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ABSTRACT

Measurements were made of the heat loss and recovery tem-
perature of a fine hot-wire at a nominal Mach number of 5.8. Data
were obtained over an eight-fold range of Reynolds numbers in the
transitional regime between continuum and free-molecule flow. At
high Reynolds numbers, the heat transfer data agree well with the re-
sults of Laufer and McClellan, which were obtained at lower Mach
numbers. At lower Reynolds numbers, the results indicate a mono~
tonic transition between continuum and free molecule heat transfer
laws. The slope of the heat transfer correlation also appears to

‘vary monotonically, with Nu ~ vRe at high Reynolds numbers and
Nu ~ Re for Re< < 1,

Data on the wire recovery temperature (corresponding to zero
net heat transfer) were obtained for free-stream Knudsen numbers
between 0.4 and 3.0. Comparison with previous supersonic data
suggests that for Mach numbers greater than about two the normal-
ized variation of recovery temperature in the tfa;nsitional regime
is a unique function of the free«stream Knudsen number. The recent
data of Vrébalovich {33) suggests that the relation between the nor-
malized recovery temperature and Knudsen number found in this
investigation also applies to subsonic and transonic flow.

The steady -state hot-wire may be used to obtain two thermo-
dynamic measurements: the rate of heat transfer from the wire and
the wire recovery temperature.‘ An illustrative experiment was per-
formed in the wake of a transverse cylinder, using both hot-wire
and pressure instruments in a redundant system of measurements.

It was shown that good accuracy may be obtained with a hot-wire

even when the Reynolds number based on wire diameter is small.



ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor
Lester Lees for suggesting this investigation and supervising
the research program. His interest and broad understanding
were a constant source of inspiration. Dr. Anthony Demetriades
contributed to this investigation in many ways; his hot-wire
ekperience provided a foundation for the present measurements.
Professor Toshi Kubota contributed many suggestions, and was
always ready to offer his constructive criticisms. An expres-
sion of appreciation is also due the staff of the hypersonic wind
tunnel and the GALCIT machine shop for their many hours of
expert assistance, Mrs. Elizabeth Fox for her assistance in
preparing the manuscript, and Mrs. Truus van Harreveld for
her careful and conscientious computational assistance. The
cooperation of Dr. John Laufer and Dr. Thomas Vrebalovich
of the Jet Propulsion Laboratory is also gratefully acknowledged.

I wish to express my gratitude to the California Institute
of Technology for generous financial grants during the years
1959-61, and to the National Science Foundation for the award
of a Graduate Fellowship during 1961-63.

Preliminary reports of this investigation may be found
in GALCIT Hypersonic Research Project Memorandum No. 61,
September 15, 196}, and in the American Rocket Society Journal,
Vol. 31, No. 12, pp. 1709-1718, December 1961.

This thesis is dedicated to my parents, whose untiring

devotion has always been my greatest resource.



PART

11.

nl'
iv.

TABLE CF CONTENTS
TITLE PAGE

Acknowledgments
Abstract
Table of Contents
List of Figures
List of Symbols
INTRODUCTION
EXPERIMENTAL METHQD

I1. 1. ,‘ Equipment

1I.2, Measurements

II.3. Wire Calibration and Annealing
DATA REDUCTION |
RESULTS AND DISCUSSION

IV.1l. Heat Transfer Measurements

IV.2. Recovery Temperature Measurements

APPLICATION OF THE STEADY-STATE HOT WIRE
TO WAKE MEASUREMENTS

REFERENCES

APPENDIX A. END LOSS CORRECTIONS FOR THE
TRANSITIONAL REGIME

APPENDIX B. NUMERICAL PROCEDURES FOR DATA
REDUCTION

APPENDIX C. MEASBUREMENT OF THE WIRE
SUPPCRT TEMPERATURE

APPENDIX D. THE EFFECT OF COVERHEAT ON
NUSSELT NUMBER

APPENDIX E. MEASUREMENTS AT REYNOLDS
NUMBERS APPROACHING FREE~-MOLECULE FLOW

FIGURES



NUMBER
1

- o\ o W

10

11
12

13
14

18

16
17

LIST OF FIGURES

Variation of Free Stream Mach Number with
Tunnel Pressure

Variation of Stagnation Temperature with
Tunnel Pressure

Hot-Wire Probe and Tunnel Installation
Typical Hot-Wire After Tunnel Exposure
Diagram of Calibration Oven

Electrical Circuit Diagram

Empirical Correlation of Hot-Wire Heat Transfer
at Low Reynolds Numbers

Nusselt Number-Reynolds Number Relation for
Supersonic and Hypersonic Flow

Slope of Nusselt Number-Reynolds Number
Relation as a Function of Reynolds Number

Normalized Variation of Recovery Temperature
with Knudsen Number

Data Chtained from Cylinder Wake Traverse

Variation of Flow Quantities Across the Cylinder
Walke

End Loss Relations for Nusselt Number Correction

End Loss Relations for Recovery Temperature
Correction

Wire Support Temperature as a Function of
Tunnel Pressure

Variation of Nusselt Number with Overheat

Nusselt Number+Reynolds Number Relation
Approaching Free-Molecule Flow

PAGE



i 8 0

£(s)),8(s,)

h

LIST OF SYMBOLS

- specific heat

hot-wire diameter
cylinder diameter

denotes a functional relation between two guantities

functions of the molecular speed ratio 8,

convective heat transfer coefficient, T_-%‘—'
w aw

wire current

air thermal conductivity

wire thermal conductivity at temperature T,
Knudsen number, vV ry/2 (M/Rew)

wire length

Mach number

exponent in Nug - Rep relation: Nug ~ Reg

Nusselt number measured with finite length wire, h__ d/ke

Nusselt number for infinite length wire, hd/ke
static pressure

pitot pressure

Prandtl number, €,k [k

heat transfer rate per unit area

wire resistance

Poo Umd
Reynolds number,
. ar T@
resistance parameter, ” g
Fa, (L awm T

molecular speed ratio Vy/2 M




LIST OF SYMBOLS (Cont'd)

T-T
none~dimensional temperature, —-—,lwq—;ﬁ
0

temperature

free-stream velocity

'support temperature parameter (Eq. 12)

distance from cylinder axis in streamwise direction
distance from cylinder axis in transverse direction

accommodation coefficient

temperature-resistivity coefficient, R /R =1+ @ (T -T

ratio of specific heate

boundary layer displacement thickness

recovery ratio parameter, T Ty

end loss correction parameter (Eqg. 11)
experimental recovery ratio for continuum flow
theoretical recovery ratic for free molecule flow
measured recovery ratio, (Tawm/TO )
non-dimensional support temperature, (T s/ T,)
recovery ratio for infinite length wire, (T*/ Ty ) |
normalized recovery ratio, (n»“rac)/(nfmc)

viscosity; also (2/Aw)(1/Kn) log (1/¥n) in near free
molecule flow analysis

dimensionless quantity (Eq. A-17)

measure of Nusselt number change with overheat

(Egs. 2 and 3)

density

overheat, (T _- Taw)/ T, w



LIST OF SYMBOLS (Cont'd)

X dimensionless quantity in near free molecule flow
analysis, (Eq. 19)

¥ dimensionless quantity in near free molecule flow
analysis, (Eq. 20)

W end loss correction factor

w abbreviation for (tanh v/v)

Subscrigts

( hw zero current
() measured
) evaluated at stagnation temperature
(), evaluated at reference temperature T
( )g evaluated at support temperaturre T,
(), evaluated at wire temperature T
{ ) refers to infinitely long wire |
( e free stream
(), behind a normal shock
( )¢, ‘evaluated at wake centerline
Superscripts
(") evaluated at zero overheat
() local value at edge of wake mixing region
( )(n) the nth approximation of an iterative solution

M length-average or normalized quantity



,1*
I. INTRODUCTION

Hot-wire probes have been used for a number of years to
measure the mean properties of a fluid stream. The hot-wire is
capable of providing two thermodynamic measurements: the rate
at which heat is transferred from the wire to the stream and the
wire recovery temperature for zero heat transfer. If sufficiently
accurate relations are known for the heat loss and recovery tem- ,
perature as a function of the properties of the flow, only one addi-
tional thermodynamic measurement is necessary to specify the
flow field uniquely.

The present investigation was undertaken with two pur~
poses in mind. First, it was desired to illustrate the use of the
steady-state hot-wire as a quantitative tool in high~speed aerody~
namic investigations. In order to use the hot-wire to measure
mean guantities in low density compressible flow, it is necessary
to bave an accurate calibration of the wire heat loss and recovery
temperature as a function of Mach number and Reynolds number.
For high Reynolds number flows, these relations are well repre-
sented by the data of Laufer and McClellan (1).* Often, however,
it is necessary to use the hot-wire in regions where the Reynolds
number based on wire diameter is small. Previous investigations
(3, 4, 6, 7) have illustrated the general qualitative features of the
Nu-Re relation at small Reynolds numbers, but the experimental

uncertainties were too large for calibration purposes. The first

# Numbers in parentheses denote references at the end of the text.
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objective, theréfore, was to obtain an accurate hot-wire calibra-
tion at high Mach number in the transition regime between continuum
and free molecule flow.

The second purpose of this investigation was to provide
further information on two features of low Reynolds number flow
which are important from a theoretical point of view. One of these
is the recovery temperature phenomenon which was theoretically
and experimentally investigated by Stalder, Goodwin, and Crea-
ger (8). It was found by these authors that the equilibrium, or
recovery, temperature of an unheated cylinder in free-molecule
flow is greater than the stagnation temperature of the stream.
Since the high Reynolds number equilibrium temperature is less
than stagnation, the recovery ratio (Taw/’ro) serves as one meas-~
ure of the transition from continuum to free molecule flow. In the
present investigation. meashrements were made of the wire re-
covery temperature in the range of Knudsen numbers between 0.4
and 3.0. These and previous (1, 2) data provide an accurate high
Mach number relation between the recovery ratio (Taw/'ro) and
Kn over the complete range from continuum to free molecule flow.

At high Reynolds numbers, the heat transfer to the stagna-
tion point of a blunt body may be accurately predicted using bound-
ary layer theory. Recently, a considerable amount of attention
has been given to the problem of determining appropriate correc-
tions to the high Reynolds number, high Mach number boundary
layer solutions which would extend their validity toc lower Reynolds

numbers. Several alternative formulations of this problem have



3.
been given in the literature, and more experimental evidence is
needed to evaluate the results. The data obte}ined in this investi-
gation, when combined with the results of Laufer and McClellan,
show the departure of the .Nu-Re relation from the high Reynclds
number correlation and the approach to free-molecule flow for an
infinite, conducting cylinder.

In many physical situations, it is difficult to obtain precise
data using standard aerodynamic instruments such as static pres-
sure probes. Particularly in regions of low density, instrumen-
tation sufficiently large to obtain reliable results may introduce
appreciable disturbances into the flow. The hot-wire is particu-
larly suited to such investigations due to its small physical dimen-
sions, lack of directional sensitivity, and ability to provide two
thermodynamic measurements. Total temperature, mass flow,
and velocity profiles in the far wake of a transverse cylinder were
obtained to demonstrate the use of the hot-wire in high-speed flow.
By using four measured quantities (two hot-wire measurements
and static and pitot pressure), the flow field was over-determined,
and this redundancy permitted an estimate of the accuracy of the
hot-wire measurements. Further applications may be found in

Part II of this thesis.
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II. EXPERIMENTAL METHOD

iI.1. Eguipment

The measurements were performed in Leg 1 of the GALCIT
hypersonic wind tunnel at a nominal Mach number of 5.8. This tunnel
has a 3 in. by 3 in. core of uniform flow. Other features of this
facility are described in Reference 9. The stagnation pressure was
varied between 0 and 95 psig. at a nominal stagnation temperature
of 226°F. Because of the tunnel wall boundary layer, the actual test
section Mach number varied with stagnation pressure as shown in
Figure 1. Figure 2 shows the variation of stagnation temperature
with pressure which was introduced by the automatic temperature
regulation system.

Under certain conditions, free-stream turbulence may effect
the measured heat transfer rate. Demetriades (10) found that the
free-stream integrated r.m.s. mass-flux and temperature fluctua-
tions in Leg ] were on the order of 0.4 per cent. The dominant
turbulence scale, given by the velocity divided by the frequency,

was on the order of 103 to 105

times the wire diameter, and by the
criteria of Reference 12 should have caused no measurable effect
on the heat loss. Additional quantitative turbulence measurements
are necessary before a similar statement can be made about the
wake results.

To deterinine the local Mach number, pitot pressdre meas~

urements were made within 0.5 in. of the hot-wire with the .063"

1.D. stainless steel probe shown in Figure 3, and the local Mach
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number computed assuming isentropic flow between the reservoir
and test section. The stagnation pressure was measured by a total
head tube directly upstream of the throat. Traverses normal to
the flow direction showed that the local Mach number at the wire
wasg identical to that measured by the probe within 0.5 per cent.

Stagnation temperatures were measured l inch ahead of the
nozzle throat with a Pratt and Whitney type iron-constantan thermo-
couple, and all computations were made assuming isentropic,
adiabatic expansion to the measured test section Mach number.

The detachable hot~-wire holders consisted of a conical
brass body, a thin double wedge brass support blade, and two sew-
ing needles to hold the wire. The needles were attached to and
electrically insulated from the brass blade by epoxy resin; Figure
3a illustrates the holder configuration. The complete hot-wire
assembly, including holder, sting support, and total pressure
tube is shown in Figure 3b. The hot~-wire was soft-soldered to
the needle supports within . 002" of the tips; a typical installation
is shown in Figure 4. Details of the electrical connectors and
head assembly may be found in Reference 10.

Figure 5 is a drawing of the calibration oven used to deter-
mine the temperature-resistance relation of the wires. Heat was
supplied by a helically wound nichrome ribbon, and sufficient
thermal lagging was used to make the temperature gradients
within the bven negligible. An iron-constantan thermocouple
placed 0.25 inch from the wire gave the oven temperature. Meas-

urements were made only when the oven had reached thermal
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equilibrium (temperature change less than 0.2°F per minute).

The electrical instrumentation consisted of a precision lLeeds
ahd Northrup "K-2" potentiometer accurate to one part in 5, 000,
five-45 volt dry cells to supply the wire current, a variable series
resistance for current contrel, and an auxiliary milliammeter and
bridge as shown in Figure 6. Measurements of the potential drop
across the wire and the standard one chm resistor were made with
the K-2 potentiometer, giving the wire current and resistance. All
readings were corrected for the small line resistance between the
hot-wire and the potentiometer. During each series of measure~

ments, the current was constant within 0.02 per cent.

1I.2. Measurements

To determine the Nusselt number and recovery temperature
of the wire, the voltage drop across the wire and écroas a standard
1 ohm resistor were measured for several values of wire current.
The resistance was then plotted against ia to determine the slope
and intercept at zero current. Extreme care had to be exercised
in achieving constant tunnel stagnation temperature, since a change
of 1°F was easily detectable in the R vs. ié plot.

In performing the wake test, a continuous curve of wire
temperature ve. position in the wake is desired for a fixed wire
current, and a Moseley Autograph x-y plotter was used for this
purpose. The tiaverse mechanism was geared to a linear resis-

tance coil, and a small constant current through this resistance

created a voltage drop proportional to the traverse position. This
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signal and the voltage drop across the hot-wire were the two elec-
trical inputs for the plotter. Scale factors were obtained by meas~
uring the voltage drop across the wire with the K-2 potentiometer

at two known values of (y/D).

11.3. Wire Calibration and Annealing_

The resistance of each wire was measured at several tem-
peratures in the calibration oven. At the end of each series of runs,
the wire resistance at room temperature was again measured; if
the resistance had changed more than a few tenths of a per cent,
the data were discarded. Several wires were calibrated both before
and after prolonged testing to determine the effect of annealing and
exposure on the temperature-resistivity coefficient.

All data were obtained using 0.00010 inch diameter Pt - 10
per cent Rh wire from a single spool. (Some preliminary tests
using 0.00005 inch diameter wire are discussed in Appendix E.)

No attempt was made to measure the wire diameter directly, since
it was felt that the manufacturer's* érawing procedures were of
greater accuracy than any available optical measurement technique.
However, each wire was examined visually under a microscope to
detect any macroscopic irregularities. The mcunted‘ wire resistance
and length were also carefully measured and checked against the
manufacturer'quuoted'reaistance of 11,580 ohms/ft. at 68°F. The
mean deviation of the unannealed, installed resistance from this
reference value was less than 1 per cent, indicating high uniformity
of the wire.

#Sigmund Cohn, Mt. Vernon, New York.
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Through prolonged use, the wire resistance increased between
2 and 8 per cent. Since it was necessary to limit the increase be-
tween successive calibrations to a few tenths of a per cent, several
special tests were conducted to determine the major factors involved.
It waé found that a large part of the resistance shift could be eliminated
by heating the wire to a dull glow for several minutes prior to tunnel
use. This result is in substantial agreement with the experience of
Spangenberg (cf. Reference 18, Figure 9). To check the influence of
starting loads, one wire (% = 325) was subjected to seven consecutive
tunnel starting cycles at 20 psig while immersed deep within the side-
wall boundary layer. The resulting resistance change was less than
0.1 per cent.

It can be inferred that the primary causes of resistance change
are associated with exposure to the free-stream pressure loads while
the wire is at an elevated temperature. Further observation showed
that the two primary factors were: (1) large step-wise increases in
resistance if the previous maximum temperature and pressure of
operation were ezé;ceeded ["deformation” phenomenon]; (2) a much
smaller increase which was a function of time ["creep" phénomenon] .
Since all wires were initially normal to the flow direction, a certain
amount of stretching was to be expectéd. Figure 4 shows a typical
deformation caused by an overheat of about 0.8 at 90 psig stagnation
pressure. Higher overheats resulted in larger wire curvature and
were not used in this investigation. The creep phenomenon was neg-~

ligible after the first few hours of tunnel exposure.
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Two factors limited the aspect ratio of the wires. First,
it was found that wire curvature increased with aspect ratio. Sec-
ond, for aspect ratios greater than 375, wires of 0.00010" diameter
were easily broken during the tunnel starting process. Since it was
- desired to keep the end loss corrections as low as possible, the range
320 = é-é 360 was chosen as an acceptable compromise.
The temperature coefficient of resistivity @, varied between

-3 (‘F)'l at 0°F, with a mean value of 0,91 X 10'3.

0.88 and 0,93 X 10
{.e. between 1.54 and 1.63 X 107> (°C)™} at 0°C, with a mean of

1.59 X 1073, Equilibrium wire temperatures were less than 270°F,
and resistance varies linearly with temperature in this range. Cali-
bration data were taken between 7¢ and 400°F, and the measured
resistivity coefficient @, was accurate to about 1. 5 per cent for

each wire. Several tests indicated that the resistivity coefficient
| was not affected by tunnel exposure, provided that the wire had
been initially annealed to a dull glow in still air.

Under certain conditions, reversible strain gage effects

may introduce systematic errors into the equilibrium temperature
measurements. Using the relations of Morkovin (Reference 11,
p. 44), the resistance error AR for this experiment caused by
strain gauge effects would be (AR W/Rw)'vlo"ﬁ to 10'5. or consider-~
ably less than the uncertainty of the wire calibration. A more
serious error could be introduced by differential thermal expan-~
sion between the wire and the support head. However, no evidence

of this effect was present in the temperature calibrations, and
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gsince tunnel operation was less severe from this standpoint than
the oven calibration, it was assumed that thermal strain was neg-
ligible.

In Appendix A, the correction factors for heat loss to the
wire supports are derived. This analysis is carried through with
the support tempeiature as a free parameter, and shows that for
large end loss correction the support temperature has an important
effect on both the Nusselt number and recovery factor. Depending
upon the tip shape, thermal conduction, and free-stream Reynolds
number the effective value of 1 = (Tg/To) should lie between .85
and 1.0, and should vary with the wire attachment location. Since
the recovery temperature correction was quite sensitive to Ngs 2
special test (see Appendix C) was conducted to measure this
parameter. The value of n g Vas found to be constant over the
complete range of tunnel conditions encountered, and equal to
0.903 £ .005. This value is approximately equal to the calculated
laminar boundary layer recovery factor for flow along the needle

downstream of tie stagnation region.
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‘III. DATA REDUCTION

The largest portion of heat transferred from a blunt body is
in the vicinity of the forward stagnation point. At high Reynolds num-
bers and Mach numbers, the appropriate temmperature for evaluating
viscosity and thermal conductivity is that existing behind a normal
shock at the free stream Mach number. At low Reynolds numbers,
a distinct shock wave does not appear; under these conditions, the
results of free molecule theory (8) may be conveniently expressed
using fluid properties evaluated at the stagnation temperature. At
high Mach numbers, the temperature behind a normal shock is
close to the stagnation temperature and the two evaluations will
give equivalent, but not identical, correlations. In this thesis,
the heat transfer data are correlated using the Nusselt and Reynolds

numbers
Nuo = (hd/ke) , Reo = (p U dl/ky . M

where p, and kg are the air viscosity and thermal conductivity eval-
uated at stagnation temperature. This form offers distinct advan-
tages when the hot-wire is used as a measuring instrument in
non-uniform flow fields,*

| All hot-wires of finite length lose a certain amount of heat to
their supports. The quantity Nug represents the heat transfer rate
for a wire of iﬁﬁnite length, and is related to the measured Nusselt
number Num' by the relation

# Morkovin (11) and Collis and Williarms (1 3) discuss this problem in
more detail.



i R Ny

where \@N is the Nusselt number end loss correction factor, izR
is the measured Joule heating, and (TW“Tawm) is the measured
temperature potential. Similarly, the recovery ratio n, for an

infinitely long wire may be written

aw*/T") = ¥g Ny = ¥R (T /o) (3)

where ‘IJR is the recovery ratio end loss factqr. In Appendix A,
the quantities \I‘IN and ¥ are derived in detail. They depend pri-
marily on the wire aspect ratio and measured Nusselﬁ number;
for large aspect ratios and Nusselt numbers, ¥, a.né ¥p are close
to unity.

The present measurements were conducted using very small

heating currents. For i =0 and a linear temperature-resistance

relation,
z ,
i Rm sa R R ia ) eramer
lTw'xaw’ R “Rawm (ﬂR/diz)izo
and Eq. 2 takes the simplified form
mr Ramer
Nu = (m;'") DT . (2a)

(@R /ai),_

A plot of R vs. iz {e.g. Figure 1l1) allows the quantity (dr/’diz)i=@
to be determined accurately.

For high Reynolds numbers, the recovery ratio 7_=(T_ /Te)
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has been shown experimentally to be a function only of Mach number
{11); N, decreases from 1.0 at M = 0 to 0. 95 for Mach numbers greater
than about two. This behavior is explained by the well-known hyper-
sonic "freeze" or Mach number independence principle, which
recogniges that the viscous and inviscid flow fields become indepen-
dent of Mach number if the Mach number is sufficiently large. For
blunt bodies such as the cylindrical wire considered here, changes

in the flow field are small beyond a Mach number of three.* A value

1. = 0.950 was used as a reference for the present experiments and

c
the data of Laufer and McClellan (1) and Sherman (2). Stalder et al. (5)
found n_ = 0.96 , and this value was used in interpreting their results.
The high Reynolds number relations described above repre-.
sent the limit of continuum flow. For free molecular flow, the heat |

loss and recovery temperature of an infinite, perfectly conducting

cylinder with no radiative cooling are given in Reference 8:

-1) g(sl)
Nug = @ Reg Pro {(~—0—) (4)
3_(3) i fo)
_ -1,.2,-1 8 ,
ng = (T, /To) = 0L+ Y= M%) Foy (5)
8 = W/ M (6)

FTewlik and Geidt (14) have measured the angular variation of heat
transfer coefficient and recovery temperature on a cylinder at Mach
numbers of 1.3 and 6.0. These distributions, which are similar to
those obtained at low speeds, may be used to calculate the tempera-
ture Tgaw which a cylinder of infinite thermal conductivity would
assume for no net heat transfer. As expected, the resulting values
of Tow(M) agree well with the hot-wire measurements. Additional
data reported in Part Il of this thesis confirm the temperature dis-
tributione found by Tewfik and Geidt, and the conclusions given
above.
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where i(sl) and g(si) depend only on the molecular speed ratio 8 and
the number of excited degrees of freedom of the medium. These func~
tions are tabulated in Reference 8 for both monatomic and diatomic

perfect gases. As M—~oo, Eqs. 4 and 5 approach the limiting forms

Nug = %)am Pro (4a)

‘a

and

ng = () (52)

Ag in the case of continuum flow, the Nusselt number and recovery
ratio become independent of Mach number as the Mach number in-
creases.’®

The fact that the recovery ratic in continuum and free mole~
cule flow obeys the Mach number independence principle suggests

that the normalized recovery ratio

(7)

is a unique function of the Knudsen number for M sufficiently large.
At lower Mach numbers, ﬁ* might depend on additional parameters
involving M and Re. Cybulski and Baldwin (7) report that for sub-
sonic flow the continuum recovery ratio persists to quite high Knudsen
numbers. However, the recent data of Vrebalovich (33) shows that

Mg (an) is iudependeni of Moo for Mm 2 0.4. This is discussed in

Section IV. 4.

#F Reference 15 gives several additional examples of the Mach num-
ber independence principle for both continuum and free molecule flow.
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All computations of flow properties were made using y=(7/5)

and the Sutherland viscosity formula (with T expressed in °R)

3/2
b= 2.270 gy X107, R2pee ®
: t

Values of air thermal conductivity were obtained from Hilsenrath
and Beckett (16), and the wire thermal conductivity was taken from
Reference 17, with the data linearly extrapolated to the measured
mean wire temperature.

A derivatién of the end loas corrections appropriate to tran-
sitional flow is given in Appendix A. This analysis assumes that
the wire temperature is radially uniform, wire resistance is a
linear function of temperature, and the heat transfer coefficient
h = Nug ‘(ko /4) is constant over the wire length. For convenience,
the supports are taken to be equal in temperature, although this
restriction is not essential. The relation between the measured
Nusselt number Num and the value Nugp for an infinite wire may
be expressed as

1+ 8t,)

¥, =

N g€ ) 9

{1 + st)

while the recovery ratio end loss correction factor is given by

Y ~ " ~ -
@R=u.1={lam(-§.)](l-w) lx . (10)
ﬁm L . nm

Here Mg is the normaliged support temperature, L is the measured
recovery ratio, [t /(t,-¢)] ie the ratio of the measured wire over-

heat to the overheat of an infinitely long wire at the same current,
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st and st, represent normalized resistances, and ® is a quantity
which depends primarily on the wire aspect ratio and Nusselt num-
ber; ® represents the zero overheat value of w. The quantities
[t/(t,~€)] and [ w/(1-w)] are given in Figures i3 and 14 as functions

of the two parameters

p=(fd)[(kokw (res) 11
€=/ /“’Aum(us?)-[ a
and
ve-btotom) el (a2
, 1-3)

It is shown in Appendix A that the correction factor ‘EFN does not de-
pend strongly on overheat; for 7= 0, Eqs. (9) ~ (12) assume the

more tractable form

k4 -t 1+ ¢

N (t*-é ) (L+ées) , (92)
i

Yp =1t - —=) () (10a)
m

L= (2/)[(o /e ) Nu_ (1+ €5)] 1a)

v =-dt s (1 2a)

where
€ = (n, -nm)< <1
tg = {ng = n k<l

and 8 is a constant of order one. As [, decreases, both \IfN and ‘I’R ’

depart from unity; the support temperature parameter v plays a
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minor role in determining the end loss corrections, although it
must be considered if the corrections are large.

These corrections were applied to the present data and to
the recovery factor data.'of Laufer and McClellan (1) at the lower
Reynolds numbers of their investigation. As discussed in the fol-
lowing éectian, this correction was primarily responsible for
unifying the results of the several investigations of recovery tem-
perature in sugersonii: flow.

For the present data, the measured value Mg = 0.903 was
used with the measured values of L and Num to compute the end
logs correction. A slightly more cbmplicated procedure was re-
quired in interpreting the results ‘of Laufer and McClellan (1).

In that investigation, measurements of the Nusselt number and
recovery factor were made with different wires; the Nug data
were obtained with wires of aspect ratio between 400 and 550 and
the recovery temperature data were obtained using aspect ratios .
of the order of 225. The Nusselt numbers reported in Reference |
include a small (less than 5 per cent) end loes correction; for
such small éorrecti&ms the formulas used are essentially identical
to those derived in Appendix A.- The data given in Reference 1,
therefore, represent VNuo in the present nomenclature.¥* The re-
ported recovery ratio, however, represents L and requires a
correction to account for support conduction.

The wire supports used by Laufer and McClellan (1) were

# The actual pa'rameters used by Laufer and McClellan (1) were
N“z and Rez, and conversion to Nug and Reg follows directly.
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equivalent to a two~dimensional wedge of 7° included angle. Using
the observation (Appendix C) that the support temperature is equal
to the laminar boundary layer adiabatic wall temperature, Mg could
be calculated explicitly. Since Num was not known, an iterative
computation process was adopted which used as input the known
quantities n g T and the wire Reynolds number Reg. With Reg
known, Nuy was taken ﬁ'om the heat loss correlation and the value
of Num was computed. The procedure for obtaining Num and n,
with Nup and L known is analogous to the determination of Nuy and
Ny With Num and L. given.
The present free stream data were subject to end loss cor-

rections in the ranges .703 £ ¥, 5 .833 and 1. 2082 '\ER S 1.633.

For the low Reynolds number wake tests, values .59 & \E!N = .68
and 1.70 3 '\Z;R S 2.06 were used. In view of the appreciable end
losses encountered, it should be emphasized that the important
thing is not the magnitude of the corrections per se, but the accu-
racy with which these corrections are known. The largest uncertainty
lies in the actual end conditions of the wire, as charaéteriaed by 1 o
for this reason, 7, was measured directly in the present investiga-
tion (Appendi;c B). This parameter is sensitive not only to the
shape and material properties of the support but also to the flow
field around the tips. In transonic or non-uniform flow fields, the
determination of an effective value of Mg is a formidable problem,
~a8 Sherman (2) has pointed out.

No correction was made to the data for radiation effects

since calculation showed that the error in both Nug and ﬁs was less
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than one tenth of one per cent. The correction is roughly propor-
tional to '(Twé/Nu), and may become appreciable for high overheats
or extremely low Reynolds numbers. At low temperatures, say
Tw< 400°F, it may easily be shown that the radiation correction
will always be a minute fraction of the end loss correction.

The raw data from the wake traverse consisted of a series
of continuous curves of wire voltage vs. voltage ocutput from the
traverse mechanism. ~'I'hoa voltage scale was established by two
calibration measurements with the K-2 potentiometer at known

‘values of (y/D). Using this calibration and the measured value of
wire current, the wire resistance was computed for several rep-
resentative stations within the wake. Figure 11 shows the measured
wire resistance as a function of wire current.

Two thermodynamic measurements were obtained with the
hot-wire; these were [dR/d(iZ)] {zo @Rd the zero current intercept
Raw’ both of which were taken from Figure 11.* Pitot pressure
and static pressure across the wake were also measured separately.
Thus, the measured thermodynamic quantities were more than suf-
ficient to specify the flow completely, and this redundancy permitted
an estimate of the accuracy of the combined measurements. A
description of the computation procedure is given below.

From the four quantities [dR/d(iZ)] i=o (i.e., Num).

#* The small error incurred in taking the slope of the R vs. i2 curve
rather than the correct slope of R vs. i“R was neglected in this pre-
liminary investigation. However, the refined measurement tech-
niques used in Part Il of this thesis justified the use of the R vs. iR
slope for all data.
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Raw (i.e., Téw)' Peo and p, four groups of three independent quan-
tities may be formed, and any one of these groups would provide
sufficient data to determine the state of the flow uniquely. Any two
groups would provide an independent, redundant calculation; in
certain cases, the accuracy émd convergence of the iterative solution

may depend strongly on the choice of parameters.* For purposes of

illustration, the following groups of variables were chosen**:

Group I  [dR/di%]

i=o awm’ P

Group 1 ptZ, Ran. P

The computation procedure is similar in principle to that which
would be used for any two groups of three variables.

To interpret the local values [dR /di‘?’] {=o in the wake an
empirical relation between Nup and Rey was required for the range
.34 < Reg < . 66, only part of which was covered by the present
free-stream measurements. ¥For the lower Reynolds numbers,
the calibration curve given in Figure 8 for M > > ] was extrépolated
to Reg = .315 using a smooth curve which asymptotically appr’oached
the free molecule heat transfer law (Eq. 4), with @ = 1.0. The
justification for this choice of & is given in the following section.

Interpretation of the measured recovery temperature was made

#® Several examples are cited by Morkovin (11) to illustrate this
point.

*% Quantities without superscripts are functions of distance from
the wake centerline, while ( )' signifies the measured value at
the edge of the wake mixing region.
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using values of n,(Kn) given by the solid curve of Figure 10.
The static and pitot pressure measurements were obtained
by John F. McQCarthy, Jr. of this laboratory. Free stream condi-

tions for the hot-wire and pressure traverses were

M x/D Re
Hot-wire 5.74 9.0 1.75 x 10%.
Pressure 5.74 9.0 2.60 X 1{3‘1

Hot-wire fluctuation measurements showed that the wake was lami-
nar in both cases, and the assumption was made that the local
pressure profiles were similar for the two tests. The Reynolds
number effect is discussed more fully in Section V.

Data reduction was most conveniently carried out by assum-~
ing distributions of the unknown flow quantities across the wake,
computing the end loss corrections based on these assumed values,
and from the measured quantities and the end loss corrections ob-
taining improved guesses for the unknown quantities. For Group I,
this iteration was performed using M and Ty as the unknowns; the
calculation for Group 1l used Ty as the iterative quantity. In each
case, only three hand iterations were required to obtain convergence.

Similar measurements in the "near" wake of a cylinder,
covering the region between separation and (x/D) = 5. 00, are re-
ported in Part 1l of this thesis. For that investigation, the meas-

ured quantities were (dR/diZ)i=o » R , and P2 In order to check

awin
the assumption of constant pressure in the separated region, calcu~

R , and an assumed

. L&
lations were also made using (dR/di )i=° v R
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value of p. Since about 1500 individual data points were involved in
this investigation, it was found desirable to develop an IBM 7090

data reduction program. A description of this program is given in

Appendix B.
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IV. RESULTS AND DISCUSSION

IV.l. Heat Transfer Measurements

In attempting to compile an empirical correlation of hot-wire
heat transfer data over an extended range cﬁ' variables, the investiga-
tor is faced with two problems: the number of experimental papers
on the subject is quite large, running well over fifty, and the results
of investigations conducted under seemingly identical conditions differ
by as much as 40 per cent. The effects of wire overheat and stagna-
tion temperature {particularly in the transonic regime) have yet to be
fully resolved (19). |

| Theoretical studies are of limited use in preparing a heat
transfer correlation. The solution of Cole and Roshko (23) for con-
tinuum Oseen flow agfaes well with the experiments of Coliis and
Williams (24) at low Reynoldes numbers. Levy (25) has considered
the Oseen flow problem with temperature-jump boundary conditions,
and the results agree qualitatively with the experiments of Cybulski
and Baldwin (7). However, the velocities and Reynolds numbers
covered by Oseen theory are quite small.

Free molecule analysis has provided what appears from
Eq. 4tobe a straighﬁorward calibration for all flows where the
Knudsen number is sufficiently high. The fact that the accommeoda~
tion coefficient & is an unknown parameter has been a major weak-
ness in all attempts to apply this theory to a given set of data*. It
is not uncommon to find investigations with an experimental scatter

# An excellent appraisal of the pfoblems of momentum and energy
accommeodation is given by Hurlbut {26).
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greater than 30 per cent in which the authors infer a specific value
of accommodation coefficient by comparing the asymptotic behavior
of their Nupy - Reg curve to Eq. 4, and ascribing the difference to
incomplete accommodation.

Figure 7 has been prepared as a guide to the experimental
variation of Nusselt number as a function of Reynolds number and
Mach number in the range 0.1 SReo 5 100.

The figure was compiled from the data of References i, 7,
20, 21, 22, and 33, and the present investigation. Particular weight
was given to the correlation of McAdams (20} at M = 0, the data of
Christiansen {22) and Vrebalovich {33) at transonic speeds, and the
data of Laufer and McClellan (1) and the present investigation for
M > 2. The data of Spangenberg (19) was used as a guide for the
high Reynolds number transonic region. Within the Reynolds num-
ber range 1 SReg <100, the data of Baldwin (21} and Cybulski and
Baldwin (7) exhibit the same qualitative Nup - Regp relation shown
in Figure 7, but their data indicate an asymptotic approach to free-
molecule theory based on an accommodation coefficient of about
ohe half. For air, this result is not in agreement with the other
experimental results cited above, and may be due to the large var-
jations of Nuy with overheat that their data exhibit. The correlation
given in Figure 7 is intended to represent Nuy (Rep, M) at zero
overheat (7— 0); however, the effect of overheat is not large (see
Appendix D). The curves shown in the figure were extrapolated to
Reg = 0.1 by fairing a smooth monotonic curve between the available

experiments and free-molecule theory with an accommodation
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coefficient of unity. An analytic expression for the correlation may
be found in Appendix B.

The heat transfer data obtained in this investigation are pre-~
sented in Figure 8. These data agree well with the measurements
of Laufer and McClellan (1) at Reynolds numbers Reg greater than
three. One may infer from this agreement and the Mach number
independence principle that the solid line shown in Figure 8 repre-
gents the Nuy, - Rep relation for Mach numbers greater than about
three.

- For comparative purposes, the results of free molecule
theory (Eq. 4) and the extrapolated slope of the high Reynolds num-
ber data are shown in Figure 8. At high Reynolds numbers, the
Nusselt number becomes proportional to (Reg )%, while Nug ~ Reg
for Reg < <1. The presént measurements asymptotically approach
the ffee molecule result with an accommodation coefficient & near
unity. For the heat transfer tests in air and argon by Christian~
sen (23), Weltman and Kubns (6), and Wong (3), an accommodation
coefficient of unity represents the data within the experimental
error. Experimentally, it has been found that surface conditions
are of primary importance in determining the degree of enexrgy
accommodation (26}). The recent review of Wachman (34) indicates
that ¢ increases with an increase of adsorbed surface gas. It has
also been pointed out in the literature that these surface effects
may vary with the energy of the incident molecule and the body

temperature.
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All data shown in Figure 8 are based c;n the measured Nusselt
number at zero overheat (the effects of overheat are discussed in de-
tail in Appendix D). In free molecule flow, the surface temperat@ra
enters the heat transfer relation only through its effect on the accom-
modation coefficient. Ii' the accommodation coefficient were unaffected
by surface temperature, the cold wire results of Christiansen (22)
and the present results should agree closely (except for the small
Mach number variation given by f(sl)/sl in Eq. 4). Figure 7 indi-
cates that the hot wire and cold wire data agree well up to a Reynolds
number Rey of about one. |

For high Reynolds number flows, a large part of the heat
transfer to the body ccbaurs in the vicinity of the forward stagnation
point. For a perfect gas, the heat transfer at the stagnation point

of a cylinder in supersonic flow is closely represented by (27)

Pra To “‘W .06
Nuy = 0.50 VEEQ (W) (“T—" w) . (13}
_ w o Cw

Equation 13 indicates that the effects of overheat at high Reynolds num-
bers should be amall over the range of conditions encountered in the
laboratory.

Although no complete solutions are available for a cylinder
in high speed flow becauée of the lack of an adequate theory covering
the region of separation, many analyses are available for heat trans-
fer near the stagnation point of a blunt body. It has been pointed out
that both the hot-wire data and the stagnation point boundary layer
solutions exhibit heat transfer coefficients proportional to vReg at

high Reynolds numbers, and the behavior of the stagnation point
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solutions with decreasing Reynolds number should agree well with
the hot-wire measurements.

Two recent investigations by Probstein and Kemp (26) and
Van Dyke (32) have used the Navier-Stokes equations to describe the
flow field near the stagnation point of a blunt bedy in hypersonic
flow. These analyses show that conventional high Reynolds number
boundary layer theory zimst be modified as the boedy Reynolds num«~
ber is decreased. First order corrections may be present due to
external vorticity, boundary layer displacement, surface 'velacit'y
and temperature jump, and body curvature. For a cylinder, the
vorticity along the zero streamlizie is zeroc in the inviscid flow, so
the vorticity effect on heat transfer is of second order. However,
the baMary layer displacement and curvature effects both produce
a first order decrease in surface heat transfer, compared with the
conventional high Reynolds number value. Slip effects would also
decrease the heat transfer rate. Probstein and Kemp (26) have
proposed a merged layer analysis based on continuum relations
for the range 30-$Re° £100. The results agree qualitatively with
the present measurements. In view of the large body of experimen- |
tal data now available for cylinder heat transfer, recovery tempera-
ture, and drag; an extension of existing theory for axisymmetric
bodies to the case of a two-dimensional stagnation point should prove
very enlightening.

The slope of the Nug -~ Reg relation is a quantity of consider-

able interest. The exponent n in the relation
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n
Nup ~ Reg » (14)

correlates the results of several independent investigations better
than the absolute magnitudes of the observed quantities. In Figure
9, the exponent n is shown as a function of Reynolds number and
Mach number for several investigations.® The present measure~
ments and those of Laufer and Mc Cleilan (1) were used for M > 2,
while selected results of Christiansen (22), Cybula’ki {7), and Bald~
win (21) are ghown for M < 1. At high Reynolds numbers, the
exponent n is %; in the limit of Kn =0, the free molecule relation,
Eq. 4, shows that n = 1. A third relation, derived from the Oseen
solution of Cole and Roshko (23), is applicable when M/Re << 1

and Reg << 1; in this instance, the exponent is of the form

1
8
1og (rer P,

n= {15)

Collis and Williams' (24) experiments agree very well with Eq. 15
for 0.01 < Reg < 0.3,

At high Mach numbers, the exponent n is seen to vary mono-
tonically between the continuum and free molecule values of £ and 1.
The measured slope beginsto depart from the continuum value at a
Reynolds number Rep of about 200 for an insulated wire. A compar-
ison between Christiansen's (22) data and the present measurements
indicafe that the departure from the continuum heat transfer Iaw'

occurs at a slightly lower value of Rep if the wall is highly cooled;

¥An analytic expression for n(Rep, M) ie given in Appendix B.
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this may be explained by the fact that a cool wall decreases the
boundary layer displacement effect at a given Reynolds number.
For low Reynolds numbers, the approach to the free molecule heat
transfer law does not appear to vary with wire overheat, although
the data are not sufficient to resolve this question completely.

Willis (2‘3;) has treated several problems in the near free
m::lecule regime using an iterative solution to the integral form
of the Boltzmann equation. This approach is equivalent to the so-
called first collision theory if only the first iterate is considered.
Willis' results for a two-dimensional strip normal to a rarefied
flow should be identical in form to the solution for a cylinder nor-
mal to the flow. By writing a heat balance for the body, the
resulting equations may be solved for the departure of the Nusselt
number and recovery temperature from the free molecule values
as a function of the free stream Knudsen number. The results
may be expressed as (@ = 1)

Nu

(Noo) =ltpx

Free Molecule

aw o 1:&%%

aw)F ree Molecule

T

where

2 1 1
H =7 Kn %8 'Kn

Ni'Nif '

X= SN

(16)

(17)

(18)

(19)
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ﬁif
Here N, is the incident molecular flux, 2, is the incident energy
flux, and ( )£ indicates the value for u -0,

Villis has evaluated the parameters ¢ and X for a two-~
dimensional strip, and finds that they depend on the molecular
speed ratio, the body temperature, the molecular model, and the
number of degrees of freedom of the gas. ¢ and ¥ are weak func-
tions of the body temperature if the overheat is small; the results
are more sensitive to body temperature at higher values.of the
molecular speed ratio ;. For s oo, Willis has computed y
and X as a function of body temperature for both the hard sphere»
and modified Krook molecular modela. For an insulated body

{T

w Taw)‘ $ 5 .42 and X 5 .11 for the modified Krook model

while s = .78 and X = .48 if the hard sphere model is used. From
equation 16, it may be seen that the departure of the Nusselt num-~
ber from the free molecule result is a strong function of the
molecular model employed. Eqs. 16 and 17 agree qualitatively
with the present experiments if ¢> x > 0.

Several interesting conclusions may be drawn from the
above analysis., First, the small parameter in near free mole-~
cule flow for a two-dimensional body is (1/Kn) log (1/Kn) rather
than the quantity (1/Kn) which pertains to axisyrmametric bodies.
Thus, the range of ;ralidity of the two~dimensional analysis is

restricted to higher Knudsen numbers than the axisymmetric

(20)

counterpart. Second, for viscosity proportional to ('.{‘)'gw , Kn~(1/Reg)
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at high Mach number and the analysis predicts that the Nuy ~ Rep
relation at high Knudsen numbers should, as expected, become
independent of Mach number.

Schaaf (35) has recently compared the numerical results
of Willis' theory to the experimental data given here, and to the
results of cylinder drag measurements at low Reynolds numbers
(36). In both cases, the theory departs from the free-molecule
values at Knudsen numbers on the order of 100, whereas the‘ex-
perimental data show no significant departures above a Knudsen
number of about 10, Using a normalization similar to that employed
in Figure 10, Sherman (37) has shown that the drag coefficient

GD - ((.3]:},)c

35 ) !CDS “‘ebs
{ ¢

is a strong function of Mach number, in contrast to the results ob-
tained for the recovery temperature parameter -ﬁa (see Figure 10).
Constant values of Eg are more closely associated with constant

values of Rep, a reaﬁlt which is not surprising in view of the inti-

mate relation between cylinder drag and heat transfer.

IV.2. Recovery Temperature Measurements

Measurements of the recovery temperature of a cylinder
placed normal to the flow have previously been made at high Rey-
nolds numbers dp to a Mach number of 4.5. The excellent work
of Laufer and McClellan has shown that the recovery temperature
is independent of Mach number above approximately 2. A justifi-

cation of this effect has already been given.
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| In the transitional regime, the measurements reported in
References 1 and 2 indicated that at Knudsen numbers of about 0.1
the recovery temperature begins to rise above the high Reynolds
number value, while at Knudsen numbers greater than 10, the full
temperature rise predicted by Eq. 5 is attained. However, at
Knudsen numbers of about 1 aﬁd at roughly the same Mach number,
the two investigations reported significant differences in the re-
covery factor. '

The present investigation was undertaken in an attempt to
resolve this apparent discrepancy and at the same time provide
additional recovery temperature data for use in steady~-state hot
wire work. The results are shown in Figure 10, using the nor-
malized recovery ratio n, and the free-stream Knudsen number
aé parametere. Fortunately, the recovery temperature for a cyl-
inder is independent of the accormmodation coefficient (provided
that the wire is infinitely long!) and rapidly approaches an asymp-
tote as the Mach number increases. Therefore, since ?17,, = 0 for
Ty = 7, and My =1 forn, = 7g, all investigations should agree at
least in these two limits.

The shaded area representing the data of Laufer and Mc~
Clellan defines the limits of experimental scatter of nearly 100
separate measurements made over a large range of Mach and Rey-
nolds numbers. Considering the range of parameters studied, the
data are extremely consistent. However, the aapect ratios of the
wires used in their recovery temperature study were on the order

of 200, and at the higher Knudeen numbers these wires were
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subject to significant end losses. Using the relations derived in
Appendixz A several representative data points were corrected for
support conduction and plotted in Figure 10,

By combﬁning the corrected data of Reference 1, the results
of Sherman (2), and the present measurements, a continuous tran-
sition of the normalized recovery factor is obtained between con-
tinuum and free molecule flow. From a consideration of the Mach
number independence principle, this curve should be valid for all
Mach numbers above approximatelyltwo. Gonsidering the sensi-
tivity of the normalized recovery ratio to experimental error, the
correlation appears to be very good.

Vrebalovich {33) has recently extended the available re-
covery temperature data to include the transonic regime. These
data cover the range 0.4< M < 1.2, and are also shown in Figure
10. It may be seen that the variation of the normalized recovery
ratio m, is both qualitatively and quantitatively similar throughout
the complete suﬁaonimsupersénic ~hypersonic regime which has
been investigated. The single curve shown in Figure 10 agrees
with the data within % 10% for all Mach numbers. Since the differ-
ence between g and 7 c rapidly approaches zero as M decreases
below one, this curve may be used as an empirical calibration
relation for interpreting measured recovery temperatures in flow
fields where the stagnation temperature is unknown (see Part 1I
of this thesis for a typical application). The error in the final
stagnation temperature due to Mach number effects should be less

than #1.5% over the complete range 0.4 < M < .
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The behaviof of the %(Kn) relation at small Knudsen num-
bers agrees qualitativéiy with the results of Probstein and Kemp
(28). In the incipient merged layer analysis, they find that the gas
temperature at the stagnation point of a blunt body becomes greater
than the free stream stagnation temperature in the low Reynolds
number continuum range. For large Knudsen numbers, Eq. 17
predicts that the recovery temperature will fall below the free
molecule value if § > X , the experimental data shown in Figure 10
indicates that for a circular cylinder and a diatomic gas, J and X
are nearly equai. Schaaf (35) used the two~dimensional strip re-
sults of Willis (29) to evaluate Y and ¥; he found that the theory
departed from 7, = | at a Knudsen number of about 100, whereas
the data of Figure 10 show that the departure is not significant

above a Knudsen number of 10,
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V. APPLICATION OF THE STEADY-STATE HOT-WIRE
TO WAKE MEASUREMENTS

Several classic experiments have been made using the hot-
wire as a steady-state measuring instrument. These have been
well reported in the cited references, and it is pertinent only to
emphasize that wire calibration is the primary problem in all quan-
titative measurementa.

| The number of investigations utilizing the hot-wire in a
redundant measurement scheme is quite small, and consequently
it was decided to perform an illustrative experiment involving
four measured quantities, two of which were obtained from a hot-
wire operated in the transitional regime. The far wake of a cyl-
inder transverse to a hypersonic flow was chosen both because its
flow field was amenable to hot-wire and pressure measurements
and because of current interest in the thermal wakes of hypersonic
blunt bodies.

The wire used in this experiment had an aspect ratio of
311 and ml; = 0.93 %103 °Fl. The measured variation of wire
resistance with iz is shown in Figure 1l. One important conclusion
which can be drawn is that the instrument sensitivity was quite suf-
ficient to pick out small differences in the R vs. iz relation. This
property is absolutely essential for quantitative interpretation.

The following groups of variables were chosen to represent

the data¥*:

# See Section III for a discussion of the data reduction procedure.
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The distributions of flow quantities across the wake were computed
using the measurements of Group I and Group Il in independent cal-
culations. Thus, the agreement between the results of Group ] and
Group Il provides a measure of the accuracy of the combined meas-
urements.

Figure 12a shows the resaltsrof the stagnation temperature
calculations. Tp' is the measured stagnation temperature at the
outer edge of the mixing layer. Results for the several represen-
tative stations are shown first as "uncorrected" data. By "uncor-
vected" is meant the temperature one would calculate using only the
zero current intercept of Figure 1l and the wire resistivity coeffi-
cient. The wire was subject to end loss effects, and by using Fig-
ures 8 and 10 and the derived end loss corrections, an iteration
was performed to find the true value of Tp. Only three iterations
were required to obtain convergence.

Qualitatively, the behavior of (Tg /To') is similar to that ob-
tained in a high speed boundary layer (1) with Prandtl number less
than one. Bec’aﬁxae of laminar shear and heat conduction processes,
the centerline Mach number for this particular streémwise station
was about 3/4 of M' and the centerline stagnation temperature was
about 0.96 of the outer edge temperature Ty'. The two measured
values of Ty' computed from Groups I and Il agreed within 0.14 per

cent, and were two per cent lower than the {ree stream stagnation
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temperature. This result agrees well with the postulate of isoener-
getic flow everywhere outside the viscous mixing region.

The local maés flow in the wake i8 shown in Figure 12b. For
purposes of comparison, the "uncorrected" hot-wire data is also
shown; the measured heat loss of the wire R aw (dR /di?‘v)"1 is directly
proportional to the local mass flow (pu) if end losses are negligible.
Since the end loss correction increases with decreasing {pu}, the
uncorrect_ed mass flow is higher than the final corrected values based
on the measurements of Group 1.

The agreement between the two values of (pu/p‘u') computed
using Group Iénd Group Il is good. The differences between the
two curves are primarily due to the different cylinder Reynolds num'-
iaera for the hot-wire and pressure tests (see page 21). Subsequent
pitot pressure data have indicated that the higher value of (pu/p'u')
at the wake centerline obtained with Group 1l is caused by the higher |
©,D fér the pressure measurements. At the edge of
the wake, (p'u') for Group I was 0.85 of {p'u') for Group II. Taking
this Reynolds number effect into account, the absolute values of {pu)
from Group I and Group Il were found to agree within 7 per cent
throughout the mixing region. The emall differences between the
two curves of (Ty /Te') vs. (y/D) shown in Figure 12a are also at-
tributable to the difference in Rew. D

The velocity defect in the wake mixing region is shown in
Figure 12c. The agreement between the hot-wire and pressure meas-

urements is ssen to be excellent, and verifies the fact that the differ-

ences shown in Figures 12 and 12b are due to differences in Rew D’
L4
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for (x/D) = 9 and these Reynoldé numbers, the wake is laminar and
kthe velocity defect [(u - uy V(' - uy )] should show little dependence
on Re ©,D"

In summary, this wake survey has shown that the steady-
state hot-wire may be used as an accurate quantitative instrument
when operated at small wire Reynolds numbers, provided sufficiently
accurate calibration relations are available. The hot-wire is capable
of providing two thermodyﬂarhic measurements; only one additional
measurement {such as total or static pressure) is required to deter-
mine the flow field uniquely. |

Part II of this thesis is an application of the hot-wire tech-
niques described above to the near wake of a cylinder in hypersonic
flow. Point-by-point correlations between hot-wire and pitot pres-
sure measurements abtained'under identical flow conditions allowed
the flow field to be mapped out in great detail and with considerably

greater accuracy than the illustrative experiment given here.
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APPENDIX A
END LOSS CORRECTIONS FOR THE TRANSITIONAL REGIME

In im:érpreting hot-wire measurements in low density flows,
it is imperative that the heat loss to the wire supporte be accurately
taken into account. For high Reynolds number flow where the con-
vective heat transfer is large and end loss corrections are small,
the ﬁarivatior; given by Kovasznay (18) is adequate. However, con-
siderable care must be exercised when these corrections amount to

20 per cent or more of the measured quantity.

Fcrmulatian ¢f the Problem

Neglecting radiation, we may write the following heat balance

equation:
rd b (T-T, )-( Hd/dz)(kw Hi (a-1)

where the left side of the equation represents the convective heat loss,
the first term on the right hand side is the net heat added by conduc-
tion, and (iZR} is the electrical disa?patioa. Solution of this equation
involves the following assumptions: |

(a) h, the convective heat transfer coefficient, is a constant
and is equal to the value which would be measured by an infinite wire
at the same current. This implies that the external flow is uniform
along the wire.

(b) The wire thermal conductivity, k. is constant.

(c) Wire resistance varies linearly with temperature:




R R A azr(TvTr)

= 21+ st
ﬁawm bt ax{Tawm'T;y
a, T, |
8 % ITVa (T Ty (A-2)

' awm T

{(d) Each cross-section of the wire is at uniform tempera-~
ture (implicit in Eq. A-1).
{e) Both wire supports are maintained at a temperature

T g = naTo % The boundary conditions are thus
z=tg, t=t,=(T,-T, o )/Te . (A-3)

With the above boundary conditions, Eq. A<l may be integrated to give

' 2
e () LN Qrea)-r?] (1 - 2 EEA

coshv .
| (A-4)
+t cosh 2v{z/4)
8 coshv
where

2 L4 & ky izRawm‘!a
ve = (3 ) Nug - e,

I nd®k o
€ = ﬂ*"nm .

The average wire temperature at any given current is

# This restriction is not essential although it simplifies the mathe-~
matics considerably. The effect of non-uniform flow near the sup-
ports may be partially accounted for by an appropriate choice of Nge
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2
t=| taz=d-(d) ) Nuy 0 e 00?1 - 220Y]
v©g W
-2/2 (A-5)
+t tanhv
8 v

For an infinitely long wire, (£/d) = w, t—t,, [(tanhv/v)] - 0 and

2
T= 1L rdy e 2
limt s¢, = () =)Nug (1 +€8) - .
Ty ik i Wi RN

Eq. A-5 may now be rewritten in the final form

. tanhv ,
. B s v . {A-6)

This relation is identical to that derived by Kovasznay (18) if we let
the support temperature be equal to the wire recovery temperature
(ts = 0) and € = 0. It is easily seen that the measured wire tempera-
ture t will always lie between the temperature t, of an infinite wire

and the support temperature t,- For large end losses (v amall), the

mean wire temperature approaches the temperature of the supports.

Nugselt Number Correction

In order to correct Ny _ to the value Nup for an infinite wire,
we must find the ratio of these two quantities at a given current. In
the present nomenclature, this ratio is

o - {1+ at,)
¥n '—“NN% = (= -
“m "¢ (1487)

. | - {A-T)

Introducing the quantities



-.n

6 - “c =) Mo 1o,

[ig*-') Nu ]
voE ), =it sT)E &
and defining
w = {tanhv/v), @ = {tanh v/%)

we have

€= -t -2 . (A-8)
l-w '

Equations A-6 and A-8 must be solved simultaneouely for t, and in
terms of the measured quantities of the experiment.
For low overheats 7, we may perform an expansion in the

parameter (st). From Eqs. A-6 and A-8,

{t ,e)—(l-*m){u G ,t .t )] ' (A-9)

where

t -~
G = ‘t fe\ @ - “’N . {A-10})
- (l-eil-w)

Using the relations

§

Gvyeglie kot -LsD¥+...0)

tanhv'-tanhv
l*tanhv'ta.nhv

tanh (V-V) =




a certain amount of manipulation leads to the equation

L d

Ge ity of =t (o)1~ JeE)+ .4 LN )
(-2 1-w) o€ §(st)

, {A-11)
X{l »(I ~ tanh v tanb V) {1

W

2 ~ ~~
L e IR Tl I

At this point, we are able to make some definite argumenta about
the magnitudes of the terms appearing in Eq. A-9. The quantity s
will in general be of order 1 and if the ond loes is to be small, then

@ rmust also be small and

o
L0

- <<,
-}l ~w)

Since lta | =_:' | (n, -n) |< <i. G will then be 0(n_ -n ) if the brack-
oted quantities in Eq. A-1l are 0(1). The following approximations
are now rnade;

(a) The quantity (§-1)/(s 'i')» is small, justified by the experi-
mental fact tha_t Nusselt number changes slowly with overheat.

(b) (L - tanh" tanh v)<< 1. This is strictly true only for
large v, but making this assumption places an uppor bound on G

and may be checked a posterjori.

Defining
ve-dt et (/w Log) (Ae12)
(1-w) :
wa have the form
G o~ )[H—. 0 {(at), _é____ {L~tanhv tanhV)}] (A-H;

‘t €

{1 ~w) (st)




Substituting Eq. A-13 into Eq. A-9 and noting that v < < 1, we obtain

the final relations

LR vl e

(1+ st*)

(L + st)

(m-) = (l-w}1 "*“"‘z {1+ ...0(st, ii})
B

{L-w)
+0 v vl
(1 - tanhvtanhv) } + 2(v"w")]

ve-t sf ©/w) L2l
1-w)

t
*E

L = (£/d){(ko /i) Nu 1 e ea) ¥
' , 1+ sat)

T 1
g2 =L(t Nu_ Vimo Lo me Mgl

{A-14)

(A-15)

(A~16)

(A-17)
(A-18)

(A-19)

For th’e, special caase of zero overheat, t =0, t, =€, v= ?,

§ =1, and Eqs. A~6 and A-8 may be combined to give an explic.if

form for the Nusselt number correction factor:

g = 0 -1 - 4 e (5 - e, 007 2)")

Recovery Factor Correction

(A-20)

From Eq. A-8, we may easily find the recovery factor cor-

rections to be

v 1-(n_/n_ )
Vg om s
m {1 - w)

(A-21)



T ~ LR /
Ty == =1+ —2 [14 ] (a-22)
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Computational Procedure

At this juncture, it seems advantageous to illustrate the com-
putational advantages of Eq. A-15. Neglecting higher order terms,

if v and v are taken to be parameters we have the relations
v,
('é;jg—') = f{v,v)
t
v o= i ("""""““"")a ;
{ t*_e ]
and hence
() = £(8, ¥)
te- € ’
ve (L, v) .

In Figures 13 and 14, {T/{t,-€ )] and [w/(l-w)] are shown as functions
of (1/L), with v as a parameter. The guantity S used by Kovasznay
is related to { by

S= lim (/L). , (A-23)
€~0

The analysis of that reference further restricts the solution to cases
where § =1 and t, = 0.

It may be readily seen from Figure 13 that the parameter v
becomes important only in circumstances where the end loss cor-
rection is sizeable. To assess the relative magnitude of v and its |
effect on the solution we take a hypothetical case where the end loss

may be expected to be large. Let



L
z

(o /ey, )2 = . 03125, Nu_ = 0.1600, T=0, £ =1

i

t = -0.120, s = §, (2/d) = 250
e = . 350, Ny = 1.020, Mg < N = 0.210

To start the calculation, assume ¢ = 0. Then from Eq. A-18

(49 o 03125 x 0.4 x 250 = 3.125
1/¢(9) = 3200

From Eq. A-l16, we calculate
v =-% (-0.120) . § = .030
and from Figures 13 and 14 we obtain
‘(F/t*"*i)(@, = 0.571,{ {T?GT](O) = 0.710
Using Eq. A-15 witht = 0andt,= ¢ = 0,
v 9 = 0,57

The first approximation to the correction factor for 'ﬁ# is computed

from Eq. A-22:

T = @A) s1v om0 s 3B -2 a7

and

_
D= g -7 CRRE

= 0.210 x0.333 x1.217
= .0852



The calculation may now be repeated and a second approximation

(0)

obtained using € The following results are obtained:

Quantity Assumed Value ()(0) ()(” { )(2)

€ 0 0.0852 0.0817 0.0817
?EER - 2.217 2.167  2.167
¥ - 0.571  0.608  0.608

This hypothetical example illustrates several general prop-
e:ties of the solution. Even for large corrections, the iteration
scheme rapidly converges to the true value, regardless of the initial
choice of €. Further, the magnitudes of the neglected terms in
Eq. A-15 may be evaluated and suitable correction applied before
the final iteration. For finite overheats, § will also enter the
computation; since £ appears only as a multiplier of v and is al-
ways close to one, its contribution to the computation should be

negligible.

Summary

A rapidly canvérgent procedure for obtaining end loss cor-
rections appropriate f.o transitional flow is given. Eq. A-22 indi-
cates that the support temperature may contribute significantly to
the correction of the normalized recovery ratio, and unless the
end losses are small, it must be accurately known. The support
temperature enters the Nusselt number correctio: oaly through the
parameter v, and unless the parameter { is less than 5, it has a

negligible effect on the corrected value Nug.



APPENDIX B

NUMERICAL PROCEDURES FOR DATA REDUCTION

The utility of a hot-wire in quantitative investigations depends
on the inherent accuracy of the instrument and the ease with which
the resulting measurements may be translated into the dynamic and
thermodynamic quantities of interest. One of the most cumbersome
parts of a hot-wire investigation is the data reduction procedure,
since an iterative and rather tedious calculation is required to ob-
tain the final quantities of interest.

An IBM 7090 data reduction program was developed to handle
this phase of the investigation. A serious user of the hot-wire tech-
nigue will find such a program of great utility, inasmuch as tables
of constants may be used to represent thermodynamic variables such
as p(T) to any desired degree of accuracy, and a high Adegree of
convergence may be obtained without significant ’computing costs.
Using the present program, the average time to compute all quan-
tities (p, u, pu, Reg, To, M, etc.) at a given point in the flow field
to a convergence of one part in 104§ was about one second on the 7090.

The present program is se’t up to handle two alternative

®

computations involving three of the four variables Py » Po Rawm
2

and (dR/diZ)i=a . These combinations are:

PITOT Group: p, , R ' (dR/diz)i_o
) =

awrs

2
STATIC Group: p, R, . (dR/&1°)_

A

In addition to the three measured flow properties, the following

hot-wire constants must also be specified:




a. Wire length and diameter
b. Resistivity coefficient a,

¢. Wire resistance at reference temperature Tr

Tablea of thermodynamic properties of the test gas must also be
given. In this program, the values of p(T) for air are those com-
piled by McCarthy (38) using a2 Lennard-Jones model at low tem-
peratures and a Sutherland viscosity law at higher temperatures.
The p(T) relation is given in Table 3 of Subroutine CONST listed

at the end of this Appendix. The ratio of specific heats Yy was taken
to be a constant, and equal to 7/5. The air thermal conductivity
k(T) was taken from Hilsenrath and Beckett {16) and is listed in
Table 1 of Subroutine CONST. The wire thermal conductivity

k(T) was represented by the two-term formula

k, (T) = C, + C, (T-273), [T] = °K .

Zero Current Relations

The effect of overheat on the measured heat transfer co-~
efficient is shown to be small in Appendix D. Thus, the slope of
the R vs i2R relation is linear and is a direct measure of the heat
transfer coefficient. Using careful instrumentation techniques,
this slope may be determined with great accuracy even at overheats
as low as 3-5%. The formulas for the end loss correction factors

are greatly simplified for this case, and may be expressed as

2
T = (1= w)[1-F (ege 1) -4 (b =) ] (B-1)



%&'R =] - m%;: (B-2)
n.-%

V. =1+ w + €5 -

v =1 o {1 “m““c} (B-3)

w = tanhv/v (B-4)

where v is given by the implicit relation

42 Bkg

g
= () () Nu (B-5)

(L-wtit_sw)(l cs) 4 &k, Tm

e=-3t, =) . (B-6)

Nusselt Number Relation

For any quantitative investigation involving Mach numbers
less than 3, the variation of Nug with both Reg and M must be con-
sidered. Only a limited amount of experimental data exists in the
Sabsonic range and in the very low Reynolds number supersonic
regime; therefore, an extrapolation of available results was neces-
sary. This was accomplished by fairing the best smooth curve
through the existing data and extrapolating to (a) the theoretical
free-molecule heat transfer law at low Reynolds numbers and (b) to
the empirical continuum heat transfer law at high Reynolds numbers.
Free molecule flow was assumed to be represented by an accommeo-
dation coefﬁciem @ of unity, a specific heat ratio ¥y of 7/5 and a
Prandtl number Pr of 0.7. At high Reynolds numbers, thé results

of Spangenberg (19) were used to indicate the variation of Nuy with



M between M = 0 and M = 2, and the value of Nuy for M = 2 was taken
to be that found by Laufer and Mc(Clellan (1). All curves were there-
fore asymptotically correct in the limits Reg—~ 0 and Rep — oo, both
in slope and absolute value (asmming an accommeodation coefficient
of unity!).

A tabular representation of Nuy (Rep , M) over the range
0.2 < M < o0 and 10°} < Rey < 10° would require an undue amount
of data storage in the computer. It was decided to adopt the alter-
native procedure of finding an analytic expression which represented
the master calibration curves to a high degree of accuracy. Although
the resulting expression was algebraically complex, its solution
offered little numerical difficulty using standard computing tech-
niques.

The following expression was found to represent the em-~
pirical hot-wire heat loss data and free-molecule theory for
Nug (Reg , M)*; |

L7114

Nug = ENTRM - ;—-140@ + .2302 ( Reg T4 )
i 15. 44+ Reg *
. ( .01569 7378)( 15 g,} J EMTRM (B-7)
" .3077 + Reg® 15+ Reg
where
. .
ENTRM = Reg (B-8)

# For those unfamiliar with FORTRAN notation, groups of algebraic
characters are to be read as a single variable.




EMTRM =1+ ATRM-BTRM:CTRM

. 6039 [ M 1
ATRM = 2222 + L5700 | (g -1
L<1+h&' J
BTRM =1+ {.300 - -=0830 (__Reo =
MI' 67.6} 4+ Reg>
1.109

Re
CTRM =1.834 - 1. 634 { g
2,765 + Regtt1Y?

. 6713 L
ik

n = i-'%( Reg
2.571 + Rey

This formula is asymptotically correct for all M as Rep—~ 0 (free-

(B-9)

{(B-~10)

(B-11)

(B-12)

{(B-13)

molecule limit with Pr = 0.7, @ =1, and ¥ = 1.4) and is within 7%

of the measured values of Nuyg for 10'1«: Reg < 103 and M > 0.2.

For the range M > 0.6 and 2 X 1071

lieved to be accurate to within about £3%. For M-, 2 X 10”1 <

< Reg < wa, the formula is be-

Reg < 102, the formula represents the mean line through the present

measurements and the data of Laufer and McClellan (1) to about
%0.75%.

In Equation B-7, the quantity EMTRM is the ratio
[Nug (M)/Nug (3~ )] evaluated at a fixed Reynolds number.
The quantity n given by Equation B-13 is an accurate representa-
tion of the slope n of the high Mach number Nug -Reg curve shown
in Figure 9.

Thé results of free-molecule theory are available only
in tabular form (8). However, the fact that the free-molecule

heat transfer law possesses closed form solutions as M -0 and



M-+ allows the following simple analytic representation to be

written:
1.596
| 1.222
Nug (Reg, M) _ .2023 M )
e 322 + 1910 ( T ) (B-14)

This quantity appears in the ATRM expression of Equation B«10,
Again, the values @ =1, Pr = 0.7, and ¥ = 1.4 have been used.
This expression is in error by less than £3% for all M, less than
+0.5% for 0.8 < M < o0, and approaches the exact values as M ~0

and M .

Recovery Temperature Relation

It was noted in Section IV. 2 that the normalized recovery
factor %(Ku co) is independent of Mach number within the range and
accuracy of present experimental evidence. Therefore, the solid
curve of Figure 10 was used to interpret all measured wire recovery
temperatures. This relation appears in the data reduction program
as Table 5, Subroutine CONST. The two free-molecule functions
f(sl) and g(sl) awe listed in the same subroutine as Tables 6p and

épp respectively.

Program Logic

The data reduction program was formulated as an iterative
routine. For both the PITOT and STATIC computations, initial
guesses are aaéigned to M and Ty, the end loss corrections com-~
puted, and new v alues for M and T, obtained. The iteration is

repeated until the required convergence is obtained. A schematic



diagram of the program is given on the following page.

The detailed features of the program may be readily ascer-
tained from an examination of the program listing given at the end
of this Appendix. However, it is important to point out one serious
and fundamental difficulty associated with the use of the three
quantities ptz, R, g and (dRr /<:1i2)i=0 to specify the flow field.
Suppose that initial guesses have been assigned to M and Tg. Then
a trial value of Reg may be computed (Subroutines PRLCM and
NUOREQ) and a new gueas for M may be found (Subroutine MF22)

from the dimensionless quantity®
Reg o Y+l -
’FIT = o, (W)R Te (B-15)

For M <1, we have

l'i{.)
AL M%) (1 + LAY M%) = (FI7)% (B-16)
and for M > 1,
_(y+1) é
¥ -1 2 ¥-1

(a+ %L m?) 23 MP)

a2 gk (B-17)

# For STATIC calculations, pt, in Equation B-15 is replacezd by P.
T}%e resulting function is mono?omc, and proportional to M
- .
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The behavior of FI7 as a function of M is shown in the sketch below.

FI7

Q
|
X

It is apparent that the function is double—valﬁed. and that
{dM /d(F17)] becomes very large at higher Mach numbérs. This
means that any inaccuracy in the measured values of ptz or (dR /diz)
will lead to an extremely large error in the final calculated value of
Mif M2 4. Now this error is not serious in determining the local
vé,luea of Reg , since the Nug (Reg , M) relation is relativeiy insensitive
to M at these values. On the other hand, the Knudsen number may
be expressed as .

o (Tg), . 1
Knm Reg (‘“‘m m) N

and is insensitive to errors in M (M>>1)only if p~ T . For the
present experiments and those reported in Part Il of this thesis,

3/ 2. and in the transitional

M oo is more nearly proportional to T
range where Knm ~ (1), the computed value of 'ﬁ* may be seriously

in error at the higher Mach numbers if a PITOT calculation is made.



Fortunately, the values of Kn o Were sufficiently large in the wake
tests of Section V that no appreciable error was incurred; that is,
Knm was large enough that its uncertainty did not cause a significant
error in 7, or the computed value of To. |

In summary, the use of the three measured quantities ptz.
R awm’ and (dR /‘iiz)sz o May lead to sizeable uncertainties in the
quantities M, p, and T if the Mach number is large. However,
the local values of the pu-product and the stagnation temperature

Te may still be accurately determined if the local Knudsen number

is not close to unity.

Program Listing
The following "dictionary" is used to interpret the program

code:

01 = 04, 010, Q12, 017 - Q20 = Case identification
Q5 = Group identification (PITOT/STATIC)

Q6 = Value of p or p, (mm Hg.)

Q7 = (dR/diZ)ize (©/amp?)

Q8, Qi3 = Ran(ﬂ), Rr(@)

Q9 = Initial guess for M

Q11 = Mg

Ql14, Q15 = (£/d), f{cm)

1

Qlé= o {°C™" at 0°C)

Cl, C2 = Constants in kw formula

C5 = Initial guess for N



-y
C40 = Gas constant R = 2,87 X 106 '(cm&/ﬁecz-"K)

C4l = vy
C42 = Tr = 273°K

Z18 = Nug

219 =74,

720 =M

Z2l = Ty (°K)

222 = pu (g(M)/cmansec)
Z23 = u (cm/sec.)

Z24 = Tm (°K)

225 = Reg

226 = Re__

NZ35

227 = T*® (°K)
2248 = Knm
230 = ’REFR

231 = "&”R

Z34 Tm (*K)

L]

it

Z37

fl

Convergence flag

¥1, Y1, Y3 = Storage locations for T Nug, M

EPS=¢

ETAS = Mg

FKO = kg (cal/sec-cm~°K)
FKW = k_ {cal/sec-cm-"K)
FMUU = o (gm(m)/cm-sec)
FNBR = ﬁm

FNU=vYy

FNUC = Mg

FNUY = g

FNUM = Num

F17 = Defined by Eq. 515
S0 =g

55 -'-‘51

TAW = f(al)

N {number of iterations)
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APPENDIX C

MEASUREMENT OF TEHE WIRE SUPPORT TEMPERATURE

The analysis given in Appendix A shows clearly that the
temperature of the hot-wire supports is an important parameter
in the interpretation of recovery temperature data. This is par-
ticularly true when the normalized parameter ﬁ* is used, since
an error in the determination of the absolute wire temperature is
magnified by a factor of five or more in the computation of 7'17*.
For this reason, a special test was conducted to determine the
quantity 1 o explicitly.

Two . 001" diameter wires, one Pt - 10 per cent Rh and
one Constantan, were soft-soldered to the tip of one of the hot~
wire support needles to form a thermocouple junction. The com-
plete assembly was then placed in the calibrating oven and a curve
of e.m.f. vs. junction temperature obtained. The thermocouple
wires were terminated in a constant-temperature junction box
for both the oven and tunnel tests, thus eliminating spurious e.m.f{.
sources caused by thermocouple wire-lead wire temperature
variation.

The hot-wire support and thermocouple combination was
placed in the tunnel to reproduce, as clossly as possible, the
actual flow conditions encountered in the hot-wire measurements.
Since the needle supports tapered from .02" diameter at several
calibers to about .0l" at the tip, the . 001" thermocouple wire was

small compared to body dimensions and should have had a small



:effect on the surrounding flow field. No correction was made for
heat loss by conduction along the thermocouple wire.

Measurements of the support temperature were made over
the complete range Qf tunnel conditions for several positions of the
thermocouple near the needle stagnation point. These data are
shown in Figure 15. The needle tip was roughly ogival in shape
(as shown in the insert) and the angle O used to define the thermo-~
couple location refers to the angle between the surface normal
and the free-stream direction at that point. These data indicate
that the support temperature was a constant and equal to 0.903 Ty
over the complete operating range.

This result can be corroborated by a simple dimensional
argument. The rate at which heat is augplied to the probe by con-

ko Nug (AT ) ‘
vection i{s proportional to | 3 £.1, where AT g is the

local difference between the actual support temperature and the

adiabatic temperature. From point to point within the solid, the

k(AT.)
e} Where AT is the

heat transfer rate is proportional to |
temperature difference between two points a distance x apart and
ka is the thermal conductivity of the support. The ratio of the two

temperature differences is thus of order
(AT /AT )~ (ko /kg) (x/d) Nug .

The ratio (ke /ks) for air and a steel needle iz of order 10“4; hence

AT g << AT _, and the necedle is very close to constant temperature

g
throughout.



Let us carry the argument one step further. The free-stream

3 and

Reynolds number based on support diameter is of the order of 10
a laminar boundary layer will exist along the length of the support.

¥ negligible heat is lost f{rom the hot-wire support itself, then the
net integrated heat transfer must be zero. This means that any heat
transferred to the support near the stagnation point will rapidly be
conducted away and returned to the flow somewhere downstream. By
considering the expansion process around a blunt body in hypersonic
flow and the size of the stagnation point surface relative to the down-
stream exposed surface, it is easily seen that the support tempera~
ture should be very close to the adiabatic temperature of a laminar

boundary layer with local external Mach number Mn (see the insert

of Figure 15). Expressed in mathematical terms,

1+J§?(Zzi)mnz
1+(’-’7‘1)an

(T /To) &

where M n is of order 2.5 to 3 for a blunt ogival body in hypersonic
flow. This result agrees with the experimental value to high preci-

sion.



APPENDIX D
THE EFFECT OF OVERHEAT ON NUSSELT NUMBER

During the course of this investigation, a few preliminary
measurements were made to determine the effect of overheat on
the measured Nuaselt number. From the results of McClellan (30)
and Spangenberg (19), it was not expected that at low overheats and
Mach numbers outside the transonic range any significant effects
would be found. However, in the fegicm where slip effects become
appreciable, it is hot evident a priori that a variation of surface
temperature may be neglected. I shall begin by discussing the data
obtained, and conclude with a qualitative description of the results

of this and several other investigations.

Ty Taw

The present data for 7 = > 0 were obtained by a

procedure identical to that describedé‘;; Section II. For finite over-
heat, the variation of wire resistance with heating current must be
considered, and Equation 2 is the appropriate computational relation.
Four tests were carried out for Reynolds numbers Rep between 0.5
and 2.0. As can be seen from Figures 8, 9, and 10, the effects

(if any) of rarefaction should be very noticeable in this region.

The data of all four tests fell within the shaded region shown
in Figure 16. Although the reproducibility of these measurements
was not suificiént to discern the influencd of Rey on the
[Nug (7)/Nug (7 - 0)] relation, a comparison with the results of
McClellan show that even in the slip flow regime, the effect can-

not be large for Mach numbers above the transonic range. The

difference between the Rep ~ 4 data of McClellan and the present




measure‘ments is probably due to the limited amount of information
available from both sources. (See McClellan's thesis, p. 19.)

Comparison of the data of Spangenberg at subsonic and tran-
sonic speeds with the supersonic and hypersonic data is facilitated
by the insert shown in Figure 16. This insert (Figure 22a, Refer-
ence 19) is typical of the data available in this range. That the
relation between Nusselt number and overheat is quite complex
may be seen by comparing the effects of 7 for various values of
(M/Re). (See for example Figures 22a-£, Reference 19.)

One fact which further complicates the question of the effect
of overheat on Nup is that none of the available experimental evi-
dence in the transonic range (7, 19, 21, 31) includes the appropriate
data for zero overheat. For example, the data of Spangenberg
reproduced in Figure 16 is normalized about the value 7 = 0, 214.

As a comparison, Baldwin (21) often found as much as a 20 per
cent change in the heat transfer coefficient between the values

7= 0,07and 7= 0.22. Another rather surprising comparison be-
tween the works of Baldwin (21), Cybulski (7), and Spangenberg is
the behavior found at overheats approaching one. As illustrated
in Figure 16, Spangenbefg found that the change in Nuy was cloée
to linear with a change in overheat over é large range of Mach
and Reynolds numbers. On the contrary, References 7 and 21
show a negligible change in Nuy when 7 is increased beyond about
0.35.

In attempting to interpret these results, it is necessary to



distinguish between three separate types of phenomena which are in
evidence in these various investigations. The first may be broadly
classed as thermodynamic, which would inciude small changes in
the local temperature of the fluid near the body and the subsequent
effects on viscosity, density, Prandtl number and the like. These
differences for the most part are small v(at least for small overheats
or changes in stagnation temperature) and may be accounted for at
high Reynolds numbers by using any of the several available com-
pressible boundary layer analyses. The second class may be broadly
termed induced flow effects, wherein a change in body temperature

is sufficient to alter the basic features of the flow field, and through
this "interaction" change the measured heat transfer. Thirdly, the
effect of surface temperature on molecular processes must alsoc be
considered.

From the above delineation, we may immediately imply
several important generalizations., First, in the range of high
Reynolds numbers, the effects of overheat should be of the thermo-
dynamic type. Second, as the Reynolds number decreases, a given
fractional change in the boundary layer thickness caused by fluid
property variation would have an increasing effect on the flow field
adjacent to the body. From boundary layer theory, q ~ (d/Z)'%
where d is the diameter of the cylinder. If the boundary layer dis-
placement thickness is not negligibly small, then q ~ [(d/2)(1+ %&i)] "%,‘
and an increase in the displacement thickness (i.e., an increase in
the wire temperature) wbuld tend to deerease the heat transfer rate

to the body. This result agrees with the experimental results



given in Figure 16. The third conclusion is that this induced flow
effect would be most pronounced in the transonic regime, where
the flow field is extremely sensitive to the effective body shape.
All of these statements are borne out by the present experiments
and the data of Spangenberg (19) and Winovich and Stine (31). In
cases where these different effects are of the same order, it be-
comes difficult to separate them by less than rigorous analysis.
Several investigations (2, 3, 6, 7, 8, 22) have been con-~
ducted under conditions approaching free molecule flow. Air,
nitrogen, helium, and argon have all been used as test gases for
thease subsonic and supersonic experiments. In all cases, the
test body (a hot-wire, unheated wire or butt-welded thermocouple)
was maintained at a temperature differing significantly from the
equilibrium recovery temperature. Several interesting but as
yet unexplained results were obtained for various combinations
of overheat (both positive and negative), test medium, and Mach
number. The most important requirement at this time is a work-
ing model of the actual interaction process between a rapidly
moving molecule and a surface of arbitrary roughness and tem-
perature. As indicated earlier, in free molecule flow the body
temperature will change thé heat transfer rate only through its

effect on the accommodation coefficient.




APPENDIX E
MEASUREMENTS AT REYNOLDS NUMBERS
APPROACHING FREE MOLECULE FLOW

At the conclusion of this investigation, an attempt was made
to extend the data to lower Reynolds numbers by using .00005"
diameter Pt - 10 per cent Rh wirea. These tests were not quanti-
tatively repeatable because of possible non-uniformity of the
wires, repeated breakage and congequent incomplete calibration,
and other reasons which are not yet fully understood. However,
each individual wire produced a self-consistent set of heat trans~
fer data.

The accuracy of these measurements was considerably
less than the accuracy obtained using .0001" diameter wire., Mi-
croscopic examination revealed that these small wires possessed
a variety of small "kinks"; whether these non-uniformities were
caused by installation, tunnel exposure, or the actual manufactur~
ing process was not clear.

Figure 17 shows that the slope of the Nug ~ Rep curve ob-
tained with each individual wire was equal to unity within the ex-
perimental scatter. Although the slopes agreed quite well, the
proportionality constant varied by as much as 40 per cent. Data
obtained at high Mach numbers in air and nitrogen by Weltmann
and Kuhns (6) an& by Wong (3) are included in the figure for com-
parison. In each of these experiments, the slope of the Nug - Reg

curve is again nearly unity within the limits of the data. This




fact emphasizes several of the remarks made earlier with refer-
ence to Figure 9; between several independent investigations there
appears to be better agreement in the slope of the Nuy - Reg rela-

tion than in the absolute magnitude of the correlation.
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b) Hot- Wire Probe and Total Pressure Tube Installed
in Tunnel

FIG.3 HOT-WIRE PROBE AND TUNNEL INSTALLATION
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ABSTRACT

A theoretical model of the near wake is derived following
the ideas of Chapman. This model is based on the postulates of
mass conservation in the base flow region, thin viscous shear
layers, and a recompression process which is independent of
Reynolds number. The analysis, which includes the effects of
initial shear layer thickness and base flow temperature, shows
that the characteris‘tics of the near wake (base pressure, shear
layer angle, etc.) are independent of Reynolds number, and that
the shear layer and initial wake thicknesses are proportional to
Re—%. |

A series of experiments are presented which show that
the postulate of thin shear layers is invalid for Reynolds numbers
less than about 103. At higher Reynolds numbers, the theory is
qualitatively incorrect if the Mach number Me external to the
shear layer is large. Detailed measurements with a steady-state
hot-wire in the near wake of a two-dimensional circular cylinder
indicate that the compression process at the neck is not isen-
tropic, and that the maximum pressure rise occurs downstream
of the stagnation point formed by the merging shear layers.
Comparison between the experimental and theoretical results
points out the importance of the base fiow temperature and the
initial shear layer profile in determining the observable charac-

‘teristics of the near wake.
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LIST OF SYMBOLS

The diagram and symbols given below define the nomen-~
clature most frequently used in the text. Less common terms

are explained as they appear.

BOUNDARY H
CAvER SHEAR LAYER
NEC K
S L T _WAKE
Moo
LIP Shocke

BASE Flow WAKE SHOCK
REGION

BowW SHoOCtK

Cp specific heat

d hot-wire diameter

D cylinder diameter

f velocity ratio, (u/ue)

h convective heat transfer coefficient, TI—,——_CL,I,———
H | half-height of wedge; total enthalpy, CPWI‘+11%7Z
i hot-wire current

k air thermal conductivity

kw. wire thermal conductivity

K Knudsen number, V7y/2 (M/Reoo)
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LIST OF SYMBOLS (Cont'd)

hot-wire length; distance measured along shear layer
characteristic model length

Mach number

Nusselt number measured with finite length wire, hmd/ko
Nusselt number for infinite length wire, hd/kg

static pressure in flow; model surface pressure

base pressure at model centerline

total (stagnation)pressure behind a normal or oblique
shock; pitot pressure behind a normal shock

Prandtl numbezr Cle«o /ko
heat transfer rate
wire resistance or resistance of thin-film gage

Reynolds number pux/p, where x is a characteristic
distance

distance along dividing streamline from separation
temperature

local flow velocity

free-stream velocity

distance in the streamwise direction from the centers of
cylinders and spheres or the bases of cones and wedges

distance from model axis in transverse direction
accommodation coefficient

temperature-resistivity coefficient, (Rw/Rr)EH-ozr(Tw—Tr)
ratio of specific heats

boundary layer or shear layer velocity thickness
boundary layer or shear layer displacement thickness

non-dimensional temperature, T/T,
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0 boundary layer or shear layer momentum thickness
GW wedge angle
0 angle between shear layer dividing streamline and

the wake axis

) initial momentum thickness of the shear layer

A velocity function, (1 - u*/ue)

1! viscosity

v kinematic viscosity, p/p

£ parameter in shear layer analysis, (—e§0—)2 R—é——-

P density °®

T wire overheat, (Tw—TaW)/‘Taw

P stream function

v end loss correction factor

Subscripts

( )aw zero current

( )b evaluated in the base flow region

( )e quantity at outer edge of boundary layer or shear layer
( )m measured value

(o evaluated at stagnation temperature

( )r evaluated at reference temperature Tr

( )y quantity along dividing streamline

( )OO free-stream quantity

(. )2 static f{low properties behind a normal or oblique shock
( )t evaluated at wake centerline or axis of flow symmetry
( )B quantity evaluated along the body surface in the upstreafn

attached flow region
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mean value or normalized quantity; velocity or distance
in the physical plane

transformed variable

conditions at the edge of the wake downstream of the
neck
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I. INTRODUCTION

Among the many problems of modern and classical fluid
mechanics, there are two which have aroused more interest and
engendered more frustration than any others; these are turbulence
and separation., The subject of this thesis-~~the near wake of a
blunt body at hypersonic speeds--falls within the latter category,
and throughout the text the problem will be approached as an
example of laminar separation rather than a phenomenon unique
to hypersonic flow.

The wake of a blunt body at low speeds is complicated by
the existence of a time-dependent flow field. Roshko (1, 2)*
found that at low speeds vortices develop behind the body in a
periodic manner, the frequency of shedding being proportional
to the free-stream velocity. This unsteadiness is also present
in the investigations of Gorecki (3), Nash (4), Thomann (5), and
Gowen and Perkins (6) at subsonic speeds. In the experiments
cited above, the test body was two-dimensional, but similar
results have been found for spheres in incompressible flow (7)
and in subsonic flow (8, 9).

As the free-stream Mach number MOO is increased, a
drastic change occurs in the structure of the base flow. For
M 2 1 (the exact value varies with geometry and Reynolds num-
ber), the violent periodic shedding evidenced at lower speeds
disappears and a steady supersonic flow pattern is established.

* Numbers in parentheses refer to references at the end of the text.
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Figures 1 and 2, reproduced from the works of Thomann (5) and
Nash (4), clearly indicate the dramatic change which occurs in the
wake structure. A careful examination of these photographs will
reveal a second important characteristic; at low supersonic Mach
numbers and high Reynolds numbers, there is a definite "structure"
to the wake immediately downstream of the neck*, The "graini-
ness" is associated with small scale turbulent motion, and large
"puffs" of turbulent fluid may be clearly identified (cf. Figure lb).
Similar phenomena are evident in the Schlieren photographs of
spheres by Charters and Thomas (9) and of cones by Charters (10);
two particularly graphic examples have been included in Figure 3.

Further increases in Mach number, at large body Reynolds
numbers, produce no qualitative change in the near wake from the
features shown in Figure 3.%% This behavior is explained by the
well-known "hypersonic freeze® or "Mach number independence
principle® (11) which recognizes that the viscous and inviscid
flow fields become independent of Mach number if the Mach num-
ber is sufficiently large. The governing parameter is Moosin B,
where B is the angle between the free-stream direction and a tangent
to the local body surface. Thus, the flow field about a blunt body
will be "frozen" at a much lower value of free-stream Mach num-

ber than that which pertains to a slender body.

* Nomenclature for the various regions of the flow field is given
in the List of Symbols

*% Many body diameters downstream, the inviscid wake exhibits
a static enthalpy profile which depends strongly on Mach number
if M_>> L.
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There is one additional feature of the near wake which must
be discussed at this point. For large Reynolds numbers, the bound-
ary layer along the body surface is turbulent, and the shear layer
and wake are turbulent as well. Decreasing the Reynolds number
at a fixed value of M, will produce a laminar boundary layer on
the body surface; as the boundary layer separates from the surface
to become the shear layer, it will remain laminar if the Mach num-
ber Me at its outer edge is greater than about 2.5. The two shear
layers from opposite sides of the body then meet to form a laminar
viscous wake which may persist for many body diameters in the
downstream direction (References 12-14). Lees (15) has summar-
ized the experimental and theoretical evidence for steady laminar
regions of separation, and more detail on this question will be
presented in a later section. The point to be made is that there
exists an important class of separated flows for which the shear
processes are laminar and time-independent.

It is the purpose of this thesis to examine the steady laminar
near wakes of blunt two-dimensional bodies. The tools of this inves-
tigation are primarily experimental, although some momentum
integral methods are used to discuss the development of the shear
layer. First, a model of the base flow region is developed,
generalizing certain features of the analysis introduced by Chap-
man (16). The effects of body Reynolds number, body temperature,
and Mach number on the development of the shear are discussed,
and the importance of the initial shear layer profile is demonstrated.

Second, the results of the theoretical model are compared to base
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pressure measurements on a transverse cylinder and two wedges.
Next, the steady-state hot-wire is used to "map out" the near wake
region of a transverse cylinder. Both heat loss and recovery
temperature data are used to define the growth of the shear layer
and the behavior of the flow in the reattachment region. Finally,

a "goal post" technique for mapping streamlines is presented.
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II. THEORETICAL CONSIDERATIONS

The purpose of this section is to examine the salient features
of a laminar base flow region., A physical model of the flow is devel-
oped, following the ideas of Chapman (16). This model leads to
scaling laws which show the effects of Mach number and Reynolds
number on the base flow phenomena. A detailed treatment of the
free shear layer is then given, and the results of some simple
integral solutions are presented. Finally, a summary is made

of the theoretical postulates which must be verified by experiment.

II.1. Physical Model of the Flow

Historically, the two most important contributions to a
model of the near wake were: (1) a recognition of the fact that mass
conservation requires all the fluid originally within the base flow
region and entrained by the shear layer to be returned to the base
region at the wake neck; and (2) a recognition of the dominant role
of the shear layer mixing rate in determining the pressure rise
required to satisfy this mass conservation condition. The mass
conservation condition was first recognized by Chapman (16), and
the role of the shear layer mixing process was originally expounded
by Crocco and Lees (17).

The momentum integral method which Crocco and Lees used
to study the shear layer mixing process provided a framework for
studying the qualitative effects of Mach number, Reynolds number,

and body shape on a wide variety of separated flow problems.
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Several difficulties existed in applying this method, and these have
been clarified only recently (18). The first successful quantitative
prediction of base flow phenomena was given by Chapman for laminar
flow (see References 19-21) and Korst, Page and Childs (22) for the
case of a turbulent shear layer. Certain idealizations were made by
these authors, and these will be discussed shortly; our present
purposes will be served by a consideration of the two essential
features mentioned above.

The sketch below defines the physical model which follows
from the assumptions of mass conservation and momentum con-

servation along the dividing streamline. Under the influence of

e $ L1P CSEPARATION ) SHOCK

Sketch 1., Nomenclature for the near wake.

viscous and pressure forces, the boundary layer separates from
the body to form a viscous mixing layer. This layer entrains mass
from the inviscid region along its external surface (subscript e)
and also along the lower boundary bordering the base flow region.
As the shear layer grows, the velocity u, and Mach number M,

along the streamline which was originally adjacent to the body
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(y = 0) increase because of momentum transfer. This streamline
is called the "dividing streamline."”

The path of the dividing streamline serves to define the
geometry of the near wake. For two-dimensional flow, it is nearly
a straight line of length £ (see Sketch 1), but in the axisymmetric
case the shear layer is convex {e.g. Figure 3). If the separation
point is fixed, then { determines the angle between the shear layer
and the axis, and consequently the quantities Me, Pes and U, in
the inviscid flow.

In order to conserve mass, all streamlines below ¢ = 0
must be turned back into the base region by the compression
process at the neck, and all particles following streamlines ¢ > 0
will pass through the neck and flow downstream, although at a re-
duced velocity. Conservation of mass and momentum, therefore,
specify the pressure rise (p' - pe) required to bring the dividing
streamline to rest, and this pressure rise increases with an
increasing deflection of the inviscid flow outside the shear layer.

This coupling between viscous mixing and flow geometry
has a very simple interpretation. An analysis of the shear layer
(Section II. 3) shows that the Mach number ratio M*(E)/Me at the
neck is a monotonically increasing function of the parameter

2
600 = () _R——iT :

where 0y is the initial momentum thickness of the shear layer.

However, the value of M, required by mass conservation decreases



My GIVEN BY MIXING
N\ PROCESS

My REQUIRED FOR

\\ \/— MASS CONSERVATION

S

€(2)

Sketch 2. Matching procedure for the neck region.

with increasing £, because there is less pressure rise across the
neck. Since £ increases with £(f), there is a particular value of
€ for which the value of M, required for mass conservation is
equal to that given by the mixing process.

The importance of the initial momentum thickness is evi-
dent in this formulation. It is only in the case where 0= 0 (§~>o0)
that M, becomes a function only of M, and the base temperature
T, - If the Reynolds number Ree,l = (peueﬁ/pe) is large, then the
shear layer is very thin. The readjustment regions in the vicinity
of the separation point and the wake neck are only one or two shear
layer thicknesses in extent®, and are small if Ree’ ’ is very large.
Then the shear layer should represent a relatively constant pressure
surface, since the amount of flow entrained by the shear layer is

not large and the dynamic pressure in the base region is small.

% This result is not obvious a priori, but may be inferred from
the measurements presented in Section V.
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Constant pressure mixing should therefore represent a good approxi-
mation to the actual shear layer process, a fact which greatly sim-
plifies the analysis (Section II. 3 and Appendix A). Chapman (19)
obtained a limiting solution to the constant pressure mixing pro-
cess for 69> 0. The momentum equation reduces to that of Blasius
with the boundary conditions u ~u, asy o, and u >0 as y -~ -,

and possesses a similarity solution of the form
(u/ue) =f (yw/peuehxes; Me) .

In particular, he found (u*/ue) to be a constant, since &(s)—> oo.
One impoi‘tant consideration is the distortion of the boundary
layer profile as it leaves the body. Clearly, this process will be

4]

different for a "gradual" separation from a convex surface (such

“catastrophic" separation from a

as a sphere or cylinder) and a
sharp corner (such as a cone or wedge). Separation from a sharp
corner in supersonic flow involves a complex interaction between a
strong Prandtl-Meyer expansion, a weak lip shock (e.g. Figure 3b),
and the boundary layer, whereas a convex surface exhibits a single
lip shock and a compression of the flow back toward the free-stream
direction. One might therefore conjecture, as did Chapman (16)

and Holder and Gadd (23), that for the case of a sharp separation

the initial shear layer velocity profile will be more full and the initial
mixing rate will be larger. If the initial shear layer momentum
 thickness 0o (s = 0) is not small, or more precisely (Section II. 3} if

2 1

{ <
(5) g— = 0(1),
90 Ree,ﬂ_
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then the velocity profile will differ significantly from Chapman's
similar solution. In particular, the velocity u,, the Mach number
M, , and the pressure rise (p’/pe) will be less than the value obtained
from the similarity analysis.

Three additional features of the supersonic near wake appear
when a comparison is made between two-dimensional and axigsymmetric
bodies. Chapman (16,20) applied the method of characteristics to the
calculation of constant pressure surfaces downstream of a sharp
circular base. He found that it is impossible for a steady axisym-
metric inviscid flow to converge toward and intersect the axis in a
pattern which will admit the existence of a wake shock; he reasoned
that the action of viscosity will therefore be important in the neck
region of an axisymmetric flow. For two-dimensional bases, this
problem does not appear. Note that the characteristics calculation
may proceed to very small distances from the axis if the Mach
number is large.

The charaéteristics calculations (20) also revealed a second
distinctive feature; a constant pressure axisymmetric surface which
converges toward the axis is convex, whereas straight streamlines
describe a constant pressure simple wave region in the correspond-
ing two-dimensional problem. The curvature of the shear layers
in Figure 3 is compatible with the constant pressure assumption.

Ag the Mach number M, increases, an axisymmetric constant pres-
sure surface becomes less curved.

A third distinction arises between axisymmetric and two-

dimensional flow if the shear layer thickness is allowed to remain
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small but finite, In two-dimensional flow, the growth of the free
shear layer is determined solely by the mixing rate between |
separation and the neck. In axisymmetric flow, the shear layer
thickens considerably as the axis is approached, since the viscous
wake which passes downstream must contain all of the mass which
was originally in the boundary layer velocity thickness 6B at sepa-
ration. A crude estimate of the wake velocity half-thickness 6W

is then
2 >
7r6w < 27TH6B

or
& 2 )
()2 (=2)

H H

If (6B/H) is 1/25, say, then (6W/H) will be about 1/5 which is not

vanishingly small.

II.2. Scaling Laws for Blunt Bodies

Certain scaling laws may be derived very simply for the
near wake of a two-dimensional body in supersonic flow. If the vis-
cous shear processes are everywhere laminar and steady, and the
shear layer thickness is small compared to the characteristic body
dimension H, the important effects of Mach number, Reynolds
number, base flow temperature, and body shape on the wake thick-

ness 6 the zero streamline velocity u,, and the base pressure

N’
Py, =~ p, may be explicitly determined.

For the sake of simplicity, consider the supersonic flow
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of a perfect gas about a family of geometrically similar two-
dimensional bodies which differ only in their characteristic dimen-
sion L. (e.g. circular cylinders, 10° wedges, etc.). The body
Reynolds number is assumed to be sufficiently small that all
diffusion processes near the body are laminar, yet sufficiently
large that viscous effects do not change the effective body shape.
Then the inviscid flow about the body may, in principle, be cal-
culated for any specified values of MOo and ¥, and the inviscid
field is independent of Reynolds number so long as the flow is
attached to the body surface. A knowledge of the inviscid flow
and the surface temperatﬁre allows the boundary layer profile
and thickness to be determined at any point along the surface.
Of particular interest is the momentum thickness 6y of
the shear layer at separation. This thickness may be symboli-

cally expressed as

8 . %2
o= S
B \/ReB’L

where
Ky = Ky (Bg» M, v, Pr, =)
= parameter relating the growth of the boundary layer
in the transformed plane to the growth in the physical
plane; it includes the numerical value of the displace-
ment thickness in the transformed plane, and the
effects of pressure gradients along the body are

symbolically represented by BB ’
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LI

4

parameter characterizing the changes in the boundary
layer thickness and profile during the separation pro-
cess; the compression/expansion details at separation

depend on the Mach number MB of the attached flow

and the Mach number Me of the separated flow,

and

_ Ppug L
B,L bR

values of density, velocity, and viscosity external to

Re , Where Pgs U and pp are characteristic

B
the boundary layer along the body, and L is a charac-
teristic body length.

The value of k., and the total pressure loss (if any) of the inviscid

2
flow at separation will be assumed constant for fixed values of Me
and MB. (This should be a reasonable approximation in cases where
the separation point is fixed by geometry, but must be reexamined

if the separation point is allowed to vary with free-stream Reynolds
number and the angle between the shear layer and free-stream
dire;tion is large.) The body temperature influences the momen-
tum thickness 0y if Hy = 0] (He).

This specification of the initial momentum thickness 8,
entering the region of separation, when combined with a knowledge
of the shear layer mixing rate and a description of the recompres-
sion process at the wake neck, is sufficient to define the complete

flow field in the near wake. To describe the mixing and recom-

pression regions, Chapman (21) made two assumptions. First,
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he postulated that the dividing streamline { = 0 is brought to rest
by an isentropic compression, so that the pressure rise across the
neck is determined by

1 - -
E= 1+ L2 m v (2)
(S

o

where M, is the local Mach number of the dividing streamline at
the point where it begins the recompression process*. Second,

he postulated that the velocity (and Mach number) of the dividing
streamline could be determined by considering the constant pres-
sure laminar mixing of a uniform stream and a fluid at rest. This
implies that there is a negligible velocity in the base flow region,
and that the shear layer thickness is negligible in comparisonto

the body dimension H and the distance to reattachment {.

A Reynolds Number Independence Principle for Similar Bodies

The first two postulates given above, isentropic compression
at the neck and constant pressure mixing in the shear layer, are the
only ones which are essential to the argument. The further simpli-
fications introduced by Chapman (21) to complete the problem (iso-
energetic flow and (6y /H) - 0) are not required. Toshi Kubota and
I have investigated the constant pressure mixing problem using the

Karmdn momentum integral approach, and the details of this work

* Korst, Page, and Childs (22) proposed a model for turbulent flow
in which the pressure rise is determined from oblique shock rela-
tions. The essential feature--that the zero streamline is brought
to rest by pressure forces--is common to both models, and for this
reason this condition is often called the "Chapman-Korst model."
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are given in Appendix A. An equivalent numerical solution has been
developed independently by Denison and Baum (25), and their results
are in qualitative agreement with the present solution., In the present
analysis it is found that the rate of growth of the laminar shear layer
depends on the external Mach number Me’ the total enthalpy ratio
(He/Hb) across the mixing region, and the local ratio of specific

heats y. If Mg, (He/Hb)’ and ¥ are fixed, the results show that the

velocity u, and Mach number M, along the dividing streamline

depend on the single parameter

s 2 1
£= ) xe (3)
, S
where
Re ) peues
e, s P
and

s = distance along the dividing streamline from the point
of separation.

For &0, u, -0 and M, 0 so that a negligible pressure rise is
required to stagnate the dividing streamline; physically, this would
correspond to the vanishingly small near wake of a thin plate. As
¢ -, the original condition of Chapman (g /H) — 0) is realized so
that u, and M, assume asymptotic values given by the appropriate
similar solution of the free mixing problem. The results clearly
iﬁdicate that an increase in the initial shear layer momentum

thickness 0y (with Ree and { fixed) acts to decrease M, and

» 4

increase the base pressure. Such predictions are in qualitative
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agreement with experimental observation, and are quantitatively
of the correct order of magnitude.

In applying the above theory to bodies at supersonic speeds,
there is a subtle difference between (A) considering the effect of 0g
on M, with Ree y fixed, and (B) considering the effect of Reoo

b H L
on M, with £ and the body shape fixed (25).

B

Consider M. Pr, v, (TB/TO ), and the body shape to be
given. Then the inviscid flow is known and Kq appearing in Equa-

tion 1 is a constant for all values of Li and Re Assume that

oo,L’

l\/[e is independent of Reynolds number and examine the consequences

of this condition. If M 2 and M, are known, the pressure Pe

B’ X
(pe?’_— pb) and the length £ of the shear layer are also determined.

From Equation 1,

B . C
L
B w/ReB’L

and combining this with (3) we have the important result

1,1, PB"B
E(£) == () (
C2 L Peue

Fe
”IF];) . (4)

If we make the important assumption that the enthalpy Hb in the base
region is independent of free-stream Reynolds number, then §(£) is
also independent of Reynolds number¥*., But if Me is held constant

* If the viscosity is taken to vary as a power of the temperature,
p~T°°, the viscosity term (pe/p.B) is independent of the free-stream
stagnation temperature only for w = 1. For w#l, the succeeding
arguments require the Reynolds number to vary with the stagnation
temperature fixed.
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and £ is independent of Re then M, is also independent of

e
3K

o, L’
Reoo, L which was our original restriction, and the argument is
therefore self-consistent.

With certain reservations, this result is applicable to
axisymmetric bodies as well, In the axisymmetric case, a con-
stant value of Me implies a curved inviscid flow, so that the shear
layer length £ should properly be defined as the curvilinear dis-
tance from separation to the neck along the zero streamline. To

apply the present method of determining M, with Me and £ given,

it must be postulated that the value of M, for a converging axi-
symmetric flow differs from the result for two-dimensional flow
by, at most, a constant; reference to the results of laminar
boundary layer theory indicates that the shear layer must be
everywhere small compared to its distance from the axis. Fur-
ther, the compression process at the neck must be assumed to
relieve the inviscid anomaly appearing near the axis in such a
way that the flow above the zero streamline passes smoothly
through this region. The assumption that the recompression
region is small compared to the length £ of the shear layer may
place severe restrictions on the allowed values of Reynolds num-
ber, since the axisymmetric shear layer thickens appreciably as
it approaches the axis.

In summary, the original result of Chapman (21) which

predicted that the base pressure and wake angle are independent

of Reynolds number is now extended to the case of a finite initial
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shear layer thickness. This may be termed a "Reynolds number
independence principle for similar bodies," and is stated as follows:

For any family of geometrically similar bodies experiencing

purely laminar viscous flow, the base pressure and struc-

ture of the near wake are independent of the free-stream

Reynolds number provided the inviscid flow, body tempera-

ture, and base flow temperature are also independent of

Reynolds number,

One test, although not a crucial one, of the correctness of
the arguments given above is to derive an expression for the wake
"thickness" O (see Sketch 1) immediately downstream of the neck.
Since £(£) is constant, the ratio (6(£)/6¢) is also constant and the

postulate of isentropic recompression demands that (6W/6(1)) be a

function only of (pe/p') and Me. At a fixed value of Moo’ therefore,

1 1

S ~ : (5)

L L
w/ReB, L \/Reoo,L

Figure 4, originally reported in Reference 26, shows that this con~
clusion is borne out for a cii‘cular cylinder in hypersonic flow. The
pitot pressure measurements of McCarthy (27), diffusion profiles
of Kingsland (28), and hot-wire data reported in Section V confirm
these Schlieren results, although the wake "thickness" must be
defined in a somewhat different manner for each method of obser-

vation.

Effect of Free-Stream Mach Number

According to the Mach number independence principle, the
viscous and inviscid flow fields about a blunt body become indepen-

dent of Mach number if the component of Moo normal to the body
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éurface is everywhere large. With reygard to surface observables
such as pi-essure and heat transfer, this result has been extensively
verified; as a matter of interest, Part I of this thesis provides a
typical example by showing that the heat transfer from a fine wire
is independent of MOo for Moo 2 3. Since a circular cylinder is the
primary model investigated in this experimental program, it is
important to note that the cylinder surface pressure distributions
measured by McCarthy (27), Tewfik and Geidt (29), Walter and
Lange (30), and Gregorek and Kordan (31) show that the pressure
distribution (pB/ptZ) from the forward stagnation point to separa-
tion is identical for all values of MOo ? 4.5. The quantity P> is the
stagnation pressure behind the leading edge shock wave, and for a
cylinder this quantity is equal to the surface pressure at the stag-
nation point.

Throughout the range of Mach numbers and body shapes
for which the Mach number independence principle applies, the
appropriate Reynolds number and pressure are ReO’LS(pOOuOOL/pO)
and ptz*. The fact that the base pressure Py (MOO) is independent
of Reynolds number means that for blunt bodies at hypersonic speeds
(Pb/ptZ) is independent of both the free-stream Mach number and
Reynolds number. The measurements reported in Section IV show
that this is very nearly true for a circular cylinder. Again, the
restrictions of steady laminar flow and thin shear layers must be
saiisfied.
* The Reynolds number Rep 1= PooUgo /My appears frequently in
correlations of heat transfe? and skin friction results; at hypersonic

speeds, Rep 1, and Re ,1, are very nearly equal. Several reasons
for choos1ng the latter relation are given in Part I of this thesis.
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II.3. The Free Shear Layer

The importance of the free shear layer in determining the
characteristics of the near wake has already been indicated. What
remains is to develop a quantitative method for predicting the Mach
number M, along the dividing streamline, and critically assess the
limitations of the theory.

Several years ago, Chapman (16, 19) derived a solution
for the self-similar laminar shear layer. Formally, this solution
describes the constant pressure mixing of two parallel streams,
where the initial thickness of the mixing layer is zero. This sec-
tion is concerned with the application of momentum integral methods
to the constant pressure mixing problem where the thickness of the
initial shear layer is finite. More specifically, the problem is to
determine the velocity, temperature, and mass flow profiles in
the free shear layer when the parameter

2

£= () R—j;—
is not infinite.

The momentum integral method is only one of several al-
ternative approaches to this problem. The Crocco-Lees (17) mixing
theory and the numerical finite-difference scheme of Denison and
Baum (25) are other examples. A fundamental similarity between
all of the methods is that, once an initial profile at s = 0 and the

boundary conditions (including Hb) have been specified, the solution
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depends only on the independent variable £, %

A detailed exposition of the momentum integral formulation
is given in Appendix A. In this treatment, the first step is to reduce
the compressible problem to incompressible form by using the
Howarth transformation and the mathematical simplifications p~ T
and Pr = 1, The s-momentum and continuity equations are then
uncoupled from the energy equation; their form is the same as for

the incompressible constant pressure boundary layer:

ou ov

3s T oy = O (6
ou du 8211

u + V oem— 2 VY . (7)
0s oy ayz :

An initial velocity profile ug (y) is specified at s = 0, and the bound-
ary conditions on the velocity are u=u, at the outer edge of the
shear layer and u = 0 (monotonically) in the base flow region. The
latter boundary condition is physically admissible only for shear
layers whose thickness is very small compared to the dimensions
of the base flow region. This approximation would certainly fail
in the vicinity of the neck where the shear layers from opposite sides
of the body meet.

It is found convenient to divide the shear layer into two
regions (see Sketch 3 below), with Region I comprising all the
streamlines y = 0 and Region II containing all the mass flux en-

trained by the shear layer from the base region. The velocity

** This statement is not true, of course, if transition occurs in the
shear layer (17).



Sketch 3. Velocity profiles in the non-similar shear layer

profile in each part is represented by a simple analytic function
u(y;ﬁl, 62,ak) which contains a number of profile parameters
(2, (), 8,(5),5,,(5) )+

By multiplying the s-momentum equation by o (j=0,1,...)
and integrating across the shear layer (making use of the continuity
equation), a set of cbupled ordinary differential equations is
obtained which describe the variation of the velocity profile
parameters (61,62,ak) in the s-direction, Boundary conditions
are also applied at the extremities of the shear layer, and match-
ing conditions are imposed so that the velocity and certain of its
higher derivatives are continuous at y = 0. The total number of
moment equations, boundary conditions, and matching conditions
must be equal to the total number of parameters appearing in the
velocity profile. If the velocity profiles in Regions I and II are
suitably chosen, the moment equations may be integrated in closed
form.

Details of the calculation are given in Appendix A,
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Figure 5 shows the resulting values of u, as a function of the inde-
pendent variable*, £ = (s/8 )Z(Ree’s)_l, Curves are shown for:
(1) An initial Blasius profile, and numerical solution
of the non-similar problem [Denison and Baum (25)].
(2) A quadratic profile, solution by the momentum
integral method.
(3) An exponential profile, solution by the momentum
integral method.
The three solutions are shown to be in good qualitative agreement,
but they differ by as much as 0.15 in u, at the same value of £.
Even more disturbing is the fact that the values of § for a given
u, differ by as much as a factor of 6. For small values of u,,
the difference between the quadratic and exponential solutions
may be explained by the fact that the value of (8u/dy) at y = 0 is
larger, and consequently the initial mixing rate is larger, for the
exponential profile {see Equation A.42, Appendix A). The initial
values of (8u/8y)y=o and final values of (u*/ue) for the quadratic
and Blasius profiles are nearly equal, so that the difference be-
tween these two curves may be attributed fo the method of solution.
Several general conclusions may be drawn from Figure 5.
First, the value of u, will be considerably less than that given by
£ = o in most physical situations. Second, the value of u,(£) is
* The velocity ratio uy/ue is independent of the base flow enthalpy

Hy, only if p ~T. The Mach number My is a strong function of Hy,
as will be demonstrated. ‘
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sensitive to the initial profile of the shear layer. And finally, the
value of u, (and consequently the base pressure, external Mach
nuinber Me’ and shear layer thickness) depend strongly on the
details of the separation process if § = O(1).
From these results, we may sketch the influence of the
initial profile on u,(&). Consider three possible initial profiles
as shown in Sketch 4 below. All are taken to have the same values
Y

J 4 ue
HL Ug SV T

)

©
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(33)&_#0 (Su

!
s,
i
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Sketch 4. Three possible shear layer initial profiles

of u, and 0y, but the details of the velocity distributions differ
markedly. The "Blasius™ profile @ may be regarded as a
hypothetical separation in which no interaction between the inviscid
flow and viscous flow has occurred. Profile | @ is a representa-
tion of the velocity profile associated with a "gradual" separation
in an adverse ?ressure gradient., The "P-M" profile @ is
typical of the "fat" velocity distribution which would result

from a sharp corner separation which includes a Prandtl-Meyer
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expansion fan; for the same value of 0y, this profile will have a
larger velocity thickness §¢ than either @ or @ .

Sketch 5 shows the conjectured behavior of u*(f_f,) for the
three profiles listed above. The "Blasius" profile will have a
large value of u, for small § because of the finite shear at the
axis; initially, u*"'s% for the "smooth" separation, while u.*~s1/3
for a Blasius profile. Soon the "P-M" value of u, begins to grow
"explosively" due to the high rates of shear in the lower portions
of the profile., And finally, the spreading of the high vorticity in
the outer portions of the "separation' profile will begin to be
felt at the axis, andu, will also grow rapidly for this case.

For large values of §, the three profiles approach the

same asymptotic value of (u*/ue) (0.587 if Chapman's (19) result

0.6+ LiMIT §~>co
"p-M" PROFILE — T — —
(34) = ? ~ ”
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Sketch 5. Effect of the initial profile on the zero streamline
velocity (schematic).
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is used), although at a different rate. It should be emphasized
that the coordinate § is based on the momentum thickness 0y after
separation and not on the velocity thickness calculated for the
attached boundary layer ahead of separation. Had this latter
length been used, the "P-M" curve would have been displaced
to the left and the "separation” curve to the right of their present
positions relative to the "Blasius" result.

The growth rates shown in Sketch 5 explain the failure
of solutions based on a "Blasius' -type profile to predict a value
of u, as large as that which is experimentally observed (see
Sections IV and V). The discrepancy is particularly serious for
sharp separations on cones and wedges, where the "P-M" profile
is expected to apply. Since § = O(l) for these bodies, a "P-M"
initial profile would give a larger value of u,, and consequently
a lower base pressure and larger angle between the shear layer
and the axis, than a "Blasius" distribution; this result would be
in agreement with experimental observations.

In an unpublished investigation of the interaction between
an attached boundary layer and an incident shock wave, B. L. Reeves*
found a similar result. The high vorticity at the outer edge of a
separation profile quickly diffuses to the zero streamline, and an
"explosive" growth of the velocity u, is observed. Lee‘s and
Hromas (32) have noted an "explosive® growth of the turbulent

wake which is associated with the large gradients of static enthalpy

* Private communication
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at the outer edge of the wake; this result is a rather interesting
parallel to the growth phenomena shown by the laminar shear layer.
Referring to the results of Section II.2, it is now clear that
the details of the separation process, as represented by Ky, are
important in determining the shear layer mixing rate. The as-
sumption that Ko depends only on the gross features of the
expansion/compression process [i.e. Ky = Ko(M_, Mp,7)] is
tenable only if the surface radius of curvature at separation is
very much greater than, or very much less than, the attached
boundary layer thickness. If the two are comparable and § = O(1),
the "Reynolds number independence principle” might be expected
to fail. It is only in the extreme cases of £ -0 [ (g /H)> ] and
g€ -0 [(80 /H) = 0] that the initial profile is not important.
The Mach number M, and the pressure rise (p‘/pe) may
be calculated once a solution to the energy equation is obtained.
(See Sketch 2.) The assumptions leading to Equations 6 and 7
and the boundary condition H(—62) = constant imply that the total
enthalpy H is a linear function of u., Since H = He at the outer
edge of the shear layer, the total enthalpy H, along the dividing
streamline is a function only of u, and the base flow enthalpy.
Two extreme cases are considered/: a "hot wall" case which cor-
responds to no heat transfer from the base flow region (H = constant =
H.e); and a "cold wall" case where the temperature T, in the base
flow region is equal to the static temperature Te at the outer edge

of the shear layer.
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Figures 6 and 7 show the computed values of M* and (p' /pe)
for a quadratic velocity profile. Results are given for several Mach
numbers M_ and the "hot wall' and "cold wall" boundary conditions.
In Figure 6, the independent variable is based on 8, whereas in
Figure 7 the shear layer velocity thickness §; in physical coordi-
nates is used. By using Equation 2 and Figures 6 and 7, M, and
(p' /pe) may be obtained in either coordinate system. The utility
of basing £ on 8y is readily apparent; in Figure 6, the region of §
which contains the growth of (M>1=/Me) is independent of Mach num-
ber, whereas if the independent variable is based on &, as in
Figure 7, there is a strong shift to lower values of the independent
variable with increasing Mach number.

Strong cooling of the base region increases (M*/Me) and
consequently increases the pressure rise (p' /pe) which may be
sustained at the neck. Denison and Baum (25) find a similar result
for several specific body shapes. The effects of cooling become
more pronounced with increasing Mach number. The stagnation
temperature along the zero streamline, and hence the static tem-
perature on the axis just downstream of the wake neck, is indepen-
dent of £ only in one case: adiabatic flow. In the limiting case
considered by Chapman (19), § - o so that H, must be equal to or
greater than (u*/ue) x He, which is 0,587 He for £ -oo. This
fact was pointed out by Lees and Hromas (32). If, however, the
base is highly cooled and § = O(1), then both u, and the total enthalpy

H, at the neck will be considerably less than their asymptotic values.
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A word of caution should be extended lest the "cold wall"
calculation be taken too seriously. In order that the total enthalpy
across the shear layer be a linear function of velocity, it is neces-
sary that the base flow enthalpy H(—Gz) be constant. Now consider
the physical problem posed by a highly cooled reentry vehicle with
Moo very large. The body temperature will be a small fraction of
the free-stream stagnation temperature, so that the boundary
layer along the body will be highly cooled. As the boundary layer
separates and entrains mass from the base flow region, the total
amount of energy flux contained in the shear layer for § < 0 will

be (approximately)*
0
(Energy Flux)¢<0 = S‘ puHdy

2

and this energy will be returned to the base flow region at the
neck. In order that this region remain cool, the energy must be
continually removed by heat transfer at the base of the body.
Since heat transfer coefficients of surfaces within regions of
Seéarated flow are notoriously small (29, 34), it may be impos-
sible to remove an amount of heat sufficient to keep the base
region close to body temperature, and the axial enthalpy distri-
bution may resemble that shown in Sketch 6. If Me >> 1, then
the mass flow pu is very small below u, because the static

temperature is large and the density is low. Thus the total

* A more detailed energy balance for a separated region of the
cavity-type is given by Chapman in Reference 33.
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Sketch 6. Axial enthalpy distribution in a "highly cooled" base
flow region (schematic)

energy flux returned to the base will be less than an equivalent
situation with M_ = O(1l). In either case, the solution of the energy
equation will not be given by H = A + Bu, since the inner boundary
condition on H varies with s. The value of M, , and consequently
the pressure rise (p’/pe), may be significantly less than the result
obtained assuming H, = Hpg.
A further difficulty arises in the case where HB and Hb are
much less than He' From the arguments given above, the axial
variation of Hy is seen to depend on the rate of heat transfer at
the base. But this heat transfer, and consequently the level of

H, and M, will vary with Reynolds number, so that some devia-

b
tion from the "Reynolds number independence principle" should be
expected for a highly cooled body.

In summary, this section has provided an insight into some

of the details of the near wake by examining two simple momentum

integral solutions to the non-similar constant pressure shear layer
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mixing process. The qualitative and quantitative influences of
base heat transfer and initial shear layer profile are indicated.
The pressure rise (p' /pe) across the recompression region is
presented for several values of Me’ and arguments are advanced
to show that a quadratic or other "Blasius-type" initial profile
will predict values of (p' /pe) which are smaller than are exper-

imentally observed.

II.4. Results to be Verified by Experiment

The model of the near wake flow field developed in Sec-
tions II. 1-II.3 rests on several assumptions which are strictly
valid only in the limit of infinite Reynolds number (vanishingly
small initial thickness). The following paragraphs summarize
the assumptions and predicted observables which must be veri-

fied by experiment.

Assumptions to be Verified

(1) Isentropic recompression of the zero streamline.
This is probably the most difficult postulate to examine directly
by measurement. It is necessary to find the entropy, or equiva-
lently (p/p,’)/), along the dividing streamline both upstream and
downstream of the neck. This expefiment was not attempted,
but an evaluation of the pressure gradients and shear layer pro-
files upstream and downstream of the neck provides a check on
thié postulate (Sections V.1 and V.2).

(2) Constant pressure in the mixing region. This as-

sumption has been investigated at a Reynolds number sufficiently
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low so that the regions of validity are clearly delineated (Section
V.l).

(3) Negligible effect of flow within the base region on the
development of the shear layer. A detailed mapping of the flow
field behind a circular cylinder was obtained to indicate the appli-
cability of this assumption (Section V.1),

(4) The path of the zero streamline is a straight line (two-
dimensional flow) except in the regions very near separation and
the neck. Its distance is well-defined, and it passes continuously
from separation to a virtual stagnation point at the apex of the
triangular base flow region. An attempt was made to define the
zero streamline and the rear stagnation point using both "conven-
tional" hot-wire measurements and a "goal-post" technique

(Sections V.1 and V.2).

Predictions to be Verified

(1} Shear layer scaling laws
a) Wake thickness variation with Reynolds number
(Section II.2)
b) Shear layer thickness as a function of Reynolds
number (Section V.1)
(2) Reynolds number independence of base pressure for

different geometrical families (Sections IV.1 and IV.2)
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IIT. EXPERIMENTAL CONSIDERATIONS

The experiments were carried out in Leg #1 of the GALCIT
hypersonic wind tunnel. The test section is 5" square, and contoured
nozzle blocks produce a test section Mach number of 6. Because of
sidewall boundary layer growth, the Mach number varies with free-
stream Reynolds number as shown in Figure 8. The test rhombus
of uniform flow is 3" wide and 15" long, with a static pressure uni-
formity better than + 1.6% over any cross-section. Most of the data
were obtained at a stagnation temperature of 275°F, this valué being
sufficient to avoid air liquefaction at all pressures eﬁcountered. The
tunnel is capable of continuous operation at stagnation pressures
between 1 and 8 atmospheres absolute; automatic regulafors main-
tain a constant stagnation temperature within + 2°F and a constant
supply pressure within + 0,07 psi over several hours. The limiting
error in the flow uniformity and repeatability appeared to be the span-
wise static pressure non-uniformity of £ 1.6%, which was caused by
weak wavelets emanating from the sidewall access ports.

All data were obtained after the wind tunnel had been allowed
to warm up for more than one hour, thus insuring that the nozzle
blocks and other tunnel components had reached an equilibrium tem -
perature. Temperatures of the pressure transducer, silicone
manometer, and amplifier-recorder system were continuously
monitored, and suitable calibrations employed to eliminate errors

caused by temperature drift.
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III.1 Design and Calibration of Instruments

Pressure Instruments

Absolute pressure measurements were made with a U-tube
micromanometer filled with Dow Corning DC 200 silicone oil and a
Statham Model PA208-TC (0-5 psia) pressure transducer. The
micromanometer was referenced to a pressure of 0.5p Hg, as
measured by a McLeod gauge, and incorporated an illuminated
travelling eyepiece. The overall accuracy and repeatability of
this manometer was about +3p Hg. For the pressure transducer,
operating in the range 0-60 mm Hg, the hysteresis and non-linearity
was less than £ 0,06 mm Hg, as shown in the ca.librafion of Figure
9%, This transducer is of the flush-diaphragm type, and a carefully
constructed container with neoprene O-ring reduced the sampling

~volume to slightly less than 1/10 cc. This enclosure provided
ample clearance for movement of the diaphragm while giving a
rapid response time in the 10-60 mm Hg pressure range.

A part of the experimental program was the development
of accurate pitot pressure measuring techniques which can be used
to investigate separated flows. The final pitot probe design which
resulted from this investigation is now described.

Pitot probes were manufactured from 0.028" dia. stainless
steel tubing and pyrex. The stainless probe was flattened to an
overall height of 0,0116", an overall width of 0.0408", and a wall

thickness of about 0.001", The leading edge was squared off

* An initial hysteresis is present if the transducer has been exposed
to pressures above 5 psia. Care was taken to keep the transducer
pressure below 150 mm Hg during the complete test program.
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normal to the probe axis. Round glass pitot probes were drawn from
6 mm O.D. x 4 mm I.D. pyrex tubing. By heating the glass to the
softening point and deftly pulling it like a piece of taffy, tubes as small
as 0,003" O.D. could be fabricated. All glass probes had a gradual
taper of about 5° from the tip to a uniform section of 0,020"-0, 025"
O.D.. Reproductions of contour projector images for two of the
probes are shown in Figure 10, The length of the glass tubing of
each probe was 1,10", The delicate task of squaring off the end of
each tube on a jeweler's lathe was handled by R. Bartsch of the

GALCIT machine shop.

Hot-Wire Instruments

The hot-wire probes were designed to have a minimum cross-
sectional area normal to the flow direction. They consisted of a
small cone-cylinder-flare body, a thin streamlined strut, and two
sewing needles to hold the wire. Three views of the probe are
shown in Figure 11. The strut holding the needles was a "sandwich"
of two 0.020" thick blades of hard brass shim stock joined with a
thin layer of Stycast 2850GT cement. This bonding agent was
chosen for its low thermal expansion coefficient (about 15 x 10-6/°C)
and high electrical resistivity (1013 ohm-cm at the tunnel operating
temperature). The needles were soft-soldered to the brass blades,
and a small bridge of Stycast 2850GT was placed half-way down the
needles to increase their rigidity (see Figure 11).

The hot-wires were soft-soldered to the needles within 0,001"

of the tips, and care was exercised to insure that the hot-wires were
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normal to the flow direction. Pt-10% Rh Wollaston wire of 0,0001"
diameter was used as the hot-wire material, and each wire was
annealed and calibrated according to the procedures reported in
Part I of this thesis. All wires were obtained from a single spool,

3 1

and the mean resistivity coefficient was 1.657 x 10 ~ °C™ "~ at 0°C.

A block diagram of the hot-wire circuit is shown in Sketch 7.

R |

ok [ ]@

50O
m
(@)

A, Oregon Electronics GP32-20 power supply with
voltage divider and ballast resistors.

B. Leeds and Northrup 9834 Null Detector

C. DBucking voltage and calibration circuit

D. Kin-Tel 501B digital voltmeter

E. Sanborn 1500S amplifier

F. Moseley 25 X-Y recorder

Sketch 7. Block diagram of hot-wire circuit.

Absolute resistances R were measured to + 0,012 using the bridge
circuit and standard decade resistor Rs’ The current through the
hot-wire RW was determined by measuring the voltage drop across
a standard resistor in series with the hot-wire (input @ to the

digital voltmeter), and was accurate to + 0.05%.
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III.2 Wind Tunnel Models

All models were inserted into the tunnel through small lucite
plugs mounted in a glass port. Pressure and thermocouple leads
were brought out through the 0.250" dia. support shown in Sketch 8.

The models consisted of circular cylinders and wedges which could

/GLASS PoRT (\q*’k—‘ Mo DEL
LveiTE

lo PLUG

RErA/vING
BoLT CTYR)

SEHLNG AUT

’//75 ~\ € INSTRUMENT LEADS
Sketch 8. Model support arrangement.

be rotated by turning the support strut.
Six circular cylinders were used in this investigation. Their

characteristics are given in Table 1. The surface of each model was

Table 1. Circular Cylinder Models

Diameter Details of Manufacture Use
0.0838" Three 0.009" dia. holes in line parallel} [ Surface and
to cylinder axis. 3" stainless steel
center section }{ base
0.1498" Four 0.009" dia. holes. Brass
0.300" Five 0.009" dia. holes. Brass J L pressure
0.256" Micarta with 0.007" nickel plating, Y
' I/C. Thermocouple 1 Surface
6 mm 6 mm O.D. x 4 mm I.D. pyrex,
0.010" x 1.00" Pt. strip j | Temperature

0.238" Ketos steel, 0,0005" bright nickel
finish, with two 0.050" x 0.015" dia.
goal posts 0,500" apart Wake Survey
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polished to 5 microinches mean roughness, and no pits or gouges
were tolerated.

Table 2 gives the pertinent dimensions of the four wedges

Table 2. Wedge Models

Wedge Angle, ZOB Base Height, 2H Surface Pressure Taps
44° 49! . 1475% No
44° 42! .2810" Yes
29° 12! . 1430" No
30° 9! .2989" Yes

used in the base pressure experiments. The models were fabricated
of Ketos steel, and the leading edges were less than 0,0005" thick.
The trailing edges were of somewhat poorer quality, having a maxi-
mum radius of curvature of about 0,003", Two models had 0.015"
dia. surface pressure taps on opposite sides of the wedge; these
holes were connected to a small U-tube silicone manometer, and

the angle of attack was set at 0° £ 1.5' by rotating the model until
the two surface pressures were equal. The base pressure taps were
0.015" in diameter, and placed on the model centerline. For the
smaller wedges, the angle of attack was set equal to zero by align-
ing the model with the centerline of the tunnel. The accuracy of

this procedure was no better than + 0.7°, but measurements at angles
of attack up to 1. 6° with the larger models showed less than 1%
change in base pressure, and it was assumed that the error from

this source was negligible.
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IIl. 3 Experimental Techniques

Base pressures were measured with the silicone U-tube
micromanometer. Cylinder surface pressures were also obtained
with the micromanometer, and the angle of rotation was determined
by a mechanical counter having 5000 divisions for 360° rotation.
The centerline for the cylinder base pressure and surface pressure
studies was determined by symmetry; this procedure was highly
satisfactory (see Section IV.2).

Hot-wire and pitot pressure surveys behind the 0,238" dia.
cylinder were accomplished by mounting the probes on a traversiﬁg
system capable of motion in fhe vertical and horizontal directions.
Thus, "slices" could be taken at any streamwise station along the
tunnel centerline. The vertical position of the probe was recorded
by a mechanical counter. A leadscrew mechanically connected to
the vertical actuator operated a Beckman Helipot as a voltage
divider, producing an electrical signal proportional to vertical
displacement. The wake centerline was determined by symmetry,
and this procedure yielded a repeatability of about + 0.001",

The axial position was determined with the aid of the two
"ooal-post" needles attached to the model. The tips of these
needles, which extended 0.0501" + 0.0002" above the model sur-
face and were 0.5 inches apart, were rotated to the rear of the
body a;l'ld used as a "gunsight" to align the probe. By using a mag-
nifier, the axial position could be consistently reset to + 0.0015",

Figure 12 shows a sample of the raw data obtained with



-40-

the hot-wire probe. The x-axis of the plotter was connected to the
helipot voltage divider and the y-axis input was the hot-wire signal.
Each trace was taken at constant current. At the beginning of each
trace, the wire resistance* was measured with the bridge circuit
and the current determined by measuring the voltage drop across

a standard resistor in series with the hot-wire. The bucking
voltage circuit (see Sketch 7) was then adjusted to give a zero
signal into the Moseley plotter, and this zero level was indicated
by a horizontal mark. Therefore, as the wire traversed the wake,

only the voltage difference
AV = iAR

was recorded. Standard impedance matching techniques reduced
the systematic error in the determination of RW to a negligible
value . The bucking voltage circuit contained mercury cells and
standard resistors for calibrating the hot-wire axis of the plotter,
and the analog voltage for vertical position was calibrated by read-
ing the mechanical counter at several positions of the vertical
traverse system. Since the 0.0001" dia. hot-wire has a response
time of 107°-10"° sec. , traces could be taken rapidly and contin-
uously.

For the pitot pressure traces, the transducer output was

fed into the Sanborn amplifier, and then to the Moseley plotter.

* A line resistance of less than 0.5 was subtracted from all
bridge readings. This line resistance was known to +£0.002%2,
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Calibration and data-taking procedures were similar to those em-
ployed with the hot-wire, except that the trace was not continuous.
Because of the appreciable (1-50 sec.) time response of the probes,
the record consisted of a series of discrete points across the wake,
However, enough points were taken so that the interpolation be-
tween points introduced an error of less than 0. 2% in the measured
pressure. The Kin-Tel digital voltmeter was used to monitor the
time response of the probes; each pressure was within 0. 1% of its
equilibrium value. The results of these surveys are shown in

Figures 14, 15, and l6.

111.4 Experimental Corrections

Certain unavoidable systematic errors are present.in the
raw data obtained with hot-wires and pitot pressure probes. The
most serious is the end loss error of the hot-wire, and the com-
putation procedure for determining ‘an appropriate correction for
this effect is given in Appendices A and B of Part I of this thesis.
Other systematic errors are smaller in magnitude, but are none-
theless important in interpreting the measurements.

Flow Interference Effects.

At the beginning of this investigation, serious attention
was given to the effects of probe interference on the base flow field.
The most sensitive measure of these interference effects was found
to be the base pressure. For a circular cylinder at M_ = 6, the
shear layer external Mach number Me is about 3, so that a 1%

change in base pressure corresponds to a 1.7% change in Me"
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Measurements were made of the base pressure as a function of
probe position in the near wake, and these are shown in Figure
13. It may be seen that the hot-wire probe affected the base pres-
sure by a maximum of 2% at y/D = -0.4, but the influence was less
than 1% outside the region -0.7 <y/D < -0.2. (y/D < 0 means the
probe was inserted completely across the wake.) For this reason,
only hot-wire data for y > 0 were used in computation. The pitot
probe presented little disturbance to the flow field, as shown by
Figure 13. The pressure data were therefore read from the pitot
trace for values of y < 0, since the probe was aligned with the flow
in this region. No correction was applied to the magnitude of
either the hot-wire or pressure data for these interference effects.

However, a more subtle influence of the probe interference
did require correction. It was found that the pitot pressure probes
consistently measured a smaller wake thickness than the hot-wire,
This effect was caused by a "spreading" of the base flow region
because of the presence of the hot-wire probe. The effect was
not large, averaging 0.0035" on the radius., Because of the large
gradients in the shear layer, it was necessary to correct for this
shift by multiplying the y-coordinate of the pitot trace by a constant
so that the lip shock positions measured with the pitot and hot-wire
probes coincided. The numerical factor was unity for x/D < 0.6
and x/D = 3.5, and reached a maximum of 1.053 at X/D = 1,50,
The numerical factor at a given x/D was repeatable within +0.8%

(i.e. £0.0019") from pressure to pressure and from pitot probe to
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pitot probe (Figures 14, 15 and 16 are shown without correction).

After correcting for this displacement, the pitot pressure
and hot-wire data gave a consistent and complementary description
of the flow field. Figure 17 reports the measured pitot pressure,
hot-wire heat 1éss, and zero current wire resistance measured
at x/D = 0.80, Equivalent sets of data were obtained at several
downstream stations and at 4 different Reynolds numbers with
similar results.

Pitot Pressure Corrections

There are four primary sources of systematic errors which
must be considered when using pitot probes in low density shear
flows. These are: (a) probe angularity with respect to the flow
direction; (b) probe size and geometry with respect to the dimen-
sions of the region investigated; (c) low Reynolds number correc-
tions to the measured impact pressure; and (d) thermal transpiration.
Although systematic investigations of these effects have been carried
out separately*, few studies have been conducted where more than
one pitot probe parameter has been varied under the same experi-
mental conditions.

As a part of this investigation, the effects of pitot probe
size, geometry, and angularity with respect to the flow direction
were evaluated in situ by traversing the near wake of the 0.238"

diameter cylinder with a variety of probes. The data are shown in

* See, for example, Sherman (35), Plan (36), Enkenhus (37),
Matthews (38), Clayden (39), Bailey and Boylan (40), Bailey {41),
Howard (42), and Arney and Bailey (43). ‘
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Figures 14, 15, and 16, and an interpretation of these results is

given in Appendix B.

I1I.5 Data Reduction Procedures

Figure 12 is an example of the raw data obtained with the
hot-wire. Twenty-three stations were selected in the region
0 <y/D < 0.9, and at each station six values of the hot-wire re-
sistance Rw(i) were computed. For the small heating currents
used in this investigation, RW was a linear function of the Joulian
heating iZRW. By plotting RW as a function of ,,iZRW, the slope
[dR/d(iZR)]izo and the zero current intercept Rizo could be found.
In order to determine the variation of R120 across the shear layer
with high precision, all readings were reduced relative to an
interior reference station (say y/D = 0.500), The absolute values
of R, and [dR/d(izR)] imo 2T believed to be accurate to be

accurate to £0,02Q (i.e. +0.06%) and + 4%, respectively.
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IV. BASE PRESSURE MEASUREMENTS

AT HYPERSONIC SPEEDS

Base pressure measurements have a long history, dating
back to the early experiments of the Prandtl School in Germany.
Originally, these investigations were concerned with surface pres-
sures as a measure of transition (the "critical Reynolds number™
problem) and for investigating the behavior of a boundary layer
near separation. In the 1940's and early 1950's, attention was
again focused on the base pressure problem because of the size-
able (20-30%) contribution of base drag to the performance of
supersonic wings and projectiles. From about 1955 to 1960, the
emphasis swung back to a consideration of the separated flow
aspects of the problem, and since 1960, the major impetus has
been the connection between base pressures and the wakes of
reentry vehicles. The interested reader may consult the reviews
given by Goldstein (44), Chapman (20), Crocco and Lees (17),
Korst, Page and Childs (22), Kavanau (45), Love (46), Holder
and Gadd (23), Nash (4), and Kaufman et al. (47) which give a
reasonably complete list of references on base flow and separa-
tion phenomena.

In this Section, base pressure and surface pressure mea-
surements on wedges and ciréular cylinders are presented, and

are interpreted using the near wake model described in Section II.

IV.1l. Cylinder Base Pressures

The base pressure of a two-dimensional circular cylinder
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at a free-stream Mach number of 6 is shown in Figure 18. It
may be seen that the aspect ratio* required to render the ratio
(pb/Pt‘Z) independent of cylinder diameter is on the order of 20,
although the errors are not large for R = 10,

According to the Mach number independence principle,
the ratio (pb/pt/z) should be independent of M__ if M_>> 1. In
Figure 19, the present experiments are compared to the results
of Tewfik and Geidt (29), Walter and Lange (30), and Gregorek
and Kordan (31) which cover the range 2.5 < MOo < 11. Itis
appajrent that the flow field at the rear of the cylinder is not
independent of Mach number below Moog 4. (The scatter of the
data for Moo > 4 about the present measurements is attributed,
in part, to aspect ratio effects.) At the higher Mach numbers,
the base pressure ratio (pb/PtZ) and, by inference, the struc-
ture of the near wake are functions only of the Reynolds number
Reo ,D and the body surface conditions.

The simplified model of the near wake presented in
Section II predicts that the base pressure ratio (pb/ptz) is also
independent of the Reynolds number Reg, p. Although this is
not exactly true, as indicated by Figure 18, it is certainly a
good first approximation inasmuch as the base pressure changes
by 30% over a 20-fold range of Reynolds numbers. An increase

in base pressure with Reynolds number was also found by

* The aspect ratio is defined as the ratio of spanwise uniform flow
to cylinder diameter, not the ratio based on tunnel dimensions and
cylinder diameter.
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Kavanau (36), who studied a blunt axisymmetric cone-cylinder
model with a flat base at Mach numbers between 2 and 4. The
fact that the present variation of base pressure with Reynolds
number is small seems somewhat surprising, in view of the low
4

0,D" Even for a value Re0 D = 107, the

shear layer thickness is a significant fraction of the body diame-

Reynolds numbers Re

ter and many of the assumptions of the base flow model become
questionable.

To compare the measured base pressures with the
quantitative results of Appendix A, it is necessary to estimate
the initial momentum thickness 0, after separation. This
estimate requires (a) a knowledge of the momentum thickness
GB on the body ahead of the separation point, and (b) a knowledge
of the change in 6 across the éeparation region. An estimate of
0p may be obtained by the method of local similarity (48), Using

Equation 4, the shear layer parameter §(£) may be written

_, 5 2., PBU/Fp . Ppbp
£(2) = (‘—~—2') (—I:)[(p T/ 5 <=1 (8)
ZReI2 ee’/te wiw
where L
~ ("; Pwtw'B dX)along body surface
Re = © ) (9)
w Pw UB “at separation
L = curvilinear distance along the body surface from
the forward stagnation point to separation
x = distance measured along body surface

( )W = quantity evaluated at the local surface tempera-
ture and pressure

= local quantities evaluated at the edge of

P sU s }-L
B-B"B the boundary layer along the body
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and £, is the ratio (80 /GB) defined on page 13. The quantity L is
the momentum thickness integral across the boundary layer in the
incompressible plane, and is a function of the local wall tempera-
ture and pressure gradient.

Using the cylinder surface pressure distribution measured
by McCarthy (27), the value of Refor a cylinder goes monotonically
from the classical value of 1/2 at the stagnation point to about 7 at
120°, Similarly, the pressure gradient parameter 3, as defined
in Reference 48, goes monotonically from unity at the stagnation
point to nearly 13 at 120°.

For the insulated cylinder considered here, the body
temperature is equal to 0.95 of the stagnation temperature (see
Appendix C). From an extrapolation of the numerical results of

Beckwith and Cohen (49), the value of I, corresponding to p = 13

2
is 0.11, This result is a factor of four less than the classical

Blasius value (f = 0) of 0.4696., Since § ~ (IZ)_Z, this reduction

in I2 means a difference of a factor of 16 in £ for an insulated body.

If the body is highly cooled, then I, is a weak function of the pres-

2
sure gradient parameter, as suggested by Lees (50), and remains
close to the Blasius value.

Table 3 presents the values of Me’ Pe = Py, and shear
layer turning angle 0, calculated for the exponential, quadratic
and Blasius (numerical) solutions as discussed in Sections II.1

and II.3. These results were obtained assuming K, = 1 and isen-

2
tropic inviscid flow from the 90° point on the body through the
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Table 3. Theoretical Predictions
for an Insulated Circular Cylinder

B Exponential Quadratic Numerical Chapman (21)

Base Pressure 13 . 039 . 043 . 046 . 035
(pb/ptz) 0 .053 . 058 .063 . 035

Shear Layer Angle 13 10.7 9.4 8.5 12.3
GW (Deg.) 0 6.3 5.1 3.7 12,3

Mach Number 13 2.77 2,71 2.66 2.84
Me 0 2.56 2.51 2.45bh 2.84

recompression region,

The influence of surface pressure gradient is readily appar- -
ent in Table 3. A comparison between the tabulated values and the
experimental data of Figures 18 and 19 indicates that the results
obtained using local similarity (f = 13) are in considerably better
agreement with experiment than the values calculated by ignoring
the pressure gradient term. The results obtained using Chapman's
similarity solution for § - oo are in much better agreement with
experiment than the more realistic calculations which take the initial
shear layer thickness into account.

The failure of the present theory to predict the correct base
pressure for a cylinder is presumably caused by three primary
effects. The first is the lack of an accurate description of the
initial momentum thickness 0y because of the uncertainty in apply-
ing local similarity concepts to flows where the pressure gradient
parameter P changes rapidly, and also because of the uncertainty
surrounding the value of Koo Second, for the low Reynolds numbers

shown in Figures 18 and 19, the shear layer is no longer thin, and
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the assumptions of a constant pressure mixing process and negli-
gible base flow are violated. And third, the pressure rise p' /pe
depends on Reynolds number, as shown by Reeves* and Rom (51).
A decrease of base pressure with decreasing Reynolds number was
first predicted by Crocco and Lees (17), although their arguments

were somewhat different than those presented here.

IV.2 GCylinder Surface Pressures Near Separation.

Figure 20 presents the measured surface pressure distri-
bution on a circular cylinder as a function of the Reynolds number
Reo,D' The pressure ratio (p/péz) should be independent of Mach
number for M __ 2 4.

The data were obtained with two cylinders whose diameters
were 0.150" and 0.300" (see Table 1, page 37). As shown by the
dashed curve in Figure 18, the larger model was subject to small
aspect ratio effects which tended to obscure the effects of Reynolds
number on the surface pressures near separation. The pressure
data for the 0.300" diameter cylinder were therefore multiplied
by a constant so that the corrected base pressure was equal to the
value shown by the solid line in Figure 18. The fact that the cor-
rected surface pressures in the region of attached flow are inde-
pendent of Reynolds number attests to the validity of this procedure.

The most striking feature of Figure 20 is the diminishing

extent and finally the disappearance of the region of constant

* B, L., Reeves, private communication.,
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surface pressure with decreasing Reynolds number. The assump-
tion of a constant pressure mixing region implies that the surface
pressure aft of the separation region is a constant and equal to the
value at the outer edge of the shear layer. Clearly, this assump-
tion is invalid at the lowest Reynolds numbers shown in Figure 20.
From the trends indicated in this figure, a large region of constant

> 5
o,DN 107,

pressure would be anticipated for Re

The second important result is that the separation point¥*
moves aft with decreasing Reynolds number. The pressure rise
Ap required to separate the boundary layer increases with de-
creasing Reynolds number, allowing the boundary layer to pene-
trate more and more deeply into the base region. At the lowest
Reynolds numbers shown in Figure 18, the base flow must be com-
plicated in the extreme!l

The third and final item of importance in Figure 20 is the
small pressure rise at the rear of the cylinder., This region of
increased pressure eﬁtends about +15° on either side of the axis,
suggesting a stagnation of the reverse flow in the base region. If

3

the pressure plateau evidenced in the data for Re =7.89x 10

0,D

is taken to be the true static pressure, and the pressure rise at
the rear stagnation point is identified with the dynamic head of the

reverse flow, then the Mach number of the reverse flow along the

* Both theoretical and experimental results indicate that the sepa-
ration point is located very close to the surface pressure minimum.
In this context, separation is defined as the point where the zero
streamline leaves the body surface.
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axis is 0.,3.

IV.3 Wedge Base Pressures

In the preceding Section, the base pressure of a circular
cylinder was found to vary by 30% over a factor of 20 in Reynolds
nurﬁber. As shown in Figures 21 and 22, the base pressure of a
wedge is a strong function of Reynolds number.

The measured base pressures are normalized with respect
to the stagnation pressure behind the leading edge shock wave,

and the Reynolds number Re is based on the velocity, density,

2,L
and viscosity of the inviscid flow along the wedge surface. The
characteristic length L. was chosen to be the distance from the apex
of the wedge to the separation point. A small (less than 10%) cor-

rection was made to the values of Pio and Re to account for

2,L
hypersonic viscous interaction effects (Reference 48).

In addition to the strong variation of base pressure with
Reynolds number, there are three systematic effects which must
be explained. First, the free~stream Mach number varied with
tunnel pressure level, as shown in Figure 8. The present normali-
zation is an attempt to remove the dependence of the base pressure
correlation on free-stream Mach number. Solid points are included
on each curve to indicate a constant value Moo = 6,04; three such>
points were available for each model. The "tailing off" of the
data for each model with decreasing Reynolds number is attributed

to the small change in free-stream Mach number with tunnel

pressure.
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Second, the Mach number Me along the shear layer of the
base flow region is estimated to be between 6 and 8. The result-
ing static temperatures are below the condensation limit, and a
possibility existed that the apparent Reynolds number effects were
in reality caused by condensation. Tests at three separate stagna-
tion temperatures, as indicated in Figures 21 and 22, showed that
condensation effects were undetectable.

Third, the measured wedge base pressures were well below
the free-stream pressure in the wind tunnel., To investigate the
possibility of errors caused by a finite aspect ratio, small fences
were placed in the base region of the 0.30" baseheight, 22 1/2°
wedge. These inserts were triangular in shape, and were attached
perpendicularly to the base just outside the tunnel wall boundary
layers. If any significant cross-flow was present from the tunnel
wall into the base region, these fences should have matérially
affected the base pressure. As shown in Figure 22, the difference
between the base pressures with and without fences was only 3%.
More importantly, the qualitative features of the base pressure-
Reynolds number relation were not changed by these inserts.

The strong dependence of wedge base pressure on Reynolds
number may be easily explained. The shear layer Mach number
Me is between 6 and -8, so that the pressure P> and consequently
the base pressure p,, are sensitive functions of the angle between
the shear layer and the axis. Now according to Appendix A, the

incompressible and compressible mixing problems are related
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through the Howarth transformation (y is in the compressible plane,

and y is the transformed variable)

OP

(10)

In the hypersonic shear layer, (pe/p)> > 1 and the lower portion

of the shear layer penetrates far into the interior of the base region.

Typical mass flow profiles are shown in Sketch 9 for M

and 8.00 for a quadratic profile and isenthalpic flow.

Me

= 3.08

Sketch 9.
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that two hypersonic shear layers will interact strongly in the neck

region, and the assumption that the shear layer thickness is small

compared to the dimensions of the base flow region is violated.

Since the shear layer thickness is proportional to (Re2

L)Z,a
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strong Reynolds number effect would be expected*. Preliminary
hot-wire and pitot pressure surveys have confirmed that, in con-
trast to the cylinder shear layer profiles shown in Figure 17,
there is a strong interaction between the two shear layers of a
wedge.

Physically, the high Mach number layers may be pictured
as "bouncing" off of each other as they approach the neck. This
phenomenon gives rise to a displacement of the zero streamline
away from the axis, and a decrease in the angle between the shear
layer and the axis. This displacement increases with decreasing
Reynolds number, and consequently the base pressure should

increase with decreasing Reynolds number.

* The values of (Pb/PfZ) calculated using Chapman's model for 6, =0
and isentropic recompression are 2.8 X 10-4 for a 15° wedge and
6.8 X 10~% for a 221° wedge.
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V. DETAILED MEASUREMENTS IN THE

NEAR WAKE OF A CYLINDER

This section presents the results of hot-wire heat loss and
recovery temperature measurements in the near wake of a cylinder.
The recovery temperature is used to describe the variation of shear
layer thickness with Reynolds number at x/D = 1.0, A "map" of
the near wake is obtained frqrn hot-wire heat loss measurements;
these results, which cover the first 5 diameters behind the cylin-
der, show the streamwise development of the shear layer, the
extent of the compression process near the neck, and the evolution
of the wake formed by the converging shear layers. Finally, a

"goal post" technique for mapping streamlines is described.

V.l Hot-Wire Profiles in the Near Wake

Recovery Temperature Measurements

Figure 4 shows that the wake thickness 6W obeys a laminar
scaling law of the form

6W
- ~ Rey

,p) ° -

]

According to the theoretical model presented in Section II, the
shear layer thickness should exhibit a similar dependence on
Reynolds number,

To define the shear layer thickness, the hot-wire recovery
temperature may be used. As shown in Part I of this thesis, the
wire recovery temperature, or its equivalent wire resistance as

i—0, is a measure of the local stagnation temperature of the flow.
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Since the cylinder temperature is equal to 0.95 Ty, the viscous
shear layer should consist of streamlines whose stagnation tem -
perature is less than Tj*,.

Figure 23 shows the results of 6 surveys across the near
wake of a cylinder. The normalized resistance R* = (R—RLIP)/
(RLIP-R(E) at i = 0 has been used as a measure of the local stag-
nation temperature through the shear layer. RLIP is the measured
resistance at the inner edge of the lip shock emanating from the
separation point. These data are uncorrected for end loss to
the supports and represent measurements obtained from three
individual hot-wires. | The normalized resistance R* is essentially
independent of both the end loss and the temperature-resistivity
coefficient of the wire. This statement is proved by the coincidence
of the solid and open inverted triangles. These points were ob-
tained with two different wires operated at unit Reynolds numbers
differing by a factor of two.

The data of Figure 23 indicate that the shear layer thick-
ness increases with decreasing Reynolds number. A "maximum
slope thickness" may be defined by the intersection of the tangent
to the R* curve at its point of maximum slope with the values

* = 0 and R* = 1., For the five curves shown in the figure, the

maximum slope thickness A(y/D) is proportional to (Reoo D)_‘2

* A difficulty arises in this definition of the shear layer thickness.
For Pr < 1, a laminar wake or shear layer may exhibit an overshoot
in local stagnation temperature at its outer edge (see Section V,
Part 1), For this reason, the maximum slope thickness is proposed
as the correlating parameter.
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within the scatter of the data, and this relation provides additional
evidence supporting the scaling laws given in Section II, 2.
It is apparent that the region of inviscid flow between the

edge of the shear layer and the lip shock rapidly disappears as the

Reynolds number decreases. For Re = 0,765X 10% =
ow,D 0,D

1.04 X 103), a clear distinction can no longer be made between
4

(Re

the shear layer and lip shock. At a value Re = 6.18X10

(Re, p=8.01X 10%), the inviscid region is distinct.

The position of the lip shock is nearly independent of Rey-
nolds number. Figure 23 indicates that the center* of the lip
shock lies between (y/D) = 0.44 and y/D = 0.48 in the range
0.8 X 104< Reoo,D < 6X 104. This corroborates the surface
préssure measurements of Figure 20 which show the separation
point to be a weak function of Reynolds number.

A minimum value of R* is associated with the zero velocity
point in the shear layer profile. Consider the energy balance for
a fine wire supported by two needles which are maintained at a
temperature TS, where TS is less than the local stagnation tem-
perature of the flow. As the wire current approaches zero, the
remaining heat transfer mechanisms are (a) convection from the
stream to the wire, (b) thermal conduction from the fluid to the

wire, (c) radiation from the wire to the cold walls of the wind

tunnel, and (d) solid body conduction from the wire to the supports.

* The weak lip "shock" is somewhat diffuse at these low Reynolds
numbers. Its location was determined by the hot-wire heat loss
profiles adjunct to these recovery temperature traces.
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For these tests, radiation effects are unimportant so that a mini-
mum in the wire resistance corresponds to a minimum in the
convective heat transfer and a fortiori the point of zero velocity
in thé shear layer.

Figure 23 indicates that the zero velocity point at x/D = 1.0
is located at y/D = 0.16 and is independent of Reynolds number over
the range investigated. This minimum is clearly evident in all

traces except the one for Re = 0,765 X 104. Furthermore,

oc,D
the temperature level below the zero velocity point rises rapidly
to a constant value which is maintained near the axis. This
behavior is evidence for a small core of low velocity reverse
flow which eventually is brought to rest at the rear of the cyl-
inder (see Section IV.2).

st
<

The interpretation of R* presented above is subject to
some question since the hot-wire supports may disturb the re-
verse flow passing over the hot-wire, The magnitude of this
disturbance is judged to be small because of the careful design

of the hot-wire probe (see Figure 11). Furthermore, this inter-
pretation leads to a clear picture of the reverse flow region
which is consistent with the surface pressure measurements

discussed in Section IV.2 and the heat loss measurements shown

in Figure 24.

Heat Loss Measurements

The data presented thus far have provided an insight into

the changes in the near wake associated with changes in Reynolds
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number. Figure 24 presents a hot-wire "map" of the near wake of

a cylinder at a Reynolds number Re = 3.25 X 103. This low

0,D
Reynolds number was chosen for two reasons: first, it was desired
to map out the flow field under conditions where departures from
the idealized model of Section II.2 would be readily apparent; and
second, it was necessary to choose experimental conditions where
the shear layer was thick enough to permit detailed investigation.

In Figure 24, profiles of the hot-wire heat loss [dR/d(iZR)] -1
are presented for the stations x/D = 0,44, 0.52, 0.60, 0.80, 1.00,
1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3,00, 3.50, 4.00, and 5.00,
Each trace is plotted to the scale shown at the bottom of station
x/D = 5, To aid in interpreting the data, the abscissa of each pro-
file was placed so that the minimum value of [dR/d(iZR)] was
located at the (x/D) station where the traverse was obtained. The
minimum values are tabulated adjacent to the profile at (x/D) = 5.
Recovery resistance profiles were also obtained at each station.
These curves showed distinct off-axis minimums, similar to those
shown in Figure 23, for x/D < 2. The locations of the minimums
are shown as large circles in the (x/D)-(y/D) plane, and are con-
nected by the line marked u = 0, This line is extended to that
point on the trace of the body which marks the surface pressﬁre
minimum for this Reynolds number. As previously discussed,
this point is the approximate location of separation.

In interpreting Figure 24, it is useful to consider the heat
loss difference {[ dR/d(i’R )]_1- [dR /d(i%R)] :in} as being a mea-

sure of the local mass flow. This statement is not precisely true,
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gsince the data are uncorrected for end losses and were obtained
with several different wires. However, the mass-flow interpre-
tation is qualitatively correct and provides a straightforward
interpretation of the several features exhibited by the data.

As the boundary layer leaves the body surface to become
the free shear layer, the velocity below the zero streamline is
initially zero. The lower portion of the shear layer entrains
mass from the base flow region, and the velocity u, along the
dividing streamline increases rapidly. Because of the curved
bow shock wave, the inviscid flow outside the shear layer is
highly rotational. The large inviscid gradients are evidenced
by the slope of the heat loss profiles for (y/D)> 0.5%, The loca-
tion of the lip shock is evidenced by a sharp "valley" in the heat
loss data. The local minimum at the lip shock corresponds to
the outer edge of this weak compression wave. Pitot pressure
traces (see Figures 14-17) and Schlieren photographs have con-
firmed that this wave is not a sharp discontinuity but has a width
of approximately 0.05 (y/D) (0.012%); additional hot-wire traces
have indicated that this thickness decreases with increasing
Reynolds number. The path of the lip shock is seen to be a
straight line with a virtual origin at the outer edge of the bound-

ary layer at the separation point; the lip shock meets and is

* The outer portions of the heat loss profiles at (x/D) = 0.44 and
0.52 were disturbed by the presence of a "goal post" wire (see
Section V.2), and are shown as dotted lines. All other data were
obtained without this disturbance.
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swallowed up by the emerging wake shock at (x/D) = 3,00,

The lip shock and the shear layer are merged near sepa-
ration. At (x/D) = 1.00, an inviscid region begins to appear
between the two. For X/D > 1, the inviscid region is distinct
and its extent is clearly evident in the heat loss data for
(x/D) = 1.25,

A compression and turning of the flow is seen to begin
at (x/D) = 1,50, The compression "hump" at the outer edge of
the shear layer increases in magnitude and propagates outward
as the neck region is approached. At (x/D) = 2.00, the two
shear layers have merged. The compression process at the
outer edge of the viscous region is essentially complete at
(x/D) = 2,50, The compression region is initially diffuse (e.g.
(x/D) = 2.00), but the steépness of the front increases in the
streamwise direction. Beyond x/D = 3.00, the compression
maintains the characteristic form of a wake shock.

A detailed examination of the profiles in the base flow
region reveals several interesting features. From the require-
ment of mass conservation, the zero streamline and zero

"stagnation point"

velocity line are required to form a wake
at the point of confluence of the two shear layers. From the
trajectory of the u = 0 curve (which is not a streamlinel), the

wake stagnation point is found to be located between (x/D) = 1,75

and (x/D) = 2.00; it is tentatively placed at (x/D) = 1.90,
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T. Kubota* has examined the flow in the vicinity of this point using
the full Navier-Stokes equations. He finds that both the zero stream-
line and zero velocity line must approach the axis vertically, and
this fact has been utilized in drawing the u = 0 curve., A diagram

of Kubota's result is shown in Sketch 10,

Sketch 10, The wake stagnation point (after T. Kubota).

The heat loss profiles exhibit a small increase below the
zero velocity line. This behavior is attributed to the reverse flow
in this region. The magnitude of this increase is very uncertain
because end losses and thermal conduction comprise the bulk of
the heat transfer below-u= 0. As illustrated in Figures 14-17,
the pitot pressure traces are completely incapable of picking up

the reverse flow region. Traverses at higher Reynolds numbers,

¥ Private communication.



-64-

for which the end losses of the hot-wire were smaller, indicated
that the reverse flow region is clearly marked by a small increase
in the hot-wire heat loss. The location of the heat loss minimum
coincides with the point of minimum wire temperature as expected.

According to the idealized model presented in Section II. 2,
the compression of the zero streamline at the neck is assumed to
be isentropic, so that the pressure rises rapidly from p, to P!
across the neck. This model requires that the pressure rise is
consummated in the immediate vicinity of the wake stagnation
point. From the heat loss data of Figure 24, this assumption
is seen to be incorrect. The minimum in the wake thickness
occurs at approximately (x/D) = 2.5, while the wake sfagnation
point is located at (x/D) = 1.9. The action of significant viscous
forces in the neck region is therefore indicated, at least for
this low Reynolds number. Recent calculations by L, Lees* and
B. Reeves have shown that the pressure rise at the neck requires
several shear layer thicknesses to approach its downstream
value, and the length of the recompression increases with in-
creasing Me.

To summarize the results obtained from the hot-wire
heat loss measurements, as supported by recovery temperature
and surface pressure studies, the following may be stated:

(1) At low Reynolds numbers, the penetration of the shear

layer into the base flow region is extensive;

¥ Private communication.
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(2) The neck compression region extends for several shear
layer thicknesses upstream and downstream of the wake stagnation
point;

(3) A distinct reverse flow exists in the interior of the
base flow region;

(4) The inviscid region outside the shear layer becomes
less distinct as the Reynolds number decreases., Below ReO,DE 103,
an inviscid flow between the shear layer and the lip shock can no

longer be identified, and the base flow region contains large pres-

sure gradients.

V.2 The "Goal Post" Technique for Mapping Streamlines

The 0.238" diameter cylinder used in the hot-wire heat
loss investigation had two 0.009" diameter needles projecting
0.0501" from the surface and placed 0,500" apart along a common
surface generator. The mounting arrangement, illustrated in
Sketch 8, page 37, allowed the cylinder to be rotated about its
axis and translated normal to the flow direction. For the heat
loss and pitot pressure traverses, these two goal posts were
rotated to the leeward side and translated to the tunnel wall.

A platinum wire 0.001" in diameter was soft-soldered
between the two needles, forming a cross-bar between the two

"goal posts.”

By rotating the cylinder, the wire could be placed
at ‘successive positions in the near wake flow field. Just as the
parent cylinder leaves a characteristic wake in the uniform flow

of the wind tunnel, the satellite wire leaves a wake in the parent
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flow field. The wake of this goal post wire will follow a streamline
of the parent flow; if the small wake does not spread rapidiy, the
trace of the streamline will be distinct.

Figure 25 shows the temperature wake of the goal post wire
located outside the shear layer of the parent flow field. The three
coordinates of this projection are (x/D), (y/D) and voltage of the
hot-wire used to survey the hybrid flow field. The hot-wire was
operated at a constant current of 1.000 ma, so the voltage was
proportional to wire resistance which in turn was linearly related
to the recovery temperature of the wire. The maximum "bucket"
in the parent wake temperature profile is about 30°C, correspond-
ing to a 3% change in the hot-wire resistance.

The wake of the goal post wire is very distinct in the first
3 diameters of the main base flow region. The small wake shocks
produced by the goal post can be distinguished at {(x/D) = 0,52,
Even fine details such as the overshoot in total temperature at
the outer edge of the goal post wake (since Pr < 1) may be recog-
nized. The miniature wake eventually becomes absorbed by the
main wake. This process begins, for this particular goal post
position, at about (x/D) = 3; the small wake is barely discernible
at {x/D) = 5. |

Within certain limitations, this technique offers the possi-
bility of mapping flow streamlines with great facility. The first
requirement is that the drag of the goal post wire be small com-
pared to the momentum defect of the near wake. For a cylinder

or other blunt body, a large portion of the initial drag appears in
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the inviscid flow, so that the mdmentum defect produced by the
bow shock of the satellite body is added to the momentum defect
of the main base flow region. In the present experiment, this
produced a small but measurable translation of the main flow away
from the side containing the disturbance. Second, the aspect ratio
of the wire and the local Mach number of the flow approaching the
goal post wire must be large. If these conditions are not satis-
fied, the gross perturbations produced by the supports will
significantly change the profile of the main wake. Finally, the
spreading of the wake must be small, so that a "single" stream-
line is identified. Otherwise, the existence of large gradients
in the parent flow will make interpretation of the structure of

the small wake very difficult (52).
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APPENDIX A
MOMENTUM INTEGRAL METHODS FOR THE

LAMINAR FREE SHEAR LAYER

Momentum integral methods are very convenient for treat-
ing a wide variety of separated flow problems. Several examples
have been reported in the literature (17,18 53 ,54,55) and further
abplications are being pursued (51,56). For the constant pressure
mixing problem, the application is simple and direct, and leads to
closed form solutions of the momentum equation. The results
presented in this Appendix describe the development of a constant

pressure laminar free mixing layer with a finite initial thickness.

Transformation to the Incompressible Problem

The continuity, momentum, and energy equations for a
homogeneous laminar compressible shear layer are written (space

and velocity variables in the compressible plane are barred)

a(pu) . Bpv) (A. 1)

95 oy

pu%+ﬁ%2%W$ﬂ (A.2)
ds oy 9y y

—dH . —98H _ 8 ,p OH, 9 1 5 Tl

pu—+pv—=— (g —) - — [k Ez - — )] (A.3)
0s oy y y y 9y

2
Hzg%dT+%-, (A. 4)
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and the usual boundary layer approximations have been made. The
coordinate s is taken as the curvilinear distance along the path of
the zero streamline, and y is measured normal to s.

The Howarth transformation is used to reduce the problem
to incompressible form (unbarred variables are in the transformed

plane):

s=3 , y=5y——9—d§;. (A.5)
0 Pe

Defining the stream function { in the usual manner, we have

— 9 - 9
Pu = pe—% pv = -pe—_‘l—i (A.6)
oy 9s
= Oy P
u = By v 55 (A.7)

which serves to define the transformed velocities u and v. By sub-
stituting A.6 into A. 1, it may be seen that { automatically satisfies
the continuity equation. The zero streamline ¢ = 0 coincides with
the origin of y.

To reduce the problem to its simplest elements, the approx-
imations are made that the density-viscosity product pp is constant
and the Prandtl number Pr is unity. These simplifications are not
essential, but reduce the mathematical labors required for solution.
Using the definitions given by A.6 énd A.7, the continuity, momen-
tum, and energy equations in the transformed variables (s,y,u,v)

are now identical to their incompressible form:
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ou ov

355 + Ty - 0 (A.8)
ou ou 82u

U—=+ v —=v (Ao 9)
0s oy ayz
OH .  8H _  o°H

Umet v = v (A.10)

s vy 8y2

where Vv is the kinematic viscosity (|Jue/pe)° An examination of Equa-
tions A.9 and A.10 shows that the total enthalpy H is a linear function

of u, and we may immediately write the solution
H= A+ Bu (A.11)
A,B = constants {

This solution is physically admissible only if the boundary conditions
permit! The momentum equation A.9 and the continuity equation

A.8 are now independent of the energy equation.

The Two-Layer Method

One method of solving A.8 and A.9 is to integrate the equa-
tions numerically, starting with an assumed velocity profile at
s = 0. The calculation is continued until a similar profile corres-
ponding to s—>oo0 is reached. This technique was used by Denison
and Baum (25). The approximate solution adopted here is to rep-
resent the velocity profile by a simple analytic function containing

several parameters which are allowed to vary with s. By multi-

J

plying the s-momentum equation by v’ (j = 0,1,2,...) and integrating
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across the shear layer (making use of the continuity equation), a
set of coupled ordinary differential equations is obtained which
describes the variation of the velocity profile parameters in the
s-direction. Boundary conditions are also applied at the extrem-
ities of the shear layer. The total number of boundary conditions
and moment equations must be equal to the number of parameters
appearing in the velocity profile.

The shear layer is divided into two regions as shown in

Sketch A.l. The velocity profile in each layer is assumed to be

31\ Ue
T Region 1. y >0, n=Y/6l‘
S| r
> U Region II: y < 0, g:y/ggz
T
sl u(s) = U«*(S) along y=y =0

Sketch A,1 Nomenclature for Two-Layer Method

of the form:

m
Region It Eu__ =f= Ay + e_(mz 2y nk (A.11)
e
k=g
n
Region II: u—“- =g =B, + em;}: by < (A.12)
e
k=o

and o = 0 or 1 depending upon the type of representation which is

desired. The number of terms (m,n) are chosen so that the
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resulting profile will provide a "good approximation" for the physical

problem being considered*., The profile parameters (Ay, a,, Bo,

k’
bk’ 61, 62) are determined by the boundary conditions at the upper
and lower extremities of the shear layer, the matching conditions

at y = 0, and the moment equations. The possible boundary condi-

tions are:

Outer Boundary

c=0,n=l
: f=l, f'="=.,...=20 (A.13)
og=zl, n~o :
Inner Boundary
o=0, {=-1
g=0, g =g't=,,...=20 (A.14)

o=l, {—~:

By demanding continuity of the velocity and its derivatives at y = 0,

one obtains the following:

* One difficulty with the momentum integral method is that the
number of terms taken to represent the velocity profile is arbi-
trary. In this case, there are two criteria which aid in this
choice: (a) the assumed profile must correspond closely to the
specified initial profile as s = 0; and (b) the final similar pro-
file for s -~ oo must agree well with the exact solution obtained
by Chapman (19). Because of its simplicity, the free shear
layer problem represents an excellent test case for the moment
method, since various combinations of profile parameters,
boundary conditions and moment equations may be used without
undue algebraic complication. Such an exhaustive examination,
however, is extraneous to this investigation.
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Matching Conditions
a’s o ¥
() =) ¢
dn ° 2

)0, r=0,1,2.. (A.15)

The moment equations are defined by

Upper‘ Limit 2
jr.. ou ou o u
M, () = Rl L I (A.16)
0 y
° yie 9 p°
= Jpedu,  0u |, 8%uy oo
M, (- (w8 2 ay00. (A.17)

Lower Limit

The upper and lower limits of integration are + co for o =1 (exponen-

tial profiles), and (+ 61, -62) for ¢ = 0 (polymonial profiles).

Definition of the Integral Thicknesses

The integral thicknesses in the incompressible plane are
defined separately for each region of the shear layer. For the ex-

ponential profiles (¢ = 1), they are:

Displacement Thickness

o0 0
6i:< =S‘ - Eu_) dy = 61§ (1-£f) dn (A.18)
0 e 0
0 qO
X o= - __1_1_ - 3
62 S‘ (1 a )dy = 625 (L-g)dg (A.19)
-00 € -0
Momentum Thickness
Qo 00
P T R - -
91 = ‘g a, (1 U’e) dy 615‘ £(1~£)dn (A.20)
OO 0 0
- U . " = -
ezag = (-2 dy 62§ g(l-g)dt . (A.21)

o © e -0
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The polynomial profiles are similarly defined, with the upper and
lower limits of integration being replaced by 61 and —62 respectively.
Higher order integral thicknesses may be defined as required; the
number of integral thicknesses used increases with the order of

the moment equations (the value of j = 0,1,...).

Solution for a Quadratic Profile

A very simple example of this method is a quadratic pro-
file. Let o =0, m =n = 2, so that the eight unknowns are¥* (ao,

bbb

ap,a 12Pos 095 2) Invoking the boundary conditions

(A.22)
L= -1 g = 0, g' = 0
and the matching conditions r = (0,1),
)
of . 1 ,0g
0 0 — 2 — (== A.23
£(0) = g(0); (5r), = 5= (), (4.23)

leaves two constants to be determined. Using the moment equations

My (+) and M, (-), we find the equations

1
-&%[alg f(1-f)dn] = 1‘; ((911 (A.24)
0
0
25, | g%at] - o 251, (A.25)
-1

Define the initial thickness §; and the quantities X\ and § by

* The constant terms ag and by are redefined to include Ay and By .
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A=1-£(0)=1-g(0); NMs=0)=1

(A.26)
6= 61-+ 62 ; 6(s = 0) = 61(s = 0) = §p .
Then the quadratic profile satisfying (A.22) and (A.23) is
f=1-\(1-mn)?
(A, 27)
2
g=( -1\ 1+
and the corresponding moment equations are
d 2,1 1 _2v
s [6 A (§ - ,—5-)\)] = ue6 (A.28)
d 37 _ 10v
Is [6 (L -\)7] zuef) . (A.29)
Equations A, 28 and A. 29 possess the solution
IS N U (R0 V SRS WO [N
%o Ree,s 5 (3-9x+4x2)2 55 (3-91 + 4>\2)
L4 [log 8N-9+V33 | | log <\/33 + 1)] (A. 30)
554/ 33 8\-9-v33 V33 -1
which has the asymptotic form
lim A = 0,406 or lim u, = 0,594 u, . (A. 31)

5—>00 S5=>00

This result, (u*/ue) = 0,594, is extremely close to the exact value
of 0.587 found by Chapman (19). The initial profile must be a

quadratic with A =1, since
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5

A
61 t 6,

and 62 is zero at s = 0, A more powerful solution would be one in
which two or more free parameters are available to specify the initial

profile; the important effect of the initial profile on the rate of

growth of u, would then be immediately apparent.

Solution for an Exponential Profile

The exponential profiles (& = 1) provide a particularly simple
system of matching relations. Because of the fact that all deriva-
tives of u approach zero at + co, the constants (ak’bk) are deter-~
mined only by the matching conditions at y = 0 and the moment
equations Mj(:t). Also, the integral thicknesses appear in a simple

form; for example, it is easy to show that*

& n & | Jtktl
615 61 Il = 61 {-— 2 ay T(k+1)—z z akaj (7) X
k=o k=zo j=o0
X r(j+k+1)} (A.32)

and that part of 62 which appears in the My (-) equation is

0 5 noXn ktj | kejtl
I QS‘ g% at z:z Z () ) Tlkrjrl)by b, (A.33)
e k=o j=o

Higher order thicknesses are also readily obtained.
The derivatives of u may be easily calculated; since Ay =1
and By = 0, we have

* The Gamma function is I'(n) = (n-1)! for n = integer.
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red 1+ ap; = by = u,
62
r o= b, = -u, + (——) (l—u\,, + a )
1 61 1
6 2 u\., u,
- (——) (-, +a)
6. 3 u
7 _ ____E_ 1 sk 1
r=3 bg‘“(al) (33'az+7a1'T+“6
) u
2 sk 1
BT T R i
5
2 1 1 1
TR T i A

°

The fact that these relations between 61, 62, 20 and bk appear at

y = 0 allows the asymptotic value of u, to be immediately obtained.

Setting m = 0 in A.32,

SR
17 7 =3

La-n?

and from Mg (+) and Mg (-), using A.32 and A.33,

d - v
T 6,1 = T (o),

d -
Tl L] = —u'e (ag)o

or

(A.33)

(A.34)

(A. 35)

(A.36)
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Setting the matching conditions r = (0,1), we immediately obtain

a = b1 = 0 and
6,+6
16 22612-————-—-—1 > (A.37)
0 0 (1-3\H0)
which shows that the asymptotic value of u, is 0,6l8. This is in
poorer agreement with Chapman's result of 0,587 than the value
of u, given by the quadratic solution.
After a little algebra, the simultaneous solution of Equa-
tions A.34 and A.35 is found to be
By L o3, () Aaey
60 © Reg ¢ 20 20X 4X2
+ [og | ZA=3tVB | 4y ] 1B | (A.38)
10V5 2\-3-15 1-v5
X=1-3\+ )\2
and the similarity form for the shear layer thickness is
lim 2 yRe_ _ =4.10. (A.39)
S—*00 ?

This solution also contains a single profile parameter \, so that the

initial profile is constrained to be (n > 0)
lim au-z 1-e 1, (A. 40)

Transformation to the Compressible Plane and Comparison with
Numerical Solutions

The initial momentum thicknesses in the incompressible and

physical coordinates are identical in form, viz,
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(e 0]

_9—0—=§ P -
0

pee

u
e e

=]
mclﬂl

(o8]
)d?:SaE(l-i)dyzeo . (A. 41)
0

It is for this reason that the momentum thickness appears to be the
"proper" length scale of the initial profile. By using A.27 in A.4l,
2

5 b0

For the simple exponential profile, Eqs. (A.40) and (A.4l) show that

and setting X = 1, the quadratic profile is found to give 8y =

Qp = —;— 80 . The unbarred form of 9y will be used in subsequent dis-
cussion,

For the solution of Denison and Baum (25), an equivalent value
of 8p must be defined. In their nomenclature (all quantities in the

physical plane)

S

—2
g% = Fw S peuepeds

0
1t
fw
where F_ =-—— , f;‘] = constant of the initial profile and pro-
\/ZSb portional to the initial shear at the axis.
separation
and Sy = (5 peuepedx) along body surface.
0

We may define an equivalent displacement thickness

[0 0]
90=(S. P2 - Byay)
0 Pele Ye S=0
oY-un 0
M (2 a-2yam
p.u u u s=0
e e e

0 e

where

peue o]
2§ o ¢©
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s
£ =S\ Pelgheds -
0

Now for a Blasius initial profile,

m N
u % = f11
0 © e
so that
2 ~

E _E_ ___1_ rt
s -[(eo) Rs S] fw Re

S
~ ](; peuepeds \
Re = ( ]

Pl P 8 along shear layer

i

1 for uniform constant pressure mixing.

Taking fl;/ = 0,4696 for the Blasius solution,

2

s = 0.04863 [(g) -ﬁ-él——] . (A. 41)
e

The variation of the mixing velocity u, with the "proper" dis-
tance variable,
2
.- 1
€= [(ﬁ) R—e_] )
e

is shown in Figure 5. The quadratic, exponential, and Blasius
results are seen to be in qualitative agreement, although the mag-
nitude of u, differs at a given value of §. Since each of the solutions
involves only one free profile parameter*, it may not be stated with

certainty whether the difference between the numerical solution and

* In principle, a numerical solution could be obtained for any
initial velocity profile,
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the moment method results are produced by the differences in the

initial profile or the differences in the method of calculation.

However, near § = 0, the situation is quite clear. Each

initial profile is linear near vy = 0, so that the initial shear (—Q—Ll)

determines the early variation of u,(§).

pressed in normalized terms as

Blasius solution: (if—)~ = 0,2205

9y v, s=0
. . of .
Quadratic solution: (-—=)_ = 0,.2667
oy v, s%0
. . of
Exponential solution: (==) = 0.5
oy y, s=0

where the definitions of £ and ;r are

! gy | P 4o
f=_1, =—Sy——d
ue 4 60 ope

ay'y, s=0
These shear rates are ex-

(A. 42)

(A.43)

and y is the distance normal to the zero streamline in the physical

plane.

From Equation (A.42), it is obvious that the initial growth

of u, (€) will be more rapid if the initial profile is an exponential

than if it is quadrati¢, and this supposition is borne out by Figure

5. The difference between the initial shear (df/d;r) of a Blasius pro-

file and a quadratic is small; hence the difference between the values

of u*(g) for small £ calculated by Denison and Baum (25) and the

values found from the quadratic solution are attributed to the
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approximate nature of the momentum integral method. Considering
the simplicity of the momentum integral method, the agreement is

very good.

Effects of Heat Transfer and Calculations of My

A determination of the Mach number M, = (u*/\/”yRT*) re-
quires solution of the energy equation A.3. In transforming A.3

to A.10, it was assumed that pp = const. and Pr = 1 so that
H=A+ Bu. (A.11)

For purposes of illustration, we will consider only the solu-

)
tion obtained for the quadratic profile. Then using n = y/61 = —6-—71 4
1
as the normal coordinate,
0sn<i R=1-(uy) -’ (A.44)
e
62 u 61 2
-—<n<0 — =y, {1+ =n) (A, 45)
6 u 6
1 e 2

Consider first the case where the temperature in the base flow
region {(u—>0) is equal to the total temperature of the inviscid flow
(this will be called the "insulated wall" case). Then H = He through

the shear layer and
T _ v-1 20 u,2
'T; ol 1 + '—2"" Me [1 (Te) ] ° (A. 46)

The physical distance y may be written as a function of the trans-

formed distance y:
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y
- T
y ZS‘ (—T—‘) dy . (A.47)
0 e

By combining equations A.44 - A.47 and integrating, the following

relations are obtained:

— )
1 -1 2,2 3
0 <1 =1 :z-ﬁ(:—)[n+l—Me {—3-)\[1“(1‘71)]
o
1

z
%)
\? 5
-5 [1-(1-m)71}] (A.48)
2o I - 51[ 20 BN U I U2 IO 3
‘6—1'\1’]< 6:—_(%—) n( S e)“g(T)(—z—)Me(‘)
1 1
{1+ o m)® - 1}] (A. 49)
(g—l)=l+y—'l M2 EN-123 (A.50)
5 z Mg 3Frh-g5MA) .

1

and A= (1 - u,).

If the fluid in the base flow region is very cold, then M,
will be large. For purposes of illustration, consider the base
temperature to be equal to the static temperature Te of f:he exter -
nal flow (this will be called the "cold wall" case). Then the

equations corresponding to A.46, A.48 - A.50 are

T _ .yl 2;,u,  ,u,2
T—e—l+2—M6 [(U‘el (‘a;)] (A.51)
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- 5
osn<1 (L) =DM {[1-a-m 2
% 64
5. A\ |
- [1-@-m)7] % )] (A.52)
%, 7.0 1-X, ,y-1, .2 (1
-=— <n<0 ()= (3 [n-01-7N) (—X"—)(—-Z")Me {—3'[1
1 5, 5
L+ 2w’ -3 AN [ -
1+ 2em’1 (A.53)
-~ :
5 y-l..2 1. 1.2
F-)=1l+t 5=M zr-5N). (A.54)

The Mach number M, (£) may be calculated from Eqs. A.30,
A.46, and A.51, The results are shown in Figure 6 and discussed
in Section II. 3. Mass flow and velocity profiles obtained from
Equations A.30, A, 44 - A,46, and A.48 - A.54 are discussed in

Section V.l.
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APPENDIX B
THE USE OF PITOT PRESSURE PROBES
IN THE NEAR WAKE OF A BLUNT BODY

The effect of pitot probe geometry, size, and angle with re-
spect to the flow direction were investigated in situ by making a
series of traverses across the near wake of the 0.238" diameter
cylinder,

The effects of probe size and geometry are illustrated in
Figure 14. The streamline direction at the outer edge of the shear
layer is about 12.5° for (x/D) = 1.00. Therefore, all four probes
were aligned within +5° of the flow direction at the outer edge of the
shear layer. The Mach number Me is about 3.0, and the unit Rey-
nolds number Re‘e based on undisturbed flow quantities is about
1.2 X 104 per in., giving a range of probe Reynolds numbers based
on vertical height between 90 and 210, From the data summarized
by Enkenhus (37), the viscous correction should be less than 1% at
the outer edge of the shear layer. Similarly, the pitot probe angle
correction (27) should be less than 1/2%, and the velocity gradient
correction (following Plan (36)) should be identically equal to zero
(since the pitot pressure goes through a local maximum and the width
of the "uniform" flow is only slightly smaller than the largest probe).
Since all the corrections® are less than 1%, the small deviation of
+0, 7% between the four curves is a measure of the repeatability of
the measurements.

The data shown were obtained with the probes inserted com-
pletely across the wake, and the centerline was defined as being

*Using the relations of Arney and Bailey (43), the thermal transpi-
ration effect was less than 1% for all the measurements presented here.
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half-way between the pressure "valleys" produced by the lip shocks
from opposite sides of the cylinder. The similarity of the four curves
indicates that the shear layer thickness defined by each probe was
identical. The magnitude of the pressure at the "valley" of the lip
shock varied by 5% between the smallest and largest tubes, but was
identical for the 0,012 X 0,044" stainless steel probe and the 0.012"
diameter glass probe. Similarly, in the region of forward flow
(y=0.03"), these two probes measured identical values of the pitot
pressure. It may be inferred from these results that the effects
of geometry on the measured pitot pressure in the free shear layer
(for a given transverse probe height) are negligible.

In the region y 2 0.11", the smallest measured pitot pressure
is associated with the smallest probe, indicating a "displacement" in
the direction of increasing velocity. This behavior is in qualitative
agreement with the results obtained by Plan (36) in a flat-plate boundary
layer, although the present displacement is considerably smaller than
he obtained. The 0.0075" dia. glass probe gave the highest pressure
in the forward flow region of £he shear layer; this is attributed to
viscous effects which override displacement effects in this region.
The local probe Reynolds number at y = 0.06" is Redc 14-20 for the
smallest probe, and the Mach number is near unity. The magnitude
of the observed pressure increase is about equal to the value found by
Sherman (35) in subsonic-transonic flow,

Figures 15 and 16 illustrate the effect of probe angularity on
the measured pitot pressure. The data for x/D = 2.00 are difficult

to interpret because of the large changes in flow direction at this
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station. The angle of the streamline at y = 0,055" is estimated to be
4-6°., This angle results in a larger measured pitot pressure for the
probe which is aligned with the axis. In Figure 16, the wake flow be-
tween the two shock waves is nearly parallel to the axis. The maxi-
mum pressure is again measured by the probe aligned with the axis.,
In the plateau region outside the shear layer, the pressure measured
by the 17.4° angle probe is 3.0% below that of the aligned probe, in
agreement with the measurements made by McCarthy (27) in a uniform
flow.

In comparing these results with the previous systematic inves-
tigations of Plan (36), Kendall (57), and others, several important
results appear. First, in contrast to measurements made on a flat
plate, there is no distinct advantage in using round pitot probes. All
probes measured the same shear layer thickness and shock location,
and the displacement and angle-of-attack errors were independent of
geometry. Second, the viscous correction for rectangular and round
probes is found to be equal (within the present experimental scatter)
for probe Reynolds numbers between 20 and 150. And third, the
present data and that of Claydon (39) and others indicate that displace-
ment effects are small (less than 1.5%) if the ratio of the probe diame-
ter to the shear layer thickness* is less than about 0.5, This means
that a free shear layer or wake is much less sensitive to probe size

than an attached boundary layer of equal thickness.

* An analysis of several sources of data shows that the appropriate
thickness is defined by the intersection of a tangent to the maximum
slope of the measured pitot pressure profile with the constant pres-
sure lines marking the axis of symmetry and the outer edge of the
shear layer,
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APPENDIX C
SURFACE TEMPERATURE DISTRIBUTION
ON AN INSULATED CYLINDER

During the course of this investigation, several cylindrical
models were built to determine the changes in surface temperature
distribution introduced by different model materials. The results
of the measurements for two cylinders are compared with the
data of Tewfik and Geidt (29) and Walter and Lange (30) in Figure
26. The dimensions of the cylinders are given in Table 1, page 36.

Surface temperatures were obtained by rotating the cylinder
about its axis; the procedure was identical to that described on page
36 for the surface pressure studies, The temperature of the nickel-
plated micarta model was obtained from an iron-constantan thermo-
couple imbedded in the nickel plating and polished flush with the
surface. The thermocouple wires were 0.001" in diameter. For
the glass model, a sputtered thin-film platinum resistance gauge
was used for the temperature measurement; the gauge was 1"
long, 0.040" wide, and about 5 microns thick, The resistance-
temperature relation of the gauge was determined in the hot-wire
calibration oven.

Figure 26 shows that the surface temperature of a cylinder
becomes more uniform as the thermal conductivity of the model
increases. The data appear to approach the recovery temperature
ratio (T/To) = 0.95 with increasing thermal conductivity of the
model. This value is the recovery temperature which has been
measured for a hot-wire in high Reynolds number, high Mach

number flows (see Part I of this thesis),
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(a) M =0.925

(b) M =1.00

(¢) M=1.05

FIG. | BASE FLOW BEHIND A SLENDER TWO-DIMENSIONAL
BODY AT TRANSONIC SPEEDS (after Nash),
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(@) M=0.56

(¢) M=1.16

FIG. 2 BASE FLOW BEHIND A CYLINDER AT
TRANSONIC SPEEDS (after Thomann).
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(b) 10° Half - angle cone, M =3.75

FIG. 3 THE NEAR WAKE OF AXISYMMETRIC BODIES
AT SUPERSONIC SPEEDS (After Charters(l0))
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Data taken while operating pitot
probe in wind tunnel. Transducer
temperafure = 29°C, with 5.001volts
excitation. Pressure measured
B with silicone micromanometer

© Increasing pressure
v Decreasing pressure
L~ ©,v Repeat cycle

—

Statham PA208TC-5-350
O-5psia (Serial No.19708)

Slope =0.01788 mm Hg —voll

! Lo
0 5 10 15

Measured pressure, mm Hg

FIG.9 CALIBRATION OF ABSOLUTE PRESSURE
TRANSDUCER
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(a) 0.D.=0.0075", 1.D.=0.0040", X =8.3°

(b) 0.D.=0.0120", . D.=0.0075", X =12.0°

FIG.IOGLASS PITOT PROBES FOR USE IN
SHEAR LAYER SURVEYS
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FIG. II THREE -VIEWS OF THE HOT- WIRE PROBE
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—>—b— 0.012"x 0.044"S.S. (7.4°
—x%—x— 0.0075"0.D.Glass 8.3°
—o0—o— oor2" " " [2.0°

- —o—o— o.o18" " ! (7.0°
Note:
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Pressure curves .are continuous.
Points are included for identification
only.

o]

Re'e=1.2x 10% per in.

! 1 | 1 ! J
5 10 15 20 25 30
Pitot pressure, mm Hg
FIG. 14 EFFECT OF PITOT PROBE ANGLE AND WIDTH

ON MEASURED PITOT PRESSURE, X/D =1.00
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FIG. 15
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Pitot pressure, mm Hg

EFFECT OF PITOT PROBE ANGLE AND WIDTH ON
MEASURED PITOT PRESSURE, X/D = 2.00
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01751
Curve Probe Probe angle,&x
—*—x%-  0.012"x0.044"S.S. o°
—o—0—  0.012"x0.044"S.5. I7.4°
0.150F —0—0— 0.0i2" 0.D. Glass 12.0°
Note:
Pressure curves are continuous.
0.125 } Points are included for identification
only.
0.100
0.0751-
X
0.050F
' 4 .
Reg = [.7x10 perin.
0.025}
] 4 L i 1 A1 I |
0 5 10 15 20 25 30 35

Pitot pressure, mm Hg

FiIG. 16 EFFECT OF PITOT PROBE ANGLE AND WIDTH ON
MEASURED PITOT PRESSURE ,X/D = 3.00
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0.70
X
) =0.80
Reg ,p = 2.20 x 10?
s
0.60F Po = 35 psig
To = 275°F
D =0.238"
0.50
040
o
~
>
o
£
T 0301
o
=
QO
(8]
£
g I
- 0.20F |
[}
o |
[}
o |
17 II —o—o0— Hot-wire heat loss
e 0.0 | —a— o Hot-wire resistance, 8R
,' ———— Pitot pressure (0.012'x0044"t X =I74°)
|
|
|
[ A 14 | ! ] | I
0 5 10 15 20 25 30
Pitot pressure, mm Hg.
o' 1.5 2.0 25 3.0 x1074
Hot-wire heat |oss,(R)i=o/(dR/di2) ,ompz
L | 1 ]
-3.0 -2.0 -1.0 0

Change in zero current wire resistance, &R, L

FIG. I7 COMPARISON BETWEEN MEASURED HOT-WIRE AND PITOT
PRESSURE PROFILES
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Ratio surface to stagnation point pressure,(p/p;5)

-6~

0.050 —
0.045 — ReO‘D Mo D,in
o 7.89%10% 5.81 0.300
& 3,94 5.8l 0.150 y
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O 2.26 6.03 0.150 //
0.040 — v o 1.39 571 0.150
Solid and open symbols are I
from opposite sides of the g
cylinder. [l
G
0.035 —

0.030

0.025

0.020

0015 —

0.010t—

Z | | | l l 1 J

180 70 - 160 150 140 130 120 1o

Angle from forward stagnation point,degrees

F1G.20 SURFACE PRESSURE IN THE REGION
OF SEPARATION
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Pog Reg px10* o
| (x/D)=1.04 | © 85 6.18
0.7 1 J.0300" { & 40 3.39
v 20 2.15
(x/D)=100 Yy 55 2.15
0.6 [ D=0.150" g 25 .23
o 10 0.765
To= 229.3°F
0.5
Y/p Lip {(separation) shock
indicated by T
horizontal line
0.4 -
0.3
02 r
ol r
1 ] I ] 1 _
o] -1.0 -0.8 -0.6 -0.4 -0.2 0 02

(R=R_p)/ (R p=Rg) for i—=0

FIGR23EFFECT OF REYNOLDS NUMBER ON SHEAR
LAYER THICKNESS
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