance where atmos-
pheric drag can be neglected. Therefore, we do not want to de~
crease ,svp below its initial value. Allowing it to increase would
be less efficient also. Therefore the optimum enex'gy trajectory
requires that the perigee distanceremain constant. In the deri-
vation of the equations that follow it is assumed that the change in
the orbital elements is very small on each orbit. From figure 3
we see that the velocity
vector can be expressed
by the two components:

Ue= V Cos 3
= VSins,
Then to develop an equa~

 tion which will make an

incremental increase in
the velocity vector while

keeping the perigee dis-

Fig. 3.

tance coustant, we can
take the total differential of Jlpas a function of the velocity com-

ponents, and set it equal to zero. This gives:
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dnp = dng dUr + 3 dUe = O
SUr dUhe

which leads to

YNp
Q(_—QLZ S %ue = Tan o2
’ o
d Ue S

The problem is now reduced to one of finding a relationship between
Ty Uﬁ, and Uy , and from this determining the angle 5, , which
is the orientation of the thrust vector to give a constant perigee dis-
tance.
Using the energy equation 1-18 we can write

dJa — A VL — 2-1
AA

I we now substitute equation 1-9, 4-10 and 1-41 into 2-1 we get
Jlp = A—O.LHG——YEZI:] 2-2
AA

Then using the conservation of angular momentum equation, €

can be expressed in terms of the angle 3, , i.e.
‘/“L?(\/C—_osébl = 6% = wa(1-€?)

and substituting for QA in terms of r and v gives:

- ]
€ = {. - AV Cos?s, — (V’ftacosiél}"
AA AA

which can be written as

€ = {Shﬁé, + Cos® 3, (,— M“A)‘*}‘li ‘ 2-3
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Now substituting equation 2-3 into equation 2-2 gives:

N

Then by replacing G 2 5, by Un_ UV and Cos* 3, by (_{_9_ equation 2-4
v+

can be written in terms of /Up, Ua, Usand Vv i.e.

e P (1o [mante « e us)) 2
2"-—7;" AA- AL

Differentiating equation 2-5 with respect to Ux and U6 gives (see

appendix 1 for detailed solution)

IRy = O>Ue (l“e [(-Fé) — (H—E—Cose\i] 26
U e € L (14 € Cos ©)*

%f&h——_aUm (‘ j 2-7

dividing the negative of 2-6 by 2-7 gives

\ ey

dUn = tan s = Ue |(+e) —(+ccosel| 2-8
d Ue Ur (14—6Cose)f‘

It is now convenient to substitute for U6 and Unin terms of the

orbital parameters JL, € and © . This can be done by recalling

that Un= /U and Ue=&. An expreasion for JUL in terms of € ,

& and © can be obtained by differentiating equation 4-43 with
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respect to time. This gives

= ali-€) €sind
(! + € Cos &)

Eliminating G from this equation by the use of 1-3a gives

- 4 ESinE 2-
ﬂ'—ﬂlf-éCose ?

Therefore

U \Jé € Sinb 510

- | +€ Cos &

and

Ue:‘g

S 2-11

With these relationships it is now possible to solve for the angle
3, . This can be done by substituting 2-10 and 2-14 into equa-
tion 2-8 giving the final relationship between the angle &, and

the orbital elements, i.e.

_ €ESime 2 (1—Cos &)
ta.h 5:\ e + ___(_,____——-—-—————-——’ 2-12
| +E Cos & Sim O(1+€ Cos 6)

The first term of the right hand side of this equation is simply the
tangent of the angle formed by the components of the original ve-

locity vector, i.e. tan §, . This then gives a relationship between

S, S s end & namely

=3
tans, = tanyg, + 2tanz 2-13
/+€Co$9
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Equation 2-12 gives the orientation of the thrust vector at any
point in the orbit which will maintain a constant perigee dis-

tance.
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3. EQUATIONS FOR A NUMERICAL ANALYSIS OF A TYPICAL

FLIGHT
To make an analysis of a mission employing this method
it is necessary to develop three more equations. They are (a)
the number of turns required to escape, (b) the total thrust time,
(c) the total elapsed time.

Starting with the basic energy equation (1-18), we can

write
AL - -V 1-18
2 G Jr 2
2
or _|_.. - 1 —_ \/

Then to determine the change in energy caused by an applied

thrust at a given /U we can write
d&)= 2V Cos(sa-3,) d7 |4y -1

where Cos (51‘31> fg—y\{_l is the component of the force per unit mass
in the direction tangent to the orbit and V dit is the distance along
the orbit. This is to say the incremental change in total energy
is equal to the work done on the vehicle over an incremental dis-

tance. We therefore can use {/dx = ds and from fig. 4 we see that

Cos 3
If this relationship is put into 3-1 the resulting equation is

G((ELL):*;L'\./! Cos (5.-5) .~ de 3-2
A Cos Sy




Fig. 4.

However if we substitute 1-13 and subsequently 1-11 into this

equation we get

6C059

d(—éﬂ w_qy_ l \/[ [_ 0s (32~ 5,]}

Cos 3,

Integrating this equation gives the change in energy per turn, i.e.

(v
Aa =~ &ﬁﬁ“l\'/‘}o{ccfs(?;h (;’Ieéccw)} do 3.4

where the limits of integration describe the portion of the ellipse
over which the thrust is applied. Since the ellipse is symmetri-
cal about the periapsis, the integral is evaluated over one half the
thrust period and doubled to give the total change in energy.

To make an accurate analysis of this process requires that
it be done on a computer. However a fairly good approximation
can be made by a simple numerical integration.

The number of turns required to increase the eccentricity

by 40% can be determined by
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N= Lt )
Cos (325, [/ I+€&
V j{(‘,oi EY (H_Ecase}oeé
L6 X (077
= (5 4 3-5
\vl j Cost33) (1) d 6
The thrust time per turn can be written as
&
dx
d6 ce 3-6
: but
d)f‘ - ﬂ} i sz
de JC 8

Therefore the thrust time per turn is

e
L= 2 * de
T jlﬂ

If we now put 1-13 and subsequently 4-411 and 1-12 in this equation

we get -

&
Y | re  Ydo
L= \/M(l“e) (H—€C°Se>

I
but (_)}E,)i = V| where |,, is circular velocity at perigee.

ca

Thus the final equation for the thrust per turn can be written as
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o= fig [ (e ) do

Finally, the total elapsed time per orbit is

%
X= 2% ~ %
*—%—— = 2_@_;49__/:
= G

which for our problem gives

o+ = “-00_{7_;8% ) days

3-8

3-9
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4. NUMERICAL ANALYSIS

In order to make a comparative analysis between the circu-
lar spiral method and the elliptical method it is necessary to com-
pute the energy applied and total time for the corresponding
spiralling orbits. Again as in the elliptical method a rough ap-
proximation will be made.

Using the change in energy equation 3-1, and observing
that since the thrust is applied tangentially in the spiralling method

(3.~-3, ) is zero, we can write the energy equation as:
A(‘a)j'): - i‘_\d’- 2 QL (for one turn)
AA

or for a number of turns
A, g ,
j,’_cﬁ(ic:>:_——— urt [v]  dn
a, * 4 AL

which can be written as (|V/| = const. )

[ dwr = gmpl [T

Integrating this equation will give the number of turns re-
quired to go from one energy level to another.

To determine the energy applied to go from one energy level
to another we simply need to determine the total time, since the
thrust is applied constantly. The total time for any portion of the

flight is:
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Za Yo
f C()T el ITOL,,\_ 4-2

t

where T is the period of the orbit for any given radius Q. . There-

fore, the time equation becomes

A2 Na
f drt :‘_% o’ 4-2a
x, b

I

Now using equation 4-1 to simplify this equation gives

xﬂd)t’ “-—F f al(l[_\ - 4-3

X, [V ]

With these equations it is now possible to compare directly with

the elliptical method since the totél energy of an elliptical orbit

with a given semi major axis Q. is equal to the energy in a cir-
cular orbit of radius Q. . Now if we compare the energy required
to go from the original circular orbit with a major axis A, to an
ellipse with a major axis of say 10 (X, using the elliptical method,
to that required to go from the original orbit to a circular orbit

of radius 10 Qo using the spiralling method, the relative efficiencies
can be seen.

A graphical comparison is made in appendix II.
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5. RESULTS AND DISCUSSION

A general method has been presented for determining the
thrust vector orientation of a low thrust vehicle which will allow
for a finite thrust program while maintaining a constant perigee
distance. In the case considered in this paper it is shown that
orientation of the thrust vector such that the resulting trajectory
is an increasing elliptical orbit requires less energy than the con-
stant thrust spiralling method, even though the time to escape is
larger.

As can be observed from fig. 8, the efficiency of the
elliptical and spiralling methods are practically the same when
the maximum energy input angle (ég_ - §.> is approximately 48°.
When this angle is less than 45° the elliptical, discontinuous
thrust program becomes more efficient from the standpoint of
total energy input. Even though the rough approximation tends to
get very poor for a complete numerical comparison above an
eccentricity of about .8 - .9, it can be seen that there is an ap-
preciable savings by using this method. If an extrapolation is
made of the curves in fig. 5 from .8 to 1.0 the savings in total
energy is even more apparent. The‘num"erical calculations were
carried out to an eccentricity of .95 to show that even with rough
approximations the elliptical method still shows more efficiency.
It can also be seen that as the energy input angle is reduced still
further the savings in energy input becomes even greater,

The numerical integrations were carried out by taking 10°
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increments in © , then taking the average value of the particular
parameter at the two limits of this interval, then multiplying by
the interval (in radians) and summing over the total thrust inter-
val for that particular orbit. Naturally as the eccentricity in-
creases above about .8 the thrust periods become large and
consequently the value of the limits over the 10 degree interval
begin to get a very large spread and this method of integration
tends to become less accurate., However, the smoothness of the
curves up to this poinﬁ and beyond seem to indicate that a consid-
erably accurate extrapolation can be made on the values of the
various parameters at the point of escape (i.e.€ = 1.0). An
extrapolation of the spiralling method gives very close correla -
tion with the machine solutions. This should tend to add confidence
to an extrapolation of the curves obtained for the elliptical method
in this paper.
| It should be mentioned that the elliptical method can also
be used very ef:fectively‘ for transferring between orbits in the low
eccentricity area. It is obvious that a transfer from say a 500 to
a 4000 mile orbit can be accomplished more efficiently by this
method than the spiralling method. Also, it is important in a
vehicle rendezvous mission, since in this type of mission a dis-
continuous thrust program is very essential. One other type of
mission in which the elliptical method has a distinct advantage over
the spiralling method is in satellite reentry. In this case the re-

verse thrust is applied near apogee causing a decrease in the
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perigee distance which in turn results in atmospheric drag dissi-
pating some of the energy, resulting in an even greater savings
over the spiralling method,

Finally it should be pointed out that the elliptical technique
used in this thesis is restricted to low thrust propulsion systems.
All of the equations were derived and the calculations made with-
out explicitly using the thrust values until the final charts were
made for comparison of the 10—4 g vehicles. However, the final
equations were arrived at by linearizing the basic equations with .
respect to the orbital perturbations due to the thrust. The final

integrations neglected the changes in the orbital elements for

any one orbit.,
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6. CONCLUSIONS

From the results of this study it can be concluded that
there are distinct advantages in using a discontinuous thrust pro-
gram to transfer from one energy level td another and finally to
escape energy. The principal advantage being in the saving in
total energy input. The advantage gained in total energy expendi-
ture is made at the expense of total time to escape. However on
the long missions on which low thrust engines are practical the

loss in time appears to be justifiable.
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APPENDIX 1

Starting with equation 2-5

-
R‘P"‘ -V ,""[J“ 2————"“{5 + \//L Uej}
A

but if we let

<= 9~ VI

AA

we can write

Tlp = ;;’}—{l

and @@= [l Qﬂ-ue_“_\/ﬂ, 1/{9:]

_ @%z

Then substituting for V* in terms of ué' +UX

o= AT (U5 + Up)

Differentiating gives

9ol = — 27 Un
SUN , AL
_Qfg. :_Q\)‘Lue
JlUs

A

28 an*p

e Un

2 Un DPE

dUe

anp

Py <*
or AN ST

aUlh.~ W

o= 2o g — Win
AA At s

Y G + e g 2

o Un 24 3= &U\n = ®

E@a%ﬁ(, —EH) + K 2 j

o(
S Un

and §= [1- 22U 422 (15 030 Uy)]

I-1

1-2

I-3

I-4
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Sp Bt N L o 28

or dUe T L %ue"’“ﬂ“fﬁ;"‘ 2 ¢ JlUe
ANp — T 3ol [ L PYCS | I-6
Slle | 28 B@ (1= &)+ a(@

if we now substitute for oé) @) QO( ;)o( pY<] g@ and recall that
DA ?3Us ) 3 s
A= fL and j7 = CL(} )We get

|+ ECosE
Mp — —_ S QAU@ _he ( QRU@
S P G T 2 Ue)
a

'-"foé ( QJ1UBI§_ LAaR-+Uné] znué[: E+ﬂL_.{uaA+{]

%}P‘ = 94@—(%5‘)[7_/“6) — (I+€Cos8Y I-7

e € AL (l + € Cos O
MMy — u 2
s R n)i-e) + (25

QR -.__Qzu 2 2
RSl iy A My ot -
=y Fae +a2e+1—€

TR ( € > I-8
RV e ,u
Now dividing the negative of I-7 by I-8 gives

n J(:éi[@> —(| +€&Cos &)

Ue . u (I+ & Cos ©)*
~ (1-€f

if we now substitute for un 4 e , i.e.

?‘

Q.

Ue = L £ ecSine
d =X CoLntE
an Un ST |+ECos &
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we get

d_li_fs_.—_: (H—é)l"" (l‘i‘éCoS@)l
d Ue (€ SinB)(1+€Cos6)

which can be reduced further to give

dUsr - €Sin8@ 4+ 2(1=CosB)

dUe — (j+€CosO) Sin@()+e Cosb)

or finally
dUs = esmo 1 2tan® otz ez
d he |+ € Cos O | + € CosO

o
tan 3. = tans + 2tany

s N 2-13
[+ & Cos©
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Thrust Time (Elliptical Method)

50°  Total 45°  Total 40°  Total | 35° Total

0-.4 | 45.4 43.4 41.8 40.7
45.4 43.4 41.8 40.7

A2 | 44.4 42.2 40.8 39.4
89.8 85.6 82.6 80.1

L2-.3 | 44.2 41.9 40.1 39.2
134.0 127.5 122.7 119.3

3-.4 | 44.4 41.3 39.4 38. 2
178. 4 168.8 162.1 157.5

.4-.5 | 49.2 43.3 39.2 36.8
227.6 242.1 201.3 194.3

.5-.6 | 59.4 | 49.5 41.5 36. 4
287.0 261.6 242.8 230.7

.6-.7 | 68.3 i 58.9 48.5 | 48.3
355. 3 % 320.5 291.3 279.0

.7-.8 | 84.8 77,6 74.8 68. 0
437.1 398.1 366. 1 347.0

.8-.9 |149.1 §118.0 116.5 112.8
556. 2 g 516.1 482.6 459.8

.9-.95| 74.3 73.2 71.5 70.14
630.5 589. 3 554.1 529.9

TABLE 1




Thrust Time (Spiralling Method)

~34-

T t otal a
0-.1 40.7
40.7 1.11a
(o]
1-.2 42.3
83.0 1. 2b5a
(0]
2-.3 45,5
128.5 1.43a
(o]
3-.4 48.5
477.0 1.67a
(0]
4-.5 52.5
229.5 Z.an
5-.6 58.5
288.0 2.5a
(0]
.6-.1 65.5
353.5 3.33a
O
7-.8 79.0
432.5 5.0a
8-.9 103.5
536.0 10.1a
(o]
.9-.95 74.0
610.0 20, 0a
- (0]

TABLE 1a
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NUMBER(E‘TURNSI%T
50° tota| 45° total 40° total 35° t otal
-1 .0217 . 0245 . 0280 .0324
| .0247 . 0245 . 0280 .0324
1-.2 | .0187 .0213 . 0244 .0285
. 0404 . 0458 . 0524 .0609
2-.3 | .0159 .0184 - 0213 . 0253
.0563 .0642 .0737 .0862
3-.4 | ,0429 .0153 - 0183 .0223
L0692 .0795 .0920 | .1085
4.5 | .00986 01214 - 0151 . 0194
.0791 .0916 1071 .1279
5-.6 | .00722 .00875 - 0117 . 0164
. 0863 . 1004 .1188 . 1440
.6-.7 | .00478 . 00562 - 00715 . 0427
. 0911 .1060 .1260 L1567
7-.8 | .00273 .00293 .00333 . 00501
.0938 .1089 .1293 L1617
8-.9 | .00438 . 00142 .00452 . 00467
.0952 .1103 . 1308 . 1634
.9-.95| .00045 . 00046 . 00049 . 00051
.0957 .1108 1313 .1639

TABLE 3
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TOTAL ELAPSED TIME

TN DAYS

€ 50° | torat| H8°) votall ¥0° | total] 35°| totallSeivall| £ otal

0-.1 [16.6 18.9 21.6 25.1 4.72
16.6 18.9 21.6 25.1 4.72

A-.2 W1.2 19.6 22.5 25.3 4.8

33.8 38.5 44.1 50.4 9.52

.2-.3 17.9 20.7 24.0 28.5 5.27
514.7 59.2 68.1 78.9 14.79

3-.4 [18.3 24.7 25.9 31.6 5.62
70.0 80.9 94.0 110.5 20, 41

.4-.5 |18.4 22.6 28. 2 36. 2 6.08
88.4 103.5 122, 2 146.7 26. 49

5-.6 |18.8 22.8 30. 6 42.1 6.77
107. 2 126.3 152. 8 188.8 33, 26

L6-.7 [19.2 22.6 28.7 T51.0 7.58
126. 4 148.9 181.5 239.8 40.84

.7-.8 [20.1 24.6 24.5 36.9 9.15
146.5 170.5 206.0 276.7 49.99

.8-.9 [28.8 29.6 31.6 34.8 12.01
TOTALS 175.3 200. 1 237.6 311.5 60. 00

TABLE 5
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