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ABSTRACT

A full field method for visualizing deformation around the crack tip in a fracture process
with large strains is developed. A digital image correlation program (DIC) is used to
incrementally compute strains and displacements between two consecutive images of a
deformation process. Values of strain and displacements for consecutive deformations
are added, this way solving convergence problems in the DIC algorithm when large
deformations are investigated. The method developed is used to investigate the strain
distribution within 1 mm of the crack tip in a particulate composite solid (propellant)

using microscopic visualization of the deformation process
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1. INTRODUCTION

Particulate composites are widely used in engineering. In the automotive industry
carbon black filled rubbers are used in tires. Many injection molded materials are
filled with small particles, while other rigid polymers are toughened through the
addition of rubber particles. Solid propellant rocket fuels are physical mixtures of
ammonium perclorate and aluminum powder often in multimodal size
distribution, bonded together by a rubber phase called the matrix. Failure in all
these materials is heavily dependent upon the interaction between the particles
and the matrix, specifically on the separation of particles and binder. Failure is
also dependent upon the volume ratio of particles to matrix, which is typically
close to 75%. In the sequel we examine the failure progression in a solid
propellant Triokol TPH 1011. Application of continuum mechanics to the
stress/strain analysis of structures made of these types of materials typically
invoke macroscopically homogeneous material performance, even though at the
scale level of the particles deformations are anything but homogeneous. We shall
see that inhomogeneous deformations occur at a size scale substantially larger
than the largest particle, and that the failure process is directly dependent upon
these micro-structural deformations. Measuring large deformation strains over
small domains of tens to hundreds of microns is not a trivial matter. Imprinted
grids tend to serve well at a size scale just above what is required here.
Determining the micromechanical deformation with the aid of optical microscopy,
e.g. on the tip of a macroscopic crack, implies the need to extend the presently
available tools of strain measurements. In principle the digital image correlation
method [Sutton, 1986; Vendroux/Knauss, 1994] is ideal for this purpose except

that it is not suitable if the deformations are too large. For deformations where



strains of 10% are reached, the Correlation algorithm fails to converge. Strains of
50% to 100% are typical for crack propagation problems in solid propellants.
Accordingly we develop and examine here an incremental application that follows
the deformation history. This development is addressed first in Section 2,
followed by a discussion of the experimental setup and arrangement to define
fields around a slowly growing crack. The method developed is used to
quantitatively describe deformation on cracked and uncracked specimens of solid
propellant TPH 1011. Particular interest is devoted to the inhomogeneity of the

material.



2. LARGE DEFORMATION DIGITAL IMAGE CORRELATION (LD-
DIC).

To compute strain and displacement fields in large deformations, the Digital
Image Correlation (DIC) program cannot be applied in a straightforward manner,
as is done for small strains. In this section a method is presented by which the
total deformation is subdivided into smaller deformation increments, each of
which can be processed by DIC. The results of the DIC program over the small
deformation increments are then combined to compute the strain distribution for

the large deformation.

2. 1. THE DIC PROGRAM

Developed by Sutton [Sutton, 1986] and improved by Vendroux and Knauss
[Vendroux and Knauss, 1994], the Digital Image Correlation (DIC) program is
used to measure the displacement field and its gradients from images of an
undeformed and deformed body. These images are gray levels images consisting
of a grid of pixels, (typically 640 by 480) with gray level ranging from 0 to 255.
In this way the images represent a surface in which the heights at grid points
represent an associated gray level distribution.

Let X be the mapping of the undeformed configuration onto the deformed
configuration so that a material point is represented in the undeformed
configuration at the coordinates (x, y) and has an associated gray level value
f(x,y). The same material point in the deformed configuration is represented at

(X,y ) with a gray level of g(X,y ). It is assumed that the deformation does not



significantly modify the gray level, i.e. f(x,y)~g(X,y ). If one assumes that the
deformation is such that the topology (profile pattern) after deformation is
uniquely related to that before the deformation, one may determine the
deformations (displacement and their gradients) through a correlation between the
two pattern images. Let a material point be represented by G(x,y), where x,y are

its coordinates in the undeformed configuration. Similarly the same point is

represented by G (X,y) in the deformed configuration, where X,y are the

coordinates of the material point in the deformed configuration. (Fig 1)
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Figure 1. Mapping X.
Define X as the mapping from the undeformed to the deformed configuration

X: R*->R?

G->G=XG)/ g%.7)=1fx,y). (1)

Relation (1) can be written as



y =y+v(xy), @

where u and v are the displacements of G in the Lagrangian reference frame. Let

50 be the image of G, through the deformation X. Let S be a neighborhood of

G, that is mapped onto the set S such that S is a neighborhood of 50.

Considering this neighborhood S to be small, the two configurations of the

deformation are related by
V G(%,7), 3 G(%, ) such that

f;.x_‘_u(x.anO)_‘_ ux'(Xo,yo)(x_x0)+ uyl(xo,yo)(y_yO)

Y=y +V(x0,¥0) + Valixg, yo (X = %0) + Vylixq,y00(Y = Y0)- A3)

These equations define a new local mapping X, around G,. At this point we

introduce the least square correlation coefficient C.
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The present correlation method minimizes this correlation coefficient C. It will be

a minimum when the parameters of the mapping X,
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are exact, i.e. C is then identically zero. Thus the displacements and displacement
gradients of the deformation at the point of interest are obtained in the process of
minimizing C. In the present application (Pixel location), the definition of the
least square coefficient is discretized and integration signs are replaced by

summation signs, so that one has

ZG es(f(Gp) _g(Xl(Gp)))z
c=— - ©)
szesz(GP)

Since G, is a discrete (pixel) point in the undeformed configuration, its value of
gray level f( G, ) is directly defined. However, in the deformed configuration the
same material point may not be represented by one of the discrete points of the
(pixel) grid 5=X,( G,), and its gray level is thus not known. It is therefore

necessary to deal with the gray level assignment through interpolation around the
points in the deformed configuration. This is done by fitting a bicubic spline to a

domain of 40 pixels around the points of interest.



2. 1. 1. Optimization scheme

The numerical problem is to minimize the correlation coefficient with respect to
the deformation parameters of X, , i.e. 4y, Vg, Upsys Upsy» Vosr» Vos,- Let these

parameters define a six-dimensional space D such that
6
D={P €R’ | P(upy, Vg,Ug>.s Uysys Vosrs Yosy )} @)

If P, isa vector in D and P is the vector solution that minimizes (6), C(P) can be

written as a truncated Taylor series around P,
C(P)=C(P,)+VC®,)" (P-P)+1/2(P-P,))" V VC(P,)(P-P,). (8)

Since P makes C a minimum, it follows that V C(P)=0, thereby taking the

gradient of (8) results in
V VC(@P)P-P,)=-VC(P,). ®)
P can be deduced from (9) if (8) is a good approximation. This is true if P is

sufficiently close to P,. The problem can then be solved by the Newton-Raphson

optimization algorithm.



2.2. LIMITS IN THE DIC PROGRAM

Before attempting to apply the DIC program to determine the strains and
displacements, it was tested on known deformations in order to establish the
largest strain which the program allows. A test was performed on silicone
specimens splattered with microscopic speckles to provide the random gray level
distribution for the DIC program to identify. The speckles were generated with an
airbrush to match the scale of the surface fractures in the solid propellant

specimens to be studied later.

2. 2. 1. Convergence depending on strain level

The problem in applying the DIC program to compute strain distributions in a
large deformation process is the failure of convergence of the DIC algorithm if
the deformation is too large. To test the actual limits on the strain level for
convergence of the program, a test on a homogeneous silicone rubber stretched in
the y direction was performed. The resultant undeformed and deformed images
for stretches from 0% to 40% were compared by the DIC program. For each
deformation the strains and displacements were computed at 300 points. The
fraction of points at which the minimization process converged is presented in
Figure 2 as a function of the Lagrangian strain. For deformations larger than 10%
there is a serious decrease in the successful points of convergence. For the
purpose of studying cracked solid propellants, where strains in excess of 30%
need to be measured, the applicability of the standard DIC method is therefore

seriously compromised. Thus a new analysis tool must be developed.
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Figure 2. Convergence test for DIC program.

2. 3. PROPOSED SOLUTION

The largest deformation for which the DIC program provides an acceptable result
is for a deformation corresponding to a principal strain of about 10%. For larger
deformations, we apply the method incrementally through a set of deformations
defined in consecutive deformation stages such that a strain greater than 10% is
not reached in any increment. Once the strain and displacement maps for the

incremental deformations are obtained, continuum concepts are used to construct
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the overall deformation. Four schemes for adding strain and displacement fields
for the deformation are investigated to single out the most accurate. These

schemes are presented in the following section.
2. 4. ADDITION OF STRAIN AND DISPLACEMENT FIELDS METHODS

The general problem can be outlined with the help of Figure 3. For a simple
deformation process we establish three pictures of the body, each associated with

the configurations 1, 2 and 3 of the sequential deformation

IMAGE 1
DEFORMATION A
l v
IMAGE 2 GLOBAL
| DEFORMATION
DEFORMATION B
IMAGE 3

Figure 3. Large Deformation DIC step.



11

Between image 1 and 2 (deformation A) and between images 2 and 3
(deformation B),b the program is successful in giving the deformation fields.
However, the strains between images 1 and 3 (Global deformation) are larger than
those that lead to the convergence of the correlation. We determine the
deformation fields for the global deformation, corresponding to image 3 by using
the results that the DIC program provides for the deformations A and B. The DIC
strain and displacement maps are discrete representations. The strains and
displacements are only computed at a set of pixels forming a grid over the
undeformed configuration. A point located in the undeformed reference frame at
a pixel which lies in this grid while undergoing displacements in deformation A is
not likely to end up as a pixel point in the grid over which the correlation process
is performed in the beginning of the second deformation step (B). In order to refer
both deformation increments to a common (Lagrangian) reference frame, it will
be necessary to interpolate the positions of gray level features for the second
deformation relative to the first pixel location. One feature to emphasize in this
discussion is that the DIC program calculates the large deformation parameters in

a Lagrangian setting. The methods used are:
2. 4. 1. Method 1:

The first method proposed to add the strain and displacement maps from
consecutive deformations (A and B) in order to reconstruct the global deformation
uses the fact that for large strain deformations, one can compute the deformation
gradient tensor for the global deformation by multiplying the deformation

gradient tensors of the other two deformations (A and B), giving the expression
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ﬁlobal =FBfA' (10)

&l

A discrete set of particles, H; , are represented on configuration 1 by the

rectangular grid of points, G; . Those particles are also represented after
deformation A by the points Gi in the configuration 2. The results that the DIC

program yields for this process are the displacements u”, and v*, and the
displacement gradients v, v, u? and v,% .These values are presented in a
Lagrangian setting, that is, with respect to configuration 1. On the configuration 2,

the discrete set of material point, H,, are represented by
G =G +u". (11)

During the second deformation, a different set of particles, J;, represented on

configuration 2 by the rectangular grid of points K ,; are mapped onto the set K ;

in configuration 3. The set of points K ; can be represented in a Lagrangian

setting as

2
I
l
+
<
=0

(12)
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Figure 4 illustrates the process.

Configuration 1 Configuration 2 Configuration 3
i .
o
(% Ny e it
L -
\ f—
/ 4 =
/ * |
G; R\
G K 7
7
K,

Figure 4. Interpolation process.

Since the global deformation must be expressed in a Lagrangian frame,
interpolation of the results of deformation B on the particles J; is required to
obtain the displacements and displacements gradients «®,, v*,, u.%, v,%, u® and
v.2; of the particles H; during deformation B. This is done by fitting a bilinear
surface to the four closest points G, to the point K ; and evaluating it at K P
Then, invoking the tensorial relatikon (12) we can derive expressions for the

displacement gradients of the global deformation by

global __ A4 B A, B B 4
u =Uu, +ux +ux u, +uy v,

X

global __ A B A, B B, 4
Vy —Vy +Vy +Vy vy +Vx uy
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lobal
ugoa

4 B A, B B 4
y -\-uy +uy +uy u, +uy vy

global __ A B A, B B, 4
1% =V, +v, Fu v, vy, (13)

X

while the displacements are simply

global _ A B

u u +u

pglobal — yA L 8. (14)

The next step is to construct the Lagrangian strain tensor according to the

definition:
__ . global + _1_ global? global2
8xx =u, ux + v,
2
1 2 2
- global |, ~ global global
€y =V, 2 {uy +v, }
£ = l u global +v global + l u global u global +v global v global 15
Xy 2 y x 2 X y x y . ( )

2. 4. 2. Method 2

The second method compﬁtes the displacements for the global deformation like in
the first method. Once the displacement field is obtained, one differentiates it

numerically to obtain the displacement gradients, according to the formulas:
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_u2—ul
u"_wa
_v3—v1
v, = Ay
u3—ul
U =
y Ay
_v2—v1 (16)
v, = Y

From which we compute the Lagrangian strains.
2. 4. 3. Method 3

The third scheme is basically the same as the second except that when finding the
displacements of the deformation B, the interpolation process is performed using
six neighboring points instead of four. This allows the appearance of second-order

terms in the interpolating functions.

2. 4. 4. Method 4

In the last scheme the interpolation process for the displacements is changed to a
least square fitting with respect to 16 neighboring points. The biquadratic surface
obtained in this way is evaluated at a pixel point. The surface is differentiated to

evaluate the required derivatives at the same point.
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2. 5. CALIBRATION OF METHODS FOR ADDITION OF FIELDS

A specimen of an homogeneous silicone rubber without a crack and coated with
microscopic speckles was strained sequentially in the y direction up to a
Lagrangian strain of 80%. A sequence of 15 images of the process was taken so
that the global deformation was divided into 14 sub deformations of 3-4%
Lagrangian strain each. The resultant deformations were added by using the four
methods, and the results were compared with the optically measured Lagrangian
strain at every step. The results of this test series are presented in Figure 5, which
shows very similar characteristics for each of the four methods. Figure 6 shows
the difference of the results of each method and the optically measured
Lagrangian strains. From this figure we can conclude that method 1 deviates the
least from the optically measured strain. The maximum deviation occurs at a
strain value of 40%, and yields 1% strain difference between the optical and the

DIC Lagrangian strain.
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3. APPLICATION OF THE LARGE DEFORMATION DIC METHOD TO
THE CRACK OPENING PROBLEM IN SOLID PROPELLANT

The Large Deformation Digital Image Correlation method is used to obtain
Lagrangian strain distributions within 1 mm of a crack tip in a solid propellant

TPH 1011 specimen.
3. 1. EXPERIMENTAL SETUP

During this experiment, a cracked specimen of solid propellant TPH 1011 is
loaded with a constant strain rate in the direction perpendicular to the crack. The
crack, initiated with a razor blade, opens with an increase in global strain level.
The crack opening process is monitored at a microscopic level. Six digital images
of 640 x 480 pixels, representing 3 mm x 4 mm of the specimen surface are
obtained, one every 10 seconds. These images of the specimen surface are taken
for far field Lagrangian E, strains of 0%, 1%, 2%, 3%, 4% and 5%. These six
images are associated with six different deformation configurations. They also
define five intermediate deformations. Using the Large Deformation Digital
Image Correlation (LD-DIC) method, the displacement and displacement gradient
fields for the global deformation are constructed from fields corresponding to the
intermediate deformations. A schematic of the experimental setup is shown in
Figure 7. The equipment used to prescribe the desired deformation consists of the
following: a strain stage (Figure 8), a positioning stage (Figure 9), a stepping
motor (Figure 10), and a controller for the positioning stage (Figure 11). The
instruments used for the visualization of the process are a Nikon Metallurgical

microscope (Figure 12), a CCD camera (Figure 13) and a personal computer with
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a frame grabber unit. Finally the images of the experiment are processed by a Sun

workstation.

CCD
| FRAME
CAMERA GRABBER

|

PC

MICROSCOPE

L

SUN
WORKSTATION

U specimen
4

STEPPING
.
—| —" MOTOR
STRAIN STAGE
TRANSLATION 9]
STAGE f
. ]
JOYSTICK
DEVICE

 Figure 7. Experimental setup schematic.
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Figure 8. Strain stage.
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Figure 9. Positioning stage.
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Figure 10. Stepping motor.
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Figure 11. Controller for the positioning stage.
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Figure 12. Microscope
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13. CCD Camera.
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3.2. SOLID PROPELLANT SPECIMEN

The material under study is the solid propellant TPH 1011. This material contains
particles of ammonium perclorate, which acts as oxidizer embedded in a rubber
matrix that provides the carbon for the combustion. In order to control the rate of

burning, the material also contains aluminum particles.
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Figure 14. Volume fraction distribution of particles.

For structural analysis, the material is modeled as a viscoelastic particulate

composite material with grain size between 10 microns and 600 microns in
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diameter. The matrix is a very soft rubber with a Young’s modulus of elasticity of
0.1MPa, while the Young’s modulus of elasticity of the aluminum particles is
-70GPa. The Young’s modulii of elasticity of the ammonium perclorate and the
aluminum are suficiently large as to model the particles as rigid when they are
compared with the rubber matrix. The material is a filled elastomer containing
solid particles on a microscopic scale. The volume fraction of the particles is close
to 70%. The grain size of the particles is of great importance in interpreting the

results obtained by the subsequent experiments.
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Figure 15. Solid propellant specimen.
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To the naked eye, the material looks like dark gray rubber, the texture of which is
very similar to erasers at the end of pencils. To study the mode I fracture behavior
of this material, 1/8 in thick sheets of the solid propellant are cut into 3 in x 2 in
rectangular pieces. Aluminum tabs are attached to the ends to provide a constant
displacement boundary condition. The aluminum tabs also ensure that both sides
of the specimen remain parallel to each other throughout the deformation (Figure
15). By using a razor blade, a 1 in initial crack is cut in the specimen. This crack
opens as the experiment and the crack progress. The surface of the specimen is
very irregular under microscopic observation. (Figure 1b in Appendix B). Small
dimples of the order of 200 microns in diameter are seen in numbers of 3 to 5 per
square millimeter. These dimples are generated during the manufacturing process
of the solid propellant sheets. These features play a key role in the fracture process
of the material. Most of the damage generated around the crack tip is localized

around these dimples.

3.3 LOADING OF THE SPECIMEN

The strain is applied to the specimen by a prescribed displacement at the
boundaries in a manner such that the aluminum tabs always remain parallel. The
devices used to load apply the loads to the specimen are:

3. 3. 1. Strain stage

The applied strain is imposed by a straining stage developed at GALCIT (Figure

8). Using set screws, the user can control the displacement of the upper aluminum
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tab while the lower aluminum tab remains in its original position (Figure 14).
Appendix A contains a set of drawings with the dimension of the strain stage.
With the help of a stepping motor' (Figure 10), the upper tab velocity can be
precisely controlled and therefore the strain rate is accurately prescribed. For the
present experiment, the upper tab velocity was set to 0.0008 in/sec. For |, equal to
0.8 in (Figure 14), it corresponds to a far field strain of 1%, 2%, 3%, 4% and 5%
at times of t = 10 sec, t = 20 sec, t = 30 sec, t = 40 sec and t = 50 sec. These five

states are called in what follows steps 1 to 5.

3. 3. 2. Translation stage

As the load is applied to the solid propellant specimen, the position of the
observation region relative to the microscope changes. In order to track the same
area of the specimen, the position of the specimen under the microscope is
controlled by two movable platforms. The first one enables the movement of the
specimen in the x and y direction by 10 mm in each direction (Figure 9). It is used
to position the crack tip under the microscope before the experiment. This
position stage is a Newport Model 405. A second translation stage moves the
specimen during the experiment also in the x and y directions. This second
position stage is a Newport Model 462. The shift distance of the second stage is
25 mm ( 1 in ) in each direction. As the specimen is loaded, the position of the
crack tip moves fast relative to the objective lens of the microscope. For fast and
accurate movement of the second translation stage, two electric motors drive this

stage as controlled by a GALCIT built joystick device that can be easily used by

! The stepping motor used to drive the strain stage is a ASTROSYN Miniangle stepper motor type
34PM-C101. It is capable of applying a torque of 300 in/oz. It is shown in Figure 10.
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the operator. The combination of the second translation stage, electric motors and

joystick controller are depicted in Figure 11.
3. 3. 3. Translation stage controller

The second translation stage is powered by two 12V electrical motors. They turn
two millimetrized screws that control the position of the translation stage in the x
and y directions. The motors are controlled by an electronic device operated by a
joystick that can prescribe the velocity and direction of the movement of the
second stage. The translation stage controller can be seen in Figure 11 and is

presented to a greater detail in Appendix E.
3. 4. OBSERVATION AND RECORDING OF THE PROCESS

The process is monitored using an optical microscope, a CCD camera and a frame

grabbing unit installed in a PC.
3. 4. 1. Optical microscope

An important feature of the material that determines the length scale of interest is
the particle size of the solid propellant. Since this is of 10 - 400 microns in
diameter, most of the important characteristics in the fracture process, i.e.
inhomogeneous distribution of strains, void formation etc., occurs at this length
scale. In addition, the area around the crack tip where significant damage appears
during the fracture process has a diameter of about .5 mm to 1 mm. The detection

of these features is of main importance for the experiment, and therefore proper
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settings in the microscope are chosen to attain the best possible observation. The
magnification uséd for this purpose is 25x. This setting allows a field of view of
3mm x 4 mm, which is optimal for visualizing the addressed features. The
microscope used is a Nikon metallurgical microscope HFX - DX (Figure 12).

The light that the microscope provides is not the most adequate for the experiment
since it illuminates the specimen from a direction perpendicular to the specimen
plane. The images this way obtained don’t have enough gray level contrast for the
DIC program to work successfully. An alternative method for illuminating the
specimens was used with the aid of two halogen lamps. They were manufactured
by Sunnex and had a model #710. The two halogen lamps illuminated the
specimen from opposite sides of the microscope, at an angle of 30° with respect to
the horizontal. With this latter illumination system, the surface roughness could be
better observed and therefore, the correlation process between successive images

worked better.

3.4. 2. CCD camera

During the fracture process, the images of the deformed specimen are recorded by
a CCD camera installed at the rear side of the microscope (Figure 13). This
camera is a Sony XC - 75. The images are digitized and stored as black and white
tiff files of 640x480 pixel size and 256 gray levels.

3. 4. 3. Frame grabbing unit and PC

The QuickCapture Human Interface Version V01.03 frame grabbing unit is used

to transform to tiff files the images acquired by the CCD camera. This frame
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grabbing unit is manufactured by Data Translation, inc. and it is programmed to
acquire one image of the deformation process every ten seconds. The unit is
installed in the terminal “moscow” . This terminal has a set of cables in the right
side of the monitor, out of which the one with label 7 is connected to the CCD

camera output.
3. 4. 4. Digital image processing

The tiff image files are transferred to a sun workstation via FTP in order to
perform the correlation process. The Large Deformation Digital Image
Correlation method is sequentially used for the purpose of finding the Lagrangian
strain distribution for a given deformation. The details necessary for obtaining the
strain maps for thé deformations corresponding to 1%, 2%, 3%, 4% and 5% far

field strain are presented in Appendix C.
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4. RESULTS AND DISCUSSION

In this chapter, characteristic results obtained by using the Large Deformation
Digital Image Correlation method and the experimental procedure described in the
previous section, are presented. First, a section is devoted to discussing the
inhomogeneity of the solid propellant material. Second, a set of Principal
Lagrangian strain distributions for a crack opening deformation are depicted. Also
a relation between the crack path during the deformation and the distribution of
the strains before crack propagation is provided. Finally, the stress-strain curve of

the material is discussed.
4. 1. INHOMOGENEITY OF THE MATERIAL

For structural analysis, solid propellant is modeled as a (particulate) viscoelastic
(composite) material. A great number of particles are embedded in a rubber
matriX, where the grain size is between 10 and 400 microns in diameter, and the
volume fraction 70%. To investigate the inhomogeneity of the material a simple
uniaxial test is performed on a specimen of solid propellant without any cracks.
Using the straining device, uniaxial tension in the y direction is applied to the

specimen (Figure 16).
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Figure 16. Straining of an uncracked specimen shown before and after loading.

Macroscopically, the specimen is deformed to a Lagrangian strain, E,, = 0.015, as
calculated from the movement of the upper aluminum tab. The result from the
Digital Image Correlation program is an inhomogeneous distribution of strains,
with the Lagrangian component E,, shown in Figure 17 . When the material is
deforming, the strain map reveals the existence of areas of the order of 400
microns diameter, in which the distribution of the strains is nearly homogeneous
and approximately zero. In these regions, the strain is nearly zero, implying that
the region acts as a rigid inclusion during the deformation. Some of these regions
are as big as 0.5 mm in diameter, as is the case of the area in the lower right

corner at (2.2 mm, 0.6 mm) and in the upper left corner. Other rigid areas have a
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medium size, like the rigid area located at (1.3 mm, 1 mm), the rigid area at (0.5
mm, 0.5 mm) and the rigid area at (2.1 mm, 1.3 mm). Other small rigid areas
appear in great number. It is interesting to observe that in the vicinity of the
bigger rigid areas, regions of largest strain localization occur, for example at the
bottom and top of the rigid area located at (2.2 mm, 0.6 mm). The rigid area
located at (1.3 mm, 1 mm) gives rise to large gradients in the strain distribution
underneath it. This is observed by the proximity of the contour lines in the area.
Other rigid areas ( (0.5 mm, 0.5 mm), (2.1 mm, 1.3 mm), (0.4 mm, 2.2mm) ) also
show this feature. These rigid areas share a common size of more than 300
microns in diameter. Other smaller rigid areas do not develop these large
deformation areas around them.

Another phenomenon of interest is how clusters of rigid areas that are aligned in
the direction of the load develop a high strain area between them. Examples of
these high strain areas are seen at (2 mm, 1.2 mm), (0.5mm, 0.4mm) and at (0.2
mm, 1.9 mm), where over and underneath the high strain areas are rigid areas.
Some insight on the strain distribution can be gained by presenting the strain
distribution along a line. If we draw a line (x=1.36 mm) across Figure 17 five
rigid domains are crossed at (y=0.2mm), (y=0.5mm), (y=1mm), (y=1.85mm) and
(y=2.35mm). At (y=1.65mm) there is another minimum in the strain level that
corresponds to a smaller rigid region. The strain pattern along this line is shown in
Figure 18. We observe that for a macroscopic strain level of E = 0.015 the
distribution of strains takes values as high as E ;= 0.04 and as low as E, = 0.0025.
If we assume that the particles are practically rigid when compared with the
matrix, a rough calculation can be done to predict the strain concentration in the

matrix material for the case where the grain volume fraction is 70%.
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In this case, all the deformation is taken by the matrix. When the volume fraction
of particles in the material is computed, it is assumed that a large volume is
considered. Under the same assumptions, the average line that crosses the domain
occupied by the material, has 70% of its length crossing particle material and 30%
crossing matrix. This can be proved by considering an imaginary cylinder center
around the line and shﬁnking its radius close to zero. This means that for a strain
of 1% along the line considered, the matrix would have a deformation of 3.3%
strain. This corresponds to a 3.3 strain concentration factor. For our case, the
macroscopic strain along the line is 1.5% (0.015 strain). The strain in the matrix is
4.9% (0.049 strain) in this case while the particle material remains undeformed.
Comparing this rough calculation with the results presented in Figure 18, it is
concluded that they are in good agreement, being the strain in the matrix obtained
by the experiment 4% (.04 strain).

The average value of the Lagrangian strain component in the y-direction taken

over all the points in the contour plot is 0.015.
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4. 2. LAGRANGIAN STRAIN DISTRIBUTION AROUND THE CRACK TIP
IN SOLID PROPELLANT TPH 1011

In this section, a cracked specimen of solid propellant TPH 1011 is loaded in the
direction perpendicular to the crack tip. The load is> applied as a prescribed
displacement of the spécimen boundaries, as seen in Figure 19. The strain rate is
constant during the deformation and equals 0.001 1/sec. A series of eight images
(Figures 20 to 26) is taken where the far field Lagrangian strain equal to 0%, 1%,
2%, 3%, 4%, 5% and 6%.

After . S Y y Y S
loading —T—o, v
Q .............. OO ....... Arca of
ﬁ:ﬁ)i;eg ...................................................... /observation
3mm x 4mm
— —
O O O

Figure 19. Straining of a cracked specimen before and after loading.

The Large Deformation Digital Image Correlation method (LD - DIC) is used to
obtain the strain distribution within 1 mm of the crack tip. Five cases are

considered, namely cases for deformations where the far field Lagrangian strain is

1%, 2%, 3%, 4% and 5%.
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Figure 21. Tiff file of deformation at 1%.
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Figure 22. Tiff file of deformation at 2%.
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Figure 25. Tiff file of deformation at 5%.
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Figure 26. Tiff file of deformation at 6%.
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The results obtained using the LD - DIC are presented as color contour plots

representing the maximum and minimum principal Lagrangian strains.

Two color codes have been chosen to represent the strain levels, one for all the
maximum principal strain plots and the other for all the minimum principal strain
plots. The color codes have been scaled to represent the deformation in the fifth
step to the greatest detail. Because of this, the contour plots in the first steps do
not have a very large contrast. In the maximum principal strain plots there are 25
strain levels represented by colors ranging from dark blue (0% strain) to red (24%
strain). In the minimum principal strain plots the scale goes from dark blue (-1%
strain) to red (6% strain). This way the growth of the strain levels during the five
steps of the deformation can be observed. Also the principal directions are
represented as small line segments at every point where the correlation has been
performed. In the contour plots corresponding to maximum principal strains, the
line segments point towards the maximum principal directions. For the contour
plots corresponding to minimum principal strains, the segments point towards the
minimum principal direction. The data is presented as principal strains rather than
the usual components of the Lagrangian strain (E,,, E,, and E, ), because the crack
opening and void formation depend on the local principal strains. This
representation method has also the advantage of presenting the directions of
maximum deformation at every point.

Only the area of the deformation where the correlation program was successful in
producing the correct results is depicted in the contour plots. An area surrounding
the crack does not have deformation information. It is represented as a white area
and it does not represent the current crack edge after propagation but it is a

consequence of the LD - DIC method. As the load level increases from 1% far
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field strain (Step 1) to 5% far field strain (Step 5) the area around the crack tip
where the information is missing grows bigger. This is caused because every time
the LD - DIC method is used to construct a step of the deformation, several rows
of information are lost due to the interpolation scheme. Also part of the
information around the crack tip is lost because the Digital Image Correlation
program doesn’t converge in places where new geometrical features appear. The
cases of crack propagation and void formation are examples in which black areas
suddenly appear and the Digital Image Correlation program does not work. These
two later cases can nevertheless be studied by the increase in strain in the region

before the features occur.

A Lagrangian description of the deformation is used in the contour plots for the
five steps presented. This representation helps to study the strain increase in

selected regions.

The Lagrangian representation is more convenient also to represent the crack
propagation path and void locations in the undeformed configuration. The crack
propagation path is constructed by mapping the upper crack edge, as seen in the
image corresponding to the 6" step of the deformation, into the undeformed
image. The part of the crack propagation path that has already open is depicted in
black color whereas the remaining part of the crack is depicted in gray.

During the 5" step of the deformation there is a void that appears. The contour of
the void in the image of the 5™ step of the deformation is also projected to the
undeformed configuration. The crack propagation path is represented in all the

contour plots as a black or gray poly-line going from the crack tip towards the
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right. The void is represented also in all the contour plots as a trapezoidal black or

gray poly-line around the position (1.1mm, 1.2mm).

One feature of interest that is visible in the contour plots of the deformation is that
there is a circular area with 0.5 mm radius around the crack tip where most of the
deformation localizes. Figure 27, which shows the maximum principal
Lagrangian strains and directions for the first step of the deformation, shows how
the deformation around the crack tip is localized in two lobes located on top of
each other. The lobe located in the top (Upper lobe) is centered at the crack tip,
which in the first three steps of the deformation is at (0.7mm, 1.2mm). This lobe
reaches an extreme of more than 12% maximum principal Lagrangian strain and
has a radius of 150 microns. The Lower lobe has a similar size and shape. It is
centered on the position (0.7mm, 1mm), where it reaches a maximum principal
Lagrangian strain of 5%. Surrounding the two lobes there is a region of more than
3% maximum principal Lagrangian strain that extends towards the bottom of the
image area. This later region covers the area where the void develops in the fifth
step of the deformation. In the area where the void develops, the directions of
principal strain are in the horizontal direction, indicating that the void opens in the
horizontal direction. This void is visible in Figure 25, that represents the image of
the deformation during the fifth step (5% far field strain). Other areas where the
deformation concentrates are Area 1, located at (Imm, 2.3mm) and Area 10
(0.9mm, 0.5mm). Out of these five high strain regions( Upper lobe, lower lobe,
void region, Area 1 and Area 10), only the upper lobe and the region where the
void develops are directly related to the propagation of the crack in subsequent

steps.



51

100
c0'0
€00
¥0°0
S0°0
900
100
80°0
600
10
L0
clo
€10
¥1'0
G1'o
910
FA N
81’0
610
¢0
1e’o
¢c’0
€20
¥e'0

-1 50

= G

- G2

ulells pjeid 1ed %1
L deig Jo} ujens uelbuesbe] jedioulid Unwixep

(ww) A

Figure 27.
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These two regions are within 0.5mm of the crack tip. Note that the upper lobe
coincides with the first 0.15mm segment of the crack propagation path. This
segment corresponds to the propagation of the crack from the third to the fourth
step of the deformation. The orientation of the upper lobe corresponds with the
direction of this first crack propagation segment. The strain in the other high
strain regions, i.e. area 1 (1mm, 2.3mm) and area 10 (0.9mm, 0.5mm), grows with
the far field strain level until the crack has pass them. In the deformation
considered, these two areas ( area 1 and area 10) did not develop any visible
voids.

The strain distribution in Figure 27, corresponding to the maximum principal
strain in the first step (1% Far field strain), is very similar to that in Figure 28,
corresponding to the maximum principal strain in the second step (2% Far field
strain). The positions of the upper and lower are the same in both figures. The
maximum values of the maximum principal strain are in the second step 18.5%
and 11% for the upper and bottom lobes respectively. Other high strain areas like
area 10 at (0.9mm, 0.5mm) and area 1 at (0.9mm, 2.3mm) have very similar shape
but their strain levels are close to twice that of their strain level in the first step. It
is of interest to note that the upper lobe coincides in position and orientation with
the first segment of the crack propagation path, as in the maximum principal
strain contour plot for the first step. The distribution of strains in the upper lobe
indicates that the crack is going to propagate through it. The main deformation
associated with future crack propagation is located within 0.5 mm radius from the
crack tip as in the first step.

In Figure 29 representing the maximum principal strains and directions for the
third step ( 3% Far field strain) the crack tip is stationary in the same position as

in the previous two steps.
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Part of the image around the crack tip is lost not because crack propagation but
because of the interpolation scheme in the LD - DIC process. The strain
distribution within 0.5mm of the crack tip is noticeably different from that in the
second step. The upper lobe that was centered on the crack tip in the first and
second step, has moved to cover the area where the void develops (1.1mm,
1.2mm). A high strain region is created this way along the crack propagation path

reaching the trapezoidal poly-line that represents the void.

The crack has propagated a distance of 0.15mm in the fourth step of the
deformation, corresponding to 4% far field strain (Figure 30). Because of the
propagation of the crack, tension is released from the material near the crack
faces. An example of this relaxation is seen in the lower lobe, located at (0.7mm,
1mm), where the strain has been reduced to 12% in the fourth step from 14% in
the third step.

In the third step, Area 6 is an isolated high strain region. During the fourth step,
the strains between Area 6 and the high strain region located where the void
develops increase so that the two high strain regions become one. The connection
between these two high strain regions is developed along the crack propagation
path at (1.4mm, 1.2mm). Nevertheless, the strain distribution in this step indicates
that thev crack will propagate through the high strain region Area 6 (1.7mm,
1.3mm), which is not true. At (1.55mm, 1.3mm) the cyack deviated from this high
strain region to take another path. At this point it is important to note that the
distance from the crack tip to the high strain Area 6 at (1.7mm, 1.3mm) is very
large (0.9mm). The strain distribution around Area 6 may change significantly by

the time the crack tip reaches it.
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In the fifth step of the deformation (Figure 31), the area lost due to the
interpolation scheme is very large. Nevertheless the information that can be
obtained from Figure 31 is very valuable. In the fifth step of the deformation,
corresponding to 5% far field strain, the crack has propagated to the position
(1.1mm, 1.3mm) from its previous position at (0.8mm, 1.3mm) in the fourth step.
A circle of 0.5mm around the crack tip position includes the high strain regions
located at (1.4mm, 1.6mm) and (1.5mm, 1.2mm), which are the highest strain

locations of the step.

Using the last five contour plots, the area around the crack tip at every step where
the maximum principal strains were larger than 10% have been plotted against the
far field strain in Figure 32. A parabolic curve fitting with the additional
constrains that at 0% far field strain the value and the slope of the fit are zero is
shown in the picture. The curve has been fit to four data points, corresponding to
those obtain at 0%, 1%, 2% and 3% far field strain. After this last step no other
data point was used to compute the fit because the crack had propagated. In this
figure it is appreciated how the increase of the area where the strains are larger
than 10% has a parabolic shape when compared to the far field strain. Also it is
seen that at the point of propagation the area reaches a maximum (.09mm?) and

after propagation the area remains fairly constant.

From the contour plot of the maximum principal strains at 5%, 9 regions are

identified where the strains are rather high.
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These regions are: Area 1, at (0.9mm, 2.3mm), Area 2 at (1.6mm, 2.4mm), Area 3
at (2mm, 2.1mm), Area 4 at (2.3mm, 2mm), Area 5 at (Imm, 1.8mm), Area 6 at
(1.25mm, 1.6mm), Area 7 at (0.7mm, 1mm), Area 8 at (1.3mm, 0.8mm) and Area
9 at (2.25mm,0.95mm). The largest maximum principal strain at these areas for
every step has been obtained and plotted in Figure 33 versus the far field strain.
Also the rough calculation performed in Section 4. 1 is shown as a dashed line.
This calculation estimated the strain in the matrix in a composite material
containing 70% particles and 30% matrix during a deformation. In the plot it can

be seen that the increase of strain in the high strain areas is close to linear.

In Figure 34 a distribution of the maximum principal strains along the crack
propagation path for the five steps is presented. Also the position of the crack tip
at every step of the deformation is included in the figure. The position of the crack
tip for the first three steps is represented at x = Omm. At the fourth and fifth steps
the crack tip position is shown at x = 0.15mm and x = 0.4mm, respectively. From
this figure it is seen that the strains localize within 0.5mm form the crack tip. In
the first three steps, after 0.5mm the strains have decayed to less than half of their
values close to the crack tip. In the fourth and fifth steps, the strains have decayed

after 0.7mm of distance to half of their values at the crack tip.

In Figure 35 the maximum principal strains are presented in stations at every
0.25mm along the crack tip as a function of the far field strain. Eight points along
the crack propagation path have been chosen, points located every 0.25mm from

0.25mm to 2mm.
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The strains for the points located close to the crack tip, at the 0.25mm and 0.5mm
stations, grow very fast in a quadratic manner. The strain at other points located
further away from the crack tip don’t grow that fast with the far field strains. It is
interesting to note that it is just after the station at 0.50mm where there is a
decrease in the average slope of the curves. This indicates once more that 0.5mm

is a key distance in the distribution of the strains from the crack tip.

In figures 36 to 40 the contour plots corresponding to the minimum principal
Lagrangian strains for the five steps of the deformation are shown. In Figure 36,
corresponding to the first step, it is seen how there is an area of 0.3mm radius
around the crack tip where negative strains of less than -1.3% strain localize. The
minimum value for the minimum principal strain is located close to the crack tip
and corresponds to less than -0.3% strain. There is a region 0.3mm to the right of
the crack tip where high positive strain of up to 1.5% strain localizes. This region

coincides with the place where the void develops in the fifth step.

One last feature of interest that is observed in the maximum principal strain
contour plots, for example in Figure 29 , corresponding to the third step, is that at
some regions the principal directions change by almost 90 degrees. Examples of
these areas are (1.6mm, 1.1mm), (2.1mm, 1.2mm), (2.2mm, 1.6mm). These areas
also coincide with regions where the strains are very small, indicating that they

remain rigid during the deformation.
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4.3. STRESS - STRAIN CURVE FOR SOLID PROPELLANT

A stress-strain curve for solid propellant TPH 1011 is shown in Figure 41. The
specimen is of dimensions Sin x 0.5in x 0.125in and are pulled at a constant rate
0f 0.01 1/min by using an Instron testing machine. The material stiffness is rather
low, with an ultimate stress of 0.5 Mpa The material is also ductile, elongating up
to 16% of strain. The behavior of the material during the experiment is as
follows. Between 0% strain and 3% strain there is a lot of wiggling in the curve
and the average modulus is about 4Mpa. At a strain value of 3% the slope
increases to 7Mpa and remains fairly constant until a value of 7% strain is
attained. From this value on, the slope decreases until it is OMpa at 11% strain.
Fracture occurs at 16% strain. One should notice that most of the wiggling of the
curve is between 0% and 6% strain. From then on the curve is fairly smooth. The
curve has a smooth plateau after the deformation has reached a value of 11%.
Prior to that value the curve wiggles significantly, particularly in two areas, one
close to the origin and the other at a value of 6% strain. This wiggling could
indicate the variation of the load due to debonding of the particles. Another
characteristic feature of interest is material failure without softening at a value of

16% strain.
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5. CONCLUSIONS

From the results obtained by the microscopic visualization of the fracture process
of the solid propellant TPH 1011, it can be concluded that the heterogeneity of the
material plays a key role for the crack propagation and distribution of strains

around the crack tip.

One conclusion in this experiment is that in the fracture process of the solid
propellant TPH - 1011 there is a region around the crack tip of about 0.5mm
radius where most of the deformation that is related to the crack propagation path
localizes. Outside this 0.5mm region there are other high strain areas but as the
load increases, they are not related to the crack path. The only relation to the crack
propagation process that these later regions have is crack shielding, were some
smaller cracks open and release tension in the material. The deformation within
0.5mm of the crack tip grows much faster than elsewhere. One immediate
consequence of the localization of the deformation within 0.5mm from the crack
tip is that as the load increases and the crack propagates, the strain distribution in
the material changes from load step to load step. Therefore the strain distribution
at some step can only predict the crack propagation path within 0.5mm. Outside
this area, the strain distribution may change significantly by the time the crack tip

reaches the area.

The strains obtained in the experiment performed are surface strains. Nevertheless
they not only represent what is happening in the surface but also underneath the
surface. One particle that is located underneath the surface affects the distribution

of strains in a region of the surface that is close to it.
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APPENDIX A
STAINING STAGE

The components used to build the straining stage were purchased in

W. N. Berg

499 Ocean Av.

East Rockaway NY 11518
Phone (516) 599-5010

Planes with dimensions of the parts are presented in the next pages.
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APPENDIX B

GENERAL FEATURES OF THE FRACTURE PROCESS OF THE SOLID
PROPELLANT TPH 1011 RECORDED BY OPTICAL MICROSCOPY

A series of 34 pictures were taken to study the fracture process of a solid propellant in
which the crack is running from top to button. The applied strain rate of the deformation
is constant and equal to 0.001 1/sec. In Figures 1b to 34b it can be seen that the solid
propellant material appears as a dark gray irregular surface. We can also detect some
dimples on the surface of the material caused during the manufacturing process. These
dimples have the diameter of 80 to 600 microns and they are not very deep. Their aspect
is like that of holes in the material. Later on, as the fracture process develops, it will be
difficult to distinguish these features from the holes that will occur near the crack tip. One
important thing about these pictures is the orientation of the light: from top to button. It
causes black shadows on the upper parts of the features that penetrate into the material.
Example of these features are dimples, holes and cracks. The orientation of the light also
creates white lines on the lower parts of these features. Therefore, the crack tip, which is
oriented to the button, has light contours. The crack propagation mechanism can be
summarized as follows. Initially, the increase in specimen tension causes the crack
opening angle to increase (Fig 1b to 5b). At the same time there is a area around the crack
tip in which damage localizes. This damage area can be seen on the button and to the left
of the crack tip in Figure 6b, as an increase of white small features that indicates that
light is shinning perpendicular to these areas because new small crack are opening. We
also observe some irregularities in the contour of the crack near the described area.
Figures 7b and 8b show how holes develop in the damage area along with the appearance
of more white features on the damaged area, which indicates a high density of damage.
Finally, in Figure 9b the crack runs through the damage area. The initial dimples on the
surface sometimes play an important role for the propagation of the crack. This can be
concluded from Figures 9b, 10b and 11b. At a certain point the crack has run through the
damaged area and then stops. - Next, the increase in tension in the material results in a

growth of the crack opening angle and the damage area enlarges. In Figures 13b to 17b
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we observe how the crack tip is stationary while damage is developing to its right.
During these damage process two holes develop and grow along with the tension in the
area. During Figures 15b, 16b and 17b the two holes coalesce releasing tension in the
material. From Figures 16b and 17b the crack opening angle decreases while the tension
is increasing. This is because the opening of the holes releases tension in the area. In
Figure 18b the crack runs through the damage area connecting the hole. In Figures 18b,
19b, 20b and 21b the crack stops while a hole develops in the damaged area. In Figures
22b and 23b a flank of the crack coalesces with the hole. This indicates that in the
fracture process of solid propellant TPH 1011, the crack doesn’t follow a straight line like
expected in a homogeneous material. The inhomogeneities in the material causes the
local stress to vary in a random fashion, so the failure sites in the material do not
necessarily coincide with the maximum local stress location. In this process we can see
the trend of increasing crack opening angle coupled with the generation of damage,
developing of holes and decreasing of crack opening angle, crack advancing through the
damage area by coalesce with holes and finally stopping of the crack growth. This cycle
repeats and after some of these cycles the damage area is very big and the crack becomes
unstable. In the last figure it is represented the length scale, one division represents 1/16

in.
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- Figure 1b.
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Figure 2b.
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Figure 4b.
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Figure 5b.
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Figure 7b.
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Figure 10b.



97

Figure 11b.
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Figure 12b.
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‘Figure 13b.
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‘Figure 14b.
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Figure 15b.
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Figure 17b.
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Figure 18b.
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Figure 19b.
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Figure 20b.
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Figure 21b.
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'Figure 22b.
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Figure 23b.
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Figure 24b.
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Figure 25b.
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Figure 26b.



113

Figure 27b.
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,Figure 28b.
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Figure 29b.
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Figure 30b.
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Figure 31b.
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Figure 32b.
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Figure 33b.



Figure 34b.
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Figure 35b.
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APPENDIX C
PROGRAM LISTING

For a simple deformation process, we establish three pictures of the body each associated
with the configurations 1, 2 and 3 of the sequential deformations. The DIC program is
successful in giving the deformation fields between image 1 and 2 (deformation A) and
between images 2 and 3 (deformation B). However, the strains between images 1 and 3
(global deformation) are larger than those that lead to the convergent of the correlation
algorithm. We determine the deformation fields for the global deformation,
corresponding to images 1 and 3, by using the results the DIC program provides for the
deformations A and B. The Large Deformation Digital Image Correlation method is

applied in two steps:

1) In the first step, strain and displacement fields for the deformation between two
consecutive images are computed by using the DIC program previously described. The
DIC program requires the input file (jan1096.inp), containing parameters for the
correlation algorithm, gray level image files of the deformed and the undeformed body
(hong0.gray and hongl.gray), a file with the pixel coordinates of the undeformed image,
in which strains and displacements are calculated, (unknown.dat). The output file of the
DIC program, which contains the results of the correlation procedure is named
rawdata.dat. The DIC program computes the strains and displacement at every point
prescribed in the file unknown.dat, using the results from the previous point as a initial
guess. For the first point, a initial guess is provided by the initial guess file (guess.dat).
This method requires that all the points are next to the previous one. Since in our problem
there are discontinuities in the domain (cracks), the correlation algorithm is not able to
converge at some of these discontinuities, and therefore no initial guess is available for
the next points. To overcome this difficulty, the DIC program was applied as seen in
Figure 1c, and second performing the correlations of the points along the initiation strip A

in Figure 1c. As there are no discontinuities along this initiation path (Strip A), the DIC
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program is successful in determining the right results. The strain and displacement values
obtained along the strip A are used as initial guess for the series of strips B, B,, ..B;s
depicted in Figure 1c. The procedure to compute strain and displacement fields for two

images (hong0.gray and hongl.gray) is the following:

a) Measure the displacement of the initial point with the help of an image
editor (xv), and put this value in the file guess.dat.

b) Compile the program 2dprel0.f that will create the file unknown.dat
containing the pixel coordinates of the points along the strip A (Fig 1c).

c) Compile the program 2dprelll.f that will generate the files datal.dat,
data2.dat... containing the pixel coordinates of the points along the strips B
(Fig 1c).

d) Run the c-shell file 2drun to sequentially operate the DIC program.

¢) The strain and displacement fields will be stored in the file 101.dat, which

is a copy of rawdata.dat.

Initial point

/
B,

oo o o o o o 90—
B,

o +—0o—0 090009
B, A

— 8 ‘o900 o oo
B,

oo —9o 9o oo oo
Bs

6900 ¢ 06900

'Figure 1c: Arrangement of points.
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In the same way the strain and displacement fields for deformation B are

computed, and the results are stored in 102.dat.

2) The second step of the Large Deformation Digital Image Correlation method is to
combine the results for deformations A and B to obtain the global deformation. If we
assume that the file 101.dat contains the results from the correlation during deformation
A, while 102.dat contains the same information for deformation B, the task is done with

the program add.f as follows:

a) Move the file 101.dat to uno.dat.

b) Run the program 101.f to modify the file uno.dat.

c¢) Move the resultant file from last step (dat) to uno.dat.
d) Move 102.dat to dos.dat.

€) Run the program add.f.

The result of this operations are the strain and displacement fields of the global

deformation.

In the following pages it is displayed all these programs.
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2drun

. 2dprel0
foreach j (1)
mv unknow$j.dat unknown.dat
hong_corr .
mv rawdata.dat pre.dat
2dprelll
mv datal.dat unknown.dat
hong_corr
mv rawdata.dat 10$j.dat
foreach i (2 3 4 56 7 8 9 10 11 )
echo datas$i.dat
mv data$i.dat unknown.dat
hong_corr
cat rawdata.dat »> 10%j.dat
end
end
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program dprel0

implicit double precision (a-h,o-z)

‘unknowl.dat’, status
‘guess.dat’ , status

open ( unit = 1, file
open ( unit = 11hfile

non

i=0

do while (.true.)
i:i+l '
read(1l1l, *,end=10) u,v
write(i,*) '3’
write(i,*)'640 480"

write(i,’ (al0) ‘) 'hong0.gray’
if (1.1t.10) then

write(i, ' (a4,1il,5a)’) 'hong’,i,’.gray’
end if

if (i.ge.10) then

write(i,'(ad,i2,5a)') 'hong’',1i,’'.gray’
end if

write(i,'(11la)’)’'janl096.1inp"’
write(i,*)u,v,0.,0.,0.,0.
write(i,*) 211 212~

do j = 0 , 210
write(i,*) 260 , 30+j*2
end do
close( unit = 1 )
end do
continue
close (unit =11)
stop
end

‘new’)
‘old’)
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program dprelll
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implicit double precision (a-h,o-2)

character

12

*1

character *12

open ( unit
open ( unit
open ( unit
open ( unit .
open ( unit
open . { unit
open ( unit
open ( unit
open ( unit
open ( unit
open ( unit
open ( unit
read (47, *)

read (47,*)
read (47,'(10a) ")
read (47,'(10a)"’)

i=1
do while
i =1+ 1

1

L I O O L T { I { A 1

J

3.

undeformed

(.true.)

read(l, *,end=10)

write(i,*) "3’

write(i, *)'640

deformed

deformed
1, file = 'pre.dat’, status = 'o0ld’)
2, file = 'datal.dat’, status = ‘new')
3, file = ’'data2.dat’, status = ‘new’)
‘4, file = ’'data3.dat’, status = ‘new’)
5, file = 'datad4.dat’, status = ’‘new’)
6, file = 'data5.dat’, status = ‘new’)
7, file = ‘data6.dat’, status = ‘new’)
8, file = ’'data7.dat’, status = ’'new’)
9, file = 'dataB.dat’, status = 'new’)
10, file = 'data9.dat’, status = ’'new’)
11, file = 'datall.dat’, status = 'new’)
47, file = ‘unknown.dat’, status = ‘old’)
k

undeformed

ix,iy,u,v,ex, ey, exy,ux,uy, vx, vy, junk3

480"

write(i,’ (10a)")
write(i, ' (10a)")
write(i, ' (1la)’)’'janl096.inp’
write(i,*)u,v,0.,0.,0.
write(i,*)'45 46"

do j =

0.

write(i, *)

end do
close(
end do

unit

continue

close

close
stop

end

(unit
(unit

44
470

i)

47)
1)

j *

'

1

undeformed
deformed

0.

0

, 1y
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program addl
implicit double precision (a-h,o-z)
dimension fieldl(50,50,22)

dimension field2(50,50,22)
dimension f£ield3(50,50,22)

open ( unit = 1, file = 'uno.dat’, status = ‘0ld’)
-open ( unit = 2, file = ’‘dos.dat’, status = ‘old’)
open ( unit = 3, file = 'dat’, status = 'new’)

i0 = 20

j0 = 60

imax = 470

jmax = 460

istep = 10

jstep = 10

xmax = real (imax)
ymax = real (jmax)
xmin = real (i0)
ymin = real (3j0)
xstep real (istep)

vstep = real (jstep)

pul = .188d0

pul .0003740
pux0 = -.001440
puxl = .08d0
pux2 = .0d0
doi=1, 50
do j =1, 50
fieldl(i,j,19) = 4
field2(i,j,12) = 4
field3(i,j.,19) = 4
field3(i,j,1) = xmin + Xstep * (i1 - 1)
field3(i,j,2) = ymin + vstep * (j - 1)
end do
end do

read information from first field

do while (.true.)

read(l,*,end = 10) il , 31 , ul , vl , exl , eyl , exyl,
& ux,vy,uy,vVX,eex,eey,eexy,eux,evy,euy,evx, junk3,eu, ev

i = (il - 10 ) / istep + 1
j o= (31 - 30 ) / jstep + 1
fieldl(i,j, 1) = il
fieldl(i,j,2) = 31
fieldl(i,3,3) = ul
fieldl(i,j,4) = vl
fieldl(i,3.5). = exl
fieldl(i,j,6) = eyl
fieldl(i,j,7) = exyl
fieldl(i,j,8) = ux
fieldl1(i,j,9) = vy
fieldl(i,3,10) = uy
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o000

0n0no0an

fieldl(i,3j,11) = vx
fieldl(i,j,12) = eex
fieldl (i, 3,13) = eey
fieldl(i,3j,14) = eexy
fieldl(i,j,15) = eux
fieldl{(i,j,16) = evy
fieldl(i,j.17) = euy
fieldl (i, j,18) = evx
fieldl(i,3,19) = junk3
fieldl(i,j,20) = eu
fieldl(i,3.21) = ev

end do

10 continue

read'information from second field
do while (.true.)

read(2,*,end = 20) i1 , j1 , ul , vl , exl , eyl , exyl,
& ux,vy,uy,vx, junk3

i = (11 - 10 ) / istep + 1

j = (jl - jo ) / jstep + 1
field2(i,j,1) = il
field2(i,3.,2) = 3jl
field2(i,j,3) = ul
field2(i,j,4) = vi
field2(i,3j.,5) = exl
field2(i,3,6) = eyl
field2(i,3j,7) = exyl
field2(i,3,8) = ux
field2(i,3.9) = vy
field2(i,3j,10) = uy
field2(i,j,11) = vx
field2(i,j,12) = junk3

end do

20 continue

main loop for addition of fields
doi=1, 50

do j =1, 50

if (fieldl(i,3j,19).1t.4) then Pif - 1

fieldl(i,3,1)
fieldl (i, j,2)
fieldl(i,3j,3)
fieldl(i,j,4)
X + U
Yy + 'V

[ 1 { B VR

Mx e X

if 2
(x.ge.xmin.and.y.ge.ymin.and.x.le.xmax.and.y.le.ymax)

if then

int ((x - xmin) /xstep) + 1
11 o+ 1

il
i2

1n
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i3 = i1 + 2

i4 = i1 - 1

j1 = int{(y - ymin)/ystep) + 1
32:j1+1 ’
j3=]l+2

4 = 31 - 1

x1 = field2(i1,3j1,1)
x2 = field2(i2,3j1,1)
vyl = field2(il,31,2)
y2 = field2(il,3j2.2)
x3 = field2(i3,3j1.1)
x4 = field2(i4,j1,1)
y3 = field2(il1,33.2)
y4 = field2(il, j4.2)
k1l = field2(il,3j1,12)
k2 = field2(i2,31,12)
k3 = field2(il,j2,12)
k4 = field2(i2,32,12)
k1 = max (k1l,k2,k3,k4)

field3(i,3j,19) = ki

if (k1.1lt.4) then Vif o-> 3

ul = field2(il,3j1,3) * (x2-x) + field2(i2,31,3) * (x-x1)
ul = ul / xstep

u2 = field2(il,3j2,3) * (x2-x) + f£ield2(i2,32,3) * (x-x1)
u2 = u2 / xstep

uf = ul*(y2-y) + u2*({y-vl)

utf = uf / ystep

field3(i,j,3) = fieldl(i,j,2) + uf

vl = field2(i1,31,4) * (x2-x) + field2(i2,31,4) * (x-x1)
vl = vl / Xstep

v2 = field2(il,j2,4) * (x2-x) + field2(i2,3j2,4) * (x-x1)
v2 = v2 / Xstep

vi = v1i*(y2-y) + v2*(y-yl)

vi = v / ystep

field3(i,3,4) = fieldl(i,j,4) + vE

uxl = field2(il,3j1,8) * (x2-x) + field2(i2,31,8) * (x-x1)
uxl = uxl / xstep

ux2 = field2(il,j2,8) * (x2-x) + field2(i2,32,8) * (x-x1)
ux2 = ux2 / xstep

uxf = uxl*(y2-y) + ux2*{y-yl)

uxf = uxf / ystep

field3(i,3,8) = fieldl(i,j,8) + uxf

vyl = field2(i1,31,9) * (x2-x) + field2(i2,3j1,9) * (x-x1)
vyl = vyl / xstep

vy2 = field2(il,3j2,9) * (x2-x) + field2(i2,3j2.9) * (x-x1)
vy2 = vy2 / Xstep

vyE = vyl*(y2-y) + vy2*(y-v1l)

vyi = vywf / ystep

field3(i,3,9) = fieldl(i,3j,9) + vyf

uyl = field2(il,31,10) * (x2-x) + field2(i2,31,10) * (x-x1)
uyl = uyl / xstep

uy2 = field2(il,j2,10) * (x2-x)} + field2(i2,32,10) * (x-x1)
uy2 = uy2 / xstep

uyf = uyl*(y2-y) + uy2*(y-yl)

uyf = uyf / ystep
field3(i,3,10) = fieldl(i.3j,10) + uyf
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vxl = field2(il,j1,11) * (x2-x) + field2(i2,3j1,11) * (x-x1)
vxl = vxX1l / Xstep .

vx2 = field2(il,3j2,11) * (x2-x) + field2(i2,3j2,11) * (x-x1),
VX2 = VX2 / Xstep

vxf = vxl*(y2-y) + vx2*(v-yl)

vxf = vxf / ystep

field3(i,j,11) = fieldl(i,3j.,1l1l) + vxt

ux = fieldl (i, j.8)
vy = fieldl¢i,3j,9)
uy = fieldl(i,3j,10)
vx = fieldl(i,j,11)

field3(i,j,8) = field3(i,j,8) + uxf*ux + uyf*vx
field3(i,j,9) = field3(i,j,9) + vvir*vy + vxf*uy
field3 (i, j,10) = field3(i,3j.10) + uxf*uy + uyf vy
field3(i,3j,11) = field3(i,3,11) + vxfr*ux + vx*vyf

ex = field3(i,j.,8) + .5a0*(field3(i,j,8)*field3(i,3,8)+

& field3(i,j.1l1)*field3(i,Jj.11))

ey = field3(i,j,9) +.5d0*(field3(i,3j,9)*field3(i,7,9)+

& field3(i,j,10)*£field3(i,j,10))

exy = .5d0*(field3(i,3,10)+field3(i,J,11))+.5d0*(field3(i,3,8)*
& field3(i,j,10)+
& field3(i,j.9)*field3(i,3,11))

field3(i,j,5) = ex
field3(i,3.6) = ey
field3(i,3.,7) = exy
k1l = field2(il,3j4,12)
k2 = field2(il,3l,12)
k3 = field2(il,3j2,12)
k4 = field2(i2,3l1,12)
k5 = field2(i4,31,12)

kl = max(kl,k2,k3,k4,k5)

if (kl.eg.0.and.fieldl(i,j,19).ec¢.0.and.jl.gt.1l) then Vit -> 4

duxxx = (field2(id,j1,8) - 2.d0*field2(il,j1l,8) +
& field2(i2,3j1,8))
duxxx = duxxx / 2.d0

duxyy = (field2{(il,3j4,8) - 2.d0*field2(il,31,8) +
& field2(il, j2,8))
duxyy = duxyy / 2.d0

dvxyy = (field2(il,j4,11) - 2.d0*field2(il,3j1,11) +
& field2(il,32,11))

dvxyy = dvxyy / 2.d0

dvxxx = (field2(i4,31,11) - 2.d0*field2(il,3j1,11) =+
& field2(i2,31,11))

dvxxx = dvxxx / 2.d0

duyyy = (field2(il,3j4,10) - 2.d0*field2(il,3j1,10) +

& field2(i1,j2,lO))
duyyy = duyyy / 2.d40

duyxx = (fieidZ(i4,j1,lO) - 2.d0*field2(il,3j1,10) +
& field2(i2,31,10))
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duyxx = duyxx / 2.d0
dvyxx = (field2(i4,3jl1,9)
& field2(i2,31,9))

dvyxx

dvyyy =

(field2(il,j4.9)

dvyxx / 2.d0

& field2(il,3j2,9))
dvyyy = .dvyyy / 2.40

&

&

&

&

&

&

&

&

&

.~ 2.d0*field2(il,31,9) =+

- 2.d0*field2(il,3j1,9) +

write(10,*) i,j,duxxx,duxyy,dvyxx,dvyyy, duyxx,
& duyyy,dvxxx,dvxyy.,x-x1,y-yl,x,x1

euxl = fieldl(i,3j,15)
evyl = fieldl(i,3j,16)
euyl = fieldl(i,3j,17)
evxl = fieldl(i,j,18)
euxz =

sqrt (Quxxx**2 + duxyy**2 +

(pux0+puxl*uxf+pux2*uxf*=2)**2)
evy2 = sqrt{dvyxx**2 + dvyyy**2 +
(pux0+puxl*uxf+pux2*uxf**2)**2)
euy2 = sqgrt(duyxx**2 + duyyy**2 +
(puxO+puxl*uxf+pux2*uxf**2)**2)
evx2 = sqgrt(dvxxx**2 + dvxyy**2 +
(pux0+puxl*uxf+pux2*uxf**2)**2)

ux = fieldl(i,j,8)
vy = fieldl(i,j,9)
uwy = fieldl(i,3j,10)
vx = fieldl(i,3,11)

eux = sqrt(((1.d0+uxf)*euxl)**2

(uyf*evxl) **2

+

(vx*euy2) **2)

euy = sqgrt(((1.d0+uxf)*euvl)**2

(uy*eux2)**2 +

evx = sgrt(((1.
(euxl*vxf)**2
evy = sqrt(((1.
(vxf*euyl) **2

field3(i,3,15)
field3(i,J,16)
field3(i,3j.17)
field3(i,3j,18)

eex

eey

eexy
(euy

LRI LI ]}

field3(i,3,12)
field3(i,3,13)
field3 (i, 3j,14)

field3(1,3,19)

(uyf*evyl)**2)

d0+ux ) *evx2)**2

+

(vx*evy2) **2)

d0+vyf)*evyl) **2

+

"nw o non

il

(uy*evx2)**2)

eux
evy
euy
evx

sgrt(((1.d0+ux)*eux) **2 +
sgro (({(1.d0+vy) *evy) **2 +
~sgrt ({eux*.5d0*uy) **2 +
.5d0* (1.d0+ux) ) **2  + (evx*.5d0* (1.d0+vy))**2 )

eex
eey
eexy

else
1.d0

_end if

end if
end if

end if

+ ((1.d0+ux

+ ((1.d0+vy )*euy2)**2

) *eux2) **2

+ ((1.d0+vyf) *evxl) **2

+ ((1.d0+vy

) *evy2) **2

(v*evx) **2)
(uy*euy) **2)

(evy*.5d0*ux) **2+

I
Poif

->

->
->

->

+

+
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field3 (i, j,1)
field3 (i,3,2)

end do
end do

do 3 1,41

do i 1,46
write(3,(19el5.6)")
write(3, (12el5.6)")
write(3,’(21el5.6)")
write(3,*)"' !

end do
end do
close (unit
close(unit
close (unit

(WS SO S
— e

iowu

stop
end
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fieldl(i,3.,1)
fieldl(i,3.2)

(fieldl(i,3j,1),1=1,19)
(field2(i,j,1),1=1,12)
(field3(i,3,1),1=1,21)
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program add2
implicit double precision (a-h,o0-z)
dimension fieldl(50,50,22)

dimension field2(50,50,22)
dimension field3(50,50,22)

open { unit = 1, file = ‘uno.dat’, status = ‘o0ld’)
open ( unit = 2, file = ‘dos.dat’, status = ‘0ld’)
open { unit = 3, file = ’'dat’, status = ‘new’)

10 = 20

30 = 60

imax = 470

jmax = 460

istep = 10

jstep = 10

Xxmax = real (imax)
ymax = real (jmax)
xmin = real (i0)
ymin = real (3j0)
xstep real (istep)

ystep = real (jstep)

= .1884d0
pul = .00037d0
-.001440
.08d0
.0do

g

o

b

o
wonou

do i 1, 50
do j 1, 50
field1(i,3,19)
field2(i,j,12) 4
field3(i,j,19) 4
field3(i,3,1) = xmin + ~step * (i - 1)}
field3(i,j,2) = ymin + ystep * (j - 1)

i

4

end do
end do

read information from first field

do while (.true.)

read(l,*,end = 10) il , 31 , ul , vl , exl , eyl , exyl,
& ux,vy.,uy.,VXx,eex, eey,eexy,eux,evy,euy,evx, junk3,eu, ev

i = (11 - 10 ) / istep + 1
i = ( j1 - jO ) / jstep + 1
fieldl(i,3.1) = il
fieldl(i,j,2) = ji
fieldl(i,3j,3) = ul
fieldl(i,j,4) = vl
fieldl(i,j,5) = exl
fieldl(i,j,6) = eyl
fieldl(i,j,7) = exyl
fieldl(i,3j,8) = ux

= vy

fieldl(i,3,9)
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Q.
[e]
-
non
.
wn
o

do j 1, S0

il = 1

i2 = 11 + 1

id = 11 - 1

jl = 3

j2 = 31 + 1

j4 = 31 - 1

kl = field3(il,3l1,19)

k2 = field3(il,3j2,19)

k3 = field3(il,j4,19)

kd = field3(i2,31.,19)

kS5 = field3(i4,3j1,19)

k1l = max(kl,k2,k3,kd, k)

if (kl.1lt.4) then ' if -» 1b
C
C dux*2 Dx**2
c this derivatives are duxs = ------- R and so on
c Aw=*2 2
c

o

- duxx = (field3(i4,ji,3) - 2.d0*field3(il,j1,3) =+
& field3(i2,31.3))

duxx= duxx / 2.d0

1o

dvxx = (fieldz(i4d4,31,4) -
& field3(i2,3j1L1,4)
dvxx = dvxx / 2.d0

.d0-field2(i1,31,4) +

o
o
(=)
*
t

dvyvy = (field3(il,i4,4: - 2.
& field3(il,3j2,4))
dvyy = dvyy 7 2.0

fieldioil,51,4) «+

duyy = (field2(il,i4, - 2.d0*field3(11,31.,3) +
& field3(il,j2.2))
duyy = duyy / 2

field3(i,3.,3
field3(i,j,4)

c
/]

field3(i,3,20)
field3(i,3.21)

st (iduxx + duyy) **2 + (pul + pul*u}=**2 ) teu
sgrt ((dvvx + dvyy)**2 + (pu0 + pul*v)=**2 ) lev

o

else
if (£ield3(i,3,19) .e¢.0) field3(i,j,19) =1
end if it - 1b
end do
end do

C**********

c do § = 1,50

c do i = 1,50 -

c write(30, ' (21lel5.6)") (fieldl(i,j,1),1=1,19)
c write(3,(12el5.6) ") (field2(i,9,1),1=1,12)
c write{3, (21el5.6) ) (field3(i,3,1),1=1,21)
c write(3,*)"'

c
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end do
end do
close (unit
close(unit
close(unit

stop

Kk KK K K kR kX XK

nononNnnnNnoon

computation of errors in gradients of displacements

anaonn

do 1
do j

"on
-

50

i
i1 + 1
]
L o+ 1

t
nononn

field3(il,jl,1»
field3 (iz, 3L, 1)
field3(il,31,2)
field3(il,32,2)

<
— N —
oo

field3(il,31,19)
field3(i2,31,19)
field2(il, 32,19
field3(iz, 32,19

=
N
I n mn

k1l = max (k1,k2,k3, k)

if (k1.1t.1l) then boiro- 1d

eul = field3(il,j1,20)

eu2 = field3(i2,31L1,20)

euld = field3(il,di2,20)

eud = field3(i2,32,20)

evl = field3(il,3j1,21)

ev2 = fieldz(i2,3jl.21)

evi = field?(il,j2,20)

evd = field? (12,142,211

eux = sqgrt( euz2**2 + eul**2 ) / xstep

euy = sqQrt( eul3**2 + eul**2 ) / ystep

evx = sqrt( ev2**2 + evl**2 ) / xstep

evy = sqrt{ ev3**2 + evl**2 ) / ystep

eex = sgrt((eux*(1.d0+ux))**2+(vx*evx)**2)

eey = sgrt((evy*{1.d0+vy))**2+(uy*euy)**2)

eexy = sgrt((eux*.5dA0*uy) **2+ (euy*.5d0* (1.d0+ux)) **2+
{

$ (evx*.5d0*

field3(i,j,12) = eex
field3(1i,3,13) = eey
field3(i,j,14) = eexy
field3(i,j,15) = eux
field3(i,j,16) = evy
field3(1i,3;17) = euy
field3(i,j,18) = evx
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else
if (field3(i,3,19).1r.4) tield3(i,3,19) = 3
end if v if - 1d
end do
end do

print out the results

do j =1, 41
do i =1, 46

write ({30, (21lel5.6)') (fieldl(i,3j.1l)
write (3, (12el5.6) ') (field2(i,j, 1), ,

write(3,’(21el5.6) ') (field3(i,j,1),1=1,2
write(3,*)' '

end do
end do
close(unit
close(unit
close{unit

nounon
U % I

stop
end
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program add3

implicit double precision (a-h,o-z)

open ( unit = 1, file = 'uno.dat', status = 'o0ld’)
open ( unit = 2, file = 'dos.dat’, status = ‘o0ld’)
open ( unit =3, file = 'dat’, status = ’'new’)
i0 = 20

50 = 60

imax = 470

jmax = 460

istep = 10

jstep = 10

xmax = real (imax)

yvmax = real (jmax)

xmin = real (1i0)

ymin = real (j0)

xstep = real (istep)

ystep = real (jstep!

pul = .188d0

pul = .00027d0

pux0 = -.0014d0

puxl = .08d0

pux2 = .0d0

do i =1, 50

do j-=1, 50

fieldi(i,3j,19)
field2(i,3,12)
field3(i,3.19)
field3{(i,3,1) = xmin + xstep * {i - 1)
field3(i,j,2) = ymin + ystep * (j - 1)
end do
end do

oo
B 0>

read information from first field

do while (.true.)

read(1l,*,end = 10) 11 , 31 , ul , vl , exl , eyl , exyl,
& UX,Vy,Uy,VX, eex, eey, eexy,eux,evy,euy,evx, junk3, eu, ev

)/ istep + 1

1non
™
=
t
—
o

3j ( 31 - 30 ) /7 dstep + 1
fieldl(i,j, 1) = i1
fieldl(i,3,2) = 3j1
fieldl(i,j,3) = ul
fieldl(i,j,4) = vl
fieldl(i,3,5) = exl

fieldl (i, 3 6) = eyl
fieldl(i,3,7) = exyl
Ileldl(l §,8) = ux
fieldl(i,3,9) = vy

fieldl(i,3,10) uy
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fieldl(i,3,11) = v~
fieldi(i,3,12) = eewu
fieldl(i,3,13) = eey
fieldl(i,j, 14) = eexyv
fieldl (i, j,15) = eux
fieldl(i,j,16) = . evy
fieldl(i,j,17) = euy
fieldl(i,j,18) = evx
fieldl(i,3,19) = junk3
fieldl(i,3,20) = eu
fieldl(i,3j,21) = ev

end do
10 continue

read information from second tfield

do while (.true.)

read(2,*,end = 20) il , 31 , ul , vl , exl , eyl , exyl,
& ux,vy,uy,vx, junk3

i = (11 -~ 10 ) / istep + 1
j o= (31 - 30 ) / istep + 1
field2(i,j, 1) = il
field2(1i,3.2) = 31
field2(i,3j,3) = ul
field2(i,j,4) = vi
field2(i,3,5) = exl
field2(i,3.,6) = eyl
field2(i,j,7) = exvl
field2(i,3,2) = ux
field2(i,3,9) = wvv
field2(i,j,10) = uy
field2(i,j,1l) = v
field2(i,3,12) = junk:3

end do
20 continue

loop for addition of displacements

do i
do j

1, 50
1, 50

field3(i,3,1)
field3(i,3.2)

fieldl(i,3j,1)
fieldl(i,j,2)

if (fieldl(i,3,19).1r.4) then it - la

fieldl (i, 3,
fieldl (i, 3,
fieldl (i, 3],
fieldl (i, 3,
X + U
Yy + Vv

AW N

)
)
)
)

KX <o X
W ouonon

if -+ 2a
if (x.ge.xmin.and.v.ge.ymin.and.x.le.xmax.and.y.le.ymax) then
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il = int((x - xmin)/xstep) + 1
i2 = i1 + 1

jl = int((y =~ ymin)/ystep) + 1
]2:]1+l

x1 = fieldl(il,3jl1.,1)

x2 = fieldl(iz,3j1,1)

yl = field1(il,3j1,2)

v2 = fleldl(ll 32.,2)

kl = field2(il,jl1,12)

k2 = field2(il,3j2,12)

k3 = field2(i2,3j1,12)

k4 = field2(i2,32,12)

k1 = max (k1l,k2,k3,k4)

if (k1l.1lt.4) then voif -

ul = field2(il,31,3) * (m2-x) +
ul = ul / real (istep)

u2 = field2(il,J2,3) * (x2-x) +
u2 = u2 / real (istep)

uf = ul*(y2-y) + u2*({y-yi)

uf = uf / real (jstep)

f1e1d3 i,3,3) = fieldl(i,3,3) +
vl = field2(il,3jl1,4) * (x2-x) +
vl = vl / real (istep)

v2 = field2(il,32.,4) *» (x2-x) +
v2 = v2 / real (istep)

vE = v1*(y2-y) + vI2=(y-vl)

vi = vE / real (jstep)

fleld3 i,3,4) = fieldl(i,j.4) +
field3(i,3,1¢) = 0
else

field3(i,3,19) = 4
end if Vit - Za
else

field2(i,3,19) = 4
end if Vit - 2a
end if v if - la
end do
end do

* x
C***I’t* * *

c . dOj = 1,50

c do i = 1,50

c write(30, ‘' (21lel5. 6 (fieldl (i
C write(3, ' (12el15.6) (f1~1d7(
c write(3, ' (21lel5. G)’ (field3
c write(3,*) " '’

c

c end do

c end do

c close(unit = 1)

e close(unit = 2)

c close(unit = 3)

C .

(¥5)
[J)

field2(i2,31,3)

field2(i2,32,3)

vi

(x-x1)

(x-x1)
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c stop
C*t**********
Cmmmmm e == S gy
c -
c computation of gradients of displacements
c
c
doi=1, 50
do j =-1, 50
il = 1
12 = ll + 1
i1 = 3
32 = 31 + 1
x1l = field3(il,3jl.1)
x2 = field3(i2,3jl,1)
vyl = field3(il,31,2)
y2 = field3(il,3j2.,2)
kl = field3(il,3J1.,19)
k2 = field3(i2,71,19)
k3 = field3(il,32,19)
k4 = field2(i2,32,19

k1l = max (k1l,k2,k3,k4)

if (kl.1t.4) then tir - 1c

uxf = ( field3(i2,4L.,3) - field3(il,31.3) ) / xstep
vwi = ( field3(il,j2.4) - field3+¢il,31.4) ) / ystep
uvf = ( field3(il,q 2,31 - fieldi(il,jl,3) } / ystep
vt = ( field3(i2,3l,4) - Zield3(il,31.4) ) / xstep
field3(i,j,8) = uxt

field3(i,3.,9) = wyt

field3(i,j,10) = uyt

field3(i,j,11) = wxt

ex = field3(i,3,8) + .5d0*(field3(i,3,8)*field3(i,3,8)+

& field3(i,j,1l)*field3(i,3,11))

ey = field3(i,3,9) +.5d0*(field3(i,3,9)*field3(i,3,9)+

& field3(i,3,10)*field3(i,3j,10))

exy = .5d0*(field3(i,j,10)+field3(i,3,11))+.5d40*(field3(i,j,8)*
& field3(i,]j,10)+
& field3(i,3.9)*field3(i,3,11))

field3(i,3.,5) = ex
field3(i,j.,6) = ey
field3(i,3.7) = exy
else
1f (field3(i,3.,1%).1c.4) field2(i,3,19) = 2
end if o1t -n 1c
end do
end do

loop for computation of error in displacements in last
interpolation

0 no0n
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Program add4
implicit douhle precision (a-h,o-z)

dimension fieldl (50,50,22)
dimension field2(50,50,22)
dimension field3(50,50,22)
dimension xx(6)

dimension yy(6)

dimension uu{l6)

dimension vv{16)

dimension a(l6,6)
dimension b(6,6)
dimension c(6)

dimension e(6)

dimension bb(6,6)

open { unit = 1, file = ‘uno.dat’, status = ’'o0ld’)
open ( unit = 2, file = ‘dos.dat’, status = 'old’)
open { unit = 3, file = ‘dat’, status = ‘new’)
i0 = 20
jO = 60
imax = 470
jmax = 460
istep = 10
jstep = 10
xmax = real (imax)
ymax = real (jmax)
Xmin = real (i0)
ymin = real (30)
Xxstep = real (istep!
ystep = real (jstep)
puld = .188d0
pul = .0003740
pux0 = -.0014d0
puxl = .084d0
pux2 = .0d0
doi=1, 50
do j =1, 50
fieldl(i,j,19) = 4
field2(i,j,12) = 1
field3(i,3,19) = 4
field3(i,3,1) = xmin + xstep * (i - 1)
field3(1i,3.,2) = ymin + ystep * (j - 1)
end do
end do

read information from first field

o000

do while {.true.)

read(l,*,end = 10) il , §1 , ul , vl , exl , eyl , exyl,
& uUX,Vy,uy, VX, eeX, eey, esry, eux, evy, euy, evx, junk3, eu, ev

i

il - 107) / istep + 1
j +

31 - 30 ) / Jsrtep

o

fieldl(i,j,1) = il



nnonaon

0

fieldl(i,7,2)
fieldl(i,3.3)
fieldl(i,3,4)
fieldl(i,3,5)
fieldl(i,3,6)
fieldl(i,3,7)
fieldl(i,j,8)
fieldl (i, 3, 9)
fieldl(i,j,10)
fieldl(i,3i,11)
fieldl(i,3,12)
fieldl(i,j,13)
fieldl(i,3,14)
fieldl(i,3,15)
fieldl(i,3,16)
fieldl(i,3,17)
fieldl(i,3,18)
fieldl(i,3,19)
fieldl(i,j,20)
fieldl(i,3,21)

L L I 1 1 ¢ {1 O | | 1 O N L T A [

end do

10 continue

read information

do while (.true.

read(2, *,end =

200
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Jj1
ul
vl
exl
eyl
exyl
ux

uy
vX
eexr
eev
eexy
eux
evy
euy
evx
junk3
eu
ev

from second field

)

& UX, vy, uy, v, junk:

il - 10 )
jl - 30

1 n

i
p
field2(i,j, 1)
field2(1,3,2)
field2(i, 3,3}
field2(i,3,4)
field2(i,3.5)
field2(i,j.6)
field2(i,3.7
field2(i,3j,8)
field2(i,3, 9
field2(i,j,10)
fieldz(i,3.11)
fielda2(i,j,12)

| T £ | | T ¢ A T A | R | R L B 1}

end do
20 continue
loop
doi =1, 50
do j = 1, 50

field3(i,3.,1) =
field3(i,3,2) =

if (fieldl(i,j.1

/oistep - 1
Jsren + 1

il
1
ul
vi
exl
eyl
enyl
uK

uy
VX
junk?3

for addition ot displacements

fieldl(i,di,1)
fieldl (i,3,2)
9).1t.4) then !

if -> la

exyl,
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fieldl(i,q,1
fieldl(i, 3,2
fieldl (i, 3,2
fieldl (i, d,4
¥ o+ U
Y + VvV

)
)
)
)

KX <eXx

[T S [ S TR I 1|

if - 2a
if (x.ge:xmin.and.y.ge.ymin.and.x.le.xmax.and.y.le.ymax) then

1l = int((x .~ Xmin) /xsrep)
i2 = i1 + 1

i3 = 11 + 2

i4 = i1 + 3

il = int((y - ymin)/’/ystepn)
32 = 31 + 1

33 = 31 + 2

j4 = 31 + 3

xx{1) = fieldl(il,j1,1)
xxX(2) = fieldl(i2,3j1,1)
xx(3) = fieldl(iZ,j1,1)
xx(4) = fieldl(id,31,1)

yy (1) = fieldl(il,41,2)

vy (2) = fieldl(il,j2.2)
yy(3) = fieldl(il,j3,2)

vy (4) = fieldl(il, j4.2)

kl = field2(il,j1,12)

k2 = field2(i2,4il,12)

k3 = field2(i3,31,.12)

k4 = field2(id,j1,12)

kS = field2(il,q2.12)

k6 = field2(i2, 42,12

k7 =-field2(i3,3jz, 12

k8 = field2(i4,32,12:

k9 = field2(il,j3,12

k10 = field2(i2,33,12)

k1l = field2(i3,43,12)

k12 = field2(id4,i:,:i2

k13 = field2(il,44,!12)

kld = field2(i2,44,.12

k15 = field2(i3, 44,129

k16 = field2(id,44,12)

k1l = max (kl,k2,Kk3,k4,k5,k6,k7,ke,k9,k10,k11)
k1 = max (kl,k12,Kk13,Kk14,Kk15,k16)
if (kl.lt.4.and.il.ge.l.and.jl.ge.1) then P if -> 3a

write(*,*) ‘here’,i,j,k1,11,31

uu(l) = field2(il,j1,3)
uu(2) = field2(i2,3j1i,3)
uu(3l) = field2(i3,j1,3)
uu({d4) = field2(id,jlL,3)
uu(5) = field2(il,j2,3)
uu{6) = field2(i2,32,3)
uu({7). = field2(i3, 32,3
uu(8) = field2(id,32,
uu({9) = tfield2(il,j3,3)
uuf{l0) = field2(i2,33,3)
uu(ll) = field2(i3,3%, D
uu(l2) = fieldz(i4,33.Z)
uu(ls3) = field2(il, 4,
uu(l4) = field2(iz,d4,2)
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uu(ls) = field2(i3,134,3)
uu(le) = tielcl2¢id, 34, :
vv(il) = field2(il,ji,4}
vvi(2) = field2(iz,jl,4)
vv(3) = field2(i3,3j1,4)
vv(d4) = field2(i4,3j1,4)
vv(5) = field2(il,32,4)
vv(6) = field2{i2,3j2,4)
vv(7) = field2(i3,3j2.,4)
vv(8) = field2(i4,32,4)
vvi{9) = field2(il,33.4)
vv(10) = field2(i2,33,4)
vv(ll) = field2(i3,33,4)
vv(1l2) = field2(i4,33.,4)
vv(1l3) = field2(il,j4.,4)
vv(l4) = field2(i2,34,4)
vv(15) = field2(i3, j4.,4)
vv(1l6) = field2(id, j4,4)

395 (ii - 1)/4 +
iii o= ii - (439 - 1
write(*,*)ii, 37,1

It

1
Vv aa
i

H
1

a(ii,l) = xm(iii)**2
a(ii,2) = yv(ijjr**2
a(ii,3) = xx(iii)*yytiid)
afii,4) = xx(iii)

a(ii,s) = yy(ijid

a{ii,6) = 1.40

end do

do ii =1, 6

do jj =1, &
b(ii,jj) = 0.40
c(ii) = 0.40
e(ii) = 0.d

bb(ii,j3j) = b{ii,ji)
end do
end do

call gaussj(h,6,6,c,1, 1!
call gaussj(bb,6,6,e,1,1)

UE = (1) * X**2 + c(2) ~ yrr2 4+ c(3)

cld) * x + c(5) * v + c(6)
vi = e(l) * x**2 + e(2) * y**2 + e(3)
e(d) * x + e(5) *y + e(6)
ux = fieldl(i,3,8)
vy = fieldl(i,i, 9
uy = tieldl (i, 3,10}
vx = fieldl(i,3,11)
uxf = c(4) + 2.40*c(1)*»x + c(3)*y
vyt = e(5) + 2.d0%e(2)*y + e(3)*x
uyf = c(5) + 2.d0*c(2)*y + C(3)*x
vXf = e(4) + 2.40*e({l)*x + e(3)*y

)\'x*y +

*X*y +
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fieldl(i,di,3) + ut

field3 (i, 3, 3)
) fieldlti, 3, 4) + vi

field3(i,3j.4

field3(i,3,8) = ux + uxf + wxfr*ux + uyf*vx
field3 (i, 73,9) = vy + vyt + vyf*vy + vxfruy
field3(i,j,10) = uy + uvt + uxfr*uy + uyfrvy
field3(i,j, 111 = v« + vxt + vxf*ux + vx*vyf

ex = field3(i,j,8) + .5d0*(field3(i,j,8)*field3(i,j,8)+

& field3(i,i,1l)*field3 (i, 3,11

ey = field3(i,3,9) +.5d0~(field3(i,3,9)*f1eld3(i,3,9)+

& field3(i,j,10)*field3(i,3,10))

exy = .5d0*(field3(i,j,10)+field3(i,j,11))+.5d0*(field3(i,7,8)*
& field3(i,3,10)+

& field3(i,j,9)r*field3(i,3,11))

field3(i,3.,5) = ex
field3(i,j,6) = ey
field3(i,j.7) = exy
do jn =1, 4
do in = 1 , 4
nn = {(jn - 1) * 4 + in
XC = xx(in)
yc = yy (in)
uc = abs{c(l) * wc**2 + < (2) * yc**2 + C(3) *Xc*yc +
S c(4) * xc + ¢{%) * yvo - ¢l6) - uu(nn))
ve = abs(e(l) * No**2 + &(2) * vCc**2 + e(3) *xXcryc +
S e(d) * xc + &(5) * yvo - =2(8) - vvinn))
1f (umax.lr.uc) waas = us
if (vmax.lrt.ve) vmax = vC
end do
end do

field3(i,3,20)
field3 (i, 3,21)

SCUT (ranamx

=)
ST vieax* 2

+ (pul + pul=uf)=*2)
+ (pul + pul*vi)**2)

field2(i,3,19) 0

else |

field3(i,3,19) = 4
end if Vit - 3a
else

field3(i,3,19) = 4
end if Pif -n 2a
end if Vit - la
end do
end do

C**********

do j = 1,41
= 1,46

do 1 =
c write(30,’(21lel5.6)") (fieldl(i,j,1),1=1,21)
c write(3,’'(1l2el5.6)') (field2(i,3,1),1=1,12)
write(3,’'(21lel5.6) ) (field3(i,3,1),1=1,21)
c write(3,*)' ' -
end do
end do
closef{unit = 1)
close(unit = 2)

close(unit
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stop
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loop for computation of ervor in displacements in last
interpolation

do
do

il
i2
i4
jl
j2
Jjé
k1l
k2
k3

k4
k5

k1l

1f

this derivatives are

¢
j

L1 L T | S 1}

= 1 . 50
=1, 50
i

il + 1
i1 - ¢t

3

1 + 1
jl -1

field3(il,jl,1%)
field3 (il,32,1%
field3(il,34.,19)
field3(1i2,31,19)
field3(i4,j1,1)

max (k1,K2,K%, k4, K

(kl.1t.4) then !

duxx
& field2(i2,41,3))
duxx= duxx - 2.d0

dvxx
& field3(i2,31.,4))
dvxx = dvxx / 2.40

= (field3 (14,31,

= (field3(id,q1,4

dvvy = (field3(il,j4,4)
& field3(il,d2,4))

dvyy = dvyy / 2.40
duyy = (field3(il, j4,3)
& field3<(il,j2,2))

duyy = duyy / 2.d0

u field3 (i, 3j.3)

<
o

field3(i,3,20)
field3(i,3j,21)

els
if

e

field3 (i, j,4)

(field (1,373,149 [eq.

end if . !

end do
end do

-» 1b
dux*2 Dx**2
SR i Foommmm oo and so on
dwr*2 2

0)

it

2.d0-field3(il1,31,3) +

2.d0*field3(il,31,4) +

2.d0"field3(4i1,31.4) +

[S8]

.d0*field3(il,Jj1,3) +

sqre ((duxx + duyy) **2 + (pul + pul*u)**2
st ((dvex + dvyy) **2 + (pul + pul*v)**2

field3(i,5,19) = 1
1h

)
)

'eu
tev
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Ctit*t***i'ﬂ

do j = 1,
do i =1,
write(30
wxlce(3
write(

wxlte(3

0
0
(2lel5.€) ) (fieldl(i,3,1),1=1,19)
12el5.6) ) (fi€ld2(i,j,l),l=l,l2)
21el5.6) ") (field3(i,j.1),1=1,21)

' .

5
5
(
'
*)

end do
end do
close(unit
close(unit
close(unit

"w.on ou
N

stop

* kK kK ok k Kk ok ok ok Kk Kk

oonoaoaooooo0o00000n0a0n

print out the resulrts

Nnooao

do j =1, 41
i =1, 46

le wrice (30, (21el5.6)"
C write(3, ' (12el5.6) )

write (3, (21lel5.6) ")
C write(3,=)"

2Mdl(i,3,1),1=1,21)
ldE (i,3,1), l 1,12)
tA3(i,3,1),1=1,21)

end do
end do
close (unit
close (unit
close(unit

stop
end

SUBROUTINE gaussi (a,1n,np, s, m, op)
INTEGER m,mp,n,np, NMAX
double precision anp,np) . lhinp, mp)
Parameter (NMAXN=50)
INTEGER i,icol,irow,3,.k, 1,11, indxc(NMAX), indxy (NMAX), ipiv (NMAX)
double precision big,dum,pivinv
implicit double precision {a-h,o-2)
do 11 j=1,n
iin(j):O
11 continue
do 22 i=1l,n
big=0.d0
do 13 j=1,n
if{ipiv(j).ne.l)then
do 12 k=1,n
it (ipiv(K).eq.0) then
it (dabs(a(j,k)).ge.big)then
hig=dahs(a(j, k))
irow=7j
icol=k
endif
else 1t (ipivik).gr.Ll) rthen
write(*,*1 ipivi(k:
pause ‘'singular marvix in gaussj’
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13

14

15

16

17

i8

19

21
22

23

24
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endift
_ cont inue
endit
continue
~ipiv(icol)=ipivi(icol)+1
if (irow.ne.icol) then
do 14 1=1,n
dum=a (irow, 1)
alirow, ly=alicol, 1)
- atliceol,l)=dum
continue
do 15 1l=1,m
dum=b(irow, 1)
blirow, l)=b(icol, 1)
b(icol, l)=dum
continue
endif
indxr{i)=irow
indxc (i)=icol
if (a(icol,icol).eq.0.dd) pause ’'singular matrix in gaussj’
pivinv=1.d0/a(icol, ical)
aficol.,icol)=1.d0
do 16 l=1,n
alicol,l)y=a(icol, ) *pivinv
continue
do 17 1=1,m
b(icol,ly=h{icol, li*piviny
continue
do 21 1l=1[,n
if(ll . ne.icol)uhe:
dum=a (11, icol?
alll,icoli=C.A0
do 18 1=1,n
a(ll,ly=acll,y-atizol, ) *dum
continue
do 19 1=1,m
b{ll,)=b(ll,1)-h(icol, 1) *dum
continue
endif
continue
continue
do 24 l=n,1,-1
if(indxr(l).ne.ind~c 1) chen
do 23 k=1,n
dum=a (k, indxr (1))
a(k,indxxr (1)) =a(k,indxc (1))
a(k,indxc (1)) =dum
continue
endif
continue
return
END



(e}

fieldl(1i,3,10) = uyv
fieldl(i,j,11) = vx
fieldl(i,3,12) = eex
fieldl(i,j,13) = eey
fieldl(i,j,14) = eexy
fieldl (i, j,15) = eux
fieldl(i,j,16) = evy
fieldl(i,j,17) = euy
fieldl(i,j,18) = evx
fieldl(i,j,19) = junk3
fieldl (i, j,20) = eu
fieldl(i,j,21) = ev

end do

10 continue

read information from second field
do while (.true.)

read(2,*,end = 20) i1 , j1 , ul , vl , exl , eyl
& ux,vy,uy,vx,junk3

i = il - 10 )} / isztep + 1

j o= (31 - 30 ) / dstep + 1
field2(i,j,1) = i1l
field2(i,3j,2) = il
field2(i,3,3) = ul
field2(i,j.,4) = vl
field2(i,q,5! = exl

field2 (1, ] 6) = eyl
field2(i,3j,7) = exyl

field2 (1, 7 8 = ux
field2(i,3.,9) = vy
field2(1i,3,10) = uy
field2(i,3,11) = vx
field2(i,j,12) = junk3

end do

20 continue

loop for addition of displacements
doi=1, 50

do j =1, 50

field3(i,j,1) = fieldl(i,3j,1)

field3(i,j,2) = fieldl(i,3j.,2)
if (fieldl(i,3,19).1t.4) then VU if -> la
x = fieldl(i,3j. 1)

y = fieldl(i,3j,2)

u = fieldl (i, 3j,3)

v = fieldl(i,3,4)

X = X + U

vV =Y + V

150

'

exyl,
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if

A=}
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if

ul
ul
u2
u2
uf
uf =
field

LI R T T L

vl
vl
v2
v2
vi
v

[ VO I R T

field3(i,3.4) =

this

duxx
& fiel
duxx=

dvxx
& fiel
dvxx

dvyy
& fiel
dvyy

= max
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int ((x - xmin)/xstep) - 1

il + 1
il + 2
il -1 :

int ((y - ymin)/ystep) + 1

31 +. 1

jl1 + 2

31 - 1

fieldl(il,3j1,1)
fieldl(i2,3j1.,1)
fieldl(il,j1.,2)
fieldl(il, j2,2)
fieldl(i3,j1.,1)
fieldl(id,3j1,1)
fieldl(il,33,2)
fieldl(il, j4.2)

field2(id4,q1,12)
field2(il,31,12)
field2{i2,31,12)
field2(il,4,12)
field2(il,32,12)
field2(i2,432,12)

field2(il,j1,3) *
ul / real (istep)
field2(il, j32,3) *
u2 / real (istep)
ul*(y2-y) + u2*(y
uf / real (jstep)
3(1i,3,3) =

field2(il,3i1,4) *
vl / real (istep)
field2(il,j2,4) *
v2 / real (istep)
vi*(y2-y)

vi / real (jstep)

derivatives are

= (field2(id,31,3)
d2(i2,31,3))
duxx / 2.d0

= (field2(i4,j1,4)
d2(i2,41,4))
= dvxx / 2.d0

= (field2(il, ij4,4)
d2(il,j2.,4))
= dvyy / 2.d40

{

(~

(k1,k2,k3,k4,Kk5,k6)

(kl.lt.4.and.id.ge.l.and.jd.ge. 1)

-v1l)

fieldl (i, 3,3}

x2-%)

2-)

NZL-

+ V2*¥(y-vl)

fieldl(i,3,4)
duxx = -

- 2.d0*field2(il,3j1,3)
/ Xstep**2 *

- 2.d0*field2(il,3j1.4)
/ Xstep**2 *

- 2.d0*field2(4il,31,4)
/ ystep**2 *

then

+ field2(12,31,3)

+ field2(i2,32,3)

+ uf
+ field2(i2,31,4)

+ field2(1i2,32,4)

+ vi

du**2 Dx**2
______ * oo
dx**2 2

(x - x1)**2

(X - x1)**2

(y - yl)**2

(Xx.ge.xmin.and.y.ge.ymin.and.x. le.xmax.and.y. le.ymax)

if -> 3a

(x-x1)

(x-x1)

and so on

+

+

+

then
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duyy = (field2(il,3j4.3) - 2.d0*field2(il,jl,3) =+
& field2(il,32,3)) / ystep**2 * (y - yl)**2
duyy = duyy / 2.d0

c write(10,*) field(i,j.),duxx+duyy

field3(i,3j.,23) =‘field3(i.j,3) + duxx + duyy
field3(i,j,4) = field3(i,j,4) + dvxx + dvyy

c field3(i,3.,3) = (duxx + duyy) !/field3(i,3,3)
c field3(i,3j,4) = (dvxx + dvyy) !/field3(i,j,4)
field3(i,j,19) = 0
else
field3(i,3,19) = 4
end if ' if -> 3a
else
field3(1i,3,19) = 4
end 1if ' if o -» 2a
else
field3(i,3.19) = 4
end if 1 if - la
end do
end do

CrXX XXX x * & Xk

do j = 1,50
do i = 1,50
write(30,'(21elS5.86) ")
write(3, ' {1l2el5.6) ') (Li
write(3,'(21el5.6) ) (fi
write(3,*)’

end do
end do
closef{unit
close(unit
close{unit

nonon
w N

¥ stop

dk ok ok ok ok ok ok ok ok ok ok ok

0ONO00NO0ONON0NO000n

e
C computation of gradients of displacements
C
c

do i
do j

50

no
-

i1
12
Jj1

i
il o+ 1

J

Jj1 + 1
“field3(il,j1,1)
field3(i2,j1,1)
field3(i1,31,2)
field3(il,j2,2)

x1
X2

(&)
N
oW W

y2

field3 (i1,51,19)
£ie1d3 (i2,31,19)
field3(il1.32.19)

k1l
k2
k3

It n
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k1l = max (k1l,k2,k3}

if (k1.1lt.3) then Lif - lce

uxf = ( field3(i2,3jl1,3) - field3(il,3J1,3) ) / Xstep
vyf = ( field3(il,j2,4) - field3(il,jl,4) ) / ystep
uyf = ( field3(il,j2,3) - field3(il,j1,3) ) / ystep
vxf = ( field3(i2,jl,4) - field3(il,j1,4) ) / xstep
field3(i,3j.8) = uxt

field3(i,3.,9) = vyt

field3(i,3,10) = uyt

field3(i,3j.,11) = vxt

ex = field3(i,j,8) + .5d0*(field3(i,j,8)*field3(i,Jj,8)+

& field3(i,j,11)*field3(i,3,11))

ey = field3(i,3,9) +.5d0*(field3(i,3j,9)*field3(i,j,9)+

& field3(i,j,10)*field3(i,3.10))

exy = .5d0*(field3(i,j,10)+field3(i,j,11))+.540*(£ield3(i,3,8)*
& field3(i,3,10)+

& field3(i,j,9)*field3(i,3.11))

field3(i,3.5) = ex

field3(i,j,6) = ey

field3(i,3.7) = exy

else
if (field3(i,3,19).1tc.4) field3(i,3,19) = 2

end if ! it - 1c

end do

end .do

loop for computation of error in displacements in last
interpolation
doi=1, 50
do j =1, 50
il = 1
i2 = i1 + 1
i4 = i1 - 1
i1 = 3
32 = ]l + 1
j4 = jl1 - 1
k1l = field3(il,3j1,19)
k2 = field3(il,32,19)
k3 = field3(il, 34,19}
k4 = field3(i2,31,19)
k5 = field3(i4,31,19)
k1 = max(kl, k2,k3, k4, Kk5)
if (k1.1lt.4) then 1 if -» 1b
d**2u Dx**2
this derivatives are duxx = ------- *oemmmmm o and so on
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C
duxxx = (field3(i4,jLl,8) - 2.d0*field3(il,3jl1,8) +
& field3(i2,31,8)) * xstep
duxxx = duxxx / 6.d0
dvxxx = (field3(i4,31,11) - 2.d0*field3(il,3j1,11) +
& field3(i2,3J1,11)) * xstep
dvxxx = dvxxx / 6.d40
dvyyy = (field3(il,3j4,9) - 2.d0*field3(il,3j1,9) +
& field3(il,3j2,9)) * ystep
dvyyy = dvyyy / 6.d0
duyyy = (field3(il,3j4,10) - 2.d0*field3(il,j1,10) +
& field3(il,3j2,10)) * ystep
duyyy = duyyy / 6.d0 :
duyxx = (field3(i4,j1,10) - 2.d0*field3(il,31,10) =+
& field3(i2,3jl1,10)) * xstep
duyxx = duyxx / 2.d0
dvyxx = (field3(i4,jl1,9%) - 2.d0*field3(1i1,31,9) +
& field3(i2,31,9)) * xstep
dvyxx = dvyxx / 2.d0
dvxyy = (field3(il,j4,11) - 2.d0*field3(il1l,31,11) +
& field3(il1,32,11)) * vsrep
dvxyy = dvxyy / 2.d0
duxyy = (field3(il,j4.¢&: - 2.4d0*field3(i1,31,8) +
& field3(il,32,8)) * vsrepn
duxyy = duxyy / 2.d0
c eu = field2(i,3j,20) ' error in the displacements from
c ev = field2(i,3,21) ' last interpolation
u = field3(i,3j,3)
v = field3 (i, 3j,4)
Cc write(1l1l,*) duxxx,dvvyvy,dvxyy,u,Vv
field3(i,3,20) = scrt((cduxxx + duyyy + duyxx + duxyy)**2 +
$ (pul + pul*u)**2 ) leu
field3(i,j,21) = sgro{(dvxxx + dvyyy + dvyxx + dvxyy)**2 +
$ (pul + pul*v)i**2 ) tev
else
if (field3(i,3j.19).eq.0) field3(i,j.19) =1
end if vt oif -> 1b
end do
end do
Ct*********
C do j = 1,50
c do i = 1,50 .
c write (30, (21el5.6) ") {(fieldl(i,3,1),1=1,19)
c write(3, ' (12el5.6)') (fiéle(i,j,l),l;l,l2)
c write(3, ' (21el5.6) ) (field3(i,j.,1),1=1,21)
c write(3,*)’ '
o) .
c end do
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c end do

c closelunit = 1)

c close(unitc = 2)

c close(unit = 3)

C

c stop

Ctxttt*******

G m m e e e e e

c

c computation of errors in gradients of displacements

c

c
do 1 =1, 50
do j =1, 50
il = 1
12 = i1 + 1
il = 3
:)2 = ]l + 1
x1l = field3(il,41,1)
x2 = field3(i2, 31,1}
vyl = field3(il,3j1,2)
y2 = field3(il,3j2,2)
kl = field3(il,31,19)
k2 = fieldu(12 51,19}
k3 = field3(il,j2,1%)
k4 = field3(12 12 19)

kl = max (kl,k2,k3,Kk4)
if (k1l.1lt.1l) then fif -» 1d

eul field3(i1,71,20)

eu2 = field3(i2,31,20)

eud = field3(il,32,20)

evl = field3(il,3j1,21)

ev2 = field3(i2,3j1,21)

ev3 = field3(il,32,21)

ux = field3(i,j,8)

vy = field3(i,j,9)

uy = field3 (i, 3j,10)

vx = field3(i,3j,11)

eux = sqgrt( eu2**2 + eul**2 ) / xstep
euy = sqrt( euld**2 + eul**2 ) / ystep
evx = sqgrt{ ev2**2 + evl**2 ) / Xstep
evy = sqrt{ ev3**2 + evl**2 ) / ystep

write(12,*) eul,evl,eux,ux

eex = sqrt{f{eux*(1.d0+ux))**2+(vx*evx)**2)
eey = sqQrt(f{evy*(1.d0+vv))**2+(uy* euy)**2)
eexy = sqrt ((eux*.5d0*uy) **2+( euy .5d0* (1.40+ux) ) **2+
$ {evx*.5d0* (1.40+vy)) **2+(evy*.5d0*vx)**2)
field3(i,j,12) = eex
field3(i,3,13) = eey
field3 (1, ] 14) = eexy
field3 (1, 3 15) = eux
= evy

field3(i,3j,16)
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field3 (i, j,17) = euy
field3(i,3,18) = evx
else
" 1if (field3(i,j,19).1lr.4) field3(i,3,19) = 3
end if ) ! ‘if -» 1d
end do
end do

print out the results

do § =1, 41
do i =1, 46

write (30, (21el5.6) ) (fieldl(i,j,1),1=1,21)
write(3, ' (12el5.6)') (field2(i,3,1),1=1,12)
write(3,(21el5.6)') (rfield3(i,j,1),1=1,21)
write(3,*)"

end do
end do
close(unit = 1)
close(unit = 2)
close(unit = 3)

stop
end
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APPENDIX D

ALTERNATIVE ERROR ANALYSIS

An alternative method to compute error estimate in the Large Deformation Digital Image
Correlation method is presented. This error estimate is constructed using two sources; the
precision of the DIC and the errors generated in the interpolation process. The error
estimate in the DIC program is calculated as follows: Two tests were performed: one on
solid propellant (TPH 1011) and the other on 40 shore silicone rubber. The silicone
specimen was splattered with microscopic speckles to provide the random gray level
distribution the DIC program do identify. The speckles were generated with an airbrush

to match the scale of the surface fractures in the solid propellant specimens.
Displacement test

The material used for this test was TPH 1011 solid propellant. Several pictures of a
specimen without any cuts were taken during a prescribed translation. This translation
was applied with the help of a milimetriced screw located on the translation stage of the
microscope. Figure 1d shows the difference between the displacement values obtained
with the DIC program and those prescribed. Both quantities are expressed in pixels. A
linear curve is fitted to the results to estimate the errors of the program computing
displacements. Notice that for a displacement smaller than 100 pixels, the error estimate
is close to .25 pixel. The error estimate (y) in pixels as a function of the translation (x) in

pixels is:

y=0.188 +0.0037 x. (1)



158

Strain test

To determine the precision of the DIC program for determining strains; a globally
homogenebus, uniaxial deformation on a homogeneous 40 shore silicone rubber
specimen coated with speckles was imposed. With uniaxial tension applied, images of the
deformations are taken at different strain levels ranging from 0 to 10%. The distance
between two marked points was obtained from photo record of the digitized images and
the Lagrangian strain component in the direction of the stretch was determined. For
reference purposes we refer to this strain as the optically determined strain. Also the
Lagrangian strain was determined by means of the DIC method outlined before. These
two strains are compared in Fig 2d and similar to the computation of error estimates in
the displacements, an error estimate on the strains is generated as a function of the strain
level. The analytical expression of the error estimate in the DIC strains (y) as a function

of the optical strain (x) is
y=-0.0014 + 0.08 x . )
Interpolation error

As explained in section 2. 4. 1 of the tesis, an interpolation process is required over the
second deformation. Every time an interpolation is performed an error estimate associated
with the interpolation process is computed. This error estimate is computed as follows.
For purposes of constructing the interpolating function, four points are considered. The

interpolating functions have the form:

y=c¢; +tC; X+ ¢y ¢, Xy. (3)
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Considering two more points in the interpolation process will allow the appearance of all

the quadratic terms in the interpolating function. i.e.
Y = ¢+, XHC; YHC, Xy+es XHeg yP . 4)

The difference between the quantities represented in form (3) and form (4) is considered
to be the error estimate associated with the interpolation process. These two sources of
errors are propagated through the analysis to obtain and error estimate on the Lagrangian
strains of the global deformation.

Using these two sources of error, an upper bound of the error in the E,, component of the
Lagrangian strain is constructed every time the Large Deformation Digital Image
Correlation method is used. ThIS error bound are displayed as A contour map for the LD-
DIC methods 1, 2 and 3 (Fig 3, 4 and 5). The error bound represented in these contour

plots is very conservative and it has not been used in the analysis.
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Figure 3d.
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Figure 4d.
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Figure 5d.
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APPENDIX E
TRANSLATION STAGE CONTROLLER

As loads are applied to the specimen, the crack propagates at a rather fast speed. Since in
the experiment it is of importance to visualize the crack tip with the microscope, a
joystick device has been built to move the specimen under the microscope objective. This
device is capable of powering two electric motors that move the specimen in the x and y
direction. The user can easily control the movement by means of a joystick. The electric

circuit schematic for one degree of freedom is:

()
g?“;QW
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