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”...look closely, whenever rays are let in and pour the sun’s light through the dark places
in houses ...you will see many particles there stirred by unseen blows change their course
and turn back, driven backwards on their path, now this way, now that, in every direction
everywhere. You may know that this shifting movement comes to them all from the atoms.
For first the atoms of things move of themselves; then those bodies which are formed of a
tiny union, and are, as it were, nearest to the powers of the atoms, are smitten and stirred
by their unseen blows, and they, in their turn, rouse up bodies a little larger. And so the
movement passes upwards from the atoms, and little by little comes forth to our senses, so
that those bodies move too, which we can descry in the sun’s light; yet it is not clearly seen

by what blows they do it.”

Lucretius (c. 95-55 BC)
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Abstract

Complex lattice Quasicontinuum theory is developed and applied to the description of fer-
roelectric phenomena. Quasicontinuum theory is a multiscale theory that provides a unified
description of materials by combining atomistic and continuum approaches. It provides a
seamless transition between atomistics and continuum, but the description of the material is
derived directly from the underlying atomic structure, using the computationally expensive
atomistics only where needed, at the location of phenomena of atomistic origin.

Complex lattice Quasicontinuum theory can be applied to complex lattice crystals con-
sisting of many kinds of atoms. One highlight of it is treatment of each component lattice
as separately and independently as possible. The component Quasicontinua are coupled
through the microscopic forces within nodal clusters, making the complex atomistics of the
heterogeneous lattice the basis of the description.

Ferroelectrics are especially suited to the application of Quasicontinuum theory. The
nature of defects in ferroelectric materials is atomistic, but their influence over the material
is long ranged due to induced elastic fields. Many different ferroelectric phenomena involv-
ing the perovskite ferroelectrics Barium Titanate and Lead Titanate are investigated and
simulated. For Barium Titanate: the 180 degree domain wall structure and quasistatic crack
under load. For Lead Titanate: the 180 degree domain wall structure and a domain wall
step.

The results for the domain walls show that the domain wall thickness is atomistically
small, of the order of few lattice constants, which is in agreement with recent ab initio molec-

ular dynamics simulations, but we also observe long range effects resulting from the presence
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of the wall. During crack loading in the sample of Barium Titanate we observe polariza-
tion changes around the crack tip which are consistent with experimental observations of an
increase of fracture toughness. The quasicontinuum study of a domain wall step gives an
atomistical view into the equilibrium structure of the step.

Quasicontinuum is able to model these phenomena with atomistic precision around the
defects and non-homogeneities, and also capture the influence of long-ranging effects in the
samples. These studies could also give valuable modeling input for larger scale continuum

approaches.
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Chapter 1

Introduction and Motivation

The goal of theoretical research is not only to understand and explain experiments, but
also to predict and foresee new phenomena, behavior and properties as yet unrevealed by
experimentation. Therefore, theories and numerical simulations must approach realistic
conditions as closely as possible, ideally with all the quantity and complexity intrinsic to the
real physical world.

At the present time, this ideal is far from reality. There is a constant push to develop
more complex and better theories and to extend the limits of the existing ones.

Theoretical research in the field of mechanics has traditionally dealt with large structures
like bridges, buildings and machines, subjects well suited to modeling by continuum mechan-
ics. But with the advent of powerful tools in microscopy and the subsequent development
of micro- and nano-technologies, the reach of mechanics has necessarily been extended to
much smaller scales, approaching a level more typically considered by physics. The field of
mechanics at this scale, which is growing quickly and getting a lot of attention recently, must
consider subjects too small for traditional methods. Continuum mechanics is not equipped to
accurately describe the atomistic interactions necessary for modeling subjects at this scale.
But while the precise, but limited, methods of physics might provide this accurate descrip-
tion, mechanical modeling of atomistics at even the relatively small scale required by micro-
and nano-technologies is computationally out of reach.

This is the area for which Quasicontinuum theory [1, 2] has been developed and where



it feels at home. Quasicontinuum theory is a multiscale theory. That is, it is designed
to bridge the approaches of continuum mechanics and atomistics (solid state physics) by
handling both length scales inside one problem. It uses the atomistic origin of phenomena
and finite element method mechanisms to ultimately determine the continuum description,
and to describe the constitutive response of the material. Quasicontinuum theory is able to
give a smooth transition between the atomistic and continuum scales. It is able to adapt its
meshing to the specific problem encountered, without patching, and so to model at a fine,
atomistic, resolution where needed (near effects and high energy zones), but leave a coarse
continuum mesh where deformation of the material body is homogeneous and small.

Quasicontinuum theory was originally developed to model crystals (for reviews see [3, 4,
5]), where all of the atoms in the crystal are of the same kind of element, and ordered in a
Bravais lattice with the basis consisting of one atom. The theory was recently developed to
model three-dimensional homogeneous lattices using an entirely non-local approach, and to
be computationally faster and more efficient [6].

Of course, most crystals are “complex”, in that they consist of many types of atoms. The
majority of crystals of importance to the development of micro- and nano-technology are in
this category. All ionic crystals are of a complex nature.

Of particular interest, ferroelectric crystals such as the perovskites Barium Titanate and
Lead Titanate [7] have a complex lattice structure that could not be modeled with Quasicon-
tinuum theory as previously developed. However, these materials are in particular need of
the type of modeling Quasicontinuum theory can provide, because ferroelectric phenomena
originate at the level of atomistics, but nevertheless have long ranging effects on the material.
Solving these problems was our motivation for this work.

The objective of this work is twofold. First, we will discuss the development and extension
of Quasicontinuum theory to describe crystals with a complex lattice structure. Second, we
will discuss results obtained by using the newly developed complex lattice Quasicontinuum

theory to accurately and seamlessly model, at the atomistic and continuum scale, prob-



lems concerning ferroelectric phenomena in Barium Titanate (BaTiO3) and Lead Titanate
(PbTiO;) crystals.

One of the primary challenges in developing non-local complex lattice Quasicontinuum
theory was that Quasicontinuum theory, as originally formulated, did not only deal exclu-
sively with homogeneous lattices, but the structure of the theory itself assumed a homoge-
neous sample. For instance, the interpolation of atoms and approximation of energy and
representative forces which were used in the original theory could not be used in samples
with a complex lattice structure. These issues were resolved by separating the sample into
discrete homogeneous Bravais sublattices and treating each sublattice as separately as possi-
ble, and then coupling the sublattices by using only the real microscopic forces between the
atoms in them. This simple approach allowed us to reduce the computational effort needed.
While there has been progress in extending (Quasicontinuum theory to complex lattices using
a local formulation [8, 9], which assumes homogeneous deformation inside each triangulation
element, our approach is much different in that it uses a non-local formulation capable of
atomistic resolution and thus able to capture atomistic defects.

Complex lattice Quasicontinuum theory was implemented as a C++ [10, 11] extension
of existing C code [12], which itself needed extensive modification.

After developing complex lattice Quasicontinuum theory, we applied it to several impor-
tant problems concerning properties of the ferroelectrics BaTiO3 and PbTiOs3. Ferroelectrics
are crystals, in which spontaneous electric polarization can be reversed by application of an
external electric field. Ferroelectrics are in thermal equilibrium in each polarization state
[13]. Instructive reviews of ferroelectric phenomena can be found in [14, 15, 16, 17, 7]. For
recent developments refer to [18, 19, 20, 21]. Ferroelectrics are widely used in actuators,
capacitors and transducers for their excellent piezoelectric and dielectric properties [7], but
recently they are in development as very important components of Dynamic Random Access
Memory (as thin-film capacitors) [22, 23] and Non-Volatile Random Access Memory (used as

memory elements themselves) [24, 25, 13] devices. The ferroelectric memory devices would



have many advantages over the now widely used magnetic memories: low-voltage operation,
small size, radiation hardness and very high speed.

Some of the most researched ferroelectrics are Barium Titanate and Lead Zirconium
Titanate (PZT). PZT is a family of ferroelectric materials of the formula Pb(Zr,Ti;_,)Os3
with Lead Titanate PbTiO3 being an important end member of this family.

Below a certain Curie temperature (specific to each material) ferroelectrics exhibit spon-
taneous polarization. But often the microstructure of a particular ferroelectric sample is
very complicated. Ceramic samples consist of many grains with different domains (regions
of different spontaneous polarization) and crystal samples also consist of many domains.
Therefore understanding domain wall structure and the properties of domain boundaries
(domain walls) is very important in designing efficient ferroelectric devices. Building of do-
main wall steps is part of the mechanism of polarization switching, the property which is
exploited in many devices. Therefore, understanding the structure and mechanism of steps
is very important. Last, the perovskite ferroelectrics Barium Titanate and PZT are very
brittle and can be destroyed by fracture, so understanding fracture in these materials is a
key to building reliable devices. Thus our research on the structure of domain walls, domain
wall steps and fracture in ferroelectrics deals with the most important phenomena used for
building devices.

Considerable research on domain walls both static and dynamic (which is related to build-
ing of steps), and fracture in ferroelectrics has been done with phenomenological continuum
theories. Only recently has some research been done considering the discrete atomistic na-
ture of the material with ab initio input. But these investigations have been of a very small
scale and do not consider long ranging effects. Quasicontinuum theory handles both the fact
that these phenomena arise from complex ab initio couplings, which continuum mechanics
has difficulties addressing, and the fact that there are long ranging effects in the sample,
which cannot be captured by molecular dynamics. For specific literature citation, refer to

the particular application chapter.



For BaTiOj; investigations, we used the potential devised by Goddard, et al. [26, 27]
with slight modification, and for PbTiOj3 investigations, we used the potential devised by
Sepliarsky et al. [28]. In both cases, we applied the Wolf et al. [29] summation rule to
handle the electrostatic components of the atomic interactions.

We first examined the problem of a 180 degree domain wall in BaTiO3;. We were able to
simulate the equilibrium configuration of an approximately 11 million atom sample without
imposing periodic boundary conditions. We found that the domain wall thickness, the area
in which most of the polarization switching occurs, lies in the range of 4-6 unit cells, or
1.5-2.5 nm. These figures agree with experimental results [30, 31], and also with existing
theoretical and numerical calculations [32, 33]. Moreover, we were also able to see long range
effects, arising from the presence of the wall, which previous molecular dynamics simulations
were unable to detect.

To demonstrate the ability of complex lattice Quasicontinuum theory to handle more
challenging problems, we examined the problem of a crack in an over 100,000 atom BaTiOj3
sample. We were able to model quasistatic loading of the crack in the sample with auto-
mated adjustment of the resolution with increasing load. The sample showed a systematic
polarization pattern building around the crack tip with initiation of domain layers. We found
that this pattern grows and becomes more distinct with growing crack load. Our results are
in qualitative agreement with observed changes in fracture toughness in ferroelectrics, which
is attributed to domain switching in front of a crack tip [34, 35]. Our simulated sample
captures a resolution still too small for current ferroelectric fracture measurements and con-
tinuum approaches, and can give continuum theories insights about the correct mechanisms
and parameters which should be used for the model.

We then simulated the equilibrium configuration of a 180 degree domain wall in a 400,000
atom sample of PbTiO3. This sample size would have been too large to model using an
(atomistic resolution) molecular dynamics simulation with the Sepliarsky et al. potential,

because the non-electrostatic portion of the potential is very far reaching. We found that



the area where most of the switching of the polarization occurred was in the 2-6 unit cells
adjacent to the wall, giving a domain wall thickness of 1 nm to 2.5 nm. This is consistent with
recent ab initio calculations [36] and experimental results [37]. But we were able to calculate
much larger regions around the domain wall than the available ab initio calculations. We
were also able to see long ranging effects from the presence of the wall, such as a long “tail”
of polarization adjustments originating from the wall and extending far into the bulk of the
sample.

Last, we calculated the equilibrium configuration of a 180 degree domain wall in a sample
of PbTiOj3, with a step in the wall surface. Our calculations show, at an atomistic level of
precision, that polarization around the step tends to arrange in such a way to minimize the
net bounded polarization charge at the interface and smooth out the sharp step transition.
We see a large region affected by the presence of the step.

This work is designed as follows. Chapter 2 introduces Quasicontinuum theory, specific
to homogeneous lattices, as in [2, 6]. Chapter 3 explains the development of complex lattice
Quasicontinuum. Chapter 4 is devoted to its numerical implementation. Chapters 5 and 6
introduce the potentials and the electrostatic summation rule used in this work. Chapters
7-10 are devoted to applications: BaTiO3 180 degree domain wall configuration (Chapter
7); crack in a BaTiOjz tetragonal phase sample (Chapter 8); PbTiOs 180 degree domain
wall configuration (Chapter 9) and step in a 180 degree domain wall in PbTiO3 (Chapter
10). Extensive literature reviews specific to each problem can be found in each applicable

chapter.



Chapter 2

Quasicontinuum

2.1 Quasicontinuum Bridges Continuum Mechanics

and Solid State Physics

The traditional continuum mechanics approach to theoretical research in mechanics assumes
that materials are comprised of an infinitely divisible continuum medium with a constitutive
behavior taken as a phenomenological input which does not change upon zooming in to
smaller and smaller parts of the material. Continuum mechanics has been very valuable
for many applications. One of its advantages is that it can describe the behavior of large
scale bodies, which we use in everyday life. But the problem with continuum mechanics
has always been the constitutive relations, which describe the deformation reaction of the
body to stress [38, 39, 40, 41]. To some degree they are external phenomenological input to
a given boundary value problem. In many cases the relations come from the experimental
observations and are backed by them. However when constitutive relations are selected
for a particular model, there is always a possibility that through this the system will be
constrained and will not describe real physical behavior.

Contrary to continuum mechanics, the solid state physics approach [42] describes bodies
consisting of discrete parts: atoms. The nucleus and electrons [43], [44] are the primary

building blocks which get most of the attention in solid state physics. Knowing eigenfunctions



of the quantum mechanics Hamiltonian written out for the particular system of atoms, we
can describe what is happening or going to happen with the system. This information is
very precise. But the mathematical, numerical and, finally, computational burden largely
scales with the number of atoms involved, resulting in investigators being unable to analyze
even relatively small systems using supercomputers. The systems which are calculated this
way are not found in our everyday life, and very often these systems cannot be reproduced
even in very extensive experiments.

Quasicontinuum bridges the approaches of continuum mechanics and atomistics (solid
state physics). It uses continuum mechanics, but derives constitutive relationships from
atomistics. Or, seen a different way, it uses atomistics but involves scaling and interpolating
schemes from continuum mechanics and the finite element method for description of much
larger systems. Before we describe in detail what Quasicontinuum theory is, we would like

to mention one more thing which motivated its development.

2.2 Quasicontinuum is a Multiscale Model

The importance of multiscaling and the multiscaling origin of many central phenomena in
science cannot be overstated.

Many problems considered in mechanics have different length scales involved in them.
While there are many examples, two of them have a particular relation to this work.

Consider a nano-indentation at the elastic-plastic material limit. There are few disloca-
tions, perhaps tens, evolving under the indentor which require explicit atomistic treatment.
And there is a much larger scale represented by the indentor itself and the material far away
from the indentor tip which can be treated with continuum methods.

Another example is a very small crack in a large specimen. One length scale is the crack
itself, with possible dislocations emitting from the tip or breaking of the bonds resulting in

crack propagation. The other length scale is far away from the crack where the material can



be again theoretically described as a continuum.

More examples of multiscale phenomena are considered and simulated in this work.

Quasicontinuum is truly a multiscale model. It bridges atomistics and continuum. It can
handle both length scales inside one problem. As in the above example of nano-indentation it
can explicitly follow nucleation and movement of every single dislocation under the indentor
and also track the deformation of the entire large specimen using approaches similar to
continuum mechanics, but deriving the constitutive relations from the underlying atomistics.
Similarly, in the nano or micro crack example, Quasicontinuum can follow movement of every
single atom near the crack tip where the stress energy density is very high, but still use a
continuum approach further away from the crack tip.

Quasicontinuum, in contrast to other multiscale methods available, gives a smooth tran-
sition between atomistics and the continuum [45]. It uses the atomistic origin of phenomena
to ultimately determine the continuum description, and describe the constitutive response
of the material.

Importantly Quasicontinuum also has the criteria and capability to adapt meshing to
the specific problem, changing based on different conditions in time and loads. There is
no patching required between different length scale zones. Quasicontinuum makes a smooth
mesh or transition from different length scales, giving a fine, atomistic resolution near defects
and high energy zones, where it is needed, and leaving the coarse continuum mesh where
deformation of the material body is homogeneous and small. Quasicontinuum does not have
to make any assumptions about the deformation energy concentration a priori - the algorithm

scheme will resolve automatically which regions to treat using which length scales.

2.3 Original Development of Quasicontinuum

Quasicontinuum was originally developed by Tadmor, Phillips and Ortiz. It was first

introduced in [1] and then described in more detail in [2]. Since then many differ-
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58,

xX(X,t)

Bo 0B,

Figure 2.1: A continuum boundary value problem.

ent variants have been developed over a series of publications with numerous examples
[46, 47, 48, 49, 45, 50, 51, 52, 6, 53, 54]. A good overview is presented by Miller and Tadmor
in [5]. Many more publications and resources are available in the specifically designated web
page [55].

To be able to describe the Quasicontinuum theory, show its relations to atomistics and
continuum models, show its multiscale origin and also to introduce the notation, we first
briefly review a general continuum mechanics boundary value problem, and also the finite

element method and lattice statics approaches.

2.3.1 Continuum Boundary Value Problem

Consider a general boundary value problem [38, 39, 56, 41], see Figure 2.1, where a material

specimen or a body occupies a reference configuration By € R3. Deformation and motion of



11

this body is described by the deformation mapping x:
x(X,t): B> - R?

which is a function of time ¢ and the coordinates from the undeformed body domain X € By.
The body is subject to the following boundary conditions: fixed displacement X on part of
the boundary dB; (Dirichlet boundary conditions) and traction T on the other part 0B,
(Neumann boundary conditions)[57, 58]. There is also a force acting on the body B, where
the force per unit volume of the body is G.

The potential energy of the body in a deformed configuration x is defined as

EP(x) = / w(x) dv —/ Gx dv—/ Tx ds
B B B>

where w(x) is the strain energy density. The first and second integrals are taken over volume
and the third integral over the surface of the body B.

According to the principle of minimum potential energy [59, 38, 39, 56, 41], given the
displacement boundary conditions, traction boundary conditions and the body force, the
body will assume the configuration x°?”, which is in agreement with displacement boundary
conditions and also minimizes the potential energy

Elpot(Xeq’U) — I'IlXiIl Elpot(X)

Once we determine how the strain energy density depends on the deformation of the
body, the problem becomes solely a minimization problem of finding the right deformation
mapping x satisfying the given boundary conditions. The constitutive relations which give
the relation between strain and stress in the body will provide this input. We need to
make an educated guess about what model of constitutive relations to use in a particular

case. There are many models available and we have to choose one which is most suitable
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for our purposes depending on what material constitutes the body. Often if we have any
inhomogeneity, defects, interfaces or boundary in the problem, we would have to consider
a specific constitutive relation just for that particular region, making sure that the jump

conditions for strain and stress are satisfied. This can become quite cumbersome.

2.3.2 Finite Element Formulation

Finite element method [60, 61, 62, 63] applied to the continuum boundary value problem
reduces dramatically the degrees of freedom of the problem and the computational effort.
Let us divide B into finite elements. The nodes of this partitioning will be the only non-
constrained variables of the system with the deformation of the rest of the body determined

by interpolation from the deformation at the nodes. The deformation mapping thus becomes

X (X, 1) = ) %4(H)No(X)

where a = 1,..., N runs over N nodes of the mesh, x,(¢) is the node a coordinate at time
t and N,(X) is the shape function of node a at position X. The subscript A is the notation
accepted in finite element definition and refers to the size of the mesh as whole such as, for
example, the size of the smallest element. It distinguishes a particular mesh for reference
purposes.

Shape functions N,(X) are interpolation functions,which are defined on the undeformed

body By and have the following properties:
(i) The functions should belong to at least Cj.

(ii) Outside the elements which include the node a, the shape function N,(X) is identically

Zero.
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(iii) If b is another node in the mesh, then

Na(Xb) - 6ab
(iv) For any X € By

N

Y NJ(X)=1

a=1

For the rest of the formulas in this section, we consider x being not the coordinates, but
the displacement field. The displacement of a point is the difference between its coordinates
in deformed and undeformed configurations. The interpolation with the shape functions
happens exactly as with the coordinates.

Since the deformation of the body is being interpolated from the nodal coordinates or
displacements, the displacements are the only true variables or unknowns of the boundary

value problem. With the above interpolation, the energy functional becomes

EPY(x) ~ EY'({x,}) = /Bw({xa}) dv — iv: [ N GN,(X) dV —/

a=1 9Bo2

TN, (X) dS] Xq
The equilibrium state can be found as

P (x) o B ({xc'}) = min B ({x,})

Xa

In the linear elasticity theory [38, 39, 64], we can assume linearity between stress and

strain, the relation for the strain energy becomes:
/ w({x}) dv =7 { / CijptNagNoy dV | Taion
B - LB

where Cjjy is the elasticity tensor and according to the Einstein convention ¢, j, k and [ are

summed over.
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Introducing the stiffness matrix as
Koivk :/ CijkiNa,j Ny, dV,
By
and the driving force vector as

F,; :/ G;N, dV +/ T:N, dS
Bg 0502

and introducing the double indices I and .J as
I = {ai}, J = {bk}

we are left with the following sum for the potential energy, which can also be written as a

vector equation

1
EPOt({Xa}) =z Kpjvy — Frop = EXTKX — Fx

The minimum of the potential energy is achieved at
x4 =K 'F

The integrals for the stiffness matrix and driving force vector in the above equations can
be calculated using numerical quadrature. For each element {2, in the mesh, we select @)

representative points Y, in the element and substitute the integral

fX)dv

Qe

with the sum

Q
qu - f(Yy)

() is the order of quadrature rule. The weights w, are specific to the set {Y,} and the way
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we want the integral to be approximated. Often people use a specific function for f(X), like
the shape functions which should integrate [ f(X)dV exactly over the body and so they can

determine the weights.

2.3.3 From Quantum Mechanics to Lattice Statics: Atomistic

Handling of a Crystalline Material Body

From a totally different prospective, lattice statics considers a material body consisting of
atoms. This is a much more realistic view point for consideration of materials, and becomes
the only possibility as the scale becomes smaller. Atoms interact with each other and move
due to this interaction, which resolves on the larger scales to the more commonly known
strains and stresses in the material.

A system of atoms can be best described with quantum mechanics [65]. Quantum the-
ory was founded between 1923 and 1927 by contribution of many scientists. Schrodinger
developed the general formalism [66, 67, 68, 69] based on the works of de Broglie [70], which
attributed a wave-corpuscle duality to all microscopic objects. Dirac [71, 72, 73] further
developed the formalism of Quantum theory, which was extended by works of Born [74],
Heisenberg [75] and Bohr [76, 77].

Microscopic objects appear under two apparently irreconcilable aspects, the wave as-
pect on one hand, exhibiting the superposition property characteristic of waves, and the
corpuscular aspect on the other hand, namely localized grains of energy and momentum.

Therefore a system of N particles should be described by a wave function ¥(ry, ..., ry; ),
where r; is the coordinate assigned to particle ¢, ¢ is the time. The wave function completely
defines the state of the system. In case of one particle, the intensity at a given point and
at a given time of the wave function associated with that particle gives the probability of

finding the particle at that point and that time.



16

The propagation of the wave-particle is described by the Schrodinger equation

hi Ei,t)\lf(rl,7r]\,,t) (21)

0
h—U ) =H ;=
[ t (r17 y TN, ) (1'1, y TN K arla ) iBrN

0
where 7 is a Planck’s constant and the function

hi 0 h 0
— —'t)

HI‘l... ry; — ey T
(T, "i0r,” i 0ry’

is called the Hamiltonian operator of the system.
For our purposes of considering only static systems, where the Hamiltonian H does not
explicitly depend on time ¢, we can introduce a time independent wave function ¢(ry, ..., ry)

as

\I](rla"'arN;t) :wrla"'JrN)eXp_i%

then equation 2.1 becomes

Hw(rla"'ar]\f) = _—A+V(r17"'7r]\7) 77b(r17"'7rN) = Ew(rla"'arN) (22)

where A is the Laplace operator in particle coordinate space and V is the potential field in
which the particle exists.

The solution of the eigenvalue equation 2.2 gives the eigenwave function ¢ of the operator
H to the eigenvalue E. E represents the stationary energy of the solution.

For more details on Quantum theory refer to [78, 79, 80].

It is very difficult to solve this problem even assuming a very simple potential form.
Numerical calculations are very extensive and one can calculate systems of only a few tens
to a few thousands of atoms depending on the approximations made.

To ease the problem, many calculations consider the use of effective potentials [81, 82].

Depending on the physics of the underlying systems of atoms, a potential energy function
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can be introduced. It is a function of only atomic coordinates in the system, which gives
by minimization the equilibrium state of the system. It is important to note here, that
this function is much more physically based than a constitutive law. The parameters of the
function are carefully fitted to the quantum mechanics calculations.

The principle of minimum energy can also be formulated for this case, stating that the
material body will assume a configuration (meaning each atom will assume a position),
consistent with the boundary conditions given, that minimizes the potential energy of the
body:

min EP(x,Xa, ..., X,)

Here x; is the position of atom i.

After determining the equilibrium atomic coordinates and atomic inner forces, we can
always determine continuum strain and stress by averaging them out, if the concept of
continuum can be applied to the body or some parts of it.

The atomistic approach is much more precise and does not require a priori assump-
tions about the energy dependence on strain, but it is also very cumbersome and requires
an enormous amount of calculations. The problem is, of course, that even a small body
in everyday life constitutes many atoms (approximately the order of Avogadro’s number:
1mol=6.022-10?% [83]), and having to follow and explicitly deal with each one of them re-

quires an enormous amount of computer time and resources even for relatively small systems.

2.3.4 Original Local and Nonlocal Two-Dimensional Quasicontin-

uum Theory

The Tadmor et al. Quasicontinuum theory applies to crystals which have a systematic crystal
structure in undeformed configuration. In this theory, the crystal has to be homogenic, i.e.,
only one atom per Bravais lattice. This means all the atoms in the crystal have to be the

same kind of element and ordered in a Bravais lattice with the basis consisting of only one
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Figure 2.2: An example of a Bravais lattice.

atom.

A Bravais lattice is an infinite array of discrete points with an arrangement and orien-
tation that appears exactly the same, from whichever of the points the array is viewed [84].
See an example of a Bravais lattice in two dimensions in Figure (2.2). A three-dimensional

Bravais lattice consists of all points with position vectors R of the form
R= llal + 123.2 + 1333,

where a;, a; and a3 are three linearly independent vectors (that is, not in the same plane) and
[y, 5 and [3 range through all integer values. The vectors a; are called lattice vectors and are
said to generate the lattice. Integers [; are called lattice coordinates. The Quasicontinuum
theory was originally developed for two dimensional crystals, but is not limited to it [6].

Consider a homogeneous crystal. With the lattice statics previously mentioned, the
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energy of the crystal would be a function of all atoms, positions x1,...,Xy

E = FE(x1,X2,...,Xy)

This is still pure lattice statics, leaving us with too many degrees of freedom to be able to
calculate a realistic sample.

It should be noted that in atomistics we talk about coordinates of the body rather than
displacements. The coordinates are the ones which the energy truly depends on. This is in
contrast to continuum mechanics, where displacements from the undeformed configuration
are the prime variables. Knowing the undeformed initial configuration of the atoms, it is
trivial to calculate displacements from coordinates and vice versa. And the undeformed
configuration is almost always known or can be determined.

What we want to do is to use the finite element approach to interpolate some of the atom
coordinates or displacements based on the coordinates or displacements of some carefully
chosen atoms, which we will call in the future representative atoms. There is an intuitive
approach at how to choose them: in the areas with high energy density, where things might
have to be considered atom by atom, i.e., atomistically, we should choose a lot of atoms as
representative atoms. And in the areas with small homogeneous deformations, far away from
the defects, it should be sufficient to choose a smaller number of atoms, only every 10th or
100th atom or even coarser. We do not have to be absolutely sure, a priori, how to select
the atoms. The algorithm’s build feature, which we refer to as adaptive mesh refinement,
will correct the density of the atoms selected depending on the problem.

Those selected atoms will become nodes of the triangulation, see Figure (2.3). The
triangulation will introduce a subdivision of the body with ways to interpolate the positions of
an atom inside an element based on the position of the atoms to which the nodes are bounded.
It is exactly the same interpolation and triangulation as in finite element method, only that

we have a discretization of space rather than a continuum. It makes sense to interpolate only



Figure 2.3: A lattice triangulation.

the positions of atoms which are uniquely defined in undeformed configuration. “Nothing”,
or vacuum, is located in between. One of the reasons, although not the main one, why this
theory is much easier to introduce for the homogeneous crystals is that you need to know
in the undeformed configuration where the atoms are located. This is much easier for a
homogeneous Bravais lattice. A very simple algorithm specific to each lattice structure, plus
three Bravais lattice vectors, are enough to determine the initial undeformed position of any
atom in the lattice. A complicated database of initial positions of atoms is unnecessary,
making calculations faster.

The same shape functions we know from finite element method will take care of interpo-

lating positions of the atoms which are not nodes

wn(X) = Y Na(X)-za(Xa),

a, nodes

where x5, (X,) is the deformed coordinate of node a. Note that we drop the time dependence

of the deformed coordinates for the simplicity of the formulas, but it can still be thought of
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implicitly.
Now that many of the atoms are constrained kinematically through triangulation as
discussed above, the energy becomes a true function of only the positions of representative

atoms:

E({z}) = E({an}) = E({ea(Xa)}) = E({wa})-

With accordance with principle of minimum potential energy, the energy now needs to be
minimized only with respect to the positions of representative atoms x, (X,), reducing dram-

matically the number of variables in the system:

I%?E({l‘}) ~ I{Ial:(lln E({xa})

An important next step in the chain of assumptions is that the total potential energy of

the crystal should have a site-wise additive decomposition

E({z}) = ZEu

where the index 7 goes over every lattice site. Most of effective potentials allow this decom-
position.
This allows us to approximate the energy based on the representative atoms energy

contribution
E({z}) = Zna

with some weights n, for each representative atom. With this expression, knowing the
weights, we will be able to find the total energy of the system, summing and visiting only
the representative atoms.

To minimize the energy function, we need to compute its derivatives with respect to the
positions of the nodal atoms. Depending on the minimization algorithm (or root searching

algorithm, since an extremum of a smooth enough function will be where all the partial
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derivatives vanish) we might have to also calculate second order partial derivatives. We
found that conjugate gradient method was a very fast and reliable way to solve this equation,
which requires only the first order derivatives. Therefore, and also to keep things simple, we
will only mention how to compute the first order derivatives of this equation.

There are two approaches used to minimize the computational effort in this formulation
of Quasicontinuum: elements are split into local and non-local ones [2]. A local element
“sees” the state of deformation within its own domain only, while a non-local element “sees”
the deformation of other (mostly neighboring) elements as well. The local elements are used
in the coarse mesh, where the crystal may be assumed to follow the Cauchy-Born rule. In

the fine mesh limit, the approach used is similar to lattice statics.

2.3.4.1 Local Quasicontinuum Elements

The entire element €2, considered to be local has a constant homogeneous deformation inside.
The deformation of the element follows the deformation gradient defined on a continuum

scale F due to the Cauchy-Born rule [84], defining the positions of the atoms as

x(1) = FX(1)

The strain energy density W in the element which can be computed from atomistic coordi-
nates becomes a function of the deformation gradient F.

The contribution of the local element €2, to the driving force residual follows as

OBV
Oxh (Xa)

= [ (P Van ) v

Qe local e

where P = 0W/OF is the Piola-Kirchhoff stress tensor and the integral is taken in the

undeformed space with all the functions in it being functions of undeformed variables.
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2.3.4.2 Nonlocal Quasicontinuum Elements

For the non-local element €2, the deformation inside cannot be represented by a homogeneous
constant deformation gradient applied and we have to explicitly account for the positions
of atoms. The positions of atoms are interpolated from the nodal atoms, but need to be
incorporated into atomistic calculations of energy inside the element.

The contribution of the element €2, to the driving force residual becomes

aEpot
Oxh (Xa)

= Y SmON),

Qe ,non—local atoms in Qe

where the sum is over all atoms in the elements with undeformed positions X and the term

OE

flzn(X)) = O

T=Tp

is the actual force on the atom at x,(X).

2.3.4.3 Total Driving Force and Quadrature Rules

The total driving force becomes

E'pot o Epot
83: h Z 837 )

Q¢ ,local

DEP!
Z Oxh (Xa)

e local Qe,non—local

+ | GN,dVy+ / TN,dS,

Qe ,non—local By 0Bo2

Then for every quadrature atom in the element (where the fields are sampled for numerical
integration) we calculate its total energy and derivatives using the appropriate model (from
homogeneous local deformation gradient in the local case and from actual displacement of
every neighbor atom in the non-local case). This provides a smooth transition from atomistics
to continuum in this mesh with fast computation.

Concerning the quadrature rules used in local and non-local elements, to substitute an

integral over the element with a sum in local case, just take one atom and multiply with the
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volume of the element. We will treat the non-local case in more detail in the discussion of
the 3-dimensional Quasicontinuum in the next section, which is closer to our implementation

of complex lattice Quasicontinuum.

2.3.4.4 Local/Nonlocal Criteria

Local elements are computed very quickly, while there are only as many non-local elements
as needed for high energy regions with any defects. Knowing the energy derivatives (driving
forces in finite elements) and the second derivative (relating to stiffness matrix in finite
elements) we can find the optimum configuration.

An important feature of Quasicontinuum theory is the adaptive mesh refinement. Ac-
cording to a specific problem the optimal mesh is selected. After the computation of the
solution with an initial mesh, a certain criterion is used to refine or coarsen the mesh and to
introduce or remove local and non-local elements. And then the solution is computed again.
This repeats until the mesh chosen is optimal for the given problem.

The non-local elements are only needed close to defect cores and along slip planes. The
decision on locality or non-locality of the element follows the criterion which is based on the

second invariant of the Lagrangian strain tensor E

1
Iy = im:E—WEﬂ (2.3)
= B}y + Bl + By — (Bu B + ExnFss + Ey1 Fsy), (2.4)

(2.5)

where

1
E:§&“F—U.

An element is considered non-local when

VIITg] > € (2.6)
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where € is a strain we can choose depending on the material and problem considered.
The elements which neighbor the non-local elements that share atoms with those elements
should be considered as non-local as well. There are few more small details to the criterion,

which try to reduce the number of non-local elements even further, for details see [2].

2.4 Three-Dimensional Fully Nonlocal Quasicontin-
uum Theory by Knap and Ortiz

The transition between local and non-local elements requires introduction of ghost forces on
the border nodes. Quasicontinuum was also originally developed for two dimensional models,
and could not simulate phenomena of truly three dimensional origin.

Knap and Ortiz in 2001 [6] further developed the Quasicontinuum theory, applying it to
three dimensions and making it fully non-local. Thus the theory became more homogeneous,
in the sense that each element can be treated similarly. It did not require introduction of
ghost forces. It was also better suited for capturing defects, which might get lost in the local
consideration of elements.

Nevertheless this further development of Quasicontinuum theory was computationally
very fast and efficient.

They introduced many improvements to the theory. We would like to mention those and
also very briefly go over the formulas involved since this is the background for our work.

The theory is fully non-local. Therefore the approach is to minimize the potential energy

or to find a configuration in which the driving force is zero. The driving force becomes

aEPOt Z OEPOt

Oxn(Xa) 0z (X,)

+ / GN,dV, + / TN,dS, =0
Bo 8B02

Qe ,non—local e,non—local

It is not difficult to deal with the integrals involving body force and traction. They can be

calculated using the same quadrature rule as for the strain energy derivative term and added
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to the driving force. Therefore we will skip these terms in future equations.

Counsider
o Eret OEPot
or — = Fan(X))Na(X) = 0
8xh(Xa) Qe,n;local axh(Xa) e,non—local all%;ms
Let us call

fuXalla) = D flan(X))Na(X)

all atoms

the representative force on the node a. This force can be calculated using the quadrature

rule, assigning every node a carefully calculated weight ny,(l,)

ulla) = > () £ (@ (X3)) Na(X) = 0

nodes b

The development takes an unexpected turn, since the energy of the system computed
this way is rank-deficient. A new quadrature rule has to be introduced, using different
quadrature points. The authors use a cluster Cj(b) around each node b as a quadrature
point, see Figure (2.4), assigning a weight ny,(b) to the entire cluster. This solves the problem
of rank-deficiency, if the clusters are large enough.

The representative force becomes

fulla) = D ma(®) | D flan(X))Nu(X)| =0
nodes b XeC(b)
These are the N equations for the N unknowns of nodal coordinates, which can be easily
solved with a number of numerical solvers available.
Of course, the accuracy of this summation depends on cluster width. The authors deter-
mined that a single shell of neighbors will eliminate the rank-deficiency and after including
the eighth shell of neighbors in the cluster, the solution is insensitive to further cluster size

increases.



Figure 2.4: Clusters quadrature rule.

The authors investigate the accuracy and convergence characteristics of the newly pro-
posed theory and calculate nano-indentation of a very large sample being able to follow the

created and propagating dislocations.
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Chapter 3

Complex Lattice Quasicontinuum

3.1 Challenges and Approaches

The reference [6] was the basis for our work and the program described in [6] was the
starting point for our numerical development. Quasicontinuum allows a very good calculation
of homogeneous lattices. But most crystals are “complex” in that they consist of many
kinds of atoms. Most crystals have an ionic nature which automatically results in complex
lattice structure (positive and negative charged ions - but the lattice has to be electrically
neutral). This is the source of our motivation for developing Quasicontinuum to deal with
heterogeneous or complex lattices.

One of the challenges in extending Quasicontinuum theory to complex lattices is that the
theory developed previously assumes homogeneity. Another reason why Quasicontinuum
is difficult to implement for complex lattices is that there is no scheme for computing the
energy of the element or the cluster from a lattice which consists of many kinds of atoms. It
is not possible to simply count the number of atoms to be represented. Another challenge
is that Cauchy-Born rule is not valid for complex lattices, where shuffling becomes possible.
The challenge is how to overcome the necessity of a homogeneity condition, as the base for
interpolation and approximation.

Further, when developing the complex lattice Quasicontinuum theory, the numerical

implementation must still account for the limited amount of computational memory and
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time available.

For simplicity consider a crystal which consists of only two kinds of atoms. Let us call
them type A and type B. One can consider it as two homogeneous Bravais lattices shifted
with respect to each other, or as a Bravais lattice with a complex basis. This would be true
for any number of atoms in a Bravais lattice with a complex basis.

The similarity to the homogeneous problem is that the crystal has still a periodic struc-
ture. Knowing the unit cell we can determine where all the non-deformed positions of other
atoms are. This property definitely should be exploited. The difference with the homo-
geneous problem is that now the atoms are of different types. It is thus not immediately
apparent how to interpolate atoms, how to build approximate energy and how to build rep-
resentative forces. The properties of the node are dependent on whether it is an atom of
type A or B.

It is possible to develop a local complex lattice Quasicontinuum(8, 9], since that would
assume a uniform deformation inside one element. In this case a relation for the driving
force can be derived based on the deformation gradient.

But in the non-local case this intuitive approach does not help, and maybe that is why
a complex non-local Quasicontinuum theory has not been developed up to now.

One possible way is to consider the crystal as being a Bravais lattice with complex basis.
Then every “site” of the crystal is the same as others and we can use interpolating and energy
building schemes as in the homogeneous case, with some changes. The rule of computing the
forces on so-called “sites” would be complex and require enormous computation. One of the
additions we have to consider is that the so considered “site” would have internal degrees of
freedom since, if the basis consists of one atom A and one atom B for example, these two
atoms can move with respect to each other in each “site” differently. The number of internal
degrees of freedom becomes large even with a relatively small complex basis order, resulting
in enormous computational efforts.

We originally started developing complex Quasicontinuum based on this approach but
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did not pursue it as we found a much simpler and faster approach.
As previously mentioned, there are a lot of challenges in developing a complex lattice
Quasicontinuum. One of the challenges is to keep it simple (Ockham’s Razor, see for example

[85]) and computationally effective.

3.2 Newly Developed Complex Lattice Quasicontin-
uum Theory

Our approach was to consider a complex lattice as a union of simple Bravais lattices shifted
with respect to each other. Each atom in the basis would define a sublattice. Sometimes it
is possible to construct a Bravais lattice out of two or more atoms of the same kind in the
basis, just a different sort of Bravais lattice. This does not by any means limit our theory.
If we want to describe our theory in a few words, then our approach was to consider the
sublattices as separate as possible making the theory and computational effort simpler, and
reuse as much as possible the homogeneous lattice theory and the code.

In our example of two different atoms of kinds A and B, assume further that we can
separate the material into just two Bravais sublattices, see Figure (3.1), to keep things

simple. We will call the undeformed positions of the atoms X“ and XZ, the deformed

A

i

positions x* and x”, the lattice coordinates 1* and 1B, and the Bravais lattice vectors a

and aB, i = 1,2, 3 for sublattices A and B respectively. Since we again deal with Bravais

1)

lattices, the following relations hold

3

XA =)l

=1

3

XP(1) =) iaf

=1

The potential energy EP°" depends upon the coordinates of all the atoms in the deformed
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Figure 3.1: Complex Quasicontinuum of two sublattices.
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Figure 3.2: Cluster in complex Quasicontinuum of two sublattices.
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configuration, all atoms in sublattice A and sublattice B.
EPot({XA, XB}) _ E({XA, XB}) + (Dewt({XA, XB)},

where ®°f(x?,x?) is the work of external forces, which includes the work of body forces
and traction forces and can be dealt with in the same way as the homogeneous case.
The potential energy has to be minimized with respect to all atoms coordinates to get

an equilibrium configuration:

EPOt({iA,SEB}) = min EpOt({XA,XB})
{x4xB}

Now we want to treat the sublattices as separately as possible. So we introduce separate
triangulations of lattices A and B. Consider the sublattice A. Pick representative atoms in
the sublattice A, which will become the nodes of the triangulation. The triangulation will
define a shape function, which will operate on X# domain. This is the normal shape function
exactly as before for a pure homogeneous crystal, since it “sees” only the Bravais sublattice
A. The same can be done for the B sublattice.

The deformed coordinates of the atoms can now be found as:

X (XY = ) NAXNxHX,)

a, nodes
B(~xB B(~x B\B
xp, (X7) = Z Ny (X7)x; (Xs)
b, nodes
where a runs over all nodes in the triangulation L and b over LZ.
The so-constrained coordinates of the atoms are not independent variables of the problem

any more. The energy minimization now runs only over representative atom coordinates,
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which are independent coordinates.

B4 %55 = min EP'({x.4,x,P}) (3.1)

{xaA:be}

Taking derivatives of this expression as before, we get the representative force on node

aEpot(XA XB)

A _ b

S R (32)
. Z |:8Ep0t aX;? OEP"t aXE

ox;t ox2  oxP ox}

all atoms

The second term is zero because the positions of the atoms in sublattice B, x7, do not
depend on the positions on the nodes in sublattice A, x2, per our construction of independent
triangulations.

The representative force becomes

JEP* 9%,
fh(Xa/,l) = Z |: ax aXA:| (33)
all atoms h
= £(x; )N, (X4
all atoms
OEP Ox};
(X)) = ) { Bax} (3.4)
Xh b
all atoms
= ) fx)MEXP)

N

all atoms

where f(x;') is the real atomistic force at atom at position x;. The same is true for the

sublattice B. In order to find an equilibrium configuration consistent with the minimum

potential energy we need to find a configuration where all the representative forces are zero.
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Thus, we need to solve the following system of equations:

6X)) = Y f(x)N(XY) =0 (3.5)
f.(X7) = ), fx)MEXP) =0

Here we would like to mention a very important point. Looking at the form of equations
(3.5), one can see that the lattices are still treated as independently as possible. For the
representative force on node atom in lattice A we are required to take a sum over atoms in
lattice A and determine for each such atom a force on itself and the shape function at it.
The form is very similar to the homogeneous case. Importantly, the only difference is that
the microscopic force on atom at x4 is the real microscopic force which depends on atoms
around it of both type A and B. If any atom A or B would change its position, the energy
of the system will also change and thus the representative forces.

This is how the lattices interact with each other, and how we get the system as whole.
On the other side, we could separate A and B as much as possible. Separate triangulations
make the theory and computation much easier.

There are a few other things to consider before the theory is complete. We are taking
the full lattice sums here. We need a quadrature rule. If we use only node atoms as
our quadrature points, it might again lead to an energy degeneration. What appropriate
quadrature rule should we use?

We found it easy to use a cluster summation rule similar to the one in the homogeneous
case. As before, we want simplicity and reuse of the previous theory. Therefore we take a
cluster of atoms A around a node A as a quadrature point in L# triangulation and the same
for B nodes. Clusters are completely separate for different triangulations.

The quadrature weights of the clusters for the summation rule are computed separately
for each sublattice and depend on the cluster size and the triangulation of the particular

sublattice.
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The effective forces become:

B.(X) ~ > n > f(xHYN(XA) | =0 (3.6)
all clusters s Lall atoms in cluster s J

LX) ~ > m >, f(xr ) Np(X)| =0
all clusters p Lall atoms in cluster p _

After determining the equations, we need to find the solution, which will be the equi-
librium configuration of the system. In the equilibrium configuration all the representative
forces are zero.

We have a very effective model now for Quasicontinuum calculations. It is a very powerful
and yet simple theory which can give many interesting new results.

All we need now is a rule relating the total energy of the crystal to the atomistic coordi-
nates. The rule may be obtained from materials science or solid state physics (which obtain
it from quantum mechanics calculation). It will be an input module for our theory.

The adaptive nodes selection feature of the homogeneous theory can be extended to
work in the complex Quasicontinuum case as well. The nodes are selected based on the
same criterion (2.6) as for the locality or nonlocality of the element. When the strain in the
element exceeds some tolerance value, the element should be remeshed. The remeshing in
this sense means that some extra nodes should be introduced which lie inside this element or
on its surface and thus the size of this element should decrease. There are similar conditions
as in the homogeneous Quasicontinuum implementation of Knap and Ortiz, but they must
be applied to each Quasicontinuum sublattice independently.

A short overview of how the calculations work in complex Quasicontinuum is as follows.
We need a potential dependent on atomistic coordinates as input. We triangulate, find
clusters, and find weights for each sublattice. We determine the microscopic force on each
atom in the cluster, depending on neighboring atoms in all sublattices. With some equation

solver we determine the equlibrium position, which gives the minimum of energy, where



effective forces become zero.
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Chapter 4

Numerical Implementation

4.1 Overview of the Changes Made to the Initial Pro-
gram

As a basis for the numerical implementation of complex lattice Quasicontinuum, we used
the program for the homogeneous Quasicontinuum by Knap and Ortiz as mentioned in
[6]. This program, implemented in the C language [12], needed major structural change
to allow for many instances of sublattices or Quasicontinua. On top of that many object
oriented elements were introduced to the initial program. After changing the program itself,
a complex Quasicontinuum program interface was designed and built in C++ [10, 11, 86].
The user of the program does not need to know any of the underlying functions of the newly
designed C++/C program, the user needs only to specify material, underlying potential,
lattice structure, size of the specimen and boundary conditions, and the tolerance parameter
of the system.

New lattice types, materials and boundary conditions were introduced and tested in the
program (allowing calculation with any number of building sublattices). Domain walls in
different phases, boundaries, indentations, cracks and surface force relaxation can now be
researched with the new program. All the new implementations were introduced to the

program as interchangable modules, allowing with just one version of the program, with
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small modifications, calculation of any of the above mentioned examples.

The initial program had as its center piece the main function, which relied on an extensive

library of other functions. It called the functions to be performed one after the other. The

user needed to keep track of all of those functions and the sequence in which to call them.

It is important to briefly review the main blocks of the initial program to understand the

changes and extensions made. The procedure for the initial homogeneous Quasicontinuum

main program was as follows:

a)

Create an initial set of nodes - this constitutes part of the input to the program.
The other input parameters are stored in the input file or are defined by preprocessor

directives build into the code.

Initialize the structures to hold the instances on which to perform the simulation and
store the results. The structures to be followed were initialized and used throughout
the program: element list, node list, material, lattice type, shells of neighbors in the

given Bravais lattice, etc.

Process the input, where the initial files are scanned for the data and parameters and

the above-mentioned structures are filled.

Create a Delaunay triangulation [87] based on the initial set of nodes. It is an external

module to the program, written in Fortran|[88].

Create clusters for the quadrature rule and compute cluster weights from the consid-
eration that the shape functions should be summed exactly by this cluster summation

rule. By now all the structures necessary for calculation are set up.

Introduce a loop into the program which builds the core of quasistatic calculations
and can be repeated as many times as desired. The load (for example the indentor
load or crack opening load) changes creating the new set of boundary conditions. The

solver, in this case conjugate gradient, finds the static equilibrium of the system with
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the new boundary conditions and body forces. The results, the node positions, which
include the interpolation positions of all atoms, the forces on the atoms and energy of
the atoms, which include the information about the potential energy of the deformed
body are computed and saved. As the next step, the system is remeshed due to
the newly introduced deformation with the earlier mentioned adaptive nodes selection
2.6. The information holding structures have to be recalculated with the new adapted

triangulation. The loop can be repeated again from beginning.

4.2 Quasicontinuum Class Design

The complex Quasicontinuum program takes care of which procedures to call and their
mutual dependencies in different body deformation configurations. It summarized the inner
parts of the simulations into the program, giving the user a simple way to control the running
process.

A C++ class Quasicontinuum was introduced and builds the core of the new complex
Quasicontinuum program. It includes the following members: lattice, element list, node list,
indentor and material structures, inherited from the homogeneous program design. The new
design introduced the following members as well: neighbor shell class, relative displacement
to the absolute coordinate system vector, polarization vector, load step size, and names
of the input and restart files. There are many more members which are help members to
the design and implemented functions which are kept private. The reason some members
were left as structures is for compatibility with the underlying C code. These structures
were modified by adding constructors, destructors and some other functions as for example
output functions when called from the C++ part of the code. This way the structures are
classes, initialized properly from C++ code, and still behave like structures from C code
providing compatibility [10].

A large number of functions to control the processing and representation of the simulation
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were introduced as methods in the class Quasicontinuum. Just to mention some of them:
compute solution, get polarization, compute forces and energy, increment loading, output
results, many help functions to deal with coupling of Quasicontinua with each other to
find the neighbors in the neighboring Quasicontinua to find their contribution to force and
energy on the atom, remesh, print forces and energy, print mesh, print all atoms, change
nodes positions, indent corner, shift tetragonal phase, shift rhombohedral phase, shift into
domain wall initial position, load crack and many other functions which assist with the above
functions and also control input and output, loading and processing.

The constructor in the Quasicontinuum class takes care of all the processes requiring ini-
tializing the data, reading input files, filling in the members and other preprocess data. All
the above mentioned steps a) - e) corresponding to the homogeneous Quasicontinuum initial-
izing are taken care of from user’s side by just creating an instance of the Quasicontinuum
class. In this case many changes have had to be made to the design and implementation of
the complex Quasicontinuum code relative to the homogeneous Quasicontinuum code. Each
instance initiated is part of the entire complex lattice and the code needs not only to be
able to have many (as many as needed) similar instances but also to determine how this
sublattice relates to the whole complex lattice and also to other Quasicontinuum sublattices.
The implementation of these changes is discussed in more detail in the following section 4.5.

Let us mention some details of the simulation mechanism. To build an instance of the
class a user needs to specify the following: a set of initial nodes for the triangulation with
the material type (which will determine the potential type from the database to use), lattice
type, relative displacement of the Quasicontinua with respect to each other, the maximal
number of threads to use for multiprocessing, whether or not to use the restart file to start
the computation from where the previous one stopped, the initial configuration the user
wants to choose and whether it should be tetragonal or rhombohedral bulk phase or specific
domain wall. The user of the program needs also to specify the loading and, if applicable,

the indentor parameter and number of steps of the quasistatic loading and tolerance for
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the solver and triangulation mesher. Then the user can specify different ways of output
to process and present the data. For example, printing the atomistic displacement along
specific line across the domain wall, a three dimensional polarization vector for the crack
surface under loading, or a profile of atoms along specified region, forces and energies, finding
and extracting dislocations, etc. The user can also determine what kind of data needs to
be saved and whether or not the restart data for possible future rerunning of the simulation
starting from the point stopped should be produced.

After creating instances of a Quasicontinuum class with the constructor, the user calls
the compute function, where the complex lattice conjugate gradient is evolved and finishes
upon finding an equilibrium configuration of the body in the given tolerance range. Other
solvers can be implemented as interchangable modules as well, but conjugate gradient proved
to be the best for this application because of its fast convergency and simplicity.

The next step is to process and save results. And here the user is provided with many
helpful functions concerning how to represent results and save them. The results of the
calculation include a huge amount of data. If the simulation included a sample consisting
out of millions of atoms, the results of the computation will be 3 degrees of freedom for
each atom, plus 3 dimensional force on each atom, plus its energy contribution to the total
potential energy. The implemented functions allow fine control of the simulated process with
chosen boundary conditions and body forces, and many functions which, immediately after

receiving the calculated equilibrium condition, can process the results in any form suited.

4.3 Conjugate Gradient Class Design

The version of the solver method used is the preconditioned nonlinear conjugate gradient
method with Secant and Polak-Ribiere, which is described in the reference [89]. Since the
derivatives of the energy function are specified as analytical formulas in the program, the

precision of the results is further enhanced. It results in a solution of a very large system
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of non-linear equations keeping the non-linearity feature. Because the solver needs to have
reading and modifying access to every one of the Quasicontinuum class instances, it was
decided to implement it as a stand alone C++ class closely interacting with the underlying
complex Quasicontinuum code.

The members of the class specified from the input are a set of Quasicontinuum instances,
solution tolerance value and the maximum number of iterations performed if the solution
has not yet been found. Many other private members are in the class which help with the
conjugate gradient iterations.

The methods include, among others: compute forces, fill neighbor lists, destroy neighbor
lists, update indentor, compute energy. These methods take the current configuration of
all Quasicontinua together simultaneously and perform the needed operation on each of the
Quasicontinua. The method update position sets the configuration in each Quasicontinuum
as needed in the process of finding the solution. The main part of the class is constituted of
the methods which perform the conjugate gradient iterations.

The most important function in the class is the compute solution function, which starts,
governs and finishes the entire conjugate gradient solution. The user only needs to produce
an instance of a Conjugate Gradient class with the constructor giving it a set of vectors of
Quasicontinua to build the complex lattice and then call the Conjugate Gradient to solve
the problem with the compute solution function. After the function finishes successfully, the
instanced Quasicontinua will be in the equilibrium configuration.

We would like to mention here that the solver implementation is interchangeable. If
another solver is looked upon, it can be implemented in very similar way from the outside

interface. Then the user can specify which solver class should solve the given problem.
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4.4 Mesh Generation

A new mesh generation technique, responsible for the initial set of representative atoms or
nodes of the triangulation was designed. It serves as a good example of how the object
oriented structure of C++ can compact and simplify things. The inheritance property of
C++ was used. A purely virtual base class Mesh with the common functions for any set
of nodes was designed. The class is called Mesh according to the generate mesh function of
the homogeneous Quasicontinuum C code, but it generates only the nodes of the mesh for
the input. A Delaunay mesh is generated based on these nodes as initialization part of the
program later on.

The members of this class are the nodes array, output filename, material, lattice and other
help members. The constructor, destructor, and the algorithm function which specifies which
nodes to choose, are not implemented in this base class leaving it up to the derived classes.
Obviously the algorithm which chooses the nodes depends on the specific problem. One
method which is implemented is the output function, because once nodes are selected and
specified they can be written in the standard form to a file which later constitutes the input
to the main complex Quasicontinuum program.

This class is the parent class for specific meshes and can have many further derivations.
Every other mesh is derived from this class. Every lattice type has to have its own algorithm
to select the nodes. The mesh for indentation has atomistic resolution directly under the
indenter, uniformly growing coarser and coarser in all three directions away from the indenter,
for an example see Figure (4.1). The mesh for crack simulation for plain stress has atomistic
resolution near crack tip, growing coarser in two dimensions away from the tip, for an
example see Figure (4.2). The mesh for domain wall calculations has atomistic resolution
at the domain wall becoming uniformly coarser away in one direction perpendicular to the
wall plane, for an example see Figure (4.3).

The size of the atomistic region, the rate of becoming coarser in each direction, the
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Figure 4.1: An example of indentation mesh.

D

Figure 4.2: An example of crack mesh.
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[ T

Figure 4.3: An example of domain wall mesh.

size and boundary conditions of the mesh are controlled by the program input parameters,
which are also members of the specific derived class. The most challenging part of mesh
generation is to find an algorithm which, depending on different lattice types, sizes and

other parameters, produces a smooth mesh which is also not too fine and not too coarse.

4.5 Coupling of the Quasicontinua

There are two main aspects in coupling the underlying instances of Quasicontinua together.
First, since every Quasicontinuum exists in its own coordinate system, we must bring the
Quasicontinua together in the right way in the absolute coordinate system. The second
important aspect is the actual implementation of the microscopic neighbors and forces of
one particular Quasicontinuum taken among all its other Quasicontinuum neighbors.

From the way the code is designed and the performance and optimization goals, it is im-
portant that every Quasicontinuum instance, which represents a Quasicontinuum sublattice,

includes the site with lattice coordinates (0,0,0). Let us take a closer look at the reasons.
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To define a lattice (different types of Bravais lattice) in a suitable way for computation, it
is not always best to define three Bravais lattice vectors, see Figure (2.2), and a point of the
lattice. Although such a lattice will be well defined because of the translational invariance
of the Bravais lattice, it is not necessarily best to use in computational simulations. For
example an fcc lattice can be represented more intrinsically if it is represented as a fcc cube
rather than a parallelepiped, which is built by the three Bravais lattice vectors. In case of
an fcc cube, an algorithm is necessary to determine which sites in the cube belong to the
lattice. This is easier to do if the (0,0,0) lattice is considered lattice occupied. Another
reason lies in the calculations of the shells of neighbors. To build shells of neighbors, used
for the calculations of clusters around each node and also for the calculations of each cluster
site neighbors, it is important again that the (0,0, 0) site is occupied and is the center of the
calculated shells of neighbors.

Therefore each sublattice has to have an atom at the origin in its own coordinate system.
To make different Quasicontinua “live” in different coordinate spaces is no problem for the
algorithm, since to the decoupling of the underlying Quasicontinua as described in previous
chapter, the coordinate system of one Quasicontinuum can be completely independent of
others for nodes, elements and even clusters around the nodes.

A parameter high in the implementation level is introduced to represent a relative dis-
placement of each Quasicontinuum coordinate system to the absolute chosen coordinate
system. One of the underlying QQuasicontinua coordinate systems can be chosen as being
absolute. Knowing these relative shifts, we can calculate the relative displacement of one
Quasicontinuum with respect to another.

Another and probably most important challenge in coupling the Quasicontinua instances
together in the complex Quasicontinuum code is to make sure that one Quasicontinuum
“knows” its neighbors of the other Quasicontinua types at a particular site. Due to the
design this information is required at the lowest level of the code implementation. The

Quasicontinua exist separately as long as possible, the triangulations and the clusters are
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being determined completely separately. The cluster which belongs to the a node in the
Quasicontinuum A consists out of only A atoms. To numerically solve the equations (3.6),
we need to determine the real smacroscopic force on each A atom in this cluster. And that
is the first time when we need to know the real neighbors of each atom: in Quasicontinuum
A, Quasicontinuum B, Quasicontinuum C', etc., in some radius. Knowing the neighbors of
an atom in a sufficiently large radius will give a good approximation to the real microscopic
force and energy of the atom in the examples we consider as mentioned earlier.

The way the implemention was made, all the neighbor lists of the Quasicontinua are
calculated and filled in by the C++ part of the code which has access to all the Quasicontinua
class instances. It uses a complicated but yet efficient algorithm to find the neighbors in the
certain cutoff radius. The description of this neighbor finding algorithm is rather technical
and would require an explanation of details of the underlying code, so is being left out here.
When the C++ compute force function is being called by the C++ class conjugate gradient
solver, the neighbors have been already computed and stored and can be efficently used for
the force and energy calculations.

Due to the large number of functions which needed to be changed, due to the required
C and C++ compatibility throughout the code, and due to the efficiency requirement on
the code, the design and technical implementation of the force and energy calculations and

neighbor search turned out to be a challenging task in the complex Quasicontinuum program.

4.6 Scaling of the Code

Let us consider scaling of the code with the number of Quasicontinua instances, and different
values of other parameters, as a measure of computational efficiency of the designed algorithm
and its implementation. There are two scalings to consider: computational runtime and the
memory allocated by a run of the program.

Many computational efficiency features are similar to the homogeneous Quasicontinuum
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program since we consider the Quasicontinua independently for the large part of the com-
putation. This includes similar scaling of runtime and convergence with cluster size and
lumping cutoff. In the complex Quasicontinuum case the runtime has to be multiplied by
the number of Quasicontinua instances. Energy deficiency disappears as in the homogeneous
case with just the nearest neighbor cluster for the quadrature summation.

Most of the runtime is spent calculating the forces on and energies of the atoms in the
cluster and, if the atoms moved more than a tolerance parameter, recalculating the neighbors
of these atoms. This scales with the number of Quasicontinua involved. If we consider a
single Quasicontinuum then the force calculations should take the same order amount of
time as in homogeneous case, because this scales with the number of neighbors. In the
complex Quasicontinuum case, it can take slightly more time because of the need to access
different neighbor lists for different neighbors and possibly having to call a different function
to compute the analytical form of force and energy.

The required memory use of the program is much larger than for a single Quasicontinuum.
This is easily understandable, because the instances of many Quasicontinua would require
as many times more memory than a single one. Most of the memory is used by the neighbor
lists of each of the cluster atoms. In the case of 10 Quasicontinua, as in simulating of
a perovskite lattice, each such atom would have 10 lists of neighbors, formed from its own
atoms and 9 other Quasicontinua atoms. If the cutoff radius is large as required, for example,
for Coulombic iteration calculations, then these lists can take a large amount of computer
memory.

Nevertheless, with a high degree of optimization many examples can be calculated easily
using a personal computer. In the case where larger numbers of sublattice Quasicontinua
are involved with large cutoff radiuses, a realistically large example can be calculated only

by using a supercomputer, considering available memory and the speed of calculations.
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4.7 Optimizations

Many optimizations were introduced into the code to make it more efficient. Since the
goal of the algorithm and the implementation is to be able to calculate the largest possible
samples, every optimization was vital to the performance. After all the optimizations, the
performance of the code increased greatly, making it now close to the performance of the
homogeneous Quasicontinuum code.

As mentioned before, the neighbor list setup and force and energy calculations take most
of the running time of the program. It is important that nothing redundant is performed
during it. Some nodes are fixed and are not allowed to move due to the selected boundary
conditions. The calculation of the force on these nodes is not necessary and therefore the
setup of neighbor lists is also not necessary. The complex Quasicontinuum program identifies
which nodes to fill the neighbor lists for and which not. The program also identifies which
nodes to compute the force on and on which can be skipped. The integrity of the program
has been preserved with this optimization and thoroughly tested.

This optimization is especially helpful in the simulation of cases with large boundaries
due to the sample size and the long reaching potential. This improved the performance of
calculations in the ferroelectrics phenomena.

Another important optimization we would like to mention is the introduced force toler-
ance on each atom. As customary in molecular dynamics simulations, the calculated equi-
librium configuration can still have a force on the atoms of some order of tolerance. Since
many of the potentials which can be used in complex Quasicontinuum simulations come from
molecular dynamics simulations, an algorithm has been introduced into the program which
only relaxes the positions of the atoms when the force on them has not reached the tolerance
range specified. This way the error introduced from molecular dynamics simulations does
not pollute the computational space.

Many optimization features which were in the original homogeneous Quasicontinuum
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code have been extended and implemented in the complex Quasicontinuum code. The fol-
lowing features we would like to mention here. The neighbor lists of the atoms in the cluster
are being refilled only when the deformation around an atom has reached a specific tolerance
value. This saves significant computational time. The element site cache, described in detail
in [6], which keeps the assignments of particular sites to elements, is working in the complex
version as well, making the computation run faster. Multithreading is working and is the
single most important thing responsible for being able to calculate larger samples relatively
fast.

Another very important feature which is working in the complex Quasicontinuum code
is the adaptive remeshing algorithm, which gives us a backcoupling method, allowing for

optimal use of computational resources.
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Chapter 5

Potentials for Ferroelectrics

5.1 Goddard et al. Potential for BaTiO;

A potential which has been extensively studied for this work is the polarizable reactive force
field potential for Barium Titanate BaTiO3 developed by Goddard, Zhang et al. ([26]) The
potential takes its origin in the paper by Rappe and Goddard [90] and since then has been
developed and applied to many different ionic systems. We consider here only the relevant
BaTiOj3 potential, which has been kindly provided to us by Goddard group.

For a system of N atoms, a particular configuration is determined by the atom coordinates
r;, 2 =1,...,N. Given the types of atoms, these are the only input for the model, which
allows us to find the energy of the system.

The total energy E of the system consists of two terms:
B ({ri}) = BY({r;}) + E* ({r:i}) + 2 ({r:}) (5.1)

where E° is the largest term, representing the contribution to the energy from all electro-
static interactions between the atoms. In this model the same atom core and shell interact
electrostatically. Thereby the shells (S) and cores (C') of the atoms are considered separately,
as gaussian charge distributions. EvW is the short ranged van der Waals energy. E'" is

the correction energy term which describes the interaction between the core and shell of the
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same atom and is modeled by an anharmonic spring potential. We do not consider this term
as discussed in section 7.1.2. Each term in the equation (5.1) represents a sum over pairwise
interactions.

An important feature of this model which distinguishes it from other shell models is that
the shell charges are variable. They are subject to the constraint that the sum of all shell
charges is equal and opposite to the sum of all core charges, giving an overall neutral system.
The relative displacements of the shells with respect to their cores are also variable. These
displacements are small in general and give small corrections to the total energy.

E"W is the van der Waals interaction potential. It comes into play through the dipole
moment between the atoms, induced dynamically in the shells. At large distances the induced
dipole moment leads to an attractive fast decaying potential. At small distances between
the atoms, the Pauli principle becomes relevant, leading to strong repulsion between the

electrons and therefore the atoms. Ev4W

also represents this repulsion. The force derived
from the E*™ potential is considered to act on the cores of the atoms.

The equilibrium of charges and displacements of the shells and cores (the variables of
the problem) is achieved when the free enthalpy is minimized, or, equivalently, the chemical
potential of all atoms becomes the same. The system is solved self-consistently using the
conditions which arise from the Born-Oppenheimer rule. The Born-Oppenheimer rule states
that the electrons (and thus the shells) will be always in configuration with the minimum
potential energy with respect to the current core configuration.

The solution gives us the shell charges and core and shell displacements. Then we can

calculate the forces as following:
total
FC = —%
The force on the shells should be zero per the Born-Oppenheimer rule.
This potential accurately describes the atomic interaction and polarizability in BaTiOs,

equation of states, the cubic-tetragonal energy difference as a function of volume in a wide
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pressure range, energy as a function of atomic displacements and cubic-tetragonal phase
transition. The temperature of this transition, determined through molecular dynamic sim-
ulations with this potential, is found to be very close to the experimental value. Simulations
with other potentials tend to give smaller than the experimental transition temperatures.
This model can also correctly describe ab initio charge distributions, Born effective charges

and dielectric properties of BaTiOj.

5.1.1 Electrostatic Part of the Potential

Let QY, Q7 be the core and the shell charge of the atom i. The shell charges have to obey

the constraint
i=N i=N
ZQ;S' — Qtotal — ZQ@C
i=1 i=1
Let r¢ and r? be the coordinates of the core and the shell i, respectively.

Assume the charge distribution in core ¢

C

3/2
20 = Q-9+ @ - QD (L) el ko) 62)

where Q7 counts for §-function-like charge distribution (used mostly for small nuclei atoms)
and n¢ characterizes the width of the gaussian bell, taken from ab initio calculations. For
the BaTiO3 molecule all ()} are set to zero.

Charge distribution in the shell 7 is

S_sﬁg/2 S e nS)2
p; (r) = Q; - exp(—n; - [r —17[%) (5.3)

From the formulas (5.2) and (5.3) the electrostatic interaction between two different charge
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Element XZ) [V] Jl) [6] 1) [e] 2 mc? [A] 2 77;‘57 [A]
Ba -5.0992 | 12.7457 2 0.1632 0.8021
Ti 2.0369 | 11.3415 4 0.4255 0.5404
O 9.3877 | 15.9439 2 0.2618 0.4238

Table 5.1: Parameters of the electrostatic potential in Goddard et al. potential.

distributions ¢ and j (core or shell, 7 # j) which are r;; distance apart is

erf( [mni_ |1‘i'|)
ni+n; J C,S AC,S
Q', -

|rij] o

Eelec,int (rija Qicys, Q]C:S) (54)

It represents a shielded Coulomb interaction.

The energy of the electrostatic interaction in the atom ¢ itself is:
1
B Q8 QF) = Bt i (QF + Q)+ 3 (QF + Q0P

where Q7 + QY is the charge of the atom (Q7 < 0), x; is electronegativity and J; is the
idempotential of the atom . Both quantities depend only on the type of atom and are
calculated as the rest of the parameters of this model from ab initio quantum mechanics
calculations. The parameters for the electrostatic part of the potential are given in the
Table 5.1. The energy term E¢°¢“*¢/ implicitly includes shell or core self-interactions and

their dependence on Q7.

The complete electrostatic interaction £ consists of the sum of all E¢¢“"t and Eelecself

5.1.2 Van der Waals Potential

The van der Waals interaction potential is described through different forms of potentials for

interactions between different atoms. The Morse potential is used to describe the interaction



Atom Atom | Potential | D, [eV] A R, [A] | P, [A],| M
Oxygen Oxygen Morse 0.0905 | 7.1579 | 3.9975
Titanium | Barium Morse 0.9777 | 7.8754 | 3.3868

Oxygen Barium Pauli 2.5841 | 6.2615
Oxygen | Titanium Pauli 1.6163 | 8.4430

Table 5.2: Van der Waal potential parameters for Goddard et al. model.

between Oxygen-Oxygen and Titanium-Barium pairs

EMorse(r,) = D ((exp <%A(1 - %)) _ 1)2 _ 1)

where r;; is the distance between the cores 7 and j.
For the pairs Oxygen-Titanium and Oxygen-Barium the interaction is modeled by the
Pauli potential. It is a pure repulsion term in this model.
EP M (ry) = (riz/P) M. (5.6)

The parameters for the potential for the formulas (5.5) and (5.6) can be found in the
Table 5.2.

5.2 Sepliarsky et al. Potential for PbTiOj

Another shell model potential, which has been developed specifically for ferroelectrics, is the
Sepliarsky, Cohen et al. potential ([28] and [91]). The version of this potential which has
been designed for PbTiO3 was used in this work. The Cohen group kindly provided us with
the parameters of the potential.

As in the other shell potentials in this potential, each atom is split into two charged
entities: a massive core and a massless shell. In this model the shell charges are not trans-

ferrable, they are fixed. This is an advantage for the Quasicontinuum implementation. The
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core and the shell can move independently of each other. There are three components of the

potential: Coulombic, short ranged and self potentials:
Etotal({ri}) — ECoulomb({ri}) + EShortRange({ri}) + ESelf({ri})

The parameters for this model have been carefully selected to reproduce DFT-LDA results
for PbTiO3. The model reproduces many of the features of the phonon dispersion curves [92],
the effective charges, the behavior of the energy as function of the soft mode displacement,
and the sequence of phases as a function of volume. The modeled behavior of PbTiO3; with
temperature is in qualitative agreement with experiment with a lower transition temperature

than the experimental value.

5.2.1 Coulombic Potential

Both core and shell are represented by point charges. The energy contribution from two

charged entities (); and @); located at the positions r; and r;, respectively, becomes

FCouomd Q1@ (5.7)
|r; — 1]

For typical distances between different atoms this representation is close to the Gaussian
distributed representation from equation (5.4) with the typical values for n; and r;;. It would
be different for the same atom core and shell Coulombic interaction, but in the Sepliarsky
et al. model the same atom core and shell do not interact electrostatically. This improves
the stability of the entire structure, allows simple reversing of polarization and minimizing
the energy of the structure independent on the direction of initially selected shifts. The shell

and core charges selected in this model are given in the Table 5.3.
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Atoms | Core Charges, [e] | Shell Charges, [e]

Pb 4.9580 -2.7850
Ti 8.8200 -5.1580
O 0.5630 -2.5080

Table 5.3: Coulombic charges in Sepliarsky et al. potential.

5.2.2 Short Range Potential

The non-electrostatic (commonly referred to as the short ranged) potential between atoms
is considered to be applied at the shells of the atoms. This is a different approach than the
Goddard et al. potential, but more common in the theories of shell models. The short range
part of the potential is similar to the van der Waals part of the Goddard et al. potential.
Two different forms of short range interaction are considered. Most atoms interact

through the Rydberg potential

Ef™0(r) = (A+ Br)exp(~F), (58)

r = |I'i—I'j|

This includes pairwise interaction for the Lead-Titanium, Oxygen-Lead and Oxygen-
Titanium pairs.

The Oxygen atoms interact through the Buckingham potential

ingham C
B () = Aexp(— + =), (5.9)

r = |I‘Z'—I'j|

The atoms of Lead and Titanium do not interact with the same species atoms.

The parameters for the formulas (5.8) and (5.9) can be found in the Table 5.4.
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Atom | Atom | Potential | A, [eV] | B, [eV/A] | C, [A%V] | R, [A]
Pb Ti Rydberg 0.096 -12.5665 2.420131
Pb O Rydberg 6766.270 | 127.7793 0.273805
Ti O Rydberg 1130.010 | -160.8363 0.359723
O O Buckingham | 3634.861 331.6058 | 0.314424

Table 5.4: Short range parameters in Sepliarsky et al. potential.

Atoms | Cy, [eV/A?] | Cy, [eV/AY]

Pb 119.48 17968.50
Ti 1428.59 36411.00
O 23.29 4514.70

Table 5.5: Self interaction parameters in Sepliarsky et al. potential.

5.2.3 Self Potential

There is a self energy interaction between the same atom core and shell, modeled by the
anharmonic spring potential.

T2 4

self o T
E;; (r) = 02§+C4ﬂ’ (5.10)

Table 5.5 gives the values for the harmonic C5 and anharmonic Cy self coupling constants

for the equation (5.10).
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Chapter 6

Ewald and Wolf Summation Rules for
Electrostatic Systems

6.1 Madelung Problem and Summation Rules

It is a well known problem in computations involving the Coulomb potential, that the pair-
wise r~! Coulomb interaction summation is only conditionally converging. This means that
this interaction is not only very long ranged, but also the result of the fact that the summa-
tion depends on the order the interaction pairwise terms are considered and summed. These
facts make direct summation unhelpful and even impossible for numerical computation.

Many summation methods have been developed which, with some mathematical “tricks”
and manipulations, allow for faster convergence of the Coulomb pairwise sum ([93], [29], [94],
[95], [96], [97], [98], [99]).

The most famous of the summation algorithms, and the most widely used in molecular
dynamics simulations, is the Ewald summation method [93]. In many cases this method
gives good results, but it is computationally expensive and it induces an artificial periodicity
on the considered system. Because of this, the method is not optimal for the examples
considered in this work: large non-periodic systems with defects.

On the other hand Wolf’s method of spherically truncated, pairwise 7~! summation [29]

turned out to be of great help in our calculations with its fast convergence and ability to
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perform near defects and interfaces.

This chapter is devoted to description and quick analysis of Wolf’s method and its com-
parison with the well known Ewald method.

Let us consider a classic Madelung problem [100] of calculating the Coulomb potential

of a charged system of N particles.

Tij = |I'i - I'j s (61)

where (); is the particle 7 charge located at the coordinate r;.

6.2 Ewald Summation Method

The Ewald method multiplies each term of the equation (6.1) by

1 = erfc(ar;;) + erf(ar;;) (6.2)

Then the energy is split into two terms

1 N N o0 QQ
E=2>.2. 2. Tt ooy erfe(alrs + n) + exf(alry; + )] (6.3)
i=1 j#i=1n=0 I

where n = (ng, ny, n3) allows for summation over the entire lattice. After taking a Fourier

transformation of the second term, we can write the summation as

E = E, + E. (6.4)

Introducing the charge structure factor (k) as the square of the Fourier transform of
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the charge density o(k)

Qk) =o(k)o* (k) = //d3rd3r'o(r)a(r') explik - (r — r')]

we can present the term Ey in equation (6.4) as

2m al :
Ex = W(ZQ&) (6-5)

> _ 1.2 2
+ %Zexp( :2/4CY )Q(k)
k#0

where V' is the volume of the sample.

The two terms in equation (6.4) are fast converging: the term FE, in the real lattice
space and the term Ey in the reciprocal lattice space. The computational efficiency of this
algorithm is O(N?).

The main drawback of Ewald for our calculations is that it implies periodicity or it makes
a system under consideration artificially periodic. This is not a problem for the small periodic
systems considered in molecular dynamics simulations, but not for large aperiodic systems.
If any defects are introduced to the system, for example an interface, the Ewald method has

to be modified [95] making the method mathematically and computationally very complex.

6.3 Wolf Summation Method, Overview

There are some important physical observations which led to the development of the Wolf
et al. [29] summation rule. First, there is solid theoretical and numerical evidence ([94],
[101], [102]) that the effective Coulomb potential in fluids and solids is rather short ranged.
Second, the non-convergence of pairwise direct sums in equation (6.1) in three dimensions
[103] is mostly a consequence of totally charged systems as shells of neighbors over which

summation is performed. Therefore the sum (6.1) has to be perfomed in a way which ensures
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a neutrally charged environment for each ion.

These observations led to the development of the Wolf et al. method, which can be

summarized as follows (for more detail see [29]).

a)

c)

The system to sum over should be neutrally charged to ensure fast convergence of the
sum. Since the shells of neighbors of a certain cutoff radius r. are almost never neutral,
the charge contained inside the sphere should be neutralized. The neutralizing charge
—0Q;(r.) of the amount equal to the charge inside the sphere but the opposite sign
should be considered located at the sphere surface at r.. The energy contribution from

the neutralizing charge becomes

r

N
prevts(r - L5~ @0r)
i=1

AQir) = Y @

Jj=1rij<rc

After some calculations, the expression for the total energy becomes equivalent to the

pairwise summation of the shifted Coulomb potential plus self energy for each ion.

N N
1 C 1 2
B =5, D, Vanire(ra) = 5- D@ (6.6)
=1 j#j(rij<re) !

The shifted Coulomb potential is introduced as

L1 00, . 0.0
Vinire (i) = QiQi(—— — —) = @y . Qi

Tij Te Tij Tij=re T4

The Wolf summation rule may be stopped at the expression (6.6) by substituting the
energy in (6.1) with the energy in (6.6). This gives good results in many applied

problems.

The satisfactory cutoff radius r. can be made even smaller and the convergence of the
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method can be improved more especially near defects and interfaces by damping the
Coulomb potential. The damping term is chosen to be erfc(ar;;) with o as a damping
parameter. This form allows for a close comparision with the Ewald formula. The final

form for the Madelung energy becomes
|
c
B(r) =5 > Y V(i) = B (6.7)

1=1 j#j(rij<re)

where

S

V%lft (’[“U) _ Qinerfc(arij) ~ lim {Qinerfc(arij) } (68)

Tij Tij—Tec T'ij

and

erfc(ar,) o l

_ ¢ 2

Bgelf = < o0 + 7r1/2> ZQz’
¢ i=1

The authors of the paper [29] apply the method to NaCl, MgO crystals, MgO melt, free
surfaces and symmetric tilts in MgO, and get excellent results. The calculated Madelung
energy is very close to the energy calculated with more complex methods and can be made

as close as needed to the exact value by adjusting the parameters of the model.

6.4 Calculation of Forces in Wolf’s Method

The forces on the ions need to be calculated before taking the limit in equation (6.8). As
the authors mention, the first derivative of Vs%ift (1i5), and hence the associated forces and
stresses, are smoothly approaching zero at the cutoff radius r.. Thus this type of truncation
preserves the functional form of the original, unshifted pair potential and the forms of its

derivatives.
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The expression for the a component of the force on the ion 7 then becomes

Fia (Tc) = or (6'9)

_arm
C . .
- - ¥ WVohige 1) rija _ S5
d’l“ij Tij W

J#i(rij<rc) J#i(rij<re)

where

fefary) . 20 exp(-a?r2)\ rye
fija = Z QiQ; { (er C(gm) + 10/[2 & ])> s (6.10)
B erfc(ar,) N 200 exp(—a®r2)\ Tija
7”2 mi/2 Tc Te |p. . —f
ij=Tc

6.5 Convergence and Error Analysis of Wolf’s method

After some calculations, one can show that the Madelung energies per ion of charged and

charge-neutralized systems are given by

Echarged(rc) B EMadelung(Tc_)OO) (6.11)
N B N ’
2 o
_ 2 / Q) — 1] - cos(kre),
™™N J,
(6.12)
Echarge—neutralized(rc) B El\/[adelung(rc_> 00)
N B N
2 o sin(kr.)
- dkQ((k) - .
WNTC/O Q(k) k

Both energies oscillate about the true Madelung energy. But if the energy of the charged
system is not necessary convergent with r. — oo, the energy of the charge-neutralized system
converges at least as r; '

This analysis has been done without considering damping of the Coulomb potential.

Considering damping after some complex calculations, it can be shown that the Madelung
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energy in Wolf’s summation converges to the true value as r, >

6.6 Wolf and Ewald Comparison

If we add and subtract a self term corresponding to n = 0 to the Ewald sum, we can split

the direct and reciprocal lattice sums as follows

N N
1 QiQjerfc(a|r;; + nl)
Be = 3 ; § | (6.13)
jAi=

1=1 1 n=0 |rZ] +n|
0 XN
2
- Y
N N oo
1 QiQjerf(a|r;; + nJ)
S 5 610
i=1 j=1 n=0 |I‘ +n|

the term Ey will represent only a small correction to the term FE..

In the limit of . — 0o E in equation (6.14) is the limit of (6.7), the energy calculated
with Wolf’s method. The reciprocal part of the Ewald energy in equation (6.14) is what
is being left out in Wolf summation. As r. — oo, this is the error that Wolf’s summation
is introducing. This error increases with increasing damping « and becomes zero in the
undamped Wolf method.

The authors analyze the error term analytically and numerically and suggest that o <
1.5/a, where a is a lattice constant, gives a very small error. The necessary cutoff radius
becomes smaller with larger o and for @ = 1.5/a already r. = 1.5a accurately determines
the Madelung energy.

Another difference between Ewald and Wolf summation rules is that the Ewald method
implies periodicity of the system, Wolf does not. Also important, the Ewald sum is unshifted,

i.e., not neutralized, but Wolf is neutralized.
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Chapter 7

Study of 180 Degree Domain Wall in
BaTiO3 Performed Using Goddard et

al. Potential

7.1 Setup of the Problem

7.1.1 BaTiOj; and Its Properties

Barium Titanate BaTiOjz is the most widely researched ferroelectric. The main reason
for this is that it is a common lead-free ferroelectric which is in a stable tetragonal phase
at room temperature and that it also has a simple crystallographic structure for theoretical
investigations. It was the first perovskites discovered [104]. A good overview of the properties
of BaTiOj can be found in [105] and [7].

BaTiOg is very widely used in electromechanical actuators, sensor applications, capacitor
dielectrics, in photo-galvanic devices, as a photo-refractive material, and in memory devices
[7], [106], [107], [108], [109], [110], [13].

Barium Titanate has been extensively studied theoretically and experimentally since
the discovery of its ferroelectric properties, yet there are still many questions unanswered
and for many years in debate. For theoretical investigations much research has been on
phenomenological continuum scale using the Landau-Ginzburg model which started in the

papers of Devonshire [111] and [112].
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Figure 7.1: BaTiOj3 unit cell.

BaTiOj3 has a perovskite structure with a commonly chosen unit cell having one Titanium
atom in the center, four Barium atoms in the corners and six Oxygen atoms at the center
of the faces [113]. It is an fcc derived structure, geometrically considered the unit cell is
a cube which then gets distorted depending on the surrounding temperature and pressure.
A BaTiOs unit cell is shown in the picture 7.1. Above the Curie Temperature, 7' = 393K
Barium Titanate is paraelectric and does not exhibit spontaneous or permanent polarization.
The material has a cubic unit cell structure and is in cubic non-ferroelectic phase.

At T = 393K and below this temperature under normal pressure Barium Titanate be-
comes ferroelectric - it shows spontaneous and permanent polarization. Lowering the tem-
perature, BaTiO3 enters different phases: from cubic phase to tetragonal, from tetragonal
to orthorhombic, from orthorhombic to rhombohedral. All these material phases are ferro-
electric phases.

The transition from cubic to tetragonal phase happens at 17" = 393K. The crystal in
tetragonal state can exhibit six polarization directions, equivalent to < 100 >. At T = 278K

Barium Titanate switches into orthorhombic phase with twelve different polarization direc-
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tions, equivalent to < 110 >. Finally at 7' = 183K and below the crystal is in rhombohedral
phase with eight polarization directions equivalent to < 111 > [114], [7]. The unit cell, see
the Figure 7.1, is distorted along the polarization direction, but the shifts are so small that
the Figure 7.1 would not change much to the naked eye.

We are primarily interested in the tetragonal phase of BaTiOj3 as this is the phase it
attains at room temperature. Two kinds of domain walls are possible in this phase: 90° and

180° walls [115], [114].

7.1.2 Notes on the Potential

The potential by Goddard et al., described in the section 5.1, was used for the investiga-
tions in this chapter. This potential has been primarily designed for molecular dynamics
simulations where symmetries of the problem could be easily introduced and made part of
the simulation. Therefore, the potential exhibits stable behavior with imposed symmetries,
as for example a rhombohedral symmetry when rhombohedral phase is considered. But
the potential is not locally stable without any imposed symmetries, when three degrees of
freedom of all the atoms minus translational and rotational degrees of the entire specimen
are considered. It does not necessary present a problem in molecular dynamics simulations,
but it is not optimal for our calculations. We want to research a truly realistic sample with
realistic boundary conditions without introducing any unnecessary symmetries or periodicity
into the considered problem.

The solution for us in this case was to slightly modify the potential to make it locally
stable for many degrees of freedom (when waiving the symmetry) or at least stable in the
degrees of freedom in the considered examples. We found a desired version of the potential
by considering the movements of cores and shells as one entity. This eliminated the very high
magnitude Columbic force between same shell and core, which made it numerically difficult
to deal with the potential, and also made the potential stable in the space of the available

degrees of freedom in the examples considered. Otherwise the parameters of the potential
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and lattice constants were kept the same.

The permanent spontaneous polarization in a Barium Titanate specimen is still available,
since the atoms themselves become ions and their sublattices can shift with respect to each
other creating a polarization moment. The sum of the core and shell charges of one atom
is not neutral due to the parameters used in the potential, where the electron charge is
considered to be distributed among all atoms.

Polarization in the tetragonal phase of the original Goddard et al. potential is —0.946121,
the same potential without consideration of shell core displacement gives the polarization of
—0.61eA. After equilibration of the bulk tetragonal phase for the constrained potential, the
polarization becomes —1.21eA. Thus our potential overestimates the bulk polarization by
—0.27e A, which corresponds to 22% of its value.

This modification allows the potential in the bulk tetragonal phase to become stable
for many degrees of freedom of atomic movement. The potential becomes stable for the
necessary degrees of freedom in the examples considered: for the 180 degree wall example,
any movements of all atoms in the polarization direction; and for the crack example, any
movement of all atoms in the polarization direction and perpendicular to the crack.

We would like to note that the Goddard et al. potential is already an approximation to
quantum mechanics calculations. Charges and core shell shifts change so much in different
shell models for BaTiO3 (compare for example [27] and [116]), even in the different versions
of the same models, that it seems that the actual charges and shifts in models can be changed

substantially to fit quantum mechanics calculations.

7.1.3 Implementation of BaTiOj3; in Complex Lattice Quasicontin-

uum Theory

The BaTiOj3 is modeled by five sublattices Ba, Ti, Ox, Oy, Oz. Each of the sublattices has

a simple cubic (or tetragonal in tetragonal phase) structure. A decomposition of the unit
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cell is shown in the Figure 7.2 in perspective.

It would have been possible to separate the unit cell into four Bravais lattices, taking
any two out of three of the Oxygens in the unit cell to build one Bravais lattice. That would
require introducing an extra lattice type into the program with the consequence of writing
extra functions for the lattice and shell handling. To minimize computational effort and also
to keep a simpler concept, we decided on splitting the BaTiOg3 unit cell into five sublattices.
This gives us five separate Quasicontinua instances in the program which interact through
microscopic forces.

A new lattice type and a new potential type were introduced to the program. The
appropriate functions and extensions of the existing functions were introduced throughout

the program.

7.1.4 Equilibration of the Potential

Having modified the potential, the equilibrium bulk tetragonal phase needed to be found.
We used the conjugate gradient method within the Quasicontinuum program to find a bulk
configuration with the minimal potential energy or zero forces on all the atoms.

A relatively small sample, sufficient to justify a bulk assumption in the middle of it, was
introduced. The atoms in the sample are interacting with the potential the energy of which
needs to be minimized. The sample was allowed to relax under the action of the forces, with
conditions such that the shifts of the atoms can be simultaneously minimized. It is quite
possible to minimize the lattice constants with the same approach, but the lattice constants
were left the same as in the original core shell displaced configuration to assure the maximum
compatibility.

The stable bulk tetragonal configuration was found after few iterations. Its stability
was justified in the following tests. One of the atomic coordinates was perturbed in a
small positive or negative amount and the entire system was allowed to relax. The system

converged into the original initial configuration in each test, proving the stability of the local
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Figure 7.2: BaTiOj3 unit cell decomposition into 5 sublattices.
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Figure 7.3: Mesh for the 180 degree domain in BaTiO3 wall calculations.

minima found.

The Wolf’s summation described in Chapter 6 without damping was used for evaluation
of the electrostatic part of atomic energies and forces. Tests performed on Wolf’s summation
verified the use of this summation method and determined the sufficient cutoff radius for
the summation of the electrostatic interaction. The energy and force values summed with
the cutoff radius of 124 and larger differed from the limit values by less than 0.01%. The
124 length corresponds to about three lengths of the unit cell. We researched the behavior
of the summation around this cutoff radius number and found smooth behavior not affected
by the border of the third unit cell. Thus we decided to choose this value for the setup of
the domain wall calculations, as it is convenient to have this value as a multiple of a unit

cell length, as will be clear below.

7.1.5 Initial Triangulation and Positions of Atoms

The sample is in tetragonal phase with non-periodic boundary conditions. The size is 65
unit cells in X direction, 65 unit cells in Y direction and 513 unit cells in Z direction, see

the Figure 7.3.
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The wall is in Z = 0 plane, perpendicular to the Z axis. The atoms on the right side of the
wall, i.e., Z > 0 are in the pure tetragonal domain with positive polarization, and on the left
side of the wall, i.e., Z < 0 are in the domain with negative polarization. The polarization
is along X direction. This builds the 180 degree domain wall between the domains. This is
a domain wall with no net polarization on the domain wall surface, which has lower energy
than a domain wall with net charge, and which is also most observed in the experiments
([117], [118], [119], [120], [121]).

We also choose to model only the Barium centered wall as it is the wall which has the
lower energy than Titanium centered wall and is stable ([36], [119]). There have been some
studies about the energies of domain walls and we will compare them with the energy values
calculated with complex Quasicontinuum theory.

The resolution at the wall is atomistic where the nine unit cells adjacent to the wall
are considered atomistically. The fine atomistic resolution at the wall smoothly gradates
to coarser and coarser resolution further away from the wall. The smoothness of the final
results and the calculated atomistically small thickness of the wall justifies the selected size
of the atomistic region and the selected initial triangulation.

As previously mentioned, the energies and forces calculated with Wolf’s summation rule,
attain their true value (with small error) at the cutoff radius of 124 or approximately the
length of three unit cells. Therefore every atom at least three unit cells deep from the surface
of the specimen will not feel the existence of the boundary near it. The outer three unit
cells will feel the boundary effects and therefore need to be fixed during the calculations
to ensure the proper boundary conditions. The outer cells need to be fixed in the position
corresponding to the equilibrium polarization, positive polarization on the right side (Z > 0),
negative polarization on the left side (7 < 0). Thus the atoms inside the specimen will behave
as they were embedded in the bulk homogeneous infinitely large polarization domain, but
different domains on each side of the domain wall.

The initial positions of the atoms correspond to a homogeneous tetragonal phase equilib-
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rium polarization which abruptly changes signs at Z = 0. This corresponds to an infinitely
sharp domain wall. The atoms at the wall itself, at Z = 0, which correspond to Barium and
Oxygen Oz Quasicontinua, are not shifted into up or down polarization.

All of the atoms inside the specimen (inside the surface layer) are allowed to move in
the X direction, parallel to the polarization, in order to find the equilibrium configuration
with given boundary conditions on the surface layer. Thus the equilibrium found will be
the equilibrium 180 degree domain wall configuration. It will be surrounded on both sides
of the wall with large domains with no periodicity involved. These are much more realistic

conditions than previously researched in other molecular dynamic simulation works.

7.2 Results

The results of the study are the equilibrium configuration of 10,837,125 atoms constituting
two large domains of opposite polarization with a wall between them. This three-dimensional
result needs to be presented in a simpler form to be clearly understood. In the following
we will extract the needed information and research the physical aspects of the domain wall
and also complex Quasicontinuum theory performance.

The number above is the total number of atoms in the sample, with most of the atoms
positions interpolated with the Quasicontinuum mechanism. The actual number of atoms

which is followed by the solver is much smaller, approximately 190,000.

7.2.1 Atomic Coordinates Profile

As a first step, we will plot atomic profiles, i.e., coordinates of atoms on a line perpendicular
to the wall. Since the coordinates of the atoms shift to form a polarization, the profiles give
us a good idea of how fast the polarization is switching at the wall. The polarization is in X
direction, the wall is in Z = 0 plane perpendicular to the Z axis. Therefore the X coordinates

of the atoms versus their Z coordinates are plotted in Figure 7.4. The coordinates are in
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units of Angstroms. The unit cell selected is in the middle of the considered specimen, with
the lattice coordinates [y = 0 and [, = 0. These atoms are the least affected by the presence
of boundaries (we will later study the validity of the bulk assumption in the considered
simulation).

Far away from the wall the shifts of the atoms with respect to a non-polarized tetragonal
state are equal in magnitude and opposite in sign at the two ends. This builds the opposite
polarization domains at the two sides of the specimen divided by the wall. The switch of the
displacement happens very rapidly, but the presence of the wall has a long ranging effect,
the “tail” of the polarization change is long and flattens out slowly further away from the
wall.

The results are smooth going through the different resolutions of the mesh, which justifies
the selected resolution of the triangulation.

The profiles of the Barium and Titanium atoms peak in the same direction before switch-
ing into opposite direction, a property which cannot be seen in small samples, as those
samples do not allocate enough space for such phenomena.

Figure 7.5 is a zoomed view of the wall using the coordinate profiles of Figure 7.4. Here
we can determine more clearly that most of the polarization switching occurs in the 2-3 unit
cells adjacent to the wall (on one side). This makes the thickness of the wall approximately
4-6 unit cells, which is 1.5-2.5 nm.

These values lie within the upper limits of the wall thickness found by experimental
measurements, see [31] and [30]. In the experiments by [31] an upper bound of 5 nm was
found, where in the experiments by [30] the smallest domain wall measured was 8 nm wide.
It should be noted that it remains difficult to resolve experimentally 180 degree walls at the
level of atomistics. Only recently, progress was made with 90 degree domain walls in BaTiO;
and PbTiO; ([122], [123], [124]) which exhibit an easier target to measure.

Our values are in very good agreement with continuum simulations based on the Landau-

Ginzburg theory [33] which estimate the thickness to be 0.5-2 nm. There is also good
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Figure 7.4: Profiles of atoms across the domain wall.
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agreement with the ab initio molecular dynamics simulation in [32], which involved a much
smaller sample with periodically based domain walls and estimated the average wall thickness
to be 0.56 nm.

According to our calculations and results in the Figure 7.4, even if most of the change in
polarization happens very close to the domain wall itself, the presence of the domain wall
is noticable far away from the wall. A long, smooth “tail” of the polarization switching is
noticable even 12 nm away from the wall in one direction. This is understandable, because
the long ranging effects of the Coulombic interactions spread the presence of the defects far
away into the body of the sample.

These results call into question the validity of modeling domain walls using specimens
consisting of only 10-100 atom supercells with periodic boundary conditions, as is common
in ab initio and other molecular dynamic calculations. Even if the values of energy in those
samples are a good approximation, the modeling approximates only the actual deformation
near the wall.

These results also pose the question of how we should define the domain wall width when
it posseses long ranging effects? Should it be defined as when the polarization has returned

to its 60%, 90% or 99% of the normal bulk tetragonal polarization?

7.2.2 Wall Energy

We calculated the energy of the wall to be 353 mJ/m?. Experiments by Merz [121] esti-
mate the energy to be 10 mJ/m? and the experiments by Fousek et al. [125] estimate the
energy at 3 mJ/m?. Theoretical calculations by Bulaevskii [126] estimate the energy at 10.5
mJ/m? using a Landau-Ginzburg based continuum model and Lawless [119] estimated it at
1.52 mJ/m? using a point-dipole microscopic phenomenological model. Relatively recently,
Padilla et al. calculated the wall energy to be 16 mJ/m? using first principles effective
Hamiltonian calculations [32].

The experimental results available are near a phase transition. Also, the domain walls
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in experiments are likely to be not defect free and boundary conditions not idealized as we
assume in our work. The results from phenomenological theories required phenomenological
input and relied on many assumptions. The ab initio calculation by [32] is probably the most
reliable one to compare with our results. The results from [32] change with the size of the
supercell (and our sample is much larger than the supercell used in the reference) and with
temperature. In our work, we assumed zero temperature during our calculations and that
might have led to overestimating the energy. The potential we use, as any shell potential, is
designed to approximate the ab initio calculations, and our calculations of energy are only
as good as the potential itself. We are confident that our energy calculations give a very
good approximation of the value of energy, as good as the molecular dynamic simulations
with the same potential under the same boundary conditions would give, if those simulations

were able to simulate as many atoms as in our sample.

7.2.3 Bulk Assumption Justification

We would like to address the topic about how the boundary conditions and presence of the
surfaces influence the results of our study. The surface will influence the behavior of the
atoms just below it. But many tens of unit cells inside the sample, away from the surface,
are no longer affected by it as our study shows. The results of our study are shown in Figure

7.6. Shown are coordinate profiles for the OxygenX atoms, which look as almost one line.
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The X coordinate versus the Z coordinate of the atoms are shown for the following unit cells

For ease of comparison, the coordinates are adjusted by rigidly shifting them by a certain
value. As one can see, all ten plots are almost exactly the same. Even 10 unit cells away
from the central Z axis, the atoms are in the same equilibrium state as on the axis itself.
This proves that, other than for some surface layers, the bulk assumption is well justified in

the sample.

7.3 Conclusion

We applied complex lattice Quasicontinuum theory to study a 180 degree domain wall. We
are able to simulate, concurrently, approximately 11 million atoms without imposing periodic
boundary conditions. We verify that the conditions of our simulations correspond to large
bulk homogeneous domains at each side of the wall. We find that the domain wall thickness

lies in the range of 4-6 unit cells or 1.5-2.5 nm, where most of the polarization switching
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Figure 7.6: To the justification of bulk conditions in our study.

occurs. We also see long range effects arising from the presence of the wall which were not seen
in the previous molecular dynamics simulations. Our predictions of the domain wall thickness
lie within the range of experimental calculations and are also in very good agreement with
theoretical and numerical calculations. Since the wall thickness is so atomistically thin, the
question arises if it is possible to model the wall using phenomenological approaches. On the
other hand, ab initio molecular dynamics simulations which can model the configuration of
the wall with great precision close to the wall entirely miss the long range effects we found,

due to the use of small samples with periodic boundary conditions.
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Chapter 8

Crack in Initially Tetragonal Phase
BaTiO3 Specimen Using Goddard et
al. Potential

The complex lattice Quasicontinuum theory is able to handle much more than static prob-
lems. Static problems, especially if they show a high degree of symmetry, can be handled by
many other theories (for example molecular dynamics or lattice statics). Quasicontinuum
theory does not require, and does not need to assume, any symmetries or periodicity in the
problems it studies. Moreover, it can handle dynamic problems quasistatically with dynamic
multiscale resolution with adaptive mesh selection (discussed above at section 3.2).

As an example of a challenging problem to model, we studied a crack in BaTiOj3 tetragonal
phase specimen.

This simulation should be primarily viewed as an example of Quasicontinuum theory
application. The results obtained should be considered as preliminary, as there are still
many difficulties in determining the appropriate boundary conditions and triangulation of
the specimens for the simulation, complicated by the facts of atomistical consideration of a

traditionally continuum problem and employment of long ranging electrostatic potential.
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8.1 Motivation

Ferroelectric materials, especially BaTiOj3, are currently widely used in actuators and sen-
sors. These devices often operate under harsh mechanical and electrical conditions where
the brittle crystalline ferroelectrics can fracture [127]. Therefore it is very important to
understand how those materials fracture in order to build reliable and efficient devices.

Modeling of cracks and fracture in ferroelectrics is very complicated, as an initially homo-
geneous ferroelectric polarization becomes subjected to a highly non-uniform load, disturbing
the very fine balance of electrostatic and elastic properties which lead to ferroelectricity. Very
high electrical and mechanical non-linearities occur at the crack tips in these materials.

There has been a great deal of experimentation involving cracks in ferroelectrics under
different experimental setups, see [128], [129], [130], [131], [132], [133], [35], [134], [135],
[136], [137], [138], [139]. These experiments have observed that fracture in ferroelectrics is
a coupled electromechanical process, and most of the experiments measured a toughening
effect believed to be due to domain switching in front of the crack tip. Although they give
very interesting results on crack propagation and fracture properties, these experiments have
not had the precision necessary to capture effects atomistically close to crack tips.

It is still very hard to conduct precise fracture experiments, especially on a small scale in
perovskite ferroelectrics. They are very brittle materials and cracks are usually introduced
through fast indentation resulting in fracture of the specimen, with no control over the initial
crack. Also, it is very hard to produce a defect free specimen of the size required to conduct
crack experiments, and the initial fracturing through indentation is likely to introduce many
unwanted defects into the specimen.

Our simulations can shed some light on what processes are happening at a crack tip and
how the ferroelectricity of the material influences the mechanical fracture properties of the
material.

There has been some theoretical and numerical research involving cracks in ferroelectrics,
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see [34], [140], [141], [142], [143]. This research has been done on a continuum scale using
phenomenological constitutive relations. It has emphasized the dependence of fracture pa-
rameters on domain switching under fracture stress. These continuum studies cannot predict
atomistic behavior at the crack tip. Moreover it is very difficult to determine the correct
parameters for the constitutive relations from available experiments. The Quasicontinuum

model can derive the input parameters used in continuum modeling directly from atomistics.

8.2 Setup

We consider a pure tetragonal phase BaTiOj specimen. The specimen has a tetragonal
shape which represents half of the original cracked specimen, see Figure 8.1. The BaTiOj3
potential and the Quasicontinuum configuration for BaTiOj3 are the same as described in
the previous chapter, see section 7.1. We model only half of the specimen ending with the
line of symmetry lying through the crack tip. The static, not yet propagating, crack has
this line, see Figure 8.1 as the symmetry line. Thus we only need to model half of the
actual size of the specimen, reducing the computational effort by half. It also allows us to
use an optimal mesh, because the deformed body position of the half of the loaded crack is
convex. Our simulations are by no means restricted to simulations of half of a crack. We
can simulate the entire crack if needed as, for example, we would need for a dynamic crack
to allow non-symmetric crack propagation.

The loading belongs to mode I, see Figure 8.1. The study was under plain stress to
simulate the behavior of thin films.

The boundary was kept fixed at the calculated value of the induced opening displacement,
to assure the correct loading of the specimen. The entire specimen was subjected to the initial
opening displacements of the mode I loading. Afterward, all but small number of surface
atoms were allowed to relax into the equilibrium configuration.

The surfaces not including the crack were fixed to three unit cell layers as in the domain
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load

Figure 8.1: Crack calculations setup.
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wall example, see Chapter 7. The surface including the crack was fixed to only one unit cell
layer to allow for the equilibration process very close to the crack tip itself - the area we are
most interested in. The other two layers close to the surface are in equilibrium when there
is no loading on the specimen, in order to suppress free surface artifacts.

The crack opening displacements are of the following form [144] :

K 0 0

Uy = 2—;,/%003 <§> [l{;—l+2$in2 <§>] (8.1)
K; | 0 0

Uy = -1 Lsin — ) k+1—=2cos? | =
2u 2w 2 2

where the z axis is along the crack, the y axis perpendicular to it, # is the angle of the point
(x,y) with the = axis, r the distance of this point from origin and k is of the form:

_3—1/

k=
1+v

We choose Poisson ratio v to be 0.5 assuming incompressibility. We also incorporate the
shear modulus g and the stress intensity factor K; into one loading parameter, which we
control.

These values of elastic constants are only an approximation of the exact values for
BaTiO3. The actual values are of tensorial nature. The elastic properties of the BaTiOj3
tetragonal phase pure crystal, which belongs to 4mm point group symmetry, have been de-
termined in experiments in [15], [145], [146] and [147]. Knowing the values of the elasticity
modulus tensor Cjj; from the above references, we can determine the mode I crack opening
displacements and strains for the pure tetragonal BaTiO3 crystal.

But this data is likely not usable in our calculations. The values of elastic constants
strongly depend on the underlying interaction. Since the potential we are using is an ap-

proximation to this interaction, we need to determine elasticity properties based directly on
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this interaction by evaluating ([148] and [58]):

1 [0*E(V,e¢)

Cimt = 7 [87]
ij€kl g
where ¢ is the strain tensor, F the total energy of the periodic crystal corresponding to
strain € and volume V is the volume of the unstrained crystal. For more details see [149]
and for an example see [150]. Subjecting the crystal to some strain and determining its
energy based on the potential we are using will give us the components of Cj;,; we need to
describe mode I crack loading of the crystal. Calculations of the actual tensors goes beyond
the scope of this work. Here an approximation of these values was used. As the results of
the calculations show, the selected values should be very close to the real ones, because the
forces and deformation from the loading in equation 8.1 result only around the crack tip as
expected.

The sample used in the simulation was chosen to be 33x65x11 unit cells (as mentioned
before, this represents half of the actual size). Eleven unit cells is the thickness of the
specimen and the plane perpendicular to the crack plane has originally a square cross-section
of 65 unit cells. Thus, our simulation considers 117,975 atoms (or an original specimen of

235,950 atoms, when considering the entire specimen).

8.3 Results

8.3.1 Quasistatic Crack Loading and Adaptive Atom Selection

Three quasistatic loading steps were performed. The initial load and the loading steps were
carefully selected to be small enough to justify the quasistatic assumption but to be large
enough to show change in the specimen due to loading. The loading step measured in units
of displacements (see equation 8.1) was 0.001 Angstroms.

After each loading step, the equilibrium state with the load was found with the solver and
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adaptive mesh refinement was performed. Figure 8.2 shows three successive triangulations or
meshes: one initial triangulation (Mesh I), and three after loading, successful equilibration
and mesh adaption (Mesh II, Mesh III and Mesh IV). The mesh adaptation is shown on
one mesh out of five Quasicontinua as an example, and the other meshes are adapted in a
very similar way. We can see an increase of the size of the finer resolution atomistic region
near the crack tip due to the increasing crack load. The region further away from the crack
tip remains the same resolution as we increase the load. This refinement at the crack tip is
what should be expected from a crack example if it was a continuum calculation. That is the
same here because the deformation energy is high at the tip. This refinement also justifies
our approximation of the elastic constants for BaTiO3. Another point which we would like
to mention here is that this example demonstrates that adaptive atom selection is working
in the implementation of complex lattice Quasicontinuum, and is able to perform even in

such complicated systems as a crack in Barium Titanate under load.

8.3.2 Polarization Switching due to Loading

A large amount of experimental data on cracks in ferroelectrics suggest that the connection
between elasticity and polarization in those materials is very explicit. Polarization greatly
affects the conditions in which cracks will propagate. Domain switching in front of a crack tip
increases fracture toughness in ferroelectrics. This domain switching is not well understood
as it introduces regions of great electrical and mechanical non-linearity in the material and is
therefore very difficult to describe within the usual continuum approaches. Quasicontinuum
can give an atomistic insight into the process of domain switching at the crack tip and help
to recover the parameters needed for continuum models.

We indeed observe a change in polarization due to the loading in the crack specimen; the
change occurs due to the boundary conditions of crack loading, not as an assumption as in
many models. The simulation poses a challenge as the loading is highly non-uniform, and

because the initial polarization is homogeneous, it is not easily predictable how the crack
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Figure 8.2: Adaptive mesh refinement in crack calculations.



90

Figure 8.3: Polarization changes after the first two loading steps.

loading will influence polarization.

The change in polarization grows with increasing load. See Figure 8.3 for the polariza-
tion changes after the first and the second load, indicated along one line. The originally
homogeneous polarization in Y direction (see Figure 8.1), obtains positive and negative Z
components and grows generally in magnitude. Though the change is not uniform, a pattern
starts building. To show this we indicate the polarization along one line in Figure 8.3, paral-
lel to the Y axis and the crack line. The Z coordinate of the polarization alternates between
the same amount but opposite sign, and the Y coordinate remains approximately the same
along this line. It appears that the crack loading influences the sample such that at the
crack tip a very small and thin domain starts building in place of the original homogeneous
polarization. The magnitude of the polarization vector becomes larger than the original pure
tetragonal polarization, and grows and becomes more distinct as the load increases.

The polarization after the third loading step, which is the final step of the simulation
is shown in the Figure 8.4. Figure 8.4 shows the area around the crack tip (on a similar
scale as in the previous picture). The crack tip itself is indicated with a circle. The vectors
of polarization are shown for each unit cell. The location of the base of the vector is the
location of the Barium atom in this unit cell. In the Figure 8.4 we can see this pattern:
thin, small domains with 180 degree and 90 degree orientation to each other. This pattern

propagates further into the specimen with increasing load.
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Figure 8.4: Polarization after the final load equilibration.

The polarization is known to depend on the unit cell chosen and the method of calculation.
We will explain here the method we used to calculate the polarization. The unit cell chosen
is the same as in Figure 7.1. The following atoms belong to the unit cell (length is in the

units of the lattice constants):

Ba  (0,0,0) (8.2)
Ti (1/2,1/2,1/2)

Ox (0,1/2,1/2)

Oy (1/2,0,1/2)

Oz (1/2,1/2,0)

If the atoms in the unit cell are chosen to be at the exact location in equation 8.2 we have a
structure we will call “symmetric tetragonal structure” throughout this work. This structure

does not produce a net polarization because it is symmetric. Knowing this fact and also the



92

fact that the total charge of the unit cell is zero, we calculate the polarization P in any other

configuration as

P = Z Q; - 0d;, (8.3)

all ions i in the unit cell

where dd; is the shift of the ion ¢ with respect to its position in the symmetrical tetragonal
structure and @); is the charge of ion .

Back to our results, the tetragonal phase of BaTiOj is characterized by shifts from the
symmetrical tetragonal structure, which result in the net polarization of the specimen. The
initial homogeneous tetragonal polarization prior to the loading can still be seen at the
lower end of Figure 8.4 since, as mentioned before, this one unit cell surface layer has been
constrained during the simulation.

The rest of the unit cell polarization vectors around the crack tip can be seen in this
Figure. They were calculated using equation 8.3. The Z component of the polarization
becomes significant, after being zero before loading, and alternates between positive and
negative values. The Y component of the polarization becomes alternating too, in some
areas reversing orientation.

The pattern is relatively small, smaller than typical domain sizes. Larger specimens and
larger loads would be needed to simulate something on the order of typically observed do-
mains. But even in a smaller sample we are able to notice domain initiations and polarization

patterns around the crack tip.

8.4 Conclusions

We were able to perform quasistatic loading of the crack in a tetragonal phase BaTiOj
sample. We were able to find the right boundary conditions to make the simulations possible.

The adaptive atom selection feature has been tested on this example and we see mesh
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refinement at the crack tip with increasing load.

We observe a systematic polarization pattern building around the crack tip: initiation of
domain layers and 90 and 180 degree domain walls. The pattern grows and becomes more
distinct with growing crack load.

Polarization changes calculated from first principles atomistic based approaches explain
the observed changes of fracture toughness in ferroelectrics which is attributed to domain

switching in front of crack tips.
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Chapter 9

Study of 180 Degree Domain Wall in
PbTiO3 Performed Using Sepliarsky
et al. Potential

9.1 180 Degree Domain Wall Setup

9.1.1 PbTiOj3 and Its Properties

Another notable member of ferroelectric perovskite family is Lead Titanate, PbTiO3. The
structure of the PbTiO3 unit cell is shown in Figure 9.1. It is similar to the structure of
BaTiO3 but with a Lead atom instead of a Barium atom.

In contrast to BaTiO3 which has a complicated dynamic behavior, PbTiOj3 exhibits a
classical displacive [151] ferroelectric transition [7] (although we should mention that the
debate about whether the transition in BaTiOj, and even in PbTiOg3, is of displacive or
order-disorder [152] type is still ongoing [153], [154]).

Above the temperature of 765K under normal pressure, PbTiOj3 is in a cubic phase, which
is paraelectric and does not possess a permanent polarization. Below 765K the material is
in tetragonal ferroelectric phase. This phase extends to zero temperature. Six orientations
of spontaneous polarizations, equivalent to (001) direction are possible in this phase.

The differences in behavior of BaTiO3; and PbTiO3 are attributed to their different elec-

tronic structures. The Pb 6s and O 2p states are strongly hybridized, whereas the Ba ion is



Figure 9.1: Unit cell of PbTiOj3 crystal.

essentially fully ionic [154].

The experimental lattice constants in the tetragonal structure of PbTiO3 are

a=b=2389A c¢=4.15A4

The ratio ¢/a = 1.065 is large compared to other perovskite ferroelectrics.

The electronic structure of periodic bulk PbTiO3 crystal has been widely investigated,
see for example [155], [154], [156], [157], [158], [159] and the references therein. Many efforts
have been made in the above papers to explain the origin of ferroelectricity in PbTiOs3.

Lead Titanate has been widely used for its piezoelectric and dielectric properties, and
widely researched both experimentally and theoretically, but a lot of problems still remain

poorly understood.
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Element | Core Shift [A] | Shell Shift [A]

Pb 0. 0.08261
Ti 0.185696 0.207230
Ox 0.455471 0.577244
Oy 0.552925 0.535008
Oz 0.552925 0.535008

Table 9.1: The tetragonal phase shifts of cores and shells in PbTiO3 in Sepliarsky et al.
potential

9.1.2 Notes on the Potential

The shell model potential by Sepliarsky et al., described in detail in Chapter 5, was used
for the calculations. The same group very kindly gave us the equilibrium data for the bulk
tetragonal phase, the lattice constants and the shifts of the ions. The lattice constants

corresponding to bulk tetragonal PbTiO3 phase with this potential are

a=0b=39053A c¢=4.1514A

These values are very close to the experimental values.

The potential treats cores and shells for each atom separately and so we introduced ten
different independent Quasicontinua into our program (corresponding to each core and shell
sublattice). The shifts from the tetragonal symmetrical structure for the bulk tetragonal
polarization in this potential are shown in Table 9.1.

The investigation of the potential[160] revealed that the full Hessian does not possess only
positive eigenvalues, required for the full stability of the potential. The Hessian considered
is a symmetric 30x30 matrix with the fields being the second derivatives of the energy of
the periodic crystal with respect to the three coordinates of all ten ions in the unit cell.

We encountered this fact on all possible shell potentials for ferroelectric perovskites we
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considered, as they are only stable with imposed constraints such as lattice symmetry.

However the potential is stable if movement is restrained to only one direction - the
polarization direction. This direction is the most interesting and relevant to study, as the
shifts in this direction give rise to constant polarization. The Hessian in this case reduces to
a 10x10 dimension with possession of all positive eigenvalues [160]. This is already a very
high number of stable eigenvalues, as we discovered reviewing and considering other shell
potentials.

As the next step, we considered the range of the potential. We considered the Coulombic
and non-Coulombic part of the potential separately. The Coulombic part of the potential
was evaluated with the Wolf et al. [29] summation rule, described in detail in Chapter 6.
After considering the convergence of the Madelung energies and forces of the ions in the
pure tetragonal phase with respect to the cutoff radius, we found out that in this system we
need to use the full version of Wolf’s summation including a small damping of the electro-
static potential. We also found that we would need to use a longer cutoff radius for Wolf’s
electrostatic summation than in the BaTiOj3 calculations. We attribute the need to damp
and the longer cutoff radius to the fact that in this case the system is composed of ions,
with some of the ions being very close to each other (the core and shell of the same atom).
This introduces a numerical electrostatic instability into the system which becomes of longer
range. We determined that the following damping parameter o and the cutoff radius r. are

optimal for our numerical investigations

a=02 r.=16A

A very interesting feature of this potential is that the non-electrostatic part of it is very
long ranged. This part is often called short ranged interaction, as it would have decayed much
faster than the electrostatic interaction if we would not have used Wolf’s summation rule for

it. To avoid confusion, we will refer to this short ranged interaction as a non-Coulombic or
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non-electrostatic interaction.

The Lead-Titanium non-electrostatic interaction, bounded to the shells of the atoms, is
very long ranged. The optimal cutoff radius for this interaction, enough to evaluate the
summed value of the energy or the force (with precision, which is considered to be zero in
this potential) is approximately 10 unit cells or about 40A. This value for the cutoff radius
for each Lead or Titanium atom would require considerable memory and runtime for our
simulations, significantly lowering the size of the sample we can study.

Therefore we decided to use a smaller cutoff radius and also introduce some optimiza-
tions into the program. We modified the program to allow different cutoff radiuses for the
Coulombic and non-Coulombic interaction summations. This allowed us to be able to use
the optimal cutoff parameter for each ion. Only the non-electrostatic interaction summation
for the Lead and Titanium shells was carried out with a large cutoff radius. All other inter-
actions had a smaller cutoff radius, which was specifically chosen for the particular type of
interaction of the particular ion. The cutoff radius of the interaction of the non-electrostatic
Lead and Titanium shells was taken to be 30A after careful research, as a compromise
between precision of summation and computational efficiency.

It is important to mention that this potential is taken from molecular dynamics. There
it is the practice to consider values of 0.005eV" and below to be negligible or to be “zero”.
This contrasts with other potentials we have been working with, where it is relatively easy
to determine the equilibrium configuration with any meaningful precision. It is theoretically
possible for this PbTiO3; potential as well, but due to the complexity of the potential and
the crystal system itself, it would require too much computational time and effort. Thus
the equilibrium configuration we inherit from molecular dynamics is an equilibrium configu-
ration in the precision where 0.005eV equals “zero” for the forces and is not necessarily an
equilibrium if at a greater precision.

We introduced a feature into the program, to consider atoms with a force of equal to or

smaller than 0.005eV to be in an equilibrium state, and as long as they are in that state,
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Figure 9.2: Mesh used for 180 degree domain wall calculations.

we choose not to equilibrate them as part of the general conjugate gradient procedure. We
simulated the domain wall in PbTiO3 with and without this feature and found out that for
this particular potential the results are better with this feature turned off. This allows the
conjugate gradient solver to find the solution much faster. This also probably indicates that
the equilibrium given to us from molecular dynamics is very close to the real equilibrium
state, at least in the range of the equilibration we consider. But this feature might be very
useful in considering other potentials for complicated systems if those potentials are taken

from molecular dynamics to correspond to molecular dynamics assumptions.

9.1.3 Inmitial Triangulation and Positions of Atoms

Figure 9.2 shows the mesh considered in the domain wall example calculations. The size
of the sample is 25x25x129 unit cells with simultaneous consideration of more than 400,000
atoms. The atomistic resolution of the mesh near the wall is 13 unit cells with the mesh
gradating continuously to a coarser resolution further away from the wall. The polarization,
and thus all the shift of ions from symmetric tetragonal structure, are in X direction. The
wall is perpendicular to the Z axis and is in the Z = 0 plane.

Our simulation is at zero temperature. PbTiOj3 is in ferroelectric tetragonal phase at zero
Kelvin temperature in nature, so we simulate the physically correct state of the crystal. We

could consider finite temperature, adding random motion controlled by a random number
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generator to each ion or explicitly introducing entropy into the model, but so far this is
beyond the scope of this work. Extension of non-local Quasicontinuum to account for finite
temperature is in progress in Professor Ortiz’s group [161].

We allow the movement of all ions only in the polarization direction, which is X direction
in our sample. As mentioned the potential is proved to be stable under these considerations.
Also many theoretical [162], [163] and experimental [164] investigations suggest that po-
larizations at 180 degree domain walls have only one component (in the bulk polarization
direction) and the changes in polarization are also restricted to that direction. Huang et al.
[165] refines this statements by investigating Ising (only one polarization component) and
Bloch (two polarization components with a rotating polarization vector). They find that
in ferroelectric perovskites in contrast to uniaxial ferroelectrics, both Ising and Bloch type
walls are possible, but the Ising walls have lower energy and therefore are observed more
often.

We subject the simulation sample to initial displacements corresponding to the positive
bulk tetragonal phase polarization in the part of the sample with Z < 0 and to the neg-
ative bulk tetragonal phase polarization in the part with Z > 0. Effectively, the initial
configuration corresponds to a 180 degree domain wall with zero thickness between two bulk
tetragonal phase domains of opposite polarization.

All atoms in the sample, other than the surface atoms, were allowed to relax into the
equilibrium configuration, which was found with the conjugate gradient solver simultane-
ously considering all atoms in the sample. The 9 surface unit cells were kept at fixed bulk
polarization displacements to suppress surface effects and to simulate bulk domains bound-
ary conditions. This large amount was necessary due to the large range of the non-Coulombic
interaction in the sample.

The boundary conditions included an offset between the two opposite polarization do-
mains. The offset calculated with this specific version of the potential interaction to minimize

the total energy of the sample was kindly provided to us by Arash Yavari, Caltech. This fea-
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ture is observed in some other ab initio molecular dynamics simulations [36] and is strongly
interaction dependent. We must note here that there are also theoretical and numerical
calculations which do not consider an offset between the domains, although this degree of

freedom logically should be included in the search for the minimization of the energy.

9.2 Results

The results of the calculation are the three dimensional coordinates of all the atoms in the
sample. To visualize the important features of the results we plot, as in the case of the
BaTiO3 domain wall, the atomic coordinate profiles across the domain wall for all ions. In
Figure 9.3 we plot the coordinate profiles of atoms in the middle of the specimen, cutting
across the wall. For all atoms in the unit cells on the line [, = 0, [, = 0 and [, variable we
plot the X versus Z coordinates in the units of Angstroms. As we can see from this picture,
the change from plus to minus shifts in the coordinates, which also indicates the switch from
positive to negative polarization, happens very fast. Almost all the switching happens in 1-3
unit cells adjacent to the wall, or together 4-6 unit cells total. This gives a wall thickness of
approximately 1 nm-2.5 nm.

It is very important to mention here that the range that the potential reaches is huge
and the atoms near the wall definitely are affected by atoms far away from the wall, 7-8
unit cells away from them. Thus the very rapid change of the atomic coordinates at the
wall from positive to negative values is definitely a feature of the potential. This is intrinsic
to the potential and not to the cutoff radius we chose. We believe that this is a feature
which should be attributed to the electrostatic interaction of the atoms. The nature of
the electrostatic interaction between ions in ferroelectrics crystals makes the transition from
positive to negative polarization at the domain wall very rapid, and thus the domain wall
thickness atomistically small. For comparison, magnetic walls in ferromagnetic materials,

where the ferromagnetism is due to spin coupling, are much wider.
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Figure 9.3: Atomic profiles of 180 degree wall in PbTiOj.
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Even if most of the switching happens very fast, we observe long “tails” of the wall.
The state of bulk polarization does not return for at least thirty unit cells, or approximately
twelve nanometers, away from the wall in our calculations. That corresponds to the precision
in our simulations, the actual “tail” can be very well much longer.

Here we must again raise the question about how to define the thickness of the domain
wall. At what percentage of the return of bulk polarization should the wall be said to
end? This is the reason we specify only a range for the wall thickness: 1 nm-2.5 nm, which
corresponds approximately to a 70-95% return to the bulk pure tetragonal phase value.

Our calculated wall thickness is in very good agreement with the recent ab initio cal-
culations of domain walls by Meyer and Vanderbilt in [36]. The authors investigated 180
degree domain walls in tetragonal PbTiO3 using a first-principles planewave pseudopoten-
tial method based on density-functional theory [166] within the local-density approximation
[167]. The pseudopotentials used were of Vanderbilt-ultrasoft type [168] with the semicore
Pb 5d and Ti 3s and 3p states explicitly treated as valence states. The authors use supercells
of material with periodic boundary conditions, and thus periodic domains and domain walls
between them. The supercells investigated contained 30, 40 or 50 atoms in them (domains
between walls were 3, 4 or 5 unit cells respectively). These samples are much smaller than
the samples in our simulations.

As one of the results, the authors found that polarization at the domain wall changes for
the most part in less than two lattice constants, which is consistent with our calculations.
But their results could not reveal the long “tails” resulting from the presence of the domain
wall which we can see in our calculations. Their specimen, which is very small with induced
periodicity of domains in it, does not allow the polarization to relax fully. Thus their results
give a good approximation at the domain wall, but not further away from it.

Another interesting result which Meyer and Vanderbilt find in their paper is that, from
two possible 180 degree domain wall structures (Lead centered and Titanium centered), the

Lead centered structure is a stable one with lower wall energy. We use this fact in our work
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by modeling the Lead centered domain wall.

The ab initio study by Poykko and Chadi [118] revealed the 180 degree domain walls in
PbTiOj3 to be extremely narrow with a width of only about two lattice constants. The study
was performed using DFT with LDA approach and periodic supercells consisting of total 6,
8 or 10 unit cells.

Our calculations are also consistent with the experimental investigations [37], where the
width of the 180 degree wall in PbTiOj3 crystals is determined to be of the order of few lattice
constants.

Continuum calculations of domain walls based on Landau-Ginzburg model [33] also pre-
dict an atomistic thickness of domain walls in perovskites. But the phenomenological con-
tinuum description of domain walls which can account for long ranging effects of the wall
are questionable in modeling of thin atomistic thicknesses.

Figures 9.4, 9.5, 9.6 and 9.7 represent a zoomed in view of Figure 9.3 close to the wall,
showing separate atoms.

Figure 9.4 shows the Lead Core and Shell atomistic profiles at the wall. From this plot
we can see that there is a spatial offset of the both domains with respect to each other of
0.3784-2A. We also notice that the coordinates of the atoms at the wall in this case do not
monotonely change from a negative to positive position, there is a slight kink in the negative
direction before they change polarity. A symmetric kink into the positive direction can be
seen at the opposite side of the wall as well.

Figure 9.5 shows the coordinate profiles for the Titanium atoms at the wall, tracking
cores and shells separately. Figure 9.6 shows the coordinate profiles for the Oxygen X core
and shells. Here we would like to point out the smooth but highly non-linear transition from
one side to another.

The Oxygen Y and Oxygen Z atoms are plotted together in Figure 9.7 because of similar
behavior in the bulk (the polarization is in X direction). In the plot we observe that, as

expected, they are rapidly converging to the same values further away from the wall, where
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polarization is close to the bulk conditions. Closer to the wall, as Oxygen Z atoms lie
directly at the wall and Oxygen Y atoms are further away we observe that the symmetry
breaks slightly. It is interesting to notice that here, as in the Lead profiles, Oxygen Y
atoms experience a slight kink before transition into the opposite direction, but Oxygen Z
atoms do not. These Oxygen atoms have their shells bound much closer to the cores than
Oxygen X atoms. Polarizability of Oxygen X atoms is closely related to the phenomena of
ferroelectricity in perovskites [111], [169].

In Figure 9.8 we plot the polarization of the unit cells across the wall. Polarization is
computed with the same method as mentioned in Chapter 7. The plot shows the polarization
value versus the number of the unit cell. Here we can see that the polarization is mostly in

its bulk value in all unit cells besides the 3-6 unit cells adjacent to the wall.

9.3 Conclusions

Using the complex lattice Quasicontinuum formulation, we calculated an equilibrium con-
figuration of a 180 degree domain wall in PbTiO3. We used the Sepliarsky et al. potential
designed for tetragonal phase PbTiOj.

We were able to simultaneously consider over 400,000 atoms with the Quasicontinuum
approach, too large for a possible molecular dynamics atomistics simulation with the same
potential, as the non-electrostatic part of the potential is very long reaching.

Our calculations showed that most polarization switching happens in the 2-6 unit cells
adjacent to the wall, giving an approximate wall thickness of 1 nm-2.5 nm. This is consistent
with recent ab initio calculations and experimental results. In contrast to the ab initio
calculations, we were able to consider much larger regions around the domain wall and were
able to see long ranging effects from the presence of the wall. We observed a long “tail”
of polarization adjustments originating from the wall, extending far into the bulk of the

domains.
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Chapter 10

Study of 180 Degree Domain Wall
Step in PbTi035 with Sepliarsky et al.
Potential

10.1 Motivation

Ferroelectrics are widely used in actuators for many applications. Commercial PZT ce-
ramics do not exhibit an observable electromechanical coupling effect because ceramics are
constituted of many domains with random polarization directions such that the average po-
larization is approximately zero. These samples of ceramics are subjected to a poling process
in a strong external electric field to reorient the domains and to create the macroscopically
observable electromechanical coupling. This switching of the domains happens due to do-
main wall movement. Domains contribute to the dielectric, piezoelectric, ferroelectric and
elastic properties of the materials by reversible domain wall motions under small electric
fields and by irreversible domain wall motions, nucleation and propagation of new domains
under stronger electric fields [170], [171], [172], [173], [174]. Thus it is extremely important
to fully understand the phenomena of domain switching and domain wall movements to
understand ferroelectricity and to design new applications.

It is a well known fact that for most ferroelectrics polarization reversal under the ap-

plication of an external electrical field of opposite direction proceeds through the sidewise
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motion of 180 degree domain walls. Already with Landau-Ginzburg continuum-based en-
ergy considerations, the continuum motion of the wall as one unit had been excluded many
decades ago [121], [175], [33]. A physical model which appears to explain the experimental
results, in particular the velocity of polarization switching and the value of activation electric
field [176], [177], [178], [L79], was introduced: the nucleation model. This model states that
domain wall motion is caused by the nucleation and subsequent growth of reversed small
step-like domains on the existing 180 degree wall.

The initial considerations of the nucleation model were introduced by Anderson in 1953
[180], and further developed by Drougard [181] and Abe [182]. The milestone paper which
developed and analyzed the model in great detail was published by Miller and Weinreich in
1960 [183]. Their model could explain some experimental data, especially the wall velocity
in some electric field ranges, but had to make many simplified assumptions about the process
[184].

Since then the model has been further developed, improved and refined. Hayashi [184]
worked on the kinetics of domain wall motion analytically and numerically. He was able
to derive an expression for the velocity of domain wall in terms of nucleation rate and the
sideways growth velocity of the nuclei. He distinguished between two different mechanisms of
domain wall propagation depending on the strength of the switching electric field: creation
of two-dimensional nuclei at low field strength and one-dimensional nuclei at high fields
strength. At low field strength the model predicted the wall velocity and thus the switching
rate to be exponentially dependent on the field strength. At high field strength the wall
velocity follows a power law as dependent on the field strength.

A somewhat similar continuum approach was used by Sidorkin [185] in investigating
domain wall movements and the interactions of domain walls with defects. He determined
factors controlling domain wall boundary displacements and bending: lattice potential relief,
the original lattice effects, and the long-range electric and elastic fields. He calculated the

value of the activation field, separating the regime of creation of only a few nuclei from the
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regime of creation of many nuclei. He determined the form and the energy of the critical
nuclei corresponding to this separation. He described the mechanism of interaction between
domain walls and defects (see also [186]). Many such interactions with charged or elastic
defects create a bending of the domain wall with resulting net bounded charges at the flexed
surfaces. The actual bending should occur with dislocations and steps appearing at the wall.

Wang and Xiao [187] used a continuum theory to investigate the movement of 180 degree
domains in ferroelectrics, and in particular in BaTiOj3, as a dynamic process, taking into
consideration induced electric and magnetic fields.

A lattice model based on a model of crystal growth by Kolmogorov and Avrami ([188],
[189], [190], [191]) was introduced by Ishibashi et al. [192] and [193]. This model follows a
polarization vector at each lattice space and can describe polarization switching as influenced
by size and surface effects in ferroelectric thin films. The presence of small nuclei is assumed
to initiate the switching. Wang and Smith [194] further develop the Ishibashi lattice model to
simulate one-dimensional ferroelectric films with a non-ferroelectric boundary. They observe
polarization switching as a domain wall propagates in steps from the boundary of the film.

From recent experimental investigations on domain wall movements we would like to
mention a paper by Tybell et al. [195] which investigates ferroelectric switching and domain
wall dynamics using atom force microscopy (AFM) on monocrystalline Pb(Zrj 2 Tip)O3 thin
films. They used a conductive AFM tip to modify the domain structure. The domains were
polarized by application of a voltage pulse across the ferroelectric film, between the AFM tip
and the substrate. The size of the domains was then measured by piezoelectric microscopy
as a function of pulse duration and amplitude. They also determined the effective activation
energy which first creates a nucleus of a new domain larger than the thickness of the system.
This data suggests a two-step growth mechanism for domains, in which initial nucleation
directly under the AFM tip is followed by domain wall propagation. They observe in their
experiments that the domain wall can be pinned by defects, surface effects and an intrinsic

periodic pinning potential. They suggest that domain wall movement in ferroelectric thin
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films is a creep process, which is a consequence of competition between the elastic energy of
the propagating wall and a pinning potential.

Another paper, by Jia and Urban [196], discussed the results of experiments making
atomistic resolution measurements of 90 degree domain walls in BaTiOj thin films using high-
resolution imaging at negative spherical aberration of the objective lens in an aberration-
corrected transmission electron microscope. These fascinating images reveal, among other
things, deformations of the walls due to defects.

The experimental investigations by Ohgami et al. [197] were performed on ferroelectric
TGS using atomic force microscopy. They observed evolution of the topography of the
surface of the sample. Among other things, they followed the evolution and migration of
steps on the domain walls.

To summarize, domain wall step nucleation and propagation plays a very important role
in the ferroelectric switching process, which is itself a very important and widely exploited
property of ferroelectrics. Continuum theories must make assumptions about the structure,
energy and dynamics of domain wall steps to model the switching process, and the parameters
of the model are often fit to the experimental data. As mentioned in [198], the governing
equations are homogeneous. They do not explicitly depend on position and do not normally
give rise to heterogeneous nucleation of new domains. So, the equations need to be modified.
A first approach is to add a noise term to the equation, to get domain nucleation. A second
approach is to introduce small nuclei at random chosen positions. A third approach is to
modify the energy in small, arbitrarily chosen, regions such that the polarization switching
is energetically easier in this regions.

Even more detailed microscopically oriented models like lattice models [194] and effective
Hamiltonian derived continuum constitutive model [199] simulations still have to introduce
initial small steps and domain nuclei to simulate a realistic switching process, otherwise the
simulated switching will be homogeneous.

Quasicontinuum studies can bring much of the needed atomistic investigation into study
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Figure 10.1: Mesh for step calculations in PbTiOs.

of domain wall dynamics and polarization switching problems, while still keeping long-range
effects in consideration. We can model the structure and energy of the domain wall boundary
and its movement, and not only provide atomistic level insights into the phenomena but also
give larger scale simulations the correct mechanisms and parameters for modeling. We first
investigate an equilibrium configuration of a step on a 180 degree wall boundary. This is a
very important phenomenon to consider as the nucleation of steps is the start of the process

of domain movement.

10.2 180 Degree Domain Wall Step Setup and Results

The mesh used for our step calculations is shown in Figure 10.1. The sample chosen for the
calculations has dimensions of 33x25x65 unit cells, corresponding to approximately 300,000
atoms. The region of atomistic resolution has 33 unit cells in X direction, 25 unit cells in
Y direction. A larger atomistic part in X direction than we used in our wall calculations
was introduced since we expected the range of the effects of the step to be relatively large.

The wall is perpendicular to the Z direction and this direction has 13 unit cells in atomistic
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resolution slowly gradating to coarser resolution further away from the wall.

The step was introduced in the wall at the X = 0 and Z = 0 location, propagating with
the same form in the Y direction. These boundary conditions are chosen to correspond to
an infinitely long step on an infinite domain wall between two infinite domains of opposite
polarization. The newly created domain boundary is shown in Figure 10.1. The equation

for this domain boundary became:

(=0, x<0) and (z=STEP, z>=0), (10.1)

where z and z are the deformed coordinates of ions (cores and shells) in the symmetric
tetragonal structure and STEP is the arbitrary step size in units of lattice parameters or
unit cells. This boundary separates two domains with opposite polarization, and the step in
the middle of this boundary connects two 180 degree domain walls which are shifted with
respect to each other.

These domain walls are Lead centered, this is the stable type as we mentioned in the
previous chapter. The ions directly at the boundary of the step in the Figure 10.1 are Lead
and Oxygen Z core and shells in the vertical part of the boundary and Lead and Oxygen X
core and shells in the small horizontal part of the boundary. In the following calculations
we used a step size (STEP) of one unit cell.

We again use the Sepliarsky et al. potential for PbTiO3. The bulk properties of the
potential are discussed in the previous chapter. We use the Wolf summation rule with the
damping coefficient @ = 0.2. The electrostatic cutoff radius is set to be 16121, and the non-
electrostatic cutoff radius is set to be 30A. The parameters of the calculations are similar to
the ones used in the previous chapter on domain wall calculations.

The potential is stable in the bulk tetragonal phase only if the movement of ions is
constrained to the polarization direction [160]. For our first simulation we constrain the

movements of all ions only to the X direction, which is the polarization direction.
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The ions are brought into their initial positions, corresponding to the bulk tetragonal
phase displacements, building the negative bulk polarization on the right side of the boundary
and the positive bulk polarization on the left side of the boundary. The ions directly at the
boundary (Lead, Oxygen Z and a few Oxygen X cores and shells directly at the step) are
not shifted. All but the surface atoms are allowed to relax in order to find the equilibrium
configuration. After some initial simulations we also fixed the atoms directly at the wall,
because the potential is highly non-convex and is displaced out of the small convexity area
by even the very small change in configuration, required for the initial configuration of the
step simulation. Fixing the surface atoms allows the required convexity of the potential in
the small area around the initial configuration and the convergence of the simulation. As
we restrict the simulations to the polarization direction, we do not expect the constraint of
fixing these atoms to affect our results.

The results of this calculation (where the movements of ions is restricted to the polar-
ization direction) are shown in Figure 10.2. A zoom into Figure 10.2 closer to the step is
shown in Figure 10.3. The vectors at each node indicate the polarization of the unit cell
at those locations (only the Figure 10.3 shows the vector plot). Contour regions are shown
corresponding to the X coordinate of the polarization for both Figures.

We observe the bulk tetragonal polarization far away from the domain wall surface, which
is indicated by the solid red color on the left part of the sample (positive bulk polarization)
and the solid blue color on the right part of the sample (negative bulk polarization). The
change happens in only a few (2-6) unit cells adjacent to the wall but far away from the step.
This is the same equilibrium condition as in our simulations of a plane 180 degree domain
wall in the previous chapter. But it is interesting that the step influences areas further away
than the plane 180 degree wall. By comparison, the effects of the step are still quite noticable
within a diameter of 8-14 unit cells at the step.

A very interesting feature of our results is that the specimen relaxes in such a way to

minimize the net bounded polarization charge on the domain interface. Near the step,
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Figure 10.2: Polarization at the step after equilibration (only polarization direction relax-
ation).

where this interface is horizontal, the X component of the polarization which is normal to
the surface at this location vanishes.

These simulations should be considered as a one-dimensional projection of the actual
two-dimensional equilibration process at such a step. It is somewhat difficult to imagine a
full picture looking at the projection. Therefore we assembled a very similar calculation, but
allowed the atoms to relax in two dimensions: in X polarization direction and in Z direction,
which is perpendicular to the wall. There should not be any Y direction relaxation as the
step and the domain walls extend into infinite Y direction at least in the abstraction of the
simulations.

A somewhat unexpected result was that the two-dimensional simulation was able to
converge and give an equilibrium configuration even if the bulk tetragonal phase is not

absolutely stable in these displacement spaces. But with the limited initial displacements
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Figure 10.3: Polarization at the step after equilibration, close view (only polarization direc-
tion relaxation).
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of this particular problem, the two-dimensional step computed with the Sepliarsky et al.
potential constitutes a stable problem, where a stable equilibrium configuration can be found.
This configuration is shown in Figure 10.4.

In this picture we can see the vectors corresponding to the polarizations of the unit cells
and the contour of the polarization X coordinate. Here we can see a large region influenced
by the presence of the step. The diameter of the region is 8-14 unit cells. We can also
easily see that the system equilibrium configuration tends to smooth out the step and also
to smooth out the change of the polarization of the step, making it divergence free as much
as possible and thus minimizing the bounded polarization charge at the interface. If we were
to allow the boundary unit cells to relax as well, the step would likely disappear because the
smooth plane domain interface with no surface charges is an energetically preferred interface
between two domains in the absence of defects and external electric or elastic fields [185],
[186]. We induce step formation by specifying the boundary conditions at the surface of the
sample by two domain walls shifted with respect to each other.

The Figure 10.5 shows the same plot as in Figure 10.4 but with contour levels of Z
coordinate of the polarization. We see that the originally zero Z coordinate through entire
sample changes signs at the step in a symmetrical pattern. The rest of the sample remains
with zero Z direction polarization. The influence of the step defect can be approximated by
this plot to be at least 10 unit cells in diameter.

These results are enabled by very detailed modeling at an atomistic resolution (at the
vicinity of the step, the continuum part of the Quasicontinuum introduces only some cor-
rections originating from long ranging effects) and are not taken into account by ad hoc
adjustments to the model and its parameters as is often the case in continuum calculations.
This model does not have any fitting parameters (other than some numerical parameters,
sufficient cutoff radiuses and damping potentials, and a fine enough resolution at the defects)
which needed to be matched to the experimental results. Instead, it is based entirely on ab

initio calculations of atomistic scale interaction within the sample.



121

Figure 10.4: Polarization at the step after equilibration, two-dimensional equilibration, X
polarization contour.
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Figure 10.5: Polarization at the step after equilibration, two-dimensional equilibration, Z
polarization contour.
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10.3 Conclusions

We calculated the equilibrium configuration of a step of one unit cell on a 180 degree do-
main wall surface in PbTiO3. We calculated the step configuration with relaxation in one-
dimension (the polarization direction) and two-dimensions (both polarization direction and
the direction perpendicular to the domain wall). We were able to obtain equilibrium config-
urations in both cases.

The simulations we calculated on an atomistic level of precision give very interesting
results. We see that the polarization around the step tends to arrange in a way to minimize
the net bounded polarization charge at the interface and smooth out the sharp step transition.
Similar activity has been mentioned in the literature before, but only using a large scale
continuum approach.

Steps on domain walls are charged defects on an atomistically thin interface which is
itself a result of very complicated electromechanical coupling and boundary conditions. To
date, it is unclear how to model such systems with continuum theories. Molecular dynamics
can consider fine resolution, but misses the long ranging effects which are very important
when considering such systems.

Our results could bring much of the needed atomistic scale investigations into study of
domain wall dynamics and polarization switching problems. We not only give atomistic level
insights into the phenomena but also give the larger scale theories the correct mechanisms

and parameters for modeling such phenomena.
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Chapter 11

Conclusions

We developed and extended Quasicontinuum theory to be able to model crystals with a
complex lattice structure. The interpolation of atoms and approximation of energy and rep-
resentative forces which were used in Quasicontinuum theory as previously developed could
not be used where the crystal consisted of more than one type of atom. We resolved these
issues by separating the sample into discrete homogeneous sublattices. We treated each sub-
lattice as separately as possible, with separate representative atoms, separate triangulations,
separate shape functions and separate sets of cluster sites. Coupling of the sublattices was
accomplished by using the real microscopic forces between the atoms in them, as given by
the appropriate potential. This approach of coupling at a very low level of the algorithm
substantially reduced the computational effort needed.

We implemented complex lattice Quasicontinuum theory as a C++ extension to existing
C code, which itself required extensive modification.

Ferroelectrics are a very good example for the application of complex Quasicontinuum
theory. The nature of defects in ferroelectric materials is atomistic, but their influence over
the material is long ranged due to induced elastic and electric fields.

We applied complex lattice Quasicontinuum theory in the context of a 180 degree domain
wall in BaTiO3. We simulated the equilibrium configuration of a large sample without the
need to impose periodic boundary conditions. Our results accorded with experiment and

recent ab initio molecular dynamic simulations in showing the atomistic thickness of the
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domain wall of between 4-6 unit cells or 1.5-2.5 nm. More than this, we also were able
to show long range effects arising from the presence of the wall which molecular dynamics
simulations have not been able to do.

We also simulated quasistatic loading of a crack in BaTiOj3 using automatic resolution
adjustment with increasing crack load. We showed that a systematic pattern of domain
layers builds around the crack tip, and that the pattern grows and becomes more distinct
with growing crack load. This agrees with experimental results showing an increase in
fracture toughness in ferroelectric samples, which is attributed to domain switching near the
crack tip.

We then were able to model the equilibrium configuration of a 180 degree domain wall in
PbTiO3. We found that the polarization switching occurred in the 2-6 unit cells adjacent to
the wall, which indicates that the domain wall thickness is 1 nm to 2.5 nm. While this is in
agreement with experiments and recent ab initio molecular dynamics calculations, we were
able to calculate much larger regions around the domain wall than possible with molecular
dynamics. In doing so, we were able to see a long “tail” of polarization adjustments extending
from the domain wall into the bulk of the sample.

Last, we calculated the equilibrium configuration of a step in a 180 degree domain wall in
PbTiO3. We were able to show, at an atomistic resolution and also with consideration of long
scale effects, an arrangement of polarization around the step which works to minimize the
net bounded polarization charge at the interface and smooths out the sharp step transition.

As future directions for application of complex Quasicontinuum theory to ferroelectrics,
we would like to suggest simulations of fatigue cracks and indentation in ferroelectrics. Also of
a great interest would be research of obstacles and vacancies in ferroelectrics, their dynamics,
their interaction with domain walls, surfaces and each other. All of those calculations could
be performed with finite temperature, after merging finite temperature with complex lattice

Quasicontinuum implementations.
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