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ABSTRACT 

By use  of various lengths of shroud an  experimental study was 

made of a partially confined jet to examine the transition between the 

flow configuration for a f ree  jet to that of a confined jet. An exami- 

nation of the reattachment p ressure  distributions and the parameters  

a t  the entrance of the abrupt channel expansion was made. A smooth 

transition of mean flow quantities was found to occur in the transition 

f rom a f ree  jet to a partially confined jet and then to a fully confined 

jet. The distance to reattachment was measured for various shroud 

lengths and shown to exhibit an asymptotic value which was Reynolds 

number dependent. Associated with this maximum reattachment 

length was a maximum pressure  recovery factor.  The range of 

Reynolds numbers - based upon the jet diameter - for the present  

study was 80,000 to 280,000. 
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NOMENCLATURE 

P - Po 
pressure coefficient = 

2 pvo2 

C - C  
P=U reduced pressure coefficient = , 
Z PUl 1 -C 

P1 

pa-Po 
overall pressure recovery coefficient = 

Z PV," 

shroud diameter 

nozzle diameter 

step height 

shroud length 

pressure  

pressure a t  shroud exit 

radial distance measured from jet centerline 

Reynolds number - based upon dl2  

s treamwise distance measured from the step 

reattachment length 
C - C  

pressure recovery factor -- 1 - C 
P1 

area  ratio of the circular channel expansion 

Subscripts 

constant pressure portion of shear layer 

maximum pressure location 

reattachment point 

nozzle main flow conditions 

a ambient condition 
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I. INTRODUCTION 

As far  back in history a s  the time of Leonardo da Vinci (Fig. 1)  

scientists and engineers have been interested in flow separation and 

downstream reattachment. 

There a r e  many problems in separated flow (Ref. 1 ), but one 

of the s implest  i s  flow over a downstream facing step. For  example, 

Moore (Refs. 2 ,  3 )  and Tani (Ref. 4 )  investigated the two dimensional 

problem by use  of a rearward  facing step on a wind tunnel wall. They 

varied both the step height and the main flow velocity and studied the 

wall p ressure  distribution downstream of the step. Chaturvedi (Ref. 5 )  

and Back and Roschke (Ref. 6 )  used an  abrupt circular channel expan- 

sion downstream of a jet nozzle (i. e. , a confined jet) to investigate 

the axisyrnmetric case. 

All the above investigations had a sufficiently long channel 

downstream of the separation point to ensure reattachment. 

A f ree  jet itself is an  example of flow separation with no sub- 

sequent reattachment (actually i t  may be considered to reat tach a t  

infinity corresponding to an  infinite step height). This flow is also 

well documented. 

A f ree  jet i s  capable of entraining the necessary m a s s  f r o m  i t s  

surroundings through the velocity induced by the shear  layer  (Fig. 2).  

On the other hand a confined jet cannot entrain the required m a s s  f rom 

i t s  surroundings, and must  supply itself somehow. To do so  a r e v e r s e  

flow pattern i s  established (Fig. 3 ) .  According to the findings of 

Seban, Emery,  and Levy (Ref. 7 )  this pattern is a circulatory flow 



which appears to be steady and which provides an upstream velocity 

of the order of 1 I 5  the f ree  s t ream velocity. Macagno and Hung 

(Ref. 8 )  concluded that this eddy fills the role of helping to shape the 

mainflow in a streamline fashion while providing the required recircu- 

lating entrainment flow to the separated shear layer. These two cases ,  

a f ree  jet and a confined jet, a r e  quite different. A f ree  jet has no 

pressure  gradient in the streamwise direction but entrains mass  f rom 

i t s  surroundings. A confined jet has largc, pressure gradients in the 

s treamwise direction but entrains no mass  from i ts  surroundings. 

This ra ises  the question - what a r e  the characteris tics of a par tially 

confined jet? 

To investigate this question and study the transition from one 

limiting case to the other, shrouds of various lengths were placed 

around a f ree  jet. For very short shroud lengths the flow i s  that of a 

f ree  jet, but for long shroud lengths the flow i s  that of a confined jet. 

At intermediate shroud Lengths the jet i s  partially confined. As will 

be shown later ,  there i s  a smooth transition from the f ree  jet to the 

confined jet flow configurations. Reattachment pressure distributions 

showed a smooth r i se  along the shroud joining a region of constant 

pressure  just downstream of the step with a region of constant pres-  

sure a short distance downstream of the shroud exit in all  cases,  

whether the separated flow had reattached to the shroud surface or 

remained unreattached. Various reattachment parameters were 

investigated and a relation be tween the length of the reattachment 

bubble and the pressure recovery coefficient was found. An asyrnp- 

totic reattachment length was determined and found to be Reynolds 



number dependent whereas the maximum reattachment p r e s s u r e  

recovery coefficient was found to be approximately equal to 0. 34 

for al l  three Reynolds numbers. 

Owen and Klanfer (Ref. 9 )  established a cr i ter ion by which they 

could re la te  the length of the leading edge separation reattachment 

bubble on an  aerofoil to a Reynolds number related to conditions a t  

separation. 

Norbury and Crabtree (Ref. 10) developed a simplified model 

giving particular attention to the reattachment process .  In essence ,  

they used the model shown in figure 4, making the assumption that 

the principal mixing and corresponding p ressu re  recovery occurred 

in  the region between points (1)  and ( 2 ) .  They then proposed that the 

best correlation for the bubble reattachment region could be obtained 

i n  t e r m s  of a p ressu re  recovery factor of the form 

where pl i s  the s tat ic  p ressu re  just downstream of separation, pa i s  

the maximum pressu re  downstream of reattachment,  and V1 i s  the 

velocity just downstream of separation along the shear  layer .  

The p ressu re  recovery coefficient, o, can be written in t e r m s  

of the normal p ressu re  coefficient 

In view of the assumptions made there exists a maximum value of a 

for  which reattachment mus t  occur ,  but reattachment may  occur for 



values of o less  than this maximum. 

Another useful, often used coefficient i s  the pressure recovery 

coefficient evaluated a t  the point where the dividing s trearnline closes 

on a solid surface. The reattachment pressure recovery factor, 
O r  

was evaluated a t  the point of reattachment a s  

in the present study and i s  plotted for changing shroud length i n  

figure 15. 

11. DESCRIPTION OF APPARATUS AND 

EXPERIMENTAL TECHNIQUES 

Overview 

A low speed jet capable of velocities up to 92 f t / sec  was used 

for the investigation. An axisymme tr ic  channel expansion was 

achieved by placing shrouds of various lengths and constant diameter 

around the nozzle of the jet. Measurements of the mean velocity and 

pressure  were made in both the streamwise and radial directions 

using a pitot- s tatic tube mounted on a mechanical traversing mecha- 

nism. Reattachment point, defined a s  that point on the shroud where 

the difference between surface pitot and static pressures was zero, 

wae located ant1 a I-ercttachrrlent pressure recovery factor was 

evaluated a t  that point. 



Wind Tunnel 

All tests were conducted on one of the six inch free jets located 

in the Fluid Mechanics Department of the Graduate Aeronautical 

Laboratories, California Institute of Technology. The jet assembly 

consisted of a variable speed fan driven by an electric motor, a honey- 

comb section to control turbulence, a settling chamber, and a contrac- 

tion section that forms a six inch diameter jet nozzle (Fig. 6).  

The rpm of the fan could be accurately regulated via a gear 

mechanism to achieve main flow velocities at the nozzle of 20 f t / sec  

to 92 f t lsec.  

Shroud 

An aluminum shroud was used to achieve a one inch axisym- 

metr ic  step. The shroud was fitted over the jet nozzle and held in 

place by two aluminum collars (Fig. 5). This gave the shroud a close 

fit at  the step and kept the alignment parallel to the centerline to 

maintain axisymmetric flow. The shroud could be moved in the stream- 

wise direction to provide continuous values of 1 /h from 8. 0 to 18. 0 
S 

( ~ / d  = 0. 0 to 3. 0). 

Tani (Ref. 4 )  found that the streamwise wall pressure  distribu- 

tion i s  rather insensitive to changes in step height for the two dimen- 

sional case. In view of this a one inch step height was chosen and not 

changed during the investigation. This gave a ratio of step height to 

nozzle radius of 113 for which separation>and reattachment could be 

considered to behave much a s  in the two dimensional case. 



Traversing Mechanism 

The pitot- static tube was attached to a traversing mechanism 

for streamwise and radial t raverses and positioning. The traversing 

mechanism was kept well below the flow of the jet. Measurements of 

position using the traversing system were read to 0. 01 inches. Move- 

ment was accomplished by use of a hand-operated screw. 

Pressure  Measurements 

The dynamic and static pressures were measured on a Barocel 

electronic manometer system with readouts displayed on an integrating 

digital multimeter from which they were visually averaged and 

recorded. The Barocel manometer sys tem had a manufacturer 's 

specified e r r o r  of less  than . 25% of the reading. Static pressures  

could be measured along the nozzle by pressure tappings a t  positions 

2. 0, 4. 0 and 6.0 inches upstream of the step and 0. 5 inches radially 

below the step shoulder at  four angular positions spaced 90° apart  

around the circumference of the collar. 

po, the main flow static pressure,  was measured on the nozzle 

wall 2. 0 inches upstream of the step. The inside diameter of the 

pressure tappings was 0. 020 inches. The proper orifice was con- 

nected to one leg of the manometer through a manual switching 

Scanivalve. The pitot-static and static tubes could be mounted on 

the traversing mechanism when needed and were used to measure 

dynamic and static pressures.  



Velocity Measurements 

The main flow reference velocity, V was determined by a 
0 ' 

pitot-static tube located on the centerline of the jet 2. 0 inches up- 

s t ream of the plane of the step. A pitot- static tube placed on the 

traversing mechanism was used to measure dynamic head to determine 

the velocity profile. Negative values of dynamic head simply indicated 

reverse  flow and were not used to determine absolute magnitudes. 

Reattachment Location 

The reattachment point i s  defined as  the point of flow stagnation 

on the surface of the shroud. 

l" reattachment point 

Two approaches were used to locate the reattachment point. 

The f i r s t  was to observe the surface flow direction by use of a thin oil 

film. A mixture of light machine oil and titanium dioxide was painted 

onto the surface of the shroud. In a small region where the flow was 

stagnant the powder particles were not moved; on either side the 

solution was carried away by the flow. The region of no movement 

was taken to be the reattachment region. The size of this reattach- 

ment region was of the order of 118 inch. 



The second method was to record the pitot static pressure  

difference measured by a probe dragged along the shroud surface. 

The reattachment point was then defined as  the point a t  which the 

difference was equal to zero. The second method was found to give 

a smaller degree of uncertainty since curves drawn through several  

static and several dynamic pressure readings along the shroud could 

be used to locate the zero point. Therefore the length determined 

by this method i s  taken to be the reattachment length plotted in 

figure 14 and was used in all  subsequent calculations. 

The reattachment point i s  indicated on the reattachment 

pressure  distributions in figures 7 ,  8, and 9 by the solid symbols. 



Y 

Tes t  Matr ix 

Procedures  used to obtain the data presented in  the figures 

which accompany this work a r e  shown below. (The step height, h, 

and the upstream diameter,  d, were held constant through the 

investigation. ) 

Paramete r s  Quantity 
Figures held constant varied Measured Objectives 

P - Po reattachment 
7 ,  8, 9 VOf r x p ressure  i PV," dis  tribrition 

P - Po radial  

Voy  as  r p ressure  3 pvo2 distribution 

mean velocity 

Voy r 
V profiles and 

0 s t r  eamlines 

Pa - Po overal l  
v o ,  X, r s p ressure  3 PV: recovery 

coefficient 

fan 
settings shroud effect 

on Vo 

x (p-pol; t pvoZ reattachment 
point 

--Data f rom figures 14 and 7 ,  8, 9--  



IV. RESULTS AND DISCUSSION 

Reattachment Pressure  Distribution 

Figures 7, 8 and 9 show the pressure distribution on the 

downstream surface of the shroud. In these figures the distance x 

measured along the shroud i s  normalized by the step heights, h, and 

the pressure i s  normalized as  the pressure coefficient 

where p and V a r e  the main flow conditions upstream of the step. 
0 0 

The pressure distributions shown a r e  all for the same step 

height but for several different shroud lengths at three different 

Reynolds numbers. Figure 7 i s  for a main s t ream velocity, 

V = 24. 8 f t l sec ,  figure 8 i s  for Vo = 54. 8 f t / sec  and figure 9 for 
0 

Vo = 83.4 f t lsec.  In all  three cases similar features may be inferred. 

Immediately downstream of the step i s  a region of shear layer mixing 

of the central s tream with the a i r  in the cavity a t  essentially constant 

pressure.  The next region i s  the reattachment region accompanied 

by a rising pressure. Finally redevelopment of the wall boundary 

layer takes place a t  nearly constant pressure. In these figures i t  

can be seen that for all  cases, including those for which the shroud 

lengths a r e  too short for reattachment to occur, the pressure 

distributions a r e  similar i n  that a region of constant pressure just 

downstream of the step is  joined to the region of constant pressure  

downstream of the shroud by a smooth pressure r ise.  For the 



shorter shroud length of approximately 4 step heights the pressure  

r i s e  i s  rather abrupt in the plane of the shroud exit. This shows that 

the shroud i s  too short for proper pressure recovery inside the shroud 

since not enough mass  has been fed into the reverse  flow field f rom the 

shear layer. As a result  a flow into the shroud i s  induced which sup- 

plies the necessary mass  flow from outside the shroud and accounts 

for the low pressure at  the lip of the shroud. 

A reduced pressure coefficient based on the conditions along 

the nearly constant pressure portion of the shear layer just down- 

s t ream of separation can be defined. In terms of the normal pressure  

coefficient i t  would be 

In the case of Roshko and Lau (Ref. 11) i t  was found that the overall 

pressure r i se  tended to correlate using this coefficient, but in  the 

present investigation no such correlation was found. However, 

correlation i s  observed in the initial portion of the pressure  r i se  

region, indicating a smooth transition a s  the jet i s  more  fully confined. 

Lack of correlation in the overall pressure r i se  implies that in the 

partially confined jet full pressure recovery to that expected for an 

abrupt channel expansion i s  incomplete. 



Radial Pressure  Distribution 

Figure 10 shows the radial pressure  distribution for a shroud 

length of 10.4 inches. In the figure, pressure distributions a r e  shown 

for six different downstream stations. The radial distance r i s  

measured normal to the main flow and outward from the centerline of 

the jet. It i s  normalized by the step height, h. The normal static 

pressure  coefficient C i s  used. 
P 

For  radial t raverses inside the shroud there is  a pronounced 

gradient through the shear layer. This indicates appreciable stream- 

line curvature in the shear layer. Traverses for downstream dis- 

tances greater than the shroud length show a flatter profile indicating 

less  curvature of the streamlines a s  shown in figure 1 1. 

Mean Velocity 

Figure 11 shows the streamwise component of mean velocity 

in  the mixing region for a step height of one inch and a main flow 

velocity, V of 54. 8 f t /sec.  No velocity measurements were made 
0 '  

in the reverse  flow region of the recirculation bubble and this portion 

of the profile i s  represented in the figure by a dotted line. F rom the 

distribution of mean longitudinal velocity and the initial mass  flow of 

the jet the dividing streamline was calculated. The dividing streamline 

s tar ts  a t  the step shoulder and bends towards the downstream reattach- 

ment point of the shroud. The dividing streamline can be considered 

a s  the line which divides the recirculation flow region from the main 



flow of the jet. The streamline pattern of the flow also calculated 

from a mass  balance i s  plotted in figure 11 as  well. 

Shroud Length Effects 

As longer shroud lengths a r e  placed on the jet several  effects 

a r e  observable both on the parameters a t  the entrance of the abrupt 

channel expansion (p V ) and on the reattachment parameters 
0' 0 

(xrt or). 

Figure 12 shows the effect of changing shroud length on the 

static pressure  a t  the jet nozzle. An overall pressure recovery 

coefficient can be defined as 

where p i s  the ambient pressure into which the jet discharges, 
a Po 

i s  the main flow static pressure upstream of the step, and p ~ o a  

i s  the actual dynamic pressure of the main flow upstream of the step. 

Data a r e  presented for several initial flow velocities. V changes 
0 

with shroud length (Fig. 13), for constant fan settings; the values 

of Vo listed a r e  those with no shroud over the jet. 

For shroud lengths less  than two step heights the pressure  

recovery coefficients a r e  very small. Beyond that point a s  the shroud 

length i s  increased a smooth increase i s  observed in the pressure  

recovery coefficients. For shroud lengths longer than fifteen step 

heights the curves appear to be approaching asymptotic values. 

The continuity and momentum equations for an abrupt channel 



expansion can be reduced, neglecting wall friction, to 

where a i s  the a r e a  rat io  of the channel expansion. F o r  the present  

study cr was constant a t  0.56, therefore the p ressu re  recovery coeffi- 

cient based on this i s  equal to 0.49. As can be seen in figure 12 

the asymptotic values of fall slightly below this calculated value. 
P 

Figure 13 shows that for a constant fan setting a longer shroud 

length resul t s  in a higher main flow velocity a t  the entrance of the 

abrupt channel. This i s  simply a reflection of the fan charac ter i s t ic  

that an  increase  in the p ressu re  a t  the nozzle causes a decrease  in the 

p r e s s u r e  difference ac ross  the fan and allows a l a rge r  m a s s  flow to 

be generated by the fan. 

Figure 14 shows the dependence of reattachment length, x r ,  

upon shroud length, . Both reattachment length and shroud length 

a r e  normalized by the s tep height, h. Data for three different 

Reynolds numbers a r e  presented. F o r  short  shroud lengths the 

separated flow does not reat tach inside the shroud. There  i s  a 

minimum shroud length necessary for reattachment to be achieved 

which decreases  a s  the Reynolds number increases.  After this 

minimum has been reached a s  the shroud length i s  increased the 

reattachment length increases  correspondingly. At a cer tain shroud 

length a maximum reattachment length i s  reached. This shroud length 

for which a maximum reattachment length i s  reached dec reases  a s  

Reynolds number increases.  The maximum reattachment length also 



d e c r e a s e s  for  increasing Reynolds numbei.. 

Roschke and Back (Ref. 6 )  investigated reat tachment  down- 

s t r e a m  of an abrupt  c i rcu la r  channel expansion for var ious  Reynolds 

numbers  based on the d iameter  of the channel u p s t r e a m  of the step.  

They found that near  Reynolds number of 4 ,200 the rea t tachment  length 

appeared to be reaching a constant value i n  the turbulent r eg ime  of 

8- 11 s tep  heights. In this ca se  s t ep  height to ups t r eam d iame te r  r a t i o  

was  415. 

Muel le r ,  Kor s t  and Chow (Ref. 12) investigated this s a m e  

problem with a two dimensional turbulent jet  and found rea t tachment  

length to be approximately 7 s tep  heights. Seban (Ref. 13) u sed  flow 

over  a two dimensional s t ep  i n  the turbulent r eg ime  and found r ea t -  

tachment to be a t  5-6 s tep  heights. In the presen t  investigation the 

maximum reat tachment  lengths were  8 s tep  heights for  the l a r g e s t  

Reynolds number and 10 s t e p  heights for  the lowest Reynolds number.  

Crab t r ee  (Ref. 14) and Moore (Refs. 2 ,  3)  developed a signif- 

i can t  p a r a m e t e r ,  o, the p r e s s u r e  recovery  coefficient. An a l te rna te  

pa rame te r  is 

which would then be the p r e s s u r e  recovery  factor a t  the point of 

reat tachment .  C i s  the normal  p r e s s u r e  coefficient a t  the r ea t -  
P r 

tachment point and C i s  the normal  p r e s s u r e  coefficient jus t  down- 
P1 

s t r e a m  of separation.  This  coefficient, o has  meaning only for  r ' 



shroud lengths long enough for reat tachment  to be achieved. This  

reat tachment  p r e s s u r e  recovery  coefficient i s  plotted i n  f igure  15 for  

increas ing  shroud lengths which a r e  normalized by the s t e p  heights,  

h. If a i s  above some  cr i t i ca l  value of a,  reat tachment  occurs .  F o r  
r 

long shroud  lengths a maximum reat tachment  recovery  coefficient i s  

reached. This  maximum 0 i s  approximately 0.34 and i s  the s a m e  for  
r 

a l l  th ree  Reynolds numbers .  The maximum reat tachment  length occurs  

when the p r e s s u r e  recovery  coefficient r eaches  the value 0. 34. 

Kuethe (Ref. 15) analyzed the problem of predicting a reason-  

able value of u by considering the r a t e  of spreading of the turbulent 

mixing region. His r e su l t s  yielded a value of 0. 32. The analysis  of 

p r e s s u r e  distributions obtained by Dimmock (Ref. 16)  i n  t e s t s  on a 

flapped air foi l  found well defined separat ion bubbles for  which a was 

fa i r ly  constant a t  0. 35. Tani  exper imental ly  investigated the two 

dimensional ca se  of flow over a downstream facing step.  He found 

values of reat tachment  p r e s s u r e  coefficient f r o m  0. 20 to 0. 36. The 

lower values were  for cases  i n  which the boundary l aye r  a t  separa t ion  

was l a rge  compared to the s tep  height. 

Other  comparisons a r e  shown i n  table 1. 

Author - u 

Tani  (Ref. 4 )  0 .20 to 0.37 

Moore (Ref. 2 )  0. 33 

Seban (Ref. 13) 0. 33 

Muel ler ,  Kors t ,  Chow (Ref. 12) 0. 36 

Roshko (Ref. 17)  0. 34 

Table  1. Reat tachment  P r e s s u r e  Recovery Coefficient 



IV. CONCLUSIONS 

In this study of a partially confined jet, a shroud having a 

(:: ) 
diameter of 413 the jet diameter and variable length was used 

to achieve various degrees of confinement. It  was found that fully 

confined conditions were reached a t  a shroud length of about 16 step 

heights. For shorter shrouds the pressure distribution, while not 

affected in the initial portion, did not recover to the same maximum 

values as  for full confinement. 

For shroud lengths shorter than 8- 10  step heights, depending 

on Reynolds number, reattachment onto the shroud did not occur. 

Nevertheless a rising longitudinal pressure distribution was still 

induced; the maximum pressures attained decreased with shroud 

length. 

Shrouds of length l ess  than about 3 step heights produced very 

little perturbation. 

::c (thus a step height of 116 diameter) 
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Figure  1. Sketch by L e o n a r d ~  da Vinci (1452-1519). 
Separation and reat tachment  is visible.  
(Copied f r o m  J. Ackeret ,  "Aspects of 
Internal  Flow". ) 

Figure  2. Genera l  Pa t t e rns  of Flow f r o m  Slot and 
Orif ice .  (Copied f r o m  Albertson, Dai, 
Jensen ,  and Rouse. ASGE Trans .  Vol 115. ) 

cavity flow 7 dividing s t r  eamline 7 

Figure  3.  Genera l  P a t t e r n  of the Flow i n  a Confined Jet .  



F i g u r e  4. Separa t ion  Bubble on a n  Aerofoil .  
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F i g u r e  5. T e s t  Section Configurat ion 







Figure  8. Reat tachment  P r e s s u r e  Distribution. (Vo = 54. 8 f t f s e c )  
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Figure  10. Radial P r e s s u r e  Distribution 
( A s  = 10.4 inches ,  Vo = 54. 8 f t l s e c )  



Figure 11, Mean Velocity Profiles and Streamline Patterns. 
(lS = 10.4 inches, V o = 54. 8 ft/sec) 







Figu re  14. Reat tachment  Lengths (x r ). 
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Figu re  15. Reat tachment  P r e s s u r e  Recovery  
Coefficient (n, ). 


