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Abstract

Sensory systems neuroscience aims to study how patterns of neural activity rep-

resent stimuli of the outside world. To this end, the present work addresses how

olfactory stimuli are represented by three successive layers in the locust olfactory

system. Activation by an odorant of primary sensory neurons in the antenna gives

rise to broadly distributed, oscillatory spatiotemporal activity patterns across the an-

tennal lobe (AL). This is in marked contrast to the representation in the mushroom

body (MB), where Kenyon cells (KCs) respond very sparsely and very briefly. In

the AL, an odor gives rise to a particular trajectory through Projection Neuron

(PN) phase space, with individual timepoints representing different aspects of the

stimulus; in the MB, very small subsets of KCs respond selectively at particular

timepoints along this trajectory. Two mechanisms are identified that contribute

to the sparsening across the two structures: an intrinsic voltage dependence in the

KCs, which gives rise to a superlinear response to synchronous inputs, and a canon-

ical network motif, feedforward inhibition, which diminishes the KC response to

nonsynchronous excitatory inputs. From a decoding perspective, this makes the

oscillation cycle the relevant timestep of the AL trajectories, and it demonstrates

a role for synchronous oscillations in sensory networks. While broad activation of

the AL promotes extensive local interactions, giving rise to dynamic representa-

tions and enabling multiple features to be extracted, the sparse representation after
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decoding by KCs likely facilitates the storage of relevant patterns in memory.

A subset of MB extrinsic neurons with dendrites densely invading the β-lobe

(βLNs) is well placed to decode the KCs’ sparse responses. The synapses formed by

KCs onto these cells are powerful and undergo Hebbian spike-timing dependent

plasticity (STDP) on a timescale similar to the synchronous oscillations generated

in the AL (and propagated through the MB). STDP has a homeostatic effect on the

firing phase of βLNs by fine-tuning the strength of KC-βLN synapses, contributing

to tight locking among subsets of βLNs during odor stimulation and facilitating

the flow of synchronous information.

The facilitation of tight synchrony among βLNs by STDP further ensures that

different odor features computed and formatted as a function of cycle number by

the AL, and represented by the sparse representations of KCs, remain segregated

between LFP oscillation cycles. This segregation is also sustained by phase-locked

feedforward inhibition onto βLNs, which restricts the window of integration for

inputs from KCs, and is found to be due to neighboring βLNs of the same class.

The implications of the resultant competition among βLNs due to this inhibition,

and particularly its interaction with STDP at the KC-βLN synapse are addressed

with a network model. The results are considered within the context of the circuit

in which the KC-βLN network is embedded, and a cycle-specific mechanism for

learning an arbitrary subset of the odor features computed in the AL is proposed.
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C 1

Introduction

1.1 Early Olfactory Coding

Olfactory information enters the nervous system when odorant molecules bind to

olfactory receptors (ORs, class A G-protein coupled receptors) embedded in the

dendritic membrane of olfactory receptor neurons (ORNs, Buck and Axel, 1991;

Buck, 1996). ORNs are located in the antennae of insects and in the olfactory

epithelia of vertebrates. Individual ORNs express one or very few ORs (probably

one in the case of mammals (Ressler et al., 1993; Vassar et al., 1993; Laurent et al.,

2001; Mombaerts, 2004b); for Drosophila, most ORNs express one OR, but a few

ORNs express two or three (Vosshall et al., 1999; Hallem et al., 2004; Goldman et al.,

2005; Couto et al., 2005)). In the antenna, as in the olfactory epithelium, all ORNs

that express the same OR are localized to a particular area, representing one of a

small number of large overlapping zones. Within a given zone, ORNs of different

types are distributed seemingly randomly (Ressler et al., 1993; Weth et al., 1996;

de Bruyne et al., 2001).

In insects, ORNs send axons, via the antennal nerve (AN), to the antennal lobe

(AL), where they contact the principal neurons of the AL, projection neurons (PNs,
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Figure 1.1. Locust Olfactory Anatomy. AL, antennal lobe; LH, lateral horn; MB, mushroom
body; OL, optic lobe; agt, antennal-glomerular tract; an, antennal nerve; gl, glomerulus;
on, ocellar nerve; p, pedunculus; βLN, β-lobe neuron; KC, Kenyon cell; LN, local neuron;
ORN, olfactory receptor neuron; PN, projection neuron; d, dorsal; l, lateral; mid, midline.
Adapted from Laurent and Naraghi (1994); MacLeod and Laurent (1996).

cholinergic), as well as local neurons (LNs, GABAergic, but, in Drosophila, some also

cholinergic (Shang et al., 2007)). The neuropil where these synapses are formed is

organized into glomeruli (Figure 1.1A). PNs send axons out of the AL, via the

antennal glomerular tract (AGT), and synapse onto the dendrites of Kenyon cells

(KCs) in the calyx of the mushroom body (MB). Beyond the MB, the bifurcating

axons of PNs also target the Lateral Horn (LH), where they contact inhibitory

neurons (LHIs) (Laurent et al., 2001).

This architecture resembles a simplified version of the mammalian olfactory

bulb (OB): ORNs send axons, via the olfactory nerve (ON), to the OB, where they

contact the principal neurons of the OB, mitral and tufted (M/T, glutamatergic)

cells, as well as periglomerular (PG, GABAergic and/or dopaminergic) cells. The

neuropil where these synapses are formed is organized into glomeruli. M/T cells
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send axons out of the OB, via the lateral olfactory tract (LOT), and synapse onto

the apical dendrites of pyramidal cells in Layer Ia of the olfactory cortex (anterior

olfactory cortex and piriform cortex). Beyond the olfactory cortex, the axons of the

M/T cells also target the prefrontal cortex, the olfactory turbercle, the amygdala and

the entorhinal cortex. In addition to sending an apical dendrite into the glomerular

layer, M/T cells have several secondary dendrites in the external plexiform layer

(EPL), where they contact granule cells (GCs, GABAergic); they also extend axon

collaterals within the granule cell layer (GCL) (Shepherd, 2004; Wilson and Mainen,

2006). Table 1.1 lists olfactory neuron numbers for a few prominent species.

Organism ORs ORNs Glomeruli LNs (or P/GCs) PNs (or MCs) KCs (or PCs)
Fruitfly 62 1,300 50 100 150-200 2,500
Honeybee 150 60,000 156-166 4,000 800 170,000
Locust 90,000 1,000 300 830 50,000
Mouse 1200 2-20x106 1,800 2.5-4.5x106 38,000 >380,000
Zebrafish 112 106 80 2.5-7.8x104 350 to 650

Table 1.1. Olfactory Neuron Numbers (per hemisphere)

Despite the intermingling of different ORN types within (particular zones of)

the antenna and olfactory epithelium, once their axons enter the AL or OB, all

ORNs of a particular type target the same glomerulus (typically, a bilateral pair in

Drosophila and a unilateral pair in mice) with great precision (Stocker et al., 1990;

Vassar et al., 1994; Mombaerts et al., 1996; Bozza and Kauer, 1997; Gao et al., 2000;

Couto et al., 2005). Such an arrangement would suggest a rather straightforward,

labeled-line coding scheme. Given that ORNs generally express only one OR, when

an odorant accesses the antenna or epithelium, it activates the ORNs that express

its cogent receptor, which, in turn, activates its specific glomerulus in the AL or

OB. Given that mouse M/T cells and Drosophila PNs send a primary neurite to only
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one glomerulus, the activity of a given PN or M/T cell type (defined by glomeru-

lar projection) would signify the presence of that particular odor. This would not

be taking into account, however, the fact that individual odorants can activate a

broad set of OR(N)s, and that individual OR(N)s can be activated by multiple,

even chemically dissimilar odorants (Bozza and Kauer, 1997; Malnic et al., 1999).

In addition, even in species with monoglomerular M/T cells or PNs (as of course

in multiglomerular species such as locust and zebrafish), there are interactions be-

tween glomeruli (Meister and Bonhoeffer, 2001; Shepherd, 2004). Such interactions

could, in principle, have the effect of either broadening or sparsening the principal

neurons’ odor tuning, and both have been reported (Friedrich and Laurent, 2004;

Wilson et al., 2004; Shang et al., 2007; Olsen et al., 2007) and (Yokoi et al., 1995;

Friedrich and Laurent, 2004). The odor tuning of ORNs, as well as of M/T cells

and PNs, has been examined in electrophysiology and imaging experiments, and,

in all cases, some cells are quite promiscuous and others very selective1 (Malnic

et al., 1999; de Bruyne et al., 2001; Hallem et al., 2004). For PNs in the insect

AL, as well as M/T cells in lower vertebrates, the evidence is fairly unequivocal

that tuning is generally broad (Joerges et al., 1997; Friedrich and Korsching, 1997;

Perez-Orive et al., 2002; Carlsson et al., 2002; Wilson et al., 2004; Mazor and

Laurent, 2005; Shang et al., 2007; Olsen et al., 2007) except for the report by Wang

et al. (2003). For M/T cells in mammals, there are many studies suggesting gen-

erally broad tuning (Adrian, 1942; Adrian, 1950; Leveteau and MacLeod, 1966;

Stewart et al., 1979; Cinelli and Kauer, 1992; Motokizawa, 1996; Rubin and Katz,
1This is the case for the general olfactory system. Both insects and mammals also employ an

olfactory subsystem comprised of highly selectively tuned cells for detecting a specific odorant
(e.g., a pheromone), which typically gives rise to an innate behavioral response. This subsystem can
consist of a single class of ORNs (Suh et al., 2004), and/or an individual glomerulus (Christensen et
al., 1995; Hansson et al., 2003; Suh et al., 2004), or separate structures altogether, i.e., the vomeronasal
organ and accessory olfactory bulb (Mombaerts, 2004a).
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1999; Lehmkuhle et al., 2006), but also two recent studies (Rinberg et al., 2006;

Davison and Katz, 2007) reporting predominantly sparse representations. Rinberg

et al. (2006) furthermore describe sparsening of M/T cells’ responses following re-

covery from anaesthesia. It is possible that these studies uncover a fundamental

difference in terms of density of representation between the OB and AL and that

very different coding schemes and information processing strategies are imple-

mented by the two structures. It seems worth noting, however, that, even if the

fraction of the population responding to an odor were on average an order of mag-

nitude smaller (e.g. 5% of M/T cells in the mouse OB compared to 50% of PNs in

the locust AL), the actual number responding would still amount to approximately

five times more M/T cells in the OB (than PNs in the AL) participating in the odor’s

representation (Table 1.1). Also, Rinberg et al. (2006) report a dramatic increase in

baseline firing rate that accompanies the apparent sparsening in the awake state,

which, as the authors point out, could allow for a temporal coding dimension not

evaluated in their study (nor in Davison and Katz (2007)). Doing so might reveal

broader M/T cell participation in odor coding than would be estimated from firing

rates alone.

The temporal aspect of the olfactory code has received considerable attention

in invertebrates and vertebrates alike, and temporal patterning of odor responses

are observed in both uni- and multiglomerular principal neurons of the AL and

OB (Macrides and Chorover, 1972; Burrows et al., 1982; Meredith, 1986; Wellis et

al., 1989; Buonviso et al., 1992; Yokoi et al., 1995; Motokizawa, 1996; Laurent et al.,

1996; Spors and Grinvald, 2002; Perez-Orive et al., 2002; Wilson et al., 2004; Mazor

and Laurent, 2005). This occurs, whether odor pulses are square or intermittent

(Brown et al., 2005; Broome et al., 2006), in contrast to the relative simplicity of



6

ORN responses (Duchamp-Viret et al., 2000; Duchamp-Viret et al., 1999; de Bruyne

et al., 2001; Friedrich and Laurent, 2001; Friedrich and Laurent, 2004; Wilson et

al., 2004; Wilson and Laurent, 2005) except (Spors et al., 2006), and is thought

to arise predominantly from the interactions within the AL and OB (Laurent et

al., 2001; Laurent, 2002). It can be characterized as having relatively fast (10s of

ms) and slow (100s of ms) components. The fast component is oscillatory (β − γ

range) and essentially due to local inhibitory interactions, mediated by GABAA

receptors (MacLeod and Laurent, 1996; MacLeod et al., 1998; Wehr and Laurent,

1999; Stopfer and Laurent, 1999; Perez-Orive et al., 2002; Friedrich et al., 2004). In the

OB electrical synapses play a role as well (Friedman and Strowbridge, 2003; Lowe,

2003). The slow component derives from local excitatory and inhibitory (including

GABAB receptor-mediated) interactions (Hamilton and Kauer, 1989; Wellis et al.,

1989; Buonviso et al., 1992; Isaacson and Strowbridge, 1998; Aroniadou-Anderjaska

et al., 1999; Friedrich and Laurent, 2001; Luo and Katz, 2001; Margrie et al., 2001;

Urban and Sakmann, 2002; Cang and Isaacson, 2003; Hayar et al., 2004a; Wilson and

Laurent, 2005; Shang et al., 2007; Olsen et al., 2007), including presynaptic inhibition

of ORN terminals (Wachowiak and Cohen, 1999; Aroniadou-Anderjaska et al., 2000;

Isaacson and Vitten, 2003; Wachowiak et al., 2005), some of which is dopamine-

mediated (Wachowiak and Cohen, 1999; Ennis et al., 2001).

In addition to the temporal features that are generated intrinsically, there are

also fluctuations in odorant exposure due to antennal flicking (insects), coughing

(fish) and respiration (terrestrial vertebrates) (Schaefer and Margrie, 2007), which

modulate neural activity accordingly. This has been particularly explored in rodents,

where breathing imposes a θ rhythm on M/T cells’ activity. It appears that the θ

rhythm is to some extent intrinsic to the M/T cells, and that the population is
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entrained by respiration (Hayar et al., 2004b). M/T cells’ spiking latency relative

to this sniff cycle has been proposed as a code for odor identity: an odor evokes

a specific pattern of latencies across multiple M/T cells (Margrie and Schaefer,

2003; Schaefer and Margrie, 2007), as described previously by Hopfield (1995).

Furthermore, with increasing concentration, M/T cells’ firing latencies decrease,

but the relative order of different cells’ firing remains the same, thus endowing

concentration invariance, as in the Hopfield (1995) model.

Such a coding scheme is quite distinct from the way odors are encoded in

the AL. When an odor is presented, PNs fire at a particular average phase rel-

ative to the oscillatory population response (measured as a local field potential,

LFP), and there is no apparent information, about odor identity (Laurent et al.,

1996) or concentration (Stopfer et al., 2003), contained in the phase of PN spikes.

Instead, PNs fire at distinct subsets of cycles of the LFP in a PN- and odor-

specific manner (Wehr and Laurent, 1996), and, when considered as an ensemble,

the activity pattern varies continuously across odor concentration (Stopfer et al.,

2003). The significance of PN spikes locking to the LFP (indeed their synchrony,

which gives rise to it), their cycle-specificity, and their broad tuning becomes

apparent when considered from the perspective of their downstream decoders,

the KCs. This is the subject of Chapter 2. Briefly, KCs respond to odors quite

sparsely, despite their inputs’ broad tuning, because of intrinsic and network prop-

erties which make them behave as coincidence detectors (Perez-Orive et al., 2002;

Perez-Orive et al., 2004). This tunes the KCs selectively to synchronous inputs, a

result confirmed by the observation that the KC population firing profile matches

well the profile of PN phase-locking strength (Mazor and Laurent, 2005). As men-

tioned, PNs fire at a subset of cycles in a PN- and odor-specific manner, spanning
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just a few cycles on average (Mazor and Laurent, 2005), reflecting the rate at which

the activity of the PN population vector is updated (Mazor and Laurent, 2005). KCs

appear to be connected to approximately half of the PNs, which, individually, have

a very small impact (80 microvolts on average) relative to the KC firing threshold

(Jortner et al., 2007). The model, then, is that KCs sample a large, evolving activity

vector, and fire a spike only when the right combination presents itself (Broome et

al., 2006). This does not happen very often (because many of the connected PNs

must fire simultaneously) but nevertheless the number of combinations that could

make an individual KC fire is quite large (Jortner et al., 2007). Different KCs see their

preferred PN ensembles activate at different times after the odor is encountered

and experiments in zebrafish have provided an example of what such different

time-points could functionally correspond to (Friedrich and Laurent, 2001). These

experiments examined how odor representations in the OB evolve over a time-

course of 100s of ms to seconds relative to odor onset. The main finding is that

representations become de-correlated over time, such that initially similar activ-

ity patterns evoked by (chemically related) odorants, become dissimilar. From a

functional point of view, early in the response, activity in the OB represents infor-

mation about the class to which an odorant belongs, whereas the representation

at a later point reflects the identity of the particular odorant. Consequently, cells

decoding OB activity would perform either stimulus classification or identification,

depending on whether their preferred ensemble occurs early or late.

Given that olfactory stimuli evolve over a relatively slow time-scale, compared

to their visual or auditory counterparts, time itself has been proposed as a cod-

ing variable. However, the above model of piecewise decoding, together with the

de-correlation results from the zebrafish experiments, suggests that the slow spa-
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tiotemporal patterns described above reflect a transformation carried out by the

encoding structure, and are not explicitly decoded as a sequence. As such, time is

not used2 as a coding variable per se; instead, the olfactory system takes advantage

of the slowness of its stimuli by computing very close to the periphery. It uses

its encoding units to compute and subsequently represent different aspects of the

same stimulus at different times.

1.2 Associative Memory

1.2.1 Synaptic Plasticity

Learning can be defined as a change in behavior (or knowledge) based on previous

experience. In animals it is generally assumed to require a physical change in the

brain, and the predominant theory is that memory is stored in the strength of

synapses between neurons. An early postulate of how synapses are modified was

put forth by Donald Hebb:

"When an axon of cell A is near enough to excite cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased (Hebb, 1949)."

Experimental evidence for a long lasting change in synaptic efficacy resulting from

such co-activation was first described3 by Bliss and Lømo in 1973. This effect,

known as long term potentiation (LTP), has been studied by recording changes in

2It is, of course, conceivable that such sequence decoding occurs elsewhere in the system, e.g.,
of PN activity by cells in the LH, or of KCs by MB extrinsic cells.

3Although reports of repetitive activation resulting in synaptic efficacy enhancement on a shorter
timescale were published almost 20 years earlier (Cragg and Hamlyn, 1955; Andersen, 2003)
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excitatory postsynaptic potentials (EPSPs, or - currents, EPSCs) extracellularly or

intracellularly, in response to high frequency stimulation of afferent fibers; or al-

ternatively, by low frequency stimulation paired with postsynaptic depolarization

(by current injection). In fact, a multitude of induction protocols have been found

to produce LTP (Bliss and Collingridge, 1993). A particular subset of stimulation

paradigms has also been identified which can persistently alter synaptic efficacy in

the opposite direction, i.e., long term depression (LTD).

A molecule much praised for virtually uniquely endowing associativity by de-

tecting the paired activity of pre- and postsynaptic cells, was identified in the 1980s

as the N-methyl d-aspartate receptor (NMDAR, reviewed by Collingridge and

Bliss, 1987). The NMDA receptor has a dual dependence for channel-opening, on

both presynaptic release of glutamate and postsynaptic membrane depolarization.

When the postsynaptic membrane is hyperpolarized, Mg2+ blocks the channel’s

pore, and only when this Mg2+ block is relieved by depolarization, and glutamate is

bound to the receptor, will the channel become significantly permeable to cations.

The resultant postsynaptic increase, particularly of calcium, gives rise to a sustained

modification of synaptic efficacy (as discussed further below).

During the first two decades following the discovery of LTP and LTD, the

requirement for induction was generally considered to be correlation of pre- and

postsynaptic cell activity, and the precise timescale of co-activation was typically

not addressed. Furthermore, since potentiation and depression were induced by

protocols that largely did not evaluate whether postsynaptic cells reached threshold,

and because it was unclear how it should be relevant for synapses out in the

dendrites, the role of the postynaptic action potential (AP) in synaptic plasticity

was not appreciated. The observation by Stuart and Sakmann (1994) that APs
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can propagate back into the dendrites of pyramidal neurons, however, led to the

recognition of AP timing as an associative signal for Hebbian plasticity (Magee

and Johnston, 1997; Markram et al., 1997). It was realized that the back-propagating

action potential could be thought of as a global (i.e., cell-wide) signal of postsynaptic

activity, broadcast to all the cell’s synapses, including, most relevantly, those that

have just received, or are about to receive, input from presynaptic cells.

Spike-Timing Dependent Plasticity (STDP) is generally credited to Markram et

al.(1997), as well as Bi and Poo (1998), and refers to persistent changes in synaptic

strength that result from paired pre- and postsynaptic activity on a millisecond

timescale. Specifically, in the most commonly described Hebbian form, a presy-

naptic AP following a postsynaptic AP within a particular time window results in

a decrease of synaptic efficacy. Reversing the order of pre- and postsynaptic APs

within this window enhances the strength of the synapse (Figure 1.2). Outside the

narrow (50-100ms) window, synaptic weights are unaffected; within it, the polarity

of the change can switch abruptly. STDP has been described in many vertebrate

Figure 1.2. Hebbian STDP: synaptic weight changes (∆w) as a function of the relative timing
(∆t) of pre- and postsynaptic APs.
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species and preparations (Dan and Poo, 2006), including rat (hippocampal culture

(Bi and Poo, 1998; Li et al., 2004), hippocampal slice (Debanne et al., 1998; Nishiyama

et al., 2000; Lin et al., 2003), neocortical slice (Markram et al., 1997), barrel cortical

slice (Egger et al., 1999; Feldman, 2000), visual cortical slice (Sjostrom et al., 2001;

Froemke et al., 2005)), mouse (brain stem slice (Tzounopoulos et al., 2004)), zebra

finch (brain slice (Boettiger and Doupe, 2001)), electric fish (electric sensory lobe

slice (Bell et al., 1997)), and Xenopus (retino-tectal system in vivo (Zhang et al., 1998)).

Different dependencies, in terms of synaptic weight changes as a function of the

relative timing of pre- and postsynaptic APs, have been described for different cell

types. Figure 1.3 (adapted from Abbott and Nelson (2000)) summarizes data for

five different STDP curves.

In addition to direct measurements of synaptic strength (by presynaptic stimu-

lation and intracellular recording of postsynaptic potentials), several studies have

assessed, indirectly, the effect of STDP at the circuit level (Dan and Poo, 2006).

Generally, this is done, in vivo, by sensory stimulation and evaluation of changes in

representation consistent with STDP at interposed synapses. Such manipulations of

sensory representation have been carried out in cat visual cortex, by ms-timescale

pairing of visual and electrical stimulation, and measuring changes in orientation

tuning with intrinsic imaging (Schuett et al., 2001); and by pairing gratings at dif-

ferent orientations, and measuring tuning changes with extracellular single unit

recordings (Yao and Dan, 2001; Felsen et al., 2002). Notably, plasticity experiments

consistent with the properties of STDP described above have also been carried

out in humans. In these experiments, median nerve stimulation is paired with

transcranial magnetic stimulation, either to change the representation in primary

motor cortex, evaluated as motor evoked potentials measured electromyographi-
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Figure 1.3. Multiple STDP Curves. Reprinted by permission from Macmillan Publishers
Ltd: Nature Neuroscience (Abbott and Nelson), copyright (2000).

cally (Wolters et al., 2003), or to alter the representation in primary somatosensory

cortex, measured electroencephalographically (Wolters et al., 2005).

The cellular mechanisms underlying STDP are not fully understood, and, to the

extent that they are known, appear to differ somewhat depending on the synapse

under consideration. According to the most conventional model, induction of both

LTP and LTD is dependent on calcium influx through NMDARs, and subsequent

activation of multiple signal transduction cascades. Most prominent among the

signaling molecules involved is calcium/calmodulin-dependent protein kinase II

(CaMKII), but very many others have been implicated in at least a modulating role

(Lisman, 1989; Malenka and Bear, 2004). The resultant expression of LTP or LTD can
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be effected presynaptically, e.g., changing neurotransmitter release (Zakharenko et

al., 2001; Emptage et al., 2003; Ward et al., 2006) or postsynaptically, e.g., changing

the number of AMPARs (Malenka and Nicoll, 1999; Malinow and Malenka, 2002;

Song and Huganir, 2002), with either process having the potential to convert silent

synapses into functional ones (Ward et al., 2006). Long term maintenance of LTP

and LTD is associated with protein synthesis (Sutton and Schuman, 2006), gene

transcription (Pittenger and Kandel, 2003) and structural remodeling of the synapse

(Abraham and Williams, 2003; Malenka and Bear, 2004).

It is an open question whether the standard single coincidence detector model

is sufficient to account for the functional form of Hebbian STDP (Dan and Poo,

2004). It prescribes that LTP results from a large calcium transient due to extensive

NMDAR activation, and that LTD should occur if the rise in calcium is smaller in

amplitude and more sustained, due to limited NMDAR activation and opening

of voltage-gated calcium channels. The reason for this divergence is that, when

the postsynaptic AP follows the EPSP, transmitter is still bound to the receptor

when the AP gives rise to sufficient depolarization to relieve the Mg2+ block. When

the AP precedes the EPSP, the AP afterdepolarization that now coincides with the

time of transmitter binding to the receptor is of much smaller amplitude than the

peak of the AP, and presumably less capable of dislodging the Mg2+ block. There

is some direct evidence from 2-photon imaging experiments that calcium influx is

supralinear if the postsynaptic AP follows the EPSP within a few 10s of milliseconds,

and sublinear when the order is reversed (Koester and Sakmann, 1998). However,

considering the Hebbian STDP curve for positive ∆t (Figure 1.2), given that both

LTP and LTD require a rise in calcium, one would predict that, as the delay between

the EPSP and the postsynaptic AP increases, the associated calcium level should
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traverse a depression-evoking window before reaching a level that would leave

synaptic efficacy unchanged (Dan and Poo, 2006). Such a window of depression

is not generally observed4. One hypothesis proposes that calcium levels arising

from the EPSP itself, although insufficient to cause LTP, are already above the

level that would lead to LTD, and that, if the EPSP is preceded by an AP, calcium

influx is reduced because of NMDAR desensitization or AP afterhyperpolarization

(Dan and Poo, 2006). There is little evidence, however, that a decrease in calcium,

relative to baseline, can evoke LTD (Karmarkar et al., 2002), and experiments in

which the AHP was reduced at the relevant ∆t did not alter LTD (Feldman, 2000).

Another possibility is a second coincidence detector to further distinguish the order

of pre- and postsynaptic events as proposed by modeling studies (Karmarkar and

Buonomano, 2002), and supported by electrophysiological (Bender et al., 2006) and

imaging data (Nevian and Sakmann, 2006). In this a scenario, LTD occurs when

voltage-gated calcium channels are opened by the AP, raising calcium levels by the

time transmitter binds the NMDARs (and/or metabotropic glutamate receptors).

This combination of dynamics and sources of calcium is generated only for ∆t < 0,

permitting the unique mapping onto depression (Karmarkar et al., 2002).

Modeling studies have addressed several aspects of STDP, ranging from bio-

physical mechanisms to algorithmic implications. A number of studies model

the calcium dynamics resulting from NMDAR opening (Kitajima and Hara, 2000;

Karmarkar et al., 2002; Shouval et al., 2002; Rubin et al., 2005; Kubota and Kita-

jima, 2007), and demonstrate that these are sufficient to account for bidirectional

plasticity, although Karmarkar et al. (2002) predict some level of depression for

∆t > 0, not generally observed. Several solutions have been proposed to resolve

4With few exceptions, e.g., Nishiyama et al., 2000
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this issue, including a second ∆t detector (Karmarkar and Buonomano, 2002, as

discussed in some detail above); the stochastic properties of synaptic transmission

itself (Shouval and Kalantzis, 2005); or an explicitly joint dependence on the peak

amplitude and duration of calcium influx(Kubota and Kitajima, 2007). Rubin et

al. (2005) include in their model an explicit representation of plausible biochemical

cascades that serve to read out the calcium signal and convert it into potentiation or

depression. They observe that, although it is possible to generate the Hebbian curve

solely on the basis of the calcium signal, entails an inevitably steep dependence on

the particulars of the backpropagating AP and synaptic transmission. (They sug-

gest that this could also account for the variation in STDP observed under different

experimental conditions). Kubota and Kitajima (2007) evaluate the effect of switch-

ing NMDAR subunit types (NR2A vs NR2B, characterized by different decay rates)

as observed in the course of neural development, and conclude that it can account

for the potentiation and stabilization of weak synapses following competition be-

tween them during a critical period. A number of experimental observations are

also captured by the phenomenological model of Abarbanel et al. (2002), including

synaptic strength changes resulting from periodic and Poisson distributed spike

trains, as well as Anti-Hebbian plasticity.

Another set of studies analytically derives the functional form of the STDP curve

by a number of different approaches, including optimization of the likelihood

of postsynaptic firing at specified times by gradient ascent (Pfister et al., 2006);

a reinforcement learning algorithm (Florian, 2007), modified from Baxter et al.

(2001); and an objective function minimizing postsynaptic response variability in

Gerstner’s (2001) biophysically realistic spike-response model (Bohte and Mozer,

2007).
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A large number of modeling studies are devoted also to issues regarding what

is computed by networks implementing STDP. Several reports, representing a wide

range of methods, describe competition among inputs giving rise to selectivity for

a set of predictive and temporal coding-related properties of the networks’ inputs:

timing precision, earliest to arrive in a sequence, synchrony, and correlation among

inputs (Song et al., 2000; Kistler and van Hemmen, 2000; Kistler, 2002; Bofill-i Petit

and Murray, 2004; Guyonneau et al., 2005; Zou and Destexhe, 2007). Additional

properties concomitant with the development of such selectivity include decreasing

latency of postsynaptic response (Guyonneau et al., 2005), stable synaptic weight

distibutions (Song et al., 2000), the stabilization of output rates (Kempter et al.,

2001), synchronization of spike-volleys propagating through the network (Suri

and Sejnowski, 2002), decoupling of synchronously stimulated subset of neurons

from the rest of the recurrently connected balanced network (Morrison et al., 2007),

and self-organized switching between rate and temporal coding (Masuda and

Aihara, 2004; Masuda and Aihara, 2007). Lazar et al. (2007) report a simple recurrent

network that implements both STDP and intrinsic plasticity, and instantiates time

series prediction and also exhibits memory fading.

1.2.2 The Mushroom Body

Insect learning and memory have been studied predominantly in two species: the

fruitfly, Drosophila melanogaster and the honeybee, Apis mellifera, from quite differ-

ent perspectives. Experiments addressing learning in fruitflies have been mostly

genetic, while honeybees have been studied from a behavioral (as well as neu-

roanatomical and limited electrophysiological) perspective. Behavior has also been

assessed in Drosophila, but mostly in simple conditioning assays, at a population
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level, to screen for mutants to identify genes or implicate subpopulations of cells. In

contrast, honeybee behavior is studied in considerable detail in individual animals

in the laboratory, in the hive, and in free flight. Behaviors such as conditioned pro-

boscis extension, waggle dance, navigation and other aspects of foraging behavior

have been investigated for many decades. This marked division of labor is further

exemplified in the locust, Schistocerca americana (as well as the blowfly, Calliphora

vicina and cockroach Periplaneta americana, among others), which, because of their

nervous systems’ robustness and accessibility, have allowed for detailed examina-

tion of neural coding issues in sensory and motor systems. Only relatively recently

have these different approaches been combined in the same species, particularly

in Drosophila (Wilson and Mainen, 2006) and to a lesser extent in the honeybee

(Sattelle and Buckingham, 2006).

The structure identified for its involvement in learning and memory, more than

any other region of the insect brain, is the Mushroom Body. It is a bilaterally

symmetrical structure consisting of a calycal neuropil (in some species there are

two per hemisphere), which forms a cup beneath a large number of Kenyon Cell

somata (see Table 1.1), and a pedunculus that terminates in two or more lobes. The

KCs (the MB’s intrinsic cells) send dendrites into the calyx and their axons make up

the pedunculus and subsequently bifurcate into the lobes (Figure 1.1B). The input

to the calyx is predominantly olfactory, from Antennal Lobe Projection Neurons.

In Hymenoptera, there is evidence of direct calycal input from the optic lobes as

well (Jawlowski, 1958; Jawlowski, 1960); in Orthopterans, gustatory inputs from

the lobus glomerulatus have also been shown to supply the calyx directly (Weiss,

1981; Strausfeld et al., 1998). Beyond the calyx, the MB also receives input in the

pedunculus and in the lobes (by virtue of synapses onto KC axons, some of which
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are made by other KCs). The output of the MB appears to be restricted to the lobes,

where KC axons contact MB extrinsic neurons. These neurons form (input and

output) contacts in other regions of the brain, and also synapse recurrently in all

areas of the MB, thus providing further multimodal input. The KC population can

be divided into multiple types, as determined by anatomical methods (Strausfeld

et al., 1998; Farivar, 2005; Fahrbach, 2006). In the pedunculus and lobes, KC axons

appear to segregate into multiple concentric or parallel layers, subsets of which are

selectively invaded by individual MB extrinsic neurons. This segregation also has

a counterpart in the calyx, where a KC’s pattern of dendritic invasion is predictable

from its axonal layer in the pedunculus and lobes In some species, different KC

types are also distinguishable by the subset of lobes their axons project to.

The MB was first described by Felix Dujardin in 1850; his conception of its

function, although not involving learning and memory, still bears notable similar-

ity to the model currently held: he considered the MBs as bestowing the insect

with some level of control over instinctive behaviors (Dujardin, 1850; Dujardin,

1853). His findings supporting this assertion include the result that MB size (both

across and within species) appears to be correlated with the extent of social behav-

ior in intact animals, and that decapitation affects the ability to maintain coordi-

nated motor actions to a greater extent in animals with larger MBs (Dujardin, 1850;

Strausfeld et al., 1998). A comparable view was held by F.C. Kenyon (1896), namely

of the MB as an area for multi-sensory integration, quite distinct from the direct

sensory-motor relays found elsewhere in the brain and other ganglia (Straus-

feld et al., 1998). A role for the MB in associative memory was proposed later,

based on data from conditioning experiments in the honeybee (Menzel et al.,

1974) and Drosophila (Quinn et al., 1974; Heisenberg, 1980). Anatomical manip-
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ulations were initially made by lesioning tissue with hydroxyurea, while later

studies have employed more sophisticated genetic techniques to inactivate dif-

ferent aspects of the system (Heisenberg, 2003). Such tools have been used to

evaluate the role of particular molecules, (e.g., proteins in the cyclic AMP signal-

ing pathway such as adenylyl cyclase, cAMP dependent protein kinase, cAMP

phospodiesterase and cAMP-response element binding protein, among others), in

learning and memory. In addition, particular molecules known to be necessary

for, or detrimental to neurotransmission have been employed to transiently inac-

tivate subpopulations of cells, using the GAL4-UAS system to promote specificity

and temperature sensitivity to effect transience (McGuire et al., 2005; Davis, 2005;

Liu and Davis, 2006). While such studies constitute an extraordinary improvement

over relatively crude early manipulations, and hold considerable promise, suffi-

cient specificity and extent of expression are not so commonly achieved.
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C 2

Oscillations and Sparsening of Odor
Representations in the Mushroom
Body

In the insect olfactory system, oscillatory synchronization is functionally relevant

and reflects the coherent activation of dynamic neural assemblies. We examined the

role of such oscillatory synchronization in information transfer between networks

in this system. The antennal lobe is the obligatory relay for olfactory afferent signals

and generates oscillatory output. The mushroom body is responsible for formation

and retrieval of olfactory and other memories. The format of odor representations

differs significantly across these structures. Whereas representations are dense,

dynamic, and seemingly redundant in the antennal lobe, they are sparse and carried

by more selective neurons in the mushroom body. This transformation relies on

a combination of oscillatory dynamics and intrinsic and circuit properties that act

together to selectively filter and synthesize the output from the antennal lobe. These

results provide direct support for the functional relevance of correlation codes and

shed some light on the role of oscillatory synchronization in sensory networks.
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2.1 Introduction

Electroencephalogram and local field potential (LFP) oscillations generally in-

dicate periodic coherent synchronization of neuronal assemblies (Adrian, 1942;

Gelperin and Tank, 1990; Gray, 1994; Bragin et al., 1995; Steriade et al., 1996;

Csibra et al., 2000). While the occurrence of macroscopic oscillations has now been

correlated with various sensory, behavioral or cognitive states in mammals (Gray

et al., 1989; Eckhorn et al., 1988; Rodriguez et al., 1999; Patel and Balaban, 2000;

Fries et al., 2000; Engel et al., 2001), the functional significance of such observations

is debated (Shadlen and Movshon, 1999; Abbott and Dayan, 1999). Many hypothe-

ses based on temporal correlations have been proposed (Abbott and Dayan, 1999;

Shadlen and Movshon, 1999; Hopfield, 1995; von der Malsburg and Schneider, 1986;

Diesmann et al., 1999): among others, that cortical neurons might act as coincidence

detectors, rather than integrators, and thus select for correlated input (Abeles, 1982;

Konig et al., 1996). Most hypotheses, however, remain tentative for lack of di-

rect experimental test. The olfactory nervous system, in which molecular design

(Clyne et al., 1999; Gao et al., 2000; Vosshall et al., 2000; Mombaerts et al., 1996),

circuit architecture (Mombaerts et al., 1996) and oscillatory dynamics (Adrian, 1942;

Gelperin and Tank, 1990; Laurent and Naraghi, 1994; Lam et al., 2000) appear com-

mon across phyla, offers a rare opportunity to study some of these coding issues.

2.2 Results

2.2.1 Olfactory circuits

The insect antennal lobe (AL) is the analog of the vertebrate olfactory bulb. In

locusts, each AL receives input from ∼90,000 ORNs and contains ∼1130 densely
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interconnected neurons (300 local inhibitory neurons, LNs; 830 excitatory, multi-

glomerular projection neurons, PNs) (Leitch and Laurent, 1996; MacLeod and

Laurent, 1996). Each AL sends distributed projections to the ipsilateral mushroom

body (MB), a memory area (Heisenberg et al., 1985; Dubnau et al., 2001; McGuire

et al., 2001; Zars et al., 2000). PNs are the only channel for olfactory input to the MB.

Conversely, there is no evidence for feedback from the MB to the AL. Each locust

MB contains∼50,000 small neurons (Kenyon cells, KCs) (Laurent and Naraghi, 1994;

Kenyon, 1896), whose spiny dendrites receive direct input from PNs (Laurent and

Naraghi, 1994). In locusts, each PN contacts about 600 KCs (∼30 synaptic varicosi-

ties per PN axon, times ∼20 distinct synaptic contacts with different KC profiles per

varicosity, Leitch and Laurent, 1996). Each KC receives contacts from many PNs, as

seen from incremental electrical stimulation of PNs. The total number of outputs

made by all PNs onto KCs must equal the total number of PN inputs received by all

of KCs: Hence, if 830 PNs project to 50,000 KCs with 1:600 divergence, the average

PN-to-KC convergence is on the order of 10. While unknown, these ratios probably

vary by little more than a few fold across the PN/KC populations.1 The dendritic

tree of a typical KC contains 100 to 200 spines (Laurent and Naraghi, 1994). Many

of these inputs must thus originate outside of the AL.

Odor-evoked PN responses exhibit globally coherent 20–30 Hz oscillations and

stimulus- and PN-specific slow modulation of firing rate, both shaped in great part

by LN-mediated inhibition (MacLeod et al., 1998; Stopfer et al., 1997; Wehr and

Laurent, 1996; MacLeod and Laurent, 1996; Laurent et al., 1996). Hence, during

a stimulus, the AL output consists of barrages of spikes from an evolving PN

assembly. While individual PN spike timing during one oscillation cycle can be

1Recent results by Jortner et al. (2007) reveal that the PN-to-KC convergence is closer to ∼400.
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Figure 2.1. Olfactory circuits: Transverse section of the locust brain (left half, Bodian stain).
Olfactory input originates from olfactory receptor neurons (ORNs) on the antenna. ORN
axons terminate in the antennal lobe (AL), where projection neurons (PNs) act as relays,
with projections to the mushroom body (MB) and the lateral horn (LH). OL: optic lobes.
Calibration: 80 µm.
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Figure 2.2. PN and KC baseline firing in the absence of odor stimulation (see text). Thirty-
second rasters of 20 PNs (A) and 20 KCs (B) recorded with tetrodes. Note the exceedingly
low baseline activity of KCs. (Empty rasters denote absence of action potentials during the
randomly selected segment chosen for display. These rasters, however, of course originate
from identified KCs, whose action potentials occurred at other times during the recording
period.) [PN data (A): O. Mazor. KC data (B): J Perez-Orive.]

phase locked, it is not so for all PNs active during that cycle. At what time(s) a PN

locks to others depends on both the odor and the PN. To understand the decoding

of PN output by KCs, we examine the firing behavior of both populations at rest

and in response to odors.

2.2.2 Resting activity

Baseline activity profiles of PNs and KCs were measured over several-minute

long stretches of uninterrupted recording in naïve animals, using multiple tetrode

recordings (see section 2.4.2, p. 45). At rest, the PN population fired at a mean rate

of 3.87 ± 2.23 spikes/s per PN (range: 0.49 to 10.4, n = 35 PNs). Baseline firing was

>100 times lower in KCs (median: 0.025 spike/s, interquartile range: 0.088 spike/s;

n = 23 KCs) (figure 2.2). Hence, despite a constant excitatory drive from PNs, KCs

at rest remained remarkably inactive.
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2.2.3 Response selectivity

PNs and KCs were challenged in awake animals with a panel of odors (typically 17;

range: 5–24; 5–25 trials per odor; 1 s pulses; 20–30 s between trials; see section 2.4.1,

p. 44). Experimental conditions were identical for PN and KC recordings.

  

The probability of observing a stimulus-evoked change in firing behavior was differ-

ent across the two populations (figure 2.3). Most PNs exhibited a reliable change in

firing behavior within the first few seconds following stimulus onset. They showed

complex temporal patterning (with increases and decreases in instantaneous firing

rate) that often greatly outlasted the stimulus itself (figure 2.3A). Many of these

responses were inhibitory, and many of these inhibitory periods were followed by

a period of increased firing, up to five seconds after stimulus offset. We analyzed ex-

citatory response probabilities across PNs (and KCs) quantitatively, using a variety

of methods and analysis windows. We show here the results obtained with Method

A (see section 2.4.4, p. 48). Results obtained with the other methods are nearly iden-

tical (table 2.1 and figure 2.10). The distribution of response probabilities for PNs

was broad (figure 2.4A), with means over all cells of 0.64 + 0.32 (n = 58 PNs, 1140

PN-odor pairs). KC responses to these same odors were extremely rare: over all

KCs (n = 74 KCs, 1101 KC-odor pairs), 58% failed to show any detectable response

to any of the odors presented (figure 2.4A). The distribution of response probabili-

ties was heavily skewed towards low values (figure 2.4A), even when considering

only those KCs that produced at least one response. The mean response probability

was 0.11 after averaging all KCs’ individual response probabilities (figure 2.4A)

(median: 0.00; interquart. range 0.12). Figure 2.3B shows three typical responsive
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KCs. Among all recorded KCs, only two responded to all odors presented (10 and

12 odors, respectively). To avoid possible sampling bias, recordings were made

from all regions and depths of the KC soma layers. Responsive and unresponsive

KCs were found everywhere, consistent with the anatomy of PN axonal projections

in the MB (Laurent and Naraghi, 1994). Similarly, no selection bias towards strong

responses existed, for the great majority of them were extremely brief (c.f., below)

and rarely detected on line. Selective and promiscuous KCs could occur simulta-

neously on the same tetrode, indicating that differences in tuning width were not

caused by global modulation of excitability over time.

 

Response patterns and intensities differed in PNs and KCs. While PN responses

often lasted several seconds (figure 2.3A), KC responses were brief and lacked

the slow temporal patterning typical of PNs (figure 2.3B). Using responsive cell-

odor pairs, we counted action potentials produced by PNs and KCs over the 3 s

window after stimulus onset. The distribution of PN spike counts over that period

was broad, with a mean of 19.53 ± 10.67 spikes. KCs responded with 2.32 ± 2.68

Figure 2.3 (on the next page). Tetrode recordings of odor responses in PNs (A and C)
and KCs (B, D, and E). In all panels, shaded area = odor puff = 1 s. A, responses of three
simultaneously recorded PNs (PN1–PN3) to 16 different odors (first 10 trials with each
stimulus displayed). Odors from top, left column: hpo, don, che, hx3, unn, min, oca, pnn;
right column: chx, oco, nnn, thx, 2hp, nna, 3hp, hxo; abbreviations in methods, p. 44). B,
responses of three KCs to the same 16 odors. Conditions as in A except: for six of the odors,
KC1 and KC2 have only five trials; in KC2, the 7th odor in the right column is hxa. C,
expanded view of PN1 raster in response to hxo (trials 3 to 15). Note alignment of spikes.
D, response of a fourth KC to hx3 (trials 3 to 15). Note low baseline activity and alignment
of first spike in the response across trials. E, response of a fifth KC with superimposed LFP,
recorded in the MB (10–55 Hz bandpass). Note phase-locking of KC spikes. LFP: 200 µV.
[PN data (A, C): O. Mazor and S. Cassenaer. KC data (B, D, E): J Perez-Orive.]
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Figure 2.4. Statistics and sparseness of PN and KC odor responses (see methods). A left,
probability of responding to x% of all odors tested (x in 5% bins) (see section 2.4.4, p. 48);
note opposite skew in PN and KC distributions. A right, response intensity distributions
(1 spike bins, measured over 3 s window). Spike counts were computed only from cell-
odor pairs with a detected excitatory response during the analysis window. B, excitatory
responses (filled squares) of individual PNs and KCs (columns) (n = 58 PNs, 74 KCs) to 17
different odors (rows: hx3, thx, chx, hxo, hpo, oco, nna, nnn, don, pnn, 2hp, 3hp, oca, unn,
che, min, hxa; abbreviations in section 2.4.1, p. 44). Open squares denote inhibition (PNs
only) or absence of a response. Grey squares: not tested. C, distributions of lifetime (left)
and population (right) sparseness, computed across all cells and all tested odors. SL and
SP are significantly different across PNs and KCs (p < 0.001, t’-test for SP, z statistic for SL).
[PN data: O. Mazor and S. Cassenaer. KC data: J Perez-Orive.]
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spikes2 (figure 2.4A). We found a negative correlation between KC spike count and

response selectivity (Spearman ranked correlation coefficient: −0.567, p < 0.05).

 

PN spike probability and precision is PN-, odor- and time-specific (MacLeod et

al., 1998; Stopfer et al., 1997; Wehr and Laurent, 1996; MacLeod and Laurent, 1996;

Laurent et al., 1996). Time-locked PN spikes were easily detected when they oc-

curred in isolation (e.g., figure 2.3C), but were found also within sustained re-

sponses, consistent with previous intracellular results. In KCs, individual responses

typically contained about two spikes (figure 2.4A), one of which at least could be

precisely locked to stimulus onset with a fixed delay. Stimulus-locked spikes were

often the first ones in the KC’s response, but could occur at any cycle. The first

spike in the response of KC4 (figure 2.3D), for example, had a jitter of only ±4 ms

relative to stimulus onset. Stimulus-locked spikes with such small jitter, however,

were not commonly observed. Another measure of precision, more relevant to this

system, is the timing of each action potential relative to its LFP oscillation cycle

(phase) (figure 2.3F). The mean phase of KC spikes was 83° ± 77° (n = 18 KCs;

where 0° is oscillation peak, figure 2.6F). Mean spike phase was the same in the

most as in the least specific KCs (90° ± 67° vs. 86° ± 81°, n = 5 cells each). The spikes

within a doublet (or triplet) were always separated by one to a few oscillation cy-

cles (e.g., figure 2.3F). This indicates that appropriate PN drive to individual KCs

lasted several oscillation cycles, and that when a KC spike was fired, it occurred

preferentially at the same phase of its oscillation cycle.

2Most KC spikes occurred in the beginning of the response: response intensity was 2.33 ± 2.02
spikes over the first 1.4 s, while PNs produced 12.84 ± 7.29 spikes on average in that period.
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2.2.4 Sparseness of odor representations across PNs and KCs

Figure 2B compresses the responses of 58 PNs and 74 KCs to the same 17 odors

and illustrates the contrast between the two population representations.3 A simple

estimate of population sparseness (SP) is the proportion of cells unresponsive to

each stimulus, averaged over all stimuli. It thus represents the sparseness of the

representation of each odor across the population, averaged over all odors, but

ignores the strength of each response. SP was 0.90 in KCs and 0.33 in PNs. SP

can also be calculated more directly using the neurons’ firing rate distributions

(Willmore and Tolhurst, 2001) for each tested stimulus, whether we detected a

response or not (see section 2.4.4, p. 48). Applied to PNs and KCs, this measure

of SP was again always greater in KCs (figure 2.4C). Finally, sparseness can be

calculated for each cell across all the stimuli it has experienced. This measure,

called lifetime sparseness, SL, approximates the mean tuning width of each neuron,

averaged over all neurons. Again, SL was significantly higher in KCs than in PNs

(0.63 vs. 0.40, p < 0.001, t’-test, figure 2.4C). SL and SP were also calculated using the

other response analysis windows, or using only the odor responsive cells. By all

measures, odor representations were always significantly sparser across KCs than

PNs (table 2.1 and figure 2.10).

2.2.5 Mechanisms underlying sparsening

Subthreshold KC activity during odor stimulation. Sharp electrode recordings (see

section 2.4.6, p. 51) from KCs (n = 29) revealed odor-evoked, subthreshold activ-

ity made up of periodic synaptic potentials (figure 2.5A). These were locked to

3Responses were determined here according to Method A, (see section 2.4.4, p. 48). Nearly
identical results were obtained if responses were assessed using different criteria, adapted to each
population.
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the LFP (figure 2.5B) and superimposed on a noisy and irregular synaptic back-

ground, away from firing threshold. Appropriate odor-KC combinations revealed

reliable and time-specific EPSPs and/or action potentials. The response of the KC in

figure 2.5C for example, contained a train of prominent EPSPs, late within the stim-

ulus. One of these EPSPs led to an action potential in half of all trials with that odor.

A different KC responded to the same odor with at least two reliable action poten-

tials, at cycles 1 and 3 of the response, whether the neuron was at rest (figure 2.5D)

or held depolarized by current injection. In all tested KCs, the existence, timing and

reliability of these firing events were odor specific. We noted that a large component

of the odor-evoked activity in KCs was inhibitory: if the KC was held depolarized

by current injection, periodic hyperpolarizing potentials could be seen during a

response; if the KC was held above firing threshold, odor-evoked inhibition inter-

rupted this tonic firing (figures 2.5A and C). Odor stimulation thus also causes

synaptic inhibition of KCs. Finally, the amplitude of odor-evoked EPSPs paradoxi-

cally increased when the KC was held depolarized (figure 2.5A), suggesting active

membrane properties. We examined the possibility that synaptic inhibition and KC

active conductances work together to make KCs coincidence detectors of PN input.

   - 

Because direct effects of PNs are excitatory and because locust PNs do not contain

GABA (Leitch and Laurent, 1996), the source of odor-evoked KC inhibition should

be downstream of PNs. In addition to sending collaterals into the mushroom body,

PN axons terminate in the lateral horn (LH) (Hansson and Anton, 2000). We iden-

tified among their targets there a cluster of ∼60 GABA-immunoreactive neurons

(Lateral Horn Interneurons, LHIs), with direct axonal projections to the MB (see
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Figure 2.5. In vivo sharp-electrode intracellular records from different KCs. All action
potentials are clipped. A, responses obtained while resting voltage set by holding currents
between −10 and +80 pA. Horizontal bar: odor (cherry) delivery, 800 ms. This KC never
produced any action potential in response to this odor at resting potential. Note oscillating
membrane potential at rest (0 pA), interruption of DC-evoked firing by odor delivery (+20
to 80 pA traces), amplification of many discrete depolarizing potentials at most depolarized
holding potentials. B, sliding cross-correlation of KC Vm and simultaneous LFP (different
KC from A). Red: maxima; blue: minima. Y-axis: time, 0.5 s. Note locking of signals during
odor puff. C, third KC recording, showing interruption of current-evoked firing by odor
response and prominent, late EPSPs (•); 800 ms odor delivery (i). Repeated trials (1–4) show
precise re-occurrence of these EPSPs during same epoch of the response; time calibration:
500 ms (ii). D, fourth KC and its spiking response to cherry odor at cycles 1 and 3. 800 ms
odor pulse. Vertical calibrations: KC: 10 mV (A, D), 8 mV (Ci), 6 mV (Cii); LFP: 300 µV, 1–40
Hz bandpass (C). [KC data (A, C, D): G. Laurent. Cross-correlogram (B): G. Turner.]
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section 2.4.7, p. 52) (figure 2.6A). Intracellular staining of individual LHIs showed

profuse axonal collaterals, overlapping with KC dendrites (figure 2.6B). KC den-

drites receive GABAergic input (Leitch and Laurent, 1996). LHIs thus appeared

well suited to be a source of the odor-evoked inhibitory inputs.

   

LHIs responded vigorously and reliably to odors (Fig. 4C,D). LHI membrane po-

tential oscillated in phase with the LFP (figure 2.6E), and when sufficiently excited,

LHIs fired one or a short burst of action potentials at each oscillation cycle (fig-

ure 2.6C). In each cycle, LHI mean firing-time lagged 173° behind that of PNs

(figure 2.6F). LHI firing phase was independent of odor identity. Synaptic drive

Figure 2.6 (on the next page). Feed-forward inhibition of KCs by LHIs. A, anti-GABA
immuno-labeling (see section 2.4.7, p. 52). Cluster of ∼60 reactive somata (LHI) and tract of
LHI axons running to the MB (stipples). The terminals of one of these axons in the MB are
shown in B. Calibration: 100 µm. B, PN axon (black) projects to the mushroom body calyx
(orange) (Laurent and Naraghi, 1994) and to the lateral horn (LH). LHI (green) project to the
calyx (this study). PN and LHI axons terminate on KC dendrites (red). Neurons stained by
iontophoresis of cobalt hexamine (KC, PN) or neurobiotin (LHI), in separate preparations
and drawn using a camera lucida. Note varicosities in LHI and PN axon collaterals. (*):
KC axon. Calibration: 50 µm. C, representative odor-evoked responses of two LHIs and
simultaneously recorded LFPs (5–40 Hz bandpass). Note membrane potential oscillations,
locked to the LFP. Identity and delivery (1 s long) of stimulus indicated by black bar.
Calibration: (LHI) 20 mV; (LFP) 400 µV; 200 ms. D, instantaneous firing rate of LHI1 (in
C) in response to various odors. Lower edge of profile: mean instantaneous rate, averaged
across trials; profile thickness: SD. All LHIs responded to all odors tested, with response
profiles that varied little across different odors. E, sliding cross-correlation between LFP
and LHI2 traces (spikes clipped). High correlation values in hot colors, low in cold. Strong
locking is present throughout the response (odor delivery: vertical bar). Lower edge of
correlation stripes just precedes stimulus onset due to width of correlation window (200
ms). F, phase relationships between PN, KC and LHI action potentials, and LFP. Polar plots:
LFP cycle maxima defined as 0 rad, minima as π rad (PNs: 3 cell-odor pairs, 388 spikes;
LHIs: 17 cell-odor pairs, 2632 spikes: KCs; 18 cells, 862 spikes). Mean phases shown in red.
Gridlines are scaled in intervals of 0.10 (probability per bin). Below: diagram showing LFP
and mean firing phases, Q. G, circuit diagram. [LHI data (A–F): G. Turner. PN data (F): M.
Westman. KC data (F): J. Perez-Orive.]
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to KCs thus likely consists of EPSPs from PNs alternating with IPSPs from LHIs,

occurring preferentially in opposite halves of each oscillation cycle. PN and LHI

inputs to KCs differ in one important respect: because each KC on average receives

inputs from a very small fraction of the PNs and because the firing probability and

phase-locking of each PN typically evolves during a response, the probability that

many of the PNs presynaptic to a given KC fire together within the same half of one

oscillation cycle is low. By contrast, individual LHIs showed sustained responses

to all odors presented (figure 2.6D), consistent with the fact that 830 PNs converge

onto only ∼60 LHIs. Because LHI axons diverge profusely in the mushroom body

(figure 2.6B), individual KCs should receive periodic input composed of consis-

tent IPSPs, alternating with EPSPs whose total strength depends strongly on the

stimulus.

       

We next tested more directly whether both synaptic inhibition and intrinsic active

conductances assist coincidence detection in KCs. To study single EPSP-IPSP cy-

cles in isolation, we used direct electrical stimulation of PNs rather than odors.

Evoked postsynaptic potentials in KCs dramatically changed shape and duration

upon varying stimulus strength (figure 2.7A). At high stimulus intensities, a sharp

spikelet rode atop the depolarizing potential, suggesting active conductances (fig-

ure 2.7A, top trace). This spikelet was not an artifact of unusually strong stimuli:

when a weak stimulus was used to elicit a smaller EPSP and holding current

was adjusted so that the KC was near firing threshold, spikelets could also be ob-

served4 (figure 2.7B) (see section 2.4.8, p. 53; Schafer et al., 1994). Next, we tested

4Although we have not characterized this spikelet pharmacologically, its shape and all-or-none
waveform suggest the involvement of voltage-dependent conductances (possibly Na+ or Ca2+ for



37

the idea that GABAergic feed-forward inhibition also shapes PN-evoked PSPs. At

voltages below spikelet threshold, EPSP shape was still strongly voltage dependent

(figure 2.7C). Local injection of picrotoxin (PCT), a GABAA-like chloride channel

blocker, into the mushroom body calyx (see section 2.4.9, p. 53) broadened the EPSP

and decreased the voltage-dependence of EPSP shape (figure 2.7C). This indicates

that the LHI-mediated IPSP normally contributes partly, but maybe not entirely,

to the shape and duration of PN-evoked EPSPs. Blocking inhibition in the calyx

increased the scatter of KC-spike times following PN stimulation (figure 2.7D).

LHI-mediated IPSPs thus contribute to shortening the epoch during which a KC

remains depolarized after each volley of PN excitation; it could also explain why

KC action potentials are so precisely phase-locked during responses to odors (fig-

ure 2.6F). Hence, the tendency of each KC to convert its excitatory input from PNs

into an action potential can be facilitated in the early phase of the compound EPSP

by voltage-dependent depolarizing nonlinearities and antagonized shortly there-

after by feed-forward inhibition. The remaining voltage dependence of the EPSP

after PCT injection (figure 2.7C) suggests the existence of an active repolarizing

conductance. Active and synaptic properties thus both likely contribute to making

KCs prefer coincident input, on a cycle-by-cycle basis.

2.2.6 Influence of feed-forward inhibition on KC responses to odors

If feed-forward inhibition competes with and resets the periodic excitation of KCs

by PNs, antagonizing LHI-mediated inhibition should decrease KC specificity to

odors. KCs recorded in vivo with tetrodes were tested with up to 17 odors (ten

depolarization and K+ for repolarization), consistent with previous patch-clamp studies in vitro
(Schafer et al., 1994)
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trials per odor) and re-tested immediately after PCT injection into the mushroom

body (figure 2.8). PCT caused no significant change in the KC baseline-firing rate

(medians: 0.018 spikes/sec after PCT vs. 0.005 before, n = 12 KCs, p = 0.19, non-

parametric sign test). PCT caused a broadening of KC tuning, characterized by

greatly reduced odor selectivity (figure 2.8A–C). Even in KCs that responded to

none of the odors presented in controls, responses to these same odors appeared

after PCT (figure 2.8A–C). Individual KCs did not become responsive to all odors,

but rather, to a larger subset of all tested odors. The mean population and lifetime

Figure 2.7 (on the next page). KC responses to electrical stimulation of PNs. A, PNs
were stimulated directly using an electrode placed in the AL and evoked EPSPs were
recorded intracellularly from KCs. Three traces show EPSPs recorded at progressively
stronger stimulus intensities (bottom to top). Note positive inflexion during rising phase
of the top EPSP and sharp repolarization. Bar graph compares EPSP half-width at the
maximum stimulus intensity that was still below action potential threshold vs. half-width
at 70% (± 5%) of this maximum intensity. EPSP half-width was significantly different at
these two stimulus intensities (p < 0.001, paired t-test, n = 11 KCs). B, intrinsic active
conductance amplifies and sharpens EPSPs near threshold. KC held near threshold with
constant holding current; constant PN stimulus amplitude: successive trials elicited full-
blown sodium spikes (light grey), subthreshold EPSPs (black), or intermediate spikelet.
Sample traces collected in picrotoxin; similar spikelets were observed in control conditions
(e.g., A). C, synaptic inhibition shortens KC EPSP. At progressively depolarized holding
potentials, EPSP half-width significantly decreased (half-width at −40 mV significantly
smaller than half-width at −60 mV, p < 0.0005, paired t-test, n = 10 KCs); all analyzed data
below threshold for spikelet activation. After picrotoxin injection in MB, EPSPs became
broader (−60 mV half-width significantly increased in picrotoxin, p < 0.05, t-test, n = 9).
EPSP shape was less dependent on postsynaptic voltage (−40 mV half-width as percentage
of −60 mV half-width significantly increased in picrotoxin, p < 0.05, t-test, n = 9), but was
still voltage dependent (p< 0.05, t-test, n = 9). Sample traces from two KCs in same brain. D,
synaptic inhibition narrows the window in which KCs can fire following PN stimulation.
Stimulus intensity was adjusted to elicit an EPSP of 5–10 mV (when KC held at −60 mV),
and then holding current was adjusted so that this EPSP elicited a spike on 30–60% of trials.
Representative traces (left) show those sweeps that elicited spikes (arrows mark stimulus,
bars mark interquartile range of spike times encompassing the difference between the
25th and the 75th percentile). Sample traces from two KCs in same brain. Group data
(right) shows the interquartile range for each cell. Picrotoxin significantly increased the
magnitude of the interquartile range (p< 0.05, t-test, n = 6 control KCs, 6 KCs in picrotoxin).
B–D: whole-cell recordings (see section 2.4.8, p. 53). [Sharp microelectrode recordings (A):
J. Perez-Orive. Whole-cell patch recordings (B–D): R. Wilson.]



39



40

sparseness calculated over this KC subset was significantly decreased after PCT

(SP = 0.70 to 0.41, n = 11 odors, p < 0.001, paired t-test; SL = 0.47–0.30, n = 12

KCs, p < 0.05, non-parametric Wilcoxon signed-rank test). Individual KC response

intensity after PCT treatment was not significantly different from control (1.96 ±

0.81 spikes; PCT: 1.82 ± 0.47 spikes), but KC action potentials after PCT lost their

locking to the LFP (figure 2.8D, cf. controls, figure 2.6F). This confirms earlier

experiments (figure 2.7D) suggesting that LHI-mediated IPSPs normally constrain

KC integration and spike timing.5

2.3 Discussion

In the AL, individual odors are represented by a large fraction of the 830 PNs:

Baseline activity is high, sparseness is low, individual PN responses are sustained.

In the MB, the same odors activate a small proportion of neurons in a larger popu-

lation (50,000 KCs): baseline activity is close to zero, sparseness is high, individual

KC responses are rare and typically contain two action potentials only. KC action

potentials thus each carry much more information than those of PNs.

   ?

We propose that KCs act as selective coincidence detectors on periodic PN input:

Because individual KCs receive inputs from only a small fraction of all PNs, because

the patterned responses of individual PNs are staggered in time and because EPSP

summation by KCs occurs best within a fraction of each oscillation cycle, the

conditions appropriate for bringing a KC to threshold are rarely met. During odor

5PCT application to the mushroom body did not affect the LFP oscillations recorded there, for the
principal source of these oscillations—synchronized, periodic synaptic input drive from PNs—was
excitatory and cholinergic (nicotinic).
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Figure 2.8. Influence of feed-forward inhibition on KC odor tuning and phase-locking (in
vivo, wire tetrode recordings). A, two KCs (5–6) and their responses to five odors before
and after local PCT injection into the MB (see section 2.4.9, p. 53). Odor pulses (shaded area):
1 s; 10 trials per odor, top to bottom (abbreviations in section 2.4.1, p. 44). B, comparison
of KC response profiles before and after PCT. Filled: response; open: no response; grey:
not tested (more odors were generally tested after PCT treatment). PCT broadened KC
response tuning profiles, by causing the appearance of responses to new odors. Odors,
1 to 17: oca, hxa, thx, hx3, oco, unn, nna, 2hp, che, chx, hxo, don, nnn, 3hp, hpo, pnn,
min. C, frequency distribution of response probabilities (across all odors tested) before
and after PCT treatment (n = 13 KCs). Note dramatic reduction of proportion of specific
KCs (leftmost bin) after PCT. Median response probabilities: 0.09 (control), 0.59 (PCT). D,
phases of KC spikes relative to LFP, during odor-evoked responses (0 rad: max; π: min of
LFP voltage). Vector strengths: 0.03 (PCT) vs. 0.41 (control, Fig 4F). Gridlines in intervals
of 0.05 (probability per bin). [J. Perez-Orive]
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stimulation, each oscillation cycle contains both locked and unlocked PN spikes

(Laurent et al., 1996). Periodic IPSPs, caused in KCs by LHIs whose mean firing

is in antiphase with the discharge of the synchronized PNs, antagonize the action

of inappropriately timed PN action potentials. When LHI-mediated inhibition is

blocked, this normally antagonized excitatory drive to KCs can now summate

over a longer time window: KCs lose much of their specificity. Time-locked feed-

forward inhibition thus helps define very short but renewed (once per oscillation

cycle) integration windows for each KCs, akin to a periodic reset, with critical

consequences for KC specificity.

None of the features uncovered so far (oscillatory patterning, feed-forward

inhibition, fan-in and fan-out, active properties) are unusual ones (Fricker, 2000;

Galarreta and Hestrin, 2001; Pouille and Scanziani, 2001; Contreras et al., 1997;

Haberly, 1990). In particular, distributed and partly overlapping projection patterns

of mitral cells have been seen in rodent prepiriform cortex (Zou et al., 2001) and local

feed-forward inhibitory circuits are common (Fricker, 2000; Pouille and Scanziani,

2001; Contreras et al., 1997; Haberly, 1990). Nonlinear intrinsic properties have

been seen in some cortical and hippocampal cells among others and hypothesized

to underlie coincidence detection (Fricker, 2000; Galarreta and Hestrin, 2001). We

showed here that all these properties exist together in the same circuit and that their

concerted use in the context of oscillatory activity results in a major transformation

of sensory codes.

    ?

Because the mushroom body is a likely site for the formation and retrieval of olfac-

tory memories (Heisenberg et al., 1985; Dubnau et al., 2001; McGuire et al., 2001;
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Zars et al., 2000), we must ask why sparse codes might be advantageous there. While

it is clear that extremely sparse codes (“grandmother” schemes, Barlow, 1969) may

be undesirable because they confer sensitivity to damage and low capacity, repre-

sentations carried by small subsets of neurons offer many theoretical advantages.

First, overlaps between individual representations are less likely than if each rep-

resentation used a large proportion of the available neurons, limiting interference

between memories. This system’s memory capacity can still be very high, because

the total population size is large and sparseness is not extreme. Second, compar-

isons between stimulus-evoked patterns and stored memories are simpler if they

invoke fewer elements. Third, representations become more synthetic or high-level.

Every KC action potential compresses the signals carried by several PNs that are

each potentially more informative about stimulus composition. Sparsened represen-

tations thus contain less explicit detail. This conclusion agrees with behavioral and

psychophysical observations in humans, rats and insects that odor perception has

a prevalent synthetic quality (Livermore and Laing, 1996; Linster and Smith, 1999;

Cain and Potts, 1996).

   

Our results have implications for the understanding of neural codes. First, single-

neuron responses can be exquisitely specific, extremely short (1–2 spikes only), and

temporally precise (both within and across oscillation cycles). Whether response

characteristics similar to those shown for KCs exist in other systems is not known;

because they are so brief and specific, such response patterns are de facto hard

to uncover. Studies of primate frontal and motor cortices that show very brief fir-

ing events, however, are consistent with some of our results (Abeles et al., 1993;
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Riehle et al., 1997). Second, subtle yet highly relevant activity patterns may go un-

detected with many large-scale brain-activity monitoring techniques: sparse and

brief activity is unlikely to be reflected in most macroscopic signals. Yet, as we

show here, this may sometimes be all there is. Finally, to measure the relevant

information content of an action potential, one must know how downstream tar-

gets interpret it. For example, we showed previously that projection neuron action

potentials typically phase lock to the LFP only during certain (stimulus- and PN-

specific) epochs of a response (Laurent et al., 1996). Our results indicate that KCs

will be more sensitive to phase-locked PN action potentials than to those occur-

ring closer to each LHI-mediated IPSP, whose timing is itself determined by the

locked-PN population. PN spikes, therefore, are not all equally meaningful to a

KC. Even in cases where firing rates are high, many spikes may be of minimal sig-

nificance to a target, because improperly-timed. Here, relevance is determined by

inter-neuronal correlation. Hence, deciphering brain codes requires an evaluation

of these correlations and their consequences on the channeling of information. Con-

versely, macroscopic oscillations may indicate the existence of neural filters, whose

properties will determine the interpretation one should make of a spike train.

2.4 Methods

2.4.1 Preparation and stimuli

Results were obtained from locusts (Schistocerca americana) in a crowded, estab-

lished colony. Young adults of either sex were immobilized, with one or two an-

tennae intact for olfactory stimulation. The brain was exposed, desheathed and

superfused with locust saline, as previously described (Laurent and Naraghi, 1994).
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Odors were delivered by injection of a controlled volume of odorized air within

a constant stream of desiccated air. Teflon tubing was used at and downstream

from the mixing point to prevent odor lingering and cross-contamination. Odors

were used at 10% vapor pressure (all PNs, 85% of KCs) or 100% vapor pressure

(15% of KCs), further diluted in the dessicated air stream. We used: 1-hexen-3-ol

(hx3), trans-2-hexen-1-ol (thx), cis-3-hexen-1-ol (chx), 1-hexanol (hxo), 1-heptanol

(hpo), 1-octanol (oco), hexanal (hxa), heptanal (hpa), octanal (oca), nonanal (nna),

3,7-dimethyl-2,6-octadiene-nitrile (don), 3-pentanone (pnn), 2-heptanone (2hp), 3-

heptanone (3hp), 5-nonanone (nnn), 6-undecanone (unn), cherry (che), mint (min),

geraniol (ger), vanilla (van), citral (cit), apple (app), strawberry (str), amyl acetate

(ama), benzaldehyde (bnh), methyl salicylate (mts), eugenol (eug), L-carvone (lca),

D-carvone (dca), dihydro-myrcenol (dhm).

2.4.2 Tetrodes

Two types of tetrodes were used for extracellular recordings. Silicon probes were

generously provided by the University of Michigan Center for Neural Communica-

tion Technology (http://www.engin.umich.edu/facility/cnct/). Wire tetrodes

were constructed with insulated 0.0005" and 0.0004" wire (REDIOHM wire with

PAC insulation). Four strands of wire were twisted together and heated to partially

melt the insulation. The tip was cut with fine scissors and each channel tip was

electroplated with gold solution to reduce the impedance to between 200 and 350

kΩ at 1 kHz. The same custom-built 16-channel preamplifier and amplifier were

used for both types of tetrodes. Two to four tetrodes were used simultaneously. The

preamp has a unitary gain, and the amplifier gain was set to 10,000×. Because of low

baseline activity and low response probability in KCs (see sections 2.2.2 and 2.2.3),
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fewer KCs than PNs were usually isolated in a typical recording session. Tetrodes

were placed within the AL or MB soma clusters, peripheral to the neuropils at

depths between 50 and 200 µm. Cell identification was unambiguous because PNs

are the only spiking neurons in the locust AL, (LNs do not produce sodium ac-

tion potentials, Laurent and Davidowitz, 1994), and because all the somata located

above the MB calyx belong to KCs.

2.4.3 Extracellular data analysis

Tetrode recordings were analyzed as described in Pouzat et al. (2002). Briefly,

data from each tetrode was acquired continuously from the four channels (15

kHz/channel, 12 bit/sample), filtered (custom-built amplifiers, band-pass 0.3–6 kHz)

and stored. Events were detected on all channels as voltage peaks above a pre-set

threshold (usually 2.5–3.5 times each channel’s signal SD). For any detected event

on any channel, the same 3 ms window (each containing 45 samples) centered on

that peak was extracted from each one of the four channels in a tetrode. Each event

was then represented as a 180-dimensional vector (4× 45 samples). Noise properties

for the recording were estimated from all the recording segments between detected

events, by computing the auto- and cross- correlations of all four channels. A noise

covariance matrix was computed and used for noise whitening. Events were then

clustered using a modification of the expectation maximization algorithm. Because

of noise whitening, clusters consisting of, and only of, all the spikes from a single

source should form a Gaussian (SD = 1) distribution in 180-dimensional space. This

property enabled us to perform several statistical tests to select only units that met

rigorous quantitative criteria of isolation (figure 2.9).
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Figure 2.9. Extracellular tetrode recordings and spike-sorting. A, raw data traces with PN
action potentials recorded in the AL (left), and KC action potentials recorded in the soma
layer of the MB (right). Calibrations: 50µV, 3 s (top traces), 3 ms (bottom traces). B, examples
of two clusters: PN (left panel) and KC (right panel). In each panel the traces on the left
show the superimposed events classified for that cluster (black) for each of the four tetrode
channels, together with the average waveform (red). Calibration: 100 µV, 1 ms. Two of the
statistical tests used to evaluate the isolation of the cells in the model are shown in B and
in C: on the right side of each panel in B is the variance around the mean for each of the
four channels, together with 95% confidence intervals which are based on the noise model.
C, projection tests in which each pair of clusters in the model in 180-dimensional space
is projected onto the line connecting the cluster centers so as to evaluate their degree of
isolation. All cluster centers are separated by at least five times the noise SD. All analyzed
data were selected on these separation criteria. [PN data: O. Mazor and S. Cassenaer. KC
data: J. Perez-Orive.]
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2.4.4 Responses

Defining what constitutes a response quantitatively and equally accurately for

PNs and KCs requires careful consideration. For example, a conventional mean

firing rate measure applied to the entire response period is not appropriate, be-

cause PN responses are patterned; a typical PN response, such as one composed

of subsequent excitatory and inhibitory epochs, often produces a mean rate no

different from baseline, and yet clearly constitutes an odor-specific response; relia-

bility across trials thus needs to be taken into account. In addition, PNs and KCs

have very different baseline firing statistics, implying that response criteria based

on a change from baseline might not apply equally well to both populations. We

thus analyzed the data using a variety of methods and display, in our paper, the

results of one (Method A), applied identically to KCs and PNs. The analyses using

other methods, summarized in table 2.1 and figure 2.10, yielded nearly identical

results. Our methods are as follows. First, for all methods, we defined two response

windows: short (0–1.4 s) and long (0–3 s after stimulus onset), with stimulus on

for 1 s in all cases. Method A used a 3 s window. Second (Method A), a PN or KC

was classified as responding during either window if its firing behavior during the

window met two independent criteria of response amplitude and reliability:

1. A: The neuron’s firing rate (measured in successive 200 ms bins,

averaged across all trials) had to exceed n SDs of the mean baseline rate in

at least one bin within the response window. Baseline rate was measured for

each cell-odor pair over a period of 3 to 5 s preceding stimulus onset and over

all trials with that odor. We explored values of n from 2 to 4. If n was low (e.g.,

n = 2 SDs) the rate of false responses detected in PNs prior to stimulation was
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unacceptably high (>35%). If n was high (n = 4 SDs), the proportion of missed

responses (as judged by visual inspection of PN rasters and PSTHs) during

odor presentation was unacceptably high (>10%). Values of n of 3 or 3.5 gave

low rates of both false positives (during baseline) and false negatives (during

stimulation) in PNs. Values of n between (and including) 2 and 4 made no

significant difference with KCs. We show the results with n = 3.5 (Method A,

figure 2.4); those obtained with other values of n are summarized in table 2.1.

2. R: To ensure that responses detected were reliable even at low firing

rates, we required that more than half of all trials with each odor contain at

least one spike during the response window. We also analyzed the same data

sets using different criteria for PNs and KCs, each adapted to each popula-

tion’s baseline firing statistics. Despite this difference, the results (table 2.1,

figure 2.7) are nearly identical to those shown in figure 2.4.

2.4.5 Sparseness

Data were analyzed using Matlab and Igor. The sparseness measures are taken

from Wilmore and Tolhurst (2001), Rolls and Tovee (1995), and Vinje and Gallant

(2000). In brief,

SP =

1 −
( (∑N

j=1 r j/N
)2∑N

j=1 r2
j /N

)
1 − 1/N

,

where N is the number of units and r j is the response of unit j. Lifetime sparseness,

SL, is calculated in the same way, except that index j now corresponds to each odor

and N to the total number of odors tested with each cell. Analog response intensities
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Figure 2.10. Population responses and sparseness across PNs and KCs, calculated using
different criteria with PNs and KCs, for determining whether a neuron responded: A PN
was qualified as responding during the 3 s following odor onset, if its firing rate increased
to above 3.5 SDs of the pre-odor baseline rate (measured by a PSTH with 200 ms non-
overlapping bins). In contrast, a KC response occurred when over 50% of individual trials
for a particular odor showed an increase from baseline activity anywhere in the 3 s window.
An increase in activity was defined as at least one 200 ms bin with a spike count higher than
3 SDs above baseline (computed from the pre-odor period over all trials). A left, histograms
displaying PN and KC response probability distributions. Response probabilities measured
across all odors tested. Note opposite skews in KC and PN distributions. A right, histograms
displaying distributions of spike numbers in a response. Spike counts were computed only
from cell-odor pairs with a significant excitatory response during the analysis window.
B, excitatory responses (filled boxes) of individual PNs and KCs. Open squares denote
inhibitory response (PNs only) or absence of a response (see figure 2.4B legend for odors).
[PN data: O. Mazor and S. Cassenaer. KC data: J. Perez-Orive.]
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Method A B C D E F G H
Threshold 3.5 SD 2 SD 3 SD 4 SD 3.5 SD

Window 3 s 3 s 3 s 3 s 1.4 s 3 s 3 s 3 s
PN P(Resp.) 0.64 0.73 0.68 0.61 0.51 0.64 0.65 -

False Pos. (%) 2.23 35.98 6.16 0.80 0.89 2.14 3.57 -
Overlap (%) - 90.71 96.34 96.79 87.41 99.73 99.55 -

KC P(Resp.) 0.11 0.12 0.12 0.11 0.09 0.11 - 0.11
False Pos. (%) 0.09 1.46 0.18 0.00 0.00 0.09 - 0.00

Overlap (%) - 99.27 99.82 99.91 97.46 100.00 - 99.46

Table 2.1. Quantitative comparison of different methods of response detection. For each
method, three statistics are computed for PNs and KCs. Response probability (P(Resp.))
indicates the probability of a detected response, computed over all cell-odor pairs. The
false positives value (False Pos.) is the percentage of responses detected when the method
was applied to a window of baseline activity prior to odor onset (computed for all cell-odor
pairs). The final statistic (Overlap), is a measure of similarity between a particular method
and Method A (see section 2.4.4, p. 48), defined as the percentage of cell-odor pairs for
which the two methods either both detected or both did not detect a response. Methods
B–D are identical to Method A, but use a different response amplitude threshold, ranging
from 2 SDs to 4 SDs above baseline. Method E is the same as Method A, but uses only a 1.4
s response window (0–1.4 s after odor onset). Method F is based on Method A, but it uses
a different reliability criterion that adapts to the cell’s baseline statistics. In this method, an
odor response was reliable if more than half of all trials contained at least one 200 ms bin
with a spike count higher than a threshold, specified as 1 SD above the mean baseline rate.
Methods G and H are the methods of response detection for PNs and KCs, respectively,
described in figure 2.10. [PN data: O. Mazor and S. Cassenaer. KC data: J. Perez-Orive.]

for a given cell-odor pair were computed by first segmenting the recording into

200 ms bins and computing the mean spike count in each bin, averaged over all

trials with that odor. We then subtracted from all bin measures within the analysis

window (1.4 or 3 s), the mean baseline rate. All so-calculated values greater than 0

over the window (7 or 15 bins) were then added. SP and SL vary between 0 and 1

(1 = most sparse).

2.4.6 Sharp electrode recordings and staining

Sharp electrode recordings of KCs (figures 2.5 and 2.7A) were made with borosil-

icate glass micropipettes (RDC > 300 MΩ) filled with 0.2 or 0.5M K+-acetate or
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patch-electrode solution (see section 2.4.8). KC input resistance at the soma was

usually around 1 GΩ. Intracellular recordings of LHIs (soma or dendritic impale-

ment, figure 2.6) were made with borosilicate glass micropipettes filled with 0.5M

K+-acetate (RDC:100–300 MΩ) or wire tetrodes. Intracellular staining of LHIs was

carried out by iontophoretic injection of 2% neurobiotin in 0.5M K+-acetate (0.5 s

current pulses of −2.5 to −3.5 nA at 1 Hz for 30–60 min). Injected neurons were

visualized in whole mounts using a diaminobenzidine-based chromogenic reac-

tion (Wicklein and Strausfeld, 2000). Local field potentials were always recorded

in the mushroom body calyx, using saline-filled patch pipettes (RDC: 2–15 MΩ) or

wire tetrodes. Electrical stimulation of PNs was carried out in the AL using 25 µm

bipolar tungsten wires and a WPI stimulus isolator.

2.4.7 Immunocytochemistry

Partially desheathed locust brains were fixed for one hour in 5% formaldehyde,

desheathed and washed for 20 h in PBS. Brains were then dehydrated through an

ethanol series, placed in propylene oxide for 20 min, rehydrated and then agitated

for five hours in PBS containing 5% triton and 0.5% bovine serum albumin (PBS

5% T 0.5% BSA). They were then washed for 30 min in PBS 0.5% T 0.5% BSA,

and transferred to fresh PBS 0.5% T 0.5% BSA containing anti-GABA at 1:100

dilution, or, for negative control, to PBS 0.5% T 0.5% BSA lacking primary antibody.

After incubation at 4°C for six days, brains were washed for two hours in PBS at

room temperature and transferred to PBS 0.5% T 0.5% BSA containing fluorescein

isothiocyanate-conjugated goat anti-rabbit IgG at 1:20 dilution and incubated at

4°C for four days. They were then washed for 30 min in PBS, dehydrated through

ethanol series, cleared in methyl salicylate and examined by confocal laser scanning
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microscopy. Figure 2.6A is a projection along the z-axis of a stack of 30 optical slices

each 2.7 µm thick, constructed using the public domain ImageJ program (http:

//rsb.info.nih.gov/ij/). Negative control brains showed diffuse background

staining.

2.4.8 Patch-clamp recordings

Whole-cell patch-clamp recordings from KCs were obtained in a semi-reduced

preparation. After the brain was exposed, it was removed from the head with

antenna and eyes still attached, placed on a glass coverslip in a custom-built cham-

ber, and immobilized using insect pins placed in the eyes. The brain was then

desheathed. Recordings were obtained from KC somata under visual control using

a microscope with IR-DIC imaging. Patch pipettes (5–6 MΩ) were filled with a so-

lution of (in mM): K gluconate 185, HEPES 10, EGTA 1, MgATP 4, Na3GTP 0.5 (335

mOsm, pH 7.2). Glucose (10 mM) was substituted for an equimolar amount of su-

crose in the external saline solution, and the saline was bubbled continuously with

O2. Hyperpolarizing current injections (10 pA) were used to continually measure

intrinsic membrane properties, and the cell was accepted for recording as long as

Rinput > 1 GΩ and Raccess < 40 MΩ. Data was acquired on an Axopatch 1D amplifier

at 10 kHz and filtered at 5 kHz. Note: In whole-cell current-clamp mode, typical

EPSP duration in controls at −60 mV (figure 2.7B) was about twice that observed

with sharp electrodes (figure 2.7A).

2.4.9 Picrotoxin injections

Patch pipettes were back-filled with a solution containing 1.67 mM picrotoxin and

0.3% Fast Green. After the pipette was introduced into the MB calyx (dendritic
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region of the MB), a pneumatic pico-pump (WPI) was used to apply a series of

four to nine 100 ms, 10 psi pressure pulses. Each pulse injected ∼1 pL of solution

(as measured by previous injection into a drop of oil). Injected solution remained

exclusively localized to calyx, as verified by dispersal of Fast Green.
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C 3

Hebbian STDP in Mushroom Bodies
Facilitates the Synchronous Flow of
Olfactory Information in Locusts

Odour representations in insects undergo progressive transformations and decor-

relation (Mazor and Laurent, 2005; Perez-Orive et al., 2002; Wilson et al., 2004)

from the receptor array to the presumed site of odour learning, the mushroom

body (de Belle and Heisenberg, 1994; Dubnau et al., 2001; Yu et al., 2005; Zars et

al., 2000). There, odours are represented by sparse assemblies of Kenyon cells in

a large population (Perez-Orive et al., 2002). Using intracellular recordings in vivo,

we examined transmission and plasticity at the synapse made by Kenyon cells onto

downstream targets in locusts. We find that these individual synapses are excitatory

and undergo hebbian spike-timing dependent plasticity (STDP) (Bi and Poo, 1998;

Markram et al., 1997; Roberts and Bell, 2002) on a ± 25 ms timescale. When placed

in the context of odour-evoked Kenyon cell activity (a 20- Hz oscillatory popula-

tion discharge), this form of STDP enhances the synchronization of the Kenyon

cells’ targets and thus helps preserve the propagation of the odour-specific codes

through the olfactory system.
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3.1 Introduction

Olfactory processing in insects begins in an array of receptor neurons that express

collectively many tens of olfactory receptor genes (∼60 in Drosophila (Clyne et

al., 1999; Vosshall et al., 2000); ∼150 in honeybees (The Honeybee Genome Con-

sortium, 2006). The representations of general odours are then decorrelated by

local circuits of projection neurons and local neurons in the antennal lobe (Mazor

and Laurent, 2005; Perez-Orive et al., 2002; Wilson et al., 2004). In locusts and

other insects, the antennal lobe output is distributed in space and time and can

be described as stimulus-specific time-series of projection- neuron activity vectors,

updated at each cycle of a 20-Hz collective oscillation (Mazor and Laurent, 2005;

MacLeod and Laurent, 1996; Wehr and Laurent, 1996). Distributed projection-

neuron activity is then projected to Kenyon cells, the intrinsic neurons of the

mushroom body. In contrast to projection neurons, Kenyon cells respond very

specifically and fire extremely rarely (Perez-Orive et al., 2002). The mechanisms

underlying this sparsening are starting to be understood (Perez-Orive et al., 2002;

Jortner et al., 2007). Such sparse representations are advantageous for memory and

recall (Jortner et al., 2007), consistent with established roles of the mushroom bod-

ies in learning (de Belle and Heisenberg, 1994; Dubnau et al., 2001; Yu et al., 2005;

Zars et al., 2000). In Drosophila, experiments combining molecular inactivation

with behaviour indicate that synaptic output from Kenyon cells in the lobes is re-

quired for memory retrieval (Dubnau et al., 2001). Little is known, however, about

the electrophysiological properties of these synapses.
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3.2 Results

3.2.1 Synaptic connections between individual Kenyon cells and β-LNs

We studied the connections made by Kenyon cells onto a small population of

extrinsic neurons (MacLeod et al., 1998) in the β-lobe of the locust mushroom body

(figure 3.1a), using an intact, in vivo preparation (Methods).

β-lobe neurons (β-LNs) respond to odours; their responses are odour-specific

and their tuning is sensitive to input synchrony (MacLeod et al., 1998). We recorded

intracellularly from pairs of Kenyon cells and β-LNs: randomly selected Kenyon

cells were impaled in their soma; β-LNs were impaled in a dendrite in the β-

lobe. We focused on one β-LN anatomical subtype (MacLeod et al., 1998), which

comprises many individual neurons. Neurons of this subtype, called β-LNs here,

could be recognized also by their physiological characteristics (see below). Each β-

LN has extensive dendrites (figure 3.1a, and figure 3.5) that intersect many of 50,000

Kenyon cell axons. Monosynaptic connections were found in∼2% of tested Kenyon

cell KC–β-LN pairs (figure 3.1b). All were excitatory. The delay between Kenyon

cell spike and β-LN excitatory post-synaptic potential (EPSP) onset was 6.5 ± 0.70

ms, including 5.4 ± 0.25 ms for spike propagation from Kenyon cell soma to the

β-lobe. The remaining (synaptic) delay (∼1 ms) is similar to that at another chemical

synapse in the locust brain (Jortner et al., 2007). Unitary EPSPs were large (1.58mV

± 1.11, n = 9 pairs), in contrast to those generated in Kenyon cells by individual

projection neurons (86 µV ± 44) (Jortner et al., 2007). The fact that Kenyon cell

outputs are powerful is consistent with Kenyon cell spikes being rare and therefore

highly informative. EPSP amplitude varied greatly across connected pairs (0.55−4

mV). This could reflect a distribution of electrotonic distances between synapses
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Figure 3.1. Synaptic connections between individual Kenyon cells and β-LNs are excita-
tory, powerful and varied in gain. a, Schematic of the locust olfactory circuits: Projection
neuron axons (n = 830) exit the antennal lobe (AL) and send collaterals into the mushroom
body (MB) calyx. There, they excite Kenyon cells (n = 50,000) with, 50% average connectiv-
ity (Jortner et al., 2007). Kenyon cells each send a bifurcating axon into the α- and β-lobes
(α-, β-L), forming ’beams’ of thousands of tightly packed axons (inset). The finer dendrites
of β-LNs run normal to Kenyon cell axons in β-LN-specific sectors: two of these can be
seen in the inset (a photomicrograph of a 10-µm-thick section of the distal end of the β-
lobe). b, Spike-triggered averages of β-LN intra-dendritic recordings from nine different
KC–β-LN pairs (9 Kenyon cells, 5 β-LNs). All β-LNs and Kenyon cells are recorded in vivo,
with intracellular electrodes. Note the wide-range of spike-triggered average amplitudes.
Same-symbol marked spike-triggered averages are from the same β-LNs, with different
presynaptic Kenyon cells sampled successively. Inset, scaled spike-triggered averages in b,
illustrating similarity of kinetics. c, Simultaneous dendritic impalements of one β-LN with
two separate electrodes (el. 1, 2). el.2−el.1 is the difference between the two voltage traces;
note the high correlation of amplitudes (noise envelope is 2 s.d., red stipples), indicating
similar electrotonic access to synaptic sites. Lower panel, overlay of selected EPSPs from
above. d, Simultaneous dendritic impalements of two different β-LNs (1 and 2). Note some
common EPSPs (boxes) and EPSPs specific to either β-LN (*). β-LN2−β-LN1 is the differ-
ence between the two voltage traces; note significant variations on each side of the noise
envelope (stippled lines as in panel c). Lower panel, overlay of selected EPSPs from above.
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and recording sites. Simultaneous impalements of different dendrites in the same β-

LN (n = 2 experiments), however, show that the amplitudes of most events were the

same across recording sites (PearsonÕs correlation >0.9) (figure 3.1c). Consistent

with this, unitary EPSP kinetics (10-90% rise time, 8.3 ms± 2.3; time to 1-(1/e) of peak,

13.2 ms ± 4.4) were independent of the β-LN recorded and, thus, of the impalement

site (inset, figure 3.1b). Simultaneous dendritic recordings of different β-LNs (n = 5

experiments), however, revealed that their synaptic backgrounds overlapped only

partly (figure 3.1d; Pearson’s correlation or fraction of common EPSPs, 0.1Ð0.3).

Common EPSPs rarely had the same amplitude (figure 3.1d). Hence, β-LNs may

each receive inputs from hundreds to thousands (∼2% of 50,000 Kenyon cells) of

Kenyon cells, in overlapping subsets; KC–β-LN connections are strong on average,

with target-specific strength.

3.2.2 β-LN tuning and spike-time precision during responses to odours

Odour-evoked activity in projection neurons and Kenyon cells consists principally

of sequential volleys of synchronized spikes– generally, one spike per responding

neuron per oscillation cycle (Mazor and Laurent, 2005; Perez-Orive et al., 2002;

Wehr and Laurent, 1996). β-LN responses to odours also consisted typically of

sequences of single phase-locked spikes, timed around the trough of several local

field potential (LFP) oscillation cycles (figure 3.2a, b). The cycles when a spike was

produced (usually with probability<1) depended on β-LN and stimulus identity, as

illustrated in (figure 3.2c, d. We conclude that, to each oscillation cycle corresponds a

particular activity vector in the projection neuron (Perez-Orive et al., 2002), Kenyon

cell (Perez-Orive et al., 2002) and β-LN populations. By recording from pairs of β-

LNs simultaneously during odour trials, we also observed that, when the two β-LNs
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Figure 3.2. β-LN tuning and spike-time precision during responses to odours. a, Re-
sponses of one β-LN to ten successive trials with odour cis-3- hexen-1-ol (LFP shown in
grey). Note non-random timing of β-LN action potentials during each trial and during each
oscillation cycle (calibration LFP, 250 µV).b, β-LN action potentials lock to the trough of
LFP during odour responses. Phase plot of β-LN action potentials during odour responses
(phases plotted clockwise). Distribution (blue) constructed with data from 8 β-LNs (average
in red). c, β-LN responses are structured in time and are odour-specific (see also (MacLeod
et al., 1998)). This β-LN responds to different odours with different discharge patterns: up-
per panel, response to odour 1-octanol (grey bar); middle panels, same 5 trials as in upper
panel on an expanded time base, showing approximate timing of relevant oscillation cy-
cles (grey bars) and also showing responses to 1-hexanol and cis-3-hexen- 1-ol. Apparent
spike-time jitter is due to variability of oscillation cycle duration within and across trials.
In contrast, spike-time jitter across β-LNs, but within the same oscillation cycle of the same
trial, is low (see panel d). Lower panel, smoothed peri-stimulus time-histogram from the
trials and odours in the middle panels (in the same order). The y axis measures firing prob-
ability. Stippled line in the top peri-stimulus time-histogram shows responses to a second
set of 5 trials with this odour, delivered after trials with the 2nd and 3rd odours.d Spike
discharges in response to odours are precisely locked across β-LNs. Upper panel, simulta-
neous recording of two β-LNs during odour stimulus, with spikes from both neurons in
several oscillation cycles (*). Note precise overlap. Middle panels, zoom on those action po-
tentials, superimposed and triggered on β-LN1 action potential. Lower panel, distribution
of spike-time jitter. Recordings as in the middle panels; ∆t is the time difference between
spikes in β-LNs 1 and 2, when they occur in the same oscillation cycle.
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fired one action potential during the same oscillation cycle (n = 4 pairs; (figure 3.2d,

upper panel, asterisks), those action potentials were tightly synchronized (±2 ms,

(figure 3.2d, middle and lower panels).

3.2.3 Hebbian spike-timing-dependent plasticity at the KC-β-LN synapse

A fortuitous observation provided hints of plasticity at the KCÐβ- LN synapse

(figure 3.3a). At trial 4 of a Kenyon cell stimulus sequence intended to explore

β-LN integration, the β-LN fired a spontaneous action potential roughly at the

time of the first (of 2) Kenyon-cell evoked EPSP (figure 3.3a). At trial 5, 10 seconds

after this single fortuitous pairing, the first EPSP of the pair was greatly enhanced

(figure 3.3a). This suggested the possibility of spike-timing-dependent plasticity

(STDP), a phenomenon thus far unknown in invertebrates but well characterized

in vertebrates, in which the gain of a connection can be changed according to the

temporal relationship between pre- and post-synaptic spikes (Bi and Poo, 1998;

Markram et al., 1997; Roberts and Bell, 2002). We explored the consequence of

preÐpost temporal relationships on the KC–β-LN synapse. A β-LN was impaled

and stimulated alternately by two independent Kenyon cell pathways–one for

pairing, one for unpaired control (figure 3.3b). Each stimulus was repeated every 10

s, with a 5-s delay between pairing and control stimuli. Pairing consisted of a single

Kenyon cell (pre) stimulus and a 5-ms supra-threshold β-LN (post) current pulse,

timed such that the delay (dt = tpost−tpre) between pre- and post-synaptic spikes

varied between −60 and +50 ms. Test trials, used to measure connection strength

before and after pairing, were identical to the pairing trials in all respects except in

the temporal relationship between pre- and post-synaptic spike times (2.5 s apart,

(figure 3.3b). Two examples with controls are shown in Fig. 3c, d (for dt = 10 ms and
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Figure 3.3. Hebbian spike-time-dependent plasticity at the KC–β-LN synapse. a, Effect of
single, near-coincident spikes in pre- and post-synaptic neurons on the Kenyon cell to β-LN
synapse. The β-LN is held from a dendrite at normal resting potential in vivo, and subjected
to paired Kenyon cell stimuli at 20-ms intervals (first and second stimuli in train are from
different Kenyon cell electrodes). At trial 4, the effect of the first stimulus sums with an
on-going slow depolarization, causing a β-LN action potential. At trial 5, the first EPSP
(asterisk) is dramatically enhanced. b, Stimulation protocols to probe STDP. For ’pairing’,
the β-LN is depolarized with a 5-ms DC pulse, causing a single β-LN spike in a window
around the time of the Kenyon cell pairing stimulus (p). We tested the effects of 5 to 25
successive pairings (10-s intervals); all evoked STDP. Control Kenyon cell stimulus (c) is
offset by 5 s relative to the β-LN current pulse. ’Test’, same protocol as pairing, except that
Kenyon cell and β-LN stimuli are 2.5 s apart. c, Potentiation of KC–β-LN connection after
25 pairings with dt = 10 ms. Upper panel, superimposed before- and after-trials, with their
averages (bold lines). Middle panel, EPSP slope against trial index, with 25 pairings between
the before- and after- periods. Stippled lines are average slopes over corresponding trials.
Lower panel, a control, recorded at the same time with a second Kenyon cell pathway, offset
by 5 s with respect to the β-LN spike, and showing no significant change. d, Depression of
KC–β-LN connection after 25 pairings with dt = −4 ms. Panels as in panel c.e, STDP plot
for 26 values of dt = tpost−tpre, where dt is measured as the delay between the β-LN spike
(tpost caused by intracellular current injection, +i) and the β-LN EPSP onset (tpre, grey line,
upper panels). EPSP onset time is used (rather than Kenyon cell stimulus time) because
Kenyon cell spike time at the β-LN synapse is delayed from stimulus time, owing to spike
propagation (see (figure 3.4a). Note the zero-crossing is slightly offset from dt = 0 (lower
panel).
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−4 ms, 25 pairings each). For dt = 10 ms (figure 3.3c), the paired input underwent

potentiation; for dt = − 4 ms (figure 3.3d), it underwent depression. For both

conditions, the control pathway (same β-LN, different Kenyon cell input) remained

unchanged (figure 3.3c, d, lower panels). The changes were thus input-specific;

they were often detectable after a single pairing (see also (figure 3.3a), and could be

maintained for up to 25 min. We tested 26 values of dt between−60 and +50 ms. The

resulting changes (figure 3.3e) define a classical hebbian profile (Bi and Poo, 1998;

Roberts and Bell, 2002): the synapse is potentiated when pre- precedes post-, and

depressed when post- precedes pre-, with symmetrical profiles. The changes could

be fitted well with two exponential decays flanking a narrow linear range around

t = +4ms (τ1 =10.4 ms for dt < −9 ms; y = 3.78t −13.1 for −9ms < dt <17.5 ms;

τ2 =11.6 ms for dt >17.5 ms). Several connections were tested successively with

two (or more) values of dt (some positive, others negative): the same connections

could undergo both depression and potentiation, depending on the value of dt.

The STDP profile thus seems to be a property of each connection and not only a

collective one.

3.2.4 The effect of STDP on β-LN spike timing

We observed that the values of dt over which synaptic weights change correspond

to the period of single odour-evoked oscillation cycles; hence, only within-cycle ’co-

incidences’ may modify the connections between a Kenyon cell and its targets. The

features of the STDP curve, when considered together with the timing of Kenyon

cells and β-LNs during odour-evoked activity, have interesting consequences. Con-

sider the phases of Kenyon cell and β-LN spikes (figure 3.4a). Owing to propagation

delays, Kenyon cell spikes reach their targets just before the trough of the LFP, a
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little before β-LN firing (figure 3.2a, b). Consider a cycle in which a β-LN spikes

early (dt <0): some KC–β-LN connections will undergo depression (figure 3.3e);

at the next trial, β-LN spike time at this cycle should be delayed (figure 3.4b). If,

in contrast, a β-LN spikes late, STDP should potentiate Kenyon cell drive to it,

and thus advance spike time for that cycle (figure 3.4b). In short, the cycle-by-

cycle action of STDP suggests adaptive control of β-LN spike phase. The need for

such regulation is not unique to this system: models of cortical networks indicate

that, as activity propagates through successive ’layers’, accumulating noise can

rapidly smear the temporal structure that may exist (Diesmann et al., 1999; Vogels

et al., 2005). Modelling studies (Arthur and Boahen, 2006; Suri and Sejnowski, 2002;

Zhigulin et al., 2003) predict that STDP, given appropriate parameters, could pre-

serve the temporal discretization of activity through such layers.

We generated a reduced model of the KC–β-LN circuit (Methods) and intro-

duced the STDP rule derived from our experiments (figure 3.4c). To control the

relative phases of Kenyon cells and β-LNs, we drew Kenyon cell spike phases from

experiments (Perez-Orive et al., 2002), and input weights from uniform distribu-

tions with different means: with low weights, β-LN spikes tended to occur late

(dt >0, (figure 3.4d); with larger weights, they occurred early (dt < 0, figure 3.4d).

After several trials (each with a random draw of inputs from the same distribution),

STDP was allowed to modify synaptic weights for the following trials: when β-LN

spikes occurred late (dt > 0), Kenyon cell outputs became potentiated and β-LN

spikes were advanced; for dt < 0, time shifts were inverted. The histograms in

figure 3.4d represent spike-time distributions for 1,000 trials before (red) and after

(black) STDP, for each of three conditions. These simulations were repeated 200

times (50 trials each), with 11 different Kenyon cell input distributions (figure 3.4e).
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Once STDP was turned on (trial 1), the evolution was systematic and rapid, leading

to the adaptive up- or downregulation of input weights, firing phase and response

intensity (top, middle and bottom, respectively, all averages; figure 3.4e). Given that

the model is entirely constrained by experiments, it is noteworthy that the mean

phase of the first β-LN spike at steady state (π rad, figure 3.4e), matches precisely

that measured experimentally (figure 3.2b).

Figure 3.4 (on the next page). The effect of STDP on β-LN spike timing. a, Polar plot of
Kenyon cell spike phase in the calyx (somata) (KCC) and in the β-lobe (KCL), and β-LN spike
phase (from dendrites in the β-lobe) relative to the LFP (in the calyx). All measurements
come from experiments. Green and red lines indicate extrema of the STDP curve (see panel
c). b, Schematic of temporal relationships between LFP, Kenyon cell spike time, β-LN spike
time and the STDP rule. The Kenyon cell mean spike time in the calyx (KCC) is about π/2
after the LFP peak, and near the LFP trough in the β-lobe (KCL) , owing to propagation
delay. β-LN mean spike time in the β-lobe is at the LFP trough (π rad). The STDP curve
is represented in colour gradients. The predicted effect of STDP on β-LN spike time is
schematized underneath. If the β-LN spike occurs early, STDP should depress late Kenyon
cell inputs (in this oscillation cycle), delaying this β-LN spike at the next opportunity. The
converse applies if the β-LN spike occurs late. c, The STDP fit (two exponentials flanking
a linear segment, see text) overlaid on experimental data. d, Simulations of STDP on β-LN
spike time (rasters) (model β-LN excited by 10 model Kenyon cells during one LFP cycle).
First trial at top. Three conditions are illustrated: left panel, low input weights (mean,
1.8 mV; range, 3 mV), causing late β-LN-spike times (dt > 0); when STDP is turned on,
potentiation shifts β-LN spikes to earlier times. Right panel, high input weights (mean, 9
mV; range, 3 mV); when STDP is turned on, depression delays β-LN-spike times. Middle
panel, intermediate weights, causing no change. Histograms show the distribution of β-LN
spike times before (red) and after (black) STDP (1,000 runs per condition). e, Evolution of
KC–β-LN weights (upper panel), β-LN mean spike phase (middle panel) and number of
spikes per response (lower panel) over 50 trials following onset of STDP (at trial 1). AP,
action potential. Each curve is an average of 200 simulations (11 different input distribution
means). Asterisks indicate a corresponding condition in the three plots. f, Schematic of
experimental design. LFP cycles (1...k) during which the recorded β-LN-produced action
potentials are selected. Peaks of LFP are used to trigger a sequence of current (Im) pulses
(a, b, c) into the β-LN (one such sequence per oscillation cycle). The a-b-c sequence lasts
less than one oscillation cycle, and is repeated for all selected cycles, over several trials. g,
Example of protocol described in panel f, such that the β-LN spike is phase-delayed to∼3/2
π (arrows). (Interrupted segments of β-LN potential trace are bridge-balance artefacts.) h,
Phase plot of spikes in one β-LN before and after pairing (10 trials each), as in panel g.
Fifteen pairing trials (estimated dt = 17 ms). i, Distributions of pairing induced mean phase
shifts, measured in 20 separate experiments (6 β-LNs; mean ± s.e.m = − 0.74 ± 0.4 ms
versus 2.0 ± 0.4 ms).
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To test directly the effect of STDP on β-LN output, we next manipulated β-

LN spike timing during responses to odours in vivo: if our model is correct, such

manipulations should change the output of the odour-activated Kenyon cells onto

that β-LN and, thus, generate predictable shifts in its spike phase. During odour

stimuli, short current pulses locked to selected cycles of the LFP were injected in a β-

LN: a negative pulse (b, figure 3.4f) was injected during the cycles and phase when

the β-LN would naturally fire (to prevent stimulus evoked spikes), and a positive

pulse (c, figure 3.4f) was injected at a desired phase, for those same cycles (that is,

at an abnormal time relative to the Kenyon cell inputs that would normally drive

the recorded β-LN). An example is shown for four consecutive cycles in figure 3.4g.

After several such pairing trials, current injection was terminated and β-LN-firing

phase over the next trials was compared to that before pairing. figure 3.4h plots

the effects of one such manipulation (dt > 0): as predicted, an artificial phase-delay

caused a corrective phase-advance. Twenty distinct experiments were carried out

in six β-LNs; the expected phase shifts were observed in 16 of those 20 (Mann-

Whitney: P < 0.001) (figure 3.4i). This is consistent with an adaptive role for STDP

in the fine-tuning of β-LN spike-phase, and may explain the tight synchronization of

β-LNs (figure 3.2d). Hence, STDP helps preserve the discrete and periodic structure

of olfactory representations as they flow through the mushroom bodies.

3.3 Discussion

We showed that the connections made by Kenyon cells to β-LNs are excitatory,

strong on average, variable across pairs, and plastic. Plasticity follows time-sensitive

hebbian associativity rules (Bi and Poo, 1998; Markram et al., 1997; Roberts and Bell,

2002) and is constrained to within-cycle interactions between pre-and postsynaptic
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neurons. STDP is therefore not specific to vertebrates or cortical architectures. We

do not know the molecular underpinnings of STDP in this system, or whether

STDP might confer the associative features usually ascribed to mushroom bodies

(de Belle and Heisenberg, 1994; Dubnau et al., 2001; Yu et al., 2005; Zars et al.,

2000). The fly and honeybee genomes both reveal coding sequences for N-methyl-

D-aspartate (NMDA) receptor subunits (The Honeybee Genome Consortium, 2006;

Ultsch et al., 1993) and some Drosophila behavioural results (Tanimoto et al., 2004)

are compatible with STDP learning rules (Drew and Abbott, 2006). One hypothesis,

readily testable here, is that STDP provides associativity by tagging transiently the

subset of synapses activated simultaneously by the odour, before the conditional

arrival of a slower, non-specific reward signal (Frey and Morris, 1998).

Our results reinforce the proposed importance of spike timing for this, and pos-

sibly other, olfactory system(s) (Mazor and Laurent, 2005; Perez-Orive et al., 2002):

Kenyon cells act as coincidence detectors for synchronized projection neuron input

(Perez-Orive et al., 2002), β-LNs act as coincidence detectors for Kenyon cell input;

because STDP helps enhance β-LN synchronization, we infer that spike timing must

be relevant also for the processing of β-LN output. These results indicate that the

oscillation cycle – a temporal unit of processing first defined by negative feedback

in the antennal lobe (MacLeod and Laurent, 1996) – is actively preserved in at least

three successive layers of processing (projection neurons, Kenyon cells and β-LNs).

It will be interesting to assess whether all Kenyon cell outputs obey the same STDP

rules, and if these rules are themselves subject to learning related modifications.

Indeed, Kenyon cells seem to communicate with one another through axo-axonal

chemical synapses (Leitch and Laurent, 1996). Given the dynamics of projection

neuron/Kenyon cell activity vectors in response to odours (Mazor and Laurent, 2005;
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Perez-Orive et al., 2002; Wehr and Laurent, 1996) the possibility that Kenyon cell-

–Kenyon cell synapses also undergo STDP suggests a mechanism for sequence

learning (Nowotny et al., 2003), similar to principles proposed for spatial map for-

mation in rodents (Blum and Abbott, 1996; Mehta et al., 2002); here, however, the

learned sequences have no relation to movement in physical space. The existence of

such similarities (synaptic learning rules, and synchronized and sequential neural

activity patterns) may bring us closer to understanding the relationships between

circuit dynamics, architecture and learning in the brain.

3.4 Methods

3.4.1 Preparation and stimuli

All results were obtained in vivo from locusts (Schistocerca americana) in an estab-

lished, crowded colony. Young adults of either sex were immobilized, with two

antennae intact for olfactory stimulation. The brain was exposed and de-sheathed

as previously described (Perez-Orive et al., 2002). Odours were delivered by injec-

tion of a controlled volume of odourized air within a constant stream of dessicated

air. Teflon tubing was used at and downstream from the mixing point to pre-

vent odour lingering and cross-contamination. Odours were used at 10% vapour

pressure further diluted in the dessicated air stream. The results presented here

originate from recordings of over 50 β-LNs in 40 locusts.

3.4.2 Electrical stimulation

Twisted-wire tetrodes obtained from FHC (number CE4B75) were modified for

monopolar stimulation, with the casing serving as the anode. The tips of the tetrodes
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were splayed such that the distance between the exposed tips was approximately

equal to 60% of the diameter of the mushroom body calyx. The exposed end of

the stimulating electrode was embedded among Kenyon cell somata. The tetrodes

were electroplated with gold solution to reduce the impedance to between 200 and

350 kΩ at 1 kHz. Stimulating currents (5–50 µA, 0.1 ms) were generated by an

STG1000 Multichannel System. The number of consecutive pairing trials varied

between 5 and 25, at 10-s intervals. Propagation delays for the Kenyon cell action

potentials were measured as the delay between a Kenyon cell soma stimulus and the

extracellular spike volley recorded in the β-lobe, at the level of the β-LN dendritic

recordings (Perez-Orive et al., 2004).

3.4.3 Intracellular recordings

Sharp electrode recordings from the dendrites of β-lobe neurons were made with

borosilicate glass micropipettes (DC resistance, 100MΩ) filled with 3M K acetate.

Input resistance was around 300MΩ. The cell type from which the data are derived

could be recognized by several characteristics, including response to odour, sub-

threshold baseline activity profile, and response to electrical stimulation of Kenyon

cells. A series of pilot experiments, in which the cells were stained intracellularly

by injection of 6% cobalt hexamine, confirmed that cells with these physiological

characteristics belong to a specific morphological class (figure 3.5). EPSP slopes

were measured from linear fits to voltage trace between 10% and 90% of rising

phase. Recordings from β-LNs were always made from dendrites in the β-lobe (the

largest dendrites are often several µm in diameter). That these recordings were

not from Kenyon cell axons is guaranteed by the fact that Kenyon cell axons are

too small for intracellular impalement (100–400nm diameter (Leitch and Laurent,
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1996)). This identity of β-LNs was confirmed by dye injection. Kenyon cell intracel-

lular recordings were always made from their somata (5–7 µm diameter).

3.4.4 Field recordings

Twisted-wire tetrodes obtained from FHC (number CE4B75) were used for ex-

tracellular recordings of the local field potential (LFP). For these recordings, the

tip was cut with fine scissors and each channel tip was electroplated with gold

solution to reduce the impedance to between 200 and 350 kΩ at 1 kHz. These

recordings were made with a custom-built 16-channel preamplifier and amplifier.

Two to four tetrodes were used simultaneously. The pre-amp has a unitary gain,

and the amplifier gain was set to 10,000X. For pairing experiments during odour

stimuli (figure 3.4fÐi), the LFP was low-pass filtered on line and fed through a

real-time peak-detection algorithm. Each detected peak was given a rank order

(1...k) and the cycles during which the recorded β-LN produced an action potential

were identified. Because of intertrial variability of LFP and small uncertainty about

cycle ranking in each trial, we typically selected eight consecutive oscillation cycles

centred on the cycles of interest. During each one of those 8 consecutive cycles, a

current-pulse sequence (a–c, figure 3.4f) was injected into the β-LN dendrite so as

to phase-advance (b > 0; c < 0) or phase-delay (b < 0; c > 0) its odour-evoked spikes.

This pulse sequence was started again at each LFP peak of the selected cycles.

3.4.5 Simulations

A leaky integrate-and-fire model (R = 300M Ω, τ = 20 ms) was implemented in Igor

(Wavemetrics, Lake Oswego, Oregon). Spiking threshold and after-hyperpolarization

were estimated from intracellular recordings. A single oscillation cycle was mod-
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elled as 10 inputs convolved with a current waveform derived from dual KC–β-LN

recordings. The number of inputs per cycle was based on KC–β-LN connectivity

estimates from dual intracellular recordings and from β-LN baseline sub-threshold

activity, as well as on the average Kenyon cell population response time course (Ma-

zor and Laurent, 2005; Perez-Orive et al., 2002; Wilson et al., 2004) and response

probability (Perez-Orive et al., 2002). The specific Kenyon cell spike times were

drawn randomly at every trial from the Kenyon cell spike time distribution. The

weights at the start of each simulation were drawn randomly from a distribution

similar to that observed experimentally, and scaled for different simulations to eval-

uate the effect on the spiking response in the presence and absence of STDP. The

STDP rule was modelled, as described in the text, by two exponentials flanking a

linear region (fitted to data by minimizing Chi-square; Igor curve-fitting). When

STDP was invoked, every trial was followed by an update of the weights, on the

basis of dt, as dictated by the fitted STDP curve (figure 3.4).
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Figure 3.5. Wholemount of an intracellular fill (cobalt hexamine, TimmÕs silver intensifi-
cation) of a β-LN of the type examined here. Dorsal is to the top, lateral to the right. Some
Kenyon cells were also filled (after the β-LN) in this mushroom body. (The calyx, peduncle
and lobes together form the mushroom body.)The β-LN was impaled in a dendrite, in the β
lobe. The KCs were impaled in their soma. Only the KC dendrites are visible here. The top
half of the roughly spherical antennal lobe is seen at the bottom of the figure. The β lobe
runs at 45 degree along the medial edge of the antennal lobe.
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C 4

Concluding Remarks

4.1 Transformation of Odor Representations

Odorants bind to olfactory receptors of primary sensory neurons (olfactory receptor

neurons, ORNs) in the insect antenna, causing the ORNs to fire and, in turn, activate

projection neurons (PNs) in the antennal lobe (AL). This gives rise to odor- and

PN-specific activity patterns, which are locked to a globally coherent 20-30 Hz

oscillation shaped by local inhibitory neurons (LNs) (Wehr and Laurent, 1996;

MacLeod and Laurent, 1996; Stopfer et al., 1997; MacLeod et al., 1998). The third-

order olfactory neurons of the insect brain, contacted by the PNs, are the Kenyon

cells (KCs, Kenyon, 1896; Laurent and Naraghi, 1994).

4.1.1 Summary of results

The odor tuning of PNs and KCs is compared, by means of field, tetrode, patch

clamp and sharp electrode recordings, as well as pharmacological manipulation,

in a locust in vivo preparation. Odor responses are broadly distributed over the PN

population, with individual PNs’ responses consisting of bouts of excitation and

inhibition that outlast the stimulus by several seconds. A given PN’s probability
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of response to an odor is ∼0.6 and the number of spikes fired ∼20. This is in

sharp contrast to the responses of the PNs’ downstream decoders in the mushroom

body (MB), the KCs, which respond to odors very sparsely (p(resp) ∼0.1) and very

briefly (∼2 spikes). Two different mechanisms are identified that contribute to this

transformation: an intrinsic biophysical property of the KCs, and a network effect

resulting from oscillatory feedforward inhibition. In addition to forming synapses

onto the KCs, PNs also contact inhibitory neurons in the lateral horn (LHIs), which

in turn feed back onto the KCs. As a result of PN locking to the field oscillation,

IPSPs from the LHIs arrive at the KCs systematically after the PN EPSPs, and thus

prohibit unsynchronized PN spikes from influencing KC firing. This effectively

tunes the KCs to synchronized PNs, a property which is further enhanced by an

intrinsic voltage-dependence which nonlinearly amplifies coincident EPSPs.

4.1.2 Significance of results

These results are of relevance to a number of issues related to neural coding, includ-

ing the role of oscillations, sparse coding, and the piecewise decoding of densely

distributed representations. The combination of intrinsic biophysical properties

and a ubiquitous circuit element, feedforward inhibition, is of general interest as

a mechanism for generating a population of coincidence detectors. From a sen-

sory systems perspective, the dense representation at the level of the antennal lobe

appears useful for computing different aspects of the stimulus, while the sparse

representation in the MB is likely to benefit memory formation, as it requires the

manipulation of relatively few synapses, and minimizes overlap between different

memories.
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4.2 Spike-Timing Dependent Plasticity in the Olfactory System

Spike-timing dependent plasticity (STDP) refers to persistent changes in synaptic

strength that result from paired pre- and postsynaptic activity on a millisecond

timescale (Magee and Johnston, 1997; Markram et al., 1997; Bi and Poo, 1998).

It has been described in many vertebrate brain structures and cell types, and is

thought to underlie associative memory (Dan and Poo, 2006). The insect brain

structure predominantly implicated in associative memory is the mushroom body

(Strausfeld et al., 1998). Synapses onto MB extrinsic cells formed by KC axons in the

MB lobes, (where neuromodulatory cells thought to mediate reward stimuli also

project,) have been hypothesized to be involved in the memory storage of sparse

KC patterns (Heisenberg, 2003).

4.2.1 Summary of results

The synaptic connections between KCs and MB extrinsic neurons (with dendritic

fields predominantly in the β-lobe, βLNs) are studied by sharp electrode and field

recordings, electrical stimulation and rudimentary computer modeling. Individual

KCs can form strong synaptic contacts (mean ∼1.5 mV), and synaptic weights from

a given KC can differ depending on the postsynaptic βLNs. The strength of these

connections can be modified by paired pre- and postsynaptic activity, characterized

by a Hebbian STDP curve on a ±25 ms timescale. In the context of the odor-evoked

20-30 Hz oscillation generated in the AL and propagated through the MB, this

should have a homeostatic fine-tuning effect on the phase of βLN spiking, which is

found to be precise, as measured relative to the field oscillation, or relative to other

βLNs recorded simultaneously. The synaptic fine-tuning mechanism is confirmed
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by a simple computer model, and by direct experimental manipulation of odor-

evoked βLN phase in a manner predicted by the STDP curve.

4.2.2 Significance of results

These results establish that STDP exists in invertebrates, in the MB, which is thought

to play a role in associative memory. They also provide experimental evidence for

the role of STDP as a mechanism for maintaining synchrony in activity propagating

across multiple layers, as predicted previously by theoretical studies (Suri and

Sejnowski, 2002; Zhigulin et al., 2003; Arthur and Boahen, 2006).
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A A

STDP in a β-lobe Network Model with
Lateral Inhibitory Connections

The limited modeling data in Chapter 3 address how the experimentally derived

STDP curve would be expected to influence the firing properties of neurons in the β-

lobe, particularly the phase relative to the local field potential (LFP). These data are

from a single-cell integrate-and-fire model, and represent the timecourse of one LFP

cycle. In this appendix, preliminary results are presented from a network model

simulating β-lobe activity over multiple LFP cycles. The motivation for considering

such a network model derives from the experimental observation (included herein)

that subsets of β-lobe neurons (βLNs) are synaptically connected to each other,

constituting lateral inhibiton.

A.1 Introduction

Previous work has shown that for projection neurons (PNs) and for Kenyon

cells (KCs) a single oscillation cycle is a meaningful unit for the encoding and

decoding of olfactory information (Perez-Orive et al., 2002; Stopfer et al., 2003;

Mazor and Laurent, 2005). Whether or not this is also the case for the KCs’ down-
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stream targets in the β-lobe was previously unknown. The question was addressed

to some extent in Chapter 3, but a direct test of the timescale at which βLNs in-

tegrate their KC inputs was not included. The data in Figure A.1 were intended

to answer this question. Multiple extracellular stimulating electrodes were embed-

ded in different locations among the KC somata and stimulated at several intervals,

concomitant with intracellular recording of a downstream βLN. The purpose of

this experiment was to determine whether odor-evoked KC EPSPs are summated

across multiple LFP cycles, or whether their precise temporal structure is preserved

at this layer. When the stimulation interval was 0ms or 10ms, significant summa-

tion was observed (Figure A.1ai and ii), but at intervals of 30ms or more, there was

none. The decay of the stimulation-evoked waveforms appeared much faster than

observed in simultaneous dual intracellular recording of connected KC-βLN pairs

(Figure 3.1, Chapter 3).

A.2 Results

A.2.1 Lateral inhibition in the β-Lobe in vivo

Figure A.1a iii suggests that such narrowing of EPSPs occurs at least partly as

a result of feedforward inhibition. It shows the result of electrical stimulation of

Figure A.1 (on the next page). Lateral Inhibition in the β-Lobe. a i, Temporal integration
for three different stimulation intervals, raw traces and averages. a ii, EPSP amplitudes
for five different stimulation intervals. a iii, Three different responses (for three different
stimulating electrode locations among KC somata) in a single postsynaptic βLN, raw traces
and averages. b i, Example βLN and LFP recording illustrating odor-evoked EPSPs (grey
arrows) and IPSPs (red arrows). b ii, Phase plot of odor evoked IPSPs, histograms (blue),
mean IPSP phase (red) and mean βLN spike phase (AP). b iii, Two distinct examples of non-
reciprocally connected βLN pairs. Traces shown are presynaptic-spike-triggered averages
of postsynaptic Vm (black), and presynaptic-spike-triggered averages of presynaptic Vm
to illustrate timing relationship (red).
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KCs at three different locations (stimulated at intervals of several seconds). The

first electrode evoked a postsynaptic response with kinetics similar to the dual

intracellular recordings (Figure 3.1, Chapter 3). The second electrode gave rise to

a much sharper waveform, more similar to those in Figure A.1a i, while the third

resulted in an IPSP, delayed by a few milliseconds. The onset of the IPSP evoked

by the third electrode was well-alligned with the start of the decay in the second

waveform, suggesting that the latter resulted from an EPSP followed by an IPSP.

The interpretation is that stimulation by the second electrode activated KCs that

were directly connected to the recorded βLN, as well KCs1 connected to interposed

inhibitory neurons. These neurons were brought to threshold by the activation of

their KC inputs, causing them, in turn, to release inhibitory transmitter onto the

recorded βLN. Presumably, the first electrode did not sufficiently activate inhibitory

neurons connected to the recorded cell. In contrast, the third electrode may have

stimulated a suitable subset of KCs for bringing interposed inhibitory neurons to

threshold, while the recorded cell itself appeared not to be connected to any of

these KCs. Such a succession of EPSPs and IPSPs was also observed in response to

odor stimulation (Figure A.1bi and ii - grey and red arrows). Sometimes apparently

pure IPSPs could be seen as well (Figure A.1bi, last red arrow).

We next sought to determine the identity of the cells that provide this feed-

forward inhibition. The timing of the IPSPs2 suggested that the βLNs themselves

might be inhibiting each other. This is supported by the fact that the cells’ somata

are located within a cluster of inhibitory neurons in the Lateral Horn3. Direct ev-

1Possibly the same, or overlapping subset connected to the recorded βLN.
2i.e. immediately after the preferred βLN phase, as can be seen in the specific instance in Figure

A.1bi, and on average in Figure A.1bii.
3As revealed by intracellular cobalt staining (as well as dye injection experiments by Sarah

Farivar, 2005) and GABA immunohistochemistry by Glenn Turner (Perez-Orive et al., 2002).
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idence came from simultaneous dual intracellular recording of connected βLNs.

Two examples of non-reciprocally connected pairs (recorded in different animals)

are shown in Figure A.1b iii. These connections can be very efficacious (as high as

5mV, data not shown).

These data answer the original question affirmatively, namely that cycle identity

information is preserved across this synaptic layer, as it is between PNs and KCs. In

addition, they reveal that the βLNs form a network connected by lateral inhibition.

The IPSPs can be thought of as informing an individual βLN about the extent

to which an odor is already represented at a particular LFP cycle. If there is no

significant amount of inhibition at its typical phase (Figure A.2), and if it receives a

moderate4 level of KC activity, it will spike later than the typical βLN phase, π. This

should result in net potentiation of its weights, and upon subsequent presentations,

the cell will also fire at the typical phase. Given the data, which demonstrate very

precise synchrony among subsets of βLNs, and tight locking to the LFP (Chapter

3), one might presume that the synchronous spikes are most relevant in terms of

the βLN code. Under this assumption, the cell just described did not previously

participate (significantly) in the encoding of the odor at the cycle in question when

its spike occurred late. However, as a result of the potentiating effect of that same

spike, the cell will subsequently become a member of the synchronous assembly.

If, however, the odor was already well represented in this cell’s neighborhood

(as defined by the βLNs synaptically connected to it), the cell would have received

inhibition after the typical βLN phase, π, and the cell could not have produced

its potentiation evoking spike. This kind of winner-take-all arrangement could be

expected to level the network’s activity across LFP cycles, to some extent, because

4where moderate means not enough to make it spike at π, but a sufficient level such that when
summating over just a few 10s of milliseconds, threshold is reached in the potentiation window.
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in cycles where inputs are strong, many cells fire, and weights should decrease due

to the bias against potentiation effected by lateral inhibition. Conversely, where

inputs are weaker, weights could be expected to grow more freely in the relative

absence of inhibition. Of course, STDP, by itself already has the effect of setting

the weights at a level that ensures an average phase of π, which implies activity

at every cycle where the cell can reach threshold (in the potentiation window) at

least occasionally. The main purpose of the modeling effort described below, is to

assess how the interaction between STDP and lateral inhibition affects the activity

patterns in the network.

Figure A.2. β-Lobe IPSP phase diagram. a, Phase plot. KC spike time histograms (solid
grey bins), KC mean spike phase as recorded near the calyx (KCC), and when the KC
spike arrives at the β-Lobe (KCL; delay due to propagation along KC axons); βLN spike
time histograms (black bins), βLN mean spike phase (AP); mean phase of βLN IPSP (IPSP);
phases of maximum potentiation (Max potn.) and maximum depression (Max depr.). b,
Diagram illustrating relative timing of βLN spike (AP), IPSP, and windows of depression
and potentiation.

A.2.2 β-Lobe network model combining STDP and lateral inhibition

A network model of Izhikevich units (Izhikevich, 2007a) was used to simulate 30

βLNs5. Model parameters6 are based on estimates from experimental data (Perez-

5Number estimated from diI-injections.
6A systematic exploration of parameter ranges has not yet been completed but the findings

presented below appear to be quite robust against a relatively wide range of parameter values.
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Orive et al., 2002; Mazor and Laurent, 2005; Cassenaer and Laurent, 2007). Excita-

tory inputs to the βLNs come from KCs (connectivity 10%, i.e. 30-50 KCs per βLN

per LFP cycle); inhibitory inputs come from βLNs (connectivity 25%). KCs spike

twice per odor presentation, and the specific firing times are drawn from gaussian

distributions7 (Figure A.3a). Parameters characterizing the membrane potential dy-

namics of individual units were chosen to give rise to single-cell subthreshold and

spiking activity similar to experimental data (Figure A.3b), and were within the

same range as in other studies (Izhikevich, 2007a). This resulted in network activity

that appears similar to experimental data (Figure A.3c).

A.2.3 Effect of STDP and lateral inhibition on firing phase

The model reproduces the main result from the single-cell model in Chapter 3,

namely that the experimentally derived STDP rule drives the average βLN firing

phase to the trough of the LFP cycle, designated π (Figure A.4). The network

converges to the same average phase, whether inhibition is implemented (Figure

A.4a) or not (Figure A.4b and Figure 3.4e, Chapter 3 ). The phase at early and late

cycles is initially delayed, because the drive from KCs is less than for intermediate

7Two distributions characterize the particular cycles at which KCs fire (one for each of the two
spikes), and another determines the phase within a cycle.

Figure A.3 (on the next page). Network model. a, KC inputs to the β-Lobe network.
i, Experimental KC activity profile, adapted from Mazor and Laurent (2005). Black bar
indicates odor presentation. Blue box indicates time window used for simulations. ii, Profile
approximating experimental data in (i), used to represent KC input onto β-LNs in the model;
top blue curve is the sum of the lower two curves, which represent population PSTHs of
model KCs’ first (blue) and second (green) spikes, respectively. iii, Raster showing spike
times of model KCs during a single trial. Each KC fires twice, in blue and green, respectively,
as in histograms of (ii). b, Example voltage traces of β-LN responses. i, Experimental trace.
ii, Model trace. iii, 10 consecutive trials for a single model β-LN. c, Rasters for 30 model
β-LNs, 20 consecutive trials.
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Figure A.4. The effect of STDP on βLN firing phase across multiple LFP cycles. a, With
lateral inhibition. b, Without lateral inhibition. Results are shown for two starting weight
distributions (initial weight distribution with small mean, solid curves; initial weight distri-
bution with large mean, dashed curves). Curves are averages computed over 10 consecutive
trials, as well as 10 distinct simulations with different seeds. Trials -10 to -1 are without
STDP, trials 1 to 50 are with STDP. Grey arrows illustrate convergence from respective
initial conditions.

cycles (Figure A.3a), but the STDP rule quickly (approximately) equalizes phase

across all cycles. A similar evolution and convergence is seen, whether the initial

KC-βLN weight distributions have a low (solid curves) or high mean (dashed

curves).

A.2.4 Effect on average population activity

When inhibition among βLNs is implemented, activity across the population con-

verges to a level such that, on average, approximately half (0.54) of the population

is active per cycle (Figure A.5a, black curve). This is not the case, however, if lat-

eral inhibition is eliminated from the model (Figure A.5b, average fraction of the

population active: 0.85, black curve). In other words, the combined effect of lateral

inhibition and STDP makes the network converge to an activity level approximat-

ing the middle of its dynamic range.
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Figure A.5. The effect of STDP on βLN population activity across multiple LFP cycles.
a With lateral inhibition. b, Without lateral inhibition. Results are shown for one starting
weight distribution (with small mean). Curves are averages computed over 10 consecutive
trials, as well as 10 distinct simulations with different seeds. Trials -10 to -1 are without
STDP, trials 1 to 50 are with STDP.

A.2.5 Biased STDP

The fact that the network settles to the middle of its dynamic range under baseline

conditions could be of particular relevance in the context of reinforcement learning.

It is conceivable that plasticity at this synapse is affected by neuromodulators,

such as would be released during reward or punishment. If, following Izhikevich

(2007b), that interaction consists of a potentiation or depression bias of the STDP

curve, then a default response with half of the network active should provide a

large dynamic range to accommodate such contingencies. Figure A.6 illustrates this

explicitly. When lateral inhibition is present, a 5-fold potentiation bias results in a

51% increase in the population’s activity in just a few trials. The same bias for the

same number of trials gives rise to an 18% increase when inhibition is absent, as the

network has already converged closer to it’s peak activity (due to the unconstrained

effect of STDP). A 5-fold depression bias results in a 48% decrease in population

activity for the inhibition-implementing network. The same bias evoked a 54%
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decrease in the network without inhibition.

A.2.6 Reshaping of population activity profile

In contrast to the effect on phase (Figure A.4), the network’s average activity level

does not equalize across cycles8 when lateral inhibition is present. Instead, the

distribution of βLN activity across LFP cycles approximates the shape of the KC

input distribution (Figure A.7a, compare solid and dashed black versus red curves;

but not when inhibition is absent, Figure A.7b).

A.2.7 Multimodal distributions of initial weights and KC activity profiles

Figure A.7a demonstrates that the network reproduces its input distribution, given

initial weight distributions that are equal across cycles9. Presumably, it should also

be able to correct for weight distributions that are not homogeneous across cycles.

This is in fact the case, as shown in Figure A.8a, where the means of the initial weight

distributions corresponding to a subset of cycles (marked by *) are decreased by

25%, relative to the other cycles. The resultant βLN activity profiles (Figure A.8a,

solid curves) are compared to those resulting from equal weight distributions as

in Figure A.5a (reproduced as dashed curves in Figure A.8a). The initial response

due to the unequal weight distributions is quite different, but application of STDP

converges to a similar βLN activity distribution as in Figure A.5a, thus recovering

the underlying KC activity profile.

The KC input distribution used so far is derived from data pooled across multi-

ple KCs and multiple odors, resulting in a relatively smooth unimodal distribution.

8after 50 trials, as in Figure A.4.
9Weight distributions can be considered to be assigned to particular cycles, to the extent that the

corresponding KCs fire reliably at those cycles.
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Figure A.6. The effect of STDP bias on βLN population activity across multiple LFP
cycles. a and b, With lateral inhibition. c and d, Without lateral inhibition. Results are
shown for starting weight distributions derived from from 50 trials of STDP (i.e. underlying
the black curves in Figure A.5). Curves are averages computed over 2 consecutive trials
(unlike the curves in other figures), as well as 10 distinct simulations with different seeds.
Trials -2 to -1 are without STDP, trials 1 to 10 are with STDP. Arrows emphasize the effect
of potentiation bias (a, c) and depression bias (b, d), respectively.
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Figure A.7. Model β-Lobe reproduces KC activity profile across multiple LFP cycles. a
With lateral inhibition. b, Without lateral inhibition. Results are shown for one starting
weight distribution (with small mean). Curves are averages computed over 10 consecutive
trials, as well as 10 distinct simulations with different seeds. Trials -10 to -1 are without
STDP, trials 1 to 50 are with STDP. Solid curves are identical to those in Figure A.5. Dashed
curves are superimposed KC input profiles, scaled to equal the integral of the initial (red)
and final (black) βLN response curves, respectively.

As such, the change from the initial βLN activity profile10 to the one more similar

to the KC input profile (Figure A.7a) is perhaps not overly dramatic. However,

when KC activity profiles are segregated by their respective odors, the distribu-

tions are not always unimodal11. The network’s ability to closely reproduce such a

single-odor KC activity profile is demonstrated in Figure A.8b.

A.3 Discussion

A reason for why this combination of features might be useful becomes apparent

when considering the neural architecture in which this circuit is embedded, in vivo.

10which, in addition to the smooth KC input profile, furthermore derives from a normally dis-
tributed weight distribution.

11These differences appear to be significant, despite the relatively small number of KCs making
up these profiles. The multimodal KC response profiles are also observed in a much larger KC
data-set (Kai Shen, personal communication).
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Figure A.8. Model β-Lobe response to multimodal synaptic weights distribution or
input profile. a, Initial KC-βLN weights distribution not equal across cycles. All weights
for KCs that fire on average during cycles 2, 5, and 9 (*) are decreased by 25% at onset of
simulation. Curves are averages computed over 10 consecutive trials, as well as 10 distinct
simulations with different seeds. Trials -10 to -1 are without STDP, trials 1 to 50 are with
STDP. Dashed curves are responses to the same input profiles as the solid curves, but for
equal initial weights distribution - reproduced from Figure A.5a. b, Multimodal KC input
profile. KC input profile approximating experimental KC population PSTH for a single
odor (based on data from Mazor and Laurent, 2005). Dashed curves are superimposed KC
input profiles, scaled to equal the integral of the initial (red) and final (black) βLN response
curves, respectively.

Projection neuron (PN) axons contact KC dendrites in the mushroom body (MB)

calyx, and bifurcate, targeting the lateral horn (LH). βLNs also have projections in

the LH, and, because of their dense arborizations among KC axons in the β-Lobe,

are well suited to read out KC population activity and convey the result to the LH.

If the β-Lobe provides inhibition that strongly resembles the KC input profile12,

then the LH could find its excitatory (PN) and inhibitory (βLN) input profiles well

matched13.

Summarizing these features leads to the following simplified model of olfactory

learning. Prior to learning any association, the effect of odor-induced activation of

12Due to the combined effect of lateral inhibition and STDP within the β-Lobe
13To the extent that the global KC output well-represents its PN input.
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PNs, kept in check by the output of the β-Lobe in the LH, would be a naive, intrinsic

behavior14. When exposure to the odor is followed by an aversive or appetitive

stimulus, an odor-specific set of KC-βLN synapses would be either strengthened

or weakened, thus changing the gain on the PN drive into the LH, which would

be hypothesized to alter the animal’s odor-evoked behavior. This model predicts

that the memory is stored at synapses between KCs and βLNs in manner that is

not only odor- and KC-specific, but also also cycle-specific. This selectivity derives,

indirectly, from the homeostatic effect of unbiased STDP15.

A few presentations of an odor followed by an unconditioned stimulus (U.S.)16

should give rise to a specific strengthening (or weakening) of the synapses formed

onto βLNs by KCs that were active during the odor presentation, as these would

be the only KCs activated in immediate temporal proximity to postsynaptic spikes.

The result would be β-lobe output onto the LH that exceeds (or falls short of) PN

output onto the LH. Although the modification would be specific to the KC-βLN

synapses activated by the odor, it would be expected to apply to all LFP cycles

equally.

If the odor is presented several times afterwards without the U.S., the homeo-

static effect of unbiased STDP should bring the synaptic weights that were previ-

ously modified back to baseline levels17, which would be expected to underly a

behaviorally measurable extinction of the memory. However, consider instead the

scenario where the initial pairing is followed by a different odor presented with-

out the U.S.. Any part of the PN trajectory that this odor would have in common

with the previously paired odor would give rise to activation of a common set of

14This might be approach or withdrawal, or neither, depending on the particular odor.
15i.e. not followed by appetitive or aversive stimuli
16hypothesized to result in an STDP curve biased towards potentiation (or depression)
17i.e. synaptic weights that put the βLN back to the middle of its dynamic range
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KCs. Re-activation of these KCs (without U.S.) should equally bring the KC- βLN

synaptic weights back to equilibrium, much as if they had been activated by the

first odor, as in the case of extinction. In other words, sequential exposure to mul-

tiple odors will sculpt the gain exerted by the MB, to the extent that odors with

different contingencies evoke PN trajectories that traverse similar regions. Given

that KCs tend to fire at particular LFP cycles in an odor- and KC-specific manner,

the synaptic modification would effectively be cycle specific. And since the KCs’

cycle-specificity corresponds to the reformatting across LFP cycles carried out by

the antennal lobe (AL), particular odor features could be selectively rewarded. This

would permit the animal to learn, for example, whether an entire odor class pre-

dicts a punishment (or reward), or whether instead only an individual member of

the class is the reliable predictor.

Based on the above results, STDP is proposed to play multiple roles: to facilitate

the synchronous flow of olfactory information and, more speculatively, to use its

own fine-timescale sensitivity to select the specific set of synapses that should be

modified if a neuromodulator were to be contingent on the odor. Also, in conjunc-

tion with lateral inhibition: to maintain activity in the β-Lobe near the middle of its

dynamic range, and, lastly, to sculpt β-Lobe output so as to match its input profile

across cycles of the synchronous oscillation.
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