
MANAGING INFORMATION IN
NETWORKED AND MULTI-AGENT CONTROL

SYSTEMS

Thesis by

Michael S. Epstein

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Submitted November 16, 2007)

ii

c© 2007

Michael S. Epstein

All Rights Reserved

iii

Acknowledgements

I wish to extend my most sincere thanks to my advisor, Prof. Richard M. Murray. Over the course

of my graduate studies Richard has been a constant source of inspiration with his passion and

approach to research. Whenever I felt frustrated from a lack of motivation or progress I could count

on a meeting with Richard that would leave me invigorated and excited with insights to approach

whatever problem I was stuck on, or with new ideas for avenues of research to pursue. Richard

gave me the freedom to explore many different topics over the years and to pursue those I found

interesting. My graduate experience was a wonderfully enriching endeavor thanks in no small part

to Richard.

I would like to thank the remainder of my thesis committee: Prof. Joel Burdick, Prof. K. Mani

Chandy, and Dr. Doug MacMynowski. They all provided me with useful insights and help with

research and in preparing this thesis.

I have many fellow graduate students and researchers to thank. First I would like to give special

attention to Ling Shi. It was through a collaboration with Ling that I first was introduced to the field

of Networked Control Systems, the topic of this thesis. Over the years we collaborated on several

challenging and interesting problems. Working with a fellow researcher who is so positive, energetic,

and intelligent made the long processes of research seem easier. Another early collaborator in the

area of networked control systems from whom I learned a great deal about how to narrow down and

stay focused on a research topic was Abhishek Tiwari. I had the opportunity to work with Prof.

Kevin Lynch and Prof. Karl Johannsson while they were visiting Caltech. This collaboration was in

the area of hierarchical consensus and appears in this thesis. I also worked with Stefano Di Cairano

while he was visiting Caltech on the topic of input buffering in networked control systems, work

that appears in this thesis. Other collaborators I had the pleasure of doing research with include:

Stephen Waydo, Sawyer Fuller, Will Dickson, Andrew Straw, and Prof. Michael Dickinson on insect

flight control; John Carson, Dr. Doug MacMynowski, and Mark Milam on applying receding horizon

control techniques to the Entry Descent and Landing problem; Prof. K. Mani Chandi and Prof.

John Ledyard on market-based control of the electric power network; and Dr. Zoran Nenadic on

decoding neuronal spike trains. Though most of these works were outside the area of my thesis

research, they were a welcome and most fascinating diversion.

iv

Other members of the Caltech community with whom I shared many coffee breaks, lunches

around campus, laughs over the mundane issues of life, and many other ups and downs of being

a graduate student that I would be remiss to acknowledge: Feras Habbal, Vaughan Thomas, Jeff

Hanna, Andy Fong, Mary Dunlop, Julia Braman, Zhipu Jhin, Tamer El Sayed, Sean Humbert,

Ebraheem Fontaine, Tomonori Honda, Farncesco Cucci, Michael Wolf, Nick Hudson, Vijay Gupta,

William Dunbar, and many others. I must also mention the wonderful assistance provided to us

by the administrative staff of the Mechanical Engineering and Control and Dynamical Systems

departments who helped with everything from arranging travel accommodations during conference

trips to making sure we received our paychecks Gloria Bain, Chris Silva, and others.

I must certainly extended my gratitude to the American Society for Engineering Education,

the United States Department of Defense, and the Air Force Office of Scientific Research for the

National Defense Science and Engineering Graduate (NDSEG) Fellowship I was generously awarded

to support years two through four of my graduate studies. This helped give me the freedom to

pursue a course of research in topics I was interested in. I should also thank my colleagues at the

Lawrence Livermore National Laboratory, where I spent some of my off-time from Caltech working on

very interesting research problems: Todd Decker, Monika Witte, Randy Hill, Bill Craig, and many

others. I would be remiss to not show appreciation to the controls faculty at UCLA: Professors

Steve Gibson, T-C. Tsao, Robert M‘Closky, and Jeff Shamma. During my undergraduate studies

they were responsible for my initial interest in the topic of feedback control systems, through both

classroom instruction and my involvement in their research projects. I would also like to thank Dr.

Naveed Hussein, who taught my first undergraduate class in dynamics and helped me obtain an

internship at Boeing Satellite Systems working in the attitude control department.

Lastly, but certainly not least, I must extended a great deal of love and appreciation to all my

friends and family outside of the Caltech community who have helped me along in my life. Special

thanks are in order for my parents and sisters who always pushed me to achieve. To my mother

Cecile for recognizing and cultivating my interest and abilities in science and math at such an early

age. To my father Jeffrey for providing an example of how hard work in school can reap rewards.

To my sister Danielle for helping me choose an undergraduate major, and to my sister Amy whose

own interest in Caltech kept graduate school in my mind. Finally, I would like to thank Leilanie for

being such a large part of my early adult life and always having faith in my abilities and inspiring

me to seek out my passions in school and life.

v

Abstract

Traditional feedback control systems give little attention to issues associated with the flow of infor-

mation through the feedback loop. Typically implemented with dedicated communication links that

deliver nearly precise, reliable, and non-delayed information, researchers have not needed to concern

themselves with issues related to quantized, delayed, and even lost information. With the advent

of newer technologies and application areas that pass information through non-reliable networks,

these issues cannot be ignored. In recent years the field of Networked Control Systems (NCS) has

emerged to describe situations where these issues are present. The research in this field focuses on

quantifying performance degradations in the presence of network effects and proposing algorithms

for managing the information flow to counter those negative effects. In this thesis I propose and

analyze algorithms for managing information flow for several Networked Control Systems scenar-

ios: state estimation with lossy measurement signals, using input buffers to reduce the frequency

of communication with a remote plant, and performing state estimation when control signals are

transmitted to a remote plant via a lossy communication link with no acknowledgement signal at the

estimator. Multi-agent coordinated control systems serve as a prime example of an emerging area

of feedback control systems that utilize feedback loops with information passed through possibly

imperfect communication networks. In these systems, agents use a communication network to ex-

change information in order to achieve a desired global objective. Hence, managing the information

flow has a direct impact on the performance of the system. I also explore this area by focusing

on the problem of multi-agent average consensus. I propose an algorithm based on a hierarchical

decomposition of the communication topology to speed up the time to convergence. For all these

topics I focus on designing intuitive algorithms that intelligently manage the information flow and

provide analysis and simulations to illustrate their effectiveness.

vi

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Motivation and Scope of Thesis . 1

1.2 Background and Relevant Works . 4

1.3 Summary of Contributions and Overview of Thesis 7

1.4 Mathematical Notation and Basic Definitions . 11

2 Probabilistic Performance Characterization of State Estimation Across a Lossy

Network 12

2.1 Introduction . 12

2.2 Problem Set Up . 14

2.2.1 Problem Setting . 14

2.2.2 Kalman Filtering Across a Lossy Network . 15

2.2.3 Observer-Based Estimator . 23

2.3 Estimator Algorithm . 24

2.4 Asymptotic Properties of Error Covariance Matrix 27

2.5 Determining the M -ε Relationship . 29

2.6 Simulation Example . 35

2.7 Conclusions and Future Work . 36

3 Using Actuation Buffers in Networked Control Systems to Reduce Transmission

Frequency of Control Signals 38

3.1 Introduction . 38

3.2 Problem Set Up . 40

3.3 Transmit Protocol . 41

3.3.1 Fixed Transmission Time . 42

vii

3.3.2 Input Difference Transmission Scheme (IDTS) 43

3.4 Example . 48

3.5 Conclusions and future work . 50

4 Estimation Schemes for NCS Using UDP-Like Transmission of Control Values 52

4.1 Introduction . 52

4.2 Problem Set Up . 54

4.3 Naive Schemes . 55

4.4 Estimation Algorithm . 57

4.4.1 Augmenting the Control Signal to Guarantee Detection 59

4.4.2 Removing the Added Input Signal . 68

4.4.3 Unknown Input Observers . 72

4.5 Simulation Example . 74

4.6 Conclusions and Future Work . 77

5 Using Hierarchical Decomposition to Speed Up Consensus 79

5.1 Introduction . 79

5.2 Graphs and Continuous-Time Consensus . 81

5.2.1 Graph Theory . 81

5.2.2 Hierarchical Graph Decomposition . 81

5.2.3 Continuous-Time Consensus . 83

5.3 Hierarchical Consensus Algorithm Description and Analysis 85

5.3.1 Hierarchical Consensus Algorithm . 85

5.3.2 Analysis . 87

5.3.3 Discussion . 91

5.4 Choosing A Hierarchical Decomposition . 92

5.5 Examples . 93

5.6 Conclusions and Future Work . 98

5.7 Appendix: Proofs . 99

6 Conclusions and Future Work 104

6.1 Discussion and Summary . 104

6.2 Future Directions . 105

Bibliography 108

viii

List of Figures

1.1 A schematic diagram of the Multi Vehicle Wireless Testbed (MVWT) at Caltech. . . 3

2.1 Schematic of NCS for state estimation across a lossy network. 14

2.2 Error covariance (log scale) for Example 2.17. 33

2.3 A binary representation of the possible packet sequences (i.e., drop/receive) at time k. 34

2.4 The states of the Markov chain represent the number of consecutive packets dropped

at the current time, the final state represents kmin or more consecutive packets dropped. 35

2.5 The trace of the M bound vs. p. 36

2.6 M bound vs. ε. The (blue) line with tick marks is the simulated 1− ε and the dashed

and solid (red and green) lines are the predicted 1− εmax and 1− εmin. 37

3.1 NCS feedback loop with control commands sent across the network. 39

3.2 Simulation transmission properties. 49

3.3 Worst case simulation error and theoretical bounds. 50

4.1 NCS feedback loop with control commands sent across a lossy network. 53

4.2 Simulation results utilizing new estimation scheme with added control. 75

4.3 Comparison of state history for various control-estimation schemes. 75

4.4 Average of ‖xk‖ and ‖ek‖ across all 10,0000 simulations.. 76

4.5 Plots from a single simulation for various estimation schemes. 77

5.1 Example hierarchical decomposition. 82

5.2 Flow diagram for the hierarchical consensus scheme. 86

5.3 Graph with hierarchical decomposition. 94

5.4 Error results for εs = 10−5 and ‖e(0)‖2 ≈ 281
√

27. 95

5.5 Error bounds for different values of εs. 95

5.6 Error bounds for different decompositions using different number of layers. 97

5.7 Graph topology with extra links. 97

5.8 Error bounds for different decompositions depending on the subgraph assignment of

certain nodes. 98

ix

List of Tables

2.1 Algorithm for estimation scheme. 27

3.1 Input Difference Transmission Scheme (IDTS). 45

4.1 Possible values of cost function in Eqn. (4.15). 58

4.2 Estimator Algorithm. 62

4.3 Estimator algorithm without the input constraint. 69

1

Chapter 1

Introduction

1.1 Motivation and Scope of Thesis

Traditionally, the areas of feedback control and communication networks are decoupled from each

other, as they have many different underlying assumptions. Whereas the quality and reliability

of information transmitted in a communication network is typically the primary focus, feedback

control systems study the performance of manipulating a dynamical system with information that is

generally assumed to be passed through ideal channels. Control engineers generally assume perfect

transmission of information within the closed loop and that data processing is done with zero time

delay. On the other hand, in communication networks, data packets that carry the information can

be dropped, delayed, or even reordered due to the network traffic conditions. As new technologies

and applications emerge, the fields are coming closer together, and we are indeed witnessing that

the “next phase of the information technology revolution is the convergence of communication,

computing, and control” [47].

With this convergence of the fields, feedback loops are now being implemented with information

passing through communication networks. New applications that utilize these types of feedback loops

include future battlefield systems, urban search and rescue, internet-based control, “smart homes,”

sensor networks, unmanned air vehicles, multi-vehicle systems, and many more [47]. Introducing

communication networks in the feedback loops gives several advantages, including modularity and

reconfigurability of system components, simple and fast implementations, powerful system diagnosis

tools, etc. Of course, a main advantage of Networked Control Systems is that they allow for the use

of control systems with spatially distributed components, i.e., actuators, sensors, processing units,

and plants that do not need to be physically collocated. There are of course potential issues that

arise when closing the loop around imperfect communication links, including data dropout, delays,

and quantization effects. Researchers have addressed many of these issues, see [1, 25] for recent

surveys, with the management of the information flow through the loop becoming equally important

as the design of the controller. These types of feedback loops, called Networked Control Systems

2

(NCS), have become a fast growing area of research, and managing the information flow in these

loops has direct consequence on the system performance.

Multi-agent coordinated control systems serve as a prime example of an emerging area of feed-

back control systems that utilize feedback loops, with information passed through possibly imperfect

communication networks. In these systems, agents must communicate information amongst them-

selves to achieve a desired global objective. Since the agents are not physically collocated, and there

are typically a large number of agents, the information exchange takes place through a communica-

tion network. The quality of the information thus again directly impacts the performance of these

systems. Hence, managing the information flow in multi-agent systems is also of great importance.

As mentioned above, there are a multitude of emerging applications for Networked Control

Systems and multi-agent control systems, such as mobile sensor networks [55] and unmanned aerial

vehicles [68]. To illustrate the types of potential design choices and specific choices for these systems,

consider as a motivating example those applications which are similar to the Caltech Multi Vehicle

Wireless Testbed (MVWT) [29], where remote vehicles with limited computational capability are

sent trajectory and/or control commands from remote processing units. A schematic of the MVWT

is shown in Fig. 1.1. The MVWT is a good laboratory example for any application involving

the feedback control of a plant that is not physically collocated with the sensors and some of the

processing units, or any multi-vehicle coordination application.

The vehicles sit in an arena with a goal to perform some desired task, typically defined by a

trajectory to track. Overhead vision cameras capture images of the vehicles in the arena, and these

images are processed by a remote computer to determine the position and orientation of the vehicles.

The remote computer can communicate with the vehicles through a wireless communication channel,

subject to quantization, delay, and random loss effects. The inter-vehicle communications occur

through this same network. Here is where the Networked Control Systems architecture questions

and information management play a role. Should the raw position and orientation measurements

determined at the remote computer be transmitted across the network to the vehicles where they can

then be used to determine a control action on the vehicles’ computers? Alternatively, an estimator

can be placed at the remote computer, where the control actions can then be determined and

transmitted to the vehicles. The type of communication protocol to be used for either case is also a

decision to be made. In what manner should the vehicles communicate amongst themselves based

on the specific task? These and many more questions arise when designing feedback loops in settings

where the information is sent through imperfect communication channels. This thesis attempts to

tackle some of these issues by considering some specific architectural designs and network types and

implementing algorithms for these settings.

Issues related to quantized and delayed information, while important in certain Networked Con-

trol Systems settings, are ignored in this thesis. With the observation that most Networked Control

3

The Caltech Multi-Vehicle Wireless Testbed1

Lars Cremean], William B. Dunbar, Dave van Gogh, Jason Hickey,
Eric Klavins, Jason Meltzer and Richard M. Murray

Engineering and Applied Science California Institute of Technology
]Corresponding Author: lars@cds.caltech.edu

Abstract: In this paper we introduce the Caltech
Multi-Vehicle Wireless Testbed (MVWT), a platform
for testing decentralized control methodologies for mul-
tiple vehicle coordination and formation stabilization.
The testbed consists of eight mobile vehicles, an over-
head vision system that provides GPS-like state in-
formation and wireless Ethernet for communications.
Each vehicle rests on omni-directional casters and is
powered by two high-performance ducted fans. Thus, a
unique feature of our testbed is that the vehicles have
second order dynamics, requiring real-time feedback al-
gorithms to stabilize the system while performing co-
operative tasks. The testbed will be used by various
research groups at Caltech and elsewhere to validate
theoretical advances in multi-vehicle coordination and
control, networked control systems, real-time network-
ing and high confidence distributed computation.

1 Introduction

Controlling large scale, decentralized and networked
systems is one of the most important challenges of con-
trol theory and practice today. Unmanned aerial vehi-
cles, automated highway systems and automated man-
ufacturing processes all involve multiple, interacting,
highly dynamic entities. Elements of these systems are
usually distributed in space and must coordinate with
each other using sensing and communications networks.
Inaccuracies in sensing and delays, interruptions and
faults in communications as well as possible node fail-
ures are not amenable to standard control approaches,
which often consider the problem of control as separate
from communications and other issues resulting from
decentralization. The large scale nature of these prob-
lems, furthermore, makes a global approach impracti-
cal, while a general methodology for ensuring global be-
havior from a collection of locally controlled elements
remains elusive.

The Multi-Vehicle Wireless Testbed (MVWT) is a tool
for validating theoretical advances in multiple-vehicle
coordination and control, networked control systems,
real-time networking and high confidence distributed
computation (Figure 1). A unique feature of our
testbed is that the vehicles (Figure 2) have second order
dynamics. Other multi-vehicle testbeds such as those
used in robotic soccer [5] feature “kinematic” vehicles
that are able to stop almost instantly in the face of

1Partial support for this work was provided by AFOSR under
grant F49620-01-1-0227.

Figure 1: A diagram of the Caltech MVWT. Overhead
cameras (A) provide state information to the vehicles (B).
An obstacle (C), due to an unrelated experiment in the same
space must be avoided.

Figure 2: An MVWT vehicle rests on three ball cast-
ers and supports a stripped down laptop, batteries and two
ducted fans for propulsion.

possible collisions or other emergencies. In contrast, in
controlling the MVWT vehicles one must account for
inertia. Because of this difference, the coordination al-
gorithms we develop will rely on advanced control tech-
niques instead of AI style planning. Recent progress in
such techniques include the application of model pre-
dictive control (MPC) to groups of vehicles [2] and the
Caltech ducted fan experiment [1], as well as graph
theoretic connections made between stability of certain
multi-vehicle dynamical systems and the structure of
information flow between the components of such sys-
tems [3].

The inspiration behind the MVWT vehicle design is
the goal of controlling unmanned aerial vehicles (UAVs)

Figure 1.1: A schematic diagram of the Multi Vehicle Wireless Testbed (MVWT) at Caltech.

Systems networks have sufficient bandwidth to transmit information in the form of packets [32],

this thesis simply ignores issues related to quantization effects due to limited bandwidth networks.

Likewise, as old information is not as useful as newer or current information, delays are ignored

by simply considering any delayed information as being lost. Utilizing the delayed information may

lead to improved performance, so ignoring the delayed information can yield conservative results (es-

pecially as this effectively increases the percentage of dropped packets); nonetheless the algorithms

are simpler and useful for a wide variety of problems. Therefore, this thesis only considers designing

algorithms for settings where packets of information might be lost, as well as situations where the

goal is simply to utilize network resources more effectively to improve performance.

The focus of this thesis is to propose and analyze algorithms for managing information flow

in particular Networked Control Systems and multi-agent settings: (i) probabilistic performance

characterization of state estimation across a lossy network with buffered measurements; (ii) using

actuation buffers to send less frequent but more informative control packets across a network; (iii)

designing state estimators when control signals are sent across a lossy network with no acknowledge-

4

ment signal at the estimator; and (iv) hierarchically decomposing a given communication topology

to speed up the time to convergence in multi-agent consensus.

1.2 Background and Relevant Works

In recent years, networked control problems have gained much interest in the research community.

An attempt is made here to only create a snapshot of recent results. This section is not intended

to be an exhaustive recap of all Networked Control Systems and multi-agent research. For more

detailed descriptions, readers are referred to a few recent survey papers of these fields [1, 25, 57].

The related works in Networked Control Systems research focus on estimation and feedback

control problems with networks inserted between the dynamical elements of the loop. Networked

Control Systems feedback loops are used for the same purpose as standard feedback loops, namely

state estimation and closed loop stabilization and performance of a plant. The goals of the Networked

Control Systems research are to characterize performance degradations due to the network effects

and design algorithms to compensate for those effects. For a thorough comparison of the different

types of network technologies available for use in Networked Control Systems see [32]. Despite

the specific choice of network type, they all suffer similar effects that degrade the feedback loop

performance. The network effects most commonly considered are bandwidth constraints of the

communication channel, sampling and delay issues, and information loss due to dropped packets.

Architecture questions, e.g., what types of networks to use and where they should be placed, are

also prevalent in the literature.

One of the first areas of research investigated with the advent of using digital networks is that

of quantization. Quantization converts regions of real numbers (analog signals) into discrete points

(digital signals) via a finite set of integers. Some of the information of the signal is lost due to this

quantization process, and it affects the closed loop system. Delchamps [10] studies stability when

closing the loop with quantized measurement signals. Quadratic stabilization of a sampled-data

system with quantization effects is analyzed in [28]. The quantization schemes can be tailored for

feedback control applications. In [11], logarithmic-based quantization methods are used. Variable-

step quantization algorithms that evolve with time are the focus in [24, 6]. In [7] the authors

design the least destabilizing quantizer by reducing it to the multicenter problem from locational

optimization.

Related to quantization is the problem of designing feedback loops with finite bandwidth com-

munication channels. One of the first introductions to the problem of state estimation and stabi-

lization of a linear time invariant(LTI) system over a digital communication channel which has a

finite bandwidth capacity is by Wong and Brockett [85, 86]. Here they give stability conditions for

encoder-decoder algorithms that relate the bandwidth of the communication channel to the system

5

dynamics. The works by Nair and Evans [49, 51, 50] study the stochastic stability of feedback control

systems with limited data rate and show the relation to quantization theory. In addition to the lim-

ited data rate effect, they introduce system process and measurement noise into their model. Taking

an information-theoretic point of view, the thesis by Sahai [66] derives stability conditions based on

anytime information which quantifies the “time value” of data bits. Tatikonda’s thesis [81] analyzes

the necessary data rate and coding schemes to stabilize a plant across a noisy channel. A general

extension of Bode’s integral inequality is provided in [38] to assess the performance limitations of

feedback control over finite capacity memory-less channels. Researchers also consider such issues as

nonlinear systems [52], robustness to plant uncertainties [60], and disturbance attenuation [37].

Due to the nature of transmitting signals across networks, the information passed through the

feedback loop can be delayed. In [5], the authors analyze the influence of the sampling rate and

network delay on system stability. Nilsson’s thesis [54] analyzes delays that are either fixed or

random according to a Markov chain. He solves the LQG optimal control problem for the different

delay models. Luck and Ray [36] compensate for delays by placing observers throughout the loop.

In [33, 34], the authors use a stochastic approach to study time-varying delays. Montestruque and

Antsaklis [45] study the stability in the presence of time varying delays that could be driven by an

underlying Markov chain. In [42, 43, 44], they determine the maximum time between samples to

ensure stability for periodic sampling.

Network scheduling and sampling is related to the problem of delay. Research in this area is

concerned with designing when different components of a feedback loop should have access to a

shared network resource. Walsh et al. [84] propose the maximum error first scheduling algorithm for

systems where sensor nodes share access to a communication network. Their algorithm is based on

transmitting data from the node that is most different from the data previously transmitted from

that node. They introduce the notion of maximum allowable transfer interval between successive

transmissions such that the overall system is stable. Nesic and Teel [53] also consider the effect of

sampling times on stability with nonlinear plants and obtain a tighter bound on the time between

samples. In [91], the authors reduce the frequency of communication, i.e., sampling, by placing

estimators throughout the loop and only transmitting information when the estimated and true

values differ by more than a given amount.

In addition to sampling and delay issues associated with Networked Control Systems, lost infor-

mation is of critical concern to feedback loops. Packets of information can be lost due to network

congestion as well as timeout features on the receive side that simply ignore data that is too old.

Recently, researchers have been examining estimation and control problems in the presence of infor-

mation loss. In [73], Sinopoli et al. discuss how packet loss can affect state estimation using Kalman

filters. They show that there exists a certain threshold of the packet loss rate above which the

state estimation error diverges in the expected sense, i.e., the expected value of the error covariance

6

matrix becomes unbounded as time goes to infinity. They provide lower and upper bounds of the

threshold value which depend on how unstable the process is that is being estimated. Following this

spirit, Liu and Goldsmith [35] extended the idea to the case where there are multiple sensors, and

the packets arriving from different sensors are dropped independently. They provide similar bounds

on the packet loss rate for a stable estimate, again in the expected sense. The minimum variance

estimation problem with packet losses is also studied in [39]. Modeling the problem as a jump linear

system, Smith and Seiler [77] construct a jump linear estimator to cope with losses.

Sinopoli et al. [74] look at closing the loop across lossy networks and solving an optimal control

problem. They insert a lossy network between the controller/estimator and the actuators/plant and

attempt to solve the LQG problem when sensor and actuator packets are lost. In this work they

make the implicit assumption that the estimator/controller has direct knowledge about the fate of

the control packet sent to the plant by way of an acknowledgement signal, i.e., a TCP-like protocol.

They use this assumption to show that a separation principle holds and that the optimal LQG

control is linear with a bounded cost when the percentage of loss is below a threshold. In [67] they

consider using a UDP-like protocol, where no acknowledgement signal is present, and show that the

separation principle only exists for a very specific instance. In general, the optimal control problem

does not have a closed form solution. Imer et al. obtain similar results in [27]. In [23], the authors

also solve the LQG problem with sensor measurements transmitted across a packet-dropping link,

but they consider any arbitrary drop pattern, whereas most of the other works focus on i.i.d. or

markov dropping networks. Seiler et al. [70] also use jump linear systems theory to solve the H∞

problem in the presence of packet loss.

In addition to NCS, another research area that uses communication networks to pass informa-

tion between dynamical elements, which is considered in this thesis, is that of multi-agent control

systems. These settings, like NCS, require information be exchanged between dynamical elements.

As a result, the information flow has a direct impact on the system performance. There are many

emerging applications for multi-agent systems including: consensus [58], behavior of swarms [87],

multi-vehicle formation control [19], sensor fusion [78], load balancing [8], and many others. In

this thesis the area considered is that of multi-agent consensus, where a collection of agents must

reach consensus/agreeement on a value of interest using a distributed algorithm. The most typical

problem is the average consensus problem, where the consensus value is the average of the agents’

initial conditions. To reach consensus, the agents must communicate their values to other agents,

but they can only communicate with some subset of the other nodes. Given certain conditions on

the topology of this communication network, and using an update rule that changes their value in

the direction of the aggregate value of the nodes they communicate with, consensus can be achieved.

The early roots of the consensus problem studied today can be found in works studying dis-

tributed computation over networks, namely the thesis by Tsitsiklis [82] and work by Borkar and

7

Varaiya [4] as well as Tsitsiklis et al. [83] on the asynchronous asymptotic agreement problem. Much

of the current work uses tools from graph theory [22] to represent the information sharing topology

and aid in the analysis in consensus problems. Particularly, the graph Laplacian is the matrix repre-

senting the evolution of the agent’s values based on the communication topology, and the properties

of this matrix directly relate to the behavior of the consensus algorithm. The focus of the literature

today is on providing conditions on the topology such that consensus can be reached, as well as

designing different algorithms to improve the performance of the consensus loop.

The consensus algorithms can include communication schemes that are either continuous [58] or

discrete [63] in nature. Asynchronous communication patterns are considered in [3, 40]. Issues such

as communication delays and changes in the communication topology over time have been examined,

see [58] and [62]. Moreau [46] and Olfati-Saber et al. [58] also consider using communication links

that are not bidirectional. Consensus using quantized information is analyzed in [30]. Dynamic

consensus algorithms, where the agents’ measured values and hence the average consensus value

change over time, is studied in [79, 20]. All these works focus on proving conditions such that

consensus can be reached. Invariably, the conditions relate to connectivity requirements on the

communication topology, e.g., that the union of the graph Laplacians over time be jointly connected

for random graphs.

In addition to simply proving convergence can be achieved, another key area of research is

speeding up the time to reach consensus. The key factor in determining the time to convergence

has been shown [57] to be the second smallest eigenvalue of the graph Laplacian, represented as

λ2. Olfati-Saber [56] introduces additional communication links into the network to create small

world networks. In [90], Yang et al. attempt to speed up the time to convergence, while trading-off

robustness, by optimally choosing how much relative weight each node should give to the other nodal

values in the update rule in order to maximize the ratio λ2/λmax. A version for the discrete time

consensus is given in [88].

1.3 Summary of Contributions and Overview of Thesis

The contributions of this thesis are to analyze different scenarios of networked control and multi-

agent systems and to provide algorithms suitable for these scenarios. The scenarios and algorithms

investigated are:

• (Chapter 2) Probabilistic performance of state estimation with buffered measurements sent

across a lossy network.

• (Chapter 3) Analyzing the use of actuation buffers to reduce the frequency of communication

when transmitting control signals to a remote plant.

8

• (Chapter 4) Estimation algorithms when transmitting control packets across a lossy network

with no acknowledgement signal at the estimator.

• (Chapter 5) Using hierarchical decomposition to speed up the time to reach consensus in

multi-agent average consensus problems.

The first scenario, explored in Chapter 2, is state estimation with measurements transmitted

across a lossy network. A linear dynamical system with known dynamics and Gaussian noise is

measured by sensors that transmit measurements to a remote estimator. The transmitted mea-

surement packets are assumed to be subject to random losses, so they may not always be available

when updating the estimator. The work by Sinopoli et al. [73] introduces the problem of performing

Kalman filtering in the presence of lost measurement packets. They use a modified Kalman filter

that performs the prediction and correction steps when the measurement is available, and only the

prediction step when the measurement is lost. They show that there exists a relationship between

the probability of receiving the measurements and the expected value of the estimation error covari-

ance going unstable. There are two novel ideas presented in Chapter 2 that improve upon the work

of [73]:

• To consider a probabilistic performance description of the estimation error covariance.

• To insert a buffer at the sensor which allows transmission of a finite number of past measure-

ments along with the current measurement.

As a result of the random measurement packet loss, the estimation error covariance becomes a

random quantity. In [73], estimator stability is given in terms of the expected value of the error

covariance E[Pk]. While this is a reasonable performance metric to start with, it can obscure the

fact that in some cases the expected value grows unbounded due to the extremely low probability

event of receiving no packets. To give a performance metric that better characterizes the estimation

performance, I consider determining the probability that the error covariance is below a certain

bound Pr[Pk ≤ M] ≤ 1 − ε. In addition to giving a more complete description of the estimator

performance, the analysis can be used for situations where even if E[Pk] is unstable, it may turn out

that the error covariance is below a given value for the vast majority of the time, and this might be

considered acceptable performance. This work also shows the benefit of buffering measurements at

the sensor and transmitting a packet that contains a sequence of previous measurements.

Keeping with the idea of using buffers to help mitigate effects of missing information, in Chapter 3

I consider using an actuation buffer when transmitting control signals to a remote plant. In this

setting it is assumed that the goal is to stabilize a remote plant while at the same time reduce the

frequency with which the control signals are transmitted to the plant. Reducing the frequency of

transmission could reduce the bandwidth usage when packets have a fixed overhead and minimum

9

space allocated for data, which can allow better sharing of a network resource amongst multiple

users. Thus, the goal is to design a method of transmitting less frequent but more informative

packets.

The algorithm consists of a state-feedback controller that computes the control value for the

current time-step as well as a prediction of control values for a finite amount of time in the future

using the available plant model. The newly computed buffer of control signals is compared to the

corresponding predicted control values of the buffer that was last transmitted to the plant. The two

differ since the previously computed value uses a prediction of the state, while the newly computed

value uses a more recent measured value of the state, and these differ due to the model uncertainties.

If the difference between these two control signals is above a certain threshold, then the new buffer

is transmitted otherwise it is discarded. I show how the length of the buffer and threshold value

combine with the plant dynamics and noise characteristics to affect the transmission frequency and

closed loop performance, thus providing tools for the system designer to choose these parameters.

In Chapter 4 I again consider the case where control signals are sent to a remote plant across

a network. Here the signal is transmitted every time-step, but the network can drop packets. If

the control packet is received, then the corresponding value is applied to the plant. As opposed

to the previous setting, here the packets contain only the current control value; thus if the packet

is dropped, no control is applied, and the plant evolves open loop. In this chapter I focus on the

problem of designing a stabilizing estimation scheme when the estimator has no knowledge of the fate

of the control packet, and hence if the plant applied the control signal or evolved open loop. When

the estimator does not know what control signal is applied, the standard separation principle for the

design of the estimator and controller does not hold. As a result, nearly all prior work in the NCS

field that has considered designing an estimator in this setting assumes an acknowledgement signal

so that the estimator knows what control signal is applied to the plant. This type of communication

protocol is termed “TCP-like” communication. The “UDP-like” communication protocols used here

do not provide an acknowledgement signal but could be advantageous due to lower latency, less

overhead in terms of packet length, and decreased software complexity.

In this chapter I present methods to perform state estimation for the purpose of designing

stabilizing control laws when the control signal is sent across a lossy UDP-like network with no

acknowledgment signal of the control packet fate at the estimator. I begin with a discussion of

certain naive estimation schemes that can be used and show why these are ineffective. Instead, a

novel algorithm is designed that uses the system measurements to reason whether or not the previous

control packet was received. The algorithm consists of an estimator, made up of a mode detector

and state observer, and state feedback implemented with one of two options:

• using an enlarged control value that guarantees proper detection of the control packet fate or

10

• using standard state feedback and tolerate possible misdetections of the control packet but

achieve better closed loop performance.

I analyze both of these options and present stability conditions. I also compare these techniques

with that of the unknown input observer.

The final scenario, studied in Chapter 5, of this thesis relates to the area of multi-agent consensus.

The goal in the consensus problem is to find a distributed algorithm such that a collection of agents

reaches agreement on some scalar quantity of interest, typically the average of the agents’ “initial

conditions.” To do so the agents must communicate their values to other agents, but they can only

communicate with some subset of the other nodes. This problem has been extensively studied lately,

see [57] and references therein. The consensus algorithm that is commonly used updates the agents’

local value according to the dynamics ẋ = −Lx, where x is a vector of all the agents’ values, and

L is a matrix representing the communication graph of the agents. The first works in this field

are concerned with proving what conditions on the communication topology are required for the

algorithm to converge to the average consensus value. More recent work focuses on improving the

time to reach consensus. Many different approaches have been presented with the underlying feature

of attempting to increase the second smallest eigenvalue, λ2, of the matrix L. The contribution made

in this chapter is to introduce a new approach to speed up convergence in consensus algorithms

applicable to graphs that can be decomposed into a hierarchical graph.

The algorithm presented consists of hierarchically decomposing the given communication topol-

ogy by splitting the overall graph into layers of smaller connected subgraphs. The consensus dy-

namics are performed within the individual subgraphs starting with those of the lowest layer of

the hierarchy and moving upwards. Certain “leader” nodes bridge the layers of the hierarchy. By

exploiting the larger λ2 values of the smaller subgraphs, this scheme can achieve faster overall con-

vergence than the standard single-stage consensus algorithm running on the full graph topology.

Furthermore, using the consensus dynamics for the individual subgraphs endows them with the

benefits associated with standard consensus algorithm, such as robustness to information perturba-

tions, no need for a global planner within the subgraphs, etc. The contribution of this chapter is

to extend the basic understanding of consensus algorithms to situations when the system may have

a hierarchical structure. This hierarchical structure is typical in layered communication networks,

where some nodes are gateways between clusters of local nodes and the rest of the network. A bound

on the consensus error under this algorithm is presented and compared to the standard single-stage

consensus algorithm run on the full communication topology.

Finally, in Chapter 6 I again summarize the main contributions of this thesis and discuss exten-

sions for this research and overall directions of future work for managing information in NCS and

multi-agent systems.

11

1.4 Mathematical Notation and Basic Definitions

This section provides a quick description of some of the mathematical notation and basic definitions

that appear in the remainder of this thesis.

The transpose of a vector x is x′; likewise for a matrix X it is X ′. The trace of a matrix X

is denoted by Tr(X). For a given vector x ∈ IRn, all norms ‖x‖ =
√
x′x are assumed to be the

standard Euclidean norm (2-norm). For any matrix X ∈ IRn×n, the norm ‖X‖ is the corresponding

induced matrix norm unless otherwise explicitly stated. We also use the H-norm, defined for some

positive definite matrix H > 0. For a matrix X we have ‖X‖H = ‖H 1
2XH− 1

2 ‖, and for a vector

x it is ‖x‖H =
√
xTHx. For any positive definite matrix X > 0, denote the smallest and largest

eigenvalues of X by λ(X) and λ(X), respectively. For any positive semi-definite matrix X ≥ 0 with

all real non-negative eigenvalues, let λ2(X) represent the second smallest eigenvalue of X and ρ(X)

its spectral radius, i.e., the magnitude of the largest eigenvalue.

Various notions relating to probability theory and stochastic dynamical systems appear in this

thesis. The abbreviation i.i.d. is used for any random distribution that is independent and identically

distributed. The probability of any random event occurring is given by Pr[·]. For any random

variable x the mathematical expectation of this variable is given by E[x]. A random sequence xk is

called almost surely stable if

Pr
[

lim
k→∞

‖xk‖ = 0
]

= 1 .

It is called stable in the mth moment if

sup
k

E [‖xk‖m] <∞ .

12

Chapter 2

Probabilistic Performance
Characterization of State
Estimation Across a Lossy Network

2.1 Introduction

The first area of networked control systems considered in this thesis is the problem of state estimation

over a network. This is a subject that has been widely studied recently. The problem of state

estimation and stabilization of a linear time invariant (LTI) system over a digital communication

channel which has a finite bandwidth capacity is introduced by Wong and Brockett [85, 86] and

further pursued by [6, 49, 81, 59]. In [73], Sinopoli et al. discuss how packet loss can affect state

estimation. Due to the random packet drops, the estimation error covariance becomes a random

quantity as well. They show there exists a certain threshold of the packet loss rate above which the

state estimation error diverges in the expected sense, i.e., the expected value of the error covariance

matrix becomes unbounded as time goes to infinity. They also provide lower and upper bounds of

the threshold value. Following the spirit of [73], in [35], Liu and Goldsmith extend the idea to the

case where there are multiple sensors and the packets arriving from different sensors are dropped

independently. They provide similar bounds on the packet loss rate for a stable estimate, again in

the expected sense.

The problem of state estimation of a dynamical system where measurements are sent across a

lossy network is also the focus of this chapter. Despite the great progress of the previous researchers,

the problems they studied have certain limitations. For example, in both [73] and [35], they assume

that packets are dropped independently, which is certainly not true in the case where burst packets

are dropped or in queuing networks where adjacent packets are not dropped independently. They

also use the expected value of the error covariance matrix as the measure of performance. This can

conceal the fact that events with arbitrarily low probability can make the expected value diverge,

13

and it might be better to ignore such events that occur with extremely low probability. For example,

consider the simple unstable scalar system in [73]

xk+1 = axk + wk

yk = xk + vk ,

with a = 2. Let the packet arrival rate be given by γ = 0.74 < 1 − 1/a2. According to [73],

the expected value of the estimation error covariance, E[Pk], grows unbounded with time. This is

easily verifiable by considering the event T where no packets are received in k time steps. Then,

E[Pk] ≥ Pr[T]E[Pk|T] ≥ (0.26k)4kP0 = 1.04kP0. By letting k go to infinity, we see that this event

with almost zero probability makes the expected error diverge.

The goal of the present work is to give a more complete characterization of the estimator per-

formance by instead considering a probabilistic description of the error covariance. We show the

covariance is bounded above by a given bound with a high probability, i.e.,

Pr[Pk ≤M] = 1− ε . (2.1)

The importance of this characterization lies in the fact that while the expected value of Pk may

diverge due to events with very low probability, in fact the actual value of Pk can be below an

acceptable limit for a vast majority of the time. For this expression to hold, it requires an estimator

that has a finite upper bound whenever a measurement packet is received. We construct such

an estimator by using a buffer of previous measurements. We also show how to determine the

relationship between M and ε.

The rest of the chapter is organized as follows. In Section 2.2, the mathematical model of our

problem is given, followed by an analysis of the Kalman filter using a buffer of measurements and

an observer-based estimator. The estimation algorithm that provides an upper bound to the error

covariance whenever a measurement packet arrives is described in Section 2.3. In Section 2.4, we

show that M exists for any given ε for the expression in Eqn. (2.1). In Section 2.5, we give an explicit

relationship between the bound and probability of the error covariance staying below the bound. In

Section 2.6 we compare our metric with that of [73] by means of an example. The chapter concludes

with a summary of our results and a discussion of the work that lies ahead. This chapter is a joint

work with Ling Shi, Abhishek Tiwari, and Richard M. Murray. It is published in [72, 16].

14

2.2 Problem Set Up

2.2.1 Problem Setting

We consider estimating the state of a discrete-time LTI system

xk+1 = Axk + wk

yk = Cxk + vk. (2.2)

As usual, xk ∈ Rn is the state vector, yk ∈ Rm is the observation vector, and wk ∈ Rn and vk ∈ Rm

are zero mean white Gaussian random vectors with E[wkwj
′] = δkjQ ≥ 0, E[vkvj

′] = δkjR > 0, and

E[wkvj
′] = 0 ∀j, k, where δkj = 0 if k 6= j and δkj = 1 otherwise. We assume the pair (A,C) is

observable and (A,Q
1
2) is controllable and, to make the estimation problem interesting, that A is

unstable.

We assume the sensor measurements yk are sent across a lossy network to the estimator, with no

delay and negligible quantization effects. Thus, the estimator either receives a perfectly communi-

cated measurement packet or none at all. It is assumed the network losses are random events. Let

γk be the random variable indicating whether a packet is received at time k or not, i.e., γk = 0 if a

packet is dropped, and γk = 1 if it is received.

In addition, we assume that the sensor has the ability to store measurements in a buffer. There-

fore, each packet sent through the network contains a finite number of the previous measurements,

and the network has significant bandwidth to transmit those measurements at each time instant.

Figure 2.1 shows a schematic of the system set up. Note the measurement packet sent across the

network ỹk consists of the previous S + p measurements taken by the sensor.

Plant Sensor BufferSensor

Estimator Lossy Network

Figure 2.1: Schematic of NCS for state estimation across a lossy network.

15

2.2.2 Kalman Filtering Across a Lossy Network

Sinopoli et al. [73] consider this set up without a buffer, i.e., S+p = 1. They show that the Kalman

filter is still the optimal estimator in this setting. There is a slight change to the standard Kalman

filter in that only the time update is performed when the measurement packets are dropped. When

a measurement is received, the time and measurement update steps are performed. The filtering

equations become

x̂k+1|k = Ax̂k|k , (2.3)

Pk+1|k = APk|kA
′ +Q , (2.4)

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) , (2.5)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k , (2.6)

where γk+1 ∈ {0, 1} indicates if the measurement yk+1 is received, andKk+1 = Pk+1|kC
′(CPk+1|kC

′+

R)−1 is the Kalman gain matrix. Note Eqn.s (2.3) – (2.4) are the Kalman Filter Time Update equa-

tions and Eqn.s (2.5) – (2.6) are the Measurement Update equations. The a priori and a posteriori

error covariances are Pk+1|k and Pk+1|k+1, respectively.

Unlike the standard Kalman filtering setting where the error covariance matrix is a deterministic

quantity (given an initial value), the randomness of the lossy network makes the covariance a random

variable as well. Nonetheless, the update equation for the a priori covariance can still be characterized

as

Pk+1 = APkA
′ +Q− γkAPkC

′[CPkC
′ +R]−1CPkA

′ , (2.7)

where we simply write Pk = Pk|k−1. For the case where γk is an i.i.d. variable with mean γ, Sinopoli

et al. [73] show that there exists a critical value γc = 1−1/λmax(A)2 which determines the stability of

the expected value of the estimation error covariance E[Pk] as k →∞. As mentioned in Section 2.1,

we are interested in a different metric to evaluate the estimator performance,

Pr[Pk ≤M] = 1− ε . (2.8)

The key to evaluate this expression is that the error covariance has an upper bound following a

single measurement packet being received. A packet being received means the Kalman filter time

and measurement updates are applied. As shown below, if rank(C) = n, an upper bound for the

error covariance is achieved following a single measurement update, and the transmitted packet only

needs to contain a single measurement. If rank(C) < n, we can still get an upper bound for the

covariance, but only after several Kalman filter measurement update steps are applied, hence the

transmitted packet must contain a sequence of previous measurements in this case.

16

Given the system parameters (A,C,Q,R), then for any positive semidefinite matrix X ≥ 0,

define the following functions:

h(X) = AXA′ +Q , (2.9)

g(X) = AXA′ +Q−AXC ′(CXC ′ +R)−1CXA′ . (2.10)

Note that applying these functions to Pk yields Pk+1 according to Eqn. (2.7)

Pk+1 =

 h(Pk), if γk = 0

g(Pk), if γk = 1
. (2.11)

We adopt the notation that gm(X) and hm(X) mean to apply the g and h functions m times starting

from X, with g0(X) = h0(X) = X. Note that if we write X = g(X) in Eqn. (2.10), this is equivalent

to the discrete algebraic Riccati equation (DARE). Denote the solution to this equation by

P = g(P) , (2.12)

which is also the steady state covariance if all measurements are received (i.e., if γk = 1 ∀k, then

lim
k→∞

Pk = lim
k→∞

gk(P0) = P for any P0 ≥ 0). Next we establish an upper bound on g(X) when

rank(C) = n. First note that by using the matrix inversion lemma [26], we can rewrite g(X) in

Eqn. (2.10) as

g(X) = A
(
X−1 + C ′R−1C

)−1
A′ +Q . (2.13)

Lemma 2.1 If X ≥ Y ≥ 0, then g(X) ≥ g(Y) and h(X) ≥ h(Y).

Proof: See [73] Appendix A. �

Lemma 2.2 For any positive semidefinite matrix X ≥ 0, if rank(C) = n, then

g(X) ≤ A
(
C ′R−1C

)−1
A′ +Q . (2.14)

Proof: From Lemma 2.1 we see that g(X) is an increasing function. Then from the functional form

of g(X) in Eqn. (2.13) and taking the limit as the argument goes to infinity we see that

lim
X→∞

g (X) = lim
X→∞

A
(
X−1 + C ′R−1C

)−1
A′ +Q = A

(
C ′R−1C

)−1
A′ +Q .

Since it is an increasing function, this is an upper bound for g(X), and the result holds. Note that

rank(C) = n is required so that rank(C ′R−1C) = n, and this quantity is invertible. �

17

Corollary 2.3 If C is square and invertible the upper bound becomes

g(X) ≤ AC−1RC ′
−1
A′ +Q . (2.15)

Proof: This is a direct result of Lemma 2.2 with
(
C ′R−1C

)−1 = C−1RC ′
−1 since C is square and

invertible. �

Thus we see that if rank(C) = n, the covariance can be upperbounded after a measurement

is received and applying a single measurement update, since if γk = 1 we have Pk+1 = g(Pk) ≤

A
(
C ′R−1C

)−1
A′+Q. If rank(C) < n, we still seek a bound on the Kalman filter updates. It turns

out the bound exists, but not given a single measurement update. Rather, it requires a sequence

of measurement updates be processed for a bound on the covariance to be obtained. To find this

bound, we begin with some preliminary results to be used later on.

Similar to the definition of g(X), for any positive semidefinite matrix X ≥ 0 and system matrices

(A,C,Q,R) and matrix T of appropriate dimension such that

Q− TR−1T ′ ≥ 0 , (2.16)

define the following function,

g̃(X,A,C,Q,R, T) = AXA′ +Q− (AXC ′ + T) (CXC ′ +R)−1 (T ′ + CXA′) . (2.17)

If the matrix T = 0, then we have g̃(X,A,C,Q,R, 0) = g(X). The lemma below provides a bound

for this function given (A,C,Q,R, T).

Lemma 2.4 For any positive semidefinite matrix X ≥ 0, if rank(C) = n, then

g̃(X,A,C,Q,R, T) ≤
(
A− TR−1C

) (
C ′R−1C

)−1 (
A− TR−1C

)′
+Q− TR−1T ′ . (2.18)

Proof: First we expand the expression for g̃(X,A,C,Q,R, T) in Eqn. (2.17),

g̃(X,A,C,Q,R, T) = AXA′ +Q−AXC ′ (CXC ′ +R)−1
CXA′ − T (CXC ′ +R)−1

T ′

−T (CXC ′ +R)−1
CXA′ −AXC ′ (CXC ′ +R)−1

T ′ . (2.19)

If we make the following substitutions for the A and Q matrices,

A− TR−1C → A

Q− TR−1T ′ → Q , (2.20)

18

evaluate g(X) in Eqn. (2.10), and denote this by ĝ(X), it is equivalent to

ĝ(X) = (A− TR−1C)X(A− TR−1C)′ + (Q− TR−1T ′)

−(A− TR−1C)XC ′ (CXC ′ +R)−1
CX(A− TR−1C)′

= AXA′ +Q−AXC ′ (CXC ′ +R)−1
CXA′

+T
(
R−1CXC ′R−1 −R−1 −R−1CXC ′ (CXC ′ +R)−1

CXC ′R−1
)
T ′

+T
(
R−1CXC ′ (CXC ′ +R)−1 −R−1

)
CXA′

+AXC ′
(
(CXC ′ +R)−1

CXC ′R−1 −R−1
)
T ′

= AXA′ +Q−AXC ′ (CXC ′ +R)−1
CXA′ − T (CXC ′ +R)−1

T ′

−T (CXC ′ +R)−1
CXA′ −AXC ′ (CXC ′ +R)−1

T ′ , (2.21)

where the last line uses the matrix inversion lemma [26]. Thus we see that Eqn. (2.19) equals

Eqn. (2.21) when g(X) is evaluated with the substitutions in Eqn. (2.20), i.e., g̃(X,A,C,Q,R, T) =

ĝ(X). Furthermore, since ĝ(X) is simply g(X) evaluated with the substitutions in Eqn. (2.20), then

ĝ(X) is upper bounded the expression in Eqn. (2.14) with the same substitutions as in Eqn. (2.20).

Hence,

g̃(X,A,C,Q,R, T) = ĝ(X) ≤
(
A− TR−1C

) (
C ′R−1C

)−1 (
A− TR−1C

)′
+Q− TR−1T ′ .

�

Corollary 2.5 If C is square and invertible, the upper bound becomes

g̃(X,A,C,Q,R, T) ≤ AC−1RC ′
−1
A′ +Q−AC−1T ′ − TC ′−1

A′ . (2.22)

Proof: This is a direct result of Lemma 2.4 with
(
C ′R−1C

)−1 = C−1RC ′
−1 since C is square and

invertible. �

We are now ready to proceed with finding an upper bound for the estimation covariance using

a sequence of measurements and the Kalman filter with C noninvertible, i.e., rank(C) < n. To find

this bound, begin by defining

O(r) =


C

CA
...

CAr−1

 , (2.23)

19

for any positive integer r ≥ 1. Next define S to be the smallest integer such that the matrix is rank

n, i.e.,

S = min {r ≥ 1 : rank (O(r)) = n} . (2.24)

Since (A,C) is observable, S is guaranteed to exist, and S ≤ n. Thus, by concatenating the previous

S consecutive measurements, the augmented observation vector O(S) is full rank. For notational

convenience we simply let O represent O(S) for the remainder of the chapter.

Assume that each measurement packet received at the estimator contains S previous measure-

ments, i.e., the measurement sequence yk−S+1, yk−S+2, . . . , yk. Then, an estimation algorithm can

be run that performs S Kalman filter time and measurement updates starting with stored values

of x̂k−S+1|k−S+1 and Pk−S+1 and using the measurement sequence yk−S+1, yk−S+2, . . . , yk. We call

this algorithm the S-step Kalman filter. Following the S update steps, the filter produces an a priori

estimate x̂k+1|k with an associated a priori covariance given by Pk+1 = gS(Pk−S+1). In the theorem

below we find an upper bound for gS(X).

Theorem 2.6 For any positive semidefinite matrix X ≥ 0, with S defined by Eqn. (2.24), the

following upper bound holds,

gS(X) ≤ A
((

AS−1 − T̃ R̃−1O
)(
O′R̃−1O

)−1 (
AS−1 − T̃ R̃−1O

)′
+ Q̃− T̃ R̃−1T̃ ′

)
A′+Q , (2.25)

with

Q̃ , E [w̃kw̃
′
k] (2.26)

R̃ , E [ṽkṽ
′
k] (2.27)

T̃ , E [w̃kṽ
′
k] (2.28)

where

w̃k =
S−2∑
i=0

Aiwk−i−1 (2.29)

ṽk =



vk−S+1

Cwk−S+1 + vk−S+2

...

C

(
S−2∑
i=0

Aiwk−i−1

)
+ vk


. (2.30)

Proof: To prove this, we first construct a linear estimator that uses the previous a priori estimate

x̂k−S+1|k−S+1 and covariance Pk−S+1 and the sequence of measurements yk−S+1, yk−S+2, . . . , yk

20

to produce an estimate of xk and associated covariance that is shown to be upperbounded. The

estimate and covariance are equivalent to using the S-step Kalman filter with the same information

set. Then, using this estimate and the corresponding variance upper bound to predict forward to

time step k+ 1 we have an a priori covariance that is equivalent to gS(Pk−S+1), with corresponding

upper bound.

At time k, given the sequence of measurements yk−S+1, yk−S+2, . . . , yk and a previous a priori

estimate x̂k−S+1|k−S and covariance Pk−S+1, we can construct an estimate of the state according

to the linear estimator

x̃k = AS−1x̂−k−S+1 + K̃k

(
ỹk −O x̂−k−S+1

)
, (2.31)

where we use the notation x̂−k−S+1 = x̂k−S+1|k−S , and

ỹk =


yk−S+1

yk−S+2

...

yk

 =


Cxk−S+1 + vk−S+1

Cxk−S+2 + vk−S+2

...

Cxk + vk

 (2.32)

for this measurement update step. Note that for j ≥ k − S + 1 we can write

yj = C

(
Aj−k+S−1xk−S+1 +

j−k+S−2∑
i=0

Aiwj−i−1

)
+ vj .

The term in the parenthesis is xj , and note we have separated the expression in terms of dependence

on the state at time k−S+1 and the noise sequence from k−S+1 to j−1. Thus, the measurement

packet can be represented as

ỹk = Oxk−S+1 + ṽk . (2.33)

Note the state at time k can be written as

xk = AS−1xk−S+1 +
S−2∑
i=0

Aiwk−i−1

= AS−1xk−S+1 + w̃k . (2.34)

Combining Eqn.s (2.33) and (2.34) in Eqn. (2.31) we get that the a posteriori estimation error

ẽk = x̃k − x̂k is

ẽk =
(
AS−1 − K̃kO

)
e−k−S+1 + w̃k − K̃kṽk ,

where e−k−S+1 = xk−s+1 − x̂−k−S+1 is the a priori estimation error from time k − S + 1. Note that

since e−k−S+1 is an a priori estimation error, it is independent of w̃k and ṽk. Calculating the variance

21

of the estimation error, P̃k = E[ẽkẽ
′
k], yields

P̃k =
(
AS−1 − K̃kO

)
Pk−S+1

(
AS−1 − K̃kO

)′
+ Q̃+ K̃kR̃K̃

′
k − K̃kT̃

′ − T̃ K̃ ′
k . (2.35)

This variance can be minimized by taking the derivative of the trace of P̃k with respect to K̃k,

setting that expression equal to zero and solving for K̃k. Doing this yields the optimal gain

K̃k =
(
T̃ +AS−1Pk−S+1O′

)(
OPk−S+1O′ + R̃

)−1

.

It can be shown that using this optimal gain in Eqn. (2.35) results in the expression

P̃k = AS−1Pk−S+1A
S−1′ + Q̃

−
(
AS−1Pk−S+1O′ + T̃

)(
OPk−S+1O′ + R̃

)−1 (
AS−1Pk−S+1O′ + T̃

)′
. (2.36)

Note the right hand side of Eqn. (2.36) is exactly equivalent to g̃(Pk−S+1, A
S−1,O, Q̃, R̃, T̃) from

Eqn. (2.17). Therefore, we can apply Lemma 2.4 to get the upper bound

P̃k ≤
(
AS−1 − T̃ R̃−1O

)(
O′R̃−1O

)−1 (
AS−1 − T̃ R̃−1O

)′
+ Q̃− T̃ R̃−1T̃ ′ . (2.37)

Since the estimator described above is a linear estimator that minimizes the a posteriori co-

variance of the estimate at time k given the a priori estimate x̂k−S+1|k−S+1 and the measurement

sequence yk−S+1, yk−S+2, . . . , yk, it must be identical to the Kalman filter that is implemented by

starting with x̂k−S+1|k−S+1 and Pk−S+1 and performing the S time and measurement updates ac-

cording to Eqn.s (2.3) – (2.6), see [80]. This means the a posteriori Kalman filter estimate at time k

is given by x̂k|k = x̃k, and the a priori estimate at time k + 1 is simply x̂k+1|k = Ax̃k with variance

Pk+1 = AP̃kA
′ +Q. Of course, using the definition of g(X) we can also write Pk+1 = gS(Pk−S+1),

therefore

gS(Pk−S+1) = Pk+1 = AP̃kA
′ +Q . (2.38)

Then, using Eqn. (2.37) we arrive at Eqn. (2.25). �

Corollary 2.7 If O is square and invertible, the upper bound becomes

gS(X) ≤ ASO−1R̃O′−1
AS ′ +AQ̃A′ +Q−ASO−1T̃ ′A′ −AT̃O′−1

AS ′ . (2.39)

Proof: This is a direct result of Theorem 2.6 with
(
O′R−1O

)−1 = O−1RO′−1 since O is square

and invertible. �

22

The variances (Q̃, R̃, T̃) in Eqn.s (2.26) – (2.28) can be computed according to the following

expressions:

R̃ = diag
(
R̃S

)
+ US + US

′ (2.40)

Q̃ = Q̃S (2.41)

T̃ =
[
0m

n , T̃2, T̃3, · · · , T̃S

]
, (2.42)

with

R̃S =
[
R,R+ CQ̃2C

′, R+ CQ̃3C
′, · · · , R+ CQ̃SC

′
]

Q̃i =
i−2∑
j=0

AjQAj
′

, for i = 2, . . . , S

US =


[
0S·m

m

′

, u2
′, u3

′, · · · , uS−1
′, 0S·m

m

′]′
, if S ≥ 2

0S·m
m , if S = 1

ui =
[
0i·m

m , CQ̃iA
′C ′, CQ̃iA

2
′

C ′, · · · , CQ̃iA
S−i

′

C ′
]
, for i = 2, . . . , S − 1

T̃i =
S−2∑

j=S−i

AjQAj−S+i
′

C ′ , for i = 2, . . . , S .

The term 0j
i is used to represent a matrix with i rows and j columns whose elements are all identically

zero.

Theorem 2.6 provides an upper bound to gS(X) and, hence, an upper bound for the S-step

Kalman filter. If each measurement packet that is received at the estimator contains S previous

measurements, the S-step Kalman filter can be run by using the stored values of x̂k−S+1|k−S+1

and Pk−S+1 and the measurement sequence yk−S+1, yk−S+2, . . . , yk to produce an estimate with a

bounded variance. With this upper bound, the probabilistic performance metric in Eqn. (2.8) can be

evaluated. There is a difficulty in implementing the estimation algorithm in this manner, however.

Every time-step a measurement packet is received, a total of S Kalman gains must be computed,

and this can be a heavy computational burden. In addition, the bound provided here essentially

assumes the a priori variance Pk−S+1 is infinite. As this does not occur in practice, the bound is

conservative.

To remove these issues, in the next section we introduce an observer-based estimator that also

utilizes the previous S measurements to obtain an estimate with a bounded variance. It does

not, however, have the computational burden of computing S Kalman gains every time-step a

measurement packet is received, nor does it require the storage of the old estimate x̂k−S+1|k−S+1

and variance Pk−S+1.

23

2.2.3 Observer-Based Estimator

The observer-based estimator described in this section provides a state estimate by inverting out the

known dynamics from a finite sequence of past measurements. Like the S-step Kalman filter from

the previous section, the variance of the observer-based estimator has an upper bound, but it does

not suffer the computational burden associated with computing S Kalman filter gains as mentioned

above.

Recall from the definition ofO that it is a matrix with S·m rows and n columns with rank(O) = n;

hence, it has a left inverse. Denote the left inverse by

O† , (O′O)−1O′ . (2.43)

If O is square and full rank, then note that O† = O−1. At time k, given the measurement packet

with the sequence of measurements yk−S+1, yk−S+2, . . . , yk, we can construct the observer-based

estimator according to

x−k = AS−1O†ỹk (2.44)

x+
k+1 = Ax−k , (2.45)

with ỹk as in Eqn. (2.32). Note that xk is the a posteriori estimate at time k, and x+
k+1 is the a priori

estimate of the state at time k + 1 since it is made using measurements up to time k. Define the

estimation errors as e−k = xk−x−k and e+k+1 = xk+1−x+
k+1 with associated variances P

−
k = E[e−k e

−
k
′]

and P
+

k+1 = E[e+k+1e
+
k+1

′
]. In the previous sections the quantity of interest is the a priori covariance,

so we also consider P
+

k+1 here. The following theorem gives the value for this variance.

Theorem 2.8 Using the observer-based estimator in Eqn.s (2.44) – (2.45), the a priori covariance

is given by

P
+

k+1 = ASO†R̃O†′AS ′ +AQ̃A′ +Q−ASO†T̃ ′A′ −AT̃O†′AS ′ , (2.46)

with (Q̃, R̃, T̃) defined as before.

Proof: Using the expression for ỹk from Eqn. (2.33) we can then write the estimator in Eqn. (2.45)

in terms of xk−S+1 as

x+
k+1 = ASO†ỹk

= ASO† (Oxk−S+1 + ṽk)

= ASxk−S+1 +ASO†ṽk ,

24

Recall the state at time k + 1 can be written as

xk+1 = ASxk−S+1 +
S−2∑
i=0

Ai+1wk−i−1 + wk

= ASxk−S+1 +Aw̃k + wk .

Combining these, the estimation error for this estimator can then be easily seen to be

e+k+1 = Aw̃k + wk +ASO†ṽk . (2.47)

Computing the variance of this expression, and noting that wk is independent of both w̃k and ṽk,

we arrive at Eqn. (2.46). �

Note that the expression in Eqn. (2.46) is an identity and not a bound. That is, P
+

k+1 is a

fixed quantity that depends only on A,C,Q,R and S, and it is independent of any prior estimate

covariance. So, whenever S consecutive measurements are available, the observer-based estimator

can produce an estimate with error covariance given by Eqn. (2.46). This simply requires that the

sensor transmit the previous S measurements at each time-step, just as to have an upper bound

for the Kalman filter requires S measurement updates. Of course implementing the observer-based

estimator of Eqn.s (2.44) – (2.45) does not suffer from the computational burden of computing S

Kalman gains. Notice that if O is square and invertible, the covariance from the observer-based

estimator in Theorem 2.8 is equivalent to the upper bound of gS(X) from Corollary 2.7. The

drawback of using the observer-based estimator, compared to the S-step Kalman filter, is that the

covariance of the observer-based estimator in Eqn. (2.46) can be quite large and provides a tight

bound on any estimation algorithm using this method. As a result, we develop an algorithm in

the next section that uses S measurements to evaluate the observer-based estimator along with

additional p measurements to decrease the bound.

2.3 Estimator Algorithm

As mentioned before, the key in evaluating the probabilistic performance description in Eqn. (2.8)

is to have an estimator algorithm that provides an upper bounded whenever a measurement packet

is received. In the previous section we presented two estimators that achieve this

• the S-step Kalman filter and

• the observer-based estimator.

25

Both of these estimators require S measurements be transmitted in every packet. The bound of the

covariance from the S-step Kalman filter given in Theorem 2.6, which we denote by

S̃ , A

((
AS−1 − T̃ R̃−1O

)(
O′R̃−1O

)−1 (
AS−1 − T̃ R̃−1O

)′
+ Q̃− T̃ R̃−1T̃ ′

)
A′ +Q , (2.48)

is conservative since it is computed by taking the limit as the previous a priori covariance goes to

infinity. The bound for error covariance of the observer-based estimator given in Theorem 2.8, which

we denote by

S , ASO†R̃O†′AS ′ +AQ̃A′ +Q−ASO†T̃ ′A′ −AT̃O†′AS ′ , (2.49)

is tight since it is a fixed value. If O is square and invertible, we have S = S̃.

As to be expected, the values of S̃ and S can be quite large since they rely on an infinite previous

a priori covariance and inverting out the dynamics, respectively. Regardless of what estimator

algorithm we use, let Pk+1 represent the a priori estimate covariance at time k + 1. Then, using

the observer-based estimator means we have exactly Pk+1 = S, whereas using the S-step Kalman

filter gives Pk+1 ≤ S, and in fact Pk+1 can be much smaller than this bound. Despite yielding a

larger Pk+1, there are two main advantages to using the observer-based estimator rather than the

S-step Kalman filter; the observer-based estimator does not require the computation of S Kalman

gains, and no previous estimate needs to be stored. Furthermore, as we show below, even if we use

the observer-based estimator, the bound on Pk+1 can actually be made significantly smaller than S

by including an additional p measurements in the buffer. For these reasons the estimator algorithm

uses the observer-based estimator as described below.

Since the value of S can be quite large, as it relies on inverting out the dynamics, we seek a method

to reduce the bound on the estimator covariance after a packet is received. This is accomplished

by including a total of S + p measurements in the transmitted packet. The first S measurements,

{yk−S−p+1, yk−S−p+1, . . . , yk−p}, are used to construct the estimate x†k−p+1 according to Eqn. (2.45).

The remaining measurements {yk−p+1, . . . , yk} are then used in running the Kalman filter time and

measurement updates, Eqn.s (2.3) – (2.6), initialized with x̂k−p+1|k−p = x+
k−p+1 and Pk−p+1 = S.

After running a total of p Kalman filter time and measurement updates we have an estimate x̂k+1|k

whose error covariance is given by

Pk+1 = gp(S) , M . (2.50)

Note that M can be much smaller than S, and in fact as p gets larger M approaches the error

covariance of the steady state Kalman filter with all measurements received, P . Note also that since

the covariance of the observer-based estimator is a fixed quantity, S, the subsequent p Kalman gains

can be computed off-line and stored in advance; once again this pre-computing of the gains is not

26

possible if the first S measurements are used with the S-step Kalman filter. We call the estimator

just described an observer-based estimator with p-step Kalman filter extension.

Using the observer-based estimator with p-step Kalman filter extension, the estimate covariance

is given by Eqn. (2.50) whenever a measurement packet arrives, i.e., if γk = 1, then Pk+1 = M . We

call the 1-step Kalman filter the algorithm that runs the Kalman filter time and measurement steps

using the estimate and variance from the previous time-step and only using the current measurement

yk every time a measurement packet is received. Then, using the 1-step Kalman filter after a sequence

of packet receives the covariance might be smaller than M . Of course, after a sequence of drops,

using the 1-step Kalman filter might not produce an estimate with covariance smaller than M . The

1-step Kalman filter is easier to implement than the observer-based estimator with p-step Kalman

filter extension. Therefore, we implement an estimation algorithm that simply performs the 1-step

Kalman filter using only the current measurement yk every time a packet arrives and only decides to

run the observer-based estimator with p-step Kalman filter extension if the covariance from the 1-step

Kalman filter is greater than M . The algorithm provides an upper bound on the error covariance

that holds whenever a measurement packet is received, i.e.,

Pk+1 ≤M, if γk = 1 , (2.51)

which we need to evaluate the performance metric in Eqn. (2.8). Of course, if no packet arrives

γk = 0, then Pk+1 = h(Pk).

The estimator algorithm consists of running at every time-step k the time update of the Kalman

filter, Eqn.s (2.3) – (2.4), using the a posteriori estimate x̂k−1|k−1 and variance Pk−1|k−1 from the

previous time-step to produce x̂k|k−1 and Pk. If a measurement packet is not received, γk = 0, the

algorithm is complete for this time-step. If a measurement packet is received, γk = 1, the Kalman

filter measurement update step, Eqn.s (2.5) – (2.6), is run using the most recent measurement yk

to produce an a posteriori estimate x̂k|k and variance Pk|k. From this, the a priori covariance for

the next time step can be computed as g(Pk). If this value is less than M , then the algorithm is

complete for this time-step. If g(Pk) � M , then the observer-based estimator with p-step Kalman

filter extension yields a better estimate, and the algorithm produces an estimate using this method

instead. It uses the oldest S measurements in the packet to compute the x+
k−p+1 from the observer-

based estimator in Eqn. (2.45). Then, it sets x̂k−p+1|k−p ← x+
k−p+1 and Pk−p ← S and runs the

p-step Kalman filter extension with the measurement sequence {yk−p+1, . . . , yk} to produce the

estimate x̂k and variance Pk|k. The algorithm is described in Table 2.1.

27

Table 2.1: Algorithm for estimation scheme.
0) Given A,C,Q,R ;
• Determine S and P ;
• Choose the number of additional measurements, p,

to buffer and transmit so that M = gp(S) is as close
to P as desired and so that
Pk ≤M holds whenever a packet is received ;
• Initialize x̂0 and P0 ;

1) Wait for packet at time k ;
• Kalman Filter Time Update ;
• If packet received at time k ;
− Kalman Filter Measurement Update ;
− If Pk � M ;
∗ Compute x+

k−p+1 using Eqn. (2.45) ;
∗ Set x̂k−p+1|k−p ← x+

k−p+1 and Pk−p+1 ← S ;
∗ Loop j = 1 to p ;
◦ Kalman Filter Time and

Measurement Updates
using measurement yk−p+j ;

∗ EndLoop ;
− EndIf ;
− k ← k + 1 ;

• EndIf ;
• Goto 1 ;

2.4 Asymptotic Properties of Error Covariance Matrix

As the simple example in the introduction shows, some events with almost zero probability can

make the expected value of the error covariance diverge. In practice, those rare events are unlikely

to happen and hence should be ignored. Therefore, the expected value of the error covariance matrix

may not be the best metric to evaluate the estimator performance. By ignoring these low probability

events, we hope that the error covariance matrix is stable with arbitrarily high probability. This is

precisely captured in the following theorem.

Theorem 2.9 Assume the packet arrival sequences are i.i.d. Let πg be the expected value of the

packet arrival rate. If πg > 0, then for any 0 < ε < 1, there exists M(ε) < ∞ such that the error

covariance matrix Pk is bounded by M with probability 1− ε.

Though we assume here that the packet drops occur independently, it is shown later when we

determine the relationship between M and ε that the condition can be relaxed to include the case

where the packet drops are described by an underlying markov chain. The theorem also suggests

that for a given error tolerance M > 0, we can find min(πg) such that the error covariance matrix Pk

is bounded by M with any given specified probability. Before we prove the theorem, we introduce

the following proposition.

28

Proposition 2.10 Define

λh(X) =
Tr(h(X))

Tr(X)
.

Then,

λh(X) ≤ 1 + λn(A′A) , λ̄h

for all X > 0 such that Tr(X) ≥ Tr(Q), where λn(A′A) denotes the largest eigenvalue of A′A.

Proof:

λh(X) =
Tr(AXA′)

Tr(X)
+

Tr(Q)
Tr(X)

≤ 1 +
Tr(AXA′)

Tr(X)

= 1 +
Tr(A′AX)

Tr(X)

= 1 +
Tr(P ′A′APP ′XP)

Tr(P ′XP)

= 1 +
Tr(SY)
Tr(Y)

,

where S = P ′A′AP is diagonal and Y = P ′XP > 0 and has the same eigenvalues as X. Such P

exists and P ′ = P−1, as A′A is real symmetric. Hence,

λh(X) ≤ 1 +
Tr(SY)
Tr(Y)

= 1 +
∑n

i=1 λi(A′A)Yii∑n
i=1 Yii

≤ 1 +
λn(A′A)

∑n
i=1 Yii∑n

i=1 Yii

= 1 + λn(A′A).

Notice that we implicitly used the fact that Yii > 0 for all i; this follows as

Yii = ei
′Y ei > 0 .

�

Now we are ready to prove Theorem 2.9.

Proof: [Theorem 2.9] Without loss of generality, assume at time k the packet is not received, γk = 0,

otherwise Pk ≤M , M(ε) for any ε. Define πh = 1− πg and let k′ = max{s : s ≤ k, γs = 1}. Then

29

k − k′ = N with probability πgπ
N
h . Further, define M0 = Tr(P0), M1 = Tr(M), and αN = λ̄N

h . We

discuss two cases for a given ε.

1. 0 < ε ≤ πg

Solve the following equation for N ,

πgπ
N
h = ε ,

to get

N =
⌈

log ε− log πg

log πh

⌉
,

where dxe denotes the smallest integer that is larger than or equal to x. Assume first that

k ≥ N so that k′ ≥ 0. Since γk′ = 1, Pk′ ≤M . Therefore,

Pk ≤ αNM1I , M(ε)

with probability 1− ε, where I is the identity matrix of appropriate dimension.

Now consider the case k < N ; it is easy to see

Pk ≤ αNM0I , M(ε)

with probability at least 1− ε.

2. πg < ε ≤ 1.

Assume first k ≥ 2. Let N = 1 so that k′ = k − 1, i.e., , the previous packet is received and

Pk−1 ≤M . Then,

Pk ≤ α1M1I , M(ε)

with probability at least 1− ε. When k = 1,

Pk ≤ α1M0I , M(ε)

with probability at least 1− ε.

�

2.5 Determining the M-ε Relationship

It is apparent that M(ε) given in Theorem 2.9 is very conservative, and we seek a tighter bound for

the expression

Pr[Pk ≤M] = 1− ε . (2.52)

30

We begin by finding an upper bound on ε given M . Recall the bound on the error covariance after

a packet is received is given by M , as in Eqn. (2.51). Then, define εi(k) as the probability that at

least the previous i consecutive packets are dropped at time k, i.e.,

εi(k) = Pr[Nk ≥ i] , (2.53)

with Nk the number of consecutive packets dropped at time k. Note that Nk = (1− γk)(1 +Nk−1).

Clearly εi ≥ εj for i ≤ j. Next define

kmin , min {k ∈ Z+ : hk(M) � M} . (2.54)

Lemma 2.11 For 0 ≤M <∞, the quantity kmin always exists.

Proof: To prove the existence of kmin, note that for anyX > 0, lim
k→∞

Tr(hk(X)) =∞ if A is unstable.

Thus, for any scalar t > 0 there exists a kmin such that hkmin(M) � tI, and t can be chosen such

that tI ≥M . This means λn(hkmin(M)) > t and λn(M) < t, where λn is the maximum eigenvalue.

Then, using Weyl’s Theorem [26] we see λn(hkmin(M) −M) ≥ λn(hkmin(M)) − λn(M) > 0, which

implies hkmin(M) � M . �

Theorem 2.12 For unstable A, assume the initial error covariance matrix P0 is given by P0 ≤M .

Given a matrix bound M ≥M , then we have the following lower bound

Pr[Pk ≤M] = 1− ε ≥ 1− εkmin(k) . (2.55)

That is, the probability only depends on the number of consecutive packets dropped at the current

time and is independent of the packet drop/receive sequence prior to the previous received packet.

Proof: Since P0 ≤M , then assuming the next k packets are dropped we have Pk = hk(P0), and it

is clear that P0 ≤M ⇒ hk(P0) ≤ hk(M), so

Pk ≤ hk(M) .

So, the necessary condition that Pk � M is

hk(M) � M ,

but by definition hk(M) ≤ M ∀k < kmin. Thus, for Pk � M it is necessary to drop at least the

previous kmin consecutive packets.

31

Now assume a packet is not received until time m > kmin, that is γk = 0 for k = 0, · · · ,m − 1

and γm = 1, then Pm+1 ≤M from Eqn. (2.51). Thus, for a packet received at time m we have

Pm+1 ≤M . (2.56)

Regardless of how large m is, i.e., how long between packet receives, and how large the error covari-

ance gets, Eqn. (2.56) holds. Hence, the analysis above can always be repeated with Pm+1 replacing

P0, and the probability Pk � M depends only on the number of consecutive packets dropped and is

independent of what happens prior to the last packet received. �

Now we also establish an upper bound on 1 − ε that is valid under certain conditions. Recall

P is the solution to the Riccati equation, g(P) = P . The extra condition we require to establish a

lower bound on ε is that the relation

P < M (2.57)

holds. Now define

kmax , min {k ∈ Z+ : hk(P) > M} . (2.58)

Lemma 2.13 It is always true that h(P) ≥ P , which implies hk+1(P) ≥ hk(P).

Proof: Since P is the solution to the DARE, we can write

P = g(P)

= APA′ +Q−APC ′(CPC ′ +R)−1CPA′

≤ APA′ +Q

= h(P) .

With h(P) ≥ P , if we apply h to both sides k times, we get hk+1(P) ≥ hk(P). �

Lemma 2.14 If A is purely unstable, i.e., all the eigenvalues of A have magnitude larger than 1,

then kmax is guaranteed to exist.

Proof: If A is purely unstable, then lim
k→∞

λmin(hk(X)) = ∞. Thus, we can again pick any finite

scalar t > 0 such that tI > M and find a kmax such that hkmax(P) ≥ tI > M . �

Lemma 2.15 With the definitions above, if kmin and kmax both exist, then kmin ≤ kmax.

Proof: This can easily be shown by contradiction. Assume kmin > kmax. By assumption, P < M ,

implying hkmax(P) < hkmax(M), and if kmin > kmax, then hkmax(M) ≤ M . From the definition of

kmax, however, we see hkmax(P) > M , which is a contradiction of the previous inequality. Hence it

must be true that kmin ≤ kmax. �

32

Corollary 2.16 If A is purely unstable and assuming P ≤ P0 ≤M , then we have the upper bound

Pr[Pk ≤M] = 1− ε ≤ 1− εkmax(k) . (2.59)

Proof: Following the proof of Theorem 2.12, assume the first k packets are dropped so Pk = hk(P0).

A sufficient condition for Pk � M is then

hk(P) > M ,

since Pk = hk(P0) ≥ hk(P). By definition, hk(P) > M first holds when k = kmax. Then, since

hk+1(P) ≥ hk(P), it also holds for k > kmax. Thus, dropping at least the previous kmax consecutive

packets guarantees Pk � M . Now assume a packet is not received until time m > kmax; then we

know Pm = hm(P0) ≥ hm(P) > M and P ≤ Pm+1 ≤ M , so the analysis is repeated with Pm+1

replacing P0 as before. �

The following example can help visualize the concepts of the theorem.

Example 2.17 Consider the scalar system A = 1.3, C = 1, Q = 0.5, and R = 1. For this system

we have P = 1.519, and with S = 1 and picking p = 0 we get M = 2.19. Picking M = 6.25, it is

easy to show kmin = 2 and kmax = 3. Thus, there exists an X∗ with P < X∗ ≤M such that for all

P ≤ X < X∗ it requires 3 consecutive packets to be dropped before the error covariance is greater

than M , while for the region X∗ ≤ X ≤ M it only requires 2 consecutive packets be dropped. In

fact it can be easily shown that X∗ = 1.7174.

Figure 2.2 shows the evolution of the error covariance for a particular sequence of packet drops.

The sequence used is hhhhggghhghhhgh(P0). As can be seen, it requires at least 2 consecutive

packets be dropped for the error covariance to rise above the bound.

Remark 2.18 With the definition of εi(k) in Eqn. (2.53) it is easy to see εi(k) = 0 for all k < i,

which leads to Pr[Pk ≤ M] = 1 , ∀k < kmin. In addition at least S + p measurements are required

for the estimator algorithm to be implemented and Eqn. (2.51) to hold. Therefore, we only consider

time greater than max {kmin, S + p}.

For these results to be useful we need to calculate εi(k). Figure 2.3 shows all possible packet

sequences at time k for a packet dropping network. From this it is clear to see that εi(k) is the sum

of the probabilities of each of the instances with at least the previous i packets dropped occurring.

Corollary 2.19 For k > i, any packet dropping network that is either i.i.d. or reaches a steady

state (for example a Markov network), εi(k) = εi is independent of k.

33

0 5 10 15

10
1

h g h

h

h

g

h

h

g

g
g

h

h

h

h

time

h g h

h

h

g

h

h

g

g
g

h

h

h

h

P
k

Figure 2.2: Error covariance (log scale) for Example 2.17.

The above corollary says the probability of dropping at least the previous i packets is the same for

all time. To calculate εkmin (or εkmax), we can make use of the Markov chain model in Figure 2.4. The

states of the Markov chain represent the number of consecutive packets dropped at the current time,

and the final state represents kmin or more consecutive packets dropped. The transition probability

from state i to state j is given by Ti,j . It is clear εkmin = πkmin , the steady state probability of the

Markov chain being in state kmin. This is easily determined to be given by

πkmin =
D

D + Tkmin,0 + Tkmin,0

kmin−1∑
l=1

l−1∏
j=0

Tj,j+1

, (2.60)

with

D = 1− T0,0 −
kmin−1∑

l=1

Tl,0

l−1∏
j=0

Tj,j+1 .

Note that πkmin decreases as kmin increases. The same formula holds for kmax by replacing kmin ←

kmax.

The Ti,j are determined based on the type of network. For example, an i.i.d. network with

packet arrival rate γ and drop rate 1 − γ has Tj,0 = γ ∀j ≥ 0, Tj,j+1 = 1 − γ ∀j ≥ 0, and

Tkmin,kmin = 1− γ. This leads to πkmin = (1− γ)kmin . A first order Markov network with transition

probabilities Thh, Thg, Tgh, and Tgg leads to πkmin = 1−Tgg

2−Thh−Tgg
(Thh)kmin−1. The probability πkmin

34

00000 000000000
00000 000000001
00000 000000010
00000 000000011
..........
..........
00000 111111111
00001 000000000
00001 000000001
..........
..........
11111 111111111

kmin pkts

k pkts

2k total
number of
instances

time

Instances for which
at least the previous
kmin packets were
dropped at time k

Instances for which
less than the previous
kmin packets were
dropped at time k. For
all these instances
Pr[Pk · M] = 1

0 – represents a
packet drop

1 – represents a
packet receive

Figure 2.3: A binary representation of the possible packet sequences (i.e., drop/receive) at time k.

for any arbitrary order Markov network can be determined in this manner. All the equations above

are valid for calculating εkmax as well by simply replacing kmin ← kmax

Theorem 2.12 and Corollary 2.16 provide bounds on ε for a given M and the network properties,

i.e., πkmin and πkmax . It is also possible to determine bounds on M and πkmin .

Corollary 2.20 With the same assumptions as Theorem 2.12 and given the transition probabilities

Ti,j of the Markov model in Figure 2.4 and a lower bound 1 − εkmin , it is possible to determine a

suitable M such that Pr[Pk ≤M] ≥ 1− εkmin . To do so, define

kM , min {k ∈ Z+ : πk ≤ εkmin} , (2.61)

with πk given in Eqn. (2.60). Then the tightest such bound is

M = hkM (M) . (2.62)

Corollary 2.21 Likewise, given M and a lower bound 1− εkmin it is possible to determine limits on

the transition probabilities Ti,j of the Markov model in Figure 2.4 such that Pr[Pk ≤M] ≥ 1− εkmin .

With kmin as defined in Eqn. (2.54), it is easy to see that we require

πkmin ≤ εmax . (2.63)

35

0 1 2 3 kminkmin–1

Figure 2.4: The states of the Markov chain represent the number of consecutive packets dropped at
the current time, the final state represents kmin or more consecutive packets dropped.

For the i.i.d. network this reduces to γ ≥ 1− εmax

1
kmin .

2.6 Simulation Example

Consider the linearized pendubot system in [67] with

A =


1.001 0.005 0.000 0.000

0.35 1.001 −0.135 0.000

−0.001 0.000 1.001 0.005

−0.375 −0.001 0.590 1.001

 , B =


0.001

0.540

−0.002

−1.066

 ,

C =

 1 0 0 0

0 0 1 0

 , R =

 0.001 0

0 0.001

 ,
and

Q = qq′, q =


0.003

1.000

−0.005

−2.150

 ,

and an i.i.d. network with packet arrival rate γ = 0.75. For this system we have S = 2, meaning

[C ′, A′C ′]′ is full rank, and we need to transmit at least 2 measurements at each time-step. Using

the analysis presented in this chapter, we can predict the probability that the error remains below

certain bounds. The value of the trace of M as a function of the number of additional measurements

to buffer, p, is shown in Figure 2.5; notice how Tr(M) approaches Tr(P) as p→∞. This curve can

be used as a guide to pick the number of measurements to buffer. Note the error covariance if all

36

measurements were received, P , has a trace of 16.27. For the simulations presented below we use

p = 7 (so we transmit a total of S + p = 9 measurements), which gives Tr(M) = 16.99.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

p

Tr(M)
Tr(P)

Figure 2.5: The trace of the M bound vs. p.

Figure 2.6 shows the M - ε relationship for this system. A total of 10,000 simulations are run

with a random initial error covariance in the range P ≤ P0 ≤ M chosen for each simulation. The

simulations are run for 500 time steps, and the 1−ε value calculated from the simulations corresponds

to the average over all simulations of the percent of time the error covariance was larger than the

M bound. The staircase-like plot can be explained by the fact the probability bounds for 1− ε are

given by 1 − εkmin and 1 − εkmax , which exhibit sharp jumps, i.e., the staircase, as kmin and kmax

change integer values.

2.7 Conclusions and Future Work

In this chapter the problem of state estimation where measurement packets are sent across a lossy

network was analyzed. An estimator algorithm that relies on transmitting the current and several

previous sensor measurements was designed to guarantee an upper bound on the estimation error

covariance whenever a measurement packet is received.

We showed that with this upper bound, as long as the information gain is not exactly equal

to zero, then for any given 0 < ε < 1 there exists an M(ε) < ∞ such that the error covariance

matrix Pk is bounded by M with probability 1− ε. This analysis is independent of the probability

distribution of packet drops. Next, we gave explicit relations for upper and lower bounds on the

37

10 20 30 40 50 60 70 80 90
0.75

0.8

0.85

0.9

0.95

1
M vs. ε Curve

1−ε

M

Simulation
Lower Bound
Upper Bound

Figure 2.6: M bound vs. ε. The (blue) line with tick marks is the simulated 1 − ε and the dashed
and solid (red and green) lines are the predicted 1− εmax and 1− εmin.

probability 1 − εmin ≤ Pr[Pk ≤ M] ≤ 1 − εmax. We observe that Pk � M only if a large enough

consecutive burst of packets are dropped before time k. The size of the required burst is dependent

on M .

The new probabilistic performance description of the estimator is an area that can be pursued

further. How this description of the estimation error couples into the closed loop performance with

a controller using these estimates is an interesting topic. Considering how the estimation scheme

could be adapted for other plant dynamics, such as nonlinear or uncertain systems, is another area

to investigate.

38

Chapter 3

Using Actuation Buffers in
Networked Control Systems to
Reduce Transmission Frequency of
Control Signals

3.1 Introduction

In the previous chapter, buffering sensor measurements was shown to aid in improving the perfor-

mance of state estimation across a lossy network. In this chapter, once again the benefit of using

buffers in NCS is considered, but the communication network is now assumed to reside between the

controller and actuators. Thus, packets containing the control signals to be applied are transmitted

across the network, and the use of actuation buffers is analyzed. Rather than considering a lossy

network, however, the buffers are used in an attempt to decrease the frequency of communication

between the controller and actuators by utilizing more informative communication packets.

Often the information communicated in NCS is in the form of packets [32]. These packets have

a fixed header length and additional space to be used for data. Due to the overhead included in

each transmission, if the frequency of transmission is decreased, there is a corresponding savings in

bandwidth and decrease in network congestion. Thus, it is desired to send fewer but more informative

packets. In this work we are concerned with how much extra information should be included in the

packets, when they should be transmitted, and the impacts on closed loop performance.

We assume control values are transmitted across a communication network to the plant; a

schematic of this situation is shown in Fig. 3.1. A motivating example for this type of system

is similar to [29], where remote vehicles with limited computation are sent trajectory and/or control

commands from remote processing units. To make the packets more informative we include not only

the control value computed for the current time-step, but also predicted control values for the next

N steps in the future. We investigate the closed loop performance as a function of this buffer length

39

under different communication schemes. First we consider the case that the controller transmits

only when the buffer at the actuator is empty. We also introduce a communication protocol, which

we call the Input Difference Transmission Scheme (IDTS), that calculates a new control sequence at

every time-step but only transmits to the actuator when the difference between the new sequence

and the sequence in the buffer is larger than a certain threshold. We show how this scheme can

improve the closed loop performance and provide more flexibility for the system designer.

Figure 3.1: NCS feedback loop with control commands sent across the network.

Other researchers have studied ways to determine access to a shared communication medium

by nodes of actuators and sensors. In [92] they provide conditions for a stabilizing communication

sequence to exist and an algorithm to construct such a sequence. This uses a static scheduling

protocol and assumes zero values when transmission does not occur, rather than incorporating some

form of an estimator or buffer. A similar setting is considered in [53], but they include estimators

on the receiving side of every network transmission to estimate the value of a signal when it is

not transmitted. In addition to a static transmission policy, they study granting access to the

nodes whose difference between estimated and true signal is largest. The problem setting is slightly

different from the one considered here since they consider continuous plants and are not concerned

with limiting transmission frequency. In [89] an optimal communication logic is developed to strike

a balance between closed loop error and communication rate. The logic that results is similar to the

IDTS in this chapter; data only transmits when an estimated state differs from a true state by more

than a specified amount; however, they transmit state information rather than control values and

thus make no use of a control buffer.

The notion of using a buffer with predicted control values in a NCS setting is not necessarily new,

for example see [71, 64], however not much has been investigated relating the length of the buffer to

the closed loop performance, especially in terms of reducing the communication frequency. In [21]

the authors consider a similar setting, but their analysis of performance as a function of the buffer

size is affected by the discretization sampling time of a continuous time plant. Furthermore, they

do not consider the effect on the transmission frequency. In [31] the authors consider transmitting a

40

packet that contains future control signals, but they are not concerned with limiting the transmission

frequency, only reducing the effect of communication losses.

The remainder of the chapter is organized as follows. In Section 3.2 a mathematical description of

the problem setting is given. The communication protocol is introduced and analyzed in Section 3.3.

A simulation example is shown in Section 3.4. Finally, the chapter concludes with a summary of

the work and future directions in Section 3.5. This work is joint with Ling Shi, Stefano Di Cairano,

and Richard M. Murray, published in [13].

3.2 Problem Set Up

We consider discrete time linear time invariant systems of the form

xk+1 = Axk +Buk + wk , (3.1)

where xk ∈ IRn is the state, uk ∈ IRr is the control input, and wk ∈ IRn is an unknown but bounded

disturbance. We also assume a bound on the initial condition so that

‖wk‖ ≤ δw , ∀k

‖x0‖ ≤ δx .

Further, we assume A is unstable, the pair (A,B) is controllable, and that a feedback gain

F is designed so that in the absence of the network the control signal would be uk = Fxk and

(A+BF) is stable. We consider the case where the control signal uk arriving at the actuators/plant

is transmitted across a network from a remotely-located controller, as shown in Fig. 3.1. We ignore

delay, quantization, and lost information effects of the network.

The information is transmitted in a packet containing a fixed amount of overhead. As discussed

earlier, it is advantageous to put more information into a single packet and reduce the frequency of

transmission. We use an anticipative controller that transmits a sequence of control steps each time

a packet is sent to plant. In [48] the authors use an anticipative continuous-time controller as a way

to reduce the negative effects introduced by network delays, while our aim is to use it to reduce

transmission frequency. In addition, we propose different methods for determining when to transmit

the packets. The overall performance of the system that we consider is the closed loop error and the

frequency of transmission of the control packets, with a desire to keep both of these quantities low.

The tradeoff is that lowering the transmission frequency can increase the error. We analyze how the

closed loop performance varies with the length of the control sequences transmitted and by using

different transmission protocols.

41

At every instance in time, a control signal for the current time and any future time can be com-

puted based on the current state. Denote the control signal to be applied at time k+j but computed

at time k by uk+j|k, j = 0, 1, Note the information available to the controller when calculating

uk+j|k is Ik = {Ik−1, xk, uk−1}. We consider a controller that at every time instant computes a con-

trol signal for the current time and N ≥ 0 time steps in the future, i.e., {uk|k, uk+1|k, . . . , uk+N |k}.

The information packet transmitted from the controller to the plant at time k is exactly this control

sequence

Uk = {uk|k, uk+1|k, . . . , uk+N |k} . (3.2)

Denote the elements of the packet by Uk(j) = uk+j−1|k, j = 1, 2, . . . , N + 1. With this scheme each

control packet contains r · (N + 1) data points.

When the plant receives packet Uk, it discards all previously-buffered commands and follows the

current control sequence. If a packet is not received, the plant applies the corresponding control

signal in the buffer from the last previously-received packet. For example, assume that at time k+M

the last previously-received packet was that from time k; then, the control signal applied to the plant

would be uk+M = uk+M |k = Uk(M + 1). Since we have assumed a finite packet length, N <∞, we

must decide what to do when M > N . In this case, the last previously-received packet only contains

control signals up to time uk+N |k, so we must choose what control signal the plant applies for time

uk+N+j , j = 1, 2, There are two obvious possibilities: apply zero control, uk+N+j = 0, or hold

the control from the last command in the sequence, uk+N+j = uk+N |k.

The control applied to the plant at time k +M assuming the last transmitted packet was sent

at time k is

uk+M =

 uk+M |k = Uk(M + 1) if M ≤ N

λuk+N |k = λUk(N + 1) otherwise
, (3.3)

where λ ∈ {0, 1} indicates if the choice is to use zero control (λ = 0) or hold the last command

(λ = 1). If a state feedback controller is used with the future controls signals based on the predicted

evolution of the system, then we see

Uk = {Fxk, F (A+BF)xk, . . . , F (A+BF)Nxk} . (3.4)

3.3 Transmit Protocol

To reduce the amount of traffic on the network, the controller does not transmit every control packet

Uk. There are several options for determining when to transmit the control packet; they are explored

below.

42

3.3.1 Fixed Transmission Time

The simplest scheme to implement is that with a fixed transmission time. Given that the length of

the control buffer is N , so that each control packet contains the current control signal and the next

N predicted control signals, if the packet is transmitted at time k, then the control buffer is not

empty until time k + N + 1. Thus, if the control sequence is transmitted every N + 1 time steps,

the actuator always has a control signal to apply. We transmit the first control packet U0; thus, the

packets to transmit are {U0,UN+1,U2·(N+1), . . .}.

If the control sequence is transmitted more frequently, there would be some elements of the

transmitted control buffer that would never be implemented, and these would be unnecessary to

include. For example, if the packet that was sent at time k contained uk+N+j|k, j = 1, 2, . . ., these

control signals would never be applied since at time k +N + 1 a new packet is transmitted to the

actuator containing uk+N+1|k+N+1, and this is applied to the plant. Thus, we set the time between

transmissions equal to the number of control signals included in each packet, N + 1, and call this

the Fixed Transmission Time scheme.

Lemma 3.1 The fixed transmission scheme with buffer length N , using state feedback gain F , has

closed loop performance bounded by

‖xk‖ ≤ ‖(A+BF)k‖δx + g(A,B, F,N, k) δw , (3.5)

with the effect of the noise terms being accounted for in

g(A,B, F,N, k) =
h(k−1,N)∑

j=0

∥∥Aj
∥∥+

b
k−1
N+1c−1∑

j=0

∥∥∥(A+BF)s(j,k,N)
∥∥∥

 N∑

j=0

∥∥Aj
∥∥ , (3.6)

where

h(k,N) = mod(k,N + 1)

s(j, k,N) = (N + 1)j + h(k − 1, N) + 1 ,

and b c is the floor operator.

Proof: The control packet is transmitted every N + 1 time steps, i.e., whenever h(k,N) = 0,

the packet Uk is transmitted. This allows us to write the control applied to the plant as uk =

F (A+BF)h(k,N)xk−h(k,N), and the closed loop evolution as

xk+1 = Axk +BF (A+BF)h(k,N)xk−h(k,N) + wk . (3.7)

43

It is not too difficult to use this to express the closed loop state, for k ≥ 1, as

xk = (A+BF)kx0 +
h(k−1,N)∑

j=0

Ajwk−j−1 +
b k−1

N+1c−1∑
j=0

(A+BF)s(j,k,N)
d(j, k,N) (3.8)

where

d(j, k,N) =
N∑

i=0

Aiwk−s(j,k,N)−i−1 .

The first term in Eqn. (3.8) accounts for the initial condition. The second term is from the noise

acting on the system in the time since the last transmitted control sequence; this noise cannot be

compensated for by the current control sequence. The last term accounts for all the noise prior to

the last transmitted packet; this is compensated for by the current control sequence through the use

of xk−h(k,N). From Eqn. (3.8) and the properties of the norm and bound on ‖wk‖, we arrive at the

upper bound on ‖xk‖ in Eqn. (3.5). �

Note that whenever a packet is transmitted, the control sequence is a function of the initial

condition and the previous noise sequences and is only able to compensate for those terms. For

example, consider the control packet that is sent at time k − N , Uk−N . The control signals from

this packet are applied between time k−N and time k, and they compensate for the noise sequence

prior to time k−N which are manifest in xk−N and, hence, Ik−N . The noise terms {wk−N+1, . . . , wk}

are not compensated by the control sequence, and their effect can be amplified by the open loop

dynamics; this is the second term on the right hand side of Eqn. (3.8).

The fixed transmit scheme is simple to implement, and it is easy to see that as the buffer length,

and hence transmission interval, is increased, the transmission frequency decreases but the bound

on the closed loop error increases. This gives a design tradeoff as desired. The potential downside

with the fixed communication scheme is that it might not be utilizing the network very efficiently.

The control packets are transmitted at fixed points in time regardless if their transmission has a

significant impact on the closed loop error. We seek a scheme that can choose whether or not to

transmit online and utilize the network resources more efficiently.

3.3.2 Input Difference Transmission Scheme (IDTS)

In this section, we propose a simple algorithm that at each time-step determines if the control packet

should be sent. The algorithm computes a sequence of controls at every time step but only transmits

this sequence to the plant if the difference between the newly computed control sequence and the

last sequence sent to the plant is larger than a certain threshold. This threshold becomes a design

parameter, and we analyze its impact on the closed loop performance.

To formalize the scheme, at time k + M the computed sequence of commands is Uk+M , and

let the last packet sent to the plant be the one sent at time k, Uk. The criterion that determines

44

whether or not to transmit packet Uk+M is based on the norm of the difference between the two

control signals. Define

∆Uk+M
k (j) = Uk+M (j)−

 Uk(M + j) if M + j ≤ N + 1

λUk(N + 1) otherwise
(3.9)

for j = 1, . . . , N , and as before, λ indicates if using the hold (λ = 1) or zero (λ = 0) option when

the buffer is exhausted. Let αj ≥ 0 be a scaling factor, and define the weighted norm to be

‖∆Uk+M
k ‖(∞,αj) = max

j
αj‖∆Uk+M

k (j)‖ . (3.10)

Next, pick a scalar U ; the controller only transmits the packet Uk+M to the plant if

‖∆Uk+M
k ‖(∞,αj) > U . (3.11)

Remark 3.2 The 1-norm can easily replace the ∞-norm with slight modification to the results

below.

Based on this scheme, the controller transmits if the newly computed control command differs

from the command sequence currently in the plant’s buffer. In essence, this only utilizes the network

resources when the transmission of a control packet has an impact on the system compared to not

sending the packet. Additionally, this scheme can be combined with a force send feature, which forces

transmission if the buffer at the plant has been exhausted, i.e., the time since the last transmit is

greater than the length of the control sequence. The αj coefficients and U value are also available

design choices. The new transmission scheme is illustrated in Table 3.1. Next we analyze the

performance of this transmission scheme.

Lemma 3.3 With the IDTS using the state feedback controller so that Uk is given by Eqn. (3.4),

then if α1 = 1, the norm of the state is bounded according to

‖xk‖ ≤ ‖(A+BF)k‖δx +
k−1∑
j=0

‖(A+BF)j‖
(
‖B‖U + δw

)
. (3.12)

Proof: Consider that at time k the last packet transmitted was at time k−M . The control applied

to the plant at time k can be written as

uk = uk|k − (1− γk) ·∆Uk
k−M (1) , (3.13)

45

Table 3.1: Input Difference Transmission Scheme (IDTS).
0)
− Chose design parameters
• F,N,U, αj , λ,FORCE SEND
− Set
• time step k ← 0
• last sent indicator to k∗ ← −N − 1 ;

1) Measure xk ;
2) Compute Uk = {uk|k, uk+1|k, . . . , uk+N |k} ;
3) Determine ‖∆Uk

k∗‖(∞,αj) ;
4) If (‖∆Uk

k∗‖(∞,αj) > U)
OR

(FORCE SEND = 1 AND k − k∗ > N) ;
• Transmit Uk ;
• Set k∗ ← k ;
EndIf ;

5) Set
k ← k + 1 ;

6) Goto 1 ;

where γk ∈ {0, 1} is used to indicate if the control packet Uk is transmitted or not.

Since we are using a state feedback controller, we have uk|k = Fxk, and we can write Eqn. (3.13)

as

uk = Fxk + zk

zk = (1− γk) ·∆Uk
k−M (1) .

If γk = 1, then Uk is transmitted, and zk = 0. If γk = 0, then the packet is not transmitted;

however, using IDTS with α1 = 1 if the packet is not transmitted then we are guaranteed to have

‖zk‖ = ‖∆Uk
k−M (1)‖ ≤ U . Thus, regardless of the value of γk, i.e., independent of the transmission

status of Uk, we get that ‖zk‖ ≤ U .

The closed loop system can now be rewritten as

xk+1 = Axk +Buk + wk

= (A+BF)xk + (Bzk + wk) ,

which is a stable system with a bounded disturbance term ‖Bzk +wk‖ ≤ ‖B‖U + δw. The state can

then be written as

xk = (A+BF)kx0 +
k−1∑
j=0

(A+BF)k−j−1(Bzj + wj) ,

from which the bound in Eqn. (3.12) directly follows. �

46

Remark 3.4 The bound in Eqn. (3.12) is independent of the buffer length N . It is also a worst case

analysis, but it allows comparison with the worst case analysis for the fixed transmission scheme.

These worst case bounds are conservative due to the use of the norm properties as well as assuming

the worst case noise in each step; nonetheless, they can be useful guides.

In addition to computing this upper bound on the state error, we also want to characterize

the transmission frequency using IDTS since the number of time-steps between transmissions is no

longer fixed. In Lemma 3.3 the condition α1 = 1 was imposed. In fact, if we set αj = 0 ∀j ≥ 2, the

result is unaffected, and the transmit criterion in Eqn. (3.11) becomes

‖∆Uk+M
k (1)‖ > U .

This means the decision to transmit the control packet depends only on the difference between the

control signal for the current time step and not the future control signals, though they are still

transmitted in the packet. Since the condition to transmit is checked at every time step, removing

the dependence on the future control signals is less critical and simplifies the analysis. Likewise, we

assume a zero control scheme if the buffer runs out, i.e., λ = 0, which also simplifies the analysis

below. Thus, for the remainder of this section we assume

• α1 = 1 and αj = 0 for j ≥ 2 and

• λ = 0 ,

though similar results can be obtained without these assumptions.

In the analysis below we make use of the following quantity. With m ≥ 1 a positive integer,

define

L(m, k,N) =
m−1∑
j=0

Am−j−1wk+j + δ(m−N − 1)Am−N−1(A+BF)N+1xk (3.14)

with

δ(j) =

0 , if j ≤ 0

1 , if j > 0
.

Proposition 3.5 Given the last transmission occurred at time k, the next transmission is at time

k +M , where

M = min
[
N + 1
β

,min
m>0

{
m ∈ Z+ : ‖F · L(m, k,N)‖ > U

}]
, (3.15)

and β is used to indicate if using the force send feature (β = 1) or not (β = 0).

Proof: The packet transmitted at time k is given by Eqn. (3.4). We are interested in the time when

the next packet is sent, so we can write the closed loop evolution based on no packet being sent

47

between k and k+m. For 1 ≤ m ≤ N+1, the applied control signal is uk+m−1 = F (A+BF)m−1xk,

and the state is given by

xk+m = (A+BF)mxk +
m−1∑
j=0

Am−j−1wk+j .

No control is applied starting at time k+N +1, i.e., uk+i = 0 for i = N +1, N +2, . . . ,m−1. Thus,

for m > N + 1 the state can be written as

xk+m = Am−N−1(A+BF)N+1xk +
m−1∑
j=0

Am−j−1wk+j .

From this and the fact that uk+M |k+M = Fxk+M , it is easy to see that ‖∆Uk+m
k (1)‖ = ‖F ·

L(m, k,N)‖. The next transmission occurs at the first instance that ‖∆Uk+m
k (1)‖ > U , or if force

send is in effect it occurs at time k +N + 1 if m > N + 1. This is exactly the expression captured

in Eqn. (3.15). �

With the IDTS using the force send feature and state feedback control, the number of time-steps

between successive transmissions is simply a function of the realization of the noise sequence and the

buffer length, it is independent of the state. That is, with the force send feature it is not possible to

wait longer than N + 1 time steps, so we only need to evaluate ‖F ·L(m, k,N)‖ for m ≤ N + 1, and

from Eqn. (3.14) we see the xk term disappears, so it is only a function of the open loop dynamics

and realization of the noise sequence from time k. Without the force send feature it is possible to

wait longer than N + 1 time-steps, so we check all m ≥ 1, and for m > N + 1 and the state xk

appears in the expression for L(m, k,N), meaning in this case the number of time steps between

transmissions depends on the value of the state at the last transmission.

As seen in Proposition 3.5, the design parameter U affects the time between transmissions. In

fact, it is possible to show how the minimum time between transmissions depends on U and δw.

Lemma 3.6 Define

m∗ = min
m>0

m ∈ Z+ : ‖F‖ · δw ·
m−1∑
j=0

‖Aj‖ > U

 . (3.16)

Then, using IDTS with state feedback control, the lower bound on the time between transmissions is

given by

M∗ = min [N + 1,m∗] . (3.17)

48

Proof: As seen in Proposition 3.5, the key to determining the time between transmissions is the

expression

‖F · L(m, k,N)‖ > U .

For m ≤ N + 1, the second term in Eqn. (3.14) drops out, and we can write

‖F · L(m, k,N)‖ =

∥∥∥∥∥∥F ·
m−1∑
j=0

Am−j−1wk+j

∥∥∥∥∥∥
≤ ‖F‖ · δw ·

m−1∑
j=0

‖Aj‖ .

Thus, ‖F‖ · δw ·
m−1∑
j=0

‖Aj‖ > U is a necessary condition for ‖F · L(m, k,N)‖ > U , i.e., it requires

at least m∗ time steps before the noise alone could trigger the transmit criterion. If m∗ > N + 1,

then the value of the state xk affects the value of ‖∆Uk+m∗

k ‖; however, with force send the packet

automatically is sent after N + 1 time steps, and without force send the lower bound of N + 1 still

holds. Hence we arrive at Eqn. (3.17). �

Remark 3.7 With force send, the transmission time is in the interval [M∗, N + 1]. Without force

send, it is in the interval [M∗,∞). Thus, if M∗ = N + 1, meaning m∗ ≥ N + 1, then with force

send the time between transmissions is exactly fixed at N +1, i.e., it recovers the fixed transmission

scheme.

Remark 3.8 When N + 1 � M∗, the transmission rate is qualitatively the same whether or not

force send is used. This behavior is expected since the only difference is that without force send

the transmission time can lie in the interval [N + 2,∞). With N + 1 >> M∗, however, this rarely

occurs, and it is more likely to be in [M∗, N + 1] for both schemes.

3.4 Example

We consider the plant in Eqn. (3.1) with

A =


1.2 0.4 1.2 1.5

−0.2 −0.4 −0.2 −0.4

0.1 −0.2 1.6 2.0

−0.2 0.4 1.1 1.3

 , B =


0 1

0 0

0 1

1 0

 .

This has open loop eigenvalues of [2.79, 1.25, 0.37, 0.092]. The disturbance is bounded according to

δw = 2. The state feedback gain is chosen to place the closed loop eigenvalues at [0.267, 0.234, 0.15, 0.12].

49

A total of 10, 000 simulations of 100 time-steps each are used to generate the noise sequences and ini-

tial conditions. The closed loop system is then simulated with the different communication schemes

and various buffer lengths.

We use buffer lengths of N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20} and bounds of U = {20, 500}. With

U = 20 we havem∗ = 2, i.e., without force send the IDTS always skips at least 1 time step in between

transmissions, and with U = 500 we have m∗ = 5. In Fig. 3.2 we plot the transmit properties. The

top plot shows the percent of time the control packet is transmitted to the plant. The transmit

rate is the same for IDTS with force send and the fixed transmission scheme when N + 1 < m∗.

For IDTS, as N � M∗ we see that the percent of time transmitting is roughly the same with or

without force send and only depends on U . The controller does not transmit as often as the transmit

criterion U is increased . The bottom plot is the percent of time no control is applied and the plant

evolves completely open loop, i.e., uk = 0. This occurs only when the controller does not transmit

a packet and the time since the last transmit is greater than N + 1. This can not happen with the

force send, so we only plot the cases without force send.

0 5 10 15 20
0

0.5

1

P
er

ce
nt

 T
ra

ns
m

itt
ed Fixed Scheme

IDTS w/ Forcesend = 0 & U = 20
IDTS w/ Forcesend = 1 & U = 20
IDTS w/ Forcesend = 0 & U = 500
IDTS w/ Forcesend = 1 & U = 500

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Buffer Length N

P
er

ce
nt

 N
o

C
on

tr
ol IDTS w/ Forcesend = 0 & U = 20

IDTS w/ Forcesend = 0 & U = 500

Figure 3.2: Simulation transmission properties.

In Fig. 3.3 the state errors are plotted. The maximum error over all simulation time steps and the

theoretical upper bounds are plotted. Again notice that for N � M∗ the IDTS with and without

force send exhibit the same closed loop error characteristics. Notice that for very similar transmit

50

rates, the IDTS has smaller error compared to the fixed transmission scheme. This is evidence that

the IDTS makes more effective use of the network by transmitting the packets when it is deemed

important.

0 5 10 15 20
10

0

10
2

10
4

10
6

10
8

10
10

M
ax

 E
rr

or

Buffer Length N

Fixed Scheme
IDTS w/ Forcesend = 0 & U = 20
IDTS w/ Forcesend = 1 & U = 20
IDTS w/ Forcesend = 0 & U = 500
IDTS w/ Forcesend = 1 & U = 500
UpperBound IDTS w/ U = 20
UpperBound IDTS w/ U = 500
UpperBound Fixed Scheme

Figure 3.3: Worst case simulation error and theoretical bounds.

3.5 Conclusions and future work

We considered an NCS setting where the control signal is sent across a network to the plant. The

goal was to design a system that sends less frequent but more informative information packets. The

data in each control packet contains the control signal for the current time-step as well as a buffered

sequence of predicted future control signals.

While this initial study introduced the IDTS communication scheme to reduce the transmission

frequency and provided some initial insights into the performance characteristics, there is certainly

more work that can be done. From the modeling standpoint, one can consider the effect of measure-

ments taken from noisy sensors and using an observer to produce an estimate of the state. Network

effects such as lost packets, delays, and quantization were all ignored; it would be interesting to see

how the communication schemes presented here work when these scenarios are present and what

modifications could be made to compensate for these effects.

51

In this work it was assumed the state feedback controller, F , was designed without regard to

the network considerations. The closed loop properties depend on the gain, for example, a smaller

‖F‖ can increase the minimum number of steps between transmissions. This relationship could be

investigated in further detail. It would also be interesting to consider more general model predictive

controllers in place of the anticipative controller.

52

Chapter 4

Estimation Schemes for NCS Using
UDP-Like Transmission of Control
Values

4.1 Introduction

This chapter continues the theme of transmitting control values from a controller to a remote plant.

Instead of using a buffer of predicted control values to send less frequent but more informative

packets, the controller transmits only the current control value and does so at every time-step. The

network effect considered here is that the link is unreliable so that the packets could be lost. If

a control packet is not received, the plant applies no control and evolve open loop. The majority

of NCS research that considers designing a state estimator for this situation assumes the estimator

knows whether or not the control packet is received at the plant, via an acknowledgement signal and

TCP-like communication protocols, and hence what control signal is applied. The acknowledgement

signal allows for the standard separation principle to apply, and the controller and estimator can be

designed separately.

This chapter assumes the control packets are sent without an acknowledgement signal, via UDP-

like communication protocols. While this makes the analysis more difficult and could require mod-

ifications to standard control algorithms, there is evidence that using the UDP-like protocol is

advantageous over the TCP-like protocol due to lower latency, less overhead in terms of packet

length, and decreased software complexity [61, 9]. Only a small subset of the NCS research to date

considers UDP-like communication protocols, where there is no receive acknowledgement, for the

network between the controller/estimator and the acutators/plant. In [76, 75] the authors show that

in this setting the LQG controller is in general nonlinear and cannot, except for trivial cases, be

found in closed form. Other researchers study the effects of using UDP-like communication protocols

in NCS [65, 2].

53

We investigate a particular case of NCS using UDP-like communication to transmit control

signals to a remote plant. We assume there is perfect communication between the sensors and the

estimator/controller so that the measurement data is always available at the estimator. The lossy

network connecting the estimator/controller to the actuators/plant uses UDP-like protocols. This

setup is summarized in Fig. 4.1. We present two estimator algorithms for this situation that can

both be shown to guarantee closed loop stability with a state feedback controller under certain

conditions. The algorithms consist of an estimator, made up of a mode detector and state observer,

and state feedback implemented with one of two options:

• using an enlarged control value that guarantees proper detection of the control packet fate or

• using standard state feedback and tolerate possible mis-detections of the control packet but

achieve better closed loop performance.

The first option uses a larger control value to guarantee detection of whether or not the control packet

is received. This constraint of using a large enough control input to ensure detection is removed in

the second option. While this can result in mis-detections of the control packet fate, the system can

still be stabilized and in fact can achieve better performance than when using the enlarged signal.

These algorithms and their stability conditions are then compared to the well-known unknown input

observer.

Plant

Controller
Estimator

Sensors

Lossy Network

Figure 4.1: NCS feedback loop with control commands sent across a lossy network.

The chapter is organized as follows. In Section 4.2 we set up the problem in a mathematical

framework. Naive schemes for building estimators are examined in Section 4.3. The proposed

estimator algorithm and its convergence properties are presented in Section 4.4, as is the well-known

unknown input observer, which is compared to our algorithm. Simulation examples are given in

Section 4.5 to illustrate the theory. The work in this chapter is joint with Ling Shi and Richard M.

Murray presented in [14, 15].

54

4.2 Problem Set Up

We consider a networked control system where the controller sends commands to the actuator across

a packet dropping network as in Fig. 4.1. The network is assumed to be following a UDP-like proto-

col. The controller sends signals to the actuators but does not receive any form of acknowledgement,

i.e., the controller does not know if the packet is dropped or not.

The plant we consider is a discrete-time linear system. If the control packet is not received, it is

assumed the plant applies no control and evolves open loop. The plant dynamics are

xk+1 = Axk + γkBuk + wk (4.1)

yk = Cxk + vk , (4.2)

where xk ∈ IRn is the state vector, uk ∈ IRr is the control input, and yk ∈ IRm is the sensor output.

The process noise is given by wk ∈ IRn and the measurement noise by vk ∈ IRm, which are both

assumed to be bounded. The variable γk ∈ {0, 1} indicates if the packet containing uk is received

at the plant (γk = 1) or if it is dropped (γk = 0). It is assumed if the packet is dropped, the plant

applies no control for that time-step, i.e., it evolves open loop. Note also there is no network between

the plant/sensors and the estimator/controller, so measurements are always available. We further

assume A is unstable, (A,B) is controllable, and (A,C) is observable, so that in the absence of the

network F and L are designed to make A+BF and A− LCA stable.

We also make the assumption that rank(CB) = rank(B) = r ≤ n. This is required as we desire

to recover the fate of γk at time k + 1, meaning we need the effect of γk to be present in

yk+1 = Cxk+1 + vk+1 = CAxk + γkCBuk + dk , (4.3)

where

dk = Cwk + vk+1 . (4.4)

If the rank condition on CB does not hold, then the γk would disappear from the yk+1 expression.

Physically this condition can be interpreted as requiring any states that are directly affected by the

input be measured. If this rank condition did not hold but say rank (CAB) = rank(B) = r ≤ n, the

algorithms presented below could still work with the modification that they would reveal the fate of

γk at time k + 2 instead of time k + 1.

Under the UDP-like communication scheme we are considering, the estimator has no knowledge

about the value γk. Therefore, an observer for this system could take the form of

x̂k+1 = Ax̂k + γ̂kBuk + L(yk+1 − CAx̂k − γ̂kCBuk) , (4.5)

55

where the decision must be made how to select γ̂k.

Writing the estimation error as ek = xk − x̂k, we see it evolves according to

ek+1 = (A− LCA)ek + (γk − γ̂k)(B − LCB)uk + zk , (4.6)

with

zk = wk − Ldk . (4.7)

Clearly, if γ̂k = γk, then (ignoring the noise terms) the estimation error evolves as ek+1 = (A −

LCA)ek, which is stable. Recalling the UDP-like communication protocol, however, the estimator

receives no acknowledgement and hence does not know the value of γk when deciding on γ̂k. As a

result, the estimator could either try to reason about γk (if possible) or simply set γ̂k to a predeter-

mined value. For any system we design, the state evolves open loop when γk = 0, but if we are able

to design a system that could recover γ̂k = γk at time k+ 1, then the estimation error is indifferent

to the packet drops and we return to the TCP case and can tolerate a higher percentage of drops.

The goal is to design an estimator and a control algorithm that can either recover the fate of γk at

time k + 1 or mitigate the effect of choosing an incorrect value for γ̂k.

We make two simplifying assumptions for the remainder of this chapter:

• the inputs are of single dimension uk ∈ IR, i.e., single input systems, and

• the packet drops are independent and identically distributed (i.i.d.) with probability of receiv-

ing a packet given by

E[γk] = γ . (4.8)

These assumptions simplify the derivations and analysis below. Single input systems allow for a

nicer representation of an input constraint that is derived later in the chapter. When computing

the expected value it is easier with i.i.d. packet drops, but it could also be accomplished with,

for example, a markov packet dropping model. The estimation algorithm to be presented and all

subsequent analysis can also be derived with slight modifications if these assumptions were not

present.

4.3 Naive Schemes

The simplest method for choosing γ̂k is to preselect a value. These methods are referred to as

the naive schemes, and they are analyzed in this section. Let Xk = [x′k, e
′
k]′, then the closed loop

56

dynamics are

Xk+1 =

 A 0

0 A− LCA

Xk +

 γk

(γk − γ̂k)(I − LC)

Buk +

 wk

zk

 . (4.9)

To simplify the analysis of these naive schemes we ignore the noise terms, i.e., let wk = zk = 0. For

the sake of showing the pitfalls of these schemes, it should be clear that if their flaws are exposed

even in the noise free case, they certainly are not suitable when noise is present. When analyzing

our algorithm we once again include the noise. Let us assume a part of these naive schemes is to

include a state feedback controller uk = Fx̂k.

The closed loop evolution can then be written as a jump linear system (JLS),

Xk+1 = Aθ(k)Xk (4.10)

Aθ(k) =


A+ γkBF −γkBF

Gγ̂(k) A− LCA−Gγ̂(k)

 (4.11)

Gγ̂(k) = (γk − γ̂k)(B − LCB)F (4.12)

γk, γ̂k ∈ {0, 1} . (4.13)

This jump linear system has four modes corresponding to the different combinations of γk and γ̂k.

Note that if γ̂k = γk, then Gγ̂(k) = 0, and the estimation error evolves as ek+1 = (A−LCA)ek, which

is clearly stable. With the UDP-like communication protocol, however, the estimator receives no

acknowledgement and hence does not know the value of γk, and the naive schemes simply preselect

a value for γ̂k for all time.

With the assumption of i.i.d. packet drops with E[γk] = γ, it might seem logical to set γ̂k = γ

for all k, as was done in [75]. Though that problem setting is slightly different, the approach can be

applied here, and the resulting jump linear system has two modes given by A+ γkBF γkBF

Gγ(k) A− LCA−Gγ(k)

 ,

Gγ(k) = (γk − γ)(B − LCB)F ,

with γk ∈ {0, 1}. In order for the closed loop to be stable, in some expected sense, clearly at least

one of the switching modes must be stable. When γk = 0, the state evolves as xk+1 = Axk, so that

mode is unstable. Thus, the only hope is if the mode corresponding to γk = 1 is stable, but with

only F and L as design parameters, for γ 6= 1 it may not even be possible to make this matrix stable!

57

Another option for preselecting γ̂k is to set it to either 0 or 1. Clearly setting γ̂k = 0 does not

work, as in this case none of the modes are stable. If we let γ̂k = 1, then the jump linear system is

defined by  A+ γkBF γkBF

G1(k) A− LCA−G1(k)

 ,

G1(k) = (γk − 1)(B − LCB)F ,

with γk ∈ {0, 1}. When γk = 1, we see the switching mode is stable. Thus far it would appear

to be the best option to use as an estimator. The downfall is, of course, when γk = 0 it results in

G1(k) 6= 0, and the estimation error can be unstable. As a consequence, any sequence of packet drops

causes the estimation error to grow. As one would expect, the estimation error can still converge to

zero as k →∞, but only for values of γ close to 1.

Thus it would appear none of these naive schemes give suitable performance. Instead an estima-

tion algorithm is presented that can be guaranteed to detect the value of γk by enforcing an input

constraint and can be shown to provide stability. That is followed by a slight modification to the

algorithm that removes conditions that guarantee detection of γk, but bound the growth in estima-

tion error following a mis-detect. Conditions are given such that the estimation error is bounded,

resulting in a stable closed loop.

4.4 Estimation Algorithm

As stated above, it is clear that we seek an estimator scheme that can recover γ̂k = γk, as this makes

the NCS revert to the TCP-like communication protocol. We use an estimator algorithm consisting

of the state observer from Eqn. (4.5), and choosing γ̂k according to the mode detector,

γ̂k = arg min
β∈{0,1}

‖yk+1 − CAx̂k − βCBuk‖2 . (4.14)

Essentially, this compares the residual between the new measurement and two predicted measure-

ments made with the previous estimate of the state and (i) with the control applied (β = 1) and

(ii) without the control applied (β = 0). Selecting the choice (with control or without) that yields

the smaller residual, the mode detector above is shown to recover the true state of γk under the

conditions below. Note once again the restriction to systems with rank(CB) = rank(B) = r ≤ n is

necessary to ensure the β term appears in the minimization on the right hand side of Eqn. (4.14).

Proposition 4.1 For the mode detector that chooses γ̂k according to Eqn. (4.14), the following

statements hold

58

• If uk
′B′C ′CBuk > 2 |uk

′B′C ′(CAek + dk)| then γ̂k = γk and

• If γ̂k 6= γk then uk
′B′C ′CBuk < 2 |uk

′B′C ′(CAek + dk)|.

Proof: Returning to Eqn. (4.14), we can write

‖yk+1 − CAx̂k − βCBuk‖2 = ‖CAxk + γkCBuk + dk − CAx̂k − βCBuk‖2

= ‖CAek + dk + (γk − β)CBuk‖2

= ek
′A′C ′CAek + dk

′dk + 2d′kCAek

+(γk − β)2 uk
′B′C ′CBuk + 2(γk − β)uk

′B′C ′(CAek + dk) .

Since ek
′A′C ′CAek +dk

′dk +2d′kCAek ≥ 0 and is independent of (γk, β), we can remove it from the

minimization, leaving

J(γk, β) = (γk − β)2 uk
′B′C ′CBuk + 2(γk − β)uk

′B′C ′(CAek + dk) . (4.15)

Recall that γk ∈ {0, 1} and β ∈ {0, 1}, so we are left with four possibilities for the value of J(γk, β)

as shown in Table. 4.1.

Table 4.1: Possible values of cost function in Eqn. (4.15).
γk β J(γk, β)

0 0 0

0 1 uk
′B′C ′CBuk − 2uk

′B′C ′(CAek + dk)

1 0 uk
′B′C ′CBuk + 2uk

′B′C ′(CAek + dk)

1 1 0

If β = γk, then J = 0. Otherwise if β 6= γk, then J = uk
′B′C ′CBuk +2(γk−β)uk

′B′C ′(CAek +

dk). Clearly since J is being minimized, a sufficient condition to choose γk correctly is

uk
′B′C ′CBuk ± 2uk

′B′C ′(CAek + dk) > 0 ,

and since both terms are scalars, this is equivalent to the first condition. The second condition

results since if γ̂k 6= γk, then J < 0, which is only possible if the inequality holds. �

59

Proposition 4.2 If the estimation error has converged and there is no noise, i.e., ek = 0 and

dk = 0, then the mode detector returns the correct value of γk. If uk = 0, the output of the mode

detector does not affect the state observer.

Proof: With ek = dk = 0 we see that |uk
′B′C ′(CAek + dk)| = 0. Thus, for any uk 6= 0 with the

rank condition on CB, the first condition in Proposition 4.1 is satisfied, and γ̂k = γk. If uk = 0, the

estimation error is unaffected by the values of γk and γ̂k since (γk − γ̂k)(B − LCB)uk = 0. �

Recalling the assumption of single input systems, where uk ∈ IR is a scalar, this also means that

B′C ′CB ∈ IR is a scalar quantity, and we have uk
′B′C ′CBuk = u2

kB
′C ′CB. Let

Λ =
1

B′C ′CB
B′C ′ , (4.16)

which allows us to restate Proposition 4.1 as

• |uk| > 2 |Λ(CAek + dk)| ⇒ γ̂k = γk (4.17)

• γ̂k 6= γk ⇒ |uk| < 2 |Λ(CAek + dk)| (4.18)

From Eqn. (4.17) we have a sufficient condition on (uk, ek, dk) to assure γ̂k = γk. If we knew ek and

dk, we could simply pick uk to satisfy the condition, but of course ek and dk are unknown. Instead

assume a bound is known on the initial conditions and that we consider only norm-bounded noises:

‖x0‖ ≤ δx

‖e0‖ ≤ δe

‖dk‖ ≤ δd

‖zk‖ ≤ δz .

In the next section it is shown that by augmenting a state feedback signal to ensure the control

value is large enough, the fate of γk can be detected while still assuring stability of the closed loop

system.

4.4.1 Augmenting the Control Signal to Guarantee Detection

In this section we show that by using a modified state feedback with an augmented control signal

we can not only guarantee detection of γk, i.e., γ̂k = γk, but also that the closed loop is stable in

some sense. Before giving the expression for the control signal that guarantees detection, we derive

some properties of the estimation error assuming the fate of the control packet is known.

60

The estimation error from the state observer, given in Eqn. (4.6), can be evaluated at time k

according to

ek = (A− LCA)ke0 +
k−1∑
j=0

(A− LCA)k−j−1hj

hj = (γj − γ̂j)(B − LCB)uj + zj .

If we assume that we are always able to pick a uk satisfying |uk| > 2 |Λ(CAek + dk)|, then γ̂k = γk

and hj = zj . Hence, the norm of the estimation error can be bounded in this case according to

‖ek‖ ≤ ‖(A− LCA)k‖δe +
k−1∑
j=0

‖(A− LCA)k−j−1‖δz , ηk . (4.19)

As shown in the lemma below, this has a finite upper bound.

Lemma 4.3 If we are able to always recover γ̂k = γk, the norm of the estimation error, which is

given in Eqn. (4.19), is bounded as k →∞.

Proof: Since A− LCA is stable, we have lim
k→∞

‖(A− LCA)k‖ = 0, so the first term in Eqn. (4.19)

goes to zero as k →∞. Let the second term be represented by Mkδz, where

Mk =
k−1∑
j=0

‖(A− LCA)k−j−1‖ , (4.20)

with M0 = 0 and M1 = I. Since the term δz is independent of k and finite, it remains to show that

the sum Mk converges and be upperbounded by a finite value, lim
k→∞

Mk = M <∞. Since A−LCA

is stable, there exists a finite integer s > 0, such that K = ‖(A − LCA)s‖ < 1. Set q to be the

smallest s, then for all i ∈ [tq, (t+ 1)q − 1), t ≥ 1, we get

‖(A− LCA)i‖ = ‖(A− LCA)q×(i/q)‖

≤ ‖(A− LCA)q‖i/q

= Ki/q

≤ Kt

61

Therefore, we have

M =
q−1∑
j=0

‖(A− LCA)j‖+
∞∑

j=q

‖(A− LCA)j‖

=
q−1∑
j=0

‖(A− LCA)j‖+
2q−1∑
j=q

‖(A− LCA)j‖+
3q−1∑
j=2q

‖(A− LCA)j‖+ · · ·

≤
q−1∑
j=0

‖(A− LCA)j‖+QT + qK2 + qK3 + · · ·

=
q−1∑
j=0

‖(A− LCA)j‖+
QT

1−K

Hence, the estimation error is bounded as k →∞

lim
k→∞

‖ek‖ ≤ δz

q−1∑
j=0

‖(A− LCA)j‖+
qK

1−K

 . (4.21)

�

As mentioned above, Eqn. (4.17) gives a condition to guarantee detection of γk that depends on

two unknown terms: the estimation error ek and noise term dk. The proposition below gives another

condition to guarantee detection that only depends on known quantities.

Proposition 4.4 If we pick at each time step a control value that satisfies

|uk| > 2‖Λ‖ (‖CA‖ηk + δd) , ∆k , (4.22)

then we are guaranteed to have γ̂k = γk. In addition, the right hand side of Eqn. (4.22) remains

upperbounded by a finite value as k →∞.

Proof: We prove the first statement by induction. Pick any u0 satisfying Eqn. (4.22). Then with

ηk from Eqn. (4.19) we can write

|u0| > 2 ‖Λ‖
(
‖CA‖

(
‖(A− LCA)0‖δe +M0δz

)
+ δd

)
≥ 2 ‖Λ‖ (‖CA‖ ‖e0‖+ δd)

≥ 2 ‖Λ‖ (‖CAe0‖+ δd)

≥ 2 ‖Λ‖ |CAe0 + d0| ,

62

which from Eqn. (4.17) implies γ̂0 = γ0. Then, from Eqn. (4.19) ‖e1‖ ≤ ‖A−LCA‖δe +M1δz. Now

repeat the steps above. Pick any u1 satisfying Eqn. (4.22) and we get

|u1| > 2 ‖Λ‖ (‖CA‖ ‖e1‖+ δd)

≥ 2 ‖Λ‖ (‖CAe1‖+ δd)

≥ 2 ‖Λ‖ |CAe1 + d1| ,

implying γ̂1 = γ1 and ‖e2‖ ≤ ‖(A − LCA)2‖δe + M2δd. Then by induction it can be shown that

choosing uk to satisfy Eqn. (4.22) gives γ̂k = γk for all k, and the norm of the error stays bounded

above by Eqn. (4.19).

The second statement is a direct result of Lemma 4.3. The right hand side of Eqn (4.22) is upper

bounded as k →∞ by

2 ‖Λ‖

‖CA‖
q−1∑

j=0

‖(A− LCA)j‖+
qK

1−K

 δz + δd


�

We now have a state observer and mode detector, together with a constraint on the control action

to ensure the fate of the kth control packet, γk, can be recovered at time k + 1. This assures the

estimation error is bounded, as shown in Lemma 4.3. The algorithm is summarized in Table 4.2.

Table 4.2: Estimator Algorithm.
1. Constrain the control to satisfy

|uk| > 2 ‖Λ‖ (‖CA‖ ηk + δd)
2. Run the mode detector to select γ̂k

γ̂k = arg min
β∈{0,1}

‖yk+1 − CAx̂k − βCBuk‖2

3. Run the state observer
x̂k+1 = Ax̂k + γ̂kBuk + L (yk+1 − CAx̂k − γ̂kCBuk)

So far the estimation error has been shown to be upperbounded using the scheme presented.

Of course another major point of concern is the closed loop performance of the system, i.e., the

state error. Enforcing the input constraint could lead to stable estimation but poor closed loop

performance. Below it is shown that the closed loop is stable even with the input constraint by

using a modified state feedback control law. First the noise-free case is shown to achieve almost sure

stability, and then with the noise present the state is shown to be stable in the expected sense.

63

If we assume there is no noise acting on the system, we have wk = vk = dk = zk = δd = δz = 0.

In this case the condition of Proposition 4.4 reduces to

|uk| > 2 ‖Λ‖ ‖CA‖
∥∥(A− LCA)k

∥∥ δe , ∆̃k . (4.23)

As we now show, using a modified version of a state feedback controller we can make the closed loop

system almost surely stable. The analysis models the system as a jump linear system of the form of

Eqn. (4.10). As shown in [18, 17], the sufficient conditions for almost sure stability of a jump linear

system with dynamics {Aθ(k)} is that the modes {θ(k)} be a finite-state ergodic Markov process

with unique invariant distribution Pr[θ(k) = j] = πj and that there exists some norm such that
N∏

i=1

‖Ai‖πi < 1.

Theorem 4.5 With no noise present (wk = vk = 0), using the state observer and mode detector

described above along with the state feedback controller

uk = Fx̂k + sgn(Fx̂k)2 ‖Λ‖ ‖CA‖
∥∥(A− LCA)k

∥∥ δe , (4.24)

where F is designed such that A+ BF is stable, then the closed loop system is almost surely stable

if there exists some H-norm such that

‖A1‖γH ‖A2‖1−γ
H < 1 , (4.25)

where

A1 =


A+BF −BF

0 A− LCA

 (4.26)

A2 =


A 0

0 A− LCA

 . (4.27)

Proof: With the definition of ∆̃k in Eqn (4.23), the modified state feedback controller in Eqn. (4.24)

is equivalent to uk = Fx̂k + sgn(Fx̂k)∆̃k, and it is easy to see that

|uk| = |Fx̂k|+ ∆̃k ≥ ∆̃k ,

64

with equality only holding when |Fx̂k| = 0. If |Fx̂k| > 0, then Eqn. (4.23) is satisfied and γ̂k = γk. If

|Fx̂k| = 0, then uk = 0, and the control does not affect the estimation as described in Proposition 4.2.

We can write the closed loop system as

Xk+1 = Aθ(k)Xk + Ωk (4.28)

θ(k) =

1 , if γk = 1

2 , if γk = 0
(4.29)

Ωk = γksgn(Fx̂k)

 B

0

 ∆̃k . (4.30)

From Eqn. (4.26) - (4.27) we see the A1 matrix is stable and the A2 matrix is unstable. Following

the definitions of the H-norm, ‖A1‖H < 1 and ‖A1‖H < ‖A2‖H .

Define Di(k) =
k−1∏
j=i

Aθ(j) for i ≤ k−1 and Dk(k) = I, where θ(j) ∈ {1, 2} and the multiplication

is on the left. For example, D0(3) = Aθ(2)Aθ(1)Aθ(0). Similarly, define Ei(k) =
k−1∏
j=i

‖Aθ(j)‖H . We

have the following easily verifiable relationships:

1. Di(k) = Dj(k)Di(j) and Ei(k) = Ej(k)Ei(j) for any i ≤ j ≤ k

2. ‖Di(k)‖H ≤ Ei(k)

3. E0(k) ≥ Ei(k)‖A1‖iH for any k − 1 ≥ i ≥ 0

4. Pr
[

lim
k→∞

E0(k) =
(
‖A1‖γH ‖A2‖1−γ

H

)k
]

= 1 from the law of large numbers, and from Eqn. (4.25)

we see that Pr
[

lim
k→∞

E0(k) = 0
]

= 1; in fact, E0(k)→ 0 as k →∞ exponentially fast in k.

65

Also let B =

∥∥∥∥∥∥
 B

0

∥∥∥∥∥∥
H

. Using this notation allows us to write

‖Xk‖H =

∥∥∥∥∥D0(k)X0 +
k−1∑
i=0

Di+1(k)Ωi

∥∥∥∥∥
H

≤ ‖D0(k)‖H ‖X0‖H +
k−1∑
i=0

‖Di+1(k)‖H ‖Ωi‖H

≤ E0(k)‖X0‖H +
k−1∑
i=0

Ei+1(k)B∆̃i

= E0(k)‖X0‖H +
k−1∑
i=0

Ei+1(k)‖A1‖i+1
H

B∆̃i

‖A1‖i+1
H

≤ E0(k)‖X0‖H + BE0(k)
k−1∑
i=0

∆̃i

‖A1‖i+1
H

= E0(k)

(
‖X0‖H + 2B ‖Λ‖ ‖CA‖δe

k−1∑
i=0

Ki

)
,

where

Ki =
‖(A− LCA)i‖
‖A1‖i+1

H

.

The next step is to prove that Ki has a finite upper bound for all i. To simplify notation let

ABF = A+BF and ALC = A−LCA. Denote σBF = ρ(ABF) and σLC = ρ(ALC), i.e., the spectral

radius of ABF and ALC , respectively, and σ = max(σBF , σLC). Note that since A1 is block diagonal

with ABF and ALC on the diagonals, we have ρ(A1) = σ. From page 299 of [26] we know that for

any matrix norm ‖ · ‖ on a matrix T ∈ IRn×n we have ‖T i‖ ≥ ρ(T)i. Then we can write

‖A1‖i+1
H ≥

∥∥Ai+1
1

∥∥
H
≥ ρ(A1)i+1 = σi+1 .

Letting VLC be a matrix which can diagonalize ALC , i.e., V −1
LCALCVLC = ΛLC with ΛLC being the

diagonal matrix of the eigenvalues of ALC , we can write

‖(A− LCA)i‖ = ‖Ai
LC‖

= ‖VLCΛi
2V

−1
LC ‖

≤ ‖VLC‖ ‖V −1
LC ‖ ‖Λ

i
LC‖

= ‖VLC‖ ‖V −1
LC ‖ σ

i
LC

66

Now let C1 = ‖VLC‖ ‖V −1
LC ‖

σ , and combining the above statements we get

Ki ≤ C1

(σLC

σ

)i

≤ C1 .

In fact, if σBF > σLC , then σ = σBF and Ki → 0 as i→∞. Since (A,B) is controllable and (A,C)

is observable, we can make σBF > σLC , and this is equivalent to having the observer eigenvalues

faster than the controller.

As we only need Ki to be upperbounded, we can simply use the bound that Ki ≤ C1 for all i.

Now we return to the H-norm on Xk to get

‖Xk‖H ≤ E0(k)

(
‖X0‖H + 2B ‖Λ‖ ‖CA‖δe

k−1∑
i=0

Ki

)
≤ E0(k) (‖X0‖H + 2B ‖Λ‖ ‖CA‖δekC1) .

Taking the limit as k →∞ we see that from the right hand side we get

Pr
[

lim
k→∞

E0(k) (‖X0‖H + k2B ‖Λ‖ ‖CA‖δeC1) = 0
]

= 1 ,

thus Pr
[

lim
k→∞

‖Xk‖H = 0
]

= 1. �

With almost sure stability proven when the noise is absent, the results are now extended to show

stability in an expected sense for the case where the bounded system and measurement noise are

present, i.e., δz, δd > 0.

Theorem 4.6 Using the estimator described in Table 4.2 along with a modified state feedback con-

troller

uk = Fx̂k + sgn(Fx̂k)∆k , (4.31)

then if there exists a positive definite matrix H > 0 such that

ψ , (1− γ̄) · ‖A‖H + γ̄ · ‖A+BF‖H < 1 , (4.32)

then the following holds:

E [‖xk‖] ≤
(
ψkδx +

1− ψk

1− ψ
· Σ
)
λH

λH

, (4.33)

with

Σ , δw + max
k≥0
‖B‖∆k + ‖BF‖ηk , (4.34)

and λH and λH signifying the maximum and minimum eigenvalues of H, respectively.

67

Proof: Using the control signal in Eqn. (4.31), the state dynamics update equation can then be

rewritten as

xk+1 = (A+ γkBF)xk + qk

qk = wk + γkB(sgn(Fx̂k)∆k − Fek) . (4.35)

Using the control signal in Eqn. (4.31) with the estimator algorithm guarantees that γ̂k = γk, and

thus the error is bounded according to Eqn. (4.19), and we see

‖qk‖ ≤ δw + ‖B‖∆k + ‖BF‖ηk ≤ Σ .

Now define Ak
j =

k−1∏
i=j

(A+ γiBF), with Ak
j = I if j ≤ k. This allows us to express the state as

xk = Ak
0x0 +

k∑
j=0

Ak
j+1qj .

Taking the expectation of the H-norm of this expression above we get

E [‖xk‖H] = E

∥∥∥∥∥∥Ak
0x0 +

k∑
j=0

Ak
j+1qj

∥∥∥∥∥∥
H


≤ E

[
‖Ak

0x0‖H
]
+

k∑
j=0

E
[
‖Ak

j+1qj‖H
]

. (4.36)

Examining the first term we can write

E
[
‖Ak

0x0‖H
]
≤ E

[
‖Ak

0‖H · ‖x0‖H
]

≤ E
[
‖Ak

0‖H
]
· δx · λH

= E

∥∥∥∥∥∥
k∏

j=0

(A+ γjBF)

∥∥∥∥∥∥
H

 δx · λH

≤ E

 k∏
j=0

‖(A+ γjBF)‖H

 δx · λH

≤
k∏

j=0

E
[
‖(A+ γjBF)‖H

]
δx · λH , (4.37)

68

where the last line comes from the assumption that the packet drops are independent from one

time-step to the next. Note that the following holds:

E
[
‖A+ γjBF‖H

]
= (1− γ̄) · ‖A‖H + γ̄ · ‖A+BF‖H = ψ ,

thus we have

E
[
‖Ak

0x0‖H
]
≤ ψkδx · λH . (4.38)

Now returning to the second term in Eqn. (4.36)

k∑
j=0

E
[∥∥Ak

j+1qj
∥∥

H

]
≤

k∑
j=0

E
[∥∥Ak

j+1

∥∥
H
· ‖qj‖H

]

≤
k∑

j=0

k∏
i=j+1

E [‖(A+ γiBF)‖H] · Σ · λH

≤
k∑

j=0

k∏
i=j+1

ψ · Σ · λH

≤
k∑

j=0

ψk−j · Σ · λH

=
1− ψk

1− ψ
· Σ · λH . (4.39)

Then noting ‖xk‖ ≤ ‖xk‖H/λH and combining this with Eqns. (4.38) and (4.39) in Eqn. (4.36) we

arrive at the expression in Eqn. (4.33). �

To evaluate the performance as k →∞, it is easy to see that since ψ < 1 we have

lim
k→∞

E [‖xk‖] =
Σ

1− ψ
· λH

λH

.

Remark 4.7 The stability shown in the theorem above differs from other current stability re-

sults [69] for jump linear systems with noise, as those require the noise signal to be an l2 sequence,

while clearly the noise in Eqn. (4.35) is not.

4.4.2 Removing the Added Input Signal

As shown in the previous section, by combining the estimator algorithm with the modified state

feedback control signal in Eqn. (4.31), detection of γk is guaranteed, and the closed loop state is

stable. The question arises of whether it is necessary to include the extra control effort. Without

this enlarged control value it is no longer possible to guarantee that γ̂k = γk, but as we see below

it might still be possible to stabilize the plant. The estimator algorithm without the added input is

simply the mode detector and state observer, as shown in Table 4.3.

69

Table 4.3: Estimator algorithm without the input constraint.
1. Run the mode detector to select γ̂k

γ̂k = arg min
β∈{0,1}

‖yk+1 − CAx̂k − βCBuk‖2

2. Run the state observer
x̂k+1 = Ax̂k + γ̂kBuk + L (yk+1 − CAx̂k − γ̂kCBuk)

In the remainder of this section we show that this estimator algorithm without the added input

can stabilize the closed loop using state feedback control. We first derive an expression for the

estimation error dynamics in the presence of possible mis-detects. This allows a bound on the

estimation error, even if the fate of γk is not always recovered, and, subsequently, the characterization

of the closed loop performance.

Lemma 4.8 Using the estimator algorithm consisting of the mode detector and state observer as in

Table 4.3, the estimation error dynamics can be written as

ek+1 = (Ãk − LC̃k)ek + rk , (4.40)

with

Ãk = A− αk2BΛCA (4.41)

C̃k = CA− αk2CBΛCA (4.42)

rk = αk(B − LCB)Λdk + zk (4.43)

for some αk ∈ [0, 1].

Proof: Define

Ωk = (γk − γ̂k)(B − LCB)uk (4.44)

and consider the possible combinations of (γk, γ̂k). As seen in Table 4.1, if γk = γ̂k ⇒ Ωk = 0, but

if γk 6= γ̂k the following must hold:

uk
′B′C ′CBuk < −2(γk − γ̂k)uk

′B′C ′(CAek + dk) . (4.45)

Let us first consider the case where (γk, γ̂k) = (0, 1). Since uk is a scalar, Eqn. (4.45) reduces to

u2
k < uk · 2Λ · (CAek + dk), requiring uk and Λ · (CAek + dk) to have the same sign. Thus,

• if uk > 0, then 0 < uk < 2Λ · (CAek + dk) or

• if uk < 0, then 2Λ · (CAek + dk) < uk < 0.

70

Combining these two statements we can write uk = αk2Λ·(CAek +dk) for some αk ∈ [0, 1]. Combine

this with the fact that it corresponds to the case with (γk, γ̂k) = (0, 1) and insert into Eqn. (4.44)

to get Ωk = −αk(B − LCB)2Λ · (CAek + dk). Similarly it can be shown that for (γk, γ̂k) = (1, 0)

we have uk = −αk2Λ · (CAek + dk). Incorporating all possible combinations for (γk, γ̂k) allows us

to write Eqn. (4.44) as

Ωk = −αk(B − LCB)2Λ · (CAek + dk) . (4.46)

From Eqn. (4.6) we can write the error update equation as

ek+1 = (A− LCA)ek + Ωk + zk ,

and inserting Eqn. (4.46) into this we arrive at Eqn. (4.40). �

Using the estimation error dynamics in Eqn. (4.40), the lemma below gives conditions on the

observation gain L such that estimation error is bounded. Note that the dynamics in Eqn. (4.40)

can be thought of as an uncertain system through (Ãk, C̃k), with a bounded noise term rk. Also

observe that αk = 0 when γ̂k = γk, so the uncertainty in (Ãk, C̃k) only enters during mis-detects.

Lemma 4.9 If there exists an observation gain L and a positive definite matrix P > 0 such that

for all αk ∈ [0, 1]

∆V k , (Ãk − LC̃k)′P (Ãk − LC̃k)− P < 0 , (4.47)

then using any control signal the estimation error is upper bounded according to

‖ek‖ ≤
√
λ2

λ1

(
1 + λ6

λ5 +
√
λ2

5 + λ2λ3

λ3

)
R , E (4.48)

with

λ1 = λ(P) (4.49)

λ2 = λ(P) (4.50)

λ3 = min
0≤αk≤1

λ(−∆V k) (4.51)

λ4 = max
0≤αk≤1

λ(−∆V k) (4.52)

λ5 = max
0≤αk≤1

∥∥∥(Ãk − LC̃k)′P
∥∥∥ (4.53)

λ6 = max
0≤αk≤1

∥∥∥Ãk − LC̃k

∥∥∥ (4.54)

R = 2 ‖(B − LCB)Λ‖ δd + δz (4.55)

where λ(X) and λ(X) signify the largest and smallest eigenvalue of some matrix X, respectively.

71

Proof: Construct a nonnegative function Vk = ek
′Pek. Then, using Eqn. (4.40) the change in this

function from one time-step to the next is given by

∆Vk = Vk+1 − Vk

= ek+1
′Pek+1 − ekPek

=
(
(Ãk − LC̃k)ek + rk

)
′P
(
(Ãk − LC̃k)ek + rk

)
− ek

′Pek

= ek
′
[(
Ãk − LC̃k

)
′P
(
Ãk − LC̃k

)
− P

]
ek + rk

′Prk + 2ek
′
(
Ãk − LC̃k

)
′Prk .(4.56)

The first term is simply ek
′∆V kek, which is negative per Eqn. (4.47); the term rk

′Prk is always

positive; and the sign of the last term depends on the vectors ek and rk. To use Vk as a Lyapunov

function we need it to decrease along system trajectories, i.e., ∆Vk < 0; however, from Eqn. (4.56)

we see that it is not always guaranteed to be negative. Analyzing the terms in Eqn. (4.56) further,

we note

ek
′∆V kek ≤ −λ3‖ek‖2 (4.57)

rk
′Prk ≤ λ2‖rk‖2 ≤ λ2R

2 . (4.58)

Using the Cauchy-Schwarz inequality we see

∣∣∣ek
′
(
Ãk − LC̃k

)
′Prk

∣∣∣ ≤ ∥∥∥ek
′
(
Ãk − LC̃k

)
′P
∥∥∥ · ‖rk‖

≤ ‖ek‖ · λ5R . (4.59)

Combining Eqn. (4.56) with Eqn.s (4.57), (4.58), and (4.59) we get

∆Vk ≤ −λ3‖ek‖2 + 2λ5R‖ek‖+ λ2R
2 . (4.60)

Note ∆Vk is negative quadratic in ‖ek‖, so solving for the positive root we get

e∗ =
R

λ3

(
λ5 +

√
λ2

5 + λ2λ3

)
. (4.61)

As ‖ek‖ > e∗ implies ∆Vk < 0, it is then true that Vk+1 < Vk and ‖ek+1‖2 ≤ Vk+1
λ1
≤ Vk

λ1
≤ ‖ek‖2 λ2

λ1
.

If ‖ek‖ ≤ e∗, it is possible ∆Vk ≥ 0. We do know, however, that

‖ek+1‖ ≤ λ6‖ek‖+R ,

72

therefore ‖ek‖ ≤ e∗ implies ‖ek+1‖ ≤ λ6e
∗ +R. If the actual value of ek+1 is such that ‖ek+1‖ > e∗,

then ∆Vk+1 < 0 and ‖ek+2‖ ≤ ‖ek+1‖
√

λ2
λ1

. If the value is ‖ek+1‖ ≤ e∗, then ‖ek+2‖ ≤ λ6e
∗ + R.

Then, assuming the initial error also satisfies ‖e0‖ ≤ E, we get the expression in Eqn. (4.48). �

With a bound on the estimation error now derived for the case without the added input signal,

we see that this estimation scheme can tolerate possible mis-detects of the fate of the control packets

and now provide a bound for the closed loop error using state feedback, as shown in the theorem

below.

Theorem 4.10 If there exists an observation gain L and a positive definite matrix P > 0 satisfying

the conditions of Lemma 4.9, then using the estimator algorithm in Table 4.3 with a simple state

feedback controller without the added effort, i.e., uk = Fx̂k, the state is bounded in the expected

sense:

E [‖xk‖] ≤
(
ψkδx +

1− ψk

1− ψ
·Θ
)
λ(H)
λ(H)

, (4.62)

where

Θ = ‖BF‖
√
λ2

λ1

[
1 +

λ6

λ3

(
λ5 +

√
λ2

5 + λ2λ3

)]
R+ δw . (4.63)

Proof: The proof is the same as Theorem 4.6 without the addition of the B∆k term to the bounded

noise, and the estimation error bounded according to Lemma 4.9. �

Remark 4.11 The stability conditions presented above are conservative. Performing the worst

case analysis for the noise sequences and using the properties of the norm make the upper bounds

conservatives. Furthermore, the conditions are only sufficient, not necessary, and it turns out the

algorithm performs favorably even when the conditions are not satisfied. The value of the derivations

above is to show that the algorithms can stabilize the system. As we show in the simulations below,

the actual performance can be substantially better than these upper bounds.

4.4.3 Unknown Input Observers

The purpose of the estimator algorithm described above is to develop an estimation and control

scheme that can tolerate not having information on the fate of the control packets, i.e., γk. We

now present an alternative estimator that does the same, namely the well known unknown input

observer [41]. It consists of using estimator of the form

x̂k+1 = (MA−KC)x̂k +Kyk +Gyk+1 , (4.64)

with M = I −GC and the gains (K,G) chosen so that

• MB = 0 and

73

• MA−KC is stable

Let G = B(CB)+ + Y (I − (CB)(CB)+) satisfy MB = 0 for any arbitrary matrix Y , where (CB)+

is the left (pseudo) inverse of CB. Applying the unknown input observer to the UDP system, the

estimation error dynamics are given by

ek+1 = (MA−KC)ek + wk +Kvk +G(Cwk + vk+1) . (4.65)

According to [41], the necessary and sufficient conditions for the unknown input observer to exist

are that: rank(CB) = rank(B) = r ≤ n, so that (CB)+ exists, and (MA,C) be detectable. The

lemma below now relates the unknown input observer to the estimator algorithm presented in the

previous section.

Lemma 4.12 The following are true:

1. The existence of a unknown input observer with MA stable implies the conditions for Lemma 4.9

are satisfied with L = G .

2. The existence of an L satisfying the conditions for Lemma 4.9 implies the existence of a

unknown input observer.

Proof:

1. The unknown input observer exists with MA stable, and let L = G be the observer gain used

in the estimator algorithm from Section 4.4.2. Then since MB = B − LCB = 0, this means

(Ãk, C̃k) = (A,C), and since MA = A−LCA = Ãk−LC̃kÃk is stable, then clearly Eqn. (4.47)

can be satisfied.

2. If Eqn. (4.47) is satisfied for all αk ∈ [0, 1], then it is satisfied for αk = 1
2 , which implies the

pair

(A−BΛCA,CA− CBΛCA)

must be detectable. If we let K = 0, then for the unknown input observer to exist MA

must be stable. Since rank(CB) = rank(B), we have (CB)+ = (B′C ′CB)−1B′C ′, but as

we are considering single input systems, (B′C ′CB)−1 is a scalar. Thus we can write MA =

A − BΛCA − Y (CA − CBΛCA), but since the pair above is detectable, MA can be made

stable through proper selection of Y . Hence, the unknown input observer exists.

�

Thus, we see that if the sufficient conditions for the estimator algorithm are satisfied, then

the unknown input observer exists as well, so the question arises of which is better to use? An

74

upper bound for the unknown input observer estimation error can be computed and compared with

the upper bound using the estimator algorithm, both with and without the added control input.

When the necessary and sufficient conditions for the unknown input observer are not satisfied, then

by definition constructing an observer that cancels out the unknown input is unstable, whereas the

conditions presented above for upper bound on the estimator algorithm are only sufficient conditions.

Thus if the unknown input observer does not exist, although there is no proof that the estimator

scheme without the added input is upperbounded, there is also no proof saying it is unstable and it

is a better alternative. The example below helps to illustrate the usage of the different schemes.

4.5 Simulation Example

To illustrate the effectiveness of the estimator algorithm consider the following example:

A =

 1.5 0.1

0.3 1.3

 , B =

 0

1

 , C =
[

0 1
]
.

This system has unstable eigenvalues of (1.2, 1.6). The pairs (A,B) and (A,CA) are controllable

and observable, respectively, and CB = 1, so the estimation algorithm can be used to choose γ̂k. For

this system the unknown input observer does not exist since the pair (MA,C) is not detectable, so

this method is left out of all the simulations. The initial state and error are assumed to be bounded

by ‖x0‖ ≤
√

2 and ‖e0‖ ≤
√

2.

First we assume that there is no noise acting on the system, and the feedback and observer gains

are chosen to place the eigenvalues of A+BF and A−LCA at (0.07, 0.08) and (0.05, 0.06), respec-

tively. This translates into setting the gains to F = [−20.6,−2.65] and L = [4.6401, 0.9984]′. We

pick γ = 0.75 and simulate the system from random initial conditions and with random realizations

of the packet drop sequence. Using the new scheme with the added input signal, a typical response

profile is shown in Fig. 4.2. The top plots show the evolution of the state vector and the estimation

error. The middle plots show the sequence of γk for this simulation and of (γk−γ̂k)2. As can be seen,

our estimation algorithm recovers γ̂k = γk at every time-step, which allows the estimation error to

converge quickly. The control history is plotted in the bottom plots, showing that the corrective

term decays to zero, and uk approaches Fx̂k.

In Fig. 4.3 the norm of the state and estimation error are plotted for the algorithm with the

added input signal and the other naive schemes described in Section 4.2. As expected, the naive

schemes that use γ̂k = 0 and γ̂k = γ can be seen to have diverging state and estimation error (they

are the two lines that go off the plot after time-step 2). The naive scheme using γ̂k = 1 performs

slightly better. As expected, the norms of the state and estimation error decrease during the burst

of successful packet reception, but during a burst of drops the norms grow very large. In fact, they

75

0 10 20
−100

−50

0

50
x

Using New Scheme

0 10 20

−2
0
2
4

e

0 10 20
0

0.5

1
γ

0 10 20
0

0.5

1

(γ−hat(γ))2

0 10 20
−100

0

100

200 u
F*hat(x)

0 10 20
0

10

20

30

u−F*hat(x)

Figure 4.2: Simulation results utilizing new estimation scheme with added control.

0 5 10 15 20 25
0

50

100

150

|| x ||
new scheme
E[γ]
hat(γ)=0
hat(γ)=1

0 5 10 15 20 25
0

10

20
|| e ||

0 5 10 15 20 25
0

0.5

1

γ

Figure 4.3: Comparison of state history for various control-estimation schemes.

grow to as large as ‖e19‖ = 7.62 × 105 and ‖x21‖ = 1.95 × 107. So although the naive scheme

of γ̂k = 1 may converge almost surely as k → ∞ for γ close to unity, it can display this terrible

performance during a burst of packet drops.

Now consider the same dynamics and bounds on the initial state and estimation error, but include

nonzero noise to be present with δw = 1 and δv = 0.1. The estimator algorithm is run with observer

76

gain L = [3.9, 0.98]′ and a state feedback controller with gain F = [−12.95,−2.05]. These correspond

to the eigenvalues of A + BF and A − LCA placed at (0.35, 0.4) and (0.178 + 0.0820
√
−1, 0.178 −

0.0820
√
−1), respectively. We simulated the UDP estimation algorithm described in this chapter,

both with and without the extra control input, as well as both the naive case of selecting γ̂k = 1,

and the TCP case where the estimator has direct knowledge of γk. A total of 10,000 simulations are

run each for 50 time steps. Random initial conditions and noise sequences are chosen but were the

same for all the different estimation schemes. We use an average packet acceptance rate of γ̄ = 0.85.

The averages of the state and estimation error norms across all 10,0000 simulations are shown

in Figure. 4.4. The scheme using γ̂k = 1 quickly diverges, while as expected the TCP case has the

best results. Both UDP estimation schemes, with and without the added input value, show average

estimation errors that overlap with the TCP case. In fact, when including the additional input

value, the estimates are identical to the TCP case since we recover γ̂k = γk. The price to pay is that

the state norm is larger as a result of including the extra input term. Using the UDP estimation

scheme without the additional input we see that the performance is virtually identical to that of the

TCP case for both the estimation error and the state norm. We do not always recover the fate of

γk using this scheme, but in fact the selection of γ̂k is correct nearly 99% of the time.

0 10 20 30 40 50
0

50

100

150

200

|| x ||

0 10 20 30 40 50
0

1

2

3

4

5
|| e ||

time step

TCP
UDP no extra u
UDP
gammaht = 1

Figure 4.4: Average of ‖xk‖ and ‖ek‖ across all 10,0000 simulations..

Figure 4.5 shows the results from a particular simulation. Note how the UDP estimation scheme

without the added control tracks the TCP case except for a few time-steps starting at 19, when

77

it results in γ̂k 6= γk. This mistake causes the estimation error to increase slightly, which likewise

induces a larger state norm. After a few successive time steps with no error in γ̂k, the estimation

error and state norm quickly collapse onto the TCP case. For all the estimation schemes, the periods

of time where the control packets are dropped, i.e., γk = 0, correspond to the state norm increasing.

The bottom plot shows the control efforts. Note how the UDP estimation scheme applies a larger

control effort because of the larger state norm and the added input used to detect γk.

0

500|| x ||

0

5|| e ||

TCP
UDP no extra u
UDP

0

0.5

1γ
k

0

1
γ
k
 error

0 10 20 30 40 50
−1000

0

1000
u

time step

UDP no extra u

Figure 4.5: Plots from a single simulation for various estimation schemes.

4.6 Conclusions and Future Work

We presented an estimation algorithm for UDP-like networked control systems. First, to ensure

detection of the fate of the control packet, an added control input is included. An upper bound for

the expected value of the state norm in the presence of bounded state and measurement noise was

presented. If the added control input is removed, the estimator algorithm is no longer guaranteed to

detect the fate of the control packet. Nonetheless, under certain conditions on the system parameters,

it can still be shown to produce an upper bound to the estimation error, which in turn allows an

upper bound to the expected value of the state norm to be derived. The estimator algorithm is

then compared to the unknown input observer, which can directly remove the dependence of the

78

control signal on the estimation error. A simulation example shows how the estimator algorithm

works well, especially compared to the other methods (even if the sufficient conditions for stability

are not satisfied), and provides guidelines for designing the estimator in this case.

Since the conditions for stability of the estimator algorithm overlap with those of the unknown

input observer, it would be good if necessary stability conditions for the estimator algorithm could

be derived. The algorithm appears to work well even if the sufficient conditions are not satisfied.

Thus, relaxing this conservatism would make the result stronger. Modifying the model to instead

include different noise types or uncertainties, have non i.i.d. packet drops, and add intelligence at

the plant to apply some predicted control rather than evolve open loop when the control packet is

dropped are all areas that can be investigated, though the results presented here should only need

to be modified slightly to include these scenarios. The most interesting extension might be to insert

a network between the sensors and estimator so that the estimator does not always have access to

the sensor data, which would most likely require some additional logic in the algorithm.

79

Chapter 5

Using Hierarchical Decomposition
to Speed Up Consensus

5.1 Introduction

Recent years have seen a large amount of research focused on issues relating to multi-agent and

cooperative control [57]. The task is generally to have a group of systems/agents collectively achieve

a desired task in a decentralized fashion while making use of shared information. Examples of

specific applications include those in the areas of: consensus [58], behavior of swarms [87], multi-

vehicle formation control [19], sensor fusion [78], and many others. These settings, like NCS, require

information be exchanged between dynamical elements. As a result, managing the information flow

has a direct impact on system performance. In this chapter we focus on the problem of consensus, i.e.,

having a group of agents reach agreement/consensus on a quantity of interest, and design a scheme

to manage the flow of information in the consensus loop to speed up the time to convergence.

The average consensus problem, which is considered in this chapter, is to find a distributed

algorithm such that a collection of agents reaches consensus on the average of their initial conditions.

To do so, the agents must communicate their values to other agents, but they can only communicate

with some subset of the other nodes. Given certain conditions on the topology of this communication

network, and using an update rule that changes their value in the direction of the aggregate value

of the nodes they communicate with, the average consensus can be achieved.

In addition to proving consensus can be reached, performance of the consensus algorithm is

also a key area of research. One performance measure is in terms of the robustness to possible

communication sharing impediments. Issues such as communication delays and changes in the

communication topology over time have been examined, see [58] and [62]. Another performance

measure that has been studied lately, and that is the focus of the present work, is the time to reach

consensus.

80

Tools from graph theory [22] have been used to represent the information sharing topology and aid

in the analysis in consensus problems. The key factor in determining the time to reach convergence

has been shown to be the second smallest eigenvalue, represented as λ2, of the graph Laplacian

(the matrix representing the evolution of the agent’s values based on the communication topology).

In [90], the authors attempt to speed up the time to convergence, while trading-off robustness, by

optimally choosing how much relative weight each node should give to the other nodal values in

the update rule in order to maximize the ratio λ2/λmax. A version for the discrete time case is

given in [88]. Introducing additional communication links into the network and creating small world

networks, as was done in [56], is another approach. The main idea of these approaches and others

is the attempt to increase λ2.

This chapter introduces a new approach to speed up convergence in consensus algorithms, appli-

cable to graphs that can be decomposed into a hierarchical graph. It consists of splitting the overall

graph into layers of smaller connected subgraphs. Consensus is performed within the individual

subgraphs, starting with those of the lowest layer of the hierarchy and moving upwards. Certain

“leader” nodes bridge the layers of the hierarchy. By exploiting the larger λ2 values of the smaller

subgraphs, this scheme can achieve faster overall convergence than the standard single-stage consen-

sus algorithm running on the full graph topology. Furthermore, using consensus for the individual

subgraphs endows them with the benefits associated with standard consensus algorithm, such as

robustness to information perturbations, no need for a global planner within the subgraphs, etc.

The contribution of this chapter is to extend the basic understanding of consensus algorithms to

situations when the system may have a hierarchical structure. This hierarchical structure is typical

in layered communication networks, where some nodes are gateways between clusters of local nodes

and the rest of the network.

The chapter is organized as follows. Section 5.2 provides a quick review of graph theory and

continuous-time consensus algorithms and introduces the concept of hierarchical decomposition of

graphs. The hierarchical consensus algorithm is described and analyzed in Section 5.3. In Section 5.4

we describe methods to help select which hierarchical decomposition to chose. Section 5.5 contains

examples and simulations to illustrate the algorithm and how to choose a decomposition. Conclusions

and a description of future work are given in Section 5.6. The proofs for the analysis in Section 5.3

are presented in the appendix in Section 5.7. This work is joint with Kevin Lynch, Karl Johannsson,

and Richard M. Murray, a version of which was submitted in [12].

81

5.2 Graphs and Continuous-Time Consensus

5.2.1 Graph Theory

Consider a group of N agents with an underlying graph topology G = {V,E}, where V = {1, . . . , N}

is the set of nodes and the edge set E = {(i, j)} ⊆ V × V is the node pairs (i, j), where node j

sends information to node i. If the communication link between nodes i and j is bidirectional, then

both (i, j) and (j, i) ∈ E. Define the neighbor set of node i as Ni = {j | (i, j) ∈ E}. The adjacency

matrix is the matrix A = [aij], where aij = 1 if (i, j) ∈ E otherwise aij = 0, and it is usually

assumed that aii = 0. Letting D = diag(di) with di =
∑

j

aij , we then have the Laplacian matrix

for graph G given by

L = D −A . (5.1)

The Laplacian matrix has been widely studied in the context of graph theory [22], and it plays a

central role in the analysis of consensus algorithms [57].

5.2.2 Hierarchical Graph Decomposition

The algorithm presented in this chapter is applicable to graphs that can be hierarchically decom-

posed. In this section we provide a formal definition for a hierarchical decomposition and present

some associated properties.

Definition 5.1 An M -layer hierarchical decomposition of a connected graph G = {V,E} consists of

a collection of subgraphs Gi
j = {V i

j , E
i
j}, with i = 1, . . .M , of G. The vertex set of Gi

j is denoted by

V i
j ⊆ V , and Ei

j = {(m,n) ∈ E | m,n ∈ V i
j } ⊆ E denotes the edge set. Let Si denote the number

of subgraphs, Gi
1,Gi

2, . . . ,Gi
Si , at layer i. Let Vi =

Si⋃
j=1

V i
j be the set of all nodes in layer i. The

collection of subgraphs Gi
j must satisfy the following properties:

1. Each Gi
j is connected, and

∣∣V i
j

∣∣ ≥ 1.

2. There is only one top-layer graph, i.e., SM = 1.

3. The lowest-layer graphs contain all the nodes of the graph, i.e., V1 = V .

4. The subgraphs at the same layer i are disjoint, i.e., V i
j

⋂
V i

k = ∅ for all j 6= k and j, k ∈

{1, . . . , Si}.

5. For each Gi
j , i < M , there exists exactly one parent subgraph Gi+1

m that shares a single node,

i.e., exactly one m ∈ {1, . . . , Si+1} satisfies |V i
j

⋂
V i+1

m | = 1.

82

An example of a hierarchical decomposition is given in Fig. 5.1. Notice that the hierarchical

decomposition does not require that all available links be utilized since the links between nodes 2

and 3 as well as between nodes 5 and 6 are never used. Of course each graph does not necessarily

have a unique hierarchical decomposition, and others could be created that utilize these links.

Original
Graph

Layer 1

Layer 2

Layer 3

Hierarchical
Decomposition

1

2

3 4 5 6 7

Figure 5.1: Example hierarchical decomposition.

We introduce a few more definitions and properties associated with the subgraphs of a hierarchical

decomposition. All nodes present in a given layer i < M have an associated parent node for that

layer. If node k is in subgraph Gi
j , then node k’s parent node is the one node in Gi

j that is also in

some subgraph of the next layer Gi+1
m . Let p(k, i) denote the parent node of node k for layer i, i.e.,

if k ∈ V i
j and its parent node is in V i+1

m , then p(k, i) = V i
j

⋂
V i+1

m . A node can be its own parent

node. As an example, referring to the hierarchical decomposition in Fig. 5.1, we see that in layer 1,

node 1 is the parent node for both itself and node 2, i.e., p(1, 1) = p(2, 1) = 1.

For every layer i, each node k also has an associated leader node, denoted by Li
k, whose definition

is slightly different than its parent node. If a node k is in layer i, k ∈ Vi, then it is its own leader

node Li
k = k. If the node is in layer i−m, but it is not in any of layers from i−m+1, i−m+2, . . . , i,

i.e., k ∈ Vi−m but k 6∈
m−1⋃
l=0

Vi−l, then its leader node is the successive parent node from layer i−m

to i − 1, i.e., Li
k = p(p(· · · p(p(k, i −m), i −m − 1), · · ·), i − 1). Later, the leader node is shown to

be important, as each node “follows” the value of its leader node. In Fig. 5.1 we see that node 2’s

leader nodes in layers 1, 2, and 3 are nodes 2, 1, and 3, respectively, i.e., L1
2 = 2, L2

2 = 1, and L3
2 = 3.

83

The total node set for the subgraph Gi
j , denoted Vi

j , is the set of all nodes whose leader node is

in subgraph Gi
j , i.e., Vi

j =
{
k | Li

k ∈ V i
j

}
. For the first layer we see V1

j = V 1
j for all j = 1, . . . , S1.

For each layer i, associate to each node k a total neighbor set that is given by N i
k = Vi

j for Li
k ∈ V i

j ,

where this set represents node k and all nodes that are connected to it across layers 1 through i.

We let N 0
k = k, and note that if node k is in layer i, the nodes that “follow” it are those in the

set N i−1
k \k. Since all the subgraphs of any layer i are disjoint, then for any nodes k and j if there

is any overlap in their total neighbor sets, N i
k

⋂
N i

j 6= ∅, the sets must be identical, N i
k = N i

j , and

their leader nodes must be in the same subgraph of layer i. From this we can see that every total

neighbor set N i
k is repeated

∣∣N i
k

∣∣ times, and there a total of Si unique neighbor sets for layer i. The

union of the total neighbor sets at any layer equals V . We also have the following relationship:

N i+1
k =

⋃
m∈V i+1

j

N i
m , for Li+1

k ∈ V i+1
j . (5.2)

Note in the final layer VM
1 = NM

k = V for all k, meaning both the total node set and every total

neighbor set in the final layer is the set containing all nodes of the graph. Now we refer to Fig. 5.1

to see the total node sets for layer 2 are V2
1 = {1, 2, 3, 4, 5} and V2

2 = {6, 7}. Focusing on node 2,

the total neighbor sets are N 1
2 = {1, 2}, N 2

2 = {1, 2, 3, 4, 5}, and N 3
2 = {1, · · · , 7}.

5.2.3 Continuous-Time Consensus

Denote the state of node i as xi. The standard consensus algorithm consists of each agent’s dynamics

evolving according to

ẋi =
N∑

j=1

aij (xj − xi) , i = 1, . . . , N , (5.3)

with aij defined by the adjacency matrix as given above. If we let the vector x = [x1, . . . , xN]T ,

then we can write the consensus dynamics of the group as

ẋ = −Lx , (5.4)

where L is the graph Laplacian as defined above. Consensus is reached when all the nodal values

are the same, x1 = x2 = · · · = xN . The goal is average consensus, where the consensus value is the

average of the initial conditions, x = 1
N

N∑
i=1

xi(0). Let x = 1T
Nx be the vector version of the scalar

quantity x, with 1N the row ones vector with dimension N . The consensus error is then defined as

e(t) = x(t)− x . (5.5)

84

The standard consensus algorithm, and certain variants of it, have been widely studied over the

years. Much focus has been given to requirements on the topology of the network, and hence the

Laplacian, for consensus to be achieved. Likewise, the performance of the consensus algorithm, i.e.,

the time to reach consensus, is governed by the Laplacian. More specifically, following [57], with a

connected graph and L symmetric (all links are bidirectional), all the eigenvalues lie on the real axis

in the right half plane. The error convergence is then bounded by the second smallest eigenvalue λ2

of L according to

‖e(t)‖2 ≤ e−λ2t‖e(0)‖2 , (5.6)

so the consensus error goes to 0 as t → ∞. Clearly, larger values of λ2 cause the upper bound of

the error to converge faster.

For use with the hierarchical scheme, we introduce the term starting value to differentiate from

initial conditions. The initial conditions x(0) are the values of the nodes at the very beginning of

the consensus algorithm, i.e., at the lowest layer of the hierarchy. The starting values are the node

values at the start of a new layer. Denote the start time of layer i as t+i−1, and the end time as t−i ,

and for layer 1 we assume t+0 = 0. The starting values for layer i are thus x(t+i−1). We then define

the subgraph average to be the average of the starting values of the subgraph nodes

S
i

j = average
(
{xk(t+i−1) | k ∈ V

i
j }
)
, (5.7)

and the nodal subgraph error is

ẽk(t) =

 xk(t)− Si

j for k ∈ V i
j

0 if k 6∈ Vi
(5.8)

for t ∈ [t+i−1, t
−
i]. The consensus error is still relative to the average of the initial conditions as in

Eqn. (5.5).

In the next section we develop a variant of the standard consensus algorithm, applicable to

graphs that can be hierarchically decomposed, to speed up the convergence time. It takes advantage

of larger λ2 values for the smaller subgraphs compared to the λ2 of the full graph. For example, the

full graph in Fig. 5.1 has λ2 = 0.586, while the smallest λ2 of all the subgraphs of the hierarchical

decomposition is 1.

85

5.3 Hierarchical Consensus Algorithm Description and Anal-

ysis

In this section we introduce the hierarchical consensus algorithm and then provide an analysis

deriving a bound on the consensus error under this scheme and end with a discussion of the key

features of the algorithm.

5.3.1 Hierarchical Consensus Algorithm

As opposed to the standard single-stage consensus algorithm that utilizes the full communication

topology, the new consensus scheme aims to speed up the convergence by exploiting the hierarchical

decomposition of the graph. The scheme consists of “disconnecting” the hierarchical graph into

layers consisting of smaller disconnected subgraphs. Consensus is run within the subgraphs while

moving up the hierarchy. The scheme does not introduce additional links to the topology, but may

not utilize all available links depending on the decomposition.

The scheme works by running consensus dynamics, like Eqn. (5.3), within each subgraph, starting

with the subgraphs in the lowest layer. The subgraphs start converging towards the average of their

starting values at that layer. The layer is complete when the nodes within that layer have all

converged to within a specified tolerance εs of their respective subgraph average, that is ‖ẽ‖∞ ≤ εs.

As we show later, this stopping condition can be assured by enforcing a minimum layer time. After

this stopping criterion is met, the algorithm moves to the next higher layer of the hierarchy, repeating

until the final layer is reached. The flow diagram for this scheme is shown in Fig. 5.2.

Subgraphs of consecutive layers are connected by the nodes that are present in both layers.

These nodes allow the information to flow between the levels in the hierarchy. As the algorithm

moves to higher levels, these nodes must disseminate information to their follower nodes. We assume

the leaders are able to relay their values down to their followers, still utilizing the communication

topology but in a different mode than before. This allows all nodes to instantaneously assume the

value of their leader node, i.e., for every layer i we get xk(t) = xLi
k
(t).

In designing the hierarchical scheme, we want the consensus value that every subgraph converges

towards to be equal to the average of the initial conditions of that subgraph’s total node set. This

means we want S
i

j as defined in Eqn. (5.7) to be equal to average
(
{xk(0) | k ∈ Vi

j}
)
. To assure this

we simply rescale the starting values of the nodes within the subgraph. Combining this rescaling

with the relay option that sets all follower node values to their leader’s value, we have upon starting

86

Given full graph

and initial conditions

Set
hierarchy

level to i=1
(lowest)

Perform consensus within
subgraphs of current
hierarchy level i and

disseminate to followers

Stopping
criterion met?

no

Increment
hierarchy level

(i=i+1) and scale
nodal values as

appropriate

yes

Highest level
of hierarchy?

no

yes

Perform consensus
in final hierarchy

layer and disseminate
to followers

Figure 5.2: Flow diagram for the hierarchical consensus scheme.

87

a new layer i

xk(t+i−1) = αi
Li

k
xLi

k
(t−i−1)

αi
Li

k
=

∣∣Vi
j

∣∣−1 ∣∣V i
j

∣∣ ∣∣∣N i−1
Li

k

∣∣∣ , for Li
k ∈ V i

j , (5.9)

and we let α1
k = 1 for all k. It is important to note that in order for the nodes to compute αi

k

they only need to know the local topology of the hierarchical graph; that is the number of nodes in

their subgraph and the total number of followers for each of those nodes. The scaling factors are

independent of the actual values of the nodes. If all nodes in a subgraph have the same number of

total followers, the corresponding scale value is 1, i.e., if
∣∣∣N i−1

Li
k

∣∣∣ =
∣∣∣N i−1

Li
l

∣∣∣ for all k, l ∈ V i
j , then it

is easy to see
∣∣Vi

j

∣∣ = |V i
j ||N

i−1
Li

k

| and αi
k = 1. Self-similar graphs, such as that in Fig. 5.3, have this

property.

5.3.2 Analysis

We want to bound the consensus error for the hierarchical scheme and compare this with the bound

of the standard single-stage consensus algorithm utilizing the full graph topology that is given in

Eqn. (5.6). As mentioned above, a layer is considered completed as soon as ‖ẽ‖∞ ≤ εs. We first

derive a bound for the consensus error of the hierarchical scheme, which depends on the value of εs,

and then we show how to guarantee this tolerance can be met.

We need to assume a bound on the initial conditions,

‖x(0)‖∞ ≤ β ,

to aid in the analysis of the rescaling. Next, define for each layer i the vectorsN i
= [N i

1,N
i

2, . . . ,N
i

N]T

and Ñ i = [Ñ i
1, Ñ i

2, . . . , Ñ i
N]T with

N i

k = average
(
{xm(0) | m ∈ N i

k}
)

(5.10)

Ñ i
k = average

(
{xm(t+i−1) | m ∈ V

i
j }
)
, for Li

k ∈ V i
j . (5.11)

Thus, N i

k represents the average of the initial conditions of all nodes connected to node k from layer

1 through layer i, and Ñ i
k represents the average of the starting values at layer i of all nodes in the

subgraph containing node k’s leader node.

88

To bound the consensus error we start by noting that for each layer i we can write

‖e(t)‖2 = ‖x(t)− x‖2

=
∥∥∥x(t) +N i −N i

+ Ñ i − Ñ i − x
∥∥∥

2

≤
∥∥∥x(t)− Ñ i

∥∥∥
2

+
∥∥∥Ñ i −N i

∥∥∥
2

+
∥∥∥N i − x

∥∥∥
2

(5.12)

for any t ∈ [t+i−1, t
−
i]. The first term on the right hand side of Eqn. (5.12) represents the error of

the nodes with respect to their subgraph averages. The second term is the difference between the

total neighbor subgraph averages and the total neighbor initial condition averages. The final term

represents the difference between the average of the initial conditions of the total neighbor sets for

layer i and the initial conditions of all the nodes. We now provide bounds for each of the terms on

the right hand side of Eqn. (5.12).

Lemma 5.2 Using the hierarchy scheme with stopping tolerance εs, then for any layer i the differ-

ence between the total neighbor subgraph averages and the total neighbor initial condition averages

can be bounded by ∥∥∥Ñ i −N i
∥∥∥

2
≤ (i− 1)εs

√
N . (5.13)

Proof: See Appendix in Section 5.7. �

Lemma 5.3 For any layer i < M , the difference between the average of the initial conditions of the

total neighbor sets and the initial conditions of all the nodes is bounded by

∥∥∥N i − x
∥∥∥

2
≤ ‖e(0)‖2 . (5.14)

For the final layer we have by definition

∥∥∥NM − x
∥∥∥

2
= 0 . (5.15)

Proof: See Appendix in Section 5.7. �

With these lemmas we have bound the last two terms on the right hand side of Eqn. (5.12). Now

we seek to bound the first term. To do so we use the following results which bound the consensus

error at the end and the beginning of each layer.

89

Lemma 5.4 Given the stopping criterion ‖ẽ‖∞ ≤ εs, at the end of every hierarchy level i < M the

consensus error is bounded according to

‖e(t−i)‖2 ≤ ‖e(0)‖2 + iεs
√
N . (5.16)

As the final layer M does not terminate, i.e., t−M →∞, we get that the steady state consensus error

for the hierarchy scheme is bounded by

lim
t→∞

‖e(t)‖2 ≤ (M − 1)εs
√
N . (5.17)

Proof: See Appendix in Section 5.7. �

Lemma 5.5 The consensus error at the beginning of every layer i can be bound by

‖e(t+i−1)‖2 ≤ ‖e(0)‖2 + εs
√
N
(
2
∥∥α̃i
∥∥
∞ + i− 1

)
+
∥∥α̃i − 1

∥∥
∞

√
Nβ , (5.18)

where α̃i =
[
αi

k

]
k∈Vi .

Proof: See Appendix in Section 5.7. �

Using the bound on the consensus error at the start of each layer, we now provide a bound on

the subgraph error at the start of each layer.

Lemma 5.6 At the start of any layer i, the subgraph error ẽ as defined in Eqn. (5.8) is bounded by

∥∥ẽ(t+i−1)
∥∥

2
≤ ẽi

0 ,

where

ẽi
0 = bi ‖e(0)‖2 +

∥∥α̃i − 1
∥∥
∞ β
√
N + 2εs

√
N
(∥∥α̃i

∥∥
∞ + i− 1

)
, (5.19)

with bi = 2 if i < M and bM = 1.

Proof: See Appendix in Section 5.7. �

We are now ready to determine a bound for the first term on the right hand side of Eqn. (5.12),

as given below.

Lemma 5.7 Using the hierarchy scheme, the subgraph error is bounded by

∥∥∥x(t)− Ñ i
∥∥∥

2
≤ ẽi

0

 Si∑
j=1

(
max
k∈V i

j

∣∣N i−1
k

∣∣) e−2λi,j
2 (t−t+i−1)

 1
2

(5.20)

90

for t ∈ [t+i−1, t
−
i], with ẽi

0 as given in Eqn. (5.19) and λi,j
2 representing the second smallest eigenvalue

of the subgraph Gi
j.

Proof: See Appendix in Section 5.7. �

Now that we have provided bounds for all the terms on the right hand side of Eqn. (5.12), we

are in a position to bound the consensus error.

Theorem 5.8 Using the hierarchical consensus scheme with layer stopping tolerance
∥∥ẽ(t−i)

∥∥
∞ ≤

εs, the consensus error during each layer i can be bounded according to

‖e(t)‖2 ≤ ẽ
i
0

 Si∑
j=1

(
max
k∈V i

j

∣∣N i−1
k

∣∣) e−2λi,j
2 (t−t+i−1)

 1
2

+ (i− 1)εs
√
N + (bi − 1) ‖e(0)‖2 , (5.21)

with ẽi
0 as in Eqn. (5.19), bi = 2 if i < M and bM = 1, and λi,j

2 representing the second smallest

eigenvalue of the subgraph Gi
j

Proof: This is a direct consequence of Eqn. (5.12) with Lemmas 5.2, 5.3, and 5.7. �

As mentioned in the description of the hierarchical algorithm, each layer i < M terminates when

‖ẽ‖∞ ≤ εs. Up to this point we simply assumed this stopping criterion is met before moving to the

next layer. With the analysis above and assuming we know a bound on the initial error, we can

assure the criterion is met by keeping the time within each layer to be larger than a certain value,

as show below.

Lemma 5.9 To assure the stopping criterion
∥∥ẽ(t−i)

∥∥
∞ ≤ εs is met for each layer i < M of the

hierarchical scheme, we simply make sure the layer time (time spent in the layer), which is given by

Ti = t−i − t
+
i−1 , (5.22)

is large enough to satisfy the following inequality:

ẽi
0

Si∑
j=1

e−λi,j
2 Ti ≤ εs , (5.23)

for every layer i.

Proof: From Lemma 5.6 we know the subgraph error is bounded by ẽi
0 at the start of layer i. Using

the fact that within any layer the subgraph error from each subgraph must be no greater than the

total subgraph error from all those in the layer, we can bound the starting subgraph error for each

subgraph by ẽi
0 as well. Since each subgraph is connected, the error of subgraph Gi

j converges at a

91

rate no slower than λi,j
2 . Hence the individual subgraph error for graph Gi

j is

ẽi
0e
−λi,j

2 (t−t+i−1) .

The norm of the total subgraph error for any layer is bound by the sum of the norm of the individual

subgraph errors in that layer. Hence, we arrive at

‖ẽ(t)‖2 ≤ ẽ
i
0

Si∑
j=1

e−λi,j
2 (t−t+i−1) (5.24)

for t ∈ [t+i−1, t
−
i]. From this we see that if Eqn. (5.23) is satisfied, then ‖ẽ‖2 ≤ εs ⇒

∥∥ẽ(t−i)
∥∥
∞ ≤ εs.

�

With the definition of layer times in Eqn. (5.22), and since t+0 = 0, we see that

ti =
i∑

j=1

Tj . (5.25)

With the bound for ‖e(t)‖2 determined, we can compute when this bound is lower than that of the

standard single-stage consensus. In the hierarchical scheme, only after the final layer begins are all

the nodes be hierarchically connected. Therefore we look at the consensus error of the hierarchical

scheme during the final layer and compare with the standard algorithm.

Theorem 5.10 The bound on the norm of the consensus error is smaller for the hierarchical scheme

than the standard single-stage consensus algorithm for all time t+M−1+T with 0 ≤ T∗ < T < T ∗ <∞

and satisfying the following inequality

e−λ2T e−λ2t+M−1 ‖e(0)‖2 − e
−λM

2 T ẽM
0

(
max
k∈VM

∣∣NM−1
k

∣∣) ≥ (M − 1)εs
√
N , (5.26)

with λM
2 the second smallest eigenvalue of the Laplacian of GM

1 . That is to say the bound on the

hierarchical scheme is smaller than the bound of the single-stage consensus during the finite time

interval t ∈ (t+M−1 + T∗, t
+
M−1 + T ∗).

Proof: This is a straightforward comparison of the bound on the consensus error in the hierarchical

scheme using Eqn. (5.21), with the final layer i = M and the bound on the standard consensus

algorithm from Eqn. (5.6). �

5.3.3 Discussion

We have derived a bound on the hierarchy consensus error and compared it to the standard single-

stage consensus algorithm culminating with Theorem 5.10. The key factors that determine when

92

the condition is met are: the stopping tolerance, εs; the layer times, Ti; the speed of convergence of

the full graph λ2 and subgraphs λi,j
2 ; the initial error, ‖e(0)‖2 and how tight the known bound on

the initial error is.

Notice that the term on the right hand side of the inequality in Eqn. (5.26) is the bound on

the steady state consensus error of the hierarchy scheme, which depends on the number of nodes,

number of layers, and stopping criterion tolerance εs. In fact εs plays more of a role, as described

below. The first term on the left hand side of Eqn. (5.26) is the consensus error bound for the

standard scheme. Notice that at the time of the start of the final layer of the hierarchy, t = t+M−1

and T = 0, the second term is greater than ‖e(0)‖2, and since t+M−1 > 0, the condition of Eqn. (5.26)

can not be satisfied at T = 0. As T increases, since we assume λM
2 > λ2, the second term goes to

zero faster than the first. Thus there is a time T = T∗ such that the inequality is satisfied, and the

larger the difference between the eigenvalues the faster the inequality is satisfied.

The inequality can also be satisfied faster the sooner the final layer starts, i.e., smaller values

of t+M−1. Of course for the final layer to start, all previous layers must have satisfied the stopping

criterion. Thus we see that the layer times Ti should be chosen as small as possible to satisfy

Eqn. (5.23). Key in this is how conservative of a bound we can assume on ‖e(0)‖2. Since most likely

the starting norm error is not known, we instead use a bound for the value in Eqn. (5.23), as well

as in evaluating the inequality in Eqn. (5.26). If the bound is conservative, then the layer times are

longer than necessary, and the inequality is conservative.

The stopping tolerance εs also determines the layer times, so at first one might decide not to make

this value too small. Since the steady state error of the hierarchy scheme is proportional to εs and

we want to have a small steady state error, there is a trade-off. Note that as T continues to increase,

the inequality in Eqn. (5.26) once again fails to be satisfied after a certain point T = T ∗ > T∗.

This occurs when the standard consensus error bound crosses the (nearly) steady state value of the

hierarchical scheme consensus error bound. Finally, it should be noted that using the analysis above

one could chose a desired level of consensus error to be reached and could chose the appropriate

parameters so that the hierarchical scheme reach this bound first.

5.4 Choosing A Hierarchical Decomposition

Section 5.3 describes the hierarchical consensus algorithm and provides analysis of the algorithm’s

performance given a hierarchical decomposition. In Section 5.5, an example is given with an assumed

decomposition. As noted in Section 5.2, given a communication topology, there is not necessarily

a unique hierarchical decomposition. In this section we explore ways to choose which hierarchical

decomposition is appropriate to use. Then in Section 5.5 we illustrate these choices with examples.

93

We seek to choose a decomposition that gives good performance. Therefore we can use the

analysis in Section 5.3.2 to compare the performance of different hierarchical decompositions. If one

could write down all the possible hierarchical decompositions for a given graph, the performance

for each decomposition could be compared. While this is feasible for graphs with a small number

of total possible decompositions, it can be impractical for graphs with a large number of possible

decompositions. There are certain features common to different graph decompositions that we

explore in this section. The goal is to be able to use the case studies presented in this section as

design guides for selecting a hierarchical decomposition. The decomposition features that we explore

in this section are: (i) comparing using more layers with subgraphs that are more highly connected

within each layer to using fewer layers with subgraphs not as highly connected in each layer, and

(ii) determining to which subgraph and layer a node should belong.

Let us start by examining the tradeoff between the following options:

• using more layers with subgraphs that are more highly connected within each layer or

• using fewer layers with subgraphs not as highly connected in each layer.

As shown in Section 5.3.2, the performance of the hierarchical consensus is exponential with regards

to the second smallest eigenvalues of the subgraphs and linear with regards to the number of layers.

Therefore, choosing a decomposition with subgraphs with higher connectivity and larger λi,j
2 values

for the subgraphs is advantageous even if it requires more layers. From Eqn. (5.17), we see the

bound on the steady state error depends on the number of layers M . Thus for the same value of

εs, using more layers increases the steady state bound. Of course by changing the value of εs, the

steady state bound can be made equal for different number of layers.

Next we consider determining which subgraph and layer a node should belong to. Once again

the key to the performance is increasing the λi,j
2 values. As described in Definition 5.1, to be a valid

decomposition only one node from each subgraph can be present in the next layer of the hierarchy.

Therefore, it may be necessary to force a node to “act dead” in a particular layer. That means

the node does not participate in the consensus in that layer. In choosing which nodes should “act

dead,” care must be taken so that the resulting subgraph is not disconnected. Choosing amongst

the subgraphs that are connected, a node should be part of a subgraph such that the corresponding

λi,j
2 values are largest.

5.5 Examples

To help illustrate the analysis above and show the effectiveness of the hierarchical scheme, we present

a simulation example below.

94

1

3 2

6

7

1716
1918

12
13

4

5

14

15

25

24

27

26

8

9

10

11

21

20

23

22

Figure 5.3: Graph with hierarchical decomposition.

Consider the 27 node hierarchical graph of Fig. 5.3. The overall graph has second smallest

eigenvalue given by λ2 = 0.1625, while all subgraphs of the hierarchical decomposition are fully

connected graphs with three nodes and thus have λi,j
2 = 3. This means the smaller subgraphs

converge nearly 18.5 times faster than the full graph. We pick the initial conditions uniformly

distributed in the interval xk(0) ∈ [0, β] with β = 1000. This means 0 ≤ x ≤ 1000, so the initial

error can be bound by ‖e(0)‖2 ≤ 1000
√

27.

Simulation results are shown in Fig. 5.4 with stopping tolerance εs = 10−5. The actual initial

error for this simulation is ‖e(0)‖2 ≈ 281
√

27, yet the bounds and the layer times were computed

using ‖e(0)‖2 ≤ 1000
√

27, as this is the assumed knowledge at design time. Notice the hierarchy

bound is first lower than the full graph bound at roughly 16 seconds and stays below until 109

seconds where the error bound is around 10−4. The actual error the hierarchy scheme goes below

the full graph scheme at roughly 15.3 seconds and stays below until after 150 seconds, thus showing

the actual performance is even better than the bounds indicate. In Fig. 5.5 we plot the upper-bound

of ‖e(t)‖2 for the hierarchy scheme for different values of εs. Notice how the time at which the

hierarchy bound is first below the standard scheme bound increases and the steady state value of

the hierarchical scheme decreases as εs decreases.

Now we compare different hierarchical decompositions to illustrate how to best choose a decom-

position and to aid the discussion presented in Section 5.4. We once again use the graph in Fig. 5.3

in these examples. First we analyze the option of choosing the number of layers to use. Then we

95

0 20 40 60 80 100 120 140
10

−10

10
−5

10
0

10
5

time

Lo
g(

 ||
 e

 ||
)

full graph bound
full graph
hierarchy bound
hierarchy

Figure 5.4: Error results for εs = 10−5 and ‖e(0)‖2 ≈ 281
√

27.

0 20 40 60 80 100 120 140 160
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
5

time

Lo
g(

 ||
 e

 ||
)

full graph
ε

s
 = 10−2

ε
s
 = 10−5

ε
s
 = 10−8

Figure 5.5: Error bounds for different values of εs.

include a few additional links into the graph topology that require decisions be made about which

subgraphs certain nodes should belong to.

96

We begin by analyzing the choice of number of layers. The three-layer decomposition that is

depicted in Fig. 5.3 and used in the simulations above is one possible decomposition. Another

alternative is to use only two layers with the first layer subgraphs being given by the node sets V 1
1 =

{1, 4, 5, 6, 7, 16, 17, 18, 19}, V 1
2 = {2, 8, 9, 20, 21, 22, 23}, and V 1

3 = {3, 12, 13, 14, 15, 24, 25, 26, 27} and

the second layer as V 2
1 = {1, 2, 3}. This simply combines the first and second layers of the three-

layer decomposition. This two-layer decomposition is referred to as having a final layer that is

“fast,” since the second smallest eigenvalue of final layer for this configuration is identical to that

of the original three-layer decomposition, i.e., λ2
2 = 3. The subgraphs for the first-layer of this

decomposition all have second smallest eigenvalue equal to 0.5505, much slower than the three-layer

decomposition. One could also use a two-layer configuration whose first layer is the same as the

three-layer configuration and second layer combines the second and third layers of the three-layer

decomposition, thus with final layer node set given by V 2
1 = {1, 2, 3, 6, 7, 8, 9, 14, 15}. This two-layer

decomposition is referred to as having a final layer that is “slow,” since the second smallest eigenvalue

of final layer for this configuration is slower than that of the original three-layer decomposition, i.e.,

λ2
2 = 0.5505.

The bounds for these three possible decompositions are shown in Fig. 5.6. As expected, since the

subgraphs of the three-layer decomposition have the largest λ2 values, this decomposition gives the

best performance, in terms of time to “convergence.” Of course, as discussed above, it has a larger

steady state error due to the additional layer. Comparing the two different choices for the two-layer

decompositions, we see that the one with the “fast” final layer performs. This is because it begins

the final layer consensus much later due to the longer time spent in the first layer as a result of

the slower subgraphs in that layer. It is interesting to note that the two-layer decomposition with

“slow” final layer actually has smaller error than the three-layer decomposition for a small period

of time. This is due to the final layer beginning sooner for this decomposition than the three-layer

decomposition. Since the λ2 value of the final layer for the three-layer decomposition is much larger

than the “slow” two-layer decomposition, 3 to 0.5505, the error for the three-layer decomposition

eventually is better than the “slow” two-layer decomposition.

Next we analyze a case where we must decide to which subgraph nodes must belong. Once again

consider the graph in Fig. 5.3 but with the outer node groups all connected in a ring by including

additional links between the node pairs (4, 27), (5, 16), (8, 19), (9, 20), (21, 22), (12, 23), (13, 24), and

(25, 26). Fig. 5.7 shows the graph topology with the extra links as dashed red lines.

Due to these additional links we have more options in choosing the subgraphs. We consider

three different decompositions. We still have as an option the original three-layer decomposition

used above. This effectively ignores the extra links and does not use them to pass information

between the outer layer subgraphs. Recall each subgraph of this decomposition has second smallest

eigenvalue equatl to 3. The first reorganized decomposition considered is a two-layer decomposition

97

0 50 100 150
10

−5

10
0

10
5

time

Lo
g(

 ||
 e

 ||
)

full graph
3 layers
2 layers − final layer "fast"
2 layers − last layer "slow"

Figure 5.6: Error bounds for different decompositions using different number of layers.

1

3 2

6

7

1716
1918

12
13

4

5

14

15

25

24

27

26

8

9

10

11

21

20

23

22

Figure 5.7: Graph topology with extra links.

whose final layer is simply the subgraph with V 2
1 = {1, 2, 3}. The first layer is given by the subgraphs

with node sets V 1
1 = {1, 5, 6, 7, 8, 16, 17, 18, 19}, V 1

2 = {2, 9, 10, 11, 12, 20, 21, 22, 23}, and V 1
3 =

98

{3, 4, 13, 14, 24, 25, 15, 26, 27}. The first layer subgraphs all have second smallest eigenvalue of 0.5482.

The second reorganized decomposition uses three-layers again with the final layer consisting of V 3
1 =

{1, 2, 3}. The middle layer is the same as the original decomposition. The difference is in the initial

layer where the nodes {4, 5, 8, 9, 12, 13} are assigned to the subgraphs that do not contain the central

nodes {1, 2, 3}. This also requires ignoring the links between nodes (4, 5), (8, 9), and (12, 13). Thus

we have the first layer node sets V 1
1 = {5, 6, 7, 8, 16, 17, 18, 19}, V 1

2 = {9, 10, 11, 12, 20, 21, 22, 23},

V 1
3 = {4, 13, 14, 15, 24, 25, 26, 27}, V 1

4 = {1}, V 1
5 = {2} and V 1

6 = {3}. These first layer subgraphs

(excluding the single-node subgraphs) all have second smallest eigenvalue of 1. The bounds for these

different decompositions are shown in Fig. 5.8. As we can see the original decomposition performs

best. This owes once again to the fact that the λ2 values for this decomposition are larger than the

rest.

0 20 40 60 80 100
10

−5

10
0

10
5

time

Lo
g(

 ||
 e

 ||
)

full graph
original decomp.
reorganized decomp. 1
reorganized decomp. 2

Figure 5.8: Error bounds for different decompositions depending on the subgraph assignment of
certain nodes.

5.6 Conclusions and Future Work

In this work we introduced the hierarchical consensus scheme. We showed that by allowing subgraphs

of a larger connected graph to converge separately and then joining the leaders of the subgraph to

the larger graph, the overall time to consensus can be reduced. We showed the key parameters that

determine the performance of the scheme and used examples to show the effectiveness.

99

There are many avenues to pursue in the future. We only analyzed the broadcast feature for

disseminating the information from leader nodes to followers. Naturally one could analyze the case

where the follower nodes still run consensus, treating the leaders’ information as inputs to their

layer. Adapting the algorithm to the case with non-static input values at the nodes could be very

interesting. In this chapter we ignored the issue of non-unique hierarchical decompositions for a

given graph. Determining a way to optimally choose how to hierarchically decompose a graph into

layers and subgraphs would be very valuable to make the algorithm more applicable. We could also

include various network effects such as delayed and dropped information in the analysis or consider

discrete time consensus.

5.7 Appendix: Proofs

Proof: [Lemma 5.2] For any i > 1 and node k let

δi−1
k = Ñ i−1

k −N i−1

k , (5.27)

and assume
∣∣δi−1

k

∣∣ ≤ δi−1. We want to first show that

∣∣∣Ñ i
k −N

i

k

∣∣∣ = ∣∣δi
k

∣∣ ≤ δi−1 + εs . (5.28)

Assume Li
k ∈ V i

j , then from Eqn. (5.11) we have

Ñ i
k =

1∣∣V i
j

∣∣ ∑
m∈V i

j

xm(t+i−1) .

From the hierarchy scheme layer stopping criterion we know xk(t−i−1) − S
i−1

j = ∆i−1
k ∈ [−εs, εs].

Combining this with Eqns. (5.9), (5.11), and (5.27), we can write

xk(t+i−1) = αi
kxk(t−i−1)

= αi
k

(
S

i−1

j + ∆i−1
k

)
= αi

k

(
Ñ i−1

k + ∆i−1
k

)
= αi

k

(
N i−1

k + δi−1
k + ∆i−1

k

)
.

Combining the two equations above we get

Ñ i
k =

1∣∣V i
j

∣∣ ∑
m∈V i

j

αi
mN

i−1

m +
1∣∣V i
j

∣∣ ∑
m∈V i

j

αi
m

(
δi−1
m + ∆i−1

m

)
. (5.29)

100

Using Eqns. (5.9) and (5.10) and expanding the first term on the right hand side, along with the

implication of Eqn. (5.2) we see:

1∣∣V i
j

∣∣ ∑
m∈V i

j

∣∣Vi
j

∣∣−1 ∣∣V i
j

∣∣ ∣∣N i−1
m

∣∣ 1∣∣N i−1
m

∣∣ ∑
l∈N i−1

m

xl(0)

 =
∣∣Vi

j

∣∣−1 ∑
m∈V i

j

∑
l∈N i−1

m

xl(0)

=
∣∣Vi

j

∣∣−1 ∑
m∈Vi

j

xm(0)

=
∣∣N i

k

∣∣−1 ∑
m∈N i

k

xm(0)

= N i

k .

Plugging this result into Eqn. (5.29), we see

Ñ i
k −N

i

k =
1∣∣V i
j

∣∣ ∑
m∈V i

j

αi
m

(
δi−1
m + ∆i−1

m

)
.

To bound this expression, follow similar derivations as above to see that∣∣∣∣∣∣ 1∣∣V i
j

∣∣ ∑
m∈V i

j

αi
m

(
δi−1
m + ∆i−1

m

)∣∣∣∣∣∣ =
∣∣Vi

j

∣∣−1 ∑
m∈V i

j

∣∣N i−1
m

∣∣ ∣∣δi−1
m + ∆i−1

m

∣∣
≤

(
δi−1 + εs

) ∣∣Vi
j

∣∣−1 ∑
m∈V i

j

∣∣N i−1
m

∣∣
= δi−1 + εs .

Combining the appropriate terms we arrive at Eqn. (5.28), from which we then get

∥∥∥Ñ i −N i
∥∥∥

2
≤
(
δi−1 + εs

)√
N . (5.30)

From the way they are defined in Eqns. (5.10) and (5.11), we have
∥∥∥Ñ 1 −N 1

∥∥∥
2

= 0, which implies

δ1 = 0. It then becomes straightforward to see that δi = (i− 1)εs, and combining with Eqn. (5.30)

gives Eqn. (5.13). �

101

Proof: [Lemma 5.3] By making use of the fact that the subgraphs at every layer are disjoint and

that N i

k = N i

j for any j and k in the same subgraph with N k
i repeated

∣∣N k
i

∣∣ times, we can write

∥∥∥N i − x
∥∥∥2

2
=

N∑
k=1

(
N i

k − x
)2

=
Si∑

m=1

∣∣Vi
m

∣∣  1
|Vi

m|
∑

l∈Vi
m

xl(0)

− x
2

=
Si∑

m=1

1
|Vi

m|

∑
l∈Vi

m

(xl(0)− x)

2

=
Si∑

m=1

1
|Vi

m|

∑
l∈Vi

m

∆l

2

,

where we let ∆k = xk(0)− x. We can also use the disjoint property of the subgraphs to write

‖e(0)‖22 = ‖x(0)− x‖22

=
N∑

k=1

(xk(0)− x)2

=
N∑

k=1

∆2
k

=
Si∑

m=1

∑
l∈Vi

m

∆2
l .

Combining the two equations above we get

‖e(0)‖22 −
∥∥∥N i − x

∥∥∥2

2
=

Si∑
m=1

∆ei
m

with

∆ei
m =

∑
l∈Vi

m

∆2
l −

1
|Vi

m|

∑
l∈Vi

m

∆l

2

.

Noticing that 1
|Vi

m|
∆ei

m equals the variance of the set of numbers {∆l | l ∈ Vi
m}, we see that indeed

∆ei
m ≥ 0 for all m, implying ‖e(0)‖22 −

∥∥∥N i − x
∥∥∥2

2
≥ 0 and completing the proof. �

Proof: [Lemma 5.4] The stopping criterion assures
∥∥∥x(t−i)− Ñ i

∥∥∥
2
≤ εs

√
N for i < M and∥∥∥x(t−M)− Ñ i

∥∥∥
2
→ 0 as t−M →∞. Combining this with Eqns. (5.12) and (5.13) and Lemma 5.3, we

arrive at the desired results. �

Proof: [Lemma 5.5] We prove this by taking the bound on the consensus error at the termination

of layer i− 1 given in Lemma 5.4 and bounding the change due to rescaling the leader node values

102

and assigning the follower nodes to this same value at the beginning of the new layer i. Start by

writing out the nodal values at the beginning of layer i according to Eqn. (5.9):

xk(t+i−1) = αi
Li

k
xLi

k
(t−i−1)

= αi
Li

k

(
xLi

k
(t−i−1)− xk(t−i−1) + xk(t−i−1)

)
+ xk(t−i−1)− xk(t−i−1)

= xk(t−i−1) +
(
αi
Li

k
− 1
)
xk(t−i−1) + αi

Li
k

(
xLi

k
(t−i−1)− xk(t−i−1)

)
.

The layer stopping criterion assures

∣∣∣xLi
k
(t−i−1)− xk(t−i−1)

∣∣∣ ≤ 2εs .

Then, it is not too difficult to derive the bound

‖e(t+i−1)‖2 ≤ ‖e(t
−
i−1)‖2 +

∥∥α̃i − 1
∥∥
∞ β
√
N + 2εs

√
N
∥∥α̃i
∥∥
∞ , (5.31)

where we use the bound on the initial conditions to get ‖x(t−i−1)‖2 ≤ β
√
N . This gives a bound on

the jump in error from the end of one layer to the beginning of the next layer, and it is simply an

additive jump given by the final two terms in Eqn. (5.31). Plugging in the expression for ‖e(t−i−1)‖2
from Eqn. (5.16), we arrive at the desired result. �

Proof: [Lemma 5.6] If node k is not in layer i, then its value is identical to that of its leader hence

xk(t+i−1)−Ñ i
k = xLi

k
(t+i−1)−Ñ i

Li
k
. Noting that

∣∣N i−1
k

∣∣ ≥ 1, and by definition ẽk = 0 if node k is not

in layer i, we can write

∥∥ẽ(t+i−1)
∥∥

2
=

√∑
k∈Vi

(
ẽk(t+i−1)

)2
≤

√∑
k∈Vi

(∣∣N i−1
k

∣∣ ẽk(t+i−1)
)2

=

√√√√ N∑
k=1

(
xk(t+i−1)− Ñ

i
k

)2

=
∥∥∥x(t+i−1)− Ñ

i
∥∥∥

2

≤
∥∥x(t+i−1)− x

∥∥
2

+
∥∥∥N i − Ñ i

∥∥∥
2

+
∥∥∥x−N i

∥∥∥
2

=
∥∥e(t+i−1)

∥∥
2

+
∥∥∥N i − Ñ i

∥∥∥
2

+
∥∥∥x−N i

∥∥∥
2
.

Using Eqn. (5.18) and Lemmas 5.2 and 5.3, we arrive at the value of ẽi
0 in Eqn. (5.19). �

103

Proof: [Lemma 5.7] Noting that the follower nodes are equal to their leader’s value, we can expand

the subgraph error as

∥∥∥x(t)− Ñ i
∥∥∥

2
=

√√√√ N∑
k=1

(
xk(t)− Ñ i

k

)2

=

√√√√√ Si∑
j=1

∑
k∈V i

j

∣∣N i−1
k

∣∣ (xk(t)− Ñ i
k

)2

≤

√√√√√ Si∑
j=1

max
k∈V i

j

∣∣N i−1
k

∣∣∑
k∈V i

j

(
xk(t)− Ñ i

k

)2

for t ∈ [t−i−1, t
+
i]. Note that the second summation term

∑
k∈V i

j

(
xk(t)− Ñ i

k

)2

is simply the square

of the norm of the subgraph error for subgraph Gi
j . Since the subgraph error from subgraph Gi

j

is no greater than the total subgraph error ẽ and it decays at a rate no slower that λi,j
2 , we can

bound
∑

k∈V i
j

(
xk(t)− Ñ i

k

)2

≤
(
e−λi,j

2 (t−t+i−1)ẽi
0

)2

. Plugging this into the expression above yields

Eqn. (5.20). �

104

Chapter 6

Conclusions and Future Work

6.1 Discussion and Summary

In this thesis I proposed and analyzed algorithms for managing information flow for several NCS

scenarios: state estimation with lossy measurement signals, using input buffers to reduce the fre-

quency of communication with a remote plant, and performing state estimation when control signals

are transmitted to a remote plant via a lossy communication link with no acknowledgement signal

at the estimator. I also explored the performance impact of managing information flow in the area

of multi-agent systems. Focusing on the problem of multi-agent average consensus, I proposed an

algorithm based on a hierarchical decomposition of the communication topology to speed up the

time to convergence. For all these topics I focused on designing intuitive algorithms that intelligently

manage the information flow and provided analysis and simulations to illustrate their effectiveness.

Chapter 2 analyzed the problem of state estimation where measurement packets are sent across

a lossy network. An estimator algorithm was designed that is guaranteed to have an upper bound

on the estimation error covariance whenever a measurement packet is received. The algorithm relies

on transmitting buffered measurements consisting of current and several previous sensor measure-

ments. This allows a probabilistic performance description of the estimator that is different than

the expected value performance description commonly used.

Chapter 3 also considers using buffers in an NCS setting. Here the control signals are sent

across a network to the plant. In this setting it was assumed the network did not lose any packets;

rather, the goal was to design a system that sent less frequent but more informative information

packets, thus making better use of a possibly shared communication resource. The data in each

control packet contains the control signal for the current time step as well as a buffered sequence

of predicted future control signals. In order to determine when to transmit packets, the Input

Difference Transmission Scheme, which transmits only when the newly computed control signal and

the previously transmitted value differ by a given threshold, was presented. The analysis of the

algorithm showed how certain design parameters affect performance of the algorithm.

105

In Chapter 4, estimation algorithms for NCS that transmit control signals via a lossy UDP-like

network with no acknowledgement signal were explored. A novel estimation scheme consisting of

a mode detector and state observer was developed. To ensure detection of the fate of the control

packet, an added control input was included. An upper bound for the expected value of the state

norm in the presence of bounded state and measurement noise was presented. If the added control

input is removed, the estimator algorithm is no longer guaranteed to detect the fate of the control

packet. Nonetheless, under certain conditions on the system parameters it can still be shown to

produce an upper bound to the estimation error, which allows an upper bound to the expected

value of the state norm to be derived. The estimator algorithm is then compared to the unknown

input observer, which can directly remove the dependence of the control signal on the estimation

error.

In Chapter 5, the hierarchical consensus scheme was introduced to manage the information flow

in multi-agent average consensus to improve performance. We showed that by allowing subgraphs

of a larger connected graph to converge separately and then joining the leaders of the subgraph to

the larger graph, the overall time to consensus can be reduced. We showed the key parameters that

determine the performance of the scheme and used examples to show the effectiveness.

6.2 Future Directions

The fields of Networked Control Systems and multi-agent systems are still emerging areas. Most

of the current research investigating the stability of NCS seems to be fragmented into particular

system descriptions, i.e., the location (in the sensor-to-controller and/or controller-to-plant loops)

and type of network (bit-limited, subject to delays and/or losses) being used. Creating a general

framework for arbitrary NCS scenarios that can be reduced to the specific previously studied cases

would be highly valuable. Despite the bevy of recent results on stability of NCS, there have been far

fewer related to the performance of such systems. Perhaps a probabilistic performance description

similar to the one presented in Chapter 2 can serve as a good starting point. Multi-agent systems

have become more popular as control objectives increase in complexity and task. The field should

continue to advance and find new applications in the near future.

The work presented in this thesis makes contributions to specific problem settings in NCS and

multi-agent systems, and there are extensions possible for each of the cases considered. The discus-

sion should begin with a few areas applicable to all the problem settings considered. The models

of the system dynamics and random packet losses used throughout this thesis were kept simple.

The dynamical systems were restricted to be linear time invariant. Certainly applying and adapting

these algorithms to problem settings with nonlinear and perhaps time varying systems would be an

area that would make them applicable to a wider range of systems. Allowing for different types

106

of uncertainties would do the same. For the situations that considered only i.i.d. random packet

losses, allowing for more realistic models of these losses is an area to be pursued. As mentioned

in the beginning of this thesis, the issues of delayed and quantized information were summarily

ignored. These effects could be incorporated into the problem settings considered. In addition to

these general directions, each of the individual algorithms has specific areas that can be pursued.

The state estimation setting and algorithm presented in Chapter 2 can be explored further.

How the new probabilistic performance description of the estimator couples into the closed loop

performance with a controller using these estimates is an interesting topic. Furthermore, extending

the concept of probabilistic performance to give a description of the closed loop state would be quite

useful.

The Input Difference Transmission Scheme presented in Chapter 3 was used to reduce the trans-

mission frequency of control packets. It was assumed that the full and exact state value was available

for calculating the control law. One could consider the effect of measurements taken from noisy sen-

sors and using an observer to produce an estimate of the state. In this work it was assumed that

the state feedback controller, F , was designed without regard to the network considerations. The

effect that the choice of F has on the network performance could be investigated in further detail.

It would also be interesting to consider more general Model Predictive Controllers in place of the

anticipative controller.

The estimation algorithm presented in Chapter 4 has topics to pursue in the future. Since the

sufficient conditions that were derived for stability of the estimator algorithm overlap with those of

the unknown input observer, it would be useful if necessary stability conditions for the estimator

algorithm could be derived. Since the algorithm appears to work well even if the sufficient conditions

are not satisfied, relaxing this conservatism would make the result stronger. The results presented

here should only need to be modified slightly to include additional intelligence at the plant to apply

some predicted control value rather than evolve without applying a control signal when the control

packet is dropped. The most interesting extension might be to insert a network between the sensors

and estimator so that the estimator does not always have access to the sensor data, which would

most likely require some additional logic in the algorithm.

In Chapter 5, the hierarchical consensus scheme was introduced. The most obvious extension

here is to consider the case where the leaders cannot simply broadcast back down to their followers,

but rather the follower nodes still run consensus, treating the leaders’ information as inputs to

their layer. Adapting the algorithm to the case with non-static input values at the nodes could be

very interesting. In this chapter we briefly discussed ways to choose from the set of non-unique

hierarchical decompositions for a given graph. Determining a way to optimally choose how to

hierarchically decompose a graph into layers and subgraphs would be very valuable to make the

107

algorithm perform even better. Extending these results to the discrete time consensus problem

would be highly valuable.

108

Bibliography

[1] P. J. Antsaklis and J. Baillieul(editors), “Special Issue: Technolog of Networked Control Sys-

tems,” Proceedings of the IEEE, Special Issue on Networked Control Systems, vol. 95, no. 1,

2007.

[2] B. Azimi-Sadjadi, “Stability of Networked Control Systems in the Presence of Packet Losses,”

in IEEE Conference on Decision and Control, 2003.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distriubted Computation. Prentice-Hall, 1989.

[4] V. Borkar and P. Varaiya, “Asymptotic Agreement in Distributed Estimation,” IEEE Trans.

on Automatic Control, vol. 27, no. 3, pp. 650–655, June 1982.

[5] M. S. Branicky, S. M. Phillips, and W. Zhang, “Stability of Networked Control Systems: Explicit

Analysis of Delay,” in American Control Conference, June 2000.

[6] R. W. Brockett and D. Liberzon, “Quantized Feedback Stabilization of Linear Systems,” IEEE

Trans. on Automatic Control, vol. 45, no. 7, pp. 1279–1289, July 2000.

[7] F. Bullo and D. Liberzon, “Quantized Control Via Locational Optimization,” IEEE Trans. on

Automatic Control, vol. 51, no. 1, pp. 2–13, January 2006.

[8] G. Cybenko, “Dynamic Load Balancing for Distributed Memory Multi-processors,” Journal of

Parallel and Distributed Computing, vol. 7, no. 2, pp. 279–301, October 1989.

[9] M. Das, R. Ghosh, B. Goswami, A. Gupta, A. P. Tiwari, R. Balasubrmanian, and A. K.

Chandra, “Network Control System Applied to a Large Pressurized Heavy Water Reactor,”

IEEE Trans. on Nuclear Science, vol. 53, no. 5, pp. 2948–2956, October 2006.

[10] D. F. Delchamps, “Stabilizing a Linear System with Quantized State Feedback,” IEEE Trans.

on Automatic Control, vol. 35, no. 8, pp. 916–924, August 1990.

[11] N. Elia and S. K. Mitter, “Stabilization of Linear Systems with Limited Information,” IEEE

Trans. on Automatic Control, vol. 46, no. 9, pp. 1384–1400, September 2001.

109

[12] M. Epstein, K. M. Lynch, K. H. Johansson, and R. M. Murray, “Using Hierarchical Decompo-

sition to Speed Up Average Consensus,” in IFAC World Congress, 2008 (submitted).

[13] M. Epstein, L. Shi, S. D. Cairano, and R. M. Murray, “Control Over a Network: Using Actuation

Buffers and Reducing Transmission Frequency,” in European Control Conference, 2007.

[14] M. Epstein, L. Shi, and R. M. Murray, “An Estimation Algorithm for a Class of Networked

Control Systems Using UDP-Like Communication Schemes,” in IEEE Conference on Decision

and Control, 2006.

[15] ——, “ Estimation Schemes for Newtorked Control Systems Using UDP-Like Communication,”

in IEEE Conference on Decision and Control, 2007.

[16] M. Epstein, L. Shi, A. Tiwari, and R. M. Murray, “Probabilistic Performance of State Estima-

tion Across a Lossy Network,” Automatica, 2008 (to appear).

[17] Y. Fang, “A new general sufficient condition for almost sure stability of jump linear systems,”

IEEE Trans. on Automatic Control, vol. 42, no. 3, pp. 378–382, March 1997.

[18] Y. Fang and K. A. Loparo, “Stochastic stability of jump linear systems,” IEEE Trans. on

Automatic Control, vol. 47, no. 7, pp. 1204–1208, July 2002.

[19] J. A. Fax and R. M. Murray, “Information Flow and Cooperative Control of Vehicle Forma-

tions,” IEEE Trans. on Automatic Control, vol. 49, no. 9, pp. 1465–1476, September 2004.

[20] R. Freeman, P. Yang, and K. M. Lynch, “Stability and Convergence Properties of Dynamic

Average Consensus Estimators,” in IEEE Conference on Decision and Control, 2006.

[21] D. Georgieve and D. M. Tillbury, “Packet-based Control: The H2-Optimal Solution,” Auto-

matica, vol. 42, no. 1, pp. 137–144, January 2006.

[22] C. Godsil and G. Royle, Algebraic Graph Theory. Springer-Verlag, 2001.

[23] V. Gupta, B. Hassibi, and R. M. Murray, “Optimal LQG Control Across Packet-Dropping

Links,” Systems and Control Letters, vol. 56, no. 6, pp. 439–446, June 2007.

[24] J. Hespanha, A. Ortega, and L. Vasudevan, “Towards the Control of Linear Systems with

Minimum Bit-Rate,” in 15th Int. Symp. on the Mathematical Theory of Networks and Systems,

2002.

[25] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A Survey of Recent Results in Networked Control

Systems,” Proceedings of the IEEE, Special Issue on Networked Control Systems, vol. 95, no. 1,

pp. 138–162, January 2007.

110

[26] R. A. Horn and C. R.Johnson, Matrix Analysis. Cambridge University Press, 1985.

[27] O. C. Imer, S. Yuksel, and T. Basar, “Optimal Control of LTI Systems Over Unreliable Com-

munication Links,” Automatica, vol. 42, no. 9, pp. 1429–1439, September 2006.

[28] H. Ishii and B. A. Francis, “Quadratic Stabilization of Sampled-Data Systems with Quantiza-

tion,” Automatica, vol. 39, no. 10, pp. 1793–1800, October 2003.

[29] Z. Jin, S. Waydo, E. Wildanger, M. Lammers, H. Scholze, P. Foley, D. Held, and R. M. Murray,

“MVWT-II: The Second Generation Caltech Multi-Vehicle Wireless Testbed,” in American

Control Conference, 2004.

[30] A. Kashay, T. Basar, and R. Srikant, “Quantized Consensus,” Automatica, vol. 43, no. 7, pp.

1192–1203, July 2007.

[31] P. A. Kawka and A. G. Alleyne, “Stability and Performance of Packet-Based Feedback Control

Over a Markov Channel,” in American Control Conference, 2006.

[32] F. L. Lian, J. R. Moyne, and D. M. Tillbury, “Performance Evaluation of Control Networks,”

IEEE Control Systems Magazine, vol. 21, pp. 66–83, February 2001.

[33] L. W. Liou and A. Ray, “A Stochastic Regulator for Integrated Communication and Control

Systems: Part I - Formulation of Control Law,” ASME Journal of Dynamic Systems, Measure-

ment and Control, vol. 113, no. 4, pp. 604–611, December 1991.

[34] ——, “A Stochastic Regulator for Integrated Communication and Control Systems: Part II -

Numerical Analysis and Simulation,” ASME Journal of Dynamic Systems, Measurement, and

Control, vol. 113, no. 4, pp. 612–619, December 1991.

[35] X. Liu and A. Goldsmith, “Kalman Filtering with Partial Observation Losses,” in IEEE Con-

ference on Decision and Control, Dec 2004.

[36] R. Luck and R. Asok, “An Observer-based Compensator for Distributed Delays,” Automatica,

vol. 26, no. 5, pp. 903–908, September 1990.

[37] N. C. Martins and M. A. Daleh, “Fundamental Limitations of Performance in the Presence of

Finite Capacity Feedback,” in American Control Conference, June 2005.

[38] ——, “Feedback Control in the Presence of Noisy Channels: “Bode-Like Fundamental Limita-

tions of Performance,” IEEE Trans. on Automatic Control, May 2008(to appear).

[39] A. S. Matveev and A. V. Savkin, “The Prbolem of State Estimation via Asynchronous Com-

munication Channels with Irregular Transmsiion Times,” IEEE Trans. on Automatic Control,

vol. 48, no. 4, pp. 670–676, April 2003.

111

[40] M. Mehyar, D. Spano, J. Pongsajapan, S. H. Low, and R. R. Murray, “Asynchronous Distributed

Averaging on Communication Networks,” IEEE/ACM Trans. on Networking, vol. 15, no. 3, pp.

512–520, June 2007.

[41] G. Millerioux and J. Daafouz, “Unknown Input Observers for Switched Linear Discrete Time

Systems,” in American Control Conference, 2004.

[42] L. A. Montestruque and P. J. Antsaklis, “Model-Based Networked Control Systems: Necessary

and Sufficient Conditions for Stability,” in 10th Mediterranean Contol Conference, 2002.

[43] ——, “State and Output Feedback Control in Model-Based Networked Control Systems,” in

IEEE Conference on Decision and Control, 2002.

[44] ——, “On the Model-Based Control of Networked Systems,” Automatica, vol. 39, no. 10, pp.

1837–1843, October 2003.

[45] ——, “Stability of Model Based Network Control Systems with Time Varying Transmission

Times,” IEEE Trans. on Automatic Control, vol. 49, no. 9, pp. 1562–1572, September 2004.

[46] L. Moreau, “Stability of Multiagent Systems With Time-Dependent Communciation Links,”

IEEE Trans. on Automatic Control, vol. 50, no. 2, pp. 169–182, 2005.

[47] R. M. Murray(editor), Control in an Information Rich World. SIAM, 2003.

[48] P. Naghshtabrizi and J. P. Hespanha, “Anticipative and Non-Anticipative Controller Design for

Network Control Systems,” Networked Embedded Sensing and Control, pp. 203–218, 2006.

[49] G. N. Nair and R. J. Evans, “Communication-Limited Stabilization of Linear Systems,” in

IEEE Conference on Decision and Control, December 2000.

[50] ——, “Exponential Stabilisability of Finite-Dimensional Linear Systems with Limted Data

Rates,” Automatica, vol. 39, no. 4, pp. 585–593, April 2003.

[51] ——, “Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rate,” SIAM

Journal on Control and Optimization, vol. 43, no. 2, pp. 413–436, July 2004.

[52] ——, “Topological Feedback Entropy and Nonlinear Stabilization,” IEEE Trans. on Automatic

Control, vol. 49, no. 9, pp. 1585–1597, September 2004.

[53] D. Nesic and A. R. Teel, “Input-Output Stability Properties of Networked Control Systems,”

Automatica, vol. 49, no. 10, pp. 1650–1667, October 2004.

[54] J. Nilsson, “Real Time Control Systems with Delay,” Ph.D. dissertation, Lund Institute of

Technology, 1998.

112

[55] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative Control of Mobile Sensor Networks:

Adaptive Gradient Climbing in a Distributed Environment,” IEEE Trans. on Automatic Con-

trol, vol. 49, no. 8, pp. 1292–1302, August 2004.

[56] R. Olfati-Saber, “Ultrafast Consensus In Small-World Networks,” in American Control Confer-

ence, 2005.

[57] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked

Multi-Agent Systems,” Proceedings of the IEEE, Special Issue on Networked Control Systems,

vol. 95, no. 1, pp. 215–233, 2007.

[58] R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks of Agents with Switching

Topology and Time-Delays,” IEEE Trans. on Automatic Control, vol. 49, no. 9, pp. 1520–2533,

September 2004.

[59] I. R. Petersen and A. V. Savkin, “Multi-Rate Stabilization of Multivariable Discrete-time Linear

Systems Via a Limited Capacity Communication Channel,” in IEEE Conference on Decision

and Control, Dec 2001.

[60] V. N. Phat, J. Jiang, A. V. Savkin, and I. R. Petersen, “Robust Stabalization of Linear Uncertain

Discrete-Time Systems Via a Limited Capacity Communication Channel,” Systems and Control

Letters, vol. 53, no. 5, pp. 347–360, December 2004.

[61] N. J. Ploplys and A. G. Alleyne, “UDP Network Communications for Distributed Wireless

Control,” in American Control Conference, 2003.

[62] W. Ren and R. W. Beard, “Consensus Seeking in Multi-Agent Systems Under Dynamically

Changing Interaction Topologies,” IEEE Trans. on Automatic Control, vol. 50, no. 5, pp. 655–

661, May 2005.

[63] W. Ren, R. W. Beard, and E. Atkins, “Information Consensus in Multivehicle Cooperative Con-

trol: Collective Group Behaviour Through Local Interaction,” IEEE Control Systems Magazine,

vol. 27, no. 2, pp. 71–82, April 2007.

[64] C. L. Robinson, G. Baliga, S. Graham, and P. K. Kumar, “Design Patterns for Robust and

Evolvable Networked Control,” in Conference on Systems Engineering Research, 2005.

[65] C. L. Robinson and P. K. Kumar, “Control Over Networks of Unreliable Links - Controller

Location and Performance Bounds,” in Proceedings of Control Over Communication Channels

(ConComm), 2007.

[66] A. Sahai, “Anytime Information Theory,” Ph.D. dissertation, Massachusetts Institute of Tech-

nology, 2001.

113

[67] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry, “Foundations

of Control and Esimation over Lossy Networks,” Proceedings of the IEEE, Special Issue on

Networked Control Systems, vol. 95, no. 1, pp. 163–187, January 2007.

[68] P. Seiler and R. Sengupta, “Analysis of Communication Losses in Vehicle Control Problems,”

in American Control Conference, June 2001.

[69] ——, “A Bounded Real Lemma for Jump Systems,” IEEE Trans. Automatic Control, vol. 48,

no. 9, pp. 1651–1654, September 2003.

[70] ——, “An H∞ Approach to Networked Control,” IEEE Trans. on Automatic Control, vol. 50,

no. 3, pp. 356–364, March 2005.

[71] L. Shi, M. Epstein, and R. M. Murray, “Towards robust control over a packet dropping network,”

in Mathematical Theory of Networks and Systems, 2006.

[72] L. Shi, M. Epstein, A. Tiwari, and R. M. Murray, “Estimation With Information Loss: Asymp-

totic Analysis and Error Bounds,” in IEEE Conference on Decision and Control, Dec 2005.

[73] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry, “Kalman

Filtering with Intermittent Observations,” IEEE Trans. on Automatic Control, vol. 49, no. 9,

pp. 1453–1464, September 2004.

[74] ——, “Optimal Control with Unreliable Communication: the TCP Case,” in American Control

Conference, 2005.

[75] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. Sastry, “An LQG Optimal Linear

Controller for Control Systems with Packet Losses,” in IEEE Conference on Decision and

Control, 2005.

[76] ——, “LQG Control With Missing Observation and Control Packets,” in IFAC World Congress,

2005.

[77] S. C. Smith and P. Seiler, “Estimation with Lossy Measurements: Jump Estimators for Jump

Systems,” IEEE Trans. on Automatic Control, vol. 48, no. 12, pp. 2163–2171, December 2003.

[78] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed Sensor Fusion Using Dynamic

Consensus,” in IFAC World Congress, 2005.

[79] ——, “Dynamic Consensus on Mobile Networks,” in IFAC World Congress, 2005.

[80] R. F. Stengel, Optimal Control and Estimation. Dover Publications, 1994.

[81] S. C. Tatikonda, “Control Under Communication Constraints,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology, 2000.

114

[82] J. N. Tsitsiklis, “Problems in Decentrailzed Decision Making and Computation,” Ph.D. disser-

tation, Massachusetts Institute of Technology, 1984.

[83] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed Asynchronous Deterministic and

Stochastic Gradient Optimization Algorithms,” IEEE Trans. on Automatic Control, vol. 31,

no. 9, pp. 803–812, September 1986.

[84] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability Analysis of Networked Control Systems,”

IEEE Trans. on Control Systems Technology, vol. 10, no. 3, pp. 438–446, May 2002.

[85] W. S. Wong and R. W. Brockett, “Systems with Finite Communication Bandwidth-Part I:

State Estimation Problems,” IEEE Trans. Automatic Control, vol. 42, no. 9, pp. 1294–1299,

September 1997.

[86] ——, “Systems with Finite Communication Bandwidth-Part II: Stabilization with Limited In-

formation Feedback,” IEEE Trans. Automatic Control, vol. 44, no. 5, pp. 1049–1053, May

1999.

[87] W. Xi, X. Tan, and J. S. Baras, “A Stochastic Algorithm for Self-Organization of Autonomous

Swarms,” in IEEE Conference on Decision and Control, 2005.

[88] L. Xiao and S. Boyd, “Fast Linear Iterations for Distributed Averaging,” Systems and Control

Letters, vol. 53, no. 1, pp. 65–78, September 2004.

[89] Y. Xu and J. P. Hespanha, “Optimal Communication Logics in Networked Control Systems,”

in IEEE Conference on Decision and Control, 2004.

[90] P. Yang, R. Freeman, and K. M. Lynch, “Optimal Information Poropagation in Sensor Net-

works,” in International Conference on Robotics and Automation, 2006.

[91] J. K. Yook, D. M. Tillbury, and N. R. Soparkar, “Trading Computation for Bandwidth: Re-

ducing Communication in Distributed Control Systems Using State Estimators,” IEEE Trans.

on Control Systems Technology, vol. 10, no. 4, July 2002.

[92] L. Zhang and D. Hristu-Varsakelis, “Communication and Control Co-Design for Networked

Control Systems,” Automatica, vol. 42, no. 6, pp. 953–958, June 2006.

	Acknowledgements
	Abstract
	Introduction
	Motivation and Scope of Thesis
	Background and Relevant Works
	Summary of Contributions and Overview of Thesis
	Mathematical Notation and Basic Definitions

	Probabilistic Performance Characterization of State Estimation Across a Lossy Network
	Introduction
	Problem Set Up
	Problem Setting
	Kalman Filtering Across a Lossy Network
	Observer-Based Estimator

	Estimator Algorithm
	Asymptotic Properties of Error Covariance Matrix
	Determining the M- Relationship
	Simulation Example
	Conclusions and Future Work

	Using Actuation Buffers in Networked Control Systems to Reduce Transmission Frequency of Control Signals
	Introduction
	Problem Set Up
	Transmit Protocol
	Fixed Transmission Time
	Input Difference Transmission Scheme (IDTS)

	Example
	Conclusions and future work

	Estimation Schemes for NCS Using UDP-Like Transmission of Control Values
	Introduction
	Problem Set Up
	Naive Schemes
	Estimation Algorithm
	Augmenting the Control Signal to Guarantee Detection
	Removing the Added Input Signal
	Unknown Input Observers

	Simulation Example
	Conclusions and Future Work

	Using Hierarchical Decomposition to Speed Up Consensus
	Introduction
	Graphs and Continuous-Time Consensus
	Graph Theory
	Hierarchical Graph Decomposition
	Continuous-Time Consensus

	Hierarchical Consensus Algorithm Description and Analysis
	Hierarchical Consensus Algorithm
	Analysis
	Discussion

	Choosing A Hierarchical Decomposition
	Examples
	Conclusions and Future Work
	Appendix: Proofs

	Conclusions and Future Work
	Discussion and Summary
	Future Directions

	Bibliography

