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SULHARY

Previous work on the subject of laminar compressible boundary
layers has considered the flat plate without a pressure gradient
(Kermen, Emmons and Brainerd), the flat plete with a pressure gradient
(Illingworth), and the cone without pressure grzdient (Hantzsche snd
Wendt). It is the purpose of this investigation to determine the
effect of pressure gradient on the boundary layer thickness snd skin
friction for & figure of revolution in compressible flow.

The basic momentum, continuity, and energy equations of viscous,
compressible flow are reduced to an approximate form in the neighborhood
of the surface of a figure of revolution by the usual boundary layer
assumptions and the particuler agsumptions that no heat is trensferred
between the figure of revolution and the fluid and that the Prandtl
number is equal to unity. An integral relation ig then developed
for the approximste equations and is subsequently reduced to a
differential eguation in which the boundary layer thickness is the
dependent varisble. In sddition to considering the case of compressible
flow with & pressure gradlent, three other cases are examined in order
to ald in the interpretation of the results. These are: compresgible
flow with no pressure gradient, and incompressible flow with and
without pressure gradient. The equations are then applied to a figure
of revolution over which pressure distributions have been experimentally
determined at two Mach numbers and two Reynolds numbers. The resulting
boundery layer thickness distributions sre then used to determine the

skin friction drsg for the verious cases.

The effects of boundsery layer velocity profile relation on skin



friction drag coefficient are considered in some detail.

The results of the investigation indiczte that the ususl practice
of epplying flat plate laminar skin friction drag coefficients (either
compressible or incompressible) to figures of revolution in supersonic
flow may be unconservative by a considerable margin. It is also shown
that resulting drag values are considerably dependent on the boundary

conditions used +to obtain the boundary layer velocity profile.
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INTRODUCTION

An extensive smount of literature exists on boundary layer
investigations for incompresgible flow. However, & comparstively
small amount of effort has been directed towards determining viscous
effects when compressibllity cen no longer be neglected,

Several theoretical investigstions have been made of the laminar
boundsry layer on a flat olste in compressible flow with no pressure
gradient. Among these studies are those of Emmons and Brainerd
(reference 1), Busemann (reference 2), and Karman (reference 3).
Bugemann and Kerman asssume no hest transfer and Prandtl number of
unity. Emmons and Breinerd also assume no heat trensfer but include
the effects of varying Prandtl number. Illingworth (reference 3a)
hes studied the lesiner boundary layer on s flat plate in & supersonic
flow with pressure gradient.

Mengler (reference 4) has shown that the behavior of the
laminar boundsry layer on a body of revolution in compressible flow
can be calculated by solving & corresponding problem for two
dimeunsional flow. The contour in the plane flow is determined by
& sulteble transformetion. For the special czse of supsrsonic flow
towards & cone, Mangler's results asgree with thoze of Hantzsche and
Wendt (raference 5), in that the cone boundery layer thickness is
smaller by a factor of v7§* than the corresponding flst plate
boundary layer thickness.

The aim of this study is to investigate the boundary lsyer
behzvior and skin frietion for e body of revoiution &t zero angle

of incidence in a compressible flow with pressure gradient. The



D

method of attack is similar to that employed by Milliken (reference 6)
for incompresgsible flow, i.e., the basic integral relstions are developed
and are solved by the Polhausen method, assuming no heat transfer and
Prandtl number of unity. Specific examples are calculated to determine
the effects of,

(2) pressure gradient,

(b) compressibility, and

(¢} sassumed velocity profile
on the boundary layer thickness and skin friction drag of the V-2
ogive. These results are compared with values obtezined from the
Blasius solution for incompressible flow and the Emmons and Brainerd
calculations for compressible flow over a flat plste with no pressure

gradient.
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NOMENCLATURE

radisl distsnce from axis of symmetry.

radiel distance from axis of gymmeiry to body surface.
normal distance from surface of body.

distance along surface of body from nose.

azimuth angle.

angle between tangent to body surface and exis of symmetry.
wetted surface arez.

body length.

nominel boundary lsyer thickness.
B
)

local static pressure.

free stresm static pressure.
stagnation pressure.

local density

free stream density.

free stream stagnation density.
local temperature (absolute).

free stresm tempsrature (absolute).
stegnation temperature (absolute).
gas constant.

specific hest ai constent pressure.

specific heat at constant volume.

Co/e

V.
internal erergy per unit msass.

heat added per unit mass.



Moo
Mo

M

K1

K2

it

i1

i

i}

coefficient of viscosity at free stream tempersture.
coefficient of vigcosity at stggnation temperature.
free gstream velocity.

velocity in boundsry layer normal to surface.
velocity in boundary layer parallel to surface.

vs at outermost edge of boundary layer.

- P M2 = free stresm dynesmic pressure.

Reynold's number,

free streazm Mach number.
shearing stress at body surfece.
skin fricticn drag.

skin frietion drag coefficient.

¥ o1
_(pyiz1
1 (po Y

Y _ An Bl’\'?{- cjr\B,g_ ceseas

VSS

f
2 P(s) A ()2
/1-P(s)A(q)2 M-

A1) VR(s) 4
1-P(s) A(n)2 “\ -

P, (s) for zero pressure gredient.

F2(s) for zero pressure gredient.



SECTION I
DEVELOPMENT OF INTEGRAL RELATIONS AND

EXPRESSIONS FOR BOUNDARY LAYER THICKNESS

A. Genersl Development
For the purpose of this analysis it is convenient to introduce

an orthogonal, curviliinesr, coordinate system defined ss follows:

(identical to that adopted in reference 6). Let X; = constant,
Xz = constant, x3 = constan£ denote the three familiss of orthogonal
surfaces defining the coordinate system. Then choose x; such that one
member of the family x; = constant coineides with the boundary of the
surface of revolution (cf. Figure 1). x3 1s chosen so that x3 = constant
gives planes through the axis of gymmetry, il.e., X5 is the azimuthal
angle, © , of Figure 1 then the surfaces X, = constant are perpendicular
to the two other families. If ds is an element of length, then for

such an orthogonal system we have in general
d82 = hlzd.xlz $ hzdeQQ $ h32dX32

where the coefficients hl, ho, h3 are functions of %, Xz, X3. Putting

dxy = dxps = 0, it is seen that h3 = r where r 1is the distance of any
point from the exis of symmetry. In this analysis interest is focused
on the thin region, of thickness O on either side of the boundary.

If ¢, denotes the "longitudinal®™ radius of curvature of the boundary

and also if S<«<ep; hy] = 1, hp = 1.
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X3 = CONSTANT
X, = CONSTANT X;= CONSTANT
X, = CONSTANT
© r
r
AXIS
>
&
<
ez
C’Y
CENTER OF CURVATURE
SECTION PERPENDICULAR AZIMUTHAL PLANE
TOoO AXI1S X3=60= CONSTANT

Figure 1 Coordinate System for A Figure of Revolution

Now choose the origin of x; at the boundary and that of X, at

the most upstream point and writes
X1 = n = normal distance from the boundary

X =8 = distance zlong boundary from the ieading edge

Hence the curvilinear coordinate gystem is gpecified by:

X] =n h; =1 n<< cp
Xp =8 hz =1
x3 =9 h3y = r(n,s)



The velocity vector q is defined as
§ = wniln + vsls + vele
where vn, vs, Vg &and (n, Llg, le are the magnitudes of the velocity

and the unit vector in th n, s, & directions. From the assumption of

axizl symmetry, _d( ) = Yy 0.

d O

the basic ecuations of viscous compressible flow are the

momentum equations (references 7, 8)
Dg 2 et .

the continuity equation:

- d = ,
Vel o+ '_aEE" 0 (2)

and the energy equations

N D (%)
P+ ¢ pRErpr L (3)

Each of these equations will be expanded in turn end the notation

will be explained in the expansion. Also the boundary layer assumptions

will be applied to the expanded equations in the work that follows:

It should be noted that in genersl

- 1 d 4 = 1 d4a - 1 9 4A -
vV A n1 om "1 Ths ox ‘2T 3 3m t3
Vi =

1 O__ (ngh3hy) 4+ D (hshiho)+ O (nyhot )J
hyhghs [M. Y S 2 0 %3 =

In the present coordinate system the above reduces to



Vﬂ - E_& Tn-t' .a._é Fs
dn ds
end V-2 = 1 _é_(rﬂl)+ .é._(rﬁg)
T dn o8

Expansion of the momentum equation (1):

In equation (1) P is the density, %Lt—l is the total derivative
with respect to time, g is the velocity vector, g is the acceleration
of grevity, p is the pressure, m is the viscosity, </3 =vaqg-+ (v q)conj. )

and V¥V 1is the vector operestor, "gradient”,

Consider the term V (M©-Qq)

vV (uv-q) = vV (4B) = AVB+ BVA
B = V- El- - % l:%(rvn)-»- SB_?(TVS)]

r|on

SHEA I

}

o~

V & = ?4‘1%1—.@/.2

combining:

cq) - 0 ) d T o) v
VD s |0 {% L__n(rvn)_,. a’é'(rvs)ﬂL n+5_;{rl_[§£(r n)+55_g(rvs)]}

1 O (rv,) _B__(rv)} [5 — ° *]
o S5 2T f’atnﬁ- 5113(3 (1)

Consider the term AV (/MCP)



Vo) = g+ pVP

a - 24 - 29 q- g -
¢ = Vaqg + (Vfi)conj. = Ln g.... + Lg _g+§___ln + g__ Ls
$ = (vl 2 23 1 38,
VCP - (v Ln)b + (v Ls)as + (v ) + (V éS)

£fter expansion the term becomes:

' = 0%vn 1 9 2vs T d%vn 7 d2vs T
V(/J(P) —/"[‘5‘;}“‘2" n + -S—;*{LS‘f bs2 n+-a—;-§-—is

+ BQVn tn‘*’ 2’2\73 ‘L"n+ 52\7[1 tS + BQVS TS
dnZ2 dson dnds Ds 2

b/“ d Vn 1 B/u Jd Vs T + oM d vn L + oM évs T
T dn I mn n T dn dn s ds I s n ds s s
8/4 d vn T + 3/4 o vn T + a/;( d vy T + aﬁ dvg T
T dn o n n odn d s S ds 2 n n ds I s s
(1v)

Consider the term ..____Da:
Dt

pa . dVn dvn dvn |T d vg d Vs dVs | +
Dt I:at towmsn T "Sas]‘n + (at Tty | s

(1c)
a — —_
the term V p = p‘s+ Bp(n (14)
J s dn
Gravity is neglected; therefore the gravity term = O. (1e)

Combining the !n terms in ecustions (1s) through ( le),
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- 9 (I‘V!l) O (rvs) (1 |3 (rvn), I (rvs)
[[{ ﬁ}]j’“LStnran +33:l

d2vn ’ dM dvn OM dvn OM Idvs
+ + 2 == +
/u d n< dsdn ds 2

on On 9s 2 s oS Jdn

(1f)

Combining the ! g terms in equations (la) thru (le)

avS O Vs .?..!f)..._, dpP

_2 d d (rvn) 9 (rvs) e |1 | (rvn), O (rvs)
5/‘5‘5[{ a‘gﬂ*‘a';;[s'; bs:]

J 2vs d 2vn d 2vs QU dvs | 9 dvs | OM dwn
QLvs 4+ -9°¥s
+/u 2 d 8? dn?ds dn 2 + 2 ds8 s +an dn —I_an ds

(1g)
It is now assumed that vn is a small fraction of vy and that the
range of n in the boundary layer is smell compared to distance along
the boundary layer. It is convenient to write n = éf? end vy = £ ¥
where ¢ 1is a small quantity compared to unity and N and ¥ are
comparable to s and vg respectively. The boundary layer equations

are deduced on the basis that terms of the lowest order in &€ are to

be retained. Introducing these concepts into eguation (1g), the



following is obtained:

3¥s 4o £ 32s dvs . 3 _ 2,3 |EJV,EVLIr, ¥sdVs Vs
€3 +€EVQ+/OVS s~ Js 3/465[6 7+r874’_r s s]
2a/u [ B-V’ E; 31‘ avS Vs br a2vs € 32;
- = i trEs Tt + 2
3 s[a h reson s r bs} F d s? +N“-3qas

2
[ 3% 3 dvay 1 3m Bvs 1k BF 1)
€% 3N ds Os E23n on € 9 Is

The most important power of € 1s -2 and occurs in the above equation

in associstion with 4 and éa-é-f . In the boundary layer equations it is

2
assumed that the terms L 318 gng L oM 97s
£2 a;zz E2 on AN

are of the same

v
importance as p Vg %_EE and other terms not involving € . Since

2
gflvzs is itself of zero order in £ , the hypothesis is equivalent to

assuming Moa small guantity in the second order of € . Neglecting

the less important terms equation (1lh) becomes

dv
P 3

[}

avs oP /u 32Vs 1 M Jvs

(11)

ot

In a sinilay manner (1f) becomes:

27y £2 2% 93y _ _123p
PE v TP E ST o T TES T



- 2 OM | £3v, Evydr, Ovs _ vsdr £ 9%y
- - + 2= s —_

3€ 2n | € an r g ap o8 r s + 2/152372

# d2vs 2y E MYV L, M v |1 IM Jvs

— + ME +P — He e g e e 2 :
+ £ Bsaq /A D 82 262 ’?37 s Qs'+£ oS 37 (13)
Now noting that 9 and 525— are of the order £ 2, it is seen

/" )67 b as 14 i

that the lowest ordered term in equstion (1j) is that of order & .
Consegquently é% if; can be of no lower order than that of € . Hence

ég% is at best of the order Ei2 and it may sefely be assumed that there
is no change in pressure normzl to the surface through the boundary
layer.

Assuming stesdy state conditions the spproximate momentum equation

for the boundery layer becomes (transforming ecuation (1i) back to

dimensional coordinetes).

3V
dn

OV
P Vn =2+ vs Vs = _Ei_?i.+.§;(/“ ans) (4)

Expension of the continuity ecuation (Z2)

Assuming steady state equastion (2) reduces immediately to
= 2 -
an(revn) + ds(ers) = 0 (5)

Expension of the energy egustion (3)




D(.____..
DQ - De. _—R
C4 * 9 - pt TP % (3)

In this equation @ is the heat azdded per unit mass by conduction
CI) is the dissipation function defined below

e 1is the internal energy per unit meass

1
p (&)
P D% is the work done by a fluid element by expansion
_ oV o Vg 9Vn Vg
P Ton 33 +Ten (57 T 3% ) + Uss 33 (3a)

where T xy are stress tensors defined as follows:

avn dVg dvp JIVp -
Urn Tas 3n on Sn os | |PP Va0
- 2 -
= * - -EM 0 W
dVp 9dVs . dVs 9Vs 0 3 4
Tsn Tss _— = = %= P
ds Os dn O9s
av -
thu = B_p -2V
s Tnn ™ P B/M q
Q Vg OV
Ten = Tns = M 50 M Ery {3b)

the first term on the left hand side of equation (3) is

DR - 2 (9T, 3 (x2T)
€T3 dn kan+3s Jds (3¢)

where k 1is the heat conduction coefficient and T is the absolute

temperature.
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The right hand side of the eqguetion may be written as

¢c, T)
= e D¥p*/_DP (3d)

1
_SE_)_. = Db L2y _DP _
Coy (e+v3) "% Dt Dt

Q
zgw

since e+ 2_‘_ = enthalpy per unit mass = CpT.

Inserting ecuations {2a) through (3d) into (3) there is obtained:

e T ) aT dVn 2 =y 9Vn
on (k 8n)+as(k as)+(2/4 2n —p-B/qVq' dn
Vg ., OVp AL 2 AL
i TR i VAl A

(3e)

S (xS 25

£2 I
0 3 ' v
PR R SD G e 5

9Vs 2 £ 0y, 9V, | 9%
A RV
- 9 CpT £ = OCyT o€ 9P g _ 9P P
- G St +G€V OVZ "'QVS de - ( at+5v 57["’"‘7 ""E) (3£)

Considering now t’qat/q » ¥ are of second oraer'v(g » Stezdy stsate
conditions, and remembering that _é@__p_ = O from the momentum equstion,

equastion (3f) for steady flow reduces tos



~15-

T, K, 2772 oCd 6T S

1 2 -
)+€2\37) :F’vaq tpvg

€< an

transforming to dimensional coordinates equation (3g) becomes

(x 2

d CpT 9 CpT dp

5 ( )+/u (35) =PV o ‘)'(3VS - Vs 35 (6)

A solution to the above equation for the particulsr assumption
that there is no hest transfer through the surface, (Prandtl Number

o = l)/ and CP = constant, is
CpT+ vgs = CpTo (reference &) (7)

Equations (4), (5), (7) are now applied to four specific cases
as listed belows:
Case I Compressible flow with & pressure gradient
Case IL Compressible flow with no pressure grzdient
Case III Incompressible flow with a oressure gradient

Case IV Incompressible flow with no pressure gradient

Case I Compressible Flow with Pressure Gradient

Consider the momentum eguation (4)

d Vg OV dp 3 v
’ovnan f’vsass = -ds"*'an(/"jns) (4)

and the continuity ecuation (5)

gmg (rpvy)+ -g—-:s— (r,ovs) =0 (5)

Multiply the momentum equation by rdn and integrate from O to 8

where § is the boundary layer thickness.



//orvnavs dn —f—ﬁorvs———. dn = / dp 4 e-?n—(/f’ SZS) dn  (4a)

Congsider the first term on the L.H.S. of equation (4a). By partial

integration this term becomes:

) & $
P T Vn g Z P T vy - /vs .%_gnﬁﬁ_".g_) dn (4b)
o o o
However at n Z 0, vg = O, and from the continuity equation (5)
dlprv) - 2lprv)

d n =T ) s

then equation (4b) becomes:

) Y

oV
Frvnans

dn = G Ts Yng Vs + [ Vs %.(_./i;lé)_ dn (4e)

where the subscript & signifies values of the cuantities at n= § .

Inserting (4c) into (4a),

5
fs Ts Va5 Vss T [f”s ys T aa(I:rVS)] -

s s
_/rdn /r% (/ujzs) dn (44)
[+] )

The integral term on the L.H.S. of equation (4d) mey be written as

£)
/ %__(fé:zﬁ .




-1

§ §

(5 V.l )
aye ] - d 2 - 2 d6
However / e = 4 frvs dn A T VSS Py (4e)
o

Consequently the acceleration terms in the momentum equation reduce to:

§

2 )
fnm ot g forrn g g

(]

Now to reduce these terms to an integral form, consider:

f Ts Vsg ?is = ‘/o rvg dn —)/._.._. (/o rvg) dn (4g)

But by virtue of the continuity equation (5)

_g; (prvs) = —§-;(,orvn)

S
then o/-;-s— (/OTVS) dn = - -f—ﬁ(/orvn) dn = -R T v!15 (4h)

49

Multiply (4h) by Vsg

Y
248 - .
- /05 rg vs‘S E? - - VSS dds ,o rvgdn - /05 r5 an VSJ (41)

o
Now inserting (41i) into (4f) the acceleration terms become:
S S
d

v P rvs2 dn - vss -&%— PTVs dn (43)

[=] o
Inserting (4i) into (4&) the integral momentum equation is:

$

3 VE‘-’) dn
dn

P rvszdn - Vs rvgdn = -

(8)



Equation (8) is completely valid within the limitations imposed
by the conditions of axial symmetry and the usual boundary layer
approximations. Now however, assuming no heat transfer through the
boundary and the equation of state for a perfect gas ( p :‘f>RT),
equation (7) mey be used to give sn expression for the density of the

fluid in the boundary layer as a function of (p, T, vg).

and from equation (7) T = ?%; (CpTo -‘% vgR)

C
and using Cp = p - ¥ , it is found that
Cp - Cy ¥ -1
¥ P
P = (9)
- 1 v 2
J (Cre - T2

2

Assunme that the radial distance from the axis of symmetry to any

point in the boundary layer equals the radial distance to the boundary

(r = =) (10)
Assume a cublec form of veloecity profile in the boundary layer
(see Section III) vs = AN+ B12~+ Cq? (11)
where = n (11a)
173

the boundary conditions to be satisfied are the following:

at = 1 Vg = V
q s 83 d v

1

= 0

o~
)
]
14

(N
—
N
i
(@]
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at = O ve = 0.

[~

these conditions reduce equation (11) to

vs = vsg (30 -3n2+ 03 (12)

Introducing equations (9), (10) in equation (8), noting that

/ro%(ﬂgzs) = -'l"o/do(avs .,  siuee

27 - 0 atn =z §&§ and changing the

dn

variable of integration from n to n aceording to equation (1la),

equation (8) becomes:

| :
¥ 4 L 5
5 - 1 ds ro Pd C To _zg_% q b/" -~ VSS d- r P - VSK. dq
P 2 : 5
o

|
- -Eﬁré/dr(—igéA/_O(va) (13)

Determination of Vg,

Again making use of equation (8)

ve = JQCPTO (1 - T’%) (14)

In the case under concideration VS6 is the velocity along the

outer edge of the boundazry layer and is in a region of flow which is

beyond a shock wave. Consequently the restio ég is dependent on the
o
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ratio of the static pressure to the stagnstion pressure after shock,
Po'. However, Teble I which presents data obtained from reference 9
indicates that an assumption of Po/Po' = 1 1is Justifiable for the

specific examples to be considered.

Consequently, assuming an isentroplc expansion beyond the shock

equation (14) may be written as:

p,—f=1
o - \
VS s - 2 CPTO 1l - (-E-)—;) 'g (14&;

0f course for subsonic compressible flow the identical relation

(14a) may be employed.

I ”~
2
Consider the term / ——-YTQ——;—E dn of equation (13)

o

Introducing equation (12) and (l4a) into the above term,

(13a)
p 1 l: p\r—l] 2, 32
vg? 5 20T |1 - (557 7 (3q73q qi ;
_——"—‘;-2. r( - (‘P\.{:_.};_ ' b 32Yl
call 1-Gg) 7 = P(s)

I -3f+ 3 z A

b4
the term becoumes 2 P(s) A ('7)2 d7
L, 1=-P(s)A(n)?

For a given pressure distribution this term may readily be integrated

to give Fy (s) ’ (13Db)
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In a like manner the term s an (13¢)
Val
C T - ==
o po 2

of equation (13) may be integrated for the given pressure distribution

to give 2 F s 134
1
the term / drp  becomes 1 (13e)
o)
a d Vg ; . 2
the term ('3 Q ) n=o becomes simply 3 Veg (12£)

by inspection of equation (12),



TABLE I
R4TIO OF STAGNATION PRESSURE AFTER SHOCK TO STAGNATION
PRESSURE BEFORE SHOCK VS. MACH NUMBER AT INFINITY

(REFERENCE 9)

o

For 6, = 10°

'

Moo PO/PO
1.39 1.000
1.81 1.000
2.39 1.000
3.33 0.992
5.46 0.946

For Bs = 20°

p !
Moo O/Po
1.30 0.999
1.65 0.998
2.13 0.987
2.87 0.945
417 0,791
2.74 0.170
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Now inserting equetions (13b) through (13f) into equstion (13),

. 2
- l I [Eé PSFI(%:} ~ T Vsg 5* [Eo o ot Fg(%{] = (15)

dp 3ro}}o
...ds roé o S Vsé

Upon expsnsion of the L.H.S of equation (15) and dividing through

by the coefficient of %fL , the equation becomes:
s

4 Fy) - / d ¥-1,, 9

as S (ro p 1) vs6 ﬁTo (roP FZ)%- 5 To P
ds T :

o P Fl-—vs 2

{: Sy CPTO

Mo Vsg
Vs g V/ CpTo j] (152)

Now multiplying the ecustion by & and noting that

2
3 %;% = % ?5 the equation (15a) becomes:

s
—2_ ¥ -1, dp

F - ——

as? . o2 [ ag P F1) - Vag VeI, L (ropF)+ 5= od; ]
ds +
-rop [ /— :]
3 /“OVSS

P [:%1 - vSé /Ei%; ég} (16)

Equation (16) is the differentisl equation for the thickness



of the boundary layer in compressible flow with a pressure gradient
as s function of the distsnce along the boundary. Although the

ecuation is of the form

T i6(s)y = H(s) (162)

it is not amenable to direct integration because of the complexity

of the functioﬁs G (s) and H(s). The evalustion of & 2 is accomplished
by a numerical method of integration as will be shown under the
computation section.

C.

Case I1 Compressible Flow with No Presgsure Gredient

This cese is identiecsl to Case I with the following exceptions:

.gés’. = 0 in ecuation (13)

and the terms Fy(s), Fo(s), of (13s), (13b) and Vg &re nOW constant
with respect to s.

Equation (16) reduces immediztely to the following?

2 _6
dcfs”‘ + 5% —Q‘E—r‘l—l Mo Vo5 (17)

- 2
F-1 P(Cy - vsy /55 C2)
pO

For & given Vs and p, equation (17) may be written as

2 2
4s” +52_%§g_£9_). - X (172)

ds

where K is & constent.

The solution of (17a) follows directly:



d log rozdg

ds s | ds
2
6" = e K e Y
4 (17b)
o
However 5
- d log r,
J/r P ds
- log r°2
e = e - 1
To
and 4 log ro?ds
ds -
- log ro~ -
e - e = rod
)
2 /
then &§ = K bTo? ds (17¢)
AR
o
s
J/; 2 ds .
Equation (17c¢c) is velid if % _~  remszins finite as s approaches
r02
ZeTO0.

To evaluate the liuit of this expression as s

approaches zero,

consider that the exisl symmeiric body can be approximated by a cone

in the neighborhood of s —=0.

éj/; 282ds =

E?‘\
Q

N
2.

o

e

NS
w

W

then .
T2 3
k 232
ﬁoz as
As s —= 0 , 0 faster,
ro?

The equation for §2 in Case II is then:

That is, assume

ro = ks

k2g3
3

end ecustion {17c) is velid.



s
oy _ 6/“ o Vsg “é/roz Ef
6% = (18)

¥ | 2 ro?
¥ - 1 P (Cl - VSS Colo 02)

From an examinetion of eguation (18) it apgears that for Case II,

the shape of boundary layer thickness is unicuely determined by the
geometry of the body, srd the magnitude of the thickness is deteruined
by the velue of the constent X of equation (17¢).

D.

Case III Incomprescible Flow with Pregssure Gradient

For this case the differentiel relation follows immedistely

from equation (13) under Case I.
I

i { ]
d fn | - v 4 anle_Todpg /g Tom [32Vg
s E"%vs d"] " as E%v ﬂ‘ pas ) V5P a2 ™
(] o © [e)

(19)

Assuming & profile relation for the velocity in the boundary

layer: vy = v86 >\(r1 ) where Vsg = f(s) (19a)

| |
/ vgR N — /18»2 A ('l )zdrl —_— Klvséz (19b)
I |
/VS dr‘( --—-———>--/VSs >\ (l'l) d"l —_ KZVs% (19¢)
o/dq —_— 1 (194)

13 oV dQV
ZEI_(/U 'ﬁfi)d'( A (aqs)q =0 (19¢)

. R
Also consider the Bernoulli equation: £ L—f——- +P = Po (19£)
P4



Upon differentistion of (19f) with respect to s it iumedistely

. 2
follows -1dp _ g Vs
e ds ds 2 (19g)

Incerting reletions (19a) through (19g) into equation (19):

2
4 2 .4 y = 4785
55 (Fodves *Ky) - Vag o(roSVsg K2l = S ror{——)
(20)
v
-7 #_( S)
° Qe o1 M=o

Carrying out the indicated differentistion the L.H.S. of equation (20)
becomes:

roVs SZ(KJ_ - Kz)%% +§ li&d_s (rovSé K1) - vsé-gg (rovsg KQ):I (20a)

the term é% (rovss 2 Kl) may be written
Ve &
d (r a( Sf )
Klvsa a; ( Ovss ) + Klro A (20b)
then equation (20) becomes ~
2
Ss
dlr va,.) d( )
2148 0'Ss — 2
(K1 - Kz)rovSa P +5 | (¥ - Kz)vsé P + K175
Vs g ro , OV
- Sp.d (S5 y _MZ0 8
TS -4 B (SR = o (20¢)
~
Dividing by (Kj - K,)rovg s “ and multiplying by & :
Vs 2
\ 5
082, 2| o doves) K- 4 ol 2 Q2
ds ToVag ds Ky -8 Vs, 2 ds G(Kl‘KZ)v§5 dn p

2



~
gl e

s d(rovg, ) d log(rovgy )

Note that £ s 1 o (20e)
ToVsg ds d s
K1 -1
VSS 2 (VS5 Z)Kl - K2
K, -1 d d(lo
nd o 1(2)=‘£g2 (20£)
K1 -K» vss‘2 ds ds
2
With relations (20e), (20f) the equation (204) becomes
Ky -1
52 2 4 v 2 K1 - K \
——————— S = ~
CZla + 5 P log(rovsé )Q—f-log(___zi_u) 2l _ - _2 v ) (’Q)

Xy - Kz)vsé 01 = o

(21)

This differential equation can be immedistely integrated to the following

form:
S Kq -1
221
(rov )Z(EL)Kl'Kz
2 - -2V 23X () 0'ss 2
6 = (K _ X )\ a ) v ds
1 2 q V‘-':O (] SS
ve 2 K1 -1
(rove, )¥ (501 - K
(22)
' 3
where Kj = /)\(q)z dan
© v
' v o3 A(n) = =2
K2 - A(VI) dy] Vl VSS (22e)
0

Vith the assumption of & profile relation as equation (12}, equation

(22) reduces immedisztely to
S 2
3.34

2%
5 56.1 ¥ (rovs, ) <(—>)
2 3034 VS
)% v 2
50 ()

ds (23)

on
1]

)

(rovS



Equation (23) bears a marked resemblence to the equation developed

for = case similer to Case III in reference 6. It cen readily be
reduced to a veristion of & with & Dby means of graphical integration.
E.

Case IV Incompressible Flow with No Pressure Gradient

Starting with eguation (20) under Case III and noting that

%& = 0, and VSS is independent of s, the basic equation for Case IV
. d d YoV 0Vs
is Ve 2 | go (To8KD) - 55 (ro8Kp) | = - —— (59) (24)
) on 1 _
n=o
this equation reduces immediately to
ds 5 dlog rg? = =% IN =
SR N-ra n=e (248)
ds ds vs6 (K; - K2)
the solution to this eguation is
3
- 2)/(—%—%1\.(.:1_.)-) /rOZdS
2 5 =0 Ty (25)
6 v86 (Kl - Kz) roz

Assuming the velocity profile as in equation (12), equation (25)

reduces to s
2
2 5.1v/rds
s - 6 o To (26)

Ve r02

w

It is interesting to note the similarity that equation (26) besrs
to the flat plate solution as given in reference 10, Assuming that

the exiszl symmetric body is a cone, the

S
/o To? ds

p

wim
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then equation (26) reduces to

- (26a)
)
J 8
or & = 433 (26b)
VSS
From Durend Volume III, Page 90, the flst plate solution is given
as & = 5.20 Jaé- (26¢)

It should be pointed out however that (26c) is based on &
parabolic distribution of velocity in the boundery layer whereas
the constant of eguation (26b) is based on & cubic varistion of velocity.
Using the identicsl velocity profile for the cone and flst plate yields
the well known Vfg—_difference between boundery layer thickness for

these ftwo bodies.



SECTION II

DEVELOPMENT OF EXPRESSIONS FOR SKIN

FRICTION DRAG, DRAG COEFFICIENT

Skin Friction Drag:

The skin friction drag for the axial symmetric body is the

integral of the axial component of skin friction force over the entire

body. The skin friction force per unit

area is defined as

EERING (27)
From equation (12) Vg T Vs (3q - 31 2+ n 3)  where n = .é%
then g;s 2‘:{8 i"n = vg, (3-6n+ 39 2) _61_
and at n=20 i:s 3288
Equation (27) becomes T = <zig§_23§ (272)
The ares under consideration as shown by the figure:
dA = 2Try cospds (27v)



The total skin friction dreg acting on the body is

S )
D =_-/?: TR evr/xo/"ssr;m@ I (28)
° o

Skin Friction Drag Coefficient

The skin friction drag coefficient is defined as

Cp = Drag (29)
q b
where q = ;i):Poo M2
2
2
or q

H
N
n

84



SELECTION OF BOUNDARY LAYER VELOCITY PROFILE AND

THE EFFECT OF VARIOUS PROFILES ON LRAG COEFFICIENT

A. General Considersations
In the Polhausen method for the solution of the azpproximete
boundary layer equations for boundary layer thickness and drag, one

makes use of an assumed velocity profile relation of the form

Vs

2
a + b(‘?‘)ﬂ- c (‘151‘) toeee

Vs
where a, b, ¢, etc. are constants cdetermined by the boundary conditions

at the surface (n = 0), and at the outer edge of the boundary layer {n =5).
Fair agreement between theory and experimental vslues can be had by
selecting & linear or s parabolic profile relestion, but the sssumption of

a cubic or gquadrstic relation yields better sgreement. Some of the
boundary conditions that must be applied are valid for zll steady state

laminar flow such as

et n = 1 Vs = Vg

d Vg -0

on
et 1 = 0 Vg = Vg = O
where n = .%%

These three conditions are sufficient to determine either the linesr
or the parabolic relation. Some care must be exercised in the selection
of further boundary conditiong since it will later be shown that the

profile selected has an appreciable effect on the value of skin friction



drag.

To gain an insight of the further boundary conditions which should
be imposed it is guite useful to study the boundary layer momentum
equation:

2
9Vg AR dp O Vs 9V 9 u

v —
C'm3n "Qs3s = % M52 Ton on

Now considering conditions at the surface, it can be said vy = vg =0
and QM4 o O this laister can be seen by differentizting the
on
energy equation, Ty = T + L vsz
2Cp
0o = 2T ;1 v, 975
on Cp ¥ Jn
or 2T L, . 2M _
on o . on

With these conditions the momentum eqguation reduces to

[=7)
o]

(azvS) - _]_:_
on2 T

n=20

Qs
n

This eguation indicates that for a flat plate (zero pressure gradient),

2y
(aa 2) = © should be & condition imposed on the profile relstion,
"h=zo |
. . . é72vs
However, if & favorable pressure gradient 1s known to exist then ]
on

should be negative and of a certzin order of magnitude. Since inserting

1 dp
M ds

gt each station along s would yield & verying profile relation



along s , it is deemed sufficient in this case to select a boundary
layer profile relation which would yield &an approximetely correct value
for B‘ivs/a 02 at n = 0, and to keep this profile constant along s.

The condition which is selected for the boundery layer profile relation
2 2vg

d n<
in the correct sign and spproximate order of magnitude for

in this thesis is

= 0 at n = 1l. It is shown to result
32 vg
d mn<

at

N =20, & posteriori.
The following table serves to show the boundary conditions and
the profile relations resulting by insertion of the conditions into

the general form

Vs = Vs (a4 bn + cn Rp eee)

TABLE 11

BOUNDARY LAYER VELOCITY PROFILES

, 2 3v
Type of | dp 95 | 3%Vg [d7Vs | . "
Equstion | ds n Vs 3R 5Q 2 67.3 Profile Relation
#1 Linear 0 |0 Vg = Vg
1 VSS éq
#2 Quadratic 0|0 Vg = Vsé (2’] -1 2)
1 Vsg 0
#3 Cubic 0o (o |o 0 Vg T Vs, (i”-;— - —5&2-3)
1 vSé 0
#4, Quartic 0 lo |0 0 Vs T Vsg (2q - 273+ qé)
1l vs6 0 0
#5 Cubic - 10 1|0
1| vgg | O 0 Ve T Vg (31 - 302+ n3)
#6 Quartic - (0|0 vy = "Sé(‘”l - 6.12+ 4y 3_ ,14)
L |ve, |0 |O 0
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Vs is

A plot of A (Q) vs where ?\(rz) =
Vs

ig shown in Figure 2.

The relation selected for use throughout this anslysis is

Vs = Vg (37 - 3r(2+ g 3). It was selected for its relative

simplicity and for its reasonably accurate representation of conditions

at the surface for the case of a favorable pressure grsdient. This

will be shown below. Eqguations are also presented for compering dreg

values obtained by the use of this relation with those obtained by the

other relations.

B. A Posteriori Check of Vzlidity of Profile Relation Selected

It was shown above that for the cese with a pressure gradient

ans) _ 1 9
0n2 n=o = /(4 ds

(

Selecting values for the case M = 1.87 at a point where Vs, = Ve
d 2 -1 sec.~ 1
L 2o o2002 o _g7x109 Bt
M ds 3.76 X 10

For the profile selected vg = vss (3,,Z - 3,(2+ n 3)

i
3" Vg
( ) = -6 vg
ar(2 V[: o} 2
or (a VS) = >
O nén = o EX:
- - 6 (1627) = -3x107 ft."Lgeem1
3.32 x 106

It is seen that the profile relation yields the correct sign but =

somewhat higher order of magnitude than is demanded by the boundary



[

e

Laver FroFies |




layer momentum equation et the surfece. Consequently the proper

profile relstion lies between this relation 5 and relation 4 which has

C. Effect of Profile Relation on Drag Coefficient Ratios

Since the profile relation used throughout this investigation
is strictly valid only in the case where a favorable pressure gradient
exists, it is necessary to obtain formulas for conversion of the drag
values obtained to values which would have resulted if more valid profile
relations were used. In addition to this comparison of Cp values at
the same Reynolds and Mach numbers, it is also of interest to obtain a
relation between Cp values obtelned using an identicsl profile
relation at different RN and M. To these ends the following eguations
are developed:

For compressible flow from equations (28) and (29)

3
v
oV 8 Tpo COs (3
ZW/M(gﬁj) ds
n=20 (o} o
C; =
-29:- P, M “4
s
oVg 2
but - 2, (5=2) g / r,” ds
5] O p=o08 o
_r_ [ 2 2
r- 1 Paa (Cl - vsé CpT 02) ro
o

Now considering that no pressure gradient exists, i.e., Vg _ s Cl ’ 02
é

are constant.
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‘ < (292)
Cq - |2 2A (M) 5
¢y - o 5 Mo Vs5 (C1 Vs‘§ CT, 02) ('f)'? )’12 ol To~ cos g

L =
it s(¥-1
( ) 5 \//rozds
o (o]

Comparing Cp values at the seme M, and RN but using different profile

ds

relztions, there is obtained:

— J—

2 d A1
6 (¢ - v, & % (5t
1 s yC T, (]

(— = | = P n=zo —1 \

A (¢ - Vg 2 02) (—a—-in')‘)

- S \/CPTO n n=o o
For the incompressible case a similar relation may be developed:

Cpy [(Kl - K,) (.%,%‘_(il) ]1
— - =0C
() . (29¢)

s =
2 hs
i [(Kl - K,) (A1) ]
oN n=o 2
wherein Cq, Cz, Ky K2 are given in equations (13b), (13e¢),
(19b), (19¢) respectively.
Tables III and IV show the effect of profile relation on Cp values

for the compressible and incompressible cases respectively.
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TABLE III

EFFECT OF PROFILE ON Cp, COMPRESSIBLE

profile | (4202 ¢ - v, V/FE__ C, Co
AN n=zg 5|/ CoTy
M Z1.56(M =1.87|¥ =-1.56|M = 1.87
#1 Linear | 1 -.1233 -.1578 000836 .000870
#2 Perabolic| 2 -.09891 | -.1311 .001053 .001124
#3 Cubic 3/2 -.10315 | -.13826 | .000936 .000997
#4, Quartic | 2 ~.0905 -.1208 .001013 .001076
#5 Cubic 3 -.0853 -.0965 .001205 .001179
#6 Quartic | 4 -.07891 | -.07740 | .001338 .001220
TABLE IV
EFFECT OF PROFILE ON Cp, INCOMPRESSIBLE
Profile Ky - K, Cp
Vos Rg —— M =1.87 v, » Re — M =1.87

#1 Linear -0.1666 - 0.000925
#2 Parabolic -0.1333 0.001150
#3 Cubic -0.1393 0.001020
#4 Guertic -0.1175 0.001103
#5 Cubic -0.1070 0.001261
#6 GQuartic -0.0888 0.001330




Now considering the effect of M &nd RN on Cp ratio using the
identical profile relation for each case: The ratio of Cp's mey be
written from equation (29a) &s

[ 2
2 C, - ~
“p, Moo po1 Vs 5q Feop (€1 - vss “oTo C“)1
CDQ - M

2
=] A
v P C, - v j&.. C
: Moz 55 2 wl( 1 53 C;o 25

For the two cases dealt with in this investigation:

(cubic profile relstion 5 )

My = 1.87 = 161 P = 350 Cy - = -
1 Vs T 1610 w0y = 35 (C1 Vs 6T, C2), 0965
g =1 - 2 -
My T 1.56 Vsg . 1440 Py, = 547 (Cy - v o, Ca), = -.0853
Cp
and —* = .978
CD2

This ratio msy be compared to that predicted by Emmons and Brainerd
(reference 1) for a flat plate in coupressible flow using & Prandtl

number ¢ = 1. For the seame RN &and M &as used here values of Cy

are Moz 1.87 RN = 1.743x 108 ¢y = .000962
M = 1.56 RN - 1.932 x 106 Cp = .000925
Cp
1
-— = 1.04

The following table shows the effect of profile relation on Cp

retio as would be predicted bestween the M and RN used.



TABLE V

Cp RATIO FOR DIFFERENT M AND RN AS EFFECTED BY PROFILE

Profile Relation D1/cp, ,

#1 Linear » 1.042
#2 Parsbolic 1.060
#3 Cubic 1.068
#4 Quartic 1.064
#5 Cubic .978
#6 Cuertic 946

Emmons and Brainerd 1.04

Blasius 1.05



SECTION IV

PRESENTATION OF EXPERIMENTAL DATA

For purposes of numerical computation in the application of the
equations developed under Section I, II, the axial symmetric body
chosen was a~i%8 size model of the Germen V-2 rocket which was tested
in a Peeneminde supersonic wind tunnel and for which pressure
distribution data and physical charzcteristics were reported in
references 11, 12. It should be ncted thet only the nose of the
model size V-2 rocket, over which a favorable pressure gradient exists,
is treated in this enalysis.

Pressure Distribution Data

References 11, 12 present data for two Mach numbers and two

Reynolds numbers as shown in Table VI below:



M 1.87 1.56

Re* 4.14 x 106 4.59 x 106
Rg¥* 1.743 x 106 1.932 x 106
x(ft.) P/P, P/p,

0 0.248 0.360
0.0563 0.225 0.332
0.1125 0.203 0.308
0.1689 0.184 0.285
0.2253 0.170 0.265
0.271 0.156 0.245
0.338 0.143 0.227
0.379 0.132 0.215
Undisturbed stream 0.159 0.249

Y

TABLE VI
PRESSURE DISTRIBUTION FOR HiODEL V-2 NOSE

AT ZERO ANGLE OF ATTACK

For purposes of simplification the arc length along the nose is

assumed to be identical to the sxial distance at any point (actually

at x = 0,415, s = O.AQA),and analytical expressions are developed

for the dependence of F/Py on s.

For M

snd for M

™S

1.87, P/Po = 0.05575 + 0.1923 e <3438

1.56 P/p, = 0.1018 + 0.2582 e~R.09s

(31)
(312)

These expressions and the corresponding experimentsl data are shown

plotted in Figure 3.

Physical Characteristics of the Model V-2 Nose

The mocdel V-2 nose is an ogival form whose radius of curvature

is 11.8 caliber, whose length is 2.4 caliber, and whose dismeter is

Reg* based on model size full missile axial length (.985 ft.)

Re** based on model size nose axial length (.415 ft.)
x is axial distance from upstrsam end of nose.
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0.122 ft. An analytic expression for ro(s) is developed under
the computation section and is given as

v, = 1.44 sin(39.88 + 73.13)° -1.379 (32)
Other pertinent physical characteristics useful for computation
purposes are:

Wetted Area - 0.1089 ft<

Angle of tangent 3, see (27b) = (16.9 - 39.85)°

Other useful vslues such as 7rg, To cos 3

s
J{.roz ds . c gl . .
and are given in table XVIII znd XIV under Appendix I.

ro<
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SECTION V
DEVELOPMENT OF DATA FOR USE IN EVALUATING

BOUNDARY LAYER THICKNESS AND SKIN FRICTION DRAG

L. Compressible Flow

The solution of equations (16) and (18) require & knowledge
Mo VSS » Tgs pressure distribution,etc. It is therefore necessary
to develop the date given under Section III in a form suitsble for
use in the applicstion of the eqguations.

Consider first the dsta for M = 1.87:

Assume an absolute temperature stagnation velue = 5280R (68°F)

3

Now using the relatiom 9. _ 14 lig_i M“,z, T,, can be found to
. oo

-3

be 311°R. These two values Ty , Ty in combination with

Cp ( = 5997 £t2 sec™? of-1)
and equation (14) yield a free stream velocity Vo = 1610 £t sec—l.
Also from reference 13 the stagnation viscosity coefficient,

Mg = 3.76 x 10~7 slugs ft=t sec™t,
Assuming an 0.76 variation of viscosity coefficient ratio with
temperature ratio, Moo (the free streeam viscosity coefficient) becomes
2.52 x 10'7 slugs ft“l sec™t. These free stream values when used in
conjunction with the RN of test yield a free stream density,

f%; = 0.00066 slugs £t=3, Now from the two expressions for dynamic

- -1 2 ¥ R i is vt
pressure, q, = 3 PV " = 5 M, , it is found that free
stream pregsure, P, = 350 1b £t-2, Stagnation pressure, Pg = %?3

2 2200 1b - £t=2 ang through the equation of state it is found that
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Po = 0.00243 slug £t=3,
The data for M = 1.56 mey be treated in & similar fashion. The

two sets of data are collected in Table VII.

TABLE VII
DATA FOR MATCHING M AND RN

(assuming T, = 528°R)

Units
M 1.87 1.56
RN 4.1 x 106 4.59 x 106
To 528 528 °R
Teo 311 35/, °R .
P, 2200 2200 1b - ft=<
Py 350 . 547 \ 1b - ££°
Mo 3.76 x 10™ 3.76 x 107 slugs - ft™= sec™t
Moo 2.52 x 10~7 2.78 x 10-7 slugs - ft—l-gec1
Po 0.00243 0.00243 slugs - £t=3
Peo 0.00066 0.000900 slugs = £t=3
v, 1610 1440 ft - sec—l
g 857 933 1b - ft=2
B. Incompressible Flow

it is desirable to match RN
the equations for compressible flow.

data obtasined at an M = 1.87.

incompressible flow.

From this equstion

For the treatment of the incompressible flow equations (23), (26)

and pressure distribution as applied to

This will be done for the set of

Start with Bermoulli's equation for

-f P =

/2 2(1-29

(33)

(33a)

The pressure distribution —2 ig taken from the data given for

o
Hence Bo

,D

must be chosen so that the given RN are

matched for both the compressible and the incompressible cases.
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P oo
Now consider that the free stream velocity v, = V/é ?? (1 - F__) (33v)
o
Peo «
where 7 is taken from the data., This eguation may be solved for
o
P Ve @
e = —= S (33c)
Q 2(1 - 22)
Py
Knowing that Re = Q Ve
M
2 2 p.2

where Re may be taken from the data. Inserting equation (334) into

(33¢) it is found that

M2
0 eL.
E‘ = . (33e)
2 (1 -==2)
Po
Now calling attention to the viscous term in equation (21) it is seen

i

that the viscous term . @ _ (33f). However, from equation (33e)
Vss
P P
A= 012 (33¢)

(33h)

Hence the viscous term appears to be independent of the choice of

P .
—2  if the Reynolds number and the pressure distribution are matched.

R

P
Consequently let /Llo and §5L be the same as they were for M = 1.87.
)
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3.76 x 1077 slugs ft~1 sec™l
2200 1b - ft=R

350 1b - f4-2

4.14 x 10-6

0.985 ft (complete missile)

£
LRI R N (O I T

Using these values in equation (33e)

p = 0.000677 slugs ft=3

and from equation (33z)

v = 2.55 x 103 1-%’-

85 o

(331)
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SECTION VI

DISCUSSION OF RESULTS

Boundery Layer Thickness

Boundary layer thicknesses evaluated through the use of the cubic
profile relation 5 are shown in Table VIII and Figures 4 and 5.

Figure 4 shows the variation in boundary leyer thickness zlong the
surface of the ogive for M = 1.87 for the four cases considered. This
figure clearly shows the effects of a favorsble pressure gradient and
compressibility on the thickness. In general a favorable pressure
gradient retards the growth of the boundary layer. On the other hand
the introduction of compressibility causes fhe boundary layer to thicken
(Figure 2, reference 14). Figure 5, which is for M = 1.56, again
illustrates the effect of a favorable pressure gradient.

A comparison betwesn the thicknesses for the two M's shows a
considerably larger value of & for M = 1.87 than for M = 1.56.

Figure 2 of reference 14 indicates a decrease in boundsry layer
thickness with an increase in M.
From equation (18) it can be shown that for a given profile‘relaﬁion,

and zero pressure gradient,

(CH - v £ ¢ )
VS P2 1 Sg CPTO 2 2

on
[u
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v P,
62 1 (¢, - v ..2.._02)
S
$ \V/CPTo 1

Insertion of wvalues for‘Ml = 1.27, and My = 1.56 results in ratios of

on
N

1.14, 1.06, 1.25 for profile relations 3, 4, and 5 respectively.

Consequently there is an indication that even using & more valid
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profile relation (3, 4) the boundary layer is thicker for the higher M.
Of course the effect of RN is present but it cennot be discerned very
clearly in the form of the sgbove relation of & retio. The lower
Reynolds number for M = 1.87 must be held asccountzble for some of the
increase in boundary layer thickness.

Skin Friction

In order to present a clear description of compressibility, velocity
profile, and pressure gradient effects using the Cp values appeasring in
Table IX, it is considered instructive to break down the overall
comparison into groups and to discuss the effects apparent in each group.
1. Compressibility Effects

(2) Flat Plate Values

From the following table:

CD _ ij

M RN Cpi | CDg c =
CDi
(incomp.) (comp.) (%)
1.56 1.932 x 106 0.000956 0.000925 —3.24
1.97 1.743 x 106 0.001006 0.000964 ~4.18

which are the Blasius and Emmons and Brainerd values, it is apparent
that compressibility decresses the Cp for each WM and to & greater
degree for the higher M. It can also be seen that Reynolds number
effects are preserved when going from the incompressible case to the
compressible case.
(b) V-2 Ogive with No Pressure Gradient
The values selected in the table below were obtained using

the velocity profile 4 for reasons which will be discussed later.



TaLE VI SUMMARY OF RESULTS oN Bounbpary LAYER THICKNESS

COMPRESSIBLE INCOMPRESSIBLE

PRESSURE GRAD. WITH WITHOU T WITH | WITHOUT [FLAT PLATE
M L8 1.56 | 1.87 1.81 ILSé 1L56 .87 | .87 87 | .87 |87
Re19°) FrRee sTREAN | 1,743 1,932 I 743 (932 743 | 1.743 (743

NOSE VALVE 2. 49 .04 [, 648 L64B
vss(*/s) FREE STREAM | 1610 | 440 2340 2340

NOSE VALUE 144 4 | L04 2210 2210

'S (FT) S (103 FT)

0.000 0,000 0,000 | 0,000 0.000 0.000 00006 8,000 | 0,000 (000 | 0000 ©.000
0.025 0.394 0.342 1| 0.454 0557 0400 0.448 0.3871 0,377 0367 ]| 0412 0.3927
0.050 0.593 0.512 | 0.605 0©0.74% 0.532 0.598 0493 | ©,503 0.489| o583 0.56\
0.100 0.865 0.723 | 0.87l 1.069 0, 766 0O.8BL0 2.6861 0.725 0705 | 0825 0.795
0.15Q0 1,119 0.910 | 1.0l ).201 0,935 [,048 0.83%31 | 0.881 0856 1,011 G997
0.200 1.347 1096 | 1.262  |.546 |. 110 ,24% 0.981 | 1,043 [.013 | 1.168B |.124
0.250 L6OZ [.2ZBO | |.442 |.767 1.269 1.423 (104 | 1191 LISB | |,308 1.257
0.200 1.820 ).470 | 1.616 1,980 .42 1.595 (,229 | 1,339 1.300 | |,430 . 38|
0.350 2.080 .49 | 1.828 2.245 1.609 |.803 1393 | 1.518  1.475 | 1.54% |.48¢
0. 400 2.355 [.B50 | 2,035 2.500 |.79]| 2.010 1.541 | {.693 1645 | 1.650 \|.590
0. 424 2.485 1,945 | 2.145 2630 [|.889 21158 1624 1 1,781 1,730 | L7122 L6550
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Cpe - Oy
M RN Cp(incomp.) Cp(comp.) ——
Cpy
(%)
1.87 1.743 % 106 0.001103 0.001076 -2 45

It is apparent that a similar reduction in Cp is produced by
compressibility as nqted under 1(a). Also, it can be noted by
comparison with the figures presented in the table under 1(a) that
the V-2 ogive with no pressure gradient gives Cp values 104 grester
than flat plate predictions for the same conditionms.

2. Profile Effects

Referring to Table IX, it is seen that the various assumed velocity
profiles have considerable influence on the cslculated Cp values. For
the three cases considered it is apparent that all profiles with the
exception of the linesr profile result in values greater than flat
plate values.

From the study conducted under Section III it may safely be
concluded thet only profiles 1, 2, 3, and 4 are valid for the case of
no pressure gradient, since the profiles 5 and 6 induce an effective
pressure gradient at the surface (i.e., & value of 92y ig produced

3 n?
at the surface which is in contradiction to the basic momentum equation).

The same is also true for profile 2, but it is useful to include the
results using this profile. An examination of the value of Cp for any
particular case versus the degree of the polynomial selected, 1, 2,

3, and 4, indicates a rapid convergence to the neighborhood of the
velue given for the profile relation 4. Hence Cp values resulting
from the use of this profile relation were used in the compasrison for

the no pressure gradient case.
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Table V chows that profiles 1, 2, 3, and 4, as applied to the
compressible no pressure gradient case; are in accord with Emmons and
Brainerd flat plate values as to the prediction of combined Mach and
Reynolds numbers effects for the two cases studied. However, it should
be noted that profiles 5 and 6 predict effects in a direction opposite
to Emmons and Brainerd. This opposite effect is then expected to be
carried over to the pressure gradient casses wherein these profiles 5
and 6 give & fair representation of the boundary conditions.

3. Pressure Gradient Effects |
The following table is used to point out the effects of introducing

a pressure gradient over the ogives

CDO CDp CD _ CDO
¥ RN @.0) @g0 T
ds ds 0
(%)
Incompressible - 1.743 x 106 0.001103 0.001330 11.5
Compressible 1.87  1.743 x 106 0.001076 0.001328 23.4

1.56 1.932 x 106  0.001013 0.001345 32.8

Comparing the two compressible cases it can be seen that the case
for M = 1.56 produces a considerably larger percent change due to
pressure gradient. This change could hardly have been expected on the
basis of pressure gradient alone. An examination of Figure 3 shows a
higher favorable pressure gradient for the M = 1.56 case; however, when
referred to dynemic pressure, the pressure gradient for the M = 1.56
case is only 10% greater than for the M = 1.87 case. The reason for
the greater percentage incresse of ACp may be discerned by & comparison
of the Cp velves for the profiles 4 and 5 for the case of no pressure

gradient. The case, M = 1.56, experiences s 20% increase in Cp whereas



the case, M = 1.87, experiences only & 10% incresse when going from

the profile 4 for no pressure gradient to the profile 5 for presgure
gradient. Consequently pressure gradient effects are twofold. First,
they increase the Cp beceuse of the chsnge in the boundary conditions

for use in the profile equation, end second, they cause an increzse due

to retarding the growth of the boundary layer. Again, it should be

noted that the results of the effects of Mach number znd Reynolds number
are opposite to the combined effects predicted by Emmons and Brainerd.

In the light of Section III, B, the proper effect lies somewhere between
that shown by the usé of profile 5 and the Emmons and Brainerd prediction.

An examinstion of the incompressible and compressible cases for the
same Reynolds mumber shows that the compressible case, in going from
no pressure gradient to pressure gradient, experiences a Cp incresse
twice a5 great as the incompressible case does. In the light of the
above discussion, this result can clesarly be understood. First, the
introduction of profile 5 increases the Cp 15% for the incompressible
case with no pressure gredient agsinst en increase of 10% for the
compressible case. Then the much higher dynamic pressure for the
incompressible case causes a 55% reduction in its effective pressure
gradient.

The fact that the resulting Cp's for the compressible and
incompressible cases with pressure gradient are identical is mere
coincidence.

It is of interest to note that even baging the compressible Cp
with pressure gradient on the nose vazlue of dynemic pressure does not
reduce the value of Cp for the ogive to the Blasius Cp value obtained

using nose Reynolds number, A discrepancy of approximetely 35% exists
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for this comparison.

There does not appear to be any consistent basis for compsrison
between values of Cp obtained by using nose pressure as constant over
the ogive with either flat plate values or ogive values obtsined by
using a pressure gradient.

A comparison of Cp values as calculated for the ogive with pressure
gradient with those values predicted for a flet plate by using the
Blasius, and the Fumons end Brainerd theories indicates that the current
practice of applying incompressible flat plate results to figures of
revolution is highly unconservative and is more so if compressible flat
plate values are applied. For relatively high‘Reynolds rumbers the -
skin friection drag is a low percentage of the total drag, hence there
is & certain amount of justification in this prsctice; however, for
flights at extremely high altitudes, the Reynolds number is of such an
order of magnitude as to cause the skin friction drag to increase
greatly. It is true that only the ogivsl section was considered in
this investigation, end it appears that the overall skin friction Cp
will be less when considering a longer body over which portions are
in & zero or unfavorable pressure gradient. However, it is believed
that the entire skin friction Cp will still be considerably above
flet plate values (assuming leminar boundary layer to exist over the

region).



TagrLe X

SUMMARY

FOESUTS

ON

FREETT
(STREAM
LET0

/743

2540

IES5O

L L000925
i L001150
: .amozo%
.001103§
.OO/Zé;’%
001330

NOCSE
LETO

1. 648

1650

/:’\:CC?/VPR£551A:§L
FL/W

f.,«‘
REE ;FF(’EE”
STF’fAM STK’fﬁA’f
1870 | 1. 560
).743 ¢ 1,932
/850

LODJ0BS,

Skin FRICTION DRAG

_59._.

OC 16 a{:» . Q00956 |

AL .M,LMM,,,‘., R

F/.,A?T FLATE.

| (sec /Ivor'f‘)

Jo BT /. 860

L 2.480 @ 2040

a3o G i
@.aooaw 0. 000929

S co,wﬁg@ﬁjaw
PRESSURE. GRAD. | WITH. | wiThout I, Vi TH
Uss ; ‘ l NOSE ZS)rZ: f’w L ONOSE g NOSE
M | Lero | 1560 L Lero  Lero 1560 | J.560 . E70
Fe(10) Free  STREAM 1. 743 1.932 1.743 | L.743 | 1.932 | }.932 NES BN
NOSE VALUVE ’ § 2.480 »2040 & 1. 698 .
D (16.) L1239 L1362 i L1205 LS00 L1206 WEY-Y- LB GG L2565,
CZ FREE STREAM - ss7 233 857 857 933 733 SEED [ EEO
wose varuelp-FF)] 730 762 730 962 1650
% 3
- ; ; ; . . ‘
- («:z”f}vasa ) 0.00/223 ©.00/302 p.oo 119 0.00/150 ‘ 0.0012G7
Co | (Gorcs srmcne) |
Bl LINEAR PROEILE .000870. 000836
né./?ARABGL/c L0011 124 001053 '
#3. cupic .\000?972 5.00093@;& ’
4, QUARTIC : ‘.oo;am; .,z;o/ax.;-ré
"5, cusic ;.001323 L 001345 o0iede 001179 ,001i79 Lool205), 1001320 L0056
6. QUARTIC ; 001220, ',901335; 5
(Stu.a SECT T Fofe : : ;
PROFILE DESCRH”?VQN)E ?
BLASIUS E | |
Emuions £ BRAINERD 3 I 000 964 LO00a2 5|
' | . :
* o
DRAG VALUES CORRESFONDING TO CURIC PROFILE 5
* K 2
NosE 2  Fluose Mucse
e - R
Gnose gy 2 (545)(/.563)
ORI Z (reerne)
NOTE 2 ROYNCOLDS NUMBER  SASED  On D, 2 Al AFTER

SHOCH .



-60-~

SECTION VII

CONCLUSIONS

The following conclusions may be drawn from the results of this
study. It should be kept in mind that the basic underlying assumptions
are that there is no heat transfer between the surface and the fluid
and that the Prandtl number is equal to unity.

a) The previously known boundary layer growth due to compressibility

is verified in this study.

b) Compressibility and Reynolds number effects for the ogive
selected with no pressure gradient are consistent with the
effects predicted by Emmons and Brainerd for the flat plate.

¢) Cp values for the ogive selected with no pressure gradient
are 10% higher than flat plate values in both the compressible
and incompressible zages.

d) Pressure gradient effects are felt in two ways:

1) There is en essential change in the velocity profile
relation which causes an increase in Cp

2) There is an increase in Cp due to the retardation of
growth of the boundary layer.

e) The usual practice of applying incompressible flat plate
CD'S to ogives in a supersonic stream or in incompressible
flow is ghown to be highly unconservative. (For the cases
under consideration, the practice would result in an error
of 35%.)

f) The practice of using the Blasius flat plate Cp velues with

Reynolds number based on the Reynolds number after shock to
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represent the value of Cp, based on nose dynamic pressure, of the
ogive in compressible flow with pressure gredient results in velues

approximately 35% unconservative.
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SECTION IX
COlPUTATIONS
EVALUATION OF BOUNDARY LAYER THICKNESS AND

SKIN FRICTION DRAG COEFFICIENT

Case I Compressible Flow with Pressure Gradient

Boundary Layer Thickness
The procedure for determining boundary layer thickness consists
. of the following steps:

1. Pressure distribution data as presented in Figure 3 is inserted
into expressions (13a2) and (13c¢c). Resulting values are shown in Tables X
and XI. The same values are shown plotted on Figures 6 and 7.

2. The curves on Figures 6 and 7 are then graphically integrated
to give Fy(s) and Fo(s) of (13b) and 13d) respectively which are shown
plotted versus P/Po in Figure 8 and versus s in Figure 9.

3. The functions G{s) and H(s) of eguation (1éa) are then
evaluated using the data obtzined in step 2 above and ecuations (31)
and (3la). These evaluations are shown in Tables (XII), (XIII) and
(XIV) for M = 1.87.

4. Boundary layer thicknesses ere then obteined by a numerical
method of integration and the results are shown in Table VIII of the

results.,



+ {

helag

& A
H
B H i H




TapLe X

HONE

/

2 P(s) A

1= Py Al*

Pe, o 16 2.8 .36
P) 4822 40TS L3052 .2532
n A A= PN 1d[Re)] | PA- (dlR)] 1P A" [dlRe]] BA- ARG
- 27} 07344 Q3FT4IL ] Q734 | 02992 | . 06T | L0257 729 |.022415| 04586 .018560.0379
A 489 .23810 A48 | L2594 | .O970L 1 214 081§ (B4 | 07267 L1567 | L0L028] 1283
4 784 | 61465 L24368 | .8425|.25047 . 6583 L2157 ! 5502 | 18759 4618 | 15563 | . 2686
6 936 |.87609 41245(1.4629 | 35700 L ilcd | 3075 8381 |.26738| 7300 |.22182] .570l
8 992 | .984006 47451 | 1.B060O ] 40100 13289 | 245 itooss3 L suoaal L9585 249161 66377
{.0 1.00Q 11,0000 48220 | 1LBGAS | 407F | 1375 | 3vioo L o8lT | sos2 | L5330 | 25320 (678
- H JNUTUURIUY S
n —_
_ VFE;ZS) /\, ”{) d
TaBLE XI R(s) = =B Ale n
A ,
P, 0 16 § 22 28 36
{Pes) 6945 6386 L5933 _Ss20 5030
n VBN LRGNV [dLRO] T A [ dLEST /BTN LRGP A [d[Re)]
|
N 1882 | VIS | 7306 4724 | {07t (650 | 14960 1530 {.13631 | 1389
2 133892 -3829 | 31164 | 3451 ; 26937 L2905 | .24544] . 2012
4 5445 | 7739 | .50066] 680 432770 09327 | .349435] 4670
6 LGS0 L1125 | 59713 L9296 , S1667] .TOSZ | 47081 6050
8 6889 | 13110 | (33491 10570 | 5wt @59 | .54758] 7826 | .49898] 6646
{.0 6945 | 13443 | 6386 | 10778 | - 9142 | .§5200] 7945 | .50300] (735

_..66..












_70_




TaBLe X7 Secownd

TErRM

LA

NoumermarTo

vg/c};: [ & (/zPﬁ?)} " r (F

M =

oF LasT

L8V

-
FERN?

onv L.H 5.

g5

or Ean. (/)

b
BN

oy

d/:"
as

L r

<k
ads

0.000
L0285
L 050
. loe

5O

L2498
237

227

208
‘-/9/
.200 |
250
L300 |
350
400
424

A TE
o3
S
AF
.43
127

.32

- 245
—.223
g2 ]

Y
~.424
T. 40l
-, 357

-, 28e

=, i78

Tl

LIET
LE00
.63
L0388
. b6l
. 686
LT709
.733
756
.T779
.79/

520
.51 8
510
oo
4By
Lqdes
L GES
465
LGS

465
46T

ocoo
; L OOG0
L0130
o244

035/

0434

OS50S
3

O 560
L0590

L2904
L2733
L2575
L2230
ABF/
54

L1204
0857 |
‘05133
ObCT | C1tH
.oémywoeoaﬁ

m;>§%ip£§§§‘
(x10) | (xi0}
0000 | 4225
LLooT4 | L 3R%90
L0151 |.3585
LLo2s4 2760
0325 | 2890
L0356 | 1567
L0383 | 1395
394 | 0948
L0387 | 054k
L0370 | .01
0360 | .000C

o

[y o DR B e !
OO

H2LE

L3850

L0420
' oor#
030
510443

-, 4B
- 4420
-, 4078
- 3190
L2445
T30
Sy
L0550
f“,GJdﬁ;

0397
L, 058l

A LW e (FR

Xl | LX)

SecoND [INUMER-
TERM ATOR
(X/0) | (x.10)

CH (s
H

N slolsloN
To0073
o149
o294
O34 3
S0350
0354
~0357
0323
~.0309

i

6291

ey ootk 57

~ 4EGO

~,4493
.42l 4
- 3439

172758

"L 2080
T 4395
o907
0425
0092

-, 0580
T 0540
-, 0500
~.0435
;ﬂ0}53
= 0320
0257
ey

7.0)00
0067 |
0291 17,0065 | (.52

O

G0, 40
40,30
19,94
11.83
9.20
6.5
3.94
2.32

)51

-T1-



Tapte XL First Term in NUMERATOR  oF THe LasT TERM  oN LH.S or (16), g,__(mp F) M= 187

S
; -2 Lodp 15 PU ST-a R
5 B (o ? d F L Yc é..: ‘(62')‘3”1__ F:‘_S: v E 4‘2 i d(ro F'-)
’ - <2 i 45 g‘”“’ P PR e gsT

O

J

i)

£

3
e

0 L2489 ! —.451 .589 980 L0424 o .0424
025 227 940 |—~.424 613 965 | Lop6S | 2733 1 00137 | 0414 | 00156 o412
.oso ! .227 889 [~.40] B3T 935 | 2130 | 25751 00276 ] 0372 |—. 00330 030
eXe L2208 791 }— .387 . 682 L8785 | L0244 | 2730 1 004441 0316 |—.00593| 0302
150 191 L6931~ 312 724 | . 845 | L 03S| | 189 005606 0262 |-.00793| L0239
.200 A6 625 |—.282 766 | .BZO | 0434 | 1546 [ 00626 | .0208 -.00%939] o175
250 6> 543 - 245 806 795 LOS0% 204 “0065‘3 OIS 8 (e 00997 .o0lza
300 | 151 495 {—.213 | 84C | 785 | 0560 | 0857 .uo6bd | oiio = 01057 oovo
.350 141 LA25 §—.192 8B6 | 175 | .0S90 | .0¥13 | 006d5 | .0064! [~ pipoi]| L0029
. 400 30 395 | —-.178 L9250 768 | L0607 | 0167 006N L6020% |- . 01006 (~.6019
424 27 370 I—. 1867 444 1 765 TR Q LueS59231 o ~, 00959~ . 6037

» . L cp ! I , 5P [z
TagLe XIV'  DENOMINATORS FOR (i5)  For LHS = Fo|R=w v fi]}- For RH.S. =, G=0y [,-v;g\/gﬁ E}

0 e | ® | & | © | 66 | @l el ] @ @
- 3 , Den LHS{DES RES. | Bpe s G (3)
_ I T R w0’ o=°
0 5713 1442, 1. 146 S87 LGTL - 083 240 O i 0% 6o 3,945 Vo9l
L08R 5RO {460 {62 [vTe) .66 e, 0 B4 R : -, 035\ ; 2,995 A0
ORD .5e2 1479 174 b1 L7220 | =08l TR C- 03340 4,045 212
oo 60 tsiz Lo L33 L7666 -. 0806 .o» : ‘» 0313 | 4.140 . 3L
A0 ol 4 § P 5 el (228 Lbh B4 1~ 089 \,m §~ 029d | 4225 o42ce
. 20C 626 1575 i 25 680 L B57 | 09 L oBE ;"” ~ 0280 4 3,0 L539
X-Ye! 636 | GO0 1. 271 LTO9 .90 — 09k .08y J » LT3 4.2@59. 607
» 300 .64G 1627 1292 . 733 L9946 [ —.09961 0758 e 210 ,_ 0263 4,450 1693
L350 AR {642 1300 R AN LBh0 - 0 GO . ;“ T3 ;M 0156 | 45,0 I, 7¢2
400 | bb3 (669 {0326 | 779 LN B R N BN TN B - 02491 4568 [ 342
4G 66T (680 335 1 .79 LOST | e 105 ] 0635 . oo mu‘_*,::} 4600 1349

ke . i — S




73
INTEGRATION OF THE BOUNLARY LAYER EQUATION

The boundary layer equation is of the form:

g = G(s) - y H(s)

where y = § 2
p
afl = /2 4. B ro1 . 955

1. 2 [ r(e). /2
L py = 1(s) v Fo(s)
2 7° b T, % 2 :}

F(s)

G(s)

LR

The above equation can be integrated rather quickly using Adams Method.

yJn+1 = ¥n+h I:Qn+%AQn-l + %AQQn-Z-P%ABqn_B"‘....:]

where h = Sn+i"sn
s)
g = ¥
ds

A% = o™ gifrerende.

Here, the three point formula is used taking h = 0.025 ft.
- 1 2
then Yp.+1 = Yot 0.025 [qn+§Aqn—l+1§§Aqn-2:l

To start the numerical integration procedure, the solution, y and

the slope must be known at three consectutive points. The slope, (EZ)
ds’,?

0



at the ogive nose, is determined from the differential equation

agsuming that the boundary leyer thickness at the nose is zero.

aee
dS EO FQ( ]_'— b/a‘ 1 (d/pO)

The boundary layer ecuation is:

a g-g I:ro */ po Fl(s)j] - Vs, \/_

ds’y 1 [2
1. p 5) - |2
5> To /po [Fl( ) CpTo Vs.é Fz(%l

—3/"‘0"55

i_¥ [Fi(s) - |2
> K_:LP l:]_(/ CpTo Vg FQ(S)j|

As 85— 0, r,— 0 and y — O. Hence the second term on the

R.E.S. of the above equation take the indeterminant form % . By taking
derivetives of the numerator and the denominztor of this term, the limit

a8 s— 0 czn be fourd.

Then at s = O the boundary layer eguation is of the form:

Dotk (D, = 6ls),

Using values of X end G(s)0 determined from tables X II and XIII,

dy n _5
(ds);ﬁ 156 = 0.5310 x 1077 ft.
dy -5
(D = 1,87 = 0-6940 x 107 £t.

To determine the solution and slopes at s = 0.025 ft. and

s = 0.050 ft. a Taylor expansion is used as follows:

2

1 9%
Yn+1 = Yn+(dSnAS+'2' (g;z-)n (As)T cveens



dY) dyy
a2 ds - dg’
v Gs n+ 1 Sn
Let ( )n =
ds? As
dy
Also a‘g)n_r_l = Gn+]_(s) ‘yn+lHn+l(s)
dy
2 G - - \3s
Then (d A n+1(8) -Fny 18y (9 (ds)n
j 33/ =
A S
Therefore, 1
- Gn + 1(5)AS as [ (&
Tny 1 1y 2T 5 ot Eds)n+ bn 1 (e)

Using this method, the solution is determined at s = 0.025 and
s = 0.050.
Now, having the solution and the slope at three consectutive points,

the remaining solution is determined using Adam's Method. (Table XV).
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Skin Friction Drag Coefficient

The differential of equation (28) is evaluated using the results

of step 4 above and data contained in Table XV.

This is shown plotted versus s for M = 1.87 in Figure 10.

By a graphical integration the axial drag force is evaluated and put
into coefficient form through equations (29) and (30).
For M = 1.87

1 T
- — PN
1= 3

= .7(350) (1.87)° = 857 1b - £4~°

The resulting drag coefficients are presented in Table IX of the
rasults.
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TapLE XVT ITEM FOR Use iN EvaLuaTion OF
DrRaG For Case I, M=187

- 5=.424
D= (oTr/Ao/ % Y;COS ® ds
(o)
S K cos S RE] v y, Bk
8 £ . g S ST S
x to¥ x lo* X110~ 3
o Q0.0 0.00 —_ 1442 —
015 62.4 | 3.94 |is5.232 (460 | 23.10
050 1.3 593 19. €3 1479 29.00
. 100 238.0 8.65 27.50 |52 41¢é0
450 | 345.0 71119 | 30.84 | 1544 | 47c0
.200 | 429.0 | 13.47 | 3183 | [575 | 50.10
250 | 5010 | 1602 | 3130 | 1600 | 5090
. 300 5580 | 18.20 30 63 1627 49.80
.2350 589.0 | 20.80 | 28.30 1648 | 46.60
400 | 607.0] 23.55 | 25.82 | l6&Y {43.i0
424 | 610.0 1 24.85 | 2455 | [680 | 4120
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Evaluation of Cp (Mo = 1.87)

5=0.424

VSS To cosp

2

ds

D = 6T Mg

]

$T0.424-

Vs6 I'o cospB

- ds = 17.51 x 10° (Graphical Integration)

=1 -
/LAO = 3.7 x 10-7 slugs - ft. - sec:.l

D = 0.1239 1bs.
q = 857 1b. - £t3° A = 0.10%9 ft.2 (wetted avea)

Cp = 0.001328
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Case II Compressible Flow with No Pregsure Gradient

Boundary Layer Thickness
Values of the constant K of equation (17c) are obtained for two

values of vg comparable to free stream and nose value of pressure

ratios.
s
6 = K L (17¢)
r02
—6 oV
where K = /Ll 58
r 2
1P (C1 - Vs, /g7 C2)

A P Q
"Data are presented for M = 1.87; P/Po = free stream value = 0.159

v fd 1
5% 2 350 1b. - £t.-2 from table VII
Mo = 3,76 x 107 slug - £t.7L gec.-t
G -v. [2 Co = = 0.0065
1 S5 Colo 2 905 from Figure 8
then XK = 3.075 x 10~ /5
24
Ir S
and 52 = 3.075 x 10~5 Lo 20
Ty

S
f}
/[‘o" ds
o

L= — appears in table XIX.
ro2



The boundsry layer thickness is evaluated as

s(ft.) 5 (£t.)
10-3

0 0

025 0.557
.05 0.743
.10 1.069
.15 1.301
20 1.546
.25 1.767
.30 1.920
.35 2245
40 2.500
424 2.630

Skin Friction Drag Coefficient.
For this case eguation (28) may be rewritten since VSS is now

a constant. s

Drag = 6T M, Vs, /E&E—_S?ié_ ds

for the above §'s S roi;Sﬁ
0 -
.025 11.20
.05 15.67
<10 22.25
.15 26.50
«20 27.80
25 28.30
.30 28,20
.35 26.25
#40 \ 24430
A7 23.20
This variation is graphically integrated to give
Sro cosp
'—“‘S"’“ ds = 9.648
o
6-”/‘"0 VSS - 6 Il 3.76 X 10-7 X 1610 = llaly]. X 10_3

Drag = 9.648 x 11.41 x 103 = .1100 1bs.



¥ 2
3 B, Mo

1089 f£t.°

D

q A

L1100
857 (.1089)

001179

.7 (350) (1.87)2 - 857 1b - ft'_g
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Case 111 Incowmoressible Flow with Pressure Gradient

Values for use in determination of boundary layer thickness
from equation {23) are shown in Table XVII end are plotted versus s
in Figure 11.for the case couparable to M = 1.87. The indicated
integration is carried out by graphical means and the resulting boundary

layer thicknesses are presented in the Table VIII.



TaBLE XVIT

INCOMPRESSIBLE FLow WITH PRESSURE GRADIENT
234
s 2 V;
(\G}’E ) (—;: -
- r vgl )5.34 .
o S
(k) (= / 5
0) @ S @ & © @ ® @ | @ O | @ | @
s R | Pre, 1m0 V@ | % | @x@ | @ | | @ e-@ /@ | J@ds| §* | s
o> (0% W”’ 023 102° R kals 1o™¢ 1o
o o} .249% 752 .867 4.21 ) o 8,86 o) 0 0 Q o
.0LS 0065 .237 L7673 . 874 4.25 25.4 | 650 9,03 g YR 1191 280 3 5o L3RS
.050 0130 L2277 173 879 4.2% 5.6 | 309] Gk z {789 5525 | 1291 22,5 .243 .49 3
- L , \,
.loo L0244 | 208 792 890 4.3% 0§55 1,10 9.35 1 1965 | 21,820] su40 L 72.3 471 . 6B6
150 .0351 191 . 809 .900 4.38 {$3.4" 23,550 9,56 2050 48,300 ], 040 559 691 L83
L200 | 0434 1 (76 824 908 4.4 198 136,570 | 9.72 § 2180 | 79,700| 18,00 | 1294 ,960 98I
.250 L0505 1 163 . 837 L9185 4,45 225,90 50,625 9,90 1 2320 117,500] 26,400 2404 | |, 220 :,;M-
L300 L0560 15 849 L G2 4.49 250§ L3, 287 fo.oy 2455 | {95,300] 34,600 3%37 j.§10 1,229
350 0590 | 41 859 L9227 4.5) 2660 L 70756 | 1007 2520 176,120] 39,500| SBaZ| 1940 lraﬁi
,400 | 0607 | 3 869 932 4,53 2750 | 75,625 | 10,16 {2620 | {98,000 43600 78901 2.37% 1S4
424 | 0610 127 .873 L4358 4.54 2770 ‘7@,?295 fo.31 ; 2G40 | 201,500 43 600l B944 2,630 |42l
i
NOTE ! THE AROVE VALUES WERE COMPUTED  ON

THE BASIS OF A HIGHER M
PRESHURE

AND Cp A

BUT AT CONSISTENT VALUES OF
RATIOS, RESJLTING IN IDENTICRYL
THE CoRREFECT P, .

FOR THE ABOVE TABLE Vi = 486Xxi0 (1~ %p  AND vh,:/; =
i

REYRNGLIG NUMBER AND

VALUES  FoR 5 FoR

2,70 %1077
3. 54 x /o"‘;

= o6l xiio °

__.85..
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The skin friction drag coefficient is obtained as follows:

S
6“)‘)0 /VSS
(<]

0
0.025
.050
.100
«150
«200
«250
0300
0350
<400
o424

D

S
x 103

0
00387
01{»93
686
831
0981
1.104
1.229
1.393
1.541
1.622

A 5 To cosp 52.569_5.@_
x 107

4e21 0 -
4eR5 0.00624 16.17
4.28 .01163 23.6
4.33 0238 34.7
4.38 -0345 41.6
L4l «0429 43.6
4o 45 .0501 45.4
449 .0558 45.5
4.51 .0589 AR2.2
4e53 0607 39.4
454 .0610 37.6

Tro
- (C0S (3 das

S

s
To

By graphical integration .//;SS E;,cosp ds

o

6 MMy = 6T x 3.7 x 1077 = 71 x 1071

D =

Voo

Poo

Yoo

A =

0.508 1b.

LK}

L4460 ft./szec.

3.54 x 1074 slugs/ft.3

%{000 Voo

0.108

D

Qoo

0.00

2

- 3520 1b./ft.<

9 ft.< (wetted ares)

.508

A

133
6

1.743 x 10

3520 x .108%

ft';sec.
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Cage IV Incompressible Flow with No Pressure Gradient

fhe boundary layer thicknesses are evaluated for the case
comparable to M = 1.87 with the free stream velue of pressure ratio,
Dats for equation (26)
P/po = free stream = .159

Vg 2340 ft. - sec.™t

é

Y - _ 3,76 x 1077 _ -3
° ég = g x 10k T 0P x 10

s
62 - 56.1 (.555 x 10°3) ~é{;02 ds

2340 x 103 o2

/s

p)
r

= 1.330 x 1073 oo s

rol

s(ft) S (£t)
0 0

.025 .367
.05 489
.10 705
.15 .856
.20 1.013
.25 1.158
.30 1.300
.35 1.475
40 1.645

AZTA 1.682
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Skin Friction Drag Coefficient

3
D = 6“./-‘0 VSS /_I_.O%O—S—f— ds

6T pig Vg, = 6T 3.76 x 107 x 4460 = 1.66 x 1077
ro cosp
] o~ S
d
.O -
.Q25 17.07
.05 23.75
.10 33,70
.15 40,30
.20 42.20
.25 43.20
«30 42,770
.35 39.90
'40 36.90
424 ' 36.20
A
I, CO08
J/f-fl-——fi ds = 15.3
A d
D = .254 lbs.

1 2
Q@ = —z-fvsé

-4
€77 X 10™% (59,007 . 18.5 x 10° 1b. - .72

A = .1089 ft.?

Cp = .001261
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Flat plate vslues of boundary layer thickness and skin friction

drag coefficlient.

5.2 |2 s

From reference 10. S = 3
o)

|

for ug = 2340 ft. - sec.™t

Y = .555 x 10~3
5 = 2.530 x 103 \/s
s(ft.) S (ft.)
103
0 0
.025 0.397
.05 00561
.10 00795
.15 0.972
.20 1.124
.25 1.257
.30 1.381
.35 1.485
.40 1.590
424 1.650
Cp = 1.328 |2
ugl
1 = .415 ft.

.001006

o]
)
W
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APPENDIX I

Physical Characteristics of the Model V-2 Ogive
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Development of an Analytic Expression for r, (s)

(Equation 32)

Yo

o

‘ AN
oc AN
l [ o™

From data To pax = 0-061 ft. @ x - 0.415 ft.
C = \/(0.061)2+ (0.415)% = 0.419
= tan~t Q.415 - 81.65°
0.061
R = BRadius of curvature _
- C_1 - 9.20 L . 1.4 ft.
~ 2Cose % X oamr = b
ip-1 B - Tomax sn=l 144 = 0.061 - 0
= sinTm 70 = sin . . = 73.13
oo R T.%44
s, = Rolg = L.44 x L3213 _ 1.840 ft.
° ° Mox s
(1) s+ s, = R_%X
° 57.3
- 4 Q A - - - i o
(2) ro = Rsinw® - (R-zxo ) = R (-1+sin«®) +.061
From (1) «x° = 2:7}.{3; (s+8,). Substituting this expression for

into (2) we obtain the following for ry = Tols):
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R [- 1+ siné%ﬁ (s + so):l + 0.061

H
1}

(o]
= 1.44 sin 5{:52 (s + 1.840) = 1.44 + 0.061
r, = 1.4 sin (39.8 s +73.13)° - 1.379 (32)
dTo 1,440
3= = Frap X 39.8 cos (39.8 s+ 73.5)°
dr
a—s—g = cos (39.8 s + 73.13)°

Wetted Area of Ogive

S5=.424
ds
Y,
S= O 1
424
4 = / 2T Ty ds
T, = Llu44 sin(39.8 s+ 73.13)° - 1.379 (32)
424
A = 2,887 / (sin(39.8 s + 73.13)° - 1.379) ds
A = 0.1089 ft.?
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Angle of Tangent, %6 , to the Ogive

R(¢><—O<o) = 8 /3:5—«

-
AX1S R EE-P ) -qg = 8, % = 73.13°

R = 1.44 ft.

Then g = (169 - 39.8 5)°
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TasLe XVT . cos @
S cCosp to Y COS P
o — Q O
025 L9617 0065 | .00624
050 | .9664 | 0130 | .0I163
400 9748 | 0244 | L0238
A50 | L9819 | 0351 | 0345
200 | L9879 | 0434 | .0429
250 | .9926 | 0505 | 0501
2300 | .9962 | 0560 | 0558
. 350 L9987 .0590 | ,0589
400 | 1.o0o0 L0607 | .CEO
424 | 1,000 061G | . 06IC
L*ds
TasLE XX e
S t o /Svo‘alﬁ _/—E;.‘i:’.
° Yo
io
o) o 0 o]
.08 .ObCaS' .42 003bL2| .0L00k
.05 0 0130 | 1.69 os%022| . 01790
N Folol .0244 1 5,95 2206 |.0371
480 | .0351 |IL %0 .6765| 0550
L200 | .0434 [ (8. 80 |1.4544 0775
.250 .050% [25.50 |2.584 (o1 3
300 | L0560 |3l.40 |4.009% 1275
350 | L0590 3460 | 5659 |. 1624
400 L0607 | 3p. 90 7.470 | .20L5
424 | 0010 | 37 |0 83258 |.2250




