CALCULATION OF THE OPTIMUM PITCH DISTRIBUTION

OF A PROUPELLER WITH SWEEPBACK

Thesis

by
Harold DeGroff

In Partial Fulfillment of the Requirements for the
Degree of

Aeronautical Engineer

California Institute of Technology
Pasadena, Californis

1948



Abstract.

Definition of Symbols.

I. Introduction
1,1 ‘A sweptback propeller-prc asnd con.
1.2 Survey of the German Literature,

1.3 Statement of a hypothetical swept=propeller
design problem.

II, Aerodynamic parameters in the problem.
2.1 Blade section.
2.2 Activity factor,
2,5 Interference effects,
2:.4 Planform.
2,5 ﬁptimum design @L variation.

11X Determination of analytical exprewsions for
calculating the optimum pitch distribution,

3,1 Sources of the method, Development by
Glauvert.

3.2 Extension of Glavert's analysis to the
swept propeller.

a8, Coordinate system, Geometry.

b, Derivation of the equations,

¢, Optimum circulation for an ideal swept
propeller,

d, Effect of profile drag.

3,8 TFurther extension of the analysis,

a, Restrictive assumptions lifted,

10
15
18
20
20

22

22

28
30

38
35

Introduction of the calculus of variations .38

be The effect of a finite number of blades,

Co Evaluation of the constant A',
do Effect of the drag~lift ratio upon
- optimum distribution of circulation,
e, To calculate the magnitude of the blade
correction factor X,
~f. Summary of the siteps in the calculation
of the optimum pitch distribution.

44
48

49
51
52



CONTENTS (continued)

IV, The hypothetical example,
V. Conclusions,

References,

Appendix I,

Application of the calculus of variations to
pitch distribution calculations,

l. Description and statement of the purpose
of the calculus of variations.

2, Notation.,

3, Optimum piteh distribution by calculus
of variations,

Graphs .

6l
63

65



ABSTRACT

The principal problem dealt with is the deriva-
tion of a method for computing the optimum piteh distribu-
tion of a lightly loaded, sweptback proneller., The method is
based on an extension to the work of Glauert as presented in
Volume IV of the Durand series., A complete calculation is
carried out for a swept proreller in which the resultant veloc-
ities along the blade vary through the transonic regime. The
analytical work is simplified by the use of the calculus of
- variations. A survey of the German literature on this topie
is included along with a complete discussion of the aerody-

namic parameters to be considered in making such a design.



DEFINITION OF SYMBOLS

ar

o thrust of a blade element of span dr at r.

(T in pounds)
number of propeller blades
blade element circulation

air density in slugs vper cu. foot,

induced radial velocity of slipstream (rad/sec)

B

r

/i rotational velocity of propeller (rad/sec)
w

r radius of a blade elgmént dr or/and df
JE

torque of a blade element of span dr at T

dar
( @ in 1lbs-feet)
u translational velocity at a blade element (ft/sec)
2% forward speed of the airplane (ft/sec)
f%; energy loss of‘é blade element of span dr at r
( B in ft-lbs‘per second).
‘eirculation factor = B4
¥ cire ion »gc | ZT V= ar
X radial coordinate factor '=“;;“
%%? profile eneréy loss of a blade element of span’
dr at r, (ED in ft-1bs per second)
w resultant velocity at a blade element =
: 3}
Ye? + (ar?
( in feet per second)
G blade element drag coefficient

¢,  blade element 1ift coefficient
-+ V_
c L2r
=711 ! = =D
€ drag-1ift ratio /Ei

&b advance angle = /s

K Goldstein tip loss reduction factor



SYMBOLS (continued)

§ coordinate along th.é peak pressure line of the
swept profile |

sweepback engle

N>

radius of the swept propeller measured perpen=
dicular to the blade center line (feet)

values of thrust, torque, etc., of the blade

o o
e 1=
&S
o

(]

element of span d; at re

We W eos g
Ry rotational velocity = (/- <L)r  (£t/sec)
c blade chord measured verpendicular to ¥ (feet)
Ue u cos /3
| EV@ Rv cos
d x /e
P (542 V2
B,C,D coefficients ifx— the cubic in /-L .
CP Power coefficient = )0*5305
J advance ratio = Y p
D propeller diameter in feet,

o induced angle of attack of the blade element



I. INTRODUCTION

1.1 A Sweptback propeller--Pro and Con,

"Why should a pr@pellér with sweepback be consider=
ed?" Such a proposal leads to complications, both aerodynamic
and structural, which can be solved completely only by exten=
sive and expensive testing programs. Before such a procedure
is undertaken its logic must be proven and as much theoretic=
al work as possible should be put forward to indicate that
gains may be expected by such an unconventional design,

Introducing sweepback into a propeller is merely a
continuation of the fight which propeller engineers have been
making for some time against the losses of compressibilitys
One step in that fight Was the simple expedient of limiting
the rotational speed of thé propeller. However, with high
speed and cruising speed of flight moving nearer to Mach one
the limitation of rotational speed has reached a definite
barrier, Solidity ratios, prop diameters and gear ratiocs may
no longer be altered sufficiently to prevent the opsration
of some part of the blade above critical Mach number. There-
fore, if the high efficiencies ordinarily associated with pro%
pellers are to be maintained at theée high speeds it is nsc-
essary to utilize some othser, more drastic, design details.

A case in point is the turboprop. This installa-
tion is @sﬁecially applicable to airplane designs which re-
gquire long range, low specific fuel consumption, and a high
cruising speed.. If fhe basic propeller efficiency can be main-

tained in excess of 85% for airplane Mach numbers approaching



- 5 =

0.9 then the propeller drivem aircraft will fulfill the above
design conditions. The fuel consumption of Jjet driven air-
planes is still much too high to fulfill the above requiréw
ments in their present state of advanceﬁent. Sweepback is
just one of the feabures which meay contribute to the estab-
lishment of the turboprop installation.

’The physical way in which sweeping back the planform
efAthe propeller will delay compressibility losses is simply
explained and is well understood from similer proposals for
sweeping back Wings of high speed airplanes. With sweepback
the propeller sections will be subjected to an effective vel-
ocity which is the product of the resultant velocilty and a
faater proportional to the cosine of the sweepback angle. Thus
the propeller will be operating in a reduced velocity field
and will not eﬁperience compressibility losses as soon as would
conventional plaﬁform propellers. Drag and 1ift divergence at
the tip seétions will be delayed and the overall efficiency of

the propeller will be correspondingly increased.

1.2 Survey of the German Literature

Some work has been done on the design and building
of sweptback propellers. Such a propeller was given a full
scale test flight by the Curtis-Wright Propeller Division butb
there has been no published report on the results of that test.
The priméipal impetus to the idea of propellers of this config-
ufation was originated in Germany. However, there 1is nd indi-
catlon in the literature that they ever got beyoﬁd the model

testing stage in their designs. Reports of these tests are



contained in several captured German documents. (See refer-
ences 1, 2, and 3), These papers are very brief and almost
all design and theoretical details have been ommitted, The

substance of these references will be given here.

The tests were made in wind tunnels of relatively
low velocity. Tip Mach numbers of approximately 0.98 were ob-
tained in a flow of 157 mph. This gave a ratio of tip speed
to forward speed of about 1,0 : 0.15, The geometrical angle
of attack was 135 degrees on the pressure side of the blade

sections, The following series of planforms was proposed.
— LEADING EDGE

(A) (B) (c) (D) (E)
Fig, 1=1 Proposed propeller planforms.

The straight planform prop tested had a diameter of
3.6 feet, For the curved pianform the curvature was obtained
by displacing fbe blade elements. The curvature was in a plane
defined by the axis of the straight blade and the zero 1lift
direction at 0.7 radius, Sweepback at the tips was 45 degrees,

The wind tunnel tests were actually only made on the first

three configurations shown above, The results of these tests

- are indicated in the following graph (Fig. 1-2) where the



efficiency indicated corresponds to the optimum operating con=-

dition of the model propellers,
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Fig, 1-2 Optimum efficiency for various planforms.

In addition to .the results indicated in the above
figure there was noted qualitatively that for the sweptback
planform the mhruét coefficient increased and the torque coef=
ficient decreased with increasing Mach number, No attempt was
made to evaluate the scale effect in these tests. A further
interesting statement in the discussion was that the trailing
edge was found to be the region of highest stress,

Referring to Figure 1-2 it is noted that the advan-
htage shown by the sweptback blade is not evident with the swept
forward blade, It must be concluded that the gain is not due
solely‘td the delay of the compression shock. More signifi-
cant are the radial pressure gradients due to the different
directions-of sweep, These radial pressure gradients are
independent of shock wave development and react differently
on the flow of the boundary layer. It mﬁst be concluded that

this effect is in addition .to the action of centrifugal force



on the boundary layer air. Further, the inclined compression
shock plane diverts the streamlines outwérds in the case of the
sweptback airfoil and inwards in the case of the sweptforward
airfoil, This is because only the velocity componemt perpen=
dicular to the plane of the shock suffgrs a discontinuous re-
duction at the shock while the component parallel to the shock

plane remains unchanged.

Sweptback Planform Sweptforward planform

Fige 1-3 Velocity gradients due to inclined shock fronts.

The above leads to changes in induced drag., The
sweptback tip gives an effective increase in diameter and re-
duction in induced drag and the opposite to this effect is
obtained with the sweptforward tip. Further, these flow con=
ditions influence the boundary layer in such a way as to favor

the sweptback propeller,



1,3 Statement of a Hypothetical Swept Pfopeller Design Problem

Iet us assume a hypothetical propeller design pro-
blem, It is required to design a propeller incorporating
sweepback which will provide high basic efficiencies (of the

order of 85%) at the following operating econditions:

Ao, Alirplane velocity 550 mph

B, Altitude 25,000 feet
C. Prop rpm | 1260

D. Prop diameter 13 feet

E, Englne BHP 2800

s Four bladed propeller
This particular design condition imposes a Mach number variation
along the blade ranging from sub- to supersonic. A reascnable
amount of sweepback will reduce the entire velocity field to
an effective value below the critical of the blade sections.,
(See Figure 1-4). In this paper we will only be concerned with
the aerodynamic design of thé proneller, The structural pro-
blems are present and are extensive but will not be treated in
this material.,

In designing the propeller aerodynamically we may
assume complete freedom as to blade section, blade chord, ac=
tivity féctor, etcs The only physical features of the pro-
peller which are prescribed are those on the diameter and num=

ber of bladss,



IT. ﬁERODYKAMIG PARAMETERS IN THE PROBLEM

Having established the fact that the blade is to
operate at transonic speeds, and being aware of the detrimen-
tal effects incurred in this regime, it is now necessary to
investigate the design parameters Which will delay or reduce
these effects. In general, the following factors must be con-
sidered:

A. Blade Sectlon

B. ‘Activity Factor

C. Interference Effects

D. Planform

E. Optimum Design C. Variation

L
These factors will now be disecussed in the above order.

2.1 Blade Section

This division of the problem has had some attention
in reference #6. The efforts in this reference have been, in
the main, experimental and the results are tabulated therein.
Since this paper is nobt fundamentally concerned with the inves-
tigation of airfoil sections and their characteristics we will
settle upon the sections as recommended in the reference. Yet,
at the same time, it would also seem advisable to understand
the mechanics by which these particular airfoils have a lower

M Therefore, the particular sections tested by the NACA

er’
will be examined in the light of existing information on this

R -

problem. The sectiong being considered are designated as the

NACA l16=series.
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The critical Mach number has been defined as corre=
sponding to the free stream velocity when some local velocity
on the airfoil reaches the local speed of sound. Associated
with this critical Mach number is an increasingly large posi-
tive change in the drag coefficient, This drag increase is
attributed to shock loss which occurs when the local veloci-
ty at any point on the airfoil reaches sonic velocity, i.e.,
when M., is reached, However, it has been shown theoretically
that the fact that some loecal velocity is sonic, while a neec=
essary condition for shock loss, is not necessarily a suffie-
ijent condition, reference #4, However, such a situation is
thought to be an unstable one, and within engineering accur-
acies the two phenomena can be thought of as occurring sim-
ultaneously.

A very convenient method is available for theor-
etically predicting the Myp of any section if‘CEma*_o » the
pressure coefficient for low velocities, is known, reference
#4» This method involves the assumption of small perturba-
tions, i.e., the local velocity, u, is assumed smali such
that its relation to the free stream velocity, V, at any point

“along the surface is of the order
u
v.4<1

Such an assumption cannot hold very near the leading edge of
an airfoil unless the radius of the leading edge is vanishing=
ly small, Or, another way of expressing this criterion is

that the thickness of the section must be small as compared
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with the chord. .In accordance with the above assumptions the
following relation may be derived.
Mep = 1= % {" g_%g; Cpo} “
where,
Mér is the critical Mach number
¥ is the ratio of the specific heats
GPQ is the maximum negative pressure coef=
ficient on the airfoil,
For example, from reference #¥6, CPO for the NACA 16-009 sec=
tion is a¢2g5, Hence, ) ' y
Mér'::a-:%:[~°iéﬁl(ﬂ225& ’
= 0,791
And for the NACA 07-009 seetion, Cyb is =,210 for zero éngle
of attack for which ' : 2% |
Uer = 1~ % [~ Letl(-z10)]
= 0,800
Experimental data as presented in reference #6 make
possible the comparison with the theoretical results as cal-
culated above; ~Thus for a 16-009 section the experimental
value of Mbr is given as 0,802 for a variance of about 1.5%
between the theoretically calculated ahd the experimental
valués,
From a perusal of the theoretical calculations above
iit:woul&sapﬁeax;that?thstNAGA.O7-OOQ section has a higher
Mo fhan the 16~ series section NACA 1650094 However, this is

- not supported experimentally, reference #6., The explanation

seems to bé in the fact that the 07-section has a more full
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pressure diagream near the leading edge where the compressi-
bility effects are more critical. Thus the critical Mach

number is not determined uniguely by the value of (@PO)
and the form of the pressure digtribution is important, at

min

least insofar as the configuration near the leading edge is
concerned. In the general case this would lead to a question
as to which would bear the greater weight, a low value of

(C or low leading edge negative pressures. We may

PO)min
generalize to the extent that CPO must be minimized and with
as little expense near the leading edge as possible. This
means a very slight leading edge radius and small thickness.
It is evident that the local velocities corres-
ponding to a given free stream velociby, V, can be‘reduced
and, hence, Mcr increased by three means,
1. Decrease the thickness
2. Decrease the leading edge radius
5. Maintain the lowest possible design OL
(minimum camber)
Before concluding these remarks on blade section
characteristics, it is necessary to discuss the desirability
of using symmetrical blade sections in order to prevent a

decrease in thrust at high values of M. This effect with

£

camb@red»se&tions has been shown experimentally to begin

at about M = 0.8, and its regult is to decrease the angle
of gzero 1lift with increasing Mach number. The extent of
this change can be severe enough to incur negative thrust

at cambered tip sections. German date sustain this
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contention, This statement is based upon a personallconversa@
tion with the German aerodynamicist Goethert., It is further
substantiated by CGD 483 wherein reference is made to measure-
ments of this effect by Blankenburg (UM 1319}, Of course, the
desirable way to handle this in the design would be to utilize
cambered sections with allowances in angle of attack to com=
pensate for the change. Two things make this approach diffi-
cult, First, there are no design data available which speci-
fically define the shift of the curve and, secondly, allow-
ance for this effect at high speed would lead to excessive Dblade
angles at the other operating conditions,

Therefore, at high forward design speeds it would
appear that symmetrical sections would be desirable. However,
it must be remembered that the M, of a blade sectioé is a
function of the peak minimum pressure, And, while a symme=-
trical section will have a full pressure curve at of = OD, it
will peak seriously at the leading edge at angles of attack
greater than zero, And it‘follows that the extent of this
peak will increase with angle of attack. The writer has made
theoretical calculations by the method of reference #5 which
show that for the l6-series symmetrical sections angles of at=
tack above 30 will result ih an advance pressure peak, For
these sectiqns an angle of attack of 30 gives CL yvalues between
+5 and .4 , The design condition for this blade is the high
speed condition which infers a lightly loaded propeller.

- Therefore, angles of attack in excess of 3° will not be re=

quired, Hénce, it appedrs that when both the effect of the
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shift of the 1lift curve slope and the fact that small angles
of attack are required are taken into account, the sym-

metrical section is the logical choice.

In a further effort to reduce compressibility ef=
fects it is important that the section thickness be kept to a

minimum, This thickness variation will be dictated by struc=

tural considerations,

2.2 Activity Pactor

The activity factor is a quasi-empirical factor
based upon the blade area distribution of the propeller., It
is defined by the relation, o 5

ar = 106000 [ (5)(E) A&
0.2
~where, |
C is the chord at the radiué T
D is the prop diameter
R is the radius = D/2

100,000 / 16 merely gives the AF a convenient

magnitude,

An examination of the above relation shows that for a given D,
AF will be increased by increasing the chord length C along the
blade, Therefore, increased AF of a propeller will correspond
to decreaéed aspect ratio, In evaluating this statement it
must be recalled that propeller theory 1s derived on the basic
assumption of two dimensional flow, Therefore the several
paragraphs which follow are intended only to indicate qualita-

tively the changes in power absorbtion associated with changes



in AF at near sonic Mach number operation,
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We are accordingly

interested in determining the variation of Mér with aspect

ratio.

(52,

2,

Fig, 2=1 Change of Lift

curve slope with M and ARg

Fig, 2«2 Change of
Mach number and

L

C,
Lic

A.R = ’ :

¢

afl.

with

Fig, 2=3 Ghange of C
with Mach number an% AR o

(52,
(%),
del /g

AR

Fig, 2«4 1Lift curve slope
as a function of AR for
a given Mach number,

This variation is as shown in the following figures.

Figure 2-1 shows the variation of
the slope of the 1lift curve with

change in Mach number with aspect
ratio és the parameter. Thus for
a given slope at M =0, the var=-
jation with aspect ratio will be
as follows, For any given Mach

number, M, the slope of the 1lift

curve will increase with increase
ing aspect ratio, See figure 2«4,
Qualitatively this graph is the
same as for the case in which

compressibility effects are ig=-
noreds And in this same respect,

experimental results show no

measurable effect of I on dqf%&

for AR ==1 up to M = 0.80.
Figure 2=2 is of pri-
mary interest in that it clear-
1y shows the delay in drag rise
for the lower AR planforms, The=
oretically there is no limit to
which this effect may be carried

to advantage, However, other



considerations, e.g., skin friction and boundary layer exten-
sion will 1imit this reasoning. Also, Figure 2-3 shows that
CLN decreaées with deerease in AR so that the most efficient
seéticn does not necessarly correspond to the lowest AR which
is structurally feasible,

High Mach number operation causes an extension of
laminar flow over high speed sections which is character=
ized by the curve in Figure 2-5,

It is to be noted that this
"drag bucket" occurs for one

small range of C With some

L#
sections, viz,, the l6-sections,

this effeet is not indicated in

Desi%n . the test data avaeilable, How=
! GL ever it is felt that such a phen-
omenon would appear and that in-
Fig. 2=5 The drag-lift
curve in the "critical"™ vestigation is necessary if we
range. :
are to rationally select design
=i's in the range above Méra "As mentioned before, this bucket
ocecurs over a very limited range of 1ift coefficients,
The qualitative conclusion to the above is that from
a standpoint of drag rise in the compressibility range the AF
should be as high as is structurally feasible., However, this
will not lead to the most efficient planform since the 1ift of
the planform will begreatly decreased.
In summary it is seen that an increasing AF leads

to the following effects:
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Thusg it is seen that an opbimum AF must exist.
However, its emplirical definition QL@(I ades the possibility
of arriving at such an opbimum analytically. Therefore the

procedure will have to be one of cut and try.

2.3 Interference Effsctis

There are indications that inbterference effects at
high subsonic and transoniec speeds may be of importance in
determining the overall characteristics of aerodynasmlc per-

formence in these speed ranges. There ls no available mater

3o

to indilcate that this effect has been considered in the case

that interference of

4]
@

of propellers. However, 1t is possibl

bions can occur bhoth between the blade and the

m

large propor!

8-

oo
o
@

gpinner and between the blade and the fuselage. This
pecially so in the case of the swept propeller, which enters
the spinner at elther a swepbt forward or swept back angle and

which curves back over the fuselage. In general, the resulb
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of this interference could be either favorable or unfavorable
depending upon the configuration. There is ne theoretical
method available for predicting these effects, which mesns
that resort must be made to experiment and that a number of
configurations would have to be tested im order to evaluate the
results, ‘

Little light can be thrown on this problem by cone
sideration of interference effects on other parts of the air-
plane, for two reasons, The principal one is that very little
ig known about the problem theoretically and little or no
experimental information is aveilable at this time, Sueh ine
formation may become available later, and at that time can be
closely studied for analogies with the propeller interference
problem¢ However, in this consideration we come upon the
second difficulty, which is that the propeller interference
problem is somewhat unigue, That is, it will bear little re- =
semblance to dher interfering parts of the eirplane, If qual=
itative comparisonscan be obtained by considering interferencé,
sey at the wing and fuselage, such should be taken into accounts
but it cannot be hoped that anything quantitative will be

obtained,
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204 & 2,5 Elanform and Optimum Design C; Variation

Introduction of sweepback into the planform of
the prop@ller is the basie factor underlying the presentas
tion of this paper, The purpose and pxinciples applicable
to the use of sweepback have been discussed in the introdus=
tion and will not be treated further here,

In attempting to define the optimum design GL
variation aiong a swept propeller, it becomes evident that
this is one aspect of the problem which is amenable to some
theoretical imvestigaﬁione Accordingly, the prineipal part
of this work is the presentation of o means whereby the
pitch distribution of a swept propeller may be calculated
so a8 to give optimum efficiency at a given operating
condition, At this point we will merely list the differences
to be expected underlying the optimum pitch distribﬁtion of
a’conventibnal planform propeller versus a swept planform

progeller,

l, The field of induced velocities of the
propeller will be altered by compressi=
bility and sweepbaak,

2o Profile drag coefficient will be decreased
by sweepback,

3, Section thrust and energy loss will be

altered,
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4, All such effects will be expressable
analytically.
Section III is concerned with the analytiedl treatment of

this preﬁiemg
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ITI DETERMINATION QF.ANALYTICAL EXPRESSTIONS FOR CALCULATING

THE OPTIMUM PITCH DISTRIBUTION

B.1 Sources of the Method. Develobment by Glauert.

There is a wealth of material which may be searched
in an effort to find a framework upon which to build a method
for computing the optimum pitch distribution of a sweptback
propeller, Up to the present nothing has been published cover=
ing such ah extension. Thus the writer was completely free
frcm "the power of suggestion®™ in the choice of the basic
framework, British writers have done a great deal of work on
the optimum propeller problem and these works appear in the
R & M publications. Several are mentioned in the references
at the emd of this paper. All of the British works are adap=
tations of the Gbldstien theory intd tabular and graphical
methods, FPropeller engineers in this country also use Gold-
stein's work as a basis but,in the large have developed thelr
own methods of computation, All of these papers have as thelr
purpose the procurement of‘the answer with minimum labof and
as a result the original parameters in such developments are
obscured. At the other extreme is the work of Glauert in
Volume IV of the Durand series, There the problem is presen=-
ted much more clearly and concisely. Therefore it was de-
cided to use the fundamentals of this reference as a framework
and to expand it to include a computing procedure which should
not be unnecessarily complicated, As the method was enlarged
upon it was found that the algebra became unwieldy and so the

approach was generalized slightly to include methods of the
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calculus of varlations. This step was inspired by references
#8 and #9 and its adaptability will be evident upon inspection
of the section in this paper which is devoted to it. A brief
outline of the reference by Glauert follows after which this

method will be applied to the swept propeller problem.

w
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The problem dealt with in Glauert's paper 1
termination of the optimum serodynamic design of e prop of a

given diameter operabting at o given forward speed and power.,
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propeller should move axially aft from the propeller ag rigild
serew surfaces after undergeoing an initial deformation. One
of each such surfaces thereby corresponding Lo each blade.
This condition 1s general but its calculation in specific
cases is so difficult that simplifying assumptions must be
made to make solutions tractable.

The first such assumptions that may be made are
that the propeller does not experience profile drag, has an

infinite number of blades, and is lightly loaded. Then the

velocities induced by the propeller will be small in compari-
son with the translational and rotational velocity of the pro-
peller. At a radius r we have the following expressions for

the thrust and torgue of a blade element of span dr

o= prp(a-¢)r
and

G = Brpur
where the circulation has its value defined by

Br=zmwr®
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The preceeding equation arises from the assumption of an in=
finite number of blades so that the vortex sheets lie close

together,
Then if we combine with the above equations an

expression for the thrust from momentum oonsiderationé,

dT _ -
e 4zrr,0u.(u V)

and neglect second order terms in the induced velocities, the
following relation for the axial velocity at the propeller

disc is obtained.,

And, acéordingly, the thrust is

dr_
ar Brp_n;r

Now the energy loss for a frictionless propeller is

JdE_ o dQ dT
ar = tar V

And in the order of this approximation
dé :-Qm—wg——z ’ _Qr +
dr 4w |V Tar

Now define
B8ri

ar
a = L
ZITVZ an X="y

¥y=

. Then

£ _ zmpv* o i+x*
dr 12 , ZX
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and
vl o ZIVC
dr 3/
Now the basis upon which the Betz condition was derived is
that the ratio of the inérements of VT and E due to an arbi-
trary increase in [ at any station should be independent of
the radial coordinate x . Our condition for optimum perfore

mance in this case them becomes
2 X2

¥ = AX or  T=AT 7

A is an arbitrary constant., The effect of varying its magni-
tude is clearly defined by the power operating condition which
is given in our problem,

The problem is now extended to account for the

effect of the profile drag of the blade elements, It is evie

dent that the efficiency will be altered and by examining the
effect in detail we see that the expression for optimum distri-
bution of circulation along the blade is also changed. In

particular, the additional énergy loss associated with profile

drag is

dEo ‘ / J

—= = — BcpPpW

| dr z BepWi,

And, if we use the fact that,

dJdr _ I : z

a7z Bec pW (CL§95¢'CDS/,*1¢}
the expression for profile drag loss may be written as

dEp dT

ar - €y
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This relation contains several additional simplifying assump-
tions, namely,

1. Effect of profile drag on_the thrust is ignored.

2. ¢ is assumed to be small.

3. W is approximately equal to A,
We will find in extending this theory to the swept back pro-
peller that these assumptions are too restrictive; espécially
so are 2 and 3, and accordingly such assumptions will not be
made at that time.

Bﬁt, for this present case, we assume that such
conditions hold and the expression for the energy loss may then

be written in the form

de  BrPpa|ar, v] e
= 2L [ = +.f2rJ t EBIP

The expression‘for thrust is unaltered and we oOb-
taln for the work and loss of each element the following re-

lations in terms of the paramoters ¥ and x.

T Zﬂpv
X
V’dr J
2
E - 277/@??« 52 l+X +ébf’x2
dr ¥y ZX
And, applying the optimum condition as before, we obtain
+X | -
aiu— rex® = ax ov, ¥= (A-ex) X*

X )+ X2

This relation could almost have been deduced directly. It
was stated that A is defined by the power input.  Then the
above equation merely states that a portion of the power goes

into the drag loss. Such loss must be proportional to the
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drag=1ift ratio and to the relative velocity at each blade
elemént» Since the velocity is proportional to the radius
parameter, the validity of the above form is apparent.

| | Ali of that which has been sai& in the preceeding
paragraphs applies only to a propeller of an infinite number
‘of blades., We may now sse the effect of considering our pro=

peller to be comprised of a finite number of blades,

The obvious effect of considering only a finite
number of blades is that the air between the vortex sheets
will experisnce an important radial induced velocity which is
not experienced by a propeller of an infinite number of blades,
In addition, it is also apparemt that this effect will become
more pronounced near the blade tips. This consideration has
led to the so=~called tip loss correction factors (to be dis=
tinguished from compressibility lass), An approximate correce
tion has been obtained by Pramdtl and a more exact analysis
by Goldstein, Goldstein's solution refers only to lightly
loaded propellers, Neither approach will be given in detail
here. It is sufficient at this point to say that the axial
velocity is reduced and that this reduction requires that a
factor be entered in the momentum equation for thrust. It
is this reduction factor that is given by Prandtl and Goldstein
in fheir analysess The corrected form of the momentum equa=

tion then ié

dT
o = AT ( )K

K is a function of the advance amgle ¢ o This functional
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relation is treated laters Then since the axial induced vel=
ocity has been decreased by a factor X the optimum condition

for the case of the frictionless, lightly loaded propellsr is

XK

1+X*

¥=A

And, similarly for a propellér with drag, the optimum 7 is
given by

(AK-EX) X*
J+ X%

Y =

The reduction factor K is discussed in more detail in section

S5 b

3,2 Bxtension of Glauert®s Analysis to the Swept Propeller

3.,2a Coordinate system., Geometry.

Before carrying out the actual analysis it will be
necessary to define some additional coordinates, Let us con=
sider the following as a plan view of the propeller as seen

if one were able to develop a helical surface into a plane,

% (locus of maximum
//, pressure points.)

ﬁ is the local angle
of sweepback

W 4is the resultant

velo;z,z;_z_:__\
- v F(n®

i ]
i o= | .
j . - ¢

FPig, 3=1 Coordinate System
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In addition, a great deal cam be said about the mag=
nitude of the effective velocity which will be experienced by
the blade element d¥ -

Since our calculations are to be carried out on the
basis of a strip theory the problem is two dimensional and may
be likened to a wing of infinite span in side slip., Therefore,
if the viscous nature of the flow is neglected, the aerody~-
namic characteristics of a section will clearly be completely
defined by the component of the resultamnt velocity which is
normal to 4§ » By such reasoning the resultent velocity is
given by W cosf » Certainly this gives the correct 1ift of
an element since any velocity along the blade in the spanwise
direction cannot have a pressure gradient. By thé same reason=
ing the induced drag will also be correctly described but not
the frietion drag. However, we will use the cosine factor here
keeping in mind that it is not an exact description of what
takes place. If a more satisfactory expression for the effec=
tive velocity is developed at any time, it will be a fairly
simple matter to alter this analysis accordingly.

In the light of the above aséumption covering‘the
magnitude of the relative velocity, a few words should be
said about the plane in which the sweepback is to be accom=
plished, We propose here that the blade should be #wisted.
in such a fashion that the sweepback is acecomplished in the
plane of the helix which corresponds to the desired operating
condition. The reason for this is best described by several

sketches, .
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Sweepback in the fore and aft.
plane: The dotted line corres=-
ponds to reduced resultant vel-
ocity and we notice that very

large sweep back will be re=-

quired to reduce the resultant
velocity W by any satisfactory

amount .

Sweepback in the rotational plane:
It is abvious that here we

would also need large sweepback

to accomplish the desired pur-

poses

The logical solution to this pro=
blem then is to effect the sweep

back in the planme of the helix.

Then the sweepback‘is directly

effective upon the resultant
Fig. 3=2 Planes of
sweepback, velocity and the forward and

rotational velocities also have as thelir effective values

Vcos and  [1f cos ﬁ

3.2b Derivation of the Equations,

Upon the basis of the preceeding conditions and as-

sumptions we will now proceed to derive the equations for
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thrust, torque, etcs,, which will be required in the course
of the analysis. For a propeller of straight planform the
thrust may be written

a7 _

ar 47rrpu(u. -Vv)

This describes the momentum of the fluid in an annular element
of radius r and width dr., Then the equivalent expression for
a blade element d; is

dar

d5 4mrpu(u-Vv) cos g

An expreésion for the circulation, [ , experienced by any
blade element will be needed, The value for a propeller of

conventional planform is

BIr = zWr{wr) = ZITwr*®

Now this expression describes the circulation about a closed
circular path of»circumference 2wrr corresponding to a veloci-
ty wr. And, since this will be the value of the circulation
in the flow irrespective of the type of planform the expres=
sion will be carried over unchanged. Accordingly, for any

element d% the circulation is given by
2 ,
Br = Zmwwr - 3=(1)

Another expressionlforﬂthrust is obtained by application of
the KuttamJoukowsky equation which, for conventional planform

propellers, gives
dT

o = Brp(a- Zr



Recalling that we are applying the cosine of the sweepback
angle as a measﬁre of the reduction of the velocity compon=
ents then it is elear that the equivalent expression for the
swept propeller is

dar _

bl (2-L) 1 cosf 5=( 2)

And by similar ressoning, the expression for the torque which

for conventional planform is

4Q

wr
ar = BIP

will, in the case of the swept propeller become,

-[o}

di = Bl pUT cos [

The relation between the rotational and axial vel-
ocity should be unaltered by these 'transformations® over that
obtained for the straight planfom. This may be checked by

equating the expressions for thrust.
4mrpu (U-V)cos g = Bi’ﬁ(ﬂ’ L) r cos -]

Since the oosﬁ factor cancels 1t is clear that the condition
is sustained., Accordingly, the axial velocity will be obtain-

ed from the relation

u(u V) -~=-[ —-—-]wr

3¢2¢c Optimum Circulation for an Ideal Swept Propeller

The analysis will now be made under the assumptions,

l, Flow is frictionless



2, The propeller has an infinite number of
blades,
3s The propeller is lightly loaded,
Assumption 3 will be expressed by using ( u = V )<<V and
neglecting terms of w in comparison to fL o Then the equa=

tion defining the axial velocity may be written as,

V(u-v) = %ﬁwrf

From equation 3=(1) we have that

z
o = Wr

Therefore, the axial velocity is

_BrA
U= v

+V

Also, equation 3=(2) for the thmst becomes

dT
“f;}%‘—‘Bfﬂﬂfcosﬁ

And, to the same approximation, the equation for the torque

is

JQ _ o [8ra
oy S Brpreospu = Brpreosg {W %VJ

Since the flow has been assumed frictionless the energy loss

is described by

dE_ 9@ 4T V) + &
a e Vg Brprmsp{ﬂm V)+ZVJ

and since,

w _ Bl
Z " 4mr®



we obtain,

" dE_ BTpa Fzr LV
d3 4T

v .ﬁrﬁ cosf

Using the notation of Glauert, we now write

Bri | 7
= mem— a = v
7= Zwrve ey
So that, 9
V - M TX COSﬁ
and ds A
4 K41
dE _ ZTPYV .z
" h ¥ ( Zx ) cos 8

As mentioned previously, the Betz condition for op-
timumfoperation is satisfied when the ratio of increments of
VT and E caused by increasing the circulation is independent

of the radiuss

4
Aydl 2TV

i x[(r+a%) - 7]

an 4 2
& I
A "Jg 1 cosﬁ {(Bf-ﬂ-éw b’}

Therefore, the optimum condition is given by

Xz

I#XE

¥y= A

It should be noticed that this is the same relation that was
obtained for the conventional pmopeller under the same assumpe=
tions, This result was to be expecteds, Since the flow is
frictionless and the propeller has an infinite number of blades
it is obvious that both the thrust and energy will be altered

by the same factor, viz., cos @ , and it follows that in forme
ing the ratio of increments of these two factors that the cosine

function is cancelled., However, it cannot be expected that



this will be the case when the analysis is extemded to inelude

profile drag. That, then is the next step.

3.2d Effect of Profile Drag

We will make am approximate check upon the effect
of profile drag by including the following assumptions,
1., Neglect the effect of drag on the thrust
2, Assume that the advence angle ¢ is small
3o Let the resultant velocity W Sflr cos g

The energy loss will now be given by,

dE dQ dT dEo
—— = e -f- e
d¥ 4 d3 -V dy ~ di

where the energy loss due to profile drag is

jg" - Btfﬁlw c = Bcpéfz’r’cos’ﬂ

The thrust may be expressed in the conventional manner as

%g '—"é‘Bprgﬁj(L Cos¢~Cps;n¢]
and, if we write for the drag-lift ratio
'é _ xge“
G
then
dr _ |

dT _ 2.2z, Cp
dg-zﬁﬂcﬂf cos“p -

for small ¢ and W =[lr cosp

It follows that

diy _

JT
a3 €_ﬁfcosﬂ’dg



Ther we can write the total energy loss as

cos ﬁ} ﬂgg-v (1- é'Xcosﬁ)

dE_ _ dQ ., dT ‘_e.m’
d3 ‘ﬂdi Vi (

If this is written in terms of the parameters ¥ and x it

becomes

' 4
dE-._- Zrpv cosﬂ[b’zx*l + YEX 605[3}

dz N ZX
and the thrust force remains
dT ZII’ GV
—_— = X
Vv ) cos @ (¥X)

Applying the condition for optimum performance as

previously defined, we find that the desired ratio in this

case is
alval)  xay
dE\ ~ Z¥A¥(1+X°) 2
A(_;Eé ZX + A¥EX cosﬁ

Thus the optimum distribution of ecirculation in this simplie

fied case where profile drag is included is given by

(A-€X cosﬂ)x
I+ X*

¥ =

Note that the corresponding equation for a propeller of conven=-

tional planform was

= (A-€X) x*
I+ X
Thus it is seen that the optimum distribution of
circulation is altered when one includes tle effect of profile
drag. Thié effect, too, could have been deduced rather than

derived for the energy loss dus to this drag will be a func=
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tion of @ o The chief interest here is the power to which
this factor enters into the relation.

Clearly, then, the next step to be taken is to ex-
tend the analysis with the simplifying assumptions withdrawn
so that the results will be applicable to calculations. Also
it will be necessary to include the tip effect in the equas=
tions., But before doing that it is of some interest to look
at the preceeding results graphically.

Let us assume that the constent A = 0.5; that the
drag=1ift ratio € is constant along the blade = 0,05; and that
the sweepback angle is constant = 60°, For these values the
folicwing results are obtained, Table 3~1, and are plotted
in figure 3=3,

Table 3=1

Optimum Circulation

A= 0,5 €=0,05 f=60°
K= | 0,5 | 1.0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0
X&w;gfg{ 6,100 | 0,250 | 0,400 |0.471 | 0,487 |0.492 | 0,495
xs“%;%’f 0,095 | 0,225 | 0,320 | 0,284 | 0,195 | 0,099 | 0.0
x,‘ﬁ%ﬁh‘z 0,097 | 0,238 | 0,360 | 0377 | 0,540 | 04296 | 0,250

Note that when the profile drag is considered, sweeping the

propeller allows for higher loadings on the outboard sections
of the blade, This result is to be expected since the ener-
gy loss is reduced in relation to the effective velbcity and

the amount of this reduc¢tion is increased as one passes to
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the outboard sections of the blade. By inspection of Figure
3-3 we would conclude that the effects would be very slight
for propellers operating at low-a/ V ratios., However it must
be remembered that_these results were based upon the assump=
tion of low advance angle (high{l/ ¥ ratio) so that conclus=-
ions in the high forward velocity range must be withheld
until the analysis is extended beyond the present restrictive

assumptions, This is done next,

3.3 Further Extension of the Analysis

D08 3estrictiva Assumptions Lifted. Introduction of the

éalculus of Varistions.

Let us first summariZé;the assumptions under
which the preceeding analysis was made. They were that
1. The sweepback is accomplished in the plane
of the relative velocity.
2. the propeller is lightly loaded
%, the effect of drag on thrust could be neg-
lected
4. the advance angle ¢ is small
5. the relative velocity can be written
W=JLr cosp
. 6. and, that the drag-1ift ratio.is constant
along the blade.
Now assumption 1 will be retained for the reasons puﬁ forth
on page &0 o Also, this entire paper is meant to apply to
' propellers operating at high cruising speed conditions so that

aSsumption 2 is applicable. By looking at a velocity diagram
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of a blade element it is easily seen that assumptions 3, 4,

and 5 must be cancelled at high forward speeds. (Fig 3-4)

dL W cos @

rdQ - ' | (.Q."E)_)VCOSﬁ

e
Fig 3=4 Blade element forces

Finally, it will be necessary to allow for'changes
in blade thickness and chord along the blade so that the drage-
1lift ratio cannot sensibly be considered constant. Thus,
assumption 6 must also be lifted and the analysis will be car-
ried out on this basis, For the presemnt the propeller will be
assumed to consist of an infinite number of blﬁdes and the
correcéion for a finite number of blades will be applied later.

We now proceed to calculate the values of energy
loss and thrust. In order to include the effect of drag the
thrust will be described in the following manner, Denote the
effective velocities in the forward, rotational and resultant

directions as u_, R, , and We respectively, Then -

v@
-1 R -1 U,
¢ = cos /.agv.g. = S/ mi
W, We

Vie havey
dr ¢ . '
Z;z-ZBCPMZCL (cos ¢ - € sin ¢)
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and

ZI
We ¢

CL =

so that we can write for the thrust,

i§§:= BPWe I (cos ¢ ~ € sin P)

or, substituting for cos ¢ and sin ¢ their values in terms of

the velocity components, we obtain

dT ;
ﬁggzﬁﬁf@@v@_é%) = EPI (B, -€EU)cos f

The velocity components may be expressed in our dimensionless

parameters ¢ and x as

v
£v==42fﬁ§== XV
and
Bril )4 A
= —— = =(J+
u = +V 2( Z)
80 that
E1 [ _ G’(sz
d§—BﬁFVco$P X z |

Finally, the expression for the work obtained from the proe

peller is

IV Ty €G80)
v iy ¥ cos g X 7

The correspdnding energy loss will be derived from the equa=

tian'

IE_ R, dT

s s aE T & 3-(8)



We will use expressions for torque input and work output in

the forms,

dq Bri ;
5 =Brprcosp 11 L?TV +V} 5-(4)
and
dT _ w ,
Vjﬁ;- ﬁ/‘pi’cos/ﬁ(_ﬁ.-wz } 3=( 5)

It will be necessary to derive a suitable expression

for the energy loss due to drag, This loss is given by,

/ £
i@"'gfpfé"ﬁ% C

a3

But, also
od7 _ / z :
P = ?BC/OW@ {Q cos @ = (, sin ¢]

These equations may be eombined to give
C/ED - We d/
o3 (F/ a) cos p

Then if we substitute the translation and rotational veloeity

components for We and recall that
="“‘"(@’%Z} and £y, = XV

the expression for the energy loss due to drag becomes

{X + {ié }c‘osﬁ

dfp
a3 Bf/ﬁﬁf ﬂV X _ J’%Z
It will be convenient to write € z
X T+Z
c =9 e



Then the energy loss due to drag can be written as,

JE,  zmpv* (X245 cos B
dy = L2 J-p

The expression for the entire energy loss is obtained by

3=(8)

X cos

substituting equations 3«(4), 3=(5), and 3=(6) into 3=(3)

to give

4 2 4 2
+/ X"+
dE: Zﬂ:ﬁv (asﬁ JZ;XLEM%@,X( M}COSﬁ
1 £ ZX 6—,u.
A more convenient expression is obtained by using the variable

f£ throughouts Then

dt _ ZZWV [w—mz(xm Ju MMM x*
s [ﬂZX[ X7 -}coﬁu é./u

And, in the same notation, the thrust work is

Vd? E”ﬂ casﬁ zZ [/UL(X#@) €/,U. }

With these two expressions in hand we can calculate

dr dE .
the ratio of increments of V—— and —— caused by an arbitrary

o5 df

increase in the circulation. Our optimum condition states that

this ratio shall be a constant independent of tﬁe radial co~
ordinate x, However, to do this in exactly the same manner as
in the previous examples leads to algebra which is hopeless=
ly complicated. The expression for optimum/m.comes out in the
form of a quartic with complicated coefficients involving the
basic parameters, But this complication can largely be cir-
cumvented by resort to calculus of variations., Appendix I

- restates the problem in terms of this ecaleculus and refers to

other propeller calculations which have been made in this
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fashion., In this way the optimum condition is expressed by

ﬁ-{vér} = ~=—I-= =.Al
S () A
or \ s

The ~reciprocal of the constant is taken so as to give it a
more convenient magnitude for computing purposes.

The next step then is to carry out the indicated
differentiation. Upon doing this and then forming the ratio

as indicated above we obtain

néﬂ-(c )Zé {(Jm—z/u]

F3 T -
M,E;(csp) oy S [R :)(x ), 505/g{%+x -t) | 3p-zptx %

or L7 % (&~ -
The term 2 ZE Vo.s/B cancels identically. 5=(7)

Accordingly, the expression for optimum circulation

is obtained in the form of a cubic,

/u3+5}f+c/u,+0-—o 3( 8)

where
¥+Z
zZ

-
-

and where the coefficients of the cubic are

1
= (&d+1) -AJ{ = cosﬂ(BJH)]

2 [1+40(2E - cosp)]
Z8(28+) +2A a‘{(o#z)-—x—j-zi - cos ]

C=
Z [i +AJ( v —casﬂ}j
~85(4+1) -AS EZ&Z XZ’;Z! - x¢ cos (’d-l)]
D= 3

Z {I -I-Ad’(xi’:/- casﬁ)ﬁ



b=

A.solufion in this form means that calculations are
going to be somewhat tedious. We can anticipate the results
by inspecting equation 3=(7) and comparing with the similar
expressions obtained for the simplified cases, The numerator
whiqﬁ expresses the change in propulsive force with,chénge in
cireculation has the additional factor €( 1 - 2W), This is a
small quantity of the order of € so that only for the smaller
values of x will it have an effect upon the results. We also
see that for large x the term in the denominator, which des=
cribes the change in profile drag energy, is reduced tog€x cosﬁ
This agrees exactly with the result obtained from the simpli-
fied analysis for all x, So it is seen that the corrections
included in the more exact expression are of second orders
Their contribution is negligible for higher values of x, But
for high forward speeds x will, in general, lie below 1 and
thus it becomes necessary to retain the correction terms. Sem=
ple calculations have been made by equation %=-(8) and ﬁhe re=
sults are indicated in Table 3-8 and Figure 3-3, It 1s seen
at x ® 0,5 that the optimum circulation as calculated here is
about 25% below that indicated by the simplified solution.
 For higher values of x the results coincide for all practical

PUTrpOSes,

%Z,3b The effeet of a Finite Number of Blades,

All of the preceeding theory has assumed the pro=
peller to have an infinite number of blades., Ve want now to
consider the changes which must be made in the analysis in ore

der to account for the fact that the propeller actually has a



Table 3-2
Variation of @ptimum_Circulation with x

A'=1/A=2,0 € =005 p=60°

x B (o] D M ’ ¥
o5 | = 21,65 133,08| = 116 | 1,036 0.072
1| = 44.60 583,9 | = 590 | 1,101 0.202
2 | = 94,76 2,781, | = 3,109 | 1,164 0,528
4| -197,02 | 12,322 ~14,242 | 1,178 0.356
6 | ~-298.,31 | 28,395 -32,625 | 1,167 0,534
8 | =399,05 | 50,884 -57,608 | 1,142 0,284
10 | =499,51 | 79,814 -88,732 | 1,120 0.240

finite number of blades, The physical fact is that the slip-
stream is composed of series of vortex sheets, one for each
blade of the propeller, By the Biot Savart law thereare vele
ocities induced by these #ortices, Thinking‘of the propeller
as composed of an infinite number of blades allowed us to sub=
stitute for this complex vortex pattern a geometrically much
simpler pattern. We then could envisage a2 bound vortex upon
the disc of the propeller with the horseshos elements of this
vortex passing backwards along the axis of the propeller and
the cylinder generated by the blade tipss In such a system we
were able to obtain expressions for induced velocities in the
axial and rotational directions. There were no radial veloci-
}ties induced by this vortex system., Passing to the actual
fact of a finite number of blades, hence a finite number of

vortex sheets, introduces a radial flow of the air between the
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vortex sheets, Immediately it is seen that this effect is such’
as to reduce the axially induced velocity and hence to reduce
the thrust as eom?uted from momentum considerations. There=
fore, qualitatively, the effect is very ciear but to ecarry out
a quantitativé anelysis is not quite sco straight forward. The
problém has been solved by several people, chiefly Prandtl and
Goldstéen, Prandtl solves the problem in an approximate fashe=
ion by replacing the vortex sheets by a series of parallel lines,.
Goldstéén, on the other hand, has solved the potential problem
exactly. This solution exactly represents the Betz optimum
condition, By reason’of the complicated nature of the pro=

blem it 1s obvious that the exact solution must also be wery
complicated. Thus Goldstein was only able to obtain a solution
for lightly loaded propellers, Both the analyses of Prandtl

and Goldstein arri%e at a reduction factor which must be applied
to the thrust as calculated by momentum considerations. This
factor which we shall denote by X, is a function of the station
radius, the advance ratio A , and the number of blades., Gbldw
stein's analysis must be completely reformulated for each dif=-
ferent number of blades while the approximate theory of Prandtl
results in a general expression into which we need only substi;
tute the parameters including the numﬁer of blades., Since it

is exact, and since our problem fits the assumption of light
loading, we will use the reduction factor as derived by
.Goldstein, Table 3-3 and Figures 3*5; 3=6, and =7 in the
Appendix II give values of K for 2, 3, and 4 bladed propellers,

This is a convenient point at which to consider the
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effect of compressibility upon the equations which we have been
writing. Both momentum theory and vortex theory have been

used in this analysis and both:are based upon an incompressible
fluid. Tsien and Lees in reference #10 have evaluated the ef=
fect of compressibility upon the induced velocities and.hence
upon the thrust and torque for lightly loaded propellers, Upon
such an asSumption they applied the approximate Biot-Savart
Law for compressible fluids end found that the axially induced
velocities as calculated for an infinite number of blades is
unaffected by compressibility. This is a direct consequence

of the assumption that induced velocities are sMall and accor-
dingly that densify variations may be neglected in a first
approximation, When one considers a finite number of blades
the correction involved is increased by a factor proportional
to the ratio gFf%T?=R s 1t has been found thaﬁ the correc=
tion to the axially induced velocity by consideration of a
finite number of bl&des”is of ma jor importance only for a
propeller of a small number of blades (2) and then only on

the outer portions of the blades Thus for a four bladed pro-
peller considerations of compressibility involve only a minor
correction to a minor correction amd therefore will be neg-
lected here, It is important to note, however, that the section
characteristics to be used must correspond to the effective
‘Mach number at which the blade section will operate. It should
.also be remembered that the above statements will only apply
within the assumptions of the Biot=Savart equation and for a

lightly loaded propeller.
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~We now introduce the reduction factor K into the
relations which define the optimum distribution of cireculation
along the blade., The expression for the propulsive work be=-

comes

P
ol _ ZITPV
V;,}? "TQ@'— cos [Z%"}KX-Z@&L(/LL-I)]

The expression for the energy will be unchanged since both
the torque and the thrust are reduceéd by the factor K., Then

in our cubic which defines the optimum circulation
/;L3+B/AZ+C;L +D=0 3=(9)

the coefficients are given by

= = [g(axt1) +1]- Ad[z 142 J(X%1)/XF - cosp (35+1))

B= Z {1 +Ad [(X*+1)/ x* — cos B]}

oo 23la0tk1+ 1) + 2A ST +2)OC /K ~ cos p]
) £ {I +AS [ (X*i)/X* = cos B}
=5¥ k0 - AS [ 2821 /X = Keos BY(S-1)]

b: Z{I+AS [(X4+1)/x*~ cos B]}

Be.0e Evaluation of the constant A?

The signifigance of A' and the means of detemmining
its value can be shown by the following considerations. The
power absorbed by the propeller is given by

| Fag _ zmpv' ¥
P=ﬂZ 9 = E becosﬁ{“‘-l-/)
d3 2 Z
r=ry r=r

Now, oy

4
P ! 12TV J
= m —— [ —_ -
(:P pn’ﬁ‘ OD\V0D Zr;_lecas(g(Z ) 8-(10)
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Or, this relation may very conveniently be written ss

-
%ngmﬁﬁ(g%j}
r=r,

Co =
where
\4
J = ==
no

and where ¥ must define the optimum circulation as previous=-
1y obtained as a function of A, K, and the radius factor x.

SP is known numerically for a given operating condition.

3,

Thus for a given distribution of € and @05/@ s the
optimum § is determinable as a function of A. Accordingly
- the summation is a definite number for each A and this constant
can be adjusted to give the desired value of @yﬁ Having de=
termined the correct A in this manner the desired range of
is known, The method of incorporating this detail in the cal=

culation procedure is outlined in section 3.,3T,

5,54 Effect of the Drag-Lift Ratio Upon Optimum Distribution

of Circulation.

1t has been ftacitly assumed that the optimum cir=
culation does not depend upon the drag 1ift ratiojthat is, in
establishing the optimum Mo € has been treated as a constanﬁw
Actually, of course, there is a depéndence and to be strictly
correct the derivative of € with resmect to the circulation
should have been included. However, the operating blade sec
tion characteristics are the unknowns inm this problem and to
include the derivative Jﬁé; in a general way leads to compli=-

or

cations which are excessive. In fact, such a consideration is
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largely unnecessary as may be seen by violating a mathematical
principle and allowing the € to vary in the solutions preve
iously derived upon the basis of its being constant. ZLet us
consider the approximate solution corresvonding to the case

of the sweptback propeller with drag. The expression for opti-
mum distribution of circulation in that instance is

(A- €X cos B) X*
/+x*

J=

In addition, we will restrict this investigation to values of
x < 1 since this is the speed range of primary interest here,
Then for constant sweepback of 60° and A = 0.5 the following
‘variation is found between ¥ and € . Values of ¥ are in
the body of the table,

Note that the variation of ¥

€ X 9] 95 lﬂpO )
‘ becomes of important magnitude
201 0,099 0,247 ’
only as € exceeds 0,05 and
»02 0,099 0,245
then only for x—>1, Propeller
203 0,098 .| 0,242
sections seldom operate at such
«05 0,097 0,837 ‘
a high drag lift ratio and when
o1 0,095 0.225
, their coefficients do approach
8b 0,090 0,200

such a ratio it is at the thick=
er shank sections of the blade where the dependence of ¥ upon
€ 1is very slights., Also, in actual cases, A will, in general,
exceed 0,5, This diminishes the effect of € percentagewise,
Therefonre, the computational procedure will be to
assume a reasonable range of values of € along the blade,

calculate the corresponding distribution of circulation, ob-
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tain the actual distribution of € along the blade to fit the
desired dimensions and forée coefficients, and then to check
for the necessity of correction due to this change, These

statements are included in the outline of computational pro=-

cedure in section 3.3f.

3.3 To Calculate the Magnitude of the Blade Correction Fac=

Figure 3-5 gives the factor K as a function of the
advance angle (¢fl-d“- ) with the blade stations as parameter.
OQ' is the induced angle corresponding to the induced axial
and rotational velocities, Immediately it is seen that our
calculations must include successive approximations., That is
sin ¢ is first calculated upon the basis of the forward vel=-
ocity V and the rotational velocity flr. The proper values of
X at each blade station are then selected and the computation
of optimum eirculation is carried out., This will then give
a value of the axially and rotational induced velocitiés from
which (@ #df;) may be determiﬁeda Having these, the corrected
values of K are determined and the calculations repeated. It
is sufficiemt to take the second computation as the final re-
sult since for lightly loaded propellers the convergence in
the approximation procedure is very rapid. These steps are
included in the outline of the computational procedure in

section 3.3f.
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3.3f Summary of Steps in the Calculation., (For determina=

tion of Optimum Circulation for Lightly Loaded Operation)

1.

2s

Se

4o
Ss

6o

7o

8s

96

10,

11,

Determine the Mach number range along the blade
corresponding to the desired operating conditon.

Assume a sweepback curve such that all blade
stations are reduced to operation at a desired

effective Mach number (say 0,8).

Assume a reasonable distribution of € along the

blade, keeping in mind the high Mach number op-
eration, The range of 0,015 € < 0,05 should

normally be sufficient.

Calculate K at each of the blade stations,

Determine CP and J corresponding to the desired
operating condition,

Calculate the coefficients in the cubic equation
3-{9) for representative values of A. (Two
rather widely spaced will suffice).,

Calculate the oPtinnmzf& from equation 3=(9) for
each of the values of A.

The summation in the equation for CP » equation

3=(10) may next be evaluated graphically and the

proper A determined.

The distribution aflp_ corresponding to this A
is then calculated and hence ¥ is determined,

Calculate _ 477"/)/z X
€T BA W,
From CLe the proper values of € along the

-blade ecan be chosen,
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12, of; 1is calculated using the relation;
U= (3#2)

13, Proper values of K are chosen.,

14, The solution is completed for this new value of
K.

Note: The solution should finally be checked for the effect

of variation of € (step 11) and to see that the proper value

of C@ has been maintaineds
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Iv THE HYPOTHETICAL EXAMPIE

The following operating conditions were assumed:

V = 550 mph B =4
h = 25,000 ft, REM = 1260
D = 13 ft. P = 2800 HP

Then
CF’ 0. 422 and J =& 96

l. Actual Mach number variastion, The range of Mach

number along the blade for the above operating condition is
shown in Figure l«4, Values of M at the desired blade stat-
tions are given in Table 4~1, row (2),

2. Calculation of sweepback angles. The effective

Mach number is reduced to 0.8 at each station. (rows 3 and 4)

3. Assumed variation of € along the blade. These

figures (row 5) are based upon & thickness variation from 12%
at ¢ = 0.5 to 4% at %# 0,95, It is assumed that 16 series
symmetrical airfoils are used threughdut the length of the
blade, See reference #6,

4, Calculation of the tip factor K (lst approxima=-

tion)., It is first assumed that the advance angle ¢ is deter=
mined uniquely by the forward velocity of flight and the rota=
tional speed of the propeller, Values of K are taken from
Figure 3-5, (see row 9)

5 Determination of the coefficients in the cubic,

Several values of A are assumed and the coefficients evaluated

for these values of A, Values of § and cosﬁ as determina&
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above are used. (see rows 10, 11, and 12)

6o M (the loading factor) is now determined for

those values of the coefficients as obtained in step 5. The
corresponding ¥ 1is also obtained. (see rows 13, 14, and 15)
Values of J versus g, (blade station) are plotted in Figure
4=1,

7. Calculation of Cps The finite sum in equation

3-(10) is evaluated mechanically for each of the three values
of A, Values of the integrand at each blade station and for

each of the three values of A are given in row 16, The inte=-
grand is plotted versus blade station in Figure 4-2, ﬁ%%él
is plotted versus A, Figure 4-3.

8, Determination of the proper A. Our power condi=

tion gives a power coefficient of C_, = 0,422, The correspond=

Cp D ® CoD
ing value of ‘“f%zﬂ is 0,0715, From the plot of —%%7—

versus & it is found that we need an A = 4,1

9. Calculatidn of ¥ for Cp =0.422 (A = 4.1)
With A = 4,1 the coefficiemts in the cubic are calculated
(row 17). ¥ is determined by solving for ) from the cubic.
(row 18). Note: A check on GP showed that the proper value
has been attained.

10, The blade element loading Egngl is calcula=

ted from
s ol z J
I3
e i  J4 ¥
Cc 5n W, 19.14

Values are in row 19 and are plotted in Figure 4-4.



1. Check on tip correction factor K, The in-

duced veloecity is computed from
YV
u=-zf(a‘+z)

or

U-V= VT = 40377

Its value, in feet per second, is given in row (20). The new
sin ¢ and K follow in rows (21) and (22). Note how little
K has changed which is a direct result of the light loading
of the propeller., (To the order of accuracy of which these
calculations have been made it is not necessary to correct

the solution for the change in K)
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Table 4=1

Numerical Example

1, |Station 0.3 0,45 | 0,60 | 0,70 | 0,80 | 0,90 | 0,95
2. |M (operating) |+830 |.878 |:942 |.993 |1.045 [1.100 | 1,132
5. | cOS B 0963 | 0910 | 850 | .806 |.765 |.727 | 2706
4. | B 15%227| 24%30¢ | 319477 | 36°187| 40%* |45%22¢| 45°15°
50 | € 05 004 203 002 01 .01 001
6o |r(ft/sec) 257 386 515 600 686 772 815
7o |tand=Yar B.14 |2,09 |1.568 |1,346 |1,178 |1.045 | 0,990
8 | sin ¢ 0953 | 0902 | 843 | ,80% |.762 |.723 | .704
9, | K 1,172 | 4917 |.736 | o625 |.507 |.358 | 254
10,| Coeff, A= 1:
B «14021| =26,32| =47 .16| =82,98| =191.4| =217.6| =230,8
c 58,81 | 200,7 |654,5 [2041 | 10838 | 14301 | 16162
D =46,81| »185,2| =657 .5 =2142 | =11695| «15173| ~16832
11,| Coeff,, A = 3: 1
B =14,16| =26 ,30| =47 ,21| =85,12| =191,7| =218,2| =231,.4
c 58042 |199,7 |652,6 |2038 |10837 | 14311 | 16178
D «45,47] =176 58| =620,0| =2010 | =10975| »14426 =16147
12.| Coeff,, A = 5:
B =14 ,14| =26 ,28| =47,23| =85,16| =191,8| =218,3| «251.6
¢ 58,35 | 199.4 | 652,53 | 2038 |108%6 |14311 {16181
D ©45,21| =175,1| =612,4| =1984 | =10830| =14275| =16087
13, Opt, Values,A=1:
M 16,037 |1,066 |1.088 [1,098 | 1,100 |1,079 | 1,057
¥ 2074 | o132 | o176 | o196 | .200 | ,158 | ,11l4
14, Opt., Values, A=3:
M 1,006 |1,016 |1,024 | 1,029 |1,0315/1,024 |1,013
¥ 2012 | ,032 | .048 | ,058 | ,063 | .048 | ,026
15.| Opts Values, A=5:
M 1,0008/1,005 |1,011 | 1,015 | 1,0178/1,015 |1,009
4 +0016| ,0090| ,022 | o030 | ,0856| ,026 | .018
16, Cp integrand:
A=1 20236 | 20613 | ,1040 |,1292 |,1434 |,1184 |.0861
A=s3 20037 | ,0142 |,0267 | ,0858 | ,0424 | ,0542 |,0189
A=5 20005 | ,0039 |.0121 | ,0183 | ,0235 |,0184 |.0130
17.{Coeff,, A = 4,13
B =14,16| =26 .29 |=47,22| =85,17|=191,7|=~218,2|=231,5
c 58,37 |199,6 |652.3 |2038 |10836 |14310 |16180
D “45029 | =175,7|=614,9|=1993 |«10877| ~14324 |~16128




Table 4=1 (continued)

1, |Station 0.3 0.45 | 0,60 | 0,70 | 0,80 0,90 | 0,95
18, |0pt. Values,A=4,1¢

y 1,002 | 1,009 | 1,016 | 1,020 | 1,022 | 1,017 | 1,011

¥ 0004 | ,018 | ,032 | ,040 | ,044| ,034| .022
19 P ch #0765 a544:' 5613 » 765 #842 »650 +s421
20| ( uw =V ) 1,62 | 7,27 | 12,92 | 16,2 | 17.8 | 13,7 | 8.9
2le| sin (@ #d; ) | 4953 | .904 | 847 |.808 | .769 | .729 | ,708
22, K J9L7 | J7B5 | 622 | o504 | o356 | 253

1.172




V. CONCLUSICNS

In this paper we have developed a means for calcu=
lating the pitch distribution of a propeller of sweptback plan=
form so as to give peak efficiency of operation. It would be
advantageous to be able to calculate the characteristics of
such a propeller by a sirip analysis and thus to indicate
that our purpose has been achieved., However, such a calculation
would necessarily be based upon the same simplifying assump=
tions under which the pitch distribution was computed. Aceofdu
ingly the most that could be expected from such:a check would
be the substantiation of the algebra. What is needed are the
actual test data from a propellser which has been designed
aerodynamically by this method and, of course, such data are
not available, Substantiation of calculations such as the
one put forward in this paper will have to awalt the appear=
ance of test data for such configurations and the more complete
understanding of the basic aerodynamic characteristics of swep te

back airfoils,
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APPENDIX I. APPLICATION OF THE CALCULUS OF VARIATIONS TO PITCH

DISTRIBUTION CALCULATIONS

(1) Description and Statement of the Purpose of the Calculus

of Variations,

The following description may be found in meny
standard mathematical texts, What follows immediately here
will be general in nature amd will not apply directly to this
particular problem, However, the calculus of variations lends
itself so well to the calculation of propeller operating chars=
acteristics that it is worthwhile to include a brief, general
description, in this paper, |

Suppose we desire to find the form of a funetion, f,

such that if ys £(x), then

%
/Wx,%z,%’wx
Xo

shall be a maximum or a minimum where

By, 4')

is any desired function of these variables, ¥° %=g@3 s and

dX

X, and x, are any desired values of x, Thus we are looking

1
for a definite integral

xi
I=/ BIX, ¢, 4" ) dx
Xe ]
which corresponds to the form of a curve giving an I whieh is
greater than or less than any other curve which we may draw

between the emd points x, and x;, Now let y = f£(x) be the

desired funetion, or curve, and y = F(x) be any other contin-
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uous curve joining the same emd points, Then if,
Yy q(x) = F(x)-f(x)

Y y=F0)=f)t @ we will have

) X,,g,} %:f{X} *?{(Xﬁ

representing the same curve as

v

4= F(X)
Now consider the expression
o = F(X) +olq(X)

where o is a parameter independent of x. This function then
represents an entire family of curves in which

a) when o 20, y = £(x)

b} when o =1, y = f(x)+s (x) = F(x)
Then if we take of small emough, the function of*(X) for this
of and for all smaller of'’s, and for all values of x between

X, and Xy will be less then any previously chosen § s TFor

these values of of the curve
g= F(X) + LX)

is said to be in the neighborhood of y = f(x). Then, if y =

f(x) and v = F(x) are given, and if by definition
xl
I= [ B(x4.y')dx
: Xq -
then I for any one of the of family of curves is given by,

xl
I (o) =f¢ [x,gheﬂg(x), g’mfy’(x,ﬁ] dX
xo
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where I (of ) is a function of of alone., Then if y =& £(x) is
the curve of the family for which I is to be a minimum it is
readily apparent that I (o) must be a minimum when o = 0,

A necessary condition for this is that

d -

This condition is expressed by the equation
/
I'(o)=0

{2) Notation
a) Veriation of y {ég )

For any x between x, and x,

A (X)= F(X)= f(X)

Thus@(‘,x} is an increment in y produced by changing f(x) in-
to F(x) wit‘hout change in x. 4 (x) is the variation in y (re=
presented by d ). Jy is, in general, an arbitrary function
of X
b) Variation of vy (0%’3:
The slope at any point of the curve y = 4f (x) is
the difference beﬁween the slopes of the curves y = F(x) and

£(x) for the corresponding x. Thus
a'(x) = -%— (dg)

is the change produced in y' by changing f£(x) into F(x),
e) Variation of y'! QJ%'I)z

By extension of (b) we have that
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V4 d ’
X)=— (d
1 x) = —: (4
is the change produced in y'' by changing £(x) into F(x),
Now let us denote a given function of y as ¢ (y)

and increase y by d ¥o Then

ALAE

a’_y ¢(5) g
will be an approximation of the increment in ¢(yh the order
of the approximation depending upon the magnitude of dy. If
S v is an infinitesimal then the approximation is in error by

an infinitesimal of order higher then Jy» This approximate

increment is called the variation of & (y)s Thus

Variation of @ (y) = 64,(%)—2%&(5"]6?

Also, if y and y' are treated as independent variables, the
variation in a function ¢ (y, v*) due to an increment éy' of
y* and é y of y will be

Variation of dé(y, y') ﬁiﬁi@ # .éﬁ.%.i_

Similarly,

oy 128 o ) ped = M a o
Variation of Jé(y*, y'') g d"y 7‘“’“";57#‘ 4

All of the above variations are supposed to be caused by varying

the £ in y ® f£(x) without changing x. So,

/) = OPXY.9) a¢(x ) .
de(x,44') = m}?ﬂ dy + dgf/ & dy
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Note that J¢ 1is an approximate increment in ¢ caused by chang=-
ing x without changing ¢ while d¢ is an approximate increment
in ¢ caused by changing ¢ without changing x. Hence, with this
new notation, our condition that I(<« ) be a minimum when o =
0 is that
X,

fagé(x,g,g’) =0

xa
And let it be defined that the variation of a definite inte=-

gral is the integral of the variation of the integrand, i.e.,

d/x;édx =]xd¢a'x
"9 Xo

So we may write our minimum condition as

$I=0

(3) Optimum Pitch Distribution by Calculus of Variations

The acknowledgment here is to references #8 and #9 s
In applying the calculus of variations the British writers
make use of the power loss and torque grading coefficients which
are seldom used in this country., Therefore, rather then to
outline the reference he® we will merely cohsider the general
ideas involved,

It is assumed that all factors are fixed except
the blade setting & ; that is, that determination of the op=
timum will involve investigatimg only a single variable, This
restriction is not necessary and this entire procedure may be

generalized to any desired number of variables, In general
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6 will vary along the radius r in a fashion which it is the pur-

pose of this analysis to determine, Then we let
8 = L(r) +om(r)

whem £{r) is a function to be determined, ~ (r) is an arbitrary
funection, and of is a parameter which will allow the determinae-
tion of f(r) so that certain integrals involving 6 are a mine
imum, These certain integrals may define the torque input and
power losses of the propeller, By the reasoning of paft (1)
of this discussion it is seen that the integrals will be funce
tions of the parameter o alone and when o is zero that the
desired functions will be determined. To make o zero is to
write the variation of the integrals equal to zero, One such
minimum integral will exist for the torque input and one for.the
power loss, In order for both integrals to be a minimum the
ratio of the two integrands will have to be related by a con-
stant,

That is the general principle of this method and to
check its utility we will apply it to the simpler cases of
section IIIy, Using the work output and power loss as the quan=-
tities of interest we apply the above principles and state

" that we want

N et) _
L2 g ar =0

for all forms of d/° which make

J{WIGZQ%) _
Jf “‘“:gr““*‘df'aﬂfr—O
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The only way that this can be true is for

(% ar) p S0V
ar ) or

Applying this criterion to a simple case, page 28, gives

oV ar) _ zmpv’ o
or ] or

and

(%)  zmpv* aq 14X zj
g o ar =y TEX

so that the condition of optimum ecirculatiocn sstisfies the

relation

J+ x5

X

¥ +FEXT =AX

The other cases treated in this paper could be
checked in a similar fashion, This discussion mekes it appar-
ent that nothing has been added to our analysis method by uti-
lizing the ealculus of variations. However, 1t puts the entire
procedure on & more formal basis and allows a great deal of
algebraic simplification when we treat the more exact equa=~
tions. It is also apparent that the great many similar proe
blems which exist in propeller aserodynamics may very nicely be

treated by the caleculus of variations,
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Table 3«3

Factor (X) for 2, 3, and 4 Bladed Propellers

sin (@+d)

205

»10

»20

200

240

s60

280

90

1.00

20

™
i

1,000

1,000
1.000

1,000
1.000
1,000

0,994
0,997
0,998

0,978

0,992

0.996

0,958
0,984
0,991

0,930

0,973
0,986

0,916
1.010
1,035

0,935
1.061
1,103

1.012
1,185
1.256

X B 445

1,000
1,000
1,000

0,998
0,999
1.000

0,991
0,995
0,997

0,959
0,987
0,994

0,906
0,966
0,984

0,784
0,909
0,954

0,677
0,849
0.924

0,657
0,831
0,917

0,633
0,832

0;923

X ® 060'

1,000
1,000
1,000

0,997
0,999
1,000

0,961
0,998
0,995

0.874
0.955
0,984

0,783

0,902

0,950

0.608
0.771
0.855

0,502
0,661

0756

0.464

0.622
0,713

0,425
0,588
0,681

X & a?O

0,999
1,000
1.000

0,988
0,998
1,000

0,901
0,964
0,989

0.774
0,892
0,945

0,663
0,809
0,883

0.492
0,650
0,745

0,398
0,533
0.627

0,360
0&494
0,581

0,325
0,457
0,543

X B 475

0,997
0,999
1.000

0,971
0,994
0,999

0,852
0,935
0,973

0,709
0,843
0,909

0,595
0,746
0,803

0,435
0.582
0,678

0,347

0,470
0,562

0,311
0,429
0,516

0,279
0,393
0.477

x 8 ,80

0,994
0,998
0,999

0,937
0,980
0,993

0,784
0,884
0,940

0.634
0.774
0.852

0,520
0,670
0.759

0,376
0,508
0,601

0,297
0,404
0,490

0,265
0.367
0,447

0,238
0,335
0.412

x ® ,85

0,985
0,990
0,998

0,877
0,948
0,985

0,694
0,810
0.882

0,548
0,684
0,774

0,442
0,581
0,671

0,316
0,429
0,517

0,247
0,337
0,413

0.220
0,304
0,375

0,197
0,278
00,345

XBQQO

0,950
0,973
0,995

0,773
0,872
0,943

0.578
0,693
0,777

0.444
0,566
0,651

0,351
0,471
0,554

0,249
0,341
0.414

0,193
0,265
0.32¢9

0,172
0.239
0,298

0,154
0,218
0,272

X ® ,95

OGN | PO | DI | DI | DT | DI | AN W | DWW

0,780
0,863
0,945

0.586
0,692
0,770

0,415
0,512
0,590

0.308
0,406
0,476

0,243
0,331
0,396

0,171
0,236
0,290

0,131
0,182
0,228

0.117
0.164
0,205

0,105
0,149
0,187
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