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Abstract

This dissertation discusses two allocation mechanisms through which prices are set
in markets.

The first chapter presents theories on discrete-bid auctions. .In particular. we focus
on four common auction institutions: the sealed-bid first-price auction, the sealed-
bid second-price auction, the English auction and the Dutch auction, in a single-obj
ect, independent-private-value setting in which bids can only be mulitiples of some
fixed increment. Two different models of English auction, the pav-vour-bid and the
penultimate-bid English'auction are introduced. It is shown that when bids are
discrete , second-price auctions and English auctions are no longer dominance solvable
as bidding games. Bidding is more aggressive in the penultimate-bid English auction
than that in the pay-your-bid English. auction. Nevertheless, first-price auctions and
Dutch auctions are still strategicallv equivalent. The equivalence of expected revenues
in the continuous case breaks down when bids are discrete. As the number of bidders
participating in the auction increases. auctions in which the winner pays the next
hig hest bid (second-price auctions and penultimate-bid English auctions) are more
likely to vield higher expected revenues than auctions in which the winner pays his
own bid (first-price auctions and payv-vour-bid English auctions). The probability of
tie in discrete-bid auctions is strictly positive and hence resulting allocations can be
Pareto inefficient.

Chapter 2 reports the laboratory observations of bidders’ behavior in the pay-
vour-bid and penultimate-bid English auctions. Results of six experiments show that
theories developed in the first chapter in general perform very well in predicting the
biddi ng behavior and the price range. However, observations of bidding that is
significantly lower than what has been predicted by theory do exist in experiments
with small increment. Two possible explanations are discussed.

Chapter 3 discusses a situation in which a monopolist seeks to sell a quality-
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differentiated spectrum of products of the same generic type to consumers of different
characteristics that he cannot observe. The main difference between this framework
and the previous literature is that there is a fixed set-up cost of each tvpe of product.
The presence of set-up cost makes it impossible for the monopolist to fullv separate
different types of consumers. The main purpose of this paper is to discuss the monopo
list’s profit maximization problem and characterize the optimal solution. It is shown
that the lowest type in the consumer group consuming the highest quality level would
be served efficiently in that the consumer’s marginal rate of substitution between
price and quality equals that of the monopolist. All other consumers will be served
inefficiently and quality distortion takes the form of degradation. The monopolist’s
profit margin increases with the quality level and an upward shift of the distribution

of consumer preference brings higher profit to the monopolist.
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Chapter 1 Theories of Discrete-Bid Auctions

1.1 Introduction

1.1.1. A Brief Overview of Auctions

With the history of around 25001years, auctions have long been used as methods for
allocating and procuring goods and services. In the most common form of auctions,
there is one seller with one or more items and a large number of interested buyers.
Prospective buyers compete by submitting bids that specify quantities and maximum
prices. The available supply is then allocated among those offering the highest prices
exceeding the seller’s reserve price. The actual price paid by a successful bidder
depends on a pricing rule, usually selected by the seller and announced before the
auction starts.

Auctions are used in a variety of settings. They are used to sell art, antiques,
wine, stamps and other collectible items. There are auctions for animal stock and
perishable commodities. The U.S. Treasuryv auctions off weekly the 91-day and 182-
day government bonds. Land and buildings, rights for timber and minerals, including
cbal and oil are usually sold via sealed bids. In many countries, large firms and
government agencies use sealed-bid auctions to select vendors and to procure services.
An individual who wants to gét a house built typically solicits bids from many different
builders and chooses the builder offering the lowest price. Recently, the U.S. and
Australian governments used auctions to sell spectrum licenses.

Apart from their remarkable applicability, auctions are of considerable theoretical
importance. Auctions play an important role in the theory of exchange as they remain
one of the simplest and most familiar means of price determination in the absence

of market intermediaries. The analysis of auctions has been one of the most fruitful

'Herodotus reports the use of auctions as early as 500 BC in Babylon (see Cassady (1967) pp.
26-40 for references) in which men bid for women to wed.
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applications of theories of games with incomplete information as bidders™ private
information is the main factor determining their strategic behavior.

Auctions can be categorized according to the different institutional rules governing
the exchange. Since the seminal work of Vickrev (1961), it has been recognized
that these rules are important since they can affect bidding in(;entives and hence the
expected revenues from and the efficiency of an exchange. Although there are many
different auction institutions recorded in the literature (Cassady, 1967), four major
types constitute the primary concerns of economists studying auctions in which there
is only one single item to be sold: the English auction; the Dutch auction: the first-
price sealed-bid auction; and the second-price sealed-bid auction. In the sealed-bid
first-price auction, potential buyers submit sealed-bids to the auctioneer. The highest
bidder wins the object for the price he bids. In the sealed-bid second-price auction,
the highest bidder wins the object but pays a price equal to the second-highest bid.
This auction is invented by Vickrey (1961) and hence is also named after him. In
the English auction, the price is successively raised until only one bidder remains.
This can be done by having an auctioneer announce prices, or by having bidders call
the bids themselves, or by having bids submitted electronically with the current best
bid posted. The last remaining bidder wins the object and pays the price at which
the auction stops. The Dutch auction is the converse of the English auction. The
price begins at some level thought to be higher than any buyer is willing to pay,
and the auctioneer decreases the price in decrements until the first buyer accepts the
current price. The object is then awarded to that buver at the price accepted. The
central issues involved in the studies of these auctions are the comparison of expected
revenues and the efficiency of the allocation under different auction forms.

Vickrey (1961) was the first to solve the independent private-values model using a
game theoretic formulation. He found that truth-telling is the dominant strategy for
each bidder in the second-price auction as well as in the English auction, regardless of
bidders’ risk attitudes, distributions from which bidders’ valuations of the object are
drawn and the level of competition. Moreover, assuming risk neutrality, in the case

where each bidder knows his valuation of the item with certainty and bidder’s valua-
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tions are drawn independently from an identical distribution known to evervone. all
four auctions yield the same amount of expected revenues to the seller with equilib-
rium behavior. Myerson (1981) extended Vickrey’s revenue equivalence result to the
case of asymmetric bidders, that is, bidders’ valuations are drawn from independent.
but not necessarily identical, probability distributions. He considered the whole class
. of possible auction mechanisms of selling the good rather than just a pre-specified
set of auction mechanisms and formulated and solved the “optimal auction design
problem”: among all possible ways of auctioning the object, which one should the
auctioneer adopt to maximize her expected net revenues? It is shown that any two
mechanisms that always lead to the same allocation of the good would vield the same
expected revenue to the seller.

When the bidders’ valuations are statistically dependent or when the bidders are
risk averse, the revenue equivalence result breaks down. Riley (1989) found that
in the affiliated-values model in which bidders’ valuations are positively correlated,
the seller extracts more revenue in the English auction. More specifically, Milgrom
and Weber (1982a) provided complete revenue rankings of the four auctions in this
case: The English auction generates the highest revenue followed by the second-price
auction and then the Dutch auction and finally, the first-price auction. With risk-
averse bidders, the first-price sealed-bid aﬁction produces larger expected revenue
than the English or second-price auction (Harris and Raviv 1981Db).

Information in auctions plays two important roles: information about the physical
state of the world can indicate the quality of the good a bidder considers buying.; infor-
mation about one’s potential rivals can signal the level of competition one may expect
to encounter. Milgrom and Weber’s (1982b) Linkage Principle provides researchers
with great insight into the role of information in auctions. They.showed that when
the bidders’ valuations are affiliated, in all of the four types of auctions the seller
could raise the expected revenue by adopting a policy of providing expert appraisals
of the quality of the objects he sells. They further explored the case where bidders
are asvmmetrically informed. They found that in most cases the seller can raise the

expected revenue by making the better-informed bidder’s information public.
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Experimental studies of auctions provide ample chance to examine theory pre-
dictions in settings in which the experimentor has complete information about the
objective economic data. Laboratory observations have shown a svstematic failure
of the strategic equivalence of second-price and English (Kagel et al. 1987) and of
first-price and Dutch auctions (Coppinger et al. 1980, Cox et al. 1982). with higher
revenues in sealed-bid auctions in both cases. More aggressive bidding in the first-
price and Dutch auctions has been attributed to the risk aversion of subjects and

other things.

1.1.2 Why Discrete-Bid Auctions

Most of the existing theoretical work on single-object auctions focuses attention on
the information structures of the auction games while assuming no restrictions on
the bids. In the majority of the environments considered by auction theorists, a bid
is allowed to be any arbitrary function of a bidder’s observed information. That
is, a bidder may choose to bid any number out of a continuum of choices, based
on the information he actually observes and his conjectures of his rivals’ bidding
strategies, to maximize his benefit. However, restrictions on bids are not unusual
in many real-world auctions. For example, in an English auction, the auctioneer
sometimes sets a minimum acceptable increment to the highest existing bid to speed
up the bidding process. According to Cassady (1967), “often, but not always, the
auctioneer announces not only the amount of the various bids as they are made, but
also the amount he hopes to obtain. ... In this type of bid calling the auctioneer
overtly establishes the amount of the increase he wants.” Escalations are standard
in American tobacco auctions. and all buvers are familiar with them. “At London
antique auctions, the bidders are supposed to be sophisticated enough to know what
the amount of the advance will be at various price levels.” (Cassady, 1967) California’s
bankruptcies court uses 5 percent increment in their auctions. In the recent auctions
of spectrum licenses by FCC, a minimum bid increment was set initially at the greater

of 5 percent of the previous high bid or $0.02 per MHz-pop (FCC, 1995). After all,
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a continuous bidding space is simply not feasible in reality. Any actual bid can only
be some multiple of a currency unit. In many experimental studies. the level of
increment or decrement in the English or Dutch auction is a very important technical
parameter often ignored by theory. However, as we will illustrate in this chapter and
the companion chapter on experiments of discrete-bid auctions, this parameter can
conceivably affect bidding behavior.

Cases in which bids can vary by increments are not quite the same thing as the
ones of mathematical continuum. As we will show in this chapter, with discreteness
" in bids, there is no longer a dominant strategy in the second-price auction and the
English auction. Even when bidders’ valuations are identically and independently
distributed, in general the four basic types of auctions do not generate the same
amount of expected revenues. The attractiveness of a particular auction form varies
by context. One of the simplest explanations of the continuing popularity of auc-
tions is that auctions often lead to outcomes that are Pareto efficient. However,
with discreteness in bids, if the bidders’ valuations are continuously distributed. the

probability of having inefficient allocations is strictly positive.

1.1.3 What Has Been Done

Although auctions with bid increments haven’t drawn enough attention from auction
theorists, there do exist a couple of works studying bidding strategies and hence
the expected prices in discrete-bid auctions. Vickrey (1962) considered the situation
where the single object to be bid for can have, for each bidder, one of the only
two distinct values and where only two bidding levels are permitted. He found that
the seller could extract more expected revenues in the English auction than in the
second-price auction by selecting the two bidding levels appropriately. Chwe (1989)
discussed the first-price auction within the independent private-values model in which
each buyer’s valuation is continuously distributed. When buyer values are uniformly
distributed and bid possibilities are multiples of an increment, he showed that a

symmetric Nash equilibrium bidding strategy exists uniquely and converges to the
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equilibrium of the continuous-bid auctions as the bid increment goes to zero. He also
found that the expected price in discrete-bid auctions is always less than the one in
continuous-bid auctions and thus the seller has an incentive to make bid increments

small.

1.1.4 -Organization of This Chapter

Following Chwe’s (1989) framework, we further explore in this chapter the svmmet- :
* ric equilibrium bidding strategies in the other three commonly studied auctions: the
sealed-bid second-price auction, the English auction and the Dutch auction. The
following section describes the general set-up of the model. Section 1.3 provides
the definition of a symmetric equilibrium bidding strategy along with equilibrium
conditions. Existence of such equilibrium strategy is also proved in this section.
We then provide a brief review of Chwe’s work on the first-price auction in section
1.4. Section 1.5, 1.6, 1.7 discuss the symmetric equilibrium bidding strategies in the
sealed-bid second-price auction, the English auction and the Dutch auction respec-
tivelv. We particularly study two different models of English auction in section 1.6:
the penultimate-bid English auction and the payv-vour-bid English auction. Although
the two models of English auction lead to the same prediction of the dominant bid-
ding strategy in the continuous-bid case. bidding behavior is different in the case with
discrete bids. Section 1.8 provides a numerical example. Remarks on revenue com-
parisons are in section 1.9. Section 1.10 collects all the results which shows that the
symmetric equilibrium bidding stra;cegies of all the auctions studied converge to their
counterparts in the continuous-bid frameworks. Section 1.11 briefly covers the issue
of efficiency. The last section concludes this chapter and discusses possible directions

of future research.

1.2 The Model

We consider an auction situation in which the auctioneer auctions an object to N

buyers. Each bidder’s value of the object denoted by v is distributed independently
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over [0, 1) with cumulative distribution function F'(v). Let f(v) be the corresponding
density function which is positive everywhere in the domain. Each bidder only knows
his own value of the object and picks a b; from the set {b, bs,....bar41} where b; = %
That is, bid possibilities are multiples of the increment 4;. In this paper. we follow

Chwe’s (1989) assumption and assume that b; = 0 and bpr4; < 1.

1.3 - The Equilibrium Strategy

A bidder’s strategy b(v) : [0,1] — {b1,b2,...,bp41} is an equilibrium strategy if
El(v,b;) > ET(v,b;)for all b; € {b1,by,...,bm41},1 <i <7 (IC) (1.1)

and

ETl(v,b;) > 0 (IR) (1.2)

where ETI(v, b;) denotes the expected payoff to a bidder whose value is v and bids b;.

In this paper, we focus our attention on the symmetric Nash or Baysian Nash
equilibrium strategies in the four common auction institutions: 1)the sealed-bid first-
price auction; 2)the sealed-bid second-price auction; 3)the English auction and 4)the
Dutch auction. We wish to discuss the equilibrium point of these auction games and
evaluate the expected price under different circumstances. In any of these auctions,
the object is awarded to the bidder who submits the highest bid and in the case of a
tie. the winner is chosen randomly. Let b_; denote the bids submitted by the other

bidders and p(b;,b_;) denote the pavment that a bidder bidding b; needs to pay, we

have

Ell(v,b;) = (v— p(b;,b_;))Prob(winning]b;)
= ovPr; - p;Pr;

= UPTi"pf (1.3)

For simplicity, we use p; to denote p(b;,b_;), P; to denote Prob(winning|b;) and pf
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to denote the expected payment conditional on ;. To characterize the equilibrium
bidding strategy b(v), we need to first state the following lemmas (proofs are straight-

forward and can be found in Appéndix).

Lemma 1 B; = {v € [0,1] : b(v) = b;} is convez in v;

Lemma 2 b(v) =0 for all v € [0,1] is NOT an equilibrium strategy.
Lemrr;a 3 b(v) is monotonically increasing in v.

It is obvious that in any of the four auction mechanisms, b(0) = 0. Therefore. the
above three lemmas implies that the symmetric equilibrium strategy must be of the
following form:

b, ifvels_1,s),1<1<r
b(v) = [5:-1, 81 (1.4)

b, ifv=s,

where 0 = 59 < §; < 8 < ... < s, = 1, and 7 is an integer which satisfies
1<r<M+1.

Considering auctions as games of incomplete information, given his value estimate
of the object v, a bidder chooses his bid as the best response to his rivals’ bidding
strategies. The equilibrium bidding strategy of the form (1.4) is a symmetric pure
strategv equilibrium. The next p.roposition shows that such pure strategv equilibrium

exists.

Proposition 1 There erists an equilibrium point in symmetric pure strategies in the
four basic types of auctions if bidders’ type space and bidding space are defined as in

section 1.35.

This existence result follows from the Purification Theorem in Milgrom and Weber
(1985) and the existence of a svmmetric equilibrium strategy in any finite symmet-
rical strategic-form game. The four common auction institutions are all symmetrical
games. The sealed-bid first-price auction and second-price auction are strategic-form

games while the English auction and the Dutch auction are extensive-form games
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with perfect recall. By Kuhn’s (1953) theorem?, the existence of symmetric equilib-
rium applies to all four auction forms. According to the assumptions we made in
our model, the equilibrium strategy has a purification and hence a svmmetric pure
strategy equilibrium exists. A detailed proof of Proposition 1 is in Appendix.

The bidding strategy b(v) is an equilibrium strategy if both the incentive compat-
~ ibility constraint (1.1) and participation constraint (1.2) are satisfied. In fact. in any
of the four auction mechanisms, ETI(v, b;) > 0 for all v € [0, 1]. Hence, we can restrict
our attention to the incentive compatibility constraint. Nope,‘ if a bidder chooses to
bid b, instead of b,,;, it must be either ETI(v,b,) > ETI(v, by41) or simply b, is not
available, i.e., b, =1 and r = M + 1. Before we discuss the equilibrium strategy. \{'e
can use the following two lemmas (proofs are in Appendix) to further simplifv the

problem.

Lemma 4 Given the incentive compatibility constraints, for each i = 1,...,7 — 1,
type s; 1s indifferent between bidding b;y1 and b;. That is, ETI(s;,b;) = ETl(s;, biy1).

Lemma 5
EH(Sre br) 2 EH(S,-, br+1)

for1<r< M+1, and,
ETI(s;, b;) = ETI(s;, bity)

fori1=1,2,...,7r — 1 are the only binding constraints.

Immediately following from these two lemmas are the following two propositions:

Proposition 2 The bidding strategy b(v) of the form (1.4) is an equilibrium strategy

if the following T conditions are satisfied:

E(s,,b,) > ETI(sy, bys1) (1.5)

2In a game of perfect recall, mixed and behavior strategies are equivalent.
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for 1 5r_<M+1, and,
ET(s;, b;) = ETI(s;, bit1) (1.6)

fori=12,...,7r—-1

Proposition 3 The following two conditions are necessary and sufficient conditions

for the incentive compatibility constraints of all types to be satisfied:
pf = s;{(Pri — Pri_1) + si_1(Pri-1 — Pri_g) + ... + 51(Pry — Pr1) + 50Pr;  (1.7)

foralli=1,2,...,7 and

srPry — p; > 8 Prry1 — pf’-’-l (1.8)
for1<r<M+1..

Proposition 3 provides an algorithm to compute the equilibrium strategy by iden-
tifving {s; € (0,1) : 1 <7 < M} and r that satisfy (1.7) and (1.8). Given any auction
mechanism with allocation rules Pr; and payment rules p, we can start from sy and
compute $y,...,S;, ... iteratively using (1.7). To identify r, we need to check if (1.8)
holds for each b;. The first b; with which (1.8) holds is b,. If s, Pr,—p¢ < s, Pry41—Df,,
for all b;, 7= M + 1 and b, = 1. In the following sections we discuss the symmetric
equilibrium strategies in the sealed-bid first-price auction, the sealed-bid second-price

auction. the English auction and the Dutch auction respectively.

1.4 Sealed-Bid First-Price Auctions

Chwe (1989) first studied the equilibrium bidding strategy in the sealed-bid first-price
auction when bidders can onlv bid multiples of an increment.

In this section, we provide a brief review of his findings. In the first-price auction,
every bidder submits a sealed bid to the auctioneer. The bidder submitting the
highest bid wins the object at the price equal to the amount he bids. If more than

one bidder submits the same highest bid, the winner is chosen randomly. Therefore,
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EN(v,b) = (v—1b )Z = Prob( (bi is the highest bid and t buvers bid b;)
t=1
N
1 N-1 _ -
= ) ;-b) [F(s:) = Fsie)]' 7 F(sim)) N
t=1 t— 1
N
v—b; N .
= Fz__F i th__ N—t
N{F(S F(81 1]2 : [ (S) ('S 1)][ (S 1)]
v - bi /

N[F(si) = F(si-1)]

v - bi
- N[F(s;) = F(si-1)] [FY(s:) = FN(si-1)]

= [F(s)) = F(s5-1) + F(si)]" — ]; FN(s,_1)

(1.9)

Chwe (1989) showed that, when F is the uniform distribution, there exists a unique
symmetric Nash equilibrium in the first-price auction and the equilibrium converges
to that of the continuous bid auction as the bid increment goes to zero. He also
found that, however, the expected price in the discrete bid auction is always less than
the contimuous bid expected price, and thus the seller has an incentive to make bid

increments small. These are summarized in the next proposition.

Proposition 4 (Chwe) If v is uniformly distributed, then i) there ezist unique r and
50y S1a- .., , S satisfying the equilibrium conditions; ii) as M — oo, by pr(v) — HN_—I’U,
where by ar(v) denotes the symmetric Nash equilibrium strategy when the number of
bidders 1s N and the bid increment 1s - M, 11) forallM > 2 and N > 2, N=1 N+1 > Epn.m,
where Epy zs denotes the expected price at the equilibrium; 1v) ﬁ——lbi <8 < mbiﬂ;

v) b, = max{b; : b; < %}

1.5 Sealed-Bid Second-Price Auctions

In this section, we consider the sealed-bid second-price auction invented by Vickrey

(1961) in which every bidder submits a sealed bid to the auctioneer. The bidder
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whose bid is the highest wins the object and the price he pays to the seller equals to

the second highest bid. In the case of a tie, the winner is chosen randomly and fairly.

Hence,

ETI(v, b;)

ETI(v, bi1)

+ o+

(v — b1)Prob(b; is the highest bid and the second highest bid = b, = 0)
(v = b)) Prob(b; is the highest bid and the second highest bid = b;)

(v — b;—1)Prob(b; is the highest bid and the second highest bid = b;_)

N
(v = b;) Z %Prob(b,- is the highest bid and ¢ > 2 buyers bid b;)
t=2
(1.10)

(v — b1)Prob(bi+ is the highest bid and the second highest bid = b; = 0)

(v — bg)Prob(b;+ is the highest bid and the second highest bid = b»)

(v — bj—1)Prob(b;+, is the highest bid and the second highest bid = b;_;)

(v — b;)Prob(b;4, is the highest bid and the second highest bid = b;)
1\7
1 .
(v = bix1) Z '{PTOb(bi+1 is the highest bid and ¢ > 2 buyers bid b;41)
t=2 -
' (1.11)

To discuss the equilibrium strategy in this auction form, we need to examine the

equilibrium conditions (1.6) for : = 1,...,7 — 1 and (1.5) for ¢ = r. Plug (1.10) and

(1.11) into (1.6) and rearrange the terms, we get
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N
(8i = biy1) Z %Prob(b,-.ﬂ 'is the highest bid and ¢ > 2 buvyers bid b;41)
t=2 '
+ (s; — b;)[Prob(b;4; is the highest bid and the second highest bid = b;)

N
- Z %P’rob(b,- is the highest bid and ¢ > 2 buyers bid ;)]
t=2

N N -1 N
{si — biy1) Z% ( 1 ) [F(siz1) = F(s:)) 7 F(sa))V
t=2 -

N N-1 ‘ :
£ (s b)FN N (s) = FNY(si) = Y 5 [F(s:) = Fsi—)] ™ [F(si-0))* 7Y
t=2 t -1 i
0
(1.12)
Note,
Nq1(N-1
- —-b t-—le-—t
; - ( o ) (a =)
N, ( N ) (a — b)tpN-t
t
- N{a-b)
N N ~
= ™ b)[(a-—b+—b)N-( . )b”—( 1 )(a—b)bN g
= N(al_ b [a™ = b — N(a — b)bN 1]
- 1 N -
- N(a—b){ah o] = o7
(1.13)

Hence, we can rewrite (1.12) as follows:
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1
(si — bi+l)(N[F(Si+1) — F(s;)]

+ (si = b)(FN"(si) — FN"Y(simy) -

[FN(si41) = FN(s)] - F¥71(sy))

1
N[F(si) — F(si-1)]

— FV=Ys)] + (si = b)[FN~1(si) ~

[FN(s;) = F™(s;i21)) + FYY(s,21))

FN(s;) = FN(s;_y)
j\'{F(Si) - F(S,'_l)]

FN(siy1) — FN(s;)
N|F(siy1) — F(s:)]

]

= (si ~ bit1)]
= _0
(1.14)

Plug (1.10) and (1.11) into (1.5) and rearrange the terms (Note, we assume that

no one else would bid b,,;), we get

FN(s;) — FN(s,_1)

A= o) N F = Florn)] ™ FN=Y(s,_1) = (FN=Y(s,) = FN7Y(5,21))]
_ 1- FN(Sr—l)
= Uy =Feoy Y
> 0

(1.15)

Hence, for b(v) to be an equilibrium strategy, (1.14) and (1.15) need to be satisfied.

The following is implied by these two conditions:

Proposition 5 In the sealed-bid second-price auction, there is no dominant strategy.
Moreover, the equilibrium bidding strategy varies with the number of bidders and the

distribution function of the value estimates.

Before proceeding further, we would like to introduce the following two lemmas

(The proofs are straightforward and can be found in Appendix):

Lemma 6

FN(s;) = FN(s,-1)
N[F(S,) - F(S,_])]

FN(Si+1) - FN(Si)

N-1/..
<F (s:) < N[F(siz) — F(Si)]




Lemma 7 In the sealed-bid second-price auction, r = M +1 and b, = 1.

We are now ready to discuss the equilibrium strategy of the sealed-bid second-price

auction.

Proposition 6 Fori=1,...,7 — 1, the s; that satisfies (1.14) must lie between b;

and b,‘+1. That s, b; < $; < biyy-

" Proof: i) Suppose s; > b;,,, then by Lemma 6,

FN(Sz‘+1) — FN(Sz‘)
N[F(3i+1) - F(Si)]
FN(S,‘)'— FN(S,'_l)]
NI[F(si) = F(si-1)]

FN(S,') - FN(S,‘__l)]
N[F(s;) = F(si-1)]

(8: = biy1)| — FN"Y(s)) + (s = b)) [FV "N (si) —

> 0+ (s —b)[F¥!(s;) —

> 0
Since b;y; > b; implies s; > b;. Contradiction.
ii) Recall equation (1.14):

FN(Si) —.FN(Si-l
" N[F(s;) — F(si-1)

FN(3i+l) - FN(Si)

NFo) ~ Fsg] | s b)lF )

(Sz‘—bz+1)[ ]= 0

: A , . FN(sig1)=FN(si) N-1/.
From i), s; — b;4; < 0. From Lemma 6, W}"‘(-.s-:-.:.l)—__F—(s,)]- — F¥"(s;) > 0 and

FN=1(s;) — fv—'[;%—)):_%“((—)]) > 0. Therefore, s; — b; > 0. Or, s; > b;. Q.E.D.

Proposition 6 implies a trade-off between the probability of winning and the
amount of payoff conditional on winning. By bidding lower, a bidder commits to
a lower price that he needs to pay if he wins. By bidding higher, a bidder enhances
his chance to win. For all ¢ =1,2,...,7 — 1, any bidder with value v € [b;, s;) under-

bids in a second-price auction. That is, he bids some amount lower than his valuation.

Any bidder with value v € [s;, b;;+;] overbids in the auction.
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1.6 English Auction

Most people are more familiar with the English auction emploving electronic equip-
ment. With the electronic equipment, “the price indicator moves clockwise on an
ascending basis ... from zero until the transaction is completed. As long as two or
more bidders are pressing the keys, the hand of the clock moves and prices advance. It
continues to move until all bidders except one withdraw, at which time the clock stops
o (Caésady, 1967, pp:196) However, before the electronic device was introduced,
people ran English auctions as open ascending-bid selling schemes: “the auctioneer
seeks an initial bid from one of the assembled buyers with the expectation that those
interested in the item or lot will bid against one another until all but the highest
bidder are eliminated.” (Cassady, 1967, p:57)

From the above description, it is not very hard to tell that these two different
versions of English ‘auctions adopt different rules to determine the price that the
winner pays. In the case with electronic device, since the price indicator stops when
all bidders except one withdraw, the price that the last remaining bidder pays is the
price at which the last bidder but one withdraws. On the other hand, in the open
ascending-bid scheme, the winning bidder wins by outbidding all other bidders and
he pays the amount that he bids. When the bid space is continuous, the standard
argument on bidding strategies in English auctions holds for both cases and there is
no difference in equilibrium bidding strategies and hence expected revenues in these
two different English auctions. However, with the introduction of discreteness in
bids. different pricing rules will induce different equilibrium bidding strategies. In
fact. in the open ascending-bid scheme, if there is some time interval during which
each increment of bids can be made and during which each bidder can observe the
other bidders’ decisions, a bidder may also decide strategically how quickly to respond
with a higher bid during this interval. Hence, timeliness in response would also be a
strategic variable in this case. In this paper, we restrict our attention to the difference
in bidding strategies resulting from different pricing rules. Discussions on the bidders’

strategic choice of the timing of the response are out of the scope of this paper.
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To achieve the research purpose of this paper, we will examine two different models
of English auctions, both with electronic devices. In the first case, the price indicator
stops when the last bidder withdraws and therefore the winning bidder payvs the price
at which he withdraws. We call this pay-vour-bid English auction. In the second
case, the price indicator stops when all bidders ezcept one withdraw and the winning
bidder pays the price at which the second highest bidder withdraws. e call this
penultimate-bid English auction. We will discuss the equilibrium strategies in these

two different models separately in the following subsections.

1.6.1 Pay-Your-Bid English Auctions

In this version of English auction, the price and the number of bidders who are
currently staying in the auction are posted on an electronic display. The price is
raised by 314— every time starting from 0 and the number of bidders currently staving
in is updated at the same time. A bidder remains active in the auction by holding
his button down. When he releases, he has withdrawn from the auction. The auction
stops when the last bidder releases his button. The bidder who is the last one to drop
out from, ﬁhe auction wins the object and he pays the price at which he withdraws
from the auction. In the case where there are at least two bidders in the last group
of bidders withdrawing from the auction, the winner will be selected among them
randomly. We use p; to denote the price and &; to denote the number of bidders who
decide to stay at p;_;. Hence, p; = 0 and k;, = N. When the price is raised to p;,
a bidder’s strategy is to decide whether to remain or to withdraw from the auction
at this price. The decision is made based on his value of the object, the number of
currently active bidders k; and the current price p;. Therefore, the bidding strategy
b; : v x p; x ki — {0,1}. If he chooses 0, he withdraws from the auction and if he
chooses 1, he decides to stay. Intuitively, if the price is raised to the amount such that
Di > U — ﬁ, the bidder wouldn’t want to stay further in the auction. On the other
hand, when the price is very low relative to the bidder’s value, the bidder would like

to stay in the auction to increase his probability of winning provided there is at least
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one more other active bidder. This intuition can be formalized by the following two

lemmas..
Lemma 8 For alli, if v — 3; <pi < v, or p; £ v < pigy, bi(v,pi. ki) = 0.

Proof: The proof is very straightforward.

Ell(v,b;=0) = ki(v — p;)Prob{all k; bidders releasé their buttons at
pilk; bidders decided to stay at p;_;}
> 0.
However,
Ell(v,b; =1) = jcl—(v — pi+1)Prob{all k;,, people release their buttons

i+1

at p;41/k; bidders decided to stay at p;_;}

+EH('U,b,'+1 = 1)

< 0.

Therefore, the bidder is better off withdrawing at p; rather than staying until p;,,.
Lemma 9 For alli, if p; <v— 255, or v > piyo and k; > 2, bi(v,ps, ki) = 1.

Proof:

1
Ell(v,b; = 0) = E(v — pi)Prob{all k; people release their buttons at p;}

Ell(v.b; = 1) ETI(v,b; = 1|all k; bidders release their buttons at p;)

+ETI(v, b; = 1|not all k; bidders release their buttons at p;)

1
= (v—(pi+ I )Prob{all k; people release their buttons at p;}

+ETI(v,b; = 1|not all k; bidders release their buttons at p;)
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Since the second term in the above equation is nonnegative, (v — (p; + %)) >

(v - p:) would imply ETI(v,b; = 1) > ETl(v,b; = 0).
1

(0= i+ 5) 2 plo—p) = p -

ki 1

ki —1M

But ;51-1 < 2 for k; > 2. Obviously, if k; = 1, b;(v,p;, ki) = 0 and the auction
stops. | o Q.E.D..

Note, as long as each bidder’s utility function is non-decreasing in his monetary
payoff’, the results stated in the above two lemmas hold regardless of the initial
level of competition NV, the size of increment M, the distribution function F and the
bidders’ risk attitudes.

With the above two iemmas, the only price at which that we need to study the
bidder’s decision is p; such that v — Al[ < pi Sv— 35, OL V€ [Pig1, Pita). At p;, we
know that bidders with value v € [p;41,pi+2] are staying in the auction up to this

price given lemma 8 and these bidders will drop out from the auction when price is

raised to p;4; given lemma 9. With this p;,

1
El(v,b; =0) = F(” — p:)Prob(All k; bidders drop out at p;]All k;

bidders didn’t drop out at p;_;)

_ 1. [F(s) = Fsia)lb!
A [1— F(sizy)]kt (119
ETl(v,b; =1) = (v — pis1)Prob(All k; bidders drop out at p;|All k;
bidders didn’t drop out at p;_;)
I
+ Z —(v — piy1)Prob(All k;, stays at p; and all k;,, drop out
kiy1=2 ki+1

at pi+1|All k; didn’t drop out at p;_;)

3This includes the case of risk-aversion in which a bidder’s utility may be some non-decreasing
concave function of his monetary payoffs.
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1. [F(s:) = F(si-1)]5!
ki 1

1
+ Z E_:(v‘-lli—ﬁ)

kiy1=2

* ( ki — 1 ) [F(siz1) = F(s:)]s+~1[F(s;) - F(si_y)]fikm

ki+l -1 [1 - F(Si—l)]ki—l
L. :
1 1 1
= Z —(—pi—55)
kiy1=1 ki'*'l M

N ki—1 [F(5i41) = F(s:)]+171[F(s;) — F(si-)]"
k [1 = F(si—1)]k!

iv1 — 1
(v—pi — 35) s
kil = F(si-1)]5 7 F(si41) — F(s1)]
([F(si+1) = F(sicn)]¥ = [F(s:) — F(si2))¥) (1.17)

By the definition of s;, we have the following equation

(si — pi)[F(s:) = F(siy)]F?

(Si—pi—ﬁ) . S; — F(s; ki _ ) — F(s; ki
[Floi) = F(s,-)]([F( is1) = F(si)))f = [F(s:) = F(s:i-1)]®)  (1.18)

~Note that to figure out the equilibrium strategy at p;, one needs to solve (1.18)
r — 1 times to find {s;, sj11,....5-—1}. However, at p;, one only observes k; but has
no information on {k;;;,...,k,-1}. Therefore, at p;, each bidder needs to guess how
many people would stay or drop out in later rounds based on his current observation
and solve for {s;, si41,.-.,5,_1} based on the guesses. Hence, the r — ¢ equations will
take the following form:
For j = 7, the equation takes the form of (1.18). Foralli < j <r -1,

k,; ki1 k}—l

1 . _ - .
(sj — pj) Z Z Z ;-Prob(k; bidders decide to stay at Pj—1 forj=i+1,...,j
kiy1=2kiyo=2  k;j=2 J

and k; bidders decide to withdraw at p;|k; bidders decided to stay at p;_)
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ki kiqa k-1 k; 1 :
(sj —pj — M—) Z Z Z Z ——Prob(k bidders decide to stay at p;_, for

Eii=2kipe=2  kj=2kjq1=1 ki1

j=1i+1,...,j + land k;4 bidders decide to withdraw at pj+1|k; bidders

decided to stay at p;—;)
(1.19)

That is,

|+l

= P;) Z Z Zk [l—F(sz 1)}ki=?

l+l =2 kl+2—2

ki —1
*
kji—1 kiog—1 ... kipa—1 kipza—1

*[F(si) = F(sic1)]F 5+ [F(si41) — F(s:)]F+ 7542 [F(s5-1) - F(sj)|fm27h

*[F(s5) = F(sj- 1)]k'_l
kit1 J"l j 1

= (s p]———- Z Z Z Z k]+1[1—F(31 N

kiv1=2ki42=2 kj=2kj4

ki—1
*
kj.,.l—-l kj—l k]'._l—l ki+2—1. k,‘+1—1

*[F_(Sz') — F(sic))[F 541 [F(si41) = F(si)]F+17 %2 [F(sj-1) — F(sj-2) ) ki-1=ki

*[F(s5) — F(sj_l)]kj—kj-ﬂ [F(s;41) — F(sj)]ki“"l

where
ki — 1
k=1 kj—1 koy=1 o0 kipa—1 kigr—1
_ (k; — 1)!
(ki = ki) (kiz1 — kig2)! - (Kjo1 = k) (kj — K5)(kj41 — 1)!
ki — 1 . -
and is defined similarly.
kJ-l kj._l_l ki+2—l ki+1—1
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Note, m;_— -cancels on both sides of the equation; therefore, the simplified

version of the above equation is

kit ki"l
- p;) Z Z Zl‘ (kj—l kjioi—-1 ... kiva —1 kr+l'1)

kiv1=2ki42=2 kj=2
[F(s:) = F(si=1)" 841 [F(si41) = F(s;)]s+17k2 [F(s;1) = F(sj_))o1 70

+(F(s;) = F(s;- o

!+1

= (s Pa——->ZZ 535>

kiy1=2kiqo=2 kj=2k;41=1

ki — 1

k+1

*
(kj+1—1 kj—=1 kjo1—1 kivo —1 ki+1—1)
*[F(s;) = F(si—1)|Fi R+1[F(s;41) — F(sq))f+r7Fiv2 [ [F(sj-1) = F(sj-9)]F27H

#[F(s;) — F(s;=1)/% 841 [F(s541) = F(sj)]f+17! (1.20)

Then, at p;,;, the bidder observes &;,, and uses this piece of new information and
s; solved at p; to solve for a new set of {s;+1,...,8,-1}

Therefore, at gach Pi, based on the observation of k;, the number of bidders who
decided to stay at p;_;, all bidders who decided to stay at p;_; with v < s; will
drop out from the auction while all v > s,->will stay. 'From lemma 8 and lemma 9,

€ [pi+1,Pi+2]. A bidder will stay at most up to the price within one increment
below his value. Just like what we have learned from the first-price auction in the
continuous case, bidders in the pay-ylour-bid English auction have incentives to shade
their bids to a certain extent, trading the probability to win for a higher payoff. Even

a bidder with the highest possible value 1 is willing to stay in the auction only up to

A1
M

Proposition 7 In the pay-your-bid English auction, if k; > 2 foralli=1,...,7—1,

then r = M and the-highest achievable price p, = M 1.
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Proof: First, when : = M, since

ETI(1,by =0) = ki(l—M -1
M

JProb{all kjs bidders release their buttons at pas} > 0

and

EN(lby=1)=1-1=0

we have r # M + 1. Secondly, from lemma 9, wheni =M —1,8;(1) = 1if k; > 2.
Of course, if for any 7 < M, k; = 1, the auction will stop at that i. Therefore, if
ki>2foralli=1,...,7—1,7=M and p, = ¥=1. Q.E.D.
The next proposition illustrates the non-uniqueness of the equilibrium strategy in

the pay-your-bid English auction.

Proposition 8 The equilibrium strategy in the pay-your-bid English auction is not

unique.

Proof:
We can illustrate this with a simple example in which N = 2, M = 3, F(v) = v.
In this case,(1.20) gives two sets of solutions {2,2} and {3,1}. That is, there are

two equilibria in the pay-your-Bid English auction. In one equilibrium, bidders with

values less than % will decide to drop out from the auction at p; = 0 while bidders
with values higher than % will raise the price up to % and no bidder will further raise
the price up. In the other equilibrium, bidders with values less than % will decide to
drop out from the auction at p; = 0 while bidders with values higher than % will raise

the price to % and no bidder will further raise the price up. Q.E.D.

1.6.2 Penultimate-Bid English Auctions

This version of the English auctions is similar to the pay-your-bid English auction
except that the auction stops when all bidders except one release their buttons. The
last remaining bidder wins the object and pays the price at which the auction stops,

l.e., the price at which the last bidder except him withdraws. If more than one bidder
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decide to stay at a posted price but all decide to withdraw at the next price, a winner
will be chosen randomly from these bidders and the winner pavs the price at which
he withdraws.

If the currént posted price is higher than a bidder’s value and at least two bidders
decided to stay at p;_;, the bidder needs to pay at least the current price if he stavs
and wins the object. In this case, he incurs a negative payoff. In the case where the
current price is more than one increment less than his value, if the bidder withdraws.
~ the only chance that he can own the object is when all other bidders withdraw at
p; and he is the lucky one chosen to be the winner. On the other hand, if he stays,
he can win the object for sure if all other bidders withdraw at p; and pays the same
price as he would if he withdraws and wins. As a consequence, the bidder is always
better off staying if p; < v — % The following two lemmas formally summarize this

intuition.
Lemma 10 For alli, if p; < v — & and k; > 2, then b;(v, p;, ki) = 1.

Proof:

Since p; < v — 4, v — piy1 = v — (p; + 37) > 0. Hence,

Ell(v,b; =1) = (v— p;)Prob{All k; bidders withdraw at
| pilk; bidders didn’t withdraw at p;_;}
+7€-i—1:1(zf - pi+;)Prob{k,-+1 out of k; bidders decide to stay at p;
but all withdraw at p;,,|k; bidders didn’t withdraw at p;_,}

EH(’U,b,‘

1
0) = F(v — p;)Prob{All k; bidders withdraw at
pilk; bidders didn't withdraw at p,_,}

> 0
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Lemma 11 For all i, if p; > v, then b;(v,p;, ki) = 0.

Proof: ‘

Since p; > v, v — p; < 0 and v — p;4; < 0. Hence,

EM(v,b; =1) = (v— p;)Prob{All k; bidders withdraw at

pilk; bidders didn’t withdraw at p;_;}

+—1-(v — pi+1)Prob{ki;; out of k; bidders decide to stay at p;

ki1

but all withdraw at p;,;|k; bidders didn’t withdraw at p;_,}

El(v,b; =0) = ki(v — p;)Prob{All k; bidders withdraw at

pilk; bidders didn’t withdraw at p;_;}

<0

Similar to our discussions in the pay-your-bid English auction, the above two

lemmas hold for any arbitrarvy N, M, continuous F' as long as each bidder’s utility

1s non-decreasing in his monetary pavoffs. With these two lemmas, for each bidder,

the only price at which that we need to study the bidder’s decision is p; such that

v € (pi, Pi+1)- At each p;, we know that bidders with value v € (p;, pi11) are staying

in the auction up to this price given lemma 10 and these bidders will withdraw for

sure from the auction when price is raised to p;4; givén lemma 11. With this p;,

1

ETl(v,b; =0) = k—(z — p;)Prob(All k; bidders withdraw at p;|All k;
bidders didn’t withdraw at p;_;)
1 [F(si) = F(sizy)]!

= E(l e Pz) [1 — F(Sl'_l)]k“l

ETI(v.b; =1) = (v — p;)Prob(All k; bidders drop out at p;|All &;

bidders didn’t drop out at p;_)

(1.21)
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ki 1 )
+ Z ——(v = pi+1) Prob(kit1 out of k; bidders stays at p;
koo M1
and all k;;, bidders withdraw at p;;;|All &; didn’t drop out at p;_;)
_ . [F(Si) - 31 1) ]k"l

1
+Z H)

kip1=2 1+1

. ki —1 [F(si41) = F(s))kit17YF(s;) — F(si—1)]Fi ki
k (1 - F(si—y)]k?

big1 — 1
[F(s;) — F(si—1)]k!
[1 - F Si_l)]ki_l
(v—pi— ")
k [1 = F(si—1))ki—1[F(si41) = F(Sz)]
(IF(si1) — F(sic))I¥ = [F(s:) = F(8i=1)% — ki F(5i41) — F(s3)]

*[F(s;) = F(si=1)]"71) (1.22

= (v—pi)

By the definition of s;, we have the following equation

(5: = (1 = DIF(s:) = Flsi-)

(si = Pi— 77)
[F(si41) — F(Sz
*[F(s;) = F(si=1)]" 1)

]([F(SH-I) — F(siz)]* = [F(si) - F(Si—l)]k‘ — ki[F(si41) — F(s3)]

=0 (1.23)

Again, to figure out the equilibrium strategy at p;, one needs to solve (1.23) r — 7.
times to find {s;, Si+1,...,5,—-1}. However, at p;, one only observes k; but has no
information on {k;;1,...,k,—1}. Therefore, at p;, each bidder needs to guess how
many people would stay or withdraw in later rounds based on his current observation
and solve for {s;, Si41,...,S--1} based on the guesses. Equation (1.23) is very similar
to equation (1.18) with the only difference in the case of no tie when the auction

stops. If the auction stops at p;;, and only the winning bidder stays at p;, the
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winner pays p;4+1 in the pay-your-bid English auction and p; in the penultimate-bid
English auction. Hence, the r — i equations will take the following forms:

For j = i, the equation takes the form of (1.23).
Foralli<j<r-1,

k;: kit ki .
1
(s; pj) Z Z Z —Prob(k bidders decide to stay at P;-1 for j=i+1.. o]
kiv1=2kipa=2  k;=2 ki
and k; bidders decide to withdraw at pjlk- bidders decided to stay at p;_;)

|+1 J
= (s;—pj— —-) Z Z Z L Prob( k; bidders decide to stay at p;_; for
kis1=2kigo=2  kj=2kj=2 It

j=i+1,...,5+1and kj+1 — 1 bidders decide to withdraw at p;,1|k; bidders

decided to stay at p;—1)
kiy1 ki1

+(s; — pj) Z Z Z z Prob(k; bidders decide to stay at p;_, for

kig1=2kiyo=2  k;=2k;41=1
=1+1,...,j and k; — 1 bidders decide to withdraw at p;|k; bidders

decided to stay at p;_;)
(1.24)

That is,

|+l

—p;) Z Z Z kj[1-F l)]k, -1

kit1=2 kiy2=2

ki—1-
*
k]‘—l kj._l—l k,‘+2—1 kz'.:,.]—l

#[F(si) = F(sio1)]F ™5+ [F(si41) = F(s3)[s17%42  [F(s;_1) — F(sjg)]Fi-1 7%

*[F(s;) — (Sj D)%t
ki I+l k]—l kj 1 1

= (5 Z 2_2 Rjv1 [1 = F(si—y)]Fi—?

,+)—2 k,+2—2 kJ=2 kj+1_

ki—1
*
kj+1—1 kj—l k]'_l—l k,’+2—1 ki.H—l

H[F(5:) = F(sie)N ™54 [F(s041) = F(si)JF+ 7842 . [F(s;_1) — F(s;_o)]51~
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*[F 8j) = F(si=1)JF =841 [F(sj41) — F(s;))F+17!

ki kina ki1

- pj) Z Z Z [l—F(s _1)Jki-1

kiv1=2kipo=2 j

ki —1
*®
kji—1 kjimg—1 ... kiga—=1 kigp—1

*[F(si) = F(sim1)5 84 [F(siq1) — F(s)]F+ 7542 [F(s-1) = F(s;-9)]5=1™0
*[F(s5) ~ F(sj-)]%

where

ki —1

(kj+1—1 kj—1 kji_1—1 kivo~1 ki+1—1)
(ki — 1)!

(ki = kip1) (Kig1 — kig2)! oo (Bj1 = k)N(Kjp1 — k)N (kjq — 1)!

k; -1
and
kj—l kj_l-—l kivo—1 kig1 -1
Note, ['1—_F(—sl__1)]*r_—1 cancels on both sides of the equation; therefore, the simplified
version of the above equation is

) is defined similarly.

1+1 kz—l
- pj) ——1
’ Z Z Z (kj—l kioi=1 ... higpa—1 k,-+}-1)

kiy1=2 kl+"‘“2 kj=2

F(s:) = Flsio) 58 [F(si1a) = F(si)]ni ™82 [F(sjm0) = F(s,-g)}o=

*[F(sj) ~ F(sj- n]kf”

k1+l

= (=P M)EZ sz

|+1—2 k.+‘) 2 k =2 k]+]_2 J+l
k-1
*
kip1 =1 k=1 kjo1 -1 kiza =1 kigy —1
#[F(8i) = Fsim1)[* ™41 [F(s041) = F(si)lf+17R2 __[F(sj1) = F(sj)-1 7%

*[F(s5) = F(sj-1)]% 8% [F(s41) — F(sy)]f+ 7! (1.25)
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Then, at p;;;, the bidder observes k;.; and uses this piece of new information and
s; solved at p; to solve for a new set of {si41,..., 51}

Therefore, at each p;, based on the observation of k;, the number of bidders who
decide to stay at p;_;, all bidders who decided to stay at p,_; with v < s; will drop
out from the auction while all v > s; will stay. From lemma 11 and lemma 10.
Si € (pi,pit1). Similar to what we have observed in the second-price auction. the"
trade-off between payoff and probability to win makes some bidders overbid while

some others underbid in the penultimate-bid English auction.

1.7 Dutch Auctions

Dutch auctions are the converse of English auctions. In a Dutch auction, the auc-
tioneer calls an initial high price and then lowers the price until one bidder raises his
hand and accepts the current price. If there is more than one bidder raising hands,
the object will be awarded randomly. We use p; to denote the current price. When
the price is lowered to p;, a bidder’s strategy is to decide whether to raise hand and
accepts the price or to remain silent. The decision is made based on how he values the
object and the current price p;,. Therefore, the bidding strategy. b, v xp — {0,1},
bi(v) = 0 meaning the bidder remains silent and b;(v) = 1 meaning he decides to raise

hand.

Given the current price p;. if a bidder with v raises his hand, he gets

N-1
1

EN(e.b;=1p;) = (v-p) Y
o t+1

Ino one raised hand at p;;}

( M-l ) [F(si) = F(si=)]* P FN=t(s;_1)
1

Prob{t other bidders raise their hands

t—1
t+1 FN'I(Si)

v —p; Y1 (N t pN—t
- FGso) - F(si-1)]FN=1(s;) Z N\ [F(s:) = Flsi-)[ F7 (si-1)
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— v —D; Ny N[ .
B N[F(si)‘F(si—l)]FN_l(si)[F (1) = F7 (si-1)] (1.26)

If he remains silent, he can wait and raise his hand at p;,_;, or p,_». .... p;. His

expected payoff of waiting to raise hand at p;_; is

N-1 : :
1 . . .
(v —pi-1) }: Prob{t other bidders raise their hands at p;_;
t=0 t+1
|no one raised hand at p;;;}

ET(v,bi—1 = 1|p;)

- N[F(si—l) —Q'F‘_(sz:i_?)]FN—l(si) [FN(S‘E—I) - FN(Si_Q)] (127)

Similarly, we can calculate the expected payoffs of waiting to raise a hand at
Pi—2, ..., D1 Tespectively. A bidder with value v will raise a hand at p, if Ell(v,b; =
1|p;) > ET(v,b; = 1|p;) for all j = 1,...,7. In fact, equation 1.26 and equation 1.27
imply that for any 4,5 = 1,...,r, if Ell(v,b; = 1|px) > ETl(v,b; = 1|px) for any
k=1,...,r, Ell(v,b; = 1|p;) > ETI(v.b; = 1|p;). Therefore, if at the very beginning
of the auction, before anv observation of other bidders’ decisions, a bidder prefers
raising a hand at p;, he will still prefer raising a hand at p; after he observes other
bidders’ decision up to p;4;. Hence, to determine the equilibrium strategy and s;’s,
we can restrict our attention to the bidder’s choice among different prices at the

beginning of the auction. At the beginning of the auction,

N-1
1
Ell(v,b;=1) = (v—ps) Z = 1Prob{t other bidders raise their hands at p;}
t=0
U— P

— N s;) — N i1 ‘
= NFG) - Feog e T )] (1.28)

Equation 1.28 is the same expression as we see in the sealed-bid first-price auction.
Hence, the equilibrium conditions which determine the sequence {so, s, ..., S,} are

the same as those in the sealed-bid first-price auction. This brings us the following
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proposition:

Proposition 9 The Dutch auction is strategically equivalent to the sealed-bid first-
price auction. Consequently, these two auction mechanisms generate the same amount

of ezpected revenues.

1.8 An Example

In this section, we provide an example in which N = 2, M = 3,F(v) = v. As
we can see from this example, different from the continuous case, different auction
mechanisms in general generate different amount of expected revenues even when the
bidders’ valuations are independently and identically distributed. We can also tell
from the example that the pay-your-bid English auction has non-unique symmetric
equilibrium bidding strategies.

Example:

Sealed-Bid Second-Price Auction: Equation (1.14) yields s; = &,s2 = 1,83 = £.

Hence, we have

(e

ifveloi)
ifvelis) (1.29)
ifvel; 3

ifvels ]

— Wity wi—

N
Epvu = Db 1~ sdls’ ™t = st
1

N .
A‘ r
+>° t [si = sica]'s )
t=2

r

= D bV =1, - )+ NP = s
=]

= 0.31

Sealed-Bid First-Price Auction And Dutch Auction: From equation (1.9) and
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Proposition 4 we have s; = 7 and 7 = 2. That is,

. . l
bv)={ ffve 0.2) (1.30)
1 ifvels,1]

EpN,M = th[szN - 5,-1\11] =0.25
i=1

Pay-Your-Bid English Auction: From equation (1.20), we get two equilibria {2, 2}
and {3,1}. In one equilibrium, bidders with values less than Z will decide to drop
out from the auction at p; = 0 while bidders with values higher than % will raise
the price up to % and no bidder will further raise the price. The expected revenue
generated by this equilibrium is 2. In the other equilibrium, bidders with v < 3 will
decide to drop out from the auction at p; = 0 while bidders with values higher than
% will raise the price to % and no bidder will further raise the price. The expected
revenue generated by this equilibrium is ;.

Penultimate-Bid English Auction: From equation (1.25), we have s; = 0.279, s, =

0.579, s3.= 0.846, that is

(
0 if v €[0,0.279)
1 if v € {0.279,0.579
o< )5 [ ) (1.31)
2 ifv € [0.579,0.846)
| 1 ifve[0.846,1]

As a result, Epy pr = 0.239.

1.9 On Revenue Rankings

The most important result in Vickrey’s work is that if bidders’ valuations are iden-
tically and independently distributed, the expected revenues to the auctioneer in the
sealed-bid first-price auction, the sealed-bid second-price auction, the Dutch auction

and the English auction are the same. However, this is the case only if the bidding
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strategy is a continuous function of the bidders’ valuations. As we see from last
section, this revenue-equivalence result no longer holds when the bidding space is dis-
crete. In general, different auction mechanisms lead to different amount of revenues
~ except that the sealed-bid first-price auction and the Dutch auction are still revenue
equivalent when the value distributions are independent and identical. The following

_propositidn is the formal statement of this observation.

Propdsition 10 When the bidding strategy is a discrete function of the bidders  val-
uations, the sealed-bid second-price auction, the sealed-bid first-price auction, the
pay-your-bid English auction and the penultimate-bid English auction yield differ-
ent amount of expected revenues to the auctioneer. The Dutch auction is revenue

. equivalent to the sealed-bid first-price auction.

Except in some special cases, calculations of equilibrium strategies and hence
expected revenues in the discussed auctions are computationally difficult. However,
with the properties that we have learned about the s;’s in these auctions, we can
claim the following results. We denote the revenues generated by and the s;’s of
the sealed-bid first-price auction, the sealed-bid second-price auction, the payv-your-

bid English auction, the penultimate-bid English auction and the Dutch auction by

PSBF PSBS PPUBE PPBE P}\ ;S'BF’ S;SBS,S

PUBE
NAL: SNM N.A :

1

, sPBE

and sP respectively.
We also denote the highest and the second highest values among all the bidders by

v; and v, respectively.

Lemma 12 i)pp,a < Pﬁlff < Pleanrj+2;

ii)p[UQA[ +1 S P}Cﬁ]E S p[vz]ﬂ]-{-?;
140)bju, a1} < PRAT < blugaie2;

pSBF _ pD M=1.
w)Pyor = Py < 55

where [vaM] is the integer part of vy M.

Proof:

v M]

i and vy €

Note, by our definitions of b;'s and p;’s, bp,mj+1 = Plemi41 =
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[P(vsM]+15 PosM)+2) in the English auction and the Dutch auction or v3 € [bjy,arj41- Bjeoarj+2)
in sealed-bid auctions.
i) From lemma 8 and lemma 9, we have sﬁgﬁfi 1 € [Ppsr)s Pozan+1] and slpvbﬁﬁl €
(Proe Mj+2> Plos M)+3]. Since v, > s[’; M]E , Uy doesn’t drop out from the auction before
the price. is raised to pj,a. Therefore, PYYPE > pp,a. On the other hand. since
vy < sﬁfﬁﬁ_l, v at most stays up tO P,m)+1 and hence the auction stops no later
than pju,mj+2- Therefore, PFYPFE < ppo, a4
ii) From lemma 10 and lemma 11, we have sﬁfﬁl € (Pluy M), Pluaat)+1) and s’;f,{f] 42 €
(PloaM]+2) Ploeh]+3)- Since vp > sﬁffj}, vo doesn’t drop out from the auction before
the price is raised to pjy,a+1. Therefore, PYAF > ppu,a+1- On the other hand. since
Vg < sﬁfﬁ] 420 U2 &t MOSt stays up t0 Pp,mj+2. Therefore, PYSFE < pp,anee
iii) The proof is similar to that of part 1).

iv) Since

N
Ellv=11) = (1-1) Z %Prob(l is the highest bid and ¢t buvers bid 1)

t=1

= 0
<

Ell(v =1,b(v) <1) = (1-b(v Z —Prob(b(v) is the highest bid and t buyers bid b(v))
> 0,

b(v1) < 1 and hence PRAF = PP, < M=l Q.E.D.

Lemma 12 provides the upper bounds and the lower bounds of revenues that
would be generated by different auction mechanisms. In the example provided in
the last section, there are two svmmetric Baysian Nash equilibrium bidding strate-
gies in the pay-vour-bid English auction. One vields higher expected revenues than
the penultimate-bid English auction does while the other one yields lower expected
revenues. As we can see from the proof of next proposition, only if the values of
vy and v, are such that v, drops out at pp,an+:1 while v, stays, will the pay-your-

bid English auction yield higher revenue than the penultimate-bid English auction
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does. The probability that this case occurs shrinks when the number of bidders goes
up. That is, it is less likely for the pay-your-bid English auction to outperform the
penultimate-bid English auction in terms of revenue when we have more bidders par-
ticipating in the auctions. The same rationale holds for the revenue comparisons
between the pay-your-bid English and the sealed-bid second-price auctions. between
the sealed-bid first-price auction and the sealed-bid second-price auction. between the
penultimate-bid English auction and the sealed-bid first-price auction. The analvsis -

is formally stated in following four propositions.

Proposition 11 For any F, M and ¢, there ezists an No(F, M, ¢€) such that for all
N > No(F, M,¢), Prob(Pﬁ’ﬁ,IE > PPUBE) >1—c¢

Proof:

By our definitions of p;’s, pu,m+1 = &%yhﬁ and vy € [Dj,Mj+1, Plusrrj+2). From

lemma 8 and lemma 9, we have s{;UﬁE € [Py M), Ppen)+1) and s[’;i]ﬁﬁl € [Dosr)+2, Ploshtj+3)-

PUBE Vg < SPUBE

Therefore, StuaMl—1 < [v2 M]+1° PBE &

From lemma 10 and lemma 11, we have S{oa 1]

(PioaM)s PlvaMy+1) and 3[1, M]+2 € (PvoM]+2, Pl M}+3)- Therefore, S[vgbl] <V < 3[v2151+2

Hence, we have the following four cases:
. <PBE PUBE.
Casel: StoaMi+1 < V2 < Spyan) s

. <PBE PUB PUBE  .PBE )
Case2: s, a1 < s[sz] < V2 OF Siy,a1) S Sjparjer < V2

) BE )
Case3: s[sz] <y < s[UQM]H,

. PUBE PBE PBE PUBE.
Casef: vy < StuaM) S SfupMi+1 OF V2 < Sjonr)e1 S Sjuam) >

Casel:

CaselA: v; < s[’;fh?]E;

In the penultimate-bid English auction, v, stays in the auction until the price IS
raised to plu,mj+2. Therefore, PYBE = pi,an42. In the pay-your-bid English auction,
both v; and v, stay in the auction until the price is raised to Pjv,M)-  Therefore,
PSP = Py As aresult, PYEE > PRYPE.

CaselB: v; > s[’;gﬁf;

vz stays in the auction until the price is raised to pj,p+2 in the penultimate-bid

English auction. In the pay-your-bid English auction, both v; and v, stay in the
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auction before the price is raised to pjy,a7. v2 withdraws from the auction at pp,as;
while vy drops out at pp,a41. Hence, PYRF = pp,ans2 > PEYEE = piusans1-

Case2:

Case2A: vy < s{pihiys

In the penultimate-bid English auction, v, stays in the auction until the price is raised
t0 P, Mj+2- In the pay-your-bid English auction, both v, and v, stay in the auction
until the price is raised to py,amj+1- Therefore, PYAE = pu,ana2 > PRSPE = Ploaana
Case2B: v; > s[v2 15]5-1;

v, stays in the auction until the price is raised to ppy,ar+2 in the penultimate-bid
English auction. In the pay-your-bid English auction, both v; and v, stay in the
auction before the price is raised to pjy,as)+1. v2 withdraws at pjy,as+1 while v, drops
out at pjy,m)+2- Hence, P, ﬁ,ﬁf = PluaM)+2 = NM = PloaM}+2

Case3:

Case3A: v < shih s , -

In the penultimate-bid English auction, v, stays in the auction until the price is raised
to pp,m)+1- In the pay-your-bid English auction, both v; and v, stay in the auction
until the price is raised to pju,a1+1. Therefore, PYAF = pi,ar141 = PYAPT = Poanri
Case3B: v; > sﬁggﬁl;

vy stays in the auction until the price is raised to pjy,mj4+1 in the penultimate-bid
Engli;il- auction. In the pay-vour-bid English auction, both v; and v, stay in the

auction until the price is raised to pjy,ar+1. ve Withdraws at ppy,an+:1 while v, drops

out at ply,Mj+2- Hence. Pz@m = Plupr)+1 < PN = DlvaM]+2
Case4:
CasedA: v, < sﬁgﬁf;

In the penultimate-bid English auction. v, stays in the auction until the price is raised
tO Py, M)+1- In the pay-vour-bid English auction, both v; and v, stay in the auction
until the price is raised to pj,as. Therefore, PYAE = p,an+1 > PYSPE = plupm)-

) PUBE.
CasedB: v, > S[uah]
vp stays in the auction until the price is raised to py, M)+1 in the penultimate-bid

English auction. In the pay-your-bid English auction, both v; and v, stay in the
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auction until the price.is raised to pp,s). v2 withdraws from the auction at py,a;
while v; drops out at pu,an+1. Hence, PEAF = pu,ajer = PEALE = Plushj+1-
Therefore, the only case in which PEBE = prmier < PRAFE = Dlusarja2 is Case3B
in which sﬁ:’ﬁf < v < sﬁfﬁ] g < 3[52]15]131 < v,. This condition is stronger than

V1 > P, M)+2- That is,

Prob(Case3B) < Prob(vy > pju,m+2)

= Prob(voeM < [v; M])

[’Ulj\/I] .
M )

= Prob(v, <

[’Ul A’I]
M

Prob(PY5F > PRSEP) = 1 = Prob(v, <

).

N~
Since Prob(ve < zlvy) = %::—((v%, we have

], PR v
Prob(vy < ) = . TFV 1)) NFY~(v)dwn,

M-1

- VRS
= 2 PNy

1=0

Since limy o0 Soms’ FN=1(L)N 3 =0, there exists an No(F, M, €) such that for
all N > N, Z;’Aio_l FN‘I(-]:'?)N-I:—I < €. Hence, Prob(P]{;ﬁ,,E > P,{,’"K,,BE) > 1—e. Q.E.D.

Proposition 12 For any F, M and ¢, there ezists an No(F, M, €) such that for all
N > No(F,M,¢), Prob(Pg57 > PRYFE) > 1 -,

The proof is similar to that of Proposition 11.
In spite of the fact that bidders bid more aggressively in the second-price auction

and the penultimate-bid English auction than they do in the pay-your-bid English auc-
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tion, the high bidder pays his bid only in the case of tie. Therefore. if by 4/(z;) in the
pay-your-bid English auction happens to be higher than by js(v2) in the penultimate-
bid English auction, the previous auction mechanism leads to a higher revenue than
the latter one does. However, as more and more bidders participate in the auctions.
the chance of tie in the penultimate-bid English auction and the second-price auction
gets larger and larger. Consequently, with higher and higher probability. the winning
bidder pays his bid that is more aggressive than the one in the pav-vour-bid En-
. glish auction. As a result, the second-price auction and the penultimate-bid English

auction are more likely to generate higher revenues.

Proposition 13 For any F', M and ¢, there exists an No(F, M,€) such that for all
N > No(F,M,e), Prob(PyB7 > PyBI) > 1 —e.

Proof:
From Lemma 12, PR3 < =1, Therefore, Prob(P§8F > PyBF) > Prob(v, > 2=1).

By the definition of v,, we know

Prob(vy > )
N

N M-1 M-1_,
— §‘ 1= F t N-t

M-1 M-1 M-1
= l—FN —_ N_l_..__. —

(57=) = NFY (=) - F(=)
- 1 '

as N = ¢

Therefore, there exists an No(F, M. ¢€) such that for all N > Ny, Prob(v, > z) >

1 —¢. Hence, Prob(PgB7 > P3BF) > 1 - Q.E.D.

Proposition 14 For any F, M and ¢, there ezists an No(F, M, €) such that for all
N > No(F,M,¢€), Prob(P{RE > PRBF) > 1 —e.

The proof is similar to that of Proposition 13.
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Similar to the rationale behind the price comparisons of the second-price auction
and the penultimate-bid English auction as opposed to the pay-vour-bid English
auction, bidders bid more aggressively in the first two auctions than they do in the
first-price auction. As N increases, the chance of tie in the first two auctions gets
larger. The winning bidder is more likely to pay his more aggressive bid than he does
- in the ﬁrét-price auctions and this therefore contributes to a higher revenue in these
two auctions.

Recall, Lemma 8, 9, 10 and 11 hold for any arbitrary NV, M , and continuous F so
long as each bidder’s utility is non-decreasing in his monetary payvoffs and Lemma 12
is derived from these four lemmas, the four revenue-comparing propositions in this
section also hold regardless of N, M, actual functional forms of F' and the utility

function.

1.10 Continuous Model As A Special Case

As we mentioned in section 1.4, Chwe (1989) proved that in the sealed-bid first-price
auction, if F(v) is uniform, the symmetric Nash equilibrium strategv converges to the
one in the continuous-bid auctions as M goes to infinity. Similarly, we can prove the
convergence results for all the auction mechanisms that we have discussed in previous
sections. Den;)ting bn ar(v) in the sealed-bid second-price auctions, the pay-your-bid

English auction and the penultimate-bid English auction by b35;(v), bR%%E(v) and

bRBE (v) respectively, we have the following proposition:

Proposition 15 For any F, as M — oc,
1) b3ES () = b(v) = v;
1) bﬁ%‘?E(v) — b(v) = v;

ui) bRBE(v) = b(v) = v.

Proof:

We will prove i) below. Proofs of ii) and iii) are similar.
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If v € [s385s BS] b3B5(v) = by = 0. Hence by < v < by. If v = 755 = 1.
b3S (v) = b, = 1. Hence b,_; < v < 1. If v € [s§5%,577%), 2 <1 < 7. 0355(v) = bi.
From Proposition 6, b;_; < v < bi.1. Therefore, for v € [0,1], jv — b355(v)| < & — 0
as M — oo. Q.E.D.

Therefore, we can treat the case where the bidding space is continuous as a special
case or limiting case of the model with discrete bids for the second-price auction. the
pay-your-bid English auction and the penultimate—bid English auction. \When the
increment gets infinitely small, a bidder will report her true value in the sealed-bid
second-price auction and stay until the price is raised above her valuation as long
as there are at least two bidders remaining active in English auctions. Note, lemma
12 implies that |PY8F — PFYPE| < £ — 0 as M — oo. Hence, when the bidding
space is continuous, there is no dlfference in equilibrium bidding strategies and hence
expected revenues among the sealed-bid second-price auction and the two different
English auctions. Moreover, as stated in Proposition 4, Chwe (1989) showed the
convergence of bidding strategv and expected revenue of discrete-bid auctions to those
of continuous ones when F'(v) is uniform. Therefore, if the distribution of the private
valuations is uniform, all of the five auction mechanisms yield the same amount of
expected revenues. Or, we can state it formally in the following proposition:

Proposition 16 (Revenue Eguivalence) When F(v) = v, limy_ooEpyny =

: SBS_~ .. PUBE _ }: E _ j; D _ N-1
l'lm}\[—;ooEp —_— lzmA[_.ooEp}V M —_ lzm]pj_.ooEp}}\D/YB}‘? —_— lzmM_.ooEpN'M = TU’

where EpBl, Ep3f, EpKYPE, EpRBE and EpY ), denote the expected prices of the
sealed-bid first-price auction. the sealed-bid second-price auction, the pay-your-bid En-

glish auction, the penultimate-bid English auction and the Dutch auction respectively.

1.11 Note On Efficiency

One convincing explanation of the longevity of auctions as an institution is that
auctions often lead to outcomes that are efficient, that is, the object is always awarded
to the bidder with the highest valuation. More technically, the set of equilibrium

outcomes in an auction coincides with the set of core allocations. However, in our
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set-up, the bidding strategy maps a continuously distributed valuation to a finite
choice set. As a consequence, there is always a positive probability of a tie. Since
F(v) is assumed to be continuous and the tie-breaking rule that we adopt throughout
the analysis is random, the probability of an inefficient allocation in any auction
mechanism is strictly positive?. In other words, there is always a chance of awarding
the object to some bidder whose valuation is not the highest. Therefore, an auctioneer
considering the use of bid increment to speed up the bidding process needs to be aware

that she will most likely sacrifice allocative efficiency.

1.12 Concluding Remarks

This paper presents theories on discrete-bid auctions. In particular, we focus on the
four common auction institutions: the sealed-bid first-price auction, the sealed-bid
second-price auction, the English auction and the Dutch auction, in a single-object,
independent-private-value setting in which bids can only be multiples of some fixed
increment. Two different models of the English auction, the pay-your-bid and the
penultimate-bid English auction are introduced. It is shown that with the discrete-
ness of bids, second-price auctions and English auctions are no longer dominance
solvable as bidding games. In the continuous-bid case, different pricing rules of the
English auction lead to the same dominant bidding strategy and hence the same ex-
pected revenue. However, we have shown that, in discrete-bid auctions, bidding is
more aggressive in the penultimate-bid English auction than that in the pay-your-
bid English auction. Nevertheless. first-price auctions and Dutch auctions are still
strategically equivalent. The equivalence of expected revenues in the continuous case
breaks down when bids are discrete. As the number of bidders participating in the
auction increases, auctions in which the winner pays the next highest bid (second-
price auctions and penultimate-bid English auctions) are more likely to yield higher

expected revenues than auctions in which the winner pays his own bid (first-price

‘However, it is easy to show that, in the second-price auction, the pay-your-bid English auction
and penultimate-bid English auction, the inefficiency is bounded by % Hence, as the size of
increment gets very small, the level of inefficiency is negligible in these auctions.
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auctions and pay-your-bid English auctions). The probability of tie in discrete-bid
auctions is strictly positive and hence resulting allocations can be Pareto inefficient.

The assumption of identical and independent distributions of private values is
very restrictive. It requires that there are no resale possibilities and that each bidder
knows exactly how much the object would be worth to him. A natural extension of
our work is a further study with the assumptions of affiliated values and asvmmetric
distributions.

The appeal of using bidding increment is to speed up the bidding process in
dynamic auctions like English auctions and Dutch auctions. However, this is at the
expense of possible inefficient allocations and lower expected revenues®. Studies of the
optimal choice of the size of the increment and comparisons of the degree of inefficiency
in different auctions would provide very important insights both to auction theorists

and practitioners.

®Recall Proposition 4, the expected price in the first-price auction when bids are discrete is always
lower than that in the continuous case. By Proposition 9, this also applies to the Dutch auction.
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1.13 Appendix

1.13.1 Proof of Lemma 1

Suppose b(v;) = b(vg) = b; for some vy, v, € [0, 1], we have
EH('Ul, b,) Z EH('U], bJ), VbJ

ET(vy,b;) > 0

and

EH('UQ, b,) Z EH('Ug, bj),Vbj
ETI(vs,b;) > 0
Recall the definition of FTI, we have

nwhP; —piP > vP; — p; P;,Vj

Vo Py — piP; > vo Pj — p; P}, V5

Therefore,

'[/\’U1 =+ (1 - )\)’UQ]PZ' el (/\ -+ 1-— )\)p,P, Z [/\'Ul + (1 - )\)”UQ]IDJ - (/\ =+ 1 —' A)p]P,,V]

That is.
vP, —p,P, > vP; — p; P;,Vj

for all v = Av; + (1 — A)vy, where A € [0, 1].
Similarly,

ET(v,b;) > 0

for all v = Avy; + (1 — A)vy, where X € [0, 1].

Q.E.D.
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1.13.2 Proof of Lemma 2

Suppose b(v) = 0 for all v, then ETI(v,b(v)) = & for all v. If some bidder with
v = % + € (¢ > 0) deviates and bids §, he will win the object with probability 1.
Since in any of the four auction formats, the price that he needs to pay for the object

never exceeds his bid, he gets

1 € 1 €
EH(YV—+€,§) e N‘{'E"“?‘
_ 1€
- N 2
> 1
N
= En(%,—ﬂ,())

Q.E.D.

1.13.3 Proof of Lemma 3

From (IC), we have

vP, — p.P, > vP; — p;iP;,Vj #1

v(P, — P;) > piP, — piP;,Vj #1

It’s obvious that the above inequality holds for any v’ > v. Therefore, b(v') > b(v).

Q.E.D.

1.13.4 Proof of Proposition 1

The four auction institutions are all symmetrical games. The sealed-bid first-price
auction and the second-price auction are strategic-form games while the English auc-
tion and the Dutch auction are extensive-form games with perfect recall. We will

first show that any finite symmetrical strategic-form game has symmetric equilib-
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rium strategy. By Kuhn’s (1953) theorem (In a game of perfect recall, mixed and
behavior strategies are equivalent.), this existence result applies to all four auction
forms. We will then apply Milgrom and Weber (1985)’s purification theorem to show
that the equilibrium strategy has a purification and hence a symmetric pure strategy
equilibrium exists.

To facilitate the proof, we adopf the following notations: C; = Plaver ¢’s strategy
space. In our model, C; = C; = C = {by,...,by41}. £ = AC = Set of all mixed -
strategies over C. 7 : ¥ —-— ¥ = The reaction (best response) correspondence \
~for each player. By the symmetry of the games, T,'(O’j,O’N\{i,J.}) = Tj(Uiv"N\{i,j})-
u;(0;, 0-;) = Player i’s payoff when he plays o; and his opponents play o_;. '

From Kakutani’s theorem, the following are sufficient conditions for 7 : & —— &
to have a fixed point: (i) ¥ is a compact, convex, nonempty subset of a finite-
dimensional Euclidean space; (ii) r(o) is nonempty for all o; (iii) 7(o) is convex for
all o; (iv) 7(-) has a closed graph.

(i) follows from the fact that C is finite. (ii) follows from Weierstrass theorem.
(A continuous function u; attains a maximum over a compact set £.) (iii) follows
from the fact that every convex combination of best response is a best response. (iv)
follows from the Theorem of the Maximum. Therefore, by Kakutani’s fixed point
theorem, there exists a o* ‘such that r;(o*,) = o* for all i € N. This proves the
existence of s&mmetric equilibrium strategy.

Next, we invoke Milgrom and Weber’s purification theorem to prove the existence
of svmmetric equilibrium in pure strategies.

According to Milgrom and Weber, if (i) the player’s types are independent, (ii)
F(v) is atomless®, (iii) each player’s payoff depends only on his own type and the list
of strategies, that is, u; = u;(v;, 0,,0_;). (iv) each player’s strategy set is finite, and
(v) payoffs are equicontinuous’, then each strategy of each player has a purification.

(i), (ii) and (v) are satisfied according to the assumptions we employed in our

A probability measure 7 is atomiess if for every B with 5(B) > 0, there is a C C B for which
n(B) > n(C) > 0.

A family of functions {f,} is equicontinuous if for every z and every e > 0, there is a § > 0 such
that |z — y| < 6 implies |f,(z) — faly)| < € for every a.
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model. (iii) is satisfied in all of the four auction forms. Hence, every stfategy in the
auction games that we are concerned with has a purification. Furthermore, these
games have symmetric equilibrium points and hence have symmetric equilibrium

points in pure strategies. Q.E.D.

- 1.13.5 Proof of Lemma 4

From the incentive compatibility constraint and the deﬁnitibn of s;, we know ETI(s;.b;41) 2
ETI(s;,b;). Suppose ETI(s;,b;i+1) > ETl(s;,b;), then by continuity of ETI in v, there
exists € > 0 such that ETI(s; — €,b;4;) > ETI(s; — €,b;). Therefore, s; — ¢ would be

better off bidding b;,; instead of b;. Contradiction.

1.13.6 Proof of Lemma 5

For all v € [s;_1, si],

ET(v,b) > ETl(v, biyy)

vPr, ~ pf > vPriq — piy,
or,
v(Priy; — PTi) < Pf+1 —Pf

Since both pf{ and Pr; are nondecreasing, if this holds for s;_;, it also holds for all

v < Si—1-

Also, for all v € [s;, $i41),

EN(v,bi41) > ET(v, b;)

vPriy —piy, > vPr —pf
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or,

v(Priyy — Pr;) 2 p5., — pf

If this is true for s;;1, it is also true for all v > s;4;. Therefore,
ETI(v,b;) = ETI(v, biy1)

fori=1,2,...,7 — 1 and ETI(s,,b,) > Ell(sy,br41) for 1 <7 < M +1 are the only
binding constraints. ‘ Q.E.D.

1.13.7 Proof of Proposition 3

(«<=) First, in all of the four auction formats, we have for all v € [sq, 51,
ETl(v,b;) = vPr; —p; >0

and in particular

OPT].“pi:O

which implies p$ =0 and Pr; = 0. Also, by Lemma 4, we have
$1Pry — p§ = s1Pry — p = p§ = $1Pry = $1(Pry — Pr) + soPr)

Suppose that the incentive compatibility constraints of all v € [0, 1] are satisfied, for

alli=1,...,7 =1, for all v € [s;, $i41],
vPriy — pf+1 > vPr; — p;

with equality for s;. Suppose

pf = Si_l(PTi - P'I‘i_l) + Si_Q(P'ri_l - PT,'_Q) + ...+ SI(PTQ - P’I‘l) + soPry
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Then,

p$+1 = s,~(Pr,~+1—PT,~)+pf = Si(PT;,'.;.]—P’I‘i)+8i_1(PTi—PTi_1)+...+Sl(PTQ‘PTl)+80PT1

(=)

Given equation (1.7), we have pf = s, (Pr; — Pri_;) +p{_; foralli=1.2..... T.
Which implies s;_ Pr; — pf = s;_1Pri_y —p{_, forall: =1,2,...,7 - 1

By Lemma 5, these are the only binding constraints for v € [0,s,-;]. From the
proof of Lemma 5, s,_yPr, — p¢ = s, Pr,_; — p¢_, together with s, Pr, — pf >
8, Pry41 — gy, are sufficient for incentive compatibility for all v € [sr—1,87]. The

proof is finished.

1.13.8 Proof of Lemma 6

We'll prove the first inequality here. The other two inequalities can be proved simi-

larly.

FN(S,') - FN(Si_l)

N[F(si) = F(si-1)] .

FN=1(s;) + FN=2(s;)F(81-1) + ... + F(8;)FN=2(s5;,_1) + F¥"(s;_1)
N

Since s;_; < 8;, F(si—1) < F(s;). Therefore, FN=2(s;)F(si—1) < F¥"(sy), ..,
F(s;)FN=%(s;_y) < FN-1(s;), FN=Y(s;_;) < FN~1(s;). This implies that

FN_I(S,‘) =+ FN~2(81')F(S,’_1) + ...+ F(Si)FN“z(Si_l) -+ FN—I(S«,'_l) < NFN_I(S,‘)

and hence

FN(s;) = FN(si-1)

N-1/.
NFs = Fon < F &)

Q.E.D.
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1.13.9 Proof of Lemma 7
From Lemma 6, we have ETI(1,b,) < ETI(1,b,,4,) for all admissible . Therefore, a

bidder with v = 1 would prefer the highest possible bid. Therefore, b, = 1. Recall
b; = i'vl, hence r = M + 1. Q.E.D.
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Chapter 2 An Experimental Study of

Discrete-Bid Auctions

In last chapter, we discussed theories of the equilibrium strategies in four common
auction institutions with bidding possibilities being some muitiple of an increment.
_In particular, we introduced two different models of the English auction. the pay-vou
r-bid English auction and the penultimate-bid English auction and showed that rules
matter. The symmetric Baysian Nash equilibrium predicts different bidding behavior
in these two versions of the auction. In this chapter, we report our laboratory observ

ations on the behavioral properties of these two auction rules.

2.1 Pay-Your-Bid And Penultimate-Bid English Auc-
tions: Theory Revisited

Recall that both of these two versions of English auction are conducted in multiple
rounds. The price starts from zero and goes up bv a constant after each round.
At the beginning of the auction, there are N potential buyers. Each of them has
a briva te valuation v which is a random draw from [0, 1} according to a common
distribution function F(v). Although a bidder only observes his own v, the way
in which private valuations are determined is common knowledge. In each round,
a bidder’s decis ion is whether to stay or withdraw from the auction. After each
round, the number of bidders who are still in the auction is made available to all the
participating bidders. In the pay-vour-bid English auction, the auction stops when
the last bidder wit hdraws. The object is awarded to the last bidder at the price at
which he withdraws. In the penultimate-bid English auction, the auction stops when
all bidders but one have withdrawn. The last remaining bidder wins the object and

pays the price at which the auction stops. A random device is employed to determine
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the winner if there is more than one bidder in the last group withdrawing from the
auction.

We use a slightly different notation in this chapter. Let b(v) denote the price at
which a bidder stays up to! if the bidder’s valuation is v. In the pav-vour-bid English
auction, yvhen the price is higher than one increment below v, if a bidder decides not

‘to withdraw, he leaves himself a noﬁ—positive profit. If he wins, the price he needs
to pay is at lea st the current price plus the increment which is higher than v. His
profit is negative in this case. Hence, staying is always dominated by withdrawing
when p > v — % On the other hand, if the price is lower than two increments below
v and there is at least one more other bidder remaining in the auction, a bidder is
always better off staying than withdrawing. If he withdraws at the current price,
the only case in which he can earn a positive profit is when all the other remaining
bidders also withdraw at this price. In this cas e, he needs to share the luck with the
other bidders to be chosen as the winner expecting a profit of (v — p)?. However,
if he stays and withdraws in the next round, he can be a guaranteed winner with a
profit of v — (p + +)! This amount is bigger than (v — p) when k > 2. In the case
where some of his rivals decide to stay in current round, he will not be able to win
bv withdfawing at current price, but he can expect some positive profit by staying.
As a result, v — _A27f < b(v) < v dominates the other choices of b(v) as long as there
is more than one other bidder staying in the auction. The price at which a bidder

drops out must satisfy one of the following two conditions:

1
b =
(v)+M<v<b(v)+

S

or

b(v) < v < b(v) + % (2.1)

'For most of the bidders, b(v) is the price at which they withdraw. For the winner, b(v) is the
price at which the auction stops.

2Recall from last chapter k denotes the number of bidders who haven’t dropped out yet up to
the current round.
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The only exception is that the auction stops earlier.

In the penultimate-bid English auction, if the current price is already higher than
v and the auction has not stopped yet, withdrawing definitely dominates stayving
because a bidder expects a non-positive profit from stayving. On the other hand. if
the p rice is lower than one incremént below v, withdrawing is dominated by staving.
If the bidder withdraws at the current price, he earns v — p if all the other remaining
bidders also withdraw in this round and he luckily gets chosen to be the winner.
However, if he stays he will be a sure winner and still earn a positive profit v — p. In
the case where some of the other bidders decide to stay to next round, he can still get
away next round with a positive expected profit. Therefore, the price up to which a

bidder stays must satisfy the following condition:

b(2) — o] < =

(2.2)
unless the auction ends earlier.

As we have mentioned in last chapter, because of the discreteness of bids, the
probability of having a tie and hence a possible inefficient allocation resulting from
the auctions is strictly positive. If we denote the highest valuation by wv;, this pro
bability is equivalent to the probability of having at least one more bidder whose
private value v is such that b(v) = b(v;). Obviously, this probability increases with
the size of increment .

We also showed in last chapter that the expected revenues generated from the
pay-your-bid English auction and the penultimate-bid English auction are in general
different. As we showed in the proof of Proposition 11, when sggﬁf <y < sﬁfﬁ] <
Shontis1 < v1°, the price in the pay-vour-bid English auction is higher than that in
the penultimate-bid English auction. This is the case when v, < [ﬂl—ﬂﬁ It is easy

to show that the probability of v, < %]’L—l decreases with the size o f increment Ai!

Bidding rules (2.1) and (2.2) depend on the assumption that bidder’s utility de-

Bidders with valuation s’ are indifferent between dropping out at p; and at p,;; in auction j.
vy and vy denotes the highest and the second highest valuations amo ng all bidders. [v;M] is the
integer part of v M.
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pends only on his monetary gain from the auction and is non-decreasing in this gain.
Note, the dominance arguments do not depend on the init ial level of competition N.
the distribution function F(v)*, the size of increment 3 and bidders risk attitudes.
We wish our experimental examination of these two auction institutions could provide

some insights on people’s behaviors in “real world” situations.

2.2  Experimental Design and Procedures

The experiments we report heré consist of six® experiments conducted a t the Caltech
Laboratory for Experimental Economics and Political Science. They are indexed by
the date of the experiment. Subjects for these experiments were students at the
California Institute of Technology. All experiments were implemented on aucti on
software developed by Anil Roopnarine and Dave Porter. Experimental instructions
can be found in Appendix.

Each experiment had 35%auction periods. Each auction period is a stand-alone
auction during which five subjects competed for one unit of a fictional object. In each
period, the high bidder winning the object earned profit equal to his/her valuation
(referred as redemption value in the instructions) minus the price paid. Other subjects
earned zero profit. The computer randomly picked a winner in tﬁe case of tie.

Subjects were given participation bonuses to cover the possibility of losses. Al-
though rational (Baysian Nash equilibrium) bidders will not suffer losses in the pay-
vour-bid English auction, they may suffer losses in the penultimate-bid English auc-
tion. Earnings from the experiment byv each subject were paid in cash at the end of
the experiment together with the participation bonuses.

The currency used in the experiment is “francs.” All earnings in francs were con-
p g

“In the special case where the distribution of v is discrete and the value space is the same as the
bidding space (possible values for v are multiples of ﬁ), a bidder’s dominant strategy is to stay up
to v — T1{_ in the pay-your-bid English auction and up to v in the penultimate-bid English auction.

®Indeed, eight experiments were conducted. The first two experiments not reported were pilot
experiments with fewer periods testing the software and experimental instructions.

636 periods were actually conducted. The first period of each experiment was practice period to
help subjects familiarize with the rules and software. Subjects didn’t earn anything in these periods.

All the data we report for each experiment is data from the other 35 periods.
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verted to dollars according to the conversion rate specified on the instructions.

Private valuations, v, were integers independently drawn in each auction period
from a discrete uniform distribution over the interval [0, 24]. Subjects knew their own
" valuation, the distribution from which others’ values were drawn, and the number of
participants. A new set of random draws preceded each auction period.

There were several rounds in each auction period. At the beginning of each round.
the private valuation and the posted price for the current round were printed on each
subject’s computer screen. Each subject was then asked to submit his/her decision
whe

ther to accept the posted price. A subject who did not accept the posted price
~was labeled “inactive” and was not allowed to participate in later rounds of the same
period. His/her eligibility was resumed at the beginning of the next period. When a
ro |

und was over, the number of active bidders was posted on each subject’s screen.
The posted price for each round was increased by an increment of %% per round
starting with %44— for the first round. Stopping rules for each period an

d the prices charged to winning bidders were applied according to those specified
in our set-up of the pay-your-bid English auction and the penu'ltimate-bid English
auction respectively. The values of M used in the experiments were M = 3,6 and 24.

Table 2.1 summarizes the parameters used in the experiments.

2.3 Experimental Results

2.3.1 Individual Behavior

Table 2.2 and 2.3 summarize the bidding behavior observed in all the experiments of
the pay-your-bid and penultimate-bid English auctions. Over 90 percent of the bids
comply with conditions (2.1) and 2.2) in both the pa y-your-bid and penultimate-bid
English auctions for both A/ = 3 and M = 6, supporting the dominance arguments.

However, the data are much noisier for the smallest bid increment experiments, i.e.,
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2 = 1. About 50 percent’ and 30 percent of the bids when M = 24 are out of the
range predicted by theory in the pay-your-bid and penultimate-bid English auctions
respectively. Among these, m ost are underbidding (bids are below the predicted
- range).

As Kagel (1991) pointed out, the structure of the English auction makes it rel-
atively tfansparent to bidders that they should not bid above their valuations. A
bidder necessarily loses money in any case if he wins by staying up to a price too high
(p > v in the pay-your-bid auction and p > v + ZA% in the penultimate-bid auction).
 The “real time” nature of English auctions provides subjects a good chance of obser-
vational learning. By comparing the going price with their private values, subjects
are likely to see that they will lose money if they win whenever the price exceeds v
or v+ % depending on the specific auction format. We believe this interpretation is
supported by our data for M = 3 and M = 6.

There are two possible explanations for the significant underbidding when M = 24.
First, with the small size of increment, the auction usually lasts fairly long and consists
of many more rounds than those with larger increments. Subjects with small valu
ations may feel bored watching the price movements and waiting to update their
bidding decisions -and hence withdraw in earlier tounds, considering their chance of
winning is very slim. Secondly, auctions with many rounds and small increments
make it easi er to signal a willingness to cooperate by an individual subject through
\u'ifhdrawing at unusually low price8. ‘

From Table 2.2 and Table 2.3, we can see that underbidding when the winning
probability is less than 50 percent (v < 12) accounts for 50 percent of all the underbids
in the pay-your-bid and penultimate-bid English auctions respectively for M = 24.
Among them, many were withdrawals at the beginning of the auctions (b(v)=0).

These observations partially support our two explanations.

"This number do es not include those bids lower than the predicted range due to the ending of
auctions.

8We talked to the subjects who tended to withdraw at prices much lower than their valua-
tions after the experiments. They acknowledged that signaling willingness to collaborate was the
motivation.
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2.3.2 Efficiencies

Table 2.4 summarizes allocative efficiencies in the experiments. Following Coppinger
et al. (1980), we use the percentage of sales that were Pareto optimal. meaning the
sale was made to the highest value bidder, as a measure of efficiency. More than
97 percent of the auctions were Pareto efficient in the pay-vour-bid auction when
M = 24. The efliciency was about 89 percent for M = 6. However, this percentage
dropped to 69 percent in those pay-your-bid English auction for M = 3. All of the
inefficienc ies occurred in the situations in which the highést value bidder failed to
win in the case of tie. Allocations to the third highest value bidder occurred when

M = 3. Observations in penultimate-bid English auctions are similar.

2.3.3 Revenues

Table 2.5 shows that most of the auction prices are within the range predicted by
Lemma 12. Figure 2.1-2.3 are charts of price comparisons between the pay-your-bid
English auction and the penultimate-bid English auction for different i ncrements.
The percentage of pay-your-bid English auctions generating higher prices decreased
with the size of increment. This is consistent with our conjecture.

In their experiments, Coppinger et al. (1980) observed that English auction prices
in all experiments tended to be slightly above the second highest valuation. They
reasoned that this was caused by the discrete bid increments they employed. This
conject ure is supported by our data. As Table 2.5 shows, most of the prices in
our experiments are within the range predicted after considering the discrete bid
increments. Even with M = 24, majority of prices are within the predicted range.
We therefore beli eve that there is no strong evidence of collusion in our experiments

even if some bidders signaled their willingness to collaborate by underbidding.
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2.4 Summary and Conclusions

In this chapter, we report the results of six experiments on the pay-vour-bid and
penultimate-bid English auctions. Our findings can be summarized as follows:

(1) Over 90 percent of bids in both the pay-your-bid and penultimate-bid English
auctions comply with conditions (2.1) and 2.2), supporting the dominance arguments,
when M = 3 and M = 6. However, underbidding behavior i s serious in the case of
small increment, i.e., M = 24. Subjects with low valuations ténd to withdraw at the -
beginning of the auctions.

(2) The frequency of a tie goes up with the size of the increments. As a result,
efficiency, measured as the percentage of sales that were Pareto Optimal, deteriorates
as the size of increment increases.

(3) Most of the auction prices fall in the theory-predicted range, even with the
smallest increment, the case in which underbidding was significant. The percentage of
pay-your-bid English auctions generating higher prices, compared to penultimate-bid
Eng lish auctions, increases as the inlcrement gets smaller.

We provided two possible explanations for the underbidding behavior observed in
the auction with a small increment. First, since auctions with small increment con-
sisted of many rounds, subjects with small valuations might feel bored waiting to drop
out u ntil»the‘price went close to their values and hence withdraw in earlier rounds,
considering their chance of winning is very slim. Secondly, subjects may withdraw at
unusually low prices to signal a willingness to cooperate. Further experimenté with
rand om groupings of potential bidders would help differentiate the two explanations.
A finding that the degree of underbidding is not significantly different with random
groupings will support the first explanation. Otherwise, the second explanation is
more favorable. Moreover, if the second explanation is supported, experiments with
the same group of subjects for different sizes of increments would provide insights on
how sensitive the size of increment is to the incentive to collude.

Finally, although the bidding range predicted by dominance arguments holds re-

gardless of the initial level of competition, the distribution of private valuations, the
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size of increment and bidders’ risk attitudes, the Baysian Nash equilibrium strategies
d o depend on these parameters. Experiments examining the comparative statics

could potentially provide interesﬁing results.

2.5 Appendix

2.5.1 Experimental Instructions
Experimental Instructions For Pay-Your-Bid English Auctions

Introduction:

This is an experiment in market decision making in which you may earn money.
What you earn depends partly on your decisions and partly on the decisions of others.
All earnings you make are yours to keep and will be paid to you in cash at the end of
the experiment. The currency in this experiment is francs. All francs will be converted
to dollars at the end of the experiment, at a rate of $0.4 per Frac. In addition to your
earnings from the experiment, you will also be paid a $5 participation bonus.

This experiment will consist of several periods. In each period, you will be par-
ticipating in a market in which a single fictional object will be sold to one of the
experiment participants. You will each receive a seqﬁence of numbers from the com-
puter, one for each period,. which describes t he value to you of any decisions you
might make. These numbers may differ among individuals. You are not to reveal this
information to anyone. It is vour own private information. From this point forward,
vou will be referred to by vour bidder number. You are bidder number _____ in this
experiment. In each period you will be able to place bids to purchase the object.

We will start with a detailed instruction period. During the instruction period,
vou will be given a complete description of the experiment and of how your earnings
will be determined. Please follow along with these instructions as they are read aloud
a nd please do not read ahead. Please also do not touch the computer until you are
told to do so.

It is important that you not talk or in any way try to communicate with other
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participants during the experiment. If you disobey the rules, we will have to ask vou
to leave the experiment.

If you have any questions during the instruction period, raise vour hand and vour
queétion will be answered so everyone can hear. If any difficulties arise after the
experiment has begun, raise your hand, and a monitor will come and assist vou.

The first period will be practice. You will receive no earnings for this period.
Redemption Values and Earnings: |

During each market period you are free to purchase a unit if you want. If you suc-
cessfully purchase a unit in a period, you will receive the redemption value indicated
as “Value” in your Bidbook. Your earnings from a unit purchased is the difference be
tween your redemption value for that unit and the price you paid for the unit. That

is:
Your earnings = (redemption value) — (purchase price)

Suppose for example that you buy a unit and that your redemption value is 200.

If you pay 150 for the unit then vour earnings are

Earnings from unit = 200 — 150 = 50.

If the object is not sold to ybu, then your earnings are zero for that period.

You can calculate your earnings on your Summary of Experiment Record sheet at
the end of each period. Notice tha£ if the price paid is above the redemption value,
vou experience a loss. Anyone with a net loss at the end of the experiment is allowed
to w ork to pay the loss at a rate of $6 per hour. |
Determination of Redemption Values:

For each buyer the redemption value for the object in each period will be between
1 and 24. Each whole number from 1 to 24 has an equal chance of being selected. It is
as if each integer value from 1 to 24 is stamped on a single ball and pla ced in an urn.

A draw from the urn determines the redemption value for an individual. The ball is
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replaced and a second draw determines the redemption value for another individual.
The redémption values for each period are determined the same way. Not e that the
redemption value for any participant is not affected by the redemption values of the
other participants. The following is a table which lists the probability of getting a

value in.a certain range: (It is for your reference)

Range of Probability of A Range of Probability of A
Redemption Vale Value in This Range Redemption Value Value in This Rahge |
1-6 25% 1-6 : 25%

7-12 25% 1-12 50%

13-18 25% 1-18 75%

19-24 25% 1-24 100%

Market Organization ] What You’re Bidding For:

In each period, there will be 5 participants in the market. Every participant will
be bidding for one unit of the object and only ONE person will win it. The process
of purchasing units will be conducted in a market which consists of several rounds.

At the beginning of each round, a price will be posted. The determination of the
posted price will be explained later. If vou are willing to purchase the object at the
posted price or higher, please submit your bid by accepting the price. If you accept
the price, vou will be considered as being ACTIVE in that round. If you are NOT
willing to purchase the object at the posted price or higher, please do NOT accept the
price. However, if you choose NOT to accept the price in a round, you will NOT be
eli gible to participate in later rounds of the same period and you will be considered
as being INACTIVE for this round and later rounds of the same period. You will be
eligible to participate again when a new period starts. |

After the closing of each round, the number of active bidders will be posted on
vour main page. The market will continue to the next round if there is more than
one active bidder by the end of that round. If there is only ONE active bidder in a
round, t he period closes at the end of that round. The object will be sold to that
bidder at the last posted price of that period.

For example, if by the end of round 4 there are three active bidders, round 5 will
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be conducted. On the other hand, if in round 5 only bidder No. 1 remains active.
the market will close at the end of round 5. The object will be sold to bidder No . 1
at the posted price of round 5.

If more than one bidder remains active in a round but all decide to be inactive in
the following round, one of these bidders will be chosen randomly to be the buyver.
That is, each of these bidders has an equal chance of being selected as the buyer. The
object will be sold to the buyer at the posted price in the LAST round in which he
or she remains active.

For example, if three bidders remain active in round 5 but all decide NOT to
accept the price in round 6, the market will close at the end of round 6. One of the
three bidders will be chosen randomly as the buyer. He or she will then be sold the
o bject at the posted priée of round 5.

Unless you are the buyer, you receive no redemption value and pay nothing, and
so have earnings of zero for that period.

Submitting Bids:

On your screen you will see an icon labeled Bidbook. Please click this now. Clicking
on this icon will bring you a window in which you can submit your bidding decisions.
The number undér “Price” in vour bidbook is the posted price for-the cur rent round.
If you are willing to accept the posted price, please check “Yes” under “Decisions”. If
‘you are not willing to accept the posted price, please check “No” under “Decisions”.
No matter what decision you've made, please s ubmit your decision by clicking on
“Submit”. You will have approximately one minute in order to submit your decisions.

Now, please click “Yes” or “No” according to the chart below:

Yes No
Bidder #1 Bidder #4
Bidder #2 Bidder #5
Bidder #3

Then click “Submit”. Once all bidders have submitted their decisions, the round

will be closed. I will now solve the round. You can now see the results on the main
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Netscape window. The results show how many bidders decided to remain active i
n the last round. You may also view the results of previous rounds by clicking on
Previous Round Results. |
Determination of The Posted Price:

The posted price of each round is determined in the following way:

The posted price of each round

=the posted price of the previous round + increment.

Where,
the increment is the posted price of the first round.

For example, if the posted price of the first round is 4, then the posted prices of

the following three rounds will be

Round Posted Price

2 8
3 12
4 16

The posted price of the first round may be different for different periods.
Any Questions?
If there are no more questions, let’s start the experiment with a practice

period. You will NOT be paid for this period.
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Experimental Instructions For Penultimate-Bid English Auctions

Introduction:

This is an experiment in market decision making in which vou may earn money.
What you earn depends partly on your decisions and partly on the decisions of others.
All earnings you make are yours to keep and will be paid to you in cash at the end of
" the experiment. The currency in this experiment is francs. All francs will be converted

to dollars at the end of the experiment, at a rate of $0.4 per Franc. In addition to .

your earnings from the experiment, you will also be paid a $5 participation bonus.

This experiment will consist of several periods. In each period, you will be par-
ticipating in a market in which a single fictional object will be sold to one of the
- experiment participants. You will each receive a sequence of numbers from the com-
puter, one for each period, which describes the value to you of any decisions you
might make. These numbers may differ among individuals. You are not to reveal this
information to anyone. It is your own private information. From this point forward,
vou will be referred to by your bidder number. You are bidder number _____ in this
experiment. In each period you will be able to place bids to purchase the object.

We will start with a detailed instruction period. During the instruction period,
vou will be given a complete description of the experiment and of how your earnings
will be determined. Please follow along with these instructions as they are read aloud
a nd please do not read ahead.” Please also do not touch the computer until you are
told to do so.

It is important that you not tafk or in any way try to communicate with other
participants during the experiment. If you disobey the rules, we will have to ask you
to leave the experiment.

If you have any questions during the instruction period, raise your hand and your
question will be answered so everyone can hear. If any difficulties arise after the
experiment has begun, raise your hand, and a monitor will come and assist you.

The first period will be practice. You will receive no earnings for this period.
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Redemption Values and Earnings:

During each market period you are free to purchase a unit if vou want. If vou suc-
cessfully purchase a unit in a périod, you will receive the redemption value indicated
as “Value” in your Bidbook. Your earnings from a unit purchased is the difference be
tween your redemption value for that unit and the price you paid for the unit. That

1s:
Your earnings = (redemption value) — (purchase price)

Suppose for example that you buy a unit and that your redemption value is 200.

If you pay 150 for the unit, then your earnings are

Earnings from unit = 200 — 150 = 50.

If the object is not sold to vou, then your earnings are zero for that period.

You can calculate your earnings on your Summary of Experiment Record sheet at
the end of each period. Notice that if the price paid is above the redemption value,
you experience a loss. Anyone with a net loss at the end of the experiment is allowed
- to w ork to pay the loss at a rate of $6 per hour.

Determination of Redemption Values:

For each buyer the redemf)tion 'value for the object in each period will be between
1 and 24. Each whole number from 1 to 24 has an equal chance of being selected. 1t is
as if each integer value from 1 to 24 is stamped on a single ball anAd pla ced in an urn.
A draw from the urn determines the redemption value for an individual. The ball is
replaced and a second draw determines the redemption value for another individual.
The redemption values for each period are determined the same way. Not e that the
redemption value for any participant is not affected by the redemption values of the
other participants. The following is a table which lists the probability of getting a

value in a certain range: (It is for your reference.)
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Range of ' Probability of A Range of Probability of A
Redemption Value Value in This Range Redemption Value Value in This Range
1-6 - 25% 1-6 25%

- 7-12 25% 1-12 50%
13-18 25% 1-18 5%
19-24 25% 1-24 100%

Market Organization - What You’re Bidding For:

In Aea.ch period, there will be five participants in the m_arket. Evefy participant
will be bidding for one unit of the object and only ONE person will win it. The
process of purchasing units will be conducted in a market which consists of several
rounds.

At the beginning of each round, a price will be posted. The determination of the
posted price will be explained later. If you are willing to purchase the object at the
posted price or higher, please submit your bid by accepting the price. If you accept
the price, you will be considered as being ACTIVE in that round. If you are NOT
willing to purchase the object at the posted price or higher, please do NOT accept the
price. However, if you choose NOT to accept the price in a round, you will NOT be
eli gible to participate in later rounds of the same period and you will be considered
as being INACTIVE for this round and later rounds of the same period. You will be
eligible to participate again when a new period starts. A

After the closing of each round, the number of active bidders will be posted on
vour main page. The market will continue to the next round if there is more than
one active bidder by the end of that round. If there is only ONE active bidder in a
round, t he period closes at the end of that round. The object will be sold to that
bidder at the posted price of the PREVIOUS round. |

For example, if by the end of round 4 there are three active bidders, round 5 will
be conducted. On the other hand, if in round 5 only bidder No. 1 remains active,
the market will close at the end of round 5. The object will be sold to bidder No . 1
at the posted price of round 4.

If more than one bidder remains active in a round but all decide to be inactive in
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the following round, one of these bidders will be chosen randomly to be the buver.
That is, each of these bidders has an equal chance of being selected as the buver. The
object will be sold to the buyer ét the posted price in the LAST round in which he
or she remains active.

For example, if three bidders remain active in round 5 but all decide NOT to
accept the price in round 6, the market will close at the end of round 6. One of the
three bidders will be chosen randomly as the buyer. He or she will then be sold the
o bject at the posted price of round 5.

Unless you are the buyer, you receive no redemption value and pay nothing, and
so have earnings of zero for that period.

Submitting Bids:

On your screen you will see an icon labeled Bidbook. Please click this now. Clicking
on this icon will bring you a window in which you can submit your bidding decisions.
The number under “Price” in your bidbook is the posted price for the cur rent round.
If vou are willing to accept the posted price, please check “Yes” under “Decisions.” If
vou are not willing to accept the posted price, please check “No” under “Decisions.”
No matter what decision vou've made, please s ubmit your decision by clicking on
“Submit”. You will have approximately one minute in order to submit your decisions.

Now, please click “Yes” or “No” according to the chart below:

Yes No
Bidder #1 Bidder #4
'Bidder #2 Bidder #5
Bidder #3

Then click “Submit.” Once all bidders have submitted their decisions, the round
will be closed. I will now solve the round. You can now see the results on the main
Netscape window. The results show how many bidders decided to remain active i
n the last round. You may also view the results of previous rounds by clicking on

Previous Round Results.
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Determination of The Posted Price:

The posted price of each round is determined in the following way-:

The posted price of each round

=the posted price of the previous round + increment.

Where,
the increment is the posted price of the first round.

For example, if the posted price of the first round is 4, then the posted prices of

the following three rounds will be

Round Posted Price

2 8
3 12
4 16

The posted price of the first round may be different for different periods.
Any Questions?
If there are no more questions, let’s start the experiment with a practice

period. You will NOT be paid for this period.
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Table 2.1: Summary of Experimental Data

Experiment | No. of Subjects | No. of | Subject | M | Auction Format
in Each Period | Periods | Pool
06/04/98 5 35 Caltech | 6 | Penultimate-Bid
06/09/98 5 35 Caltech | 6 | Pay-Your-Bid
06/10/98 5 35 Caltech | 24 | Penultimate-Bid
06/10/98 5 35 Caltech | 3 | Penultimate-Bid
06/11/98 5 35 Caltech | 24 | Pay-Your-Bid
06/11/98 5 35 Caltech | 3 | Pay-Your-Bid
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Table 2.2: Summary of Bidding Patterns: Pay-Your-Bid English Auctions

M=3|M=6|M=24
b(v) + 3724 < v < b(v) + 724 5% 9% 0%
b(v) < v < b(v) + 1724 2% |8™% |34%
v > b(v) + %24 0% 2% 43%
v<bv) <v+ 7%,— ’ 3% 2% 14%
b(v) > v+ 424 ' 0% 0% 9%
v > b(v) +J£24 because of winning | 0% 1% 16%
v > b(v) + %—24 when v < 12 0% 1% . | 1T%
b(v) = 0 when £24 <v <12 0% 1% - | 8%

Remarks: b(v) + 424 < v < b(v) + %24 and b(v) < v < b(v) + 3724 form the range
predicted by dominance arguments. v > b(v) + -13724 is considered as underbidding. v <
b(v) < v+ 77 and b(v) > v + 1724 are considered as overbidding. However, v < b(v) <
v+ % implies staying up to the price just above his/her value. We consider this as slight
overbidding.
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Table 2.3: Summary of Bidding Patterns: Penultimate-bid English Auc-
tions

M=3|M=6|M=24
v —b(0) < & 7% | 98% | 67%
v > b(v) + 3724 , 2% 6% 29%
b(v) > v+ & 1% 1% | 4%
v > b(v) + AIHL24 because of winning | 0% 0% 0%
v > b(v) + %24 when v < 12 1% 4% 15%
b(v) = 0 when ﬁ24 <v<12 1% 3% | 13%

Remarks: |v—b(v)| < 4 is the range predicted by dominance arguments. v > b(v) + 7724
is considered as underbidding. b(v) > v + -A17 is considered as overbidding.
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Table 2.4: Summary of Ties and Efficiencies

M=3 M=6 M=24

PUB | PB | PUB | PB PUB | PB
Observed Efficiency 69% | 66% | 89% | 83% | 97% | 86%
Frequency of Tie 57% | 54% | 29% | 34% | 9% 9%
Percentage of Inefficiency Because of Tie 91% | 67% | 75% | 100% | 100% | 40%
Random Allocation Efficiency 50% | 58% | T0% | 50% | 67% | 33%
Allocation to The Highest Value Bidder 69% | 66% | 89% | 83% | 97% | 86%
Allocation to The 2nd Highest Value Bidder | 14% | 28% | 11% | 11% | 3% 4%
Allocation to The 3rd Highest Value Bidder | 14% | 6% | 0% | 3% 0% 0%
Allocation to The 4th Highest Value Bidder | 3% | 0% | 0% | 3% 0% 0%

Note: Random Allocation Efficiency is the percentage of auctions with ties in which the
object was awarded to the highest value bidder. PUB and PB stand for the pay -\our—bld

and the penultimate-bid English auctions respectively.
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Table 2.5: Percentage of Prices Within The Predicted Range

Pay-Your-Bid Auction

Penultimate-Bid Auction

M=3
M=6
M=24

100%
100%
83%

97%
94%
89%

Note: Predicted Range as specified by Lemma 12:
PFPUBE ¢ [p[sz]:p[ng]+2] and PPBE ¢ [p[sz]+17p[v2M]+2]'
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Chapter 3 Product Differentiation By A Quality

Discriminating Monopolist

3.1 Introduction

There is a rich literature studying the monopoly pricing problem under the situation in
which the monopolist has incomplete information of consumers’ preferences for certain
attributes of the product produced by the monopolist. Examples include situations in
which a monopolist attempts to separate consumers by offering: different price-quality
bundles as in Mussa and Rosen (1978) and Srinagesh and Bra dburd (1989); different
price-quantity bundles as in Spence (1980) and Maskin and Riley (1984); different
price-time bundles as in Stokey (1979) and Chiang and Spatt (1982). For each of these
problems, the central issue is how to construct a sorting mech anism to extract the
greatest possible private gain for the monopolist. Two of the most important results of
these works can be summarized as follows: 1) In most cases, the optimal strategy for
- a monopolist is to use non-linear pricing to induce self-selection arﬁong heterogeneous
customers!. 2) When the monopolist employs imperfect price discrimination to induce
heterogeneous consumers to self-select among different bundles, the consumers who
derive the highest total utility from the attribute of interest will be served efficie ntly
while the problem of allocative distortions arises for all the other consumers?.

Some common assumptions adopted in these papers are as follows: 1) Consumers
can be ordered by their tastes and marginal utilities derived from an increment of
the attribute of interest; 2) The attribute of interest is in general restricted to one
dimension; 3) The unit cost and marginal cost of producing the monopoly product is
constant. That is, there is no fixed cost in the production. Although these assump-

tions are made for simplicity, the results derived based on these assumptions shed

!Salant (1989) derives a condition under which inducing self-selection is optimal.
2The allocative distortions arising in problems of self-selection are characterized in Cooper (1984).
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light on more general frameworks. In this paper, we introduce a model similar to the
one in Mussa and Rosen (1978) in which the monopoly product is differentiated by its
quality level. However, we atte mpt to generalize the problem by introducing a con-
stant set-up cost for each type of product the monopolist produces. The assumption
of set-up costs immediately brings us two important differences between the current
model ana the previous ones: 1) In pr evious models without fixed production cost,
when the distribution of consumer’s type is regular®only consumers of low types mayv
be bunched onto one offering. In general, this offering makes this group of consumers
of different types choose not to consume the monopoly product. All the other con-
sumer s are fully separated and each type is provided with a unique offering. However,
with a set-up cost, it is impossible to have a complete separation even among higher
consumer types in the optimal solution. 2) Without the assumption of set-up cost, if
th e consumers’ types are continuously distributed, the monopolist chooses to provide
a continuous spectrum of quality levels. If consumers’ types are discrete, the number
of different product types served by the monopolist is the same as the number of cons
umers’ types. However, with the set-up cost, the number of different quality levels
provided by the monopolist is finite. In fact, the number of different quality levels
becomes an important choice variable of the monopolist in this case.

This paper discusses the monopolist’s bptimization problem in the model with
fixed set-up cost and provides characterizations of the optimal solution. The follow-
ing section describes the model. Section 3.3 studies the monopolist’s optimization
problem and provides the solution algorithm. In this section, we find that the lowest
tvpe in the consumer group consuming the highest quality level will be served effi-
ciently in that the consumer’s marginal rate of substitution between price and quality .
equals that of the monopolist. There is quality distortion for all the other consumer
types and the distortion takes the form of degradation. Profitability of different qual-
ity levels is discussed in section 3.4. It is shown that the average profit increases

with the quality level. Section 3.5 examines the effects of changes in the distribution

3Following Myerson (1981), the distribution is regular if the harzard rate condition is satisfied.

That is, the hazard rate 8 — -’-:f-%‘)@ is strictly increasing in 8.
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of consumer preference on the onopolist’s profit. A first order stochastic dominant
shift of the distribution function of consumer preference yields higher profit for the
monopolist. We conclude in the 1ast section with a discussion of further applications

- of the theory and possible directions of future research.

3.2 The Model

We consider a model similar to the one in Mussa and Rosen (1978). The problem

involves the optimal strategy of a monopolist who seeks to sell a quality-differentiated

spectrum of goods of the same generic type to consumers of different characteristics
th at he cannot observe.

Following Mussa and Rosen (1978), we assume that the market contains a contin-
uum of consumers indexed by a variable § that takes on values in the interval ©=[0, §]
according to a continuous density function f(f) that is st rictly positive everywhere
in the domain. F(f) is the associated distribution function and is known by the mo-
nopolist. The commodity we are considering can be produced by the monopolist in a
number of different varieties. Let ¢ represent the underlying attributes of a particular
variety. In this paper, we refer ¢ as “product quality,” which is restricted to one
dimens ion. Larger values of ¢ indicate higher quality varieties. We treat ¢ = 0 as
not consuming the commodity. Each consumer is assumed to purchase at most one
unit of the commodity. The same price p(q) is charged to all consumers who buy the
commodity of quality q.

The utility of a consumer of type 6 derived from consuming one unit of the com-

modity of quality ¢ after paying price p is

u(f,q,p) =6g—p (3.1)

From (3.1), we can tell 6 in fact parameterizes the intensity of a consumer’s

demand for quality. That is, higher §’s have stronger preference for quality. It is
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assumed that
u(6,0,p) =0

for all 4.

Since the consumers can always choose not to buy the product, the above equation
tells us that p(0) = 0.

To produce any variety of the good, the monopolist has a fixed set-up cost denoted
by co. The unit variable cost is ¢(g) which is assumed to be a continuous. strictly
~ convex, increasing function of g.
| The monopolist offers a spectrum of quality-price bundles (g;, p;) targeted at dif-
ferent consumer types. A consumer of type 6 chooses g; over g; if the following

self-selection constraint is satisfied:

6q; — pi > 0gq; — p; (3.2)

for all 7, j.

Let § be the highest quality level the monopolist can supply, then the maximum
total amount of money that consumers are willing to pay is bounded by foé gof(6)de.
Therefore, the total number of different quality levels the monopolist is willing to
produce is bounded by L’iz%@‘ﬁ. That is, with the set-up cost, it does not pay
the monopolist to perfectly discriminate among all the consumer types and produce
infinite number of diff erent varieties. Rather it is more profitable to bunch some
customers of different tastes onto the same product. Therefore, if we let A(g) be the
set of consumers consuming g, we can write the monopolist’s cost function of ¢ as

follows:

C(q) = co + c(q) » )f (6)dé (3-3)

Equation (3.1) implies that higher #’s are willing to pay more for a given g than
lower 0’s. Therefore, that ¢ must be nondecreasing in € follows from the self-selection

constraint. Since c(q) is increasing in g, it is obvious that p charged by the profit-
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maximizing monopolist is nondecreasing in ¢ and hence nondecreasing in 6.

3.3 The Monopolist’s Problem

As we mentioned in previous section, the presence of the set-up cost makes it un-
profitable for the monopolist to perfectly discriminate among all the consumer types.
Since 6 is continuously distributed over [0,8] and f(8) is strictly positive evervwhere -
in the domain, there are an infinite number of consumer types in the economy. How-
“ever, as we have seen in last section, th e total number of different quality levels
the monopolist is willing to produce is bounded by a finite number. Therefore, the
monopolist has to bunch the infinite number of consumer types into a finite number
of groups and offer distinguished bundles to cater to different groups. This brings us
the first interesting question: how would consumers be grouped together? Or, what

is the property of A(g) as defined in section 3.27
Proposition 17 A(q) is convez for all q.

Proof:
Suppose consumers of both 8; and 6, choose ¢;. From self-selection constraints of

both #, and #,, we have

61g;: — pi > 01q; — p;

for all j,

and

02g; — pi > 02q; — p;

for all j.
Then for all & = A0, + (1 — A)§,, where X € [0, 1], we have
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That is, 6¢; — p; > 0g; — p;, for all j and the proof is finished.

Proposition 17 tells us that the set of consumers consuming the same quality level
is convex. In our case, since @ is restricted to one dimension, the set is just an interval.
Therefore, the monopolist’s problem is to choose the optimal way of dividing (0.6
into subintervals and the corresponding g to cater to each subinterval?.

One immediate result that follows from Proposition 17 is that the monopolist

cannot fully separate any subinterval of ©.
Corollary 1 There is no full separation among any subinterval of ©.

Proof:

Suppose there is a subinterval of © in which types are fully separated. Since
f(@) > 0 for all # € O, there are an infinite number of values of # in any such
subinterval. This contradicts with the fact that the total number of different quality
levels offered by the monopolist is finite. This completes the proof.

Corollary 1 yields an important difference between the model we are studying and
the previous models with no fixed costs in production. In those models, some types
may be fully separated even if there is a continuum of consumers.

Let 0,-' denote the lowest type in the ith interval, or, A;, and ¢; denote the corre-
sponding quality level that the monopolist chooses td serve all @’s in A;. p; is then
the price that the monopolist would charge for each unit of commodity of quality g;.

Now we can write the monopolist’s problem as follows:

n

o ax II= ; /A (pi — ¢(gi))dF (0) — nco = Z(pi ~ C(qf))[F(?m) — F(6:)] — nco
(3.4)

=1

subject to 8g; — p; > 6g; — p;, for all 6 € [6;, 6;1],
where n is the total number of different quality levels that the monopolist would

choose to produce.

41t follows immediately that q is a step function of 6 and that the value function for a consumer
of type 6, V(6,4(8),p(0)) (where ¢q(f) and p(8) are optimal choices of the monopolist), is piecewise
linear in 6.
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Before looking at the monopolist’s optimal choice, we can use the following propo-

sition to simplify the problem.

Proposition 18 Given the profit-mazimizing behavior of the monopolist, the follow-
ing equation is a necessary and sufficient condition for the self-selection constraints

of all types to be satisfied:
Pi = 0i(qi — gi—1) + 0i—1(gi-1 — @i—2) + ... + 02(q2 — @1) + b1s (3.5)

foralli=1,2,...,n.
To prove this proposition, we need to prove two lemmas first.

Lemma 13 Given the self-selection constraints, for each i, type 0; is indifferent be-
tween ¢; and gi—;. That is, 0;q; — pi = 0i_1¢i—1 — pi—1. In particular, if the monopolist

is profit-mazimizing, 0, is indifferent between consuming g, and not consuming at all.

Proof:

From self-selection constraint, we know u(6;, ¢, p;) > u(6:,¢i—1,pi-1)- Suppose
u(6;, ¢:, ;) > u(b;,gi—1,pi—1), then by continuity of d, there exists ¢ > 0 such that
u(0; — €,q;,p;) > u(6; — €,¢i—1,pi—1). Therefore, §; — € would be better off choosing g;
instead of ¢;—;. Contradiction.

Suppose u(6;, g1, p1) > u(6;,0,0) = 0, then by continuity of u, there exists € > 0,
such that u(6y, qi,p1 +€) > 0. Therefore, the monopolist is not maximizing profit by
charging p;. Contradiction. We are done with the proof.

From Lemma 13, we can tell that the lowest type, 6, = 0, eﬁjoys no consumer
surplus but all higher 6’s enjoyv positive surplus®. To provide an incentiv e for high-

taste-type consumers to buy higher quality product, the monopolist must offer them

a surplus in excess of that obtained by the low-taste-type consumers.

5By continuity of u, u(6, + €,q1,p1) > u(6),q1,p1) for all ¢ > 0. Therefore, for all § > 6,,
u(f,q1,71) > u(b1,q1,7) = 0. By self-selection constraint, u(6,g;,p;) > u(f,q;,p1) > 0 for all
b€ [91‘,9,4.1], for all > 1.
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Lemma 14
9:"1;‘ - pi = bigi-1 — pi-

fori=1,2,...,n% are the only binding constraints.

Proof:

For all 6 € [6;_;, 6;], we have
0gi_1 — pi-1 > bq; — p;

or,

6(gi — gi-1) < pi — Pi-1

Since both p; and q, are nondecreasing, if this holds for 6;, it also holds for all § < 6;.
Also, for all 8 € [6;,6;1], we have

0q; — pi > 0g;i_1 — pia

or,

0(q; — gi-1) = pi — Pi—a

-If this is true for 6;, it is also trﬁe for all # > 6;. Therefore,
- 0iq; - pi = 6igi1 — pig

for  =1,2,...,n are the only binding constraints’.
Lemma 14 reduces the number of constraints in (3.4) to n. Now, we are ready to

prove Proposition 18.

This is what Maskin and Riley(1984) called “the local downward” constraint.
"The logic we have used here in the proof is in essence the same as the adjacency condition
defined by Cooper (1984).
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Proof of Proposition 18:

(=)
Suppose the self-selection constraints of all types are satisfied, then we have for
all 6 € [0, 6,],
0g1 —p1 20

By Lemmal3, we have

0 —p,m =0
which implies p; = 0 and ¢; = 0. Also, by Lemma 1, we have
0200 — p1 = 0292 — p2 == P2 = 0292 = 02(q2 — 1) + 011

In fact, for all ¢, for all € [6,41, 6;+2], we have

6gi+1 — Piv1 = 0g; — pi

with equality for 6;,,. Suppose
pi = 0i(g — gi-1) + 0i-1(gi1 — Qz‘-2) + .+ 02(q2 — @) + O1qn
Then,
Pit1 = 0iv1(qiv1 — @) + i = Oiv1(Giv1 — @) + 6:(gi — gica) + ... + 02(q2 — 1) + Ohn

(=)

Given equation (3.5), we have p; = 0;(g; —¢qi~1)+pi—1 foralli = 1,2,...,n. Which
implies ;¢; — p; = 6;_1¢i-1 — pi_; foralli =1,2,...,n. By Lemma 14, these are the
only binding constraints. That is, if these constraints hold, all the other self-selection

constraints are trivially satisfied. The proof is finished.
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With Proposition 18 and equation (3.4), we can rewrite the monopolist’s problem

{og}ﬁ;}f},nn = ([6n(gn = @n-1) + On-1(gn-1 — Gn-2) + ... + O2(q2 — @1) + 6101] — c(gn))
*(F(6) — F(6n))
+([6n-1(gn-1 = gn-2) + ... + 02(g2 — @1) + 6101] — c(¢n-1))
*(F(6n) = F(6n-1))
+...
+([02(g: — q1) + 6101] — ¢(2))(F(63) — F(62))
+(6191 — c(q1))(F(62) — F(61))
-neg (3.6)

where n is the total number of different quality levels that the monopolist chooses
to offer.

The monopolist’s problem is now reduced to an unconstrained maximization prob-
lem. Let I1,(64,qi, ..., 0n, g,) denote the profit function for fixed n and IT},(6;, q1, - . . , On, Gn)
denote the maximal profit the monopolist can achieve for fixed n. Then the first order
conditions for maxim izing II,, are as follows:

Forallt:=1,2,...,n,

oI,
04,

= (g — gi-1)[F(8) — F(6,)] — £(8:)[0:(a: — gi—1) — c(@:) + c(gi—1)] = 0°  (3.7)

Foralli=1,2,...,n -1,

oIl,
0q;

= 8;[F(6) - F(6:)] ~ 6:41[F (6) = F(6:11))
=c(g:)[F(0is1) — F(6:)]

= (6 = 6:41)(F(8) = F(8:11))
+(0; = () (F(8i1) — F(6:))

I
i

do
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=0 (3.8)
and

oI, , ~
50 (6 — c'(gn))(F(6) — F(6,)) =0 (3.9)
The set of §;’s and ¢;’s that the monopolist chooses for fixed n must satisfv above
equations. Set M = [g—‘z%(ﬁ'i—g], that is, the largest integer which is less than or
g , \
equal to !‘?—q-%(ﬁ)d—o. To solve (3.6), the monopolist needs to calculate II; for all

{n € N : n < M}. Let n* be the n such that H;.:ﬁlax{ﬂ‘{,ﬂg,...,ﬂif} and
.0,-,1- and ¢;,- denote the optimal 6; and ¢; corresponding to n* for « = 1,...,n".
{n*,61n=,..., 000", Qin*s-- -, Gn-n-} is then the solution to (3.6). From now on, the
optimal 6;’s and ¢;’s we talk about are corresponding to n*.

The above discussion gives us a general algorithm to solve the monopolist’s prob-
lem. In the latter part of this section and following sections, we derive some charac-
terizations of the monopolist’s optimal solution.

The first question we would like to ask about the monopolist’s choice is: Does
the problem of allocative distortion arise in this problem? That is, comparing to the
efficient level, how would the quality level served to customers be distorted by the
proﬁt-maﬁmizing monopolist? |

Here we follow Cooper (1984) and Srinagesh and Bradburd (1989)’s notion of
efficiency. A g is considered to be efficient if the margixial rate of substituion between
quality and price of the consumer equals that of the monopolist at that g. Under the
assumptions we have, the MRS of the consumer of type 6 is § and the MRS of the
monopolist is simply ¢'(q). Therefore, for a ¢ to be efficient, the condition 6 = ¢/(q)

must be satisfied. With this condition, we then can get the next proposition.

Proposition 19 There is no quality distortion by the monopolist for the lowest type
in the highest consumer group. The quality distortion takes the form of degradation

for all the other consumers.
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Proof:

This follows immediately from the first order conditions of the monopolist’s max-
imization problem.

(3.9) = 6, = /(gn)- So all the consumers of type 8, are served efficiently.

(3.9) also implies 8 > ¢'(¢a), for all 6 € (6,8). Since c(q) is strictly convex in g.
all 4 € (6,, 6] consume the quality that is lower than the efficient level.

Since 0; — 641 < 0, F(f) — F(6i41) > 0 and F(6i11) — F(6;) > 0; (3.8) implies
6; > c/(¢i) which in turn implies for all § € {6;,6;,,], 0 > ¢ (q,-). Therefore, for all 1, all
b [6;, 6;+1) consume the quality that is lower than the efficient level. This completes
the proof.

Since the above results hold for every n, the lowest-type consumers consuming the
highest quality level are always served efficiently for each fixed n. However, all other

types always consume lower qualities than they would at the efficient level.

3.4 Profit Margin and The Quality Level

The next important question this model is designed to answer is: What is the rela-
tionship between the profit margin and the quality level? This brings us the fourth

proposition.

Proposition 20 At the monopolist’s optimal solution, the profit margin is increasing

in quality level. That is, for all 1,

Co

pi —c(g;) — fA 9)d6 > pi-1 — c(gi-1) — m,w

In addition, p; — c(g;) > pi-1 — c(gi—1) for all 1.

Proof:
From self-selection constraint, 6 € [f;_,,6;) strictly prefers g;_; to ¢;. Since p is

nondecreasing in 6, all § > 6; can at least choose g;_;. Suppose g;_, is more profitable
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than g;. That is,

o J(0)d

Co
= < Pi-1 — C(Qi—l) -
A /.

From Lemma 13, we have u(6;, gi_1,pi—1) = u(6;, gi, p;). By continuity of u, u(8;, gi-1, pi-1) >
u(6;, i, pi+€) for all € > 0. So if the monopolist increases p; to p;+¢, s ome 6 € [6;,6;,]
will switch to g;—;. Let A!_; and A} denote the new sets of §’s choosing ¢;,_; and ¢;

respectively. We have

7(8)d8 > F(8)d8

A Ai-1
and

/A : f(8)do < /A | £(6)d8.

Co

Pi-1 — ¢(gi-1) — fA' ~ O
> pic1 — ¢(gi-1) — T;:q}@m
> pi —c(g:) - T}T;"(}G_)d?
> p; —c(g;) — ];—}“I(’m

This implies ¢;—; is even more profitable than g;. Therefore, to make more profit, the
monopolist can keep increasing p; until [f;_;, 6;] is merged with [6;, 8;,1]. This contra-
dicts the assumption that the p;’ s and ¢;’s are optimal solutions to the monopolist’s
problem and the monopolist is producing optimal number of quality levels.

Similarly, if p; — ¢(g;) < pi-1 — c(gi-1) for some 7, then the monopolist can make
more profit by merging [6;_1, 6;] with [6;, 6;1,] and paying just one set-up cost for this
whole group instead of two.

This completes the proof.

This result is consistent with the observation of quality distortions at the monop-
olist’s optimum. As indicated by Mussa and Rosen (1978), serving customers who

place smaller valuations on quality creates negative externalities for the monopolist
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that li mit possibilities for capturing consumer surplus from those who do value qual-
ity highly and have more potentially extractable consumer surplus. The monopolist
internalizes this externality by lowering the prices and qualities offered to lower-type
groups to make the degraded good less attractive to higher-type groups. This al-
lows the monopolist to charge higher prices to higher-type groups without having
them switch to lower quality products. The cost to the monopolist of serving lower-
type customers ] ess efficiently is paid for by charging higher prices to higher-type
customers. A wave of such distortions ripples down the quality spectrum from the

highest group to the lowest group in order to preserve market segmentation.

3.5 Change In The Distribution of Consumer Pref-
erence

Another important qualitative issue is how a change in the underlying distribution of
consumer preference affects the monopolist’s profit. Suppose that there is a rightward
shift in the distribution, so that the new distribution G(6) is strictly less than F(6)
for all § € [0,8). Would this lead to higher monopolist profit? With the help of

Proposition 20, we can answer this question easily.

Proposition 21 Let II° and II¥ denote the monopolist’s profits associated with G(6)
and F(0) respectively. If G(0) first order stochastically dominates F()°, then II¢ >
HFIO'

Proof:

From (3.4),

n

07 = Y (pi — o(@:))[F(6is1) = F(6:)] - nco

=1

9Maskin and Riley (1984) indicated that one condition sufficient to ensure that G(8) first order
stochastically dominates F'(8) is that the hazard rate for F exceeds the hazard rate for G.

1°1f G(6) = ®(F(6)), with (0) = 0, ®(d) = 1 and &(-) is convex, then G(8) is in fact a first order
stochastically dominant shift of F(6). Therefore, a convex transformation of F(8) brings higher
profit to the monopolist.



90
(p1 — c(q1))[F(82) — F(61)] + (p2 — c(g2))[F(63) — F(62)]
oot (Bot = {gact)[F(6n) = F(bno)] + (n — c(gn))[F(6) ~ F(6)] — ncy
= F(6,)(c(q1) — p1) + F(62)[(p1 — c(q1)) — (p2 — c(g2))]
+F(83)[(p2 — cg2)) — (ps — c(@z))] + - -
+F(6n)[(Pr-1 = ¢(gn-1)) = (Pn — ¢(gn))] + (Pn — c(gn))F () — nco

From proof of Proposition 18, we know ¢; = p; = 0. Let m; = p; — ¢(g;). Using

the fact F(8) = 1, we can rewrite 17 as:

nf = i F(6;)(mi—1 — m;) + my, — nco (3.10)

i=2

By Proposition 20, m;_; — m; < 0.

G(0) first order stochastically dominates F'(8) = G(6;) < F(6;), Vb;.

This implies that with the same set of §;’s and ¢;’s, the monopolist-makes larger
profit with G(6) than he would with F(§).

Therefore, with G(6), the monopolist can at least choose the same §;’s and g;’s as
he would with F(f) and be no worse off. Hence, I[1¢ > II¥ and the proof is completed.

In fact, Proposition 21 is very intuitive. Since higher values of # are associated
with higher demanders of quality and from Proposition 20 we know higher quality

products are more profitable, the upward shift of the distribution of 6 obviously will

make the monopolist better off.

3.6 Concluding Remarks

In this paper, we have presented a model in which a monopolist seeks to sell a spec-
trum of quality differentiated products to consumers whose preferences for quality
are not observable to him. The monopolist only knows the distribution of the con-
sumer pr eference and he has to pay a constant amount of set-up cost for each type
of products he produces. We have proposed a solution algorithm to the monopolist’s

profit-maximization problem and have characterized some aspects of the optimal so-
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lution. However , there are some more questions that merit further study.

We have shown that except the lowest type of the group of consumers consuming
the product of the highest quality, all consumers are served inefficiently in the sense
that the marginal rate of substitution between quality and price of the consumer ex-
ceeds that of the monopolist. But as we have indicated earlier, in the case with set-up
cost, how many different types of products to produce becomes an important choice
variable of the monopolist. Therefore, in this case, it is natural to consider the proble
m of allocative distortions in two ways: one is the notion of efficiency as we have
V" discussed; another one is the range of qualities provided by the monopolist. Compar-
ing to social optimum which maximizes aggregate surplus, whether the monopolist is
prod ucing too many or too few quality levels should be an important question.

The model we have discussed in this paper is lifted from Mussa and Rosen (1978)
with an additional assumption of set-up cost. In Mussa and Rosen (1978)’s case with
no set-up cost, the monopolist provides a continuous spectrum of quality levels when
the c onsumers’ preference is continuously distributed. As we have mentioned several
times, with the set-up cost, the total number of different quality levels served by the
monopolist must be finite. However, an interesting question we may ask is: as the
set- up cést becomes arbitrarily small, will the n* chosen by the monopolist go to
infinity? Would Mussa and Rosen’s (1978) solution constitute the limiting case of
our solution?

Further study on comparative statics of the monopolist’s choice of {9,-}, {g:} and
n* needs to be done. It would be interesting to see how changes in the cost function,
distribution of consumer’s preference and other parameters affec t the monopolist’s
choices.

We have focused on the profit-maximizing behavior of a monopolist. However,
there are reasonable situations in which there are several producers competing on
selling the product of the same generic type. We may want to know in the framework
of oligopoly , whether all the producers will choose to sell the same spectrum of
products and compete on prices or they will divide the spectrum and each sell quality

levels different from others. Furthermore, if there is free entry in the market, what
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would be the competitive equilibrium?

In this paper, we have adopted the standard assumption of consumer preference in
the literature. Namely, the con-sumers can be ordered by their intensities of demand
for the quality.n. Another extension of this framework is to co nsider preferences
that do not permit the ordering of tastes. This would imply that the simplifications
of the monopolist’s optimization problem via reducing the number of self-selection
constraints would not hold any longer. |

Finally, our analysis is restricted to the one-dimensional case. In fact, Proposition
| 17, 18, 19 and Corollary 1 do hold for the general case of multi-dimensions. That is,
even when § and ¢ are multi-dimensional, we can simplify the monopolist’s problem in
the same way. However, whether our characterizations of the monopolist’s optimum

hold in multi-dimensional case is left to be checked.

1This follows from the “single-crossing property” of the indiff erence curve. For example, if the
marginal rate of substitution is monotonically increasing in type, then the indifference curves of two
different types cross at most once. This property holds in our case.
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