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The most important fact about Spaceship Earth:
an instruction book didn't come with it. -Buckminster Fuller



iv
Acknowledgements

There are two people that I owe far more than I can easily articulate. Thank you Mike
Gunson and Yuk Yung, for your patience, your guidance, your wisdom, and for believing
in me.

It's been a privilege to work with and learn from many people at JPL and the ATMOS
project. Thank you Mark Abrams, Mark Allen, Reinhard Beer, Jean-Francois Blavier,
Linda Brown, Margaret Brown, Tyler Brown, Albert Chang, Bill DeMore, Barney
Farmer, Julie Foster, John Gieselman, Aaron Goldman, Greg Goodson, Leslie Lowes,
Gindi Lynch, Jim Margitan, Jack Margolis, Hope Michelsen, Liz Moyer, Emmanuel
Mabhieu, the late Bob Norton, Susan Paradise, Dave Petterson, Herb Pickett, Geoff Toon,
Odell Raper, Curtis Rinsland, Ross Salawitch, Stan Sander, Bhaswar Sen, Jim Szeto, Bob
Toth, Chris Webster, and Rudi Zander.

For guiding me through the bureaucracy with a smile, thank you Irma Betters, Kathy
Bubash, Kay Campbell, Cliff Heindl, Maria Klein, Adria McMillan, Marjorie Miller,
Darlene Padgett and thanks especially again to Odell Raper.

Thanks to Fred Shair, for his generosity and insight.

Thank you Joel Beane, Chris McColeman and Peter Klassen, for helping me start on this
long journey.

For giving me courage when I needed it, thank you Jim O'Donnell, Jon Pederson, the
people of CLU, Gil Mason and Lani Kaahumanu. Thank you Kerry Sich for the
Thanksgivings.

Thanks and a hug to Alison Gunson.

Thank you Bill Mitchell and Majid Saghafi for helping me get through my first couple of
years at Caltech. Thanks to the Euclidians and the fellow travellers for a lot more than
some nice dinners: Achim Ditzen, Suzanne Elsasser, Anita Harper, Daniel Hurley, Mike
Kelsey, Thyra Lansdowne, John Marohn, Mike Pahre, Michal Peri, Anthony Perry,
Niranjan Sardesai, Joel Schwartz, Patti Sipman, and especially Tyler Holcomb.

None of this would have been possible without the unwavering love and support of my
family.

And finally, thank you Robert Southworth, for putting up with it all and still being there.



v

Abstract

Mixing ratio measurements of tropospheric CHF,Cl and stratospheric heavy ozone
(160180160 and 160160180), HDO and CH3D were derived from Atmospheric Trace
Molecule Spectroscopy Experiment (ATMOS) spectra. The ATMOS instrument is a 0.01
cm-! resolution, solar-absorption Fourier-transform spectrometer with a frequency
response of 600-4800 cm-! in the mid-infrared. It has recorded ground-based spectra over
Table Mountain Facility (TMF), Wrightwood CA (34.4°N, 117.7°W, 2.2 km altitude)
between 1985 to 1990, and space-based measurements during the four shuttle missions
Spacelab 3 (April/May 1985), ATLAS-1 (March, 1992), ATLAS-2 (April, 1993) and
ATLAS-3 (November, 1994).

The measured column burden of CHF,;Cl over TMF showed an exponential
increase rate of (6.7£0.5)% yr-1 from October, 1985 to July, 1990. The current
uncertainty in historical CHF,Cl emissions was found to be too large for CHF,Cl
measurements to be used to infer adequately either its lifetime or the OH field.

Enrichments of heavy ozone (with respect to 4803) were measured from both space
and ground-based observations. Average enrichments between 26 to 2.6 mb inclusive
(=25 to 41 km) were (1516)% for 160160180, (10£7)% for 160180160, and (1315)% for
5003 (lo standard deviation). Enrichments increased slightly with altitude, but with no
discernable latitudinal variability. From TMF, an average total column 160160180
enrichment of (17+4)% (1o standard deviation) was determined, with no discernable
seasonal variation. Possible biases in the spectral intensities that affect the determination of
absolute enrichments are discussed, but any corrections to these intensities would not affect

the observed lack of latitudinal and seasonal variability.
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From space-based measurements, stratospheric mixing ratios of CH3D from 100
mb to 17mb (=15 to 28 km) and HDO from 100 mb to 10 mb (=15 to 32 km) were
inferred. The average lifetime of CH3D was found to be (1.1940.02) times that of CHy4,
with an average of (1.0£0.1) molecules of stratospheric HDO produced for each CH3;D
destroyed (1o combined precision and systematic error), indicating that the rate of

stratospheric HDO production is approximately equal to the rate of CH3D destruction.
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This work is concerned with three studies of atmospheric composition using the
Atmospheric Trace Molecule Absorption Experiment (ATMOS) spectrometer, and the bulk
of this thesis is three independent papers that have been either accepted or submitted to
Geophysical Research Letters. The first paper, in chapter II, deals with measurement of
the secular increase of CHF,Cl (HCFC-22). Chapter III investigates the stratospheric
abundance of the heavy ozone isotopomers 160160180 and 160180160, and their
anomalous enrichment (that is, their abundance above that expected statistically from
standard isotopic ratios of 180 to 160). Chapter IV is concerned with stratospheric
measurements of the water isotopomer HDO and the methane isotopomer CH3D.

All three papers have a bearing on the prediction of changes in the terrestrial
atmosphere. CHF,Cl is a so-called replacement gas for the chlorofluorocarbons CF,Cl,
(CEC-12) and CFCl;3 (CFC-11). The manufacture of CHF,Cl is controlled by the
Montreal Protocol and subsequent amendments, which restricts production of
anthropogenic gases whose photolytic products destroy ozone (see, for example, Ko et al.
[1994]). Heavy ozone has shown anomalously large enrichments in the stratosphere using
several observation techniques. Enrichments have also been reproduced in the laboratory,
but to date this has had no satisfactory scientific explanation. This problem has been
somewhat more than an academic curiosity because its existence suggests regions of ozone
chemistry that are not fully understood. Understanding heavy ozone enrichment may help
in better understanding ozone chemistry in general. The third paper on HDO and CH3D
relates to chemistry, but as discussed by Moyer et al. [1995] and summarized later in this
chapter, measurements of the stratospheric HDO/H;O ratio may help elucidate mechanisms
of tropospheric-stratospheric transport of water. As discussed in WM O [1995] and
Wennberg et al. [1995], ozone destruction in the lower stratosphere is caused to a large
extent by catalytic cycles involving HO4 (=OH +HO3), which in turn has its origin in the

reaction of O(!D) with H;O and CHy4. Changes in the amount of stratospheric water
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injected by, say, changes in tropospheric humidity due to global warming could affect the
concentration of HOy in the lower stratosphere. Better understanding of the mechanisms
of cross-tropopause transport of water would help in model predictions of global change.
As submissions to Geophysical Research Letters are brief by necessity, this
introductory chapter attempts to give more detail on the ATMOS spectrometer and data
reduction methods used to analyze its output, and then to place the three aforementioned

papers in a broader scientific context.
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1.1 The ATMOS experiment

1.1.1 Rationale

Concern over possible changes to the earth's stratosphere in the late 1970's,
particularly the destruction of ozone by chlorofluorocarbons and nitrogen oxides from
emissions of proposed supersonic aircraft, prompted the development of research
programs to better understand the roles of chemistry, radiation and dynamics in earth's
stratosphere. Distributions of the so-called source, sink, reservoir and active species
involved in ozone destruction were not well known at the time. Experimental validation of
the stratospheric inventory of gases is required as both input to and tests for models, not
only to calculate the current state of the atmosphere, but also to gain confidence in their
predictive capabilities using plausible anthropogenic or natural forcings. As a contribution
towards this end, the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS)
program was developed, and as stated by Farmer et al. [1987], "the primary objective of
the ATMOS experiment is to measure simultaneously as many of the minor and trace
species as possible and to determine their spatial distribution.”
1.1.2 Spectrometer design and operation

The ATMOS instrument (Figure 1.1.1) is a modified Fourier-transform infrared
(FTIR) interferomer. It has a spectral response of 600 - 4800 cm-! (2.2 - 16um), from
which spectral intervals are selected using optical bandpass filters (Table 1.1). Most of the
minor species in the stratosphere (e.g., those in the part-per-million range) and many of the
trace species (e.g., those in the part-per-billion range and less) ha;ve observable rotational-
vibrational spectral transitions in the mid-infrared. A broad band spectrometer such as the
ATMOS instrument is particularly useful as the spectra it obtains provide measurements on
many gases of interest. Designed for use in the payload bay of the Space Shuttle, the
ATMOS instrument makes measurements in the solar occultation mode. Using the sun as a

light source, absorption spectra through the Earth's limb at different tangent altitudes are
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obtained during an orbital sunrise or sunset. It has a scan time of 2.2 seconds, which for a
4 minute occultation event, provides about 100 measurements ranging in altitude from over
200 km to cloud top levels. The vertical spacing of these observations correspond to 4 km
at the tangent altitude, decreasing to 2 km near 20 km due to refraction effects. With a
shuttle distance of about 2000 km to the tangent point, selectable instrument field-of-views,
ranging from 1 to 2.8 mrad, limit the vertical resolution from about 2 to 5 km. A
simplified illustration of ATMOS measurement geometry is given in Figure 1.1.2.

A full description of the ATMOS instrument is given by Farmer et al. [1987]. A
block diagram of ATMOS instrument components is given in Figure 1.1.3 and a schematic
illustration of the optical components is given in Figure 1.1.4. The suntracker uses visible
wavelength photodiode sensors on its outside face such that the sensor's field-of-view is
centered on the solar disk. Solar radiation enters the foreoptics to a mirrored field stop
with selectable arpertures corresponding to instrument field-of-views of 1, 1.4, 2.0, and
2.8 mrad. Light reflected by the field stop is passed to an on-board camera which records
the positioning of the instrument on the sun. Light passing through the field stop is
transferred to the interferometer's KBr beamsplitter at an incidence angle of 45°. The
transmitted and reflected light from the beamsplitter are passed to one of two moving cat's-
eye retroreflectors, each consisting of a paraboloid primary mirror and a slightly convex
secondary mirror. In order to minimize the distance travelled by the mirrors, the beams are
double-passed down each arm of the interferometer using a retroreflector. An optical path
difference of £50 cm for the two light beams is achieved by continuously moving the
retroreflectors in opposite directions at 50 cm s-1. The light rays returning from the
retroreflectors are recombined in the beamsplitter and the resulting intensity-modulated
radiation is transferred to the exit optics, where the light passes through a selectable

spectral filter (see Table 1.1) and is focused on a HgCdTe detector cooled to 77K.
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In addition to the solar radiation, a 0.633 um beam from a HeNe laser is passed
parallel to the solar radiation in the interferometer and is independently sampled. The laser
is used for two reasons. First, sampling of the laser fringes allows precise velocity control
for the retroreflectors using electronic feedback loops. Second, sampling of the analog
output by the HgCdTe detector is selectably triggered every second or third laser fringe.
The output from the detector is passed to a low gain channel to record the central fringe,
and a high gain channel to record the interferogram. These signals are digitized, combined
with instrument housekeeping data, and are stored on board the shuttle in a flight recorder
or telemetried for recording on earth.

Processing of the interferograms is described by Norton and Rinsland [1991].
The interferograms are then corrected for phase and detector non-linearity errors, and fast
Fourier transformed to power spectra. For space-based measurements, these power
spectra were ratioed against exo-atmospheric solar spectra (obtained with each occultation)
to remove solar spectral features and absorptions of residual H,O and CO; within the
instrument, producing pure atmospheric transmission spectra. Retrieved spectra from
several tangent altitudes from bandpass filter 1 is illustrated in Figure 1.1.5.

1.1.3 ATMOS profile measurements from the space shuttle

The ATMOS instrument first flew aboard the space shuttle as part of the scientific
payldad of the Spacelab 3 mission of April 29 - May 7, 1985. Nineteen atmospheric
observations were completed until operations were terminated on the third day of the
mission due to a pressure leak in the reference HeNe laser housing. Despite the early
cessation of observations, data were obtained over the =32°N and =44°S latitude bands.
Figure 1.1.6 illustrates the latitude and longitude of the 30 km tangent point locations of the
Spacelab 3 and subsequent flights. A full discussion of ATMOS on Spacelab 3 can be
found in Farmer et al. [1987].
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The next flights of the ATMOS instrument were on the Atmospheric Laboratory for
Applications and Science (ATLAS) series beginning with ATLAS-1, March 24 - April 3,
1992. During the ATLAS-1 mission, approximately 41 sunset occultations were made
between 55°S and 24°S, and 52 sunrise occultations between 31°S and 29°N. The timing
of ATLAS-1 is important as it occurred about 9 months after the eruption of Mount
Pinatubo, which injected large quantities of SO, into the lower stratosphere which
subsequently formed a sulfuric acid aerosol layer (e.g., Winkler and Osborn [1992]).
While the presence of the layer allowed analysis of the mid-infrared extinction by aerosol
below about 30 km [Rinsland et al., 1994], operationally it had the deleterious effect of
causing the ATMOS suntracker, which uses visible wavelength photodiode sensors, to
lose lock on the sun at tangent altitudes below about 25 km in the tropics; the aerosol was
too opaque in the visible wavelengths for the limb viewing geometry. Consequently, many
sunrise observations from the southern subtropics to northern subtropics at tangent
altitudes below about 25 km could not be made, although southern mid-latitude
measurements were largely unaffected because of a lower aerosol loading.

The third flight of ATMOS was on the ATL.AS-2 mission, April 8 - 16, 1993. The
mission timing and shuttle orbit were arranged to allow sunrise observations to be made in
high northern latitudes inside and outside the Arctic polar vortex during the boreal spring.
About 65 sunrise occultations were obtained around 65°N and about 39 sunset occultations
were obtained between 50°S and 9°S. The vortex measurements proved exceptionally
useful for measurement of CH3D because, as discussed in Chapter IV, the descent (and
compression) of high altitude air to lower altitudes within the vortex allowed measurement
of air of low CH3D mixing ratio (0.6 x 10-9) that could not be measured directly at mid-
latitudes. Much as had happened during ATLAS-1, many observations in the southern
mid-latitudes below about 25 km were lost due to increased sulfuric acid aerosol opacity

from the Mt. Pinatubo eruption.
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The fourth shuttle flight of ATMOS was on the ATLAS-3 mission, November 3-
14, 1994. Here, the timing and orbit of the mission was arranged for measurements inside
and outside the Antarctic polar vortex in the late austral spring, and from the northern
subtropics to northern mid-latitudes. Approximately 83 sunrise occultations were obtained
at about 68°N and 96 sunset occultations were obtained from 5°N-48°N. As was the case
with ATLAS-2, descent inside the vortex allowed measurement of air with low CH3;D
mixing ratios. By time of ATLAS-3, the opacity of the Pinatubo aerosol had sufficiently
decayed so as not to affect instrument suntracker performance, and sunset measurements in
the northern sub-tropics and mid-latitudes were achieved at altitudes down to 10 km and
below.
1.1.4 ATMOS observations at Table Mountain

After the Spacelab 3 mission of April/May 1985, the ATMOS instrument was
briefly at Table Mountain Facility (TMF; 34.4°N, 117.7°W, 2.23 km altitude) in October,
1985 to test it for a planned re-flight. The instrument was returned to TMF in December,
1986 because of the interruption of shuttle flights after the Challenger disaster. Data were
taken when possible until July, 1990 when the instrument was prepared for the ATLAS-1
flight. The site at TMF has a clear view of the eastern horizon, and its altitude of 2.23 km
eliminates much of the interference from tropospheric H,O, CH4 and CO; infrared
absorptions. Unfortunately, the site can be quite humid at times, and its proximity to Los
Angeles makes it susceptible to smog spilling over the intervening San Gabriel mountains
in the afternoon. Data were gathered at TMF on some 51 days between 1985 and 1990,
and have been used in measurement of several stratospheric trace gases (Gunson and Irion,
1991], and CHF,Cl and heavy ozone as described in this thesis.
1.1.5 ATMOS data analysis methods

The ATMOS project data analysis software has been described by Norton and

Rinsland [1991]. Atmospheric temperature, pressure and molecular density profiles are
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derived for the spectra within each occultation. The procedure for this is briefly outlined in
Appendix A. These temperature-pressure profiles were mapped onto a 150 layer model
atmosphere for each occultation, each layer 1 km thick and homogeneous, along with
assumed mixing ratio profiles for some 50 gas species which contribute to infrared
absorption in the stratosphere.

To determine the mixing ratio of a target gas at a particular tangent pressure (or
altitude), synthetic spectra were calculated for the ray path from the sun to the instrument
and fitted to the observed spectra over selected spectral intervals (e.g., those in the lower
panels of Figure 1.1.5). The synthetic spectra were calculated line-by-line using the
ATMOS spectral linelist for both target and background gases for each model layer, except
that for certain gases (e.g., N,Os, CFCl3, CF,Cl,, CHF,Cl), laboratory measured cross-
sections were used directly [Brown et al., 1995]. (Note that at the time the studies
described in Chapter II were made, empirical spectral line parameters were being used for
CHF,Cl, but these had been verified against laboratory cross-sections of Varanasi [1992]
and McDaniel et al. [1991].) Following the description of Abrams et al. [1995], the

spectrum within a particular layer can be modelled by:

Ts(v;,2)=exp[-Zj Zk K 0k Bjk X 8kl (EL.1)

where: T = synthetic (i.e., modelled) transmission
v; = frequency at spectral grid point i (cm-1)
z = altitude (km)
Kjjx = absorption of the jth gas at the kth layer at frequency v;

ni = total molecular density in the kth layer (molecules cm-3)

Ujx = assumed mixing ratio of the jth gas in the kth layer
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X is a scale factor for O; and equals unity for a non-target gas
gk = slant path through the layer (cm).

Least-squares techniques were used to adjust the mixing ratio scale factor, ¥, to achieve:

oT,(v,,2) (E1.2)
> ———R.

ax

where R; is the residual, equal to the observed minus the synthetic transmission:
R,=(T,(v,,2)~T,(v,.2)) (EL.3)

where T, is the observed transmission. Note that the partial derivative in (E1.2) acts as a
weighting function. The retrieval of a vertical-mixing ratio profile was begun by fitting a
spectral microwindow at the highest altitude for which there is discernable absorption by
the target gas. In an onion-peeling technique, successively lower spectra were fitted in a
similar fashion (while keeping mixing ratios above at the just determined values). This
was repeated until a pre-determined lower altitude cutoff is reached, usually determined on
the basis of the line opacity. Where several microwindows were evaluated for a target gas,

a weighted average was made of the resultant individual profiles:

Z,.(Xn/ei) (EL.4)
K™ =, (1/€2)

where € is the estimated precision error of the retrieved mixing ratio (discussed further in
Appendix A). To avoid "staircases" from the atmospheric model's vertical resolution being
smaller than the tangent height spacing of the measurements, resultant profiles were then
smoothed by a five-point polynomial (corresponding to about 3 km in the vertical), while

preserving the total column amount of the gas above the lowest retrieval height. This
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smoothed profile was used as the assumed profile for a second retrieval. The entire
process was repeated twice more, with the final profile produced on the third iteration
interpolated on an atmospheric pressure grid of 12 levels per decade in mb.

For ground-based column spectra, the procedures were somewhat different. As the
ATMOS instrument has a very fast scan time (2.2 s), several measurements were taken
over a small range of solar zenith angles, and resulting spectra were averaged to‘increase
signal-to-noise ratios. An appropriate atmospheric model was selected (e.g., the U. S.
Standard Atmosphere [1976]), and the column absorption calculated using the 150 km
layer model. Column densities were derived by scaling assumed trace gas mixing ratio
profiles to best fit selected spectral microwindows. Error sources and treatment are

discussed briefly in Appendix A.
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Figure 1.1.2: Simplified viewing geometry by ATMOS during a shuttle occultation.
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Figure 1.1.4: Schematic diagram of ATMOS optical components (from Farmer et al. (1987]).
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1.2 CHF;,Cl and other replacement gases

As replacements for the fully halogenated chlorofluorocarbons (CFCs; e.g.,
CF,Cl, and CCI3F) and halons (e.g., CF3Br and CF,CIBr), hydrochlorofluorocarbons
(HCFCs) such as CHF,Cl (HCFC-22) and CH3CCIF,; (HCFC-142b) have been
increasingly emitted into the atmosphere. As the CFCs and halons are almost insoluble and
chemically inert in the troposphere, their lifetimes are long compared to their tropospheric
residence time. Their only effective sink is destruction by ultraviolet radiation in the
stratosphere, where their chlorinated and brominated photolysis products can destroy
ozone. On the other hand, HCFCs are hydrogenated, and can be destroyed by
tropospheric OH. Their tropospheric lifetime is therefore much shorter, and their ability to
reach the stratosphere is greatly reduced. (See, for example, Kaye et al. [1994].)

CHF,Cl is the most widely used of the HCFCs finding its major application as a
refrigerant [Midgley and Fisher, 1993]. It is expected to have only about 5% the ozone
destruction capability of CFCl; when compared on the basis of unit mass emitted in the
troposphere [WMO, 1995]. However, that HCFC emissions like those of CHF,Cl are less
harmful to stratospheric ozone does not make them benign, and the necessity to not just
slow the growth of atmospheric chlorine loading but actually reduce it led to restrictions on
the production of HCFCs, including that of CHF;Cl, being added to the Montreal Protocol
[Rowlands, 1993]. It therefore is important to monitor the rate of growth of CHF,Cl to
characterize and help predict its contribution to atmospheric chlorine loading.

A second reason to evaluate the trend in CHF,Cl is that CFCs and HCFCs can
have significant greenhouse absorptions. On a molecule-per-molecule basis, these gases
can have a greater impact on atmospheric radiative forcing than those of CO, or CHy as
many of their absorption bands (including some of CHF;Cl) occur in the relatively
transparent "atmospheric window" between 8 and 13 um. The long-term amount of

forcing by a gas depends not just on its total spectral absorption in the infrared, but also its
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lifetime in the troposphere. For example, in a simplified scenario assuming current CO,
levels and ignoring feedbacks, the radiative forcing of 1kg of CHF,Cl released into the
atmosphere is about 4300 times that of 1kg of CO; integrated over 20 years [WMO, 1995].
While their tropospheric concentrations may be much less than CO,, radiative forcing by
cumulative CFC and HCFC absorptions can be significant compared to the extra forcing
caused by increasing levels of CO, [Ramanathan, 1988], and therefore justifies the
monitoring of the growth of CHF,Cl and other halocarbons.

Another reason to study CHF,Cl growth in particular is to evaluate its utility in
determining the global OH field. Historically, emission estimates and field measurements
of methyl chloroform (CH3CCl3) have been used in models to simultaneously evaluate
CH;CCl; lifetime and the OH field; CH3CClj3 is a completely anthropogenic gas whose
major sink is reaction with OH. (See Prinn et al. [1992] and references therein). It was
suggested that gases with accurate emission histories and well calibrated measurements
other than CH3CCl5 could be used for calculation of the OH field [Prather and
Spivakovsky, 1990]. CHF,Cl could be evaluated for such a purpose as it is also of
completely anthropogenic origin, and its primary sink is reaction with OH.

Prior to 1993, calibration problems between spectroscopic methods and in situ
techniques had prevented agreement on the atmospheric concentration of CHF,ClI [Kaye et
al., 1994]. Therefore, updated spectroscopic cross-sections for CHF,CI iﬁ the infrared
[McDaniel et al., 1991; Varanasi, 1992] and new calibration scales for gas
chromatography-mass spectrometry techniques [Montzka et al., 1993] prompted re-
analysis of the global increase of CHF,Cl, and comparison between in situ and
spectroscopic results. From ATMOS results at Table Mountain (described in Chapter II),
the column CHF,Cl amounts had increased by an exponential growth rate of (6.7£0.5)%
from October, 1995 to July, 1990. These results were found to be slightly lower than, but

within experimental error of the in situ results of Montzka et al. [1993] and infrared



Chapter 1 20 Introduction

column measurements at Kitt Peak, Arizona and the Jungfraujoch, Switzerland [Zander et
al., 1994]. However, modelling studies by Margaret Brown, described in Chapter II,
indicated that the current uncertainty in CHF,Cl emission estimates prevented adequate
constraint of either the CHF,Cl lifetime or the OH field, and so the use of CHF,Cl
measurement to infer OH levels offered no advantages over using CH3CCls.

Continued tropospheric and stratospheric measurement of CHF,Cl is warranted to
evaluate any changes in its growth rate from changes in its emission levels or even changes
in global OH field. As mentioned previously, many CFCs and HCFCs have significant
absorptions in the infrared, and ATMOS spectra have been used to infer stratospheric
increases in CF,Cl, and CF3Cl [Zander et al., 1995] and CHF;Cl [Rinsland et al.,
1995]. It is expected that as the concentration of other replacement HCFCs increase, their
infrared absorptions will become significant (and measurable). Figure 1.2.1 illustrates an
ATMOS/ATLAS-3 space-based spectral microwindow at a tangent altitude of 6.4 km,
superimposed on which are modelled absorptions of CH3CF,Cl (HCFC-142b), the
tropospheric concentration of which is currently increasing at 30% yr-! [WMO, 1995].
Synthetic spectra assume current, and 10 and 30 times current mixing ratios. The
increasing absorption expected of CH3CF,Cl is clearly apparent, and the illustration shows
one of the many roles that infrared spectroscopy can play in monitoring secular changes in

the atmosphere.
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1.3 A note on the measurement of atmospheric isotopomers

It is often the case that the abundance of a trace isotopomer (an isotopically
substituted species such as 160160180 or 160180160), in and of itself, is not of interest.
Rather it is the ratio of such an abundance to that of the "regular" isotopomer, e.g.
[160160180]/[4803], and how and where that ratio varies from a standard. (The standard
used for the D/H and 180/160 ratios is usually that of Standard Mean Ocean Water,
SMOW, which reports the standard D/H ratio as 155.76x10-6 and the 180/160 ratio as
2.005x10-3 [IUPAC, 1983].) Investigations of why such ratios vary can reveal subtle
processes in geophysics and geochemistry. For example, isotopically labeled water has
long been used in better understanding mechanisms of precipitation and its global patterns
(e.g., Dansgaard [1964]), and validation of global circulation models [Jouzel et al.,
1991]. Data of excess carbon-14 (from nuclear weapon tests) have been used in evaluating
advection and diffusion coefficients in the stratospheric modelling [Shia et al., 1989]. A
review of the mechanisms of isotopic fractionation and their effects on different planetary
atmospheres can be found in Kaye [1987].

Enrichments (or depletions) of isotopomers from standard ratios are often
expressed in percentages:

sample - Rstandard

Enrichment (%) =

x 100 (EL.5)
standard

where Rgample is the isotopic abundance ratio in a sample (e.g. D/H in water), and Rgandard

is the isotopic abundance calculated from a standard ratio. A slightly different notation

widely used (particularly for water isotopes and used in Chapter IV of this work) is the so-
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called delta notation, which expresses isotopic deviations on a per mil basis rather than a

percentage:

(E1.6)

R —R tangar
8 (%o) = ”"‘;‘; sndrd % 1000

standard

Chapter III and Section 1.4 of this introduction involve studies of stratospheric
heavy ozone, while Chapter IV and Section 1.5 deal with isotopomers of water and
methane. These two issues pose different scientific problems. In the case of heavy ozone,
there have been numerous atmospheric, laboratory and theoretical studies done, but there is
little apparent agreement on its stratospheric fractionation pattern or the mechanisms by
which ozone is isotopically fractionated at all. ATMOS measurements provide the most
extensive set of stratospheric heavy ozone observations, and may help to characterize any
vertical, latitudinal and seasonal variation of the enrichments. For deuterated water and
methane, the fractionation microphysics are thought to be well understood, but
stratospheric measurement has been lacking, particularly for CH3D. The study described
in Chapter IV represents the most extensive set of stratospheric observations for these
species, which may provide a powerful constraint for model calculations of water transport

from the troposphere to the stratosphere.
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1.4 Heavy ozone

This section reviews previous experimental and theoretical work done on the
phenomenon of heavy ozone enrichment, expanding on the brief introduction on the
subject given in Chapter III. Analysis results of ATMOS spectra are discussed.

1.4.1 Previous atmospheric measurements of heavy ozone

Stratospheric heavy ozone enrichment (which, for the purposes of this section,
refer to those of 160160180, 160180160 and their sum in the form of 5003, except where
otherwise noted) was first reported by Mauersberger [1981] using a balloon-borne mass
spectrometer. (Note that in determining concentrations of heavy ozone, mass spectrometry
does not distinguish between symmetric and asymmetric isotopomers.) Mauersberger
[1981] found stratospheric enrichments of 0-40% in 5003, with a braod maximum between
28 and 38 km and a minimum at 20 km. The error was 15% at 30km, increasing above
and below. . (Stratospheric measurements are graphically summarized in Figure 3.1 on
page 88.) Using mass-spectrometry, significant enrichments were again reported from two
later balloon flights by Mauersberger [1987].

Using far-infrared thermal infrared emission measurements from a balloon-borne
platform, Abbas et al. [1987a] were able to measure the individual absorptions of the
160180160 and 160160180 isotopomers. The 160160180 enrichment had a maximum of
(40 £ 14)% at 37km, decreasing to (-2 £ 12)% at 29 km, and increasing to (20 £ 15)% at
25km. The 160180160 enrichment was about (18 * 15)% at 25 km increasing to
(60 £ 11)% at 33 km. The finding of seemingly higher enrichments for 160180160 than
160160180 appears contradictory to laboratory production experiments of heavy ozone
(discussed below) that tend to show symmetric isotopomers less enriched than asymmetric

isotopomers [Morton et al., 1989, 1990; Anderson et al. 1989; Mauersberger et al.,

1993].
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Carli and Park [1988], also using thermal emission measurements, reported a 5005
enrichment of (10£10)% between 27 and 45km, which did not significantly vary with
altitude. While they could measure individual 160180160 and 160160180 lines, they
combined the measurements and did not report the individual enrichments. From balloon
flights, Schueler et al. [1990] collected samples cryogenically, which were later analyzed
by mass spectrometry.for both 5003 and 4903. In the first flight, 5003 was enriched 12-
—14%, and 4903 was enriched by 9-11%. In the remaining two flights, the enrichment
was nearly mass-independent at 8-9%. The errors ranged from 0.5-1.5% for 5003.

Spectroscopic methods in the mid-infrared have been used to measure the
abundance of the two 5003 isotopomers. Rinsland et al. [1985], using a ground-based
Fourier-transform infrared (FTIR) spectrometer, found the column enrichments of
160160180 and 160180160 over Kitt Peak, Arizona to be (11 £ 11)% and (5 * 7)%
respectively, noting that no column enrichment could be shown within the range of the
error bars. Goldman et al. [1989], from two balloon-based measurements using a Fourier
transform infrared spectrometer, reported column averaged enrichments above 37 km of
(20 = 14)% and (16 * 8)% for 160180160 , and (40 * 18)% and (25 * 12)% for
160160180.

Krankowsky et al. [1995] reported the first seasonal study of heavy ozone
enrichment and the first reported study of its behavior in the troposphere. They analyzed
urban air samples using a mass spectrometer over a period of 12 months. They found that
the 5003 enrichment was about 8 to 10% and did not vary with O3 concentration. They
could not find any seasonal variation or significant correlation with temperature. These
results were consistent with laboratory measurements at similar temperatures and
pressures.

To summarize, it seems to be well established that stratospheric enrichments of

heavy ozone exist. However, the magnitude and vertical structure of this enrichment are a
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source of confusion. An obvious question remains: Do the dissimilar obtained by the
different techniques, as illustrated in Figure 3.1, reveal a highly variable structure as
suggested by Mauersberger et al. [1993], or are the profiles dissimilar due to instrumental
error and/or calibration bias?

1.4.2 Laboratory studies on heavy ozone

To our knowledge, the first laboratory study of heavy ozone enrichment was
reported by Sander et al. [1977], using ultraviolet photolysis of oxygen. Results were
variable; in one experimental run, they reported an exceedingly high enrichment of 95% for
5003, but all other runs were below 10%. Since that study, no other laboratory
enrichments higher than about 20% have been reported.

Heidenreich and Thiemens [1983] synthesized heavy ozone with an electric
discharge in a liquid N; cooled vessel. They found that both 5003 and 4903 were enriched
almost equally (1-4%), while from mass-dependent fractionation chemistry, one would
expect 49903 to have only about half the enrichment of 5003. To reduce the effect of
isotopic exchange between O and O,, Heidenreich and Thiemens [1986] essentially
repeated their previous experiment, but at a temperature of 77K. Again, nearly equal
enrichments for 4903 and 5003 were found. They proposed that three-body ozone
formation was responsible for the observed enhancements:

O+0,+M->03+M (R1.1)
and suggested a symmetry effect, with the C (i.e., asymmetric) reaction
intermediates 490’; and ° OO; having longer lifetimes than the Cyy (i.e., symmetric) 480; )
Since the C, isotopomer has twice the number of rotational states as the Cs, isotopomer,
more energy levels are made available for those of the collision partners in an inverse
predissociative state, and the collisions may become "stickier." (See Hertzberg [1966],
pg. 455.) Yang and Epstein [1987ab] also suggested a symmetry effect in the

predissociation of "vibrationally hot" ozone.
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Anderson et al. [1989] investigated symmetry effects by using a tunable diode
laser and a mass spectrometer, and separately measured the enrichments of symmetric and
asymmetric 5003 produced by electric discharge. It was found that the 160160180
isotopomer accounted for 4/5ths of the enrichment, not 2/3rds as one would expect on
purely statistical grounds. The symmetries of the ozone products were further investigated
by Morton et al. [1989], who synthesized ozone with an electric discharge, and measured
the resultant products from atomic masses 48 (i.e., 160160160) to 54 (i.e., 180180180).
Results suggested the "more asymmetric” an ozone isotopomer (e.g. 160160180 more
asymmetric than 160180160 or 160160170), the greater the enrichment. For example, a
maximum enrichment of (20.3 £ 0.2) % was found for 5103 (which would be primarily
formed from one each of the 160, 170, and 180 isotopes with very little 170170170),
while a slight depletion (0.9 + 0.2) % was found for the symmetrical 180180180.

In an attempt to identify the reactions controlling enrichment, Morton et al. [1990]
dissociated ozone in the Chappuis band (500-700 nm), so that resultant oxygen and
oxygen radicals were in their ground electronic states. A small amount of ozone was
photodissociated within a bath of O, to see if enrichment was produced by the reaction

OCP)+0,(CZ) +M - 03+ M (R1.2)
which is dominant at low O3 and high O; concentrations. Pure ozone was
photodissociated to measure isotope effects in the reaction:

0+03—>20, (R1.3)
which dominates at low pressures and high O3 concentrations. Enrichments were
observed when O, was present in significant quantities, but no enrichments were seen
when the pure ozone was dissociated. Thus, it was concluded that (R1.2) was a reaction
producing enrichment. Morton et al. also investigated the temperature dependence of the
5003 enrichments via (R1.2), and found them linearly increasing from 7.5% at 100K to

17.5% at 400K. They also observed a decreasing enrichment with pressures above about
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0.5 atm at a temperature of 321K (behavior later confirmed by Thiemens and Jackson

[1990]). As discussed by Morton et al. [1990] and Thiemens [1992], if a longer-lived

activated complex for the heavy isotopomers is used to explain the enrichment, that is, the
reaction proceeds by the mechanism,

0+ 0y O3* (R1.4)

O3*+M—->03+M (R1.5)

with heavier O3* longer lived than unsubstituted O3*, then enrichment should not be

affected by pressure until deviation from third-order to second-order reaction kinetics

begins to occur. (This change from third to second-order kinetics at high pressures had

been shown for regular ozone formation, and was suggested to occur by the complexing of

O or O, with M (e.g., Np):
O+MeOM (R1.6)
OM+0; > 03+M (R1.7)
or:
0, +M & OM (R1.8)
OM+0->03+M (R1.9)

with reactions (R1.7) or (R1.9) rate-limiting [Croce de Cobos and Troe, 1984]). Such a
change in the reaction kinetics affecting the enrichments would be expected near about 8
atm at the temperature used in the experiment of Morton et al. [1990], much higher than
where decreasing enrichment was observed to begin. From this, Thiemens [1992]
concluded that theories explaining enrichments from differential lifetimes of the metastable
states were therefore unlikely to be correct. (Although we note that new results reported by
Anderson and Mauersberger [1995], discussed below, may lead to new insights into such
activated complexes, and different interpretations of the results of Morton et al. [1990].)
Wen and Thiemens [1991] found a non-mass-dependent depletion effect in the

thermal decomposition of heavy ozone. At a high temperature (110°C), thermally
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decomposing ozone by the reaction

O3+ M—>0+0,+M (R1.10)
produces isotopically heavy product O,, enriched in 30 and 7O to a maximum of about
2%. The reason for this behavior was not understood.

Mauersberger et al. [1993] reported results from an experiment that was similar to
two experiments by Morton et al. [1989, 1990] in that it examined enrichments of all
possible molecular weights of ozone, and molecular oxygen and oxygen radicals were kept
in their electronic ground state. Results indicated that heavy ozone enrichment occurred
only in the asymmetric isotopomers, with asymmetric 5103 enriched by 18%, other
isotopomers enriched between about 8% and 14%, and symmetric 180180180 and
170170170 depleted. Comparison of these results with those of Morton et al. [1989]
showed that the enrichments produced by Mauersberger et al. [1993] using the visible
light source were slightly less (=1-4%) that which would be obtained using an electric

discharge. This suggested the ground-state three-body reaction (R1.2):

OGBP)+ 0, (L) +M > 03+ M (R1.2)

was the predominant mechanism producing enrichment, but additional processes involving
higher energy states could be involved in the enrichment of asymmetric heavy ozone.

It thus appears that the asymmetric isotopomers are enriched through the ground-
state three-body ozone formation reaction (R1.2), but what other electronic states
participate in the enrichment of symmetric and asymmetric isotopomers remains unclear.
As will be seen below, the laboratory measurements have nevertheless played a strong role
in disproving, or at least discounting, many of the attempts to explain theoretically the
enrichments. Still, with the exception of the single run of Sander et al. [1977] previously

noted, and which has not since been repeated, none of the laboratory measurements
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reproduce the high enrichments seen in the stratosphere (e.g., the 5003 enrichment of 40%
seen by Mauersberger [1981]).
1.4.3 Theoretical studies on heavy ozone enrichments
In an attempt to explain enrichments produced in an electric discharge, Thiemens
and Heidenreich [1983] proposed that the cause of the enrichment was due to optical
shielding by 160160. The selective removal of lines from the Schumann-Runge bands
resulted in preferential dissociation of 180160 and 170160. However, this was discounted
on theoretical grounds by Kaye and Strobel [1983] and experimentally by Yang and
Epstein [1987a]. Isotopic effects of O;dissociation should be obscured by isotopic
exchange between atomic O and molecular O;. In detailed theoretical calculations, Kaye
and Strobel [1983] argued that the rapidity of the exchange reaction
180 + 320, «» 160 + 340, (R1.11)
would prevent a heavy ozone enrichment, and predicted a slight depletion of heavy ozone
at stratospheric conditions (= -3.2% at 241.5K and 35 km altitude). Kaye [1986]
examined theoretically the effect of isotopic substitutions on the ozone formation reaction:
O0+0;+M—>03+M (RL.1)
and the oxygen exchange reaction
0+0,—->0,+0 (R1.12)
and found the reaction rates affected only slightly. Calculations predicted a small depletion
of 5003 (= -4.3% at 300K), although model uncertainties and approximations added
considerable uncertainty. Kaye [1986] suggested that the effect of such model
uncertainties and approximations may be important in understanding (then current)
laboratory results.
Bates [1986] proposed that by taking account of the éymmetry numbers (as they
relate to the partition functions) in the three-body formation of ozone (R1.1), the formation

reaction producing asymmetric heavy ozone would have twice the rate of regular ozone.
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For symmetric heavy ozone, the rate would be one half times that of regular ozone. The
net result was that heavy ozone was naturally enriched by 2/3. Anderson and Kaye [1987]
pointed out that Bates had neglected that in an activated complex of an ozone isotopomer,
the complex can decay into molecular and atomic oxygen isotopically distinct from the
reactants, e.g.
160 4160180 s 160160180 * (R1.13)
16016Q180* + M — 180 + 160160 + M (R1.14)
Any enrichment of heavy ozone solely by symmetry effects would thus be eliminated.
Bates [1987] accepted their conclusion.

A novel mechanism for mass-independent isotopic fractionation of ozone was
proposed by Valentini [1987], which involved curve-crossing between photo-fragmentary
0,(1Ag) + O(1D) and O5(3Zy) + O(3P). Now, homonuclear 160160(3%;) can only have
odd-J rotational states, but 180160(3%,) can have odd and even-J rotational states. So
only 160160(1A,) in odd-J rotational states can cross to 160160(3%,), while heteronuclear
170160 and 180160 in both odd and even-J rotational states can cross from the 1A to the
3%, state. Thus, via the curve crossing channel, the yield of heteronuclear 170160(32!;)
and 180160(3Zg) were both twice that of homonuclear 160160(3Z;). The controlling
effect was symmetry, not isotopic mass. The O3(3%y) reservoir would be enriched in
heavy isotopes, the O5(1A,) reservoir depleted, and since there are no bound O3 states that
correlate with Oz(1Ag) + O(1D) or Oy(1Ag) + O(3P), the product ozone would be enriched
in heavy isotopes.

For explaining stratospheric heavy ozone enrichment, the mechanism of Valentini
[1987] was deficient in some respects. First, as pointed out by Valentini the stratospheric
O(3P) + O,(3%y) recombination rate, and the production rate of O2(1Ag) via O3
dissociation, are both very slow compared to O3(1Ag) quenching. Isotopic fractionation

among O and O, reactants dissipates faster than a heavy ozone enrichment can be
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produced. Valentini [1987] estimated that stratospheric enrichment of O3 and 0,(3Z%y)
would only be about 10-5 with this scheme. Second, the curve-crossing mechanism of
Valentini [1987] would predict that resulting heavy ozone isotopomers would be
partitioned two-thirds in 160160180 and one-third in 160180160, as would be statistically
expected. This turned out to be contrary to the laboratory results of Anderson et al.
[1989], Morton et al. [1990], and Mauersberger et al. [1993], who found the asymmetric
isotopomers preferentially enriched. Third, Morton et al. [1990], had enriched heavy
ozone with molecular oxygen in the ground 3% state, not the excited !A, state, and no
curve-crossing mechanism was required.

Symmetry again played a role in papers by Bates [1988, 1990] in which it was
suggested that at steady-state conditions, metastable states of asymmetric heavy ozone,
160160180* are preferentially formed. Distinguishing between the states 160~160180%*
and 180~160160%*, where ~ signifies a newly formed bond and the energy is non-
randomized, he argued that the rates of formation of these two isotopomers are additive as
long as they can be distinguished from one another. He suggested that the rate of
formation of 160160180 is (1+0) times that of regular ozone, where & is the "rate

additivity", given by the formula:

£

6=—1—fexp(—t/’ck)dt
Tp 0

et 2)

where Tp and Tp are the dissociation and energy randomization time constants respectively.
Bates [1990] presented calculations estimating that §=0.74. This scheme would lead to
enrichments in asymmetric heavy ozone only. The predicted enrichments were consistent

with some of the higher enrichments seen in the stratosphere, but could not account for the
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lower enrichments seen in the laboratory. Bates [1990] suggested that the lower
enrichments in the laboratory were due to the reaction:

5005 + 320, — 4805 + 340, (R1.15)
either in the gas phase or on the walls of the surface vessel. This was disputed by
Thiemens [1992], because (R1.13) would be a mass-dependent reaction while in the
laboratory, low (<5%) mass-independent enrichments of 35003 and 4903 have been
produced. To account for enrichments in asymmetric heavy ozone, Bates [1990]

proposed “flips” of a terminal oxygen atom on an activated ozone complex, e.g.

160-~160180* —y 160180 16Q* (R1.16)
160~180160* —y 180Q~160160* (R1.17)
180~160160* — 160160 180* (R1.18)

In later Monte Carlo simulations, Morgan and Bates [1992], presented calculations
indicating that because of such flips, the ratio of enrichment of the symmetric isotopomer to
that of the asymmetric isotopomer should be about 0.38, which was in good agreement
with the result of Anderson et al. [1989] of 0.40 + 0.17. Experimentally, however,
Larsen et al. [1992] presented evidence that ozone formation is primarily “end-on,”
although measurement error could allow for a 15% cyclic intermediate channel.

An explanation for some of the enrichment of heavy ozone may have been provided
by Miller et al. [1994]). In a series of experiments, Miller et al. found that in the
photodissociation of ozone at 226 nm:

O3 + hv — 0,(14,) + O(1D) (R1.19)
— 0,(3%) + OCP) (R1.20)

the distribution of vibrational states of 0,(3%,) was remarkably bi-modal, with peaks at
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v=14 and v=27. They theorized that such “vibrationally hot” 02(3Zg) can quickly react

further with oxygen in a net production sequence for ozone:

O3 +hv — 0y(3%g, v>26)+0 (R1.21)
038, v>26) + 0y — 03+ 0 (R1.22)
2(0,+0)—> 203 (R1.23)

Net: 30, — 203

As discussed by Miller et al., the new mechanism can have implications for heavy ozone
enrichment. Recalling the results of Valentini [1987], 160180(1A,) + O(1D) is twice as
likely to "curve-cross" to 160180(3%,)+O(3P) than 160160(1A4)+O(3P) will cross to
160160(3Z;)+0O(3P). Thus the channel (R1.20) is more favorable for a photodissociating
heavy ozone molecule than for a regular ozone molecule. Note also that at least one of the
oxygen atoms in the photodissociating O3 on the left hand side of (R1.21) is incorporated
into the ozone on the right-hand side of (R1.22). The combined effect gives a heavy O
atom greater probability to stay within the pool of O3 and O, and not be "scrambled out" by
the O-O; exchange reaction (R1.11). Reactions (R1.21) and (R1.22) can thus cycle to
enrich heavy ozone until a termination reaction, e.g., O + O3 = 20,, is reached. Miller et
al. presented calculations that accounted for a 5% enrichment at 40 km decreasing to 0.6%
at 55 km. It is again noted that the reaction scheme of (R1.21) through (R1.23) has not
been verified experimentally.

Theoretical studies have, to date, been unable to fully explain the laboratory or
atmospheric studies, although some research of late may prove fruitful. Recently,
Anderson and Mauersberger [1995] reported evidence for three electronically excited
states of ozone at an energies slightly above the dissociation energies of the ground state.

They discussed the possibility that these low-lying states may be involved in the three-body
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ozone formation reaction, and speculated that these excited states may have a role in heavy
ozone enrichment. The impact of this new research into ozone chemistry, and heavy ozone
enrichment, remains to be determined, however.

1.4.4 Results of ATMOS analyses

It would appear that little scientifically would be gained by analysis of a single
ATMOS occultation, other than to add to the set of disparate measurements already made.
However, the sheer number of available occultations from the space-based ATMOS data
set, their latitudinal range, and the number of measurement days of the ATMOS instrument
from Table Mountain allow two outstanding questions to be answered. First, how variable
are the vertical profiles of heavy ozone enrichment? Second, does this enrichment vary by
latitude or season?

Recalling the laboratory work of Morton et al. [1990], who measured relatively
little variation within the range of temperatures and pressures typical of the stratosphere, the
finding of a low variability by ATMOS might be evidence for the three-body ozone
formation reaction (R1.2) primarily operating to enrich stratospheric heavy ozone. It is
also useful to characterize any variation of heavy ozone as the photolysis products of
enriched heavy ozone can be used in other atmospheric studies. Yung et al. [1991]
proposed that the observed =0.5% 180 enrichment in CO, [Gamo et al., 1989; Thiemens
et al., 1991] could be used as an indirect measure of O(1D) in the stratosphere considering
the reaction scheme:

1BO(ID) (from 6019080 photolysis) + CO, — CO3* (R1.22)

CO3* — CI8016Q + 160 (R1.23)

The "heaviness" of the 5003 photolysis products can also be used as a tracer for other
stratospheric reactions. Yung et al. [1995] lists reactions possibly producing HNO3 and

H,SO4 (via photolysis of COS) enriched in heavy oxygen because their production
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pathway involves reaction with O3. Analyses of such reaction schemes will be greatly
aided if the vertical structure of the heavy ozone enrichment is well defined.

Results of analyses of ATMOS space-based spectra, described in Chapter III, show
an average (15+6)% enrichment for 160160180, (10+7)% for 160180160, and (13£5)%
for 5003 (1o standard deviation). Results also indicate that the vertical and latitudinal
variability of the 160160180 and 160180160 enrichment is relatively small. This suggests
a relatively small sensitivity of the enrichments to temperature and pressure representative
of the stratosphere, in qualitative agreement with the laboratory results of Morton et al.
[1990]. Column measurements of the 160160180 enrichment over TMF, with an average
of (17+4)%, show little seasonal variability within the uncertainty, in qualitative agreement
with the tropospheric measurements of Krankowsky et al. [1995]. On an absolute basis,
however, both the 160160180 and 160180160 enrichments found in the ATMOS study
are, on average, higher than what is expected if stratospheric heavy ozone enrichment were
completely (or even primarily) caused by the three-body ozone formation reaction (R1.2),
and no other formation mechanism has been shown to create ozone in appreciable amounts
in the 25-40 km altitude range of our measurements.

It is therefore difficﬁlt to quantitatively reconcile the results described here with
those measured previously in the laboratory. This suggests the possibility that the line
intensities used for the spectroscopic analyses of 160160180 and 160180160 may be
biased too low, resulting in heavy ozone retrievals biased too high. A laboratory double-
check of these line intensities is warranted to determine if a scaling of the results given in
Chapter 11T is justified. If the current intensities are found to be reasonably accurate, then
the ATMOS results indicate that there are currently unknown processes involved in the
creation (or destruction) of stratospheric ozone. Other than this, it appears that research
should be directed towards better understanding the unknown, but perhaps fundamental,

details in the three-body formation of ozone. If laboratory and stratospheric measurements
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have not completely elucidated the reasons for the enrichment, they have at least narrowed
the range of the problem. Nevertheless, the anomaly of heavy ozone enrichment remains

today as much a challenge to explain as it has been for the past 15 years.
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1.5 HDO, CH3D and implications for tropospheric-stratospheric exchange

The study of atmospheric HDO and CH3D cannot be separated from that of H,O
and CH4. Some characteristics of H,O, CHy4, HDO and CH3D in the stratosphere are
briefly reviewed. Competing theories of troposphere-stratosphere exchange and the
implications of the measurement of the D/H ratio in water on the validity of these theories
are outlined. Finally, ATMOS results of deuterated water and methane and their
implications are presented and further areas for study suggested.

1.5.1 Stratospheric water and methane

The hydrogen loading of the stratosphere is effectively 2(H,O+2CHy4+H,), as the
abundance of other hydrogen-containing gases is very small compared to this sum. In an
indirect way, these gases play a role in regulating stratospheric ozone, as reaction with
O(ID) is an important source of the OH radical which attacks ozone (e.g., Brasseur and
Solomon [1986]). Stratospheric water plays another important indirect role in ozone
depletion. It is incorporated into sulfuric acid aerosol, leading to heterogeneous surface
reactions producing HOCI and Cl, from reaction of CIONO, with H,O and HCI,
respectively. The diurnally varying odd nitrogen species N,Os is converted to HNO3 by
reaction with H,O on such aerosols, and this indirectly affects ozone destruction because
NO; (from N;Os5 photolysis) sequesters CIO into CIONO;. Many reactions sequestering
N,Os, and converting chlorine reservoir and sink species to active species, occur readily on
frozen ice, HNOj3 hydrates and supercooled and frozen sulfate aerosols in the cold polar
night, leading to the Antarctic ozone hole in the austral spring [WMO, 1995].

Being long-lived in the mid-to-lower stratosphere, water is controlied by a
combination of transport and methane oxidation (e.g., Brasseur and Solomon [1986]).
However, the stratosphere is exceedingly dry, with H,O mixing ratios of only a few parts-
per-million in the lower stratosphere. Excluding extremely cold and dehydrated regions

within the Arctic and Antarctic vortices, the mixing ratio of stratospheric H,O tends to be a
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minimum at the tropical tropopause or in a region up to 2 km above. This water vapor
minimum, the hygropause, is believed to be a consequence of a seasonal variation in the
mixing ratio of water entering the stratosphere. The static stability of the lower stratosphere
coupled with the slow rate of ascent allows this "seasonal signature" minimum to be
transported upwards with time, and discernable for as long as a year [Mote et al., 1995;
Boering et al., 1995; Abbas et al., 1995a; Holton et al., 1995].

Above the tropical hygropause, and throughout the rest of the stratosphere
(excluding the vortices), the H,O mixing ratio increases with altitude as the air becomes
older, and CH4 and H, are oxidized by OH, O(I1D) and, for CHy4, Cl. However, in the
mid to lower stratosphere at all latitudes except in the dehydrated regions of the polar
vortices, the sum 2CH4+H,O has been shown on average to be about constant. The
increase in HO is about equal to twice the decrease in CHy, with the Hy mixing ratio (=0.5
ppmv) varying little. This is not to say that H is unreactive. Rather, its production from
CHy4 (via a short-lived CH,O intermediate) and destruction by oxidation roughly balance
each other [Dessler et al., 1994; Abbas et al., 1995b]. In order to use ATMOS
stratospheric measurements to estimate the average mixing ratio of H,O as air enters the
stratosphere, the in situ contribution of CHy oxidation to the water mixing ratio must be
subtracted (as had been done by Abbas et al. [1995a] with ATMOS/ATLAS-3 data).

Analogously to CHy and H,O, stratospheric HDO is controlled by transport and
oxidation of CH3D. Likewise, the contribution of CH3D loss must be subtracted to
estimate the entering HDO mixing ratio (and the D/H ratio in water), as previous
measurements of the deuterium content of stratospheric water have shown that the D/H
ratio in water increases with altitude [Pollock et al., 1980; Rinsland et al., 1984, 1991;
Abbas et al., 1987b; Carli and Park, 1988; Dinelli et al.,, 1991]. It has not been
established, however, that the sum CH3;D+HDO is about constant as is the case for

2CH4+H,0; the destruction of CH3D may not be one-to-one with the production of HDO.
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The reaction pathway from CH3D to HDO and HD is that the D/H branching may not
follow simple statistics and HD production may not be in balance with its oxidation.
Indeed, in the only previous report of both stratospheric CH3D and HDO measurements
(ATMOS Spacelab 3 measurements by Rinsland et al. [1991]), data were too sparse to
quantitatively relate the destruction of CH3D to the creation of HDO.
1.5.2 Mechanisms of exchange across the tropical tropopause

Theories explaining tropospheric-stratospheric transport must quantitatively account
for the dryness of the lower stratosphere, but exactly how air is dehydrated as a parcel rises
through the troposphere and crosses the tropopause is a matter of debate. As discussed in
Holton et al. [1995] and Moyer et al. [1995], widespread gradual uplift of air in the
tropics across the tropopause cannot be the only method of water transport into the
stratosphere; a large resultant cirrus cloud cover is not seen, and the average tropical
tropopause temperatures are too warm for the low stratospheric mixing ratios observed.
Other theories have suggested gradual uplift in more isolated (and colder) regions [Newell
and Gould-Stewart, 1981] or rapid convection by cumulonimbus towers penetrating the
tropopause [Danielsen, 1982]. The former scenario represents a slow, quasi-equilibrium
process. The latter can be a non-equilibrium process as water can be advected rapidly up
from the boundary layer and deposited as ice in the stratosphere (although under certain
conditions, stratospheric dehydration can occur if stratospheric water is entrained into ice
crystals large enough to fall out). These two scenarios can have very different implications
for the deuterium content of stratospheric water.
1.5.3 The use of HDO in evaluating tropical cross-tropopause transport

The substitution of a deuterium atom for a hydrogen atom in water significantly
decreases its vapor pressure in a manner that is a strong function of temperature,
particularly at temperatures representative of the mid-to-upper troposphere (e.g., Kaye

[1987]; Dansguaard {1964]). In the troposphere, the lower vapor pressure of HDO
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compared to H,O isotopically fractionates water vapor as it ascends to regions of lower
temperatures, i.e., the water becomes "lighter," and the HDO/H,O ratio decreases as HDO
is preferentially condensed. As discussed by Moyer et al. [1995], the slow uplift of air
through the tropopause will tend to strongly deplete water in deuterium. On the other hand,
the deuterium content of the water may be higher in rapid convective updrafts because it can
be carried in the form of lofted ice particles, or because of kinetic fractionation effects under
highly supersaturated conditions prevent equilibrium isotopic partitioning. Measurements
of the HDO/H,O ratio in stratospheric water can help discriminate between competing
theories of water transport from the troposphere to the stratosphere; any theory that
successfully explains the amount of entering water must simultaneously explain the amount
of HDO.
1.54 ATMOS HDO and CH3D results

As discussed in Chapter [V, ATMOS measurements from Spacelab 3, and ATLAS-
1, -2, and -3 were used first to characterize the relationship of CH3D to CHy, and showed
that stratospheric methane becomes progressively enriched in deuterium as the CH4 mixing
ratio decreases. This was expected since the reaction rate constants of CH3D with OH and
Cl are less than those for CHs. From ATMOS HDO measurements and CH3D mixing
ratios inferred from co-located CHy, it was found that the stratospheric production of HDO
is roughly equal to the destruction of CH3D; a slope of —(1.0£0.1) was found for a plot of
HDO vs CH3D mixing ratio (1o combined systematic and random error). Stratospheric
changes in the HD mixing ratio were therefore constrained to be £0.1 molecules created per
molecule of CH3D destroyed, assuming negligible amounts of total D in other molecules.

The HDO and inferred CH3D mixing ratios were combined with ATMOS H,O and
CH4 mixing ratios [Abbas et al., 1995a] to derive stratospheric D/H ratios in water
corrected for the hydrogen and deuterium contributions of methane oxidation {Moyer et

al., 1995]. Results showed that water entering the stratosphere was depleted in deuterium
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(using the SMOW standard) by an average of 68+8% (16 combined systematic and random
error), and showed no latitudinal or seasonal variation. Modelling results by Moyer et al.
[1995] indicated that the gradual uplift of water in the troposphere and through the
tropopause should result in an 80-90% depletion of deuterium, but ATMOS results were
consistent with water vapor experiencing rapid convection to at least upper tropospheric
levels.

The isotopic signal in water was shown to provide a powerful constraint on theories
of water transport, and ATMOS data can still be further analyzed for this purpose. Due to
the limited precision of the measurements and few number of observations made directly in
the tropics from ATLAS-3 (and none available near the tropical tropopause from ATLAS-1
due to Pinatubo aerosdl), ATMOS results (from filters 2 and 9) were not able to be used to
determine a seasonal signal in HDO akin to the behavior of the hygropause, which would
have helped in determining the exact mechanism of water transport across the tropopause.
With improved spectral line parameters for weak HDO lines in the v, band (in filter 3), it
may be possible to combine and average results from filters 2, 3 and 9 within narrow
latitude bands and determine the seasonal variation. The use of these weak lines would
extend the range of HDO measurement below about 100 mb down to the 300 mb level,
near the level of the tropopause in the mid-latitudes. Examination of the D/H ratio in water
at this level may give information on the extent and effect of tropospheric incursions of

water into the lower mid-latitude stratosphere by Rossby waves (see Holton et al. [1995]).
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Table 1.1: ATMOS data summary
Filter Number of Occultations Spectral Molecules
Bandpass
SL3 AT1 AT2 AT3 (cm-1)
1 1SR 6SR 11 SR 600-1180 4805 160160180, 160180160,
4SS 7SS 6 SS N,0O, HNO;, CCI3F, CCl,F2,
CHF,Cl, CIONO,,SFg, HNOy,
CCly, C;H,
2 1SR 1SR 9 SR 1100-2000 4803, N,O, CH4, HNO3, H,0,
3SS 1SS 7SS NO, NO,, N,Os, HDO, H,!170,
H,180, CF4
3 ISR 15SR 22SR 29 SR 1580-3340 4803, N,O, CH4, HNO;, H,0,
4SS 14SS 9SS 34SS HCI, NO, NO,, OCS, HCN,
H,170, H,180, CH3D, CO, CyHg,
CH;Cl
4 1SR 8SR 10 SR 13 SR 3150-4800 N,0O, CH,4, H,O, HF
2SS 5SS 7SS 15SS
9 17 SR 14 SR 600-2450 4803, 160160180, 160180160,
14SS 1SS 17SS N,0O, CHy4, HNO3,H,0, NO, NO,,
CCI13F,CCl,F,, CHCIF,, CIONO,,
N,Os, SFg, OCS, HDO, H,170,
H,180, CO, HNOy4, CCly, CoH>,
CF4
12 11 SR 27 SR 600-1400 4803 160160180, 160180160,
9SS 30SS

N,0O, HNO3;, CCI3F, CCI,F2,
CHF,Cl, CIONO,,SFs, HNOy,,
CCly, CoH,, CFy

Note: SR=sunrise, SS=sunset, SL3=Spacelab 3, AT1=ATLAS-1, AT2=ATLAS-2,

AT2=ATLAS-2
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Abstract.

Column densities of CHF,Cl (HCFC-22) have been measured over Table Mountain
Facility (TMF), Wrightwood, California (34.4°N) using the Atmospheric Trace Molecule
Spectroscopy (ATMOS) Fourier-transform infrared (FTIR) spectrometer. Between
October 1985 and July 1990, the exponential column increase rate was (6.7£0.5)% yr-1.

Additionally, column measurements of CHF,Cl over McMurdo Sound, Antarctica (78°S)

in September and October 1986 by the MarkIV FTIR spectrometer were used to derive a
south-north interhemispheric ratio of (0.86+0.08). Model calculations investigated the fea-

sibility of using CHF,Cl column measurements with a predicted global OH field to deter-
mine a globally averaged chemical lifetime for CHF,Cl, or equivalently, an estimate of the
OH field using a predicted lifetime. The current uncertainty in historical CHF,Cl emissions

is too large for CHF,Cl to be used to infer adequately either the lifetime or the OH field.
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2.1 Introduction

Concern over the ozone layer has required the increasing use of hydrochlorofluro-
carbons (HCFCs) as an alternative to chloroflurocarbons (CFCs). Unlike CFCs, HCFCs
react with OH radicals, shortening their tropospheric lifetimes (e.g., 15.8 years calculated
for CHF,Cl vs. 55 years for CFCl; and 116 years for CF,Cl, [WMO, 1991, pg. 6.7]).
With its shorter tropospheric lifetime, the contribution of CHF;,Cl to inorganic chlorine in
the stratosphere has been estimated to be quite small (1%) [Weisenstein et al., 1992].
Nevertheless, with the increasing use of CHF,Cl, accurate prediction of changes in strato-
spheric ozone and global climate warrants its continued monitoring.

Among recent reports, Montzka et al. [1993], using in-situ measurements,
determined a compounded rate of increase of (7.310.3)% yr-1 in the global mean ground-
level concentration of CHF,Cl between mid-1987 through 1992. Total column measure-
ments reported by Zander et al. [1994] showed an exponential increase of (7.010.35)%
yr-1 over the Jungfraujoch, Switzerland (46.5°N) from 1986 to 1992, and (7.0£0.23) %
yr-1 over Kitt Peak, Arizona (31.9°N) from 1980 to 1992. In this study we report mea-
surements taken by the ATMOS spectrometer over Table Mountain and calculate the col-
umn accumulation rate between October, 1985 and July, 1990.

Column measurements by the MkIV FTIR spectrometer over McMurdo Sound in

1986 were used to evaluate the interhemispheric ratio of CHF,Cl, but these columns were

not directly comparable to those in northern mid-latitudes because of the lower Antarctic
tropopause. Instead, a simple and self-contained comparison was made by ratioing the

CHF,Cl column to that of N,O, a long-lived tropospheric source gas whose vertical mixing
ratio profile is similar in shape to that of CHF,Cl. As some 90% of the atmospheric N,O

resides in the troposphere, the N;O column can act as a surrogate for the tropospheric air
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burden, and we use such CHF,CI/N;O ratios to estimate the CHF,Cl interhemispheric
ratio.

We discuss the use of CHF,Cl measurement for inference of the global OH field.
Current estimates of OH are based on scaling the OH field produced by chemical transport
models to reproduce observed surface concentrations of methyl chloroform, CH3CCl3
(e.g. Spivakovsky et al. [_1990]; Prinn et al. [1992]). Differences in the inferred OH

fields are discussed in terms of the error in historical emissions of CHF,Cl.

2.2 Measurements and data analysis

The ATMOS instrument was designed for stratospheric observations from the
Space Shuttle [see Farmer et al., 1987], but is also suitable for ground-based column
density measurements of various gases [see Gunson and Irion, 1991]. It has an un-
apodized resolution is 0.01 cm-! and its fast response time allows several interferograms to
be taken within a narrow range of solar zenith angles. For this study, 8 to 41 successive,
double-sided interferograms were transformed with the resulting spectra averaged, giving a
signal-to-noise ratio in the resulting spectrum of at least 280. For analyses described here,
the Mark IV FTIR spectrometer returned data with an unapodized spectral resolution of
0.008 cm-1 and signal-to-noise ratios varying between 100 and 1200. Further details of
this instrument, as well as experimental conditions at McMurdo Sound, may be found in
Toon et al. [1989] and Toon [1991].

Analysis software used for column retrievals from both instruments was described
by Norton and Rinsland [1991]. Constituent and physical parameters were mapped into a
150 lziyer model atmosphere, each layer homogeneous and 1 km thick. For the ATMOS/-
TMF retrievals, the U. S. Standard Atmosphere [1976] was used for the temperature and
pressure profile while a combination of daily radiosonde and satellite data were used for

McMurdo Sound retrievals [see Toon et al., 1989]. Synthetic spectra were calculated for
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small frequency intervals containing the target gas, and an assumed mixing ratio profile
was scaled until the square of the residual (observed - calculated absorptions) was

minimized. Spectral parameters were from the ATMOS main and supplemental linelists,

described by Brown et al. [1987]). The 2vg Q-branch at 829.05 cm-! was used for

CHF;ClI analyses (Figure 2.1), while N,O lines were the same as in Toon et al. [1989].
Initial mixing ratio profiles are shown in Figure 2.2. The TMF CHF,Cl profile was based
on ATMOS Spacelab3 northern hemisphere retrievals in the stratosphere [Zander et al.,
1987], with an assumed gradient in the troposphere. The tropospheric gradient used for
the TMF profile resultéd in better spectral fits to the data compared to a constant mixing

ratio profile, however, no statistically significant bias in the derived columns was detected.

We found that using a constant CHF,Cl tropospheric mixing ratio profile for McMurdo
Sound, and a constant tropospheric N,O profile for both TMF and McMurdo, produced
satisfactory fits for their respective spectra. Column N,O for McMurdo Sound is from
Toon et al. [1989]. Where two or more averaged spectra were available for a particular

day, each spectrum was analyzed individually, and the resulting columns averaged.

Estimated errors are described in Table 2.1.
2.3 Instrumental results and discussion

CHF,Cl column results for Table Mountain, McMurdo Sound and, for compari-
son, Kitt Peak results (Zander et al. [1994]) are shown in Figure 2.3. To facilitate
comparison of Kitt Peak and TMF columns, retrieved values were divided by the U.S.
Standard Atmosphere [1976] pressure (in atmospheres) appropriate to the observation
altitude. (Same day measurements of N,O were not available from Kitt Peak.) An expo-
nential fit to the TMF column data indicates an increase of (6.7+£0.5)% yr-1, slightly lower

than the figure of (7.010.23)% yr-! for Kitt Peak. No significant systematic difference can
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be seen between TMF and Kitt Peak results during the time period in which they overlap.
Surface mixing ratios were determined directly from the scaled a priori profiles. Calcu-
lations for Table Mountain show an increase in the ground-level mixing ratio from (70+6)

pptv in October, 1985 to (99+8) pptv in August, 1990, the linear increase being (5.910.4)

pptv yr-l (1o error). This agrees within error with the figure of (6.310.3) pptv yr-1 re-

ported by Montzka et al. [1993] for the period between 1987 and December, 1992.

Before using the TMF data to infer the interhemispheric ratio of CHF,Cl, we first
evaluated its suitability for determining an average northern hemispheric CHF,ClI column
by comparison to latitudinally weighted in situ data previously published by Montzka et al.
[1993]. Rather than using ground-level concentrations estimated from the columns, a more
robust comparison may be with ratios of CHF,Cl to N,O. Figure 2.4 shows the
CHF,CI/N,O column ratios from this work. Also shown are the in situ measurements of
CHF,Cl, reported by Montzka et al., ratioed to estimated N,O concentrations, obtained
either from monthly averaged measurements of N,O (prior to July, 1988) or extrapolations
of equations fitted to those measurements (on or after July, 1988; see Prinn et al., [1990]).
These N2O measurements were from Cape Meares, Oregon (45°N) in the northern
hemisphere and Cape Grim, Tasmania (41°S) in the south. Good consistency is seen
among latitudinally averaged northern hemispheric in situ measurements, in situ measure-
ments from Niwot Ridge (40°N), and the ATMOS/TMF results. Using the average of the
McMurdo Sound observations and the fitted line for the ATMOS data, we calculate a south-
north hemispheric ratio of (0.86+0.08). This is in good agreement with the figure of
(0.88+0.04) derived from Monitzka et al. [1993], who reported an interhemispheric
CHF,(l difference of (13%1) pptv and a 1992 mean southern hemisphere mixing ratio of

(95.2£2) pptv.
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2.4 Model methodology and results
Model results were obtained using the 2-D chemical transport model developed by
Tung [1982; 1986], Yang et al. [1991] and Olaguer et al. [1991]. The model domain ex-
tends from 90°S to 90°N with eighteen latitudinal bands and from O to 56 km with 24
vertical levels. The model has been validated for tracers which are sensitive to stratospheric

and tropospheric chemical and transport parameters [Yang et al., 1991; Olaguer et al.,

1992; Brown, 1993]. Destruction of CHF,Cl by photodissociation and by chemical reac-
tion with OH and O(!1D) were modeled. Concentrations of CHF,Cl were set to zero at the

beginning of 1949, when the atmosphere is expected to have none. The model was run for-
ward to the end of 1992 using emission estimates of Jesson [1980] prior to 1970, and
Midgley and Fisher [1993] from 1970 to 1991. For 1992, an emission of 213 x 106 kg is
used (obtained by linear extrapolation of prior emission estimates). The uncertainty in emis-
sions subsequent to 1970 were estimated to be +12.5% and —8.5% [Don Fisher, private
communication, 1993]. The model has been shown to produce modeled atmospheric con-
centrations of methyl chloroform consistent with observations [Brown, 1993]. The
globally averaged lifetime of methyl chloroform was calculated to be 7.3 years, longer than
previous estimates of 5.7 years [Prinn et al., 1992] and 6.2 years [Spivakovsky et al.,
1990]. The model calculated CHF,Cl lifetime here, 19 years, is expected to be longer than
that derived using the OH fields of Prinn et al. and Spivakovsky et al. Here, for CHF,Cl,
we demonstrate the relationship between the lifetime and the OH field as well as the
sensitivity of the column density to the emissions.

Six experiments (E1-E6) were performed and modeled column densities of CHF,Cl
were compared with observed column densities. The results are summarized in Figure 2.3.
Experiment E1, using emission estimates described above, overestimates column densities

at both observation sites. These results reflect uncertainty in emission estimates and the
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model OH field. Experiments E2-ES5 test the sensitivity of the model results to these

uncertainties. Modifications to the OH field and the CHF,Cl emission, as well as average
concentrations for all model experiments are summarized in Table 2.2. The model
calculated globally averaged CHF,Cl lifetime in experiments E1 and E2 is 19 years. The
scaling of the OH field in experiments E3 and E4 yields a model calculated globally
averaged CHF,Cl lifetime of 15.5 years, consistent with the estimate in WMO [1991],
while that for E5 yields a CHF,Cl lifetime of 13.5 years, consistent with the estimate of
Montzka et al. [1993]. Experiments E2, E4 and E5 all yield results in agreement with ob-
served column densities in the northern hemisphere.
2.5 Conclusions

CHF,ClI column retrievals from TMF indicate an exponential increase rate of
(6.7£0.5)% yr-1 from October, 1985 until July, 1990. Using McMurdo Sound mea-
surements, we calculate a south-north interhemispheric ratio of (0.86+0.08). The method
of ratioing the CHF,Cl and N,O columns has been shown to be useful for comparing
columns of tropospheric gases at different locations. Model results demonstrate that the
difference between the modeled and observed CHF,Cl column densities can be attributed to
uncertainty either in the emissions or in the OH concentration. Reduction of the uncertainty
in the CHF,Cl emissions may allow the use of CHF,Cl observations in adequately
constraining the OH field.
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Table 2.1: Error sources for a single spectrum

CHF,Cl N,O
ATMOS MarkIV ATMOS
Table Mtn McMurdo Table Mtn
Random Errors (%)
Temperature/Pressure 3 3 2
Signal-to-noise 1 1 1
Assumed VMR profile 4 5 2
Zero transmission offset 1 1 |
Interfering absorptions 6 2 2
Total Random Error 8 6 4
Systematic Errors (%)
Line strengths 10 10 5
Spectral fitting 3.5 3.5 3.5

Total Systematic Error 13.5 13.5 8.5

CHF,Cl
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Table 2.2: Model calculated CHF,Cl average concentrations at the end of 1992

Experiment El E2 E3 E4 ES
Change in Global OH - - +20% +20%  +40%
Change in CHF,Cl -- -10% - -5% --
Global (pptv) 115 104 107 102 101
S. hemisphere (pptv) 105 98 100 95 94
N. hemisphere (pptv) 123 111 115 109 108
Global troposphere 120 108 111 106 105
Global stratosphere 98 88 950 86 85
Rate of increase (b) 6.6 5.9 6.0 5.7 5.6
CHF,(l lifetime 19 19 15.5 15.5 13.5

(a) As compared to experiment E1. Reduction in CHF,Cl emissions is after 1970.

(b) Average global rate of increase is calculated from 1982 to 1992. ‘
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Figure 2.1: Typical ATMOS observed and calculated CHF,Cl spectra.
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CHF,CI column density ( x 10'® molec. cm?)

Figure 2.3: CHF,ClI column retrievals (scaled to sea-level) and results of model simulations.

Observations: o Table Mountain (this work), a4 McMurdo Sound (this work), » Kitt Peak
(Zander et al., 1993). Modelling experiments: - - -E1 North, - ES North, ——ES5 South. See
Table 1 for random and systematic errors for Table Mountain and McMurdo measurements. The datum
for MarkIV-McMurdo Sound is the average of 42 measurements taken in September and October, 1986;
the error bar represents their 9% standard deviation. Error bars for other data sets indicate the average
fractional random error. For clarity, only modelling experiments E1 (north) and ES (north) are super-
imposed on the northern hemisphere results. These two experiments represent the range of results,
however, experiments E2 and E4 gave results similar to ES. For the southern hemisphere, only exper-

iment ES5 is shown, although E2 and E4 gave similar results.
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Figure 2.4: CHF,CI/N,O column and in-situ ratios. Column measurements (this work): 0 ATMOS,

Table Mountain, CA, A Mark IV, McMurdo Sound, Antarctica. Ground-level in-situ measurements
(Montzka et al[1993]): X Niwot Ridge, CO. SAGA cruises: - @ N. hemisphere, B S. hemi-
sphere. Weighted averages: + N. hemisphere, % S. hemisphere. Error bars indicate the average
fractional random error for their respective data sets. The error for the in situ data of Montzka et al. includes

an assumed 2% random error for the N,O concentration. Line fitted for ATMOS/TMF measurements only.
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Abstract
Vertical enrichment profiles of stratospheric '°01°0!80 and '°0'30!%0 have been derived
from space-based solar occultation spectra recorded at 0.01 cm™! resolution with the
ATMOS (Atmospheric Trace MOlecule Spectroscopy) Fourier-transform infrared (FTIR)
spectrometer. The observations, made during the Spacelab 3 and ATLAS-1, -2, and -3
shuttle missions, cover polar, mid-latitude and tropical regions. Between 26 to 2.6 mb

inclusive (=25 to 41 km), average enrichments, weighted by molecular 4‘803 density, of

(15£6)% were found for 6016080, (10£7)% for °0'80!60, and (13+5)% for °°0, (1o

standard deviation). Enrichments increased slightly with altitude, however no latitudinal
variability was apparent. From a series of ground-based measurements by the ATMOS

instrument at Table Mountain, California (34.4°N), an average total column 60160180

enrichment of (17+4)% (1o standard deviation) was determined, with no significant

seasonal variation discerned. Possible biases in the spectral intensities that affect the
determination of absolute enrichments are discussed. However, any corrections to the
these intensities would probably involve a scaling of the enrichments, and would not affect

the observed lack of latitudinal and seasonal variability.
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3.1 Introduction
Stratospheric enrichment of %0, was first reported by Mauersberger [1981], who
found enrichments ranging from 0% to 40% using a balloon-borne mass spectrometer.
(For the purposes of this paper, % enrichment = [R_, /R, -1] x 100, where R, & is the

observed abundance ratio of the heavy isotopomer to the regular isotopomer, and R, is the
standard ratio. For °°0, enrichment, R 4 = 5.97 x 10-3, or three times the natural

abundance ratio of 80 to !0, ignoring a very small abundance of 10!70!70. See
IUPAC, [1983]). Further stratospheric enrichment of 5°0, have been reported based on
mass spectrometry [Mauersberger, 1987], far-infrared emission spectroscopy [Abbas et
al., 1987; Carli and Park, 1988], and cryogenic grab-sampling followed by mass-
spectrometry [Schueler et al., 1990]. These measurements have sometimes shown little
consistency with each other. Figure 3.1 summarizes previous measurements of 5003
enrichment profiles as well as averaged results of the analyses presented here. Column
enrichments have also been determined using mid-infrared solar-absorption Fourier-
transform spectrometry. Rinsland et al. [1985] determined a column enrichment of
(11£11)% and (5+7)% for 160'60!80 and 90180160, respectively. Goldman et al.
[1989], from two balloon-based observations, found column enrichments above 37 km of
(20£14)% and (40+18)% for 160160180, and (1648)% and (25+12)% for 1°0!8Q160Q.
Enrichment of 50O3 from about 8 to 10% in tropospheric urban air was reported by
Krankowsky et al. [1995] who found no apparent variation in the enrichment with
tropospheric O, mixing ratios

Heavy ozone enrichment has also been observed in laboratory measurements.
Anderson et al. [1989] found ozone created using an electric discharge (which can produce

excited states of O and O,) enriched primarily in the asymmetric isotopomers, such as
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160160180, Morton et al. [1990] found that enrichment can occur via the reaction of

ground-state atomic and molecular oxygen, OCP) + 02(3Zg) +M — O; + M, the so-called

Chapman formation reaction, and under these conditions, Mauersberger et al. [1993]
found enrichment fotally in the asymmetric isotopomers. Miller et al. [1994] proposed

that the reaction of vibrationally hot O, (v 2 26) with another O, molecule can lead to heavy

ozone enrichment via preferential potential energy curve-crossing of heteronuclear O, from

the Oz(lAg) to the 02(32g) state (see Valentini [1987]). However, appreciable production

of such vibrationally hot O, was predicted to occur only above about 35 km, and the
enrichment produced about 5% at 40 km.

While Miller et al. may have provided an explanation for some of the enrichment in
the mid-stratosphere, the bulk of the enrichment lacks a generally accepted theoretical
explanation. Indeed, detailed statistical mechanical analyses by Kaye and Strobel [1983]
and Kaye [1986] predicted a slight depletion of >°0 under stratospheric conditions. This
discrepancy between observation and theory indicates that current understanding of ozone
formation is incomplete (see, for example, Anderson et al. [1992]). However, a
promising advance in finding an enrichment mechanism is the recent discovery of several
electronically excited states of ozone near the dissociation threshold [Anderson and
Mauersberger, 1995]. It may be possible that the formation of ozone via the Chapman
mechanism goes through one or more of these states whose quantum properties (such as
lifetime) are dependent on the isotopic composition of the reactants.

From Figure 3.1, it is difficult to discern any consistent vertical gradients in
previously published measurements, and data are lacking on either seasonal or latitudinal
effects in the stratosphere. In this study, we take advantage of the high vertical and

latitudinal range of the ATMOS data set from the Spacelab3 and ATLAS series missions to
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determine if there are substantial vertical or latitudinal gradients. We also evaluate the
160160180 column enrichments from ground-based spectra from Table Mountain Facility
(TMF), Wrightwood, CA, (34.4°N, 117.7°W, 2.2 km altitude) to determine if there is a
seasonal variation.
3.2 Data acquisition

Information about the ATMOS instrument and its use on the shuttle can be found in
Gunson et al. [1995]. The spectral filters used for analyses described here, filters 1, 9 and
12, had ranges of 650-1100 cm™!, 650-2450 cm!, and 625-1400 cm™! respectively. The
number of vertical profiles used for this study were 4 from Spacelab 3, 39 from ATLAS-1,
29 from ATLAS-2 and 87 from ATLAS-3. Using the ATMOS instrument from Table
Mountain Facility, ground-based total column measurements were made on 48 separate
days from October, 1985 through July, 1990, usually at solar zenith angles corresponding
to about 1, 5 and 10 airmasses. As the ATMOS instrument has a very fast response time
(2.2 seconds per scan), between 8 and 41 successive, double-sided interferograms were
able to be taken within a narrow range of solar zenith angles, which, after transformation
and averaging, produced spectra with a signal-to-noise ratio of at least 280 to 1. Only data
taken in the morning from TMF were analyzed, as tropospheric smog from nearby Los
Angeles could be advected over the intervening mountains and over the site in the afternoon

[see McDermid and Walsh, 1991].
3.3 Data analysis

ATMOS analysis techniques for space-based observations have been described by

Norton and Rinsland [1991]. (See also Gunson et al. [1995] on the analyses of 80,

from ATMOS space-based observations.) The narrow, unresolved v, band Q-branch

centered at 1090.35 cm™! was analyzed for 190160180, as were several lines of the v, band

P-branch for 160'8010 (see Figure 2.2 and Table 2.1). Interfering 80, lines were fitted
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before final fitting of 60180160 or 160160180 was attempted. It was not possible to use

all of the 1019080 and 903060 features used by Rinsland et al. [1985] and Goldman

et al. [1989] because, at the spectral resolution of the ATMOS instrument, there was too
much interference by other molecules to successfully fit some of the heavy ozone lines.
Analyses of enrichments were made in between tangent pressures of 2.6 and 26 mb
because only in this region could suitable lines be found that simultaneously had reasonable
signal above the noise, were unsaturated and reasonably free from interference by other
molecules. Spectral parameters for all lines were from the ATMOS linelist [Brown et al.,
1995], which currently incorporates the ozone parameters given by Flaud et al. [1990].
Error sources for stratospheric measurements are discussed by Gunson et al. [1995],
although we note here that the systematic error caused by uncertainties in the line intensities
are 4% for *30,, 20% for %0080 and 10% for 1°01801¢0.

The analysis procedure for the TMF ground-based retrievals differed in that an
assumed vertical ozone mixing ratio profile was scaled by a single multiplicative factor until
a best fit was obtained between observed and calculated spectra. Table 3.2 describes the
lines used for TMF retrievals. Assumed vertical ozone profiles were created using
monthly-averaged profiles from the JPL Lidar on TMF [McDermid, 1993]. Vertical
temperature and pressure profiles were adapted from daily National Meteorological Center
data and merged with the U.S. Standard Atmosphere [1976] for higher altitudes. These
profiles were then adjusted so that the atmosphere was in hydrostatic equilibrium. To
achieve better consistency in the retrievals among the different airmasses sampled within a
day, the height registration of the assumed ozone profiles was shifted up or down 0-3 km.
In a similar fashion to the spaced-based measurements, neighboring lines of 48O3 , CO,
and H,O were fitted before final fitting of the 6060180 absorption was attempted.

Measurement of column “80, by the ATMOS instrument at TMF was previously reported
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by Gunson and Irion [1991], however, as some of the 480, lines used in that study may
have been saturated at high airmasses, the 4803 columns have been re-analyzed for this
study. The 10180160 column from TMF was not retrieved because interference by
neighboring *80,, H,0 and CO, lines was too large to achieve acceptable fits. Error
sources for the TMF retrievals are listed in Table 3.3.

It should be noted that in the determination of the 60!60!80 line intensities by

Camy-Peyret et al. [1986], and incorporated into the ATMOS spectral linelist [Brown et

al., 1995}, the concentration of 1°01°0!80 in the sample cell was not directly measured.
Rather, the line intensities of 10!8010 were derived from theory, and the 160'80!60
concentration in the sample cell calculated from measurement of the spectral lines. The
160160180 concentration was then assumed to be twice that of 16080160 (see Flaud et
al., [1986]). This makes an implicit assumption that any enrichment of 160160180 and
160180160 would be equal. Camy-Peyret et al. produced their ozone sample using an
electric discharge in a liquid-N, cooled vessel. However, in subsequent production of
heavy ozone by Anderson et al. [1989], also using an electric discharge, but at room
temperature, the 18060180 produced carried about twice the enrichment of 160180160, It
is thus possible that the heavy ozone sample used by Camy-Peyret et al. had a 16090130
to '60'80160 abundance ratio greater than 2:1, so the line ‘intensities derived for
160160180 may have been systematically over-estimated, resulting in an under-estimated
160160180 abundance when these parameters are used for stratospheric spectra. (We note,
however, that the effect of the different reaction temperatures of the Anderson et al. and
Camy-Peyret et al. experiments on the enrichment partitioning between 160160180 and
1601800 is not known.) If we assume that the 0, enrichment in the Camy-Peyret et

al. experiment was 4% (in the upper range of the enrichments found by Heidenreich and

Thiemens [1983] under similar conditions) and the enriched 6Q!60Q180-16Q180160
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partitioning of the was 4:1 (as in Anderson et al. [1989]), then the error in the 160160180
line intensities caused by assuming a 2:1 partitioning is a relatively small 2%.
3.4 Results

Figure 3.3 illustrates vertical enrichment profiles for 10160!80 and 16080160,
averaged within latitude bands covered by ATMOS over four shuttle missions. At least
three measurements were used to calculate each datum point. The enrichment profiles tend
to increase slightly with altitude, and while the standard deviations can be quite high, there
does not appear to be any systematic latitudinal variations. Figure 3.1 illustrates previously
published %0, enrichment measurements and the average ATMOS °0, enrichment profile
(assumed the sum of one-third the °0!80!90 enrichment and two-thirds the 6016080
enrichment). The ATMOS average profile was determined by averaging results across
constant pressure surfaces and assigning an approximate altitude. Weighted by the 4803

density, the globally averaged 5003 between 2.6 and 26 mb inclusive is (1315) %, while

that for 160190180 and 19080160 are (15+6)% and (10+7)%, respectively (10 standard

deviation).

Figure 3.4 shows the 19090160 columns measured above TMF The random error
for the 0160180 enrichment data points (lower panel) is, on average, 9%. While the
ozone column varies substantially, no seasonal variation in the enrichment can be
discerned. This is in qualitative agreement with a lack of variability in tropospheric %0,

enrichments found by Krankowsky et al. [1995]. Ignoring systematic error, the average
column enrichment is (1714)% (lo standard deviation), in good agreement with the
16016080 enrichment derived from the ATMOS stratospheric profiles.

3.5 Conclusions

We have analyzed ATMOS stratospheric spectra for the enrichments of 10160180

and 1080160, and ground-based spectra for the column enrichment of 60160180. We
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can find no discernable seasonal variability in the 106080 column enrichment, nor can
any latitudinal variation be detected in the vertical enrichment profiles. There appears to be
a slight increase with altitude, possibly an effect of increasing temperatures and/or
decreasing pressure. These observations suggest the enrichment of heavy ozone in the
stratosphere is relatively constant, and only weakly regulated by temperature and pressure.
Although previous studies have not ruled out other enrichment processes,
laboratory measurements have shown the most significant enrichment in the Chapman
reaction, with O and O, in the electronic ground state. Noting that the Chapman mecha-

nism has been shown to produce no enrichment for the 19080160 isotopomer, our

determination of a 190'80190 enrichment of (10+7)% (1o standard deviation) suggests

that the 160180160 line intensities may be biased too low by 10% with respect to the line
intensities of 4803. This is within the expected systematic error, although we note it may
be possible that other unknown processes are operating to enrich stratospheric 16030160,
much as ozone produced in an electric discharge becomes enriched in 10180160,
Furthermore, since the 606080 line intensities derived by Camy-Peyret et al. [1986]
were determined making use of the '°0!80160 line intensities, the 190190180 line
intensities may also be too low. Laboratory measurement of the '°0'60'80 and
160180180 spectral line intensities are necessary for verification of the absolute strato-
spheric enrichments described here. Since Flaud et al. [1986] and Camy-Peyret et
al.[1986] reported good model fittings to their laboratory spectra, such laboratory
measurements would probably produce a constant, corrective scaling of the line intensities
(and thus the enrichments), but would not affect the precision of the results described here.
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Table 3.1: Spectral intervals used for heavy ozone profile analyses from space

Molecule Window Window Line Line intensity Ground Temperature
center  width  center(s) (cm molecule’!) state energy sensitivity of
frequency (cm!) (cm™!) at 296 K (cm™) intensity
(em'!) (%/K at
220K)
16010180 1090.445 0.55  unresolved 2.14x102* (@ 2030 -0.1
97527 0.12  975.2503 1.69x10°2¢ 546 1.0
975.2838 2.30x10-%4 495 0.7
981.715 0.14  981.6756 3.54x1024 363 0.4
981.7107 4.46x1024 328 0.3
160180160 985.09 0.44  984.9062 4.32x1023 298 0.2
984.9790 5.48x10°23 264 0.1
985.0321 2.20x10-23 395 0.5
085.1031 4.78x10°23 279 0.1
985.1578 3.32x10°23 334 0.3
985.2171 5.10x1023 268 0.1
990.422 0.14  990.3889 1.55x10°23 593 1.3
990.3895 1.74x1023 567 1.3
990.3918 1.74x1023 567 1.1

Notes:

(a) Sum of intensities between 1090.1 and 1090.6 cm1.

(b) Average weighted by the intensity of the individual lines.
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Table 3.2: Spectral intervals used for column density analyses from Table
Mountain

. Line Intensity Temp erature .
Molecule Line Center (a) (x 1022 Ground Sta_t? Sensmw'ty of  Airmass
(cm-1) cm molec.™)) Energy (cm™) Intensity Range
%/K at 220K
1095.1008 5.19 310.3 0.2 <15
1114.8233 1.03 77.1 -0.5 3-10
1123.4234 6.85 120.3 -0.4 <3
160160150 1126.2511 2.49 42.9 -0.5 <5
1140.9448 1.02 190.2 -0.1 3-10
1163.4222 2.57 253.9 0.04 <5
1176.1047 1.41 353.3 0.3 3-10
160160180 ®) 2.14(c) 203 (d) -0.1(d) all
Notes:

(a) Interval width for all 1016060 windows was 0.16 cm!. The window for 106080 was 1090.35
cm! with a width of 0.5 cm’!.

(b) Several unresolved lines between 1090.1 and 1090.6 cm'!

(c) Sum of intensities between 1090.1 and 1090.6 cm’!

(d) Average weighted by the intensities of the individual lines.
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Table 3.3: Error sources and resulting percentage uncertainties in retrieved
column abundances from Table Mountain for a single spectrum

Random Error Source 160, 169160 18Q
Finite signal-to-noise 0.1-1 0.1-2.6
Error in 100% transmission level 2 2
Error in pressure-temperature profile 3 5
Error in fitting interfering lines 1 3
Error in assumed O, vertical distribution 5 5
Random error root sum of squares 6.2-6.3 79 -8.4
Systematic Error Source

Uncertainties in line intensity parameters 4 20
Retrieval algorithm! <5 <5
Total systematic error <7 <21

1. This error tends to cancel out when retrieved mixing ratios are used to determine the enrichment.
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Figure 3.1: Previously reported and globally averaged ATMOS space-borne measurements of 5005
enrichment profiles. The error bars on the ATMOS measurements are the 16 standard deviations, and do
not include systematic error. ATMOS altitudes are approximate and ATMOS 300; enrichments are
assumed to be the sum of two-thirds the 160160180 enrichment and one-third the 160180160 enrichment.
For clarity, error bars for many of the data points have been omitted, and altitudes for Mauersberger
[1987], flight a, have been shifted upwards by 0.5 km. Data from Carli and Park {1988] are the range of
their measurements. Mauersberger [1981): O; Mauersberger [1987], flight a: o , flight b: (J; Abbas et

al. [1987]: & ; Carli and Park [1988]: mams; Scheueler et al. [1990] flight I: @2, flight I1: =3, flight

III: 5; ATMOS Spacelab 3 and ATLAS-1, -2 and -3 average:
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Figure 3.3: '°0'°0"0 and '°0"0'°0 global and latitudinally averaged enrichments from ATMOS
space observations. All averages were done on a fixed pressure scale, and for clarity, the altitude shown

is the average altitude at each pressure level in its particular latitude bin. All latitudinal averages were
weighted by the inverse random square error of the measurement and at least three observations were averaged
for each point. The error ranges for the globally averaged profiles are the 16 standard deviations. See text
and Gunson et al. [1995] for discussion of systematic errors. ATLAS-3 (Nov. 1994): ¥ 75°S-65°S,

inside vortex; < 75°S-65°S inside vortex; + 0°-15°N; [0 15°N-30°N; A 30°N-50°N. ATLAS-2
(May 1993): @ 50°S-25°S; # 60°N-70°N, outside vortex; 4 60°N-70°N, inside vortex. ATLAS-1
(Apr. 1992): 0 55°S-30°S; © 30°S-10°S; <4 S5°S-10°N; ‘X 10°N-30°N. ——Global average;

--------- 10 standard deviation.
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Abstract
Stratospheric mixing ratios of CH,D from 100 mb to 17mb (=15 to 28 km) and HDO from
100 mb to 10 mb (=15 to 32 km) have been inferred from high resolution solar occultation
infrared spectra from the Atmospheric Trace MOlecule Spectroscopy (ATMOS) Fourier-
transform interferometer. The spectra, taken on board the Space Shuttle during the
Spacelab 3 and ATLAS-1, -2, and -3 missions, extend in latitude from 70°S to 65°N. We
find CH;D entering the stratosphere at an average mixing ratio of (9.9£0.8)x10°10 with a

D/H ratio in methane (7.1£7.4)% less than that in Standard Mean Ocean Water (SMOW)

(1o combined precision and systematic error). In the mid to lower stratosphere, the

average lifetime of CH;D is found to be (1.1940.02) times that of CH,, resulting in an
increasing D/H ratio in methane as air “ages” and the methane mixing ratio decreases. We

find an average of (1.010.1) molecules of stratospheric HDO are produced for each CH,D

destroyed (1o combined precision and systematic error), indicating that the rate of HDO

production is approximately equal to the rate of CH;D destruction. Assuming negligible
amounts of deuterium in species other than HDO, CH,D and HD, this limits the possible
change in the stratospheric HD mixing ratio below about 10mb to be 0.1 molecules HD

created per molecule CH,D destroyed.
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4.1 Introduction

In the stratosphere, H,O is created primarily by oxidation of CH, and H, by OH,
Cl and O('D). Likewise, oxidation of CH,D and HD creates HDO, but these deuterated
species show a sufficiently different reactivity with surrounding chemical species so that
their measurement can provide additional insight into the stratospheric hydrogen budget. In
understanding the deuterium budget of the stratosphere, and relating it to the hydrogen
budget, two questions arise. First, what is the lifetime of CH;D compared to that of CH,,
or put another way, how does the D/H ratio in methane vary with the CH, mixing ratio?
Second, is the rate of stratospheric HDO production balanced by that of CH,D oxidation?
If not, could there be a net production or destruction of HD, and possibly a change in the
D/H ratio of molecular hydrogen, due to a difference in the rates between CH,D oxidation
to HD and HD oxidation to HDO? (Discussion of the D/H ratio in stratospheric water is in
an accompanying paper by Moyer et al. [1995].)

We address these questions using spectroscopic measurements of stratospheric
CH,D and HDO mixing ratios using data from the ATMOS instrument. The ATMOS
instrument, described in detail by Farmer et al. [1987], is a Fourier-transform infrared
(FTIR) interferometer that gathered spectral absorption measurements at a resolution of
0.01 cm™! from solar occultations on board four Space Shuttle missions (see Gunson et al.
[1995]). A previous report of HDO and CH,D results from ATMOS was made by
Rinsland et al. [1991] with data from the Spacelab 3 mission; however, their report did not
relate changes in the CH,D mixing ratio to those in HDO. With the combined Spacelab 3
and ATLAS-1, -2, and -3 missions, a much broader latitudinal coverage and many more
vertical mixing ratio profiles were obtained, allowing characterization of the CH,D and
HDO budget on a more global basis. An important addition to previous reports is

measurement of CH3D inside the Arctic and Antarctic vortices. Above 28 km, the
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molecular density of CH,D is normally too low to gain an adequate spectral absorption
signal with the ATMOS instrument. However, the descent of upper stratospheric air to
altitudes below 28 km inside the vortices [Abrams et al., 1995a,b] allows measurement of
CH,D in “old” air that would be otherwise impossible to measure. As stratospheric
dehydration is not the focus of this letter, we do not report measurements of HDO inside
the polar vortices. Analyses are continuing on these vortex HDO measurements, and they
will be the focus of an upcoming paper.

In this paper, the delta notation is used to describe isotopic fractionation as the
difference in parts per thousand of an isotopically labelled species with respect to a

standard, e. g.,

(%0)=1000 x o/ H)s“mplc— (D/ H)standard

8D
sample (D/ H)smda,d

(4.1)

Standard Mean Ocean Water (SMOW) is used for the standard D/H ratio (see IUPAC
[1983]) and we use the recommended value of (155.76+0.05)x107° [Hagemann et al.,
1970].

4.2 Observations and data analysis
Information about ATMOS on the shuttle missions, and discussion of the mixing ratio

retrieval process, can be found in Gunson et al. [1995]. For the results described here,
spectral lines of the v, band of HDO and the v; band of CH3D were analyzed, and spectral
intervals used for these analyses are described in Table 4.1. HDO is best observed in
filters 2 (1100-2000 cm™!) and 9 (600-2450 cm™!), while CH3D could only be observed in
filter 3 (1580 - 3400 cm™!). However, CH4 can be analyzed in all of these filters and, with

a correlation of CH3D to CHy in filter 3, we are able infer the mixing ratio of CH3D in

filters 2 and 9 from CH,4 mixing ratios. At polar latitudes, determination as to whether a
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CH3D measurement was inside or outside the vortex was based on visual inspection of co-
located mixing ratio profiles of CH4 and N,O, as these gases show markedly smaller

mixing ratios inside the vortex than outside at similar altitudes (see Abrams et al.
[1995a,b]). “Vortex edge” observations were not used. CH3D results are presented from

tangent pressures of 100mb to 17mb, and HDO results are from 100mb to 10mb. Before
final analyses, data were filtered by rejecting any observations with an estimated random

error greater than 30% for CH3;D and HDO, or 10 % for CHy4. This step eliminated about
16% of the filter 3 CH3D data and about 19% of the filter 2 and 9 HDO data. Systematic
biases, mostly from errors in line intensities, are estimated to be 7% for CH3D, 6% for
HDO, and 5% for CHy (see Gunson et al. [1995]).
4.3 CH3D measurement and the D/H ratio in methane

Rate constants for reactions of OH or Cl with CH3;D are lower than those for CHy
[DeMore et al., 1994; Wallington and Hurley, 1992], but any isotope effect between the
rate constants of the excited O('D) + CH3D and that of O('D) + CHy is expected to be
relatively minor [Kaye, 1987]. To estimate these combined effects on the D/H ratio of
methane, we begin by assuming that in the mid to lower stratosphere CH4 and CH;3D are
only destroyed by OH, Cl, and O('D) oxidation, and photolysis is negligible. The

oxidation of CH3D and CHy can then be described by:

| dICHD . o |
[CHD] & konlOH] — kg [Cll-k ., [O('D)] (4.2)
1 dCH)

=—kg,[OH] - k[Cl]- kO(ID)[O(lD)] “4.3)

[CH] d
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Let v,(T) equal the ratios of the rate constants. That is, Y,(T)=kg,/ke,,

Ya(D=k¢/ kg, and Youny (D) =Kgp, K where T is temperature. Subtraction of

o'py’ Mo('py*

Equation (4.3) from (4.2) gives:

1 d[CH,D] _ 1 d(CH)
[CH,D] dt [CH] dt

=~ (You= DkoslOH] = (¥e;= Dk [Cll= (Yo, — Doy [OCD)] (4.4)

But we note that

Kou[OH]=— AR
U ICH) d

fu@ 4.5)

where f,4(z) is the fraction of all CH, destroyed at altitude z that is destroyed by OH.
Similar definitions for f;(z) and fo(lD)(Z)’ substitution in (4.4) for kg, k-, and k0(1D)
(noting that they sum to unity), and rearrangement yield:

1 dCHD] _ 1 d[CH,]

—(CT{;D] at = (Yon fout Yo fort YO('D)fO('D)) fCﬁjidt

(4.6)

or:

1 dicHpl_ 1 diCH)
[CH,D] dt "7 [CH) ot

4.7

where K(T,z) is the term inside the parentheses of (4.6). Note that the left-hand side of

Equation (4.7) is the time constant for destruction of CH;D, or equivalently, its inverse

lifetime. Thus, for a k(T,z) < 1, the lifetime of CH;D is longer than that of CH,. We
estimate an “average” x in the mid to lower stratosphere by assuming average fractions for

destruction (i.e., fOH’ fCl’ and fo([D)), and assuming that the ratios of the rate constants, v,
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are constant with the temperature range in the mid to lower stratosphere and that mixing

effects are minor. Integrating (4.6), assigning boundary conditions, and dividing by total

molecular concentration to get mixing ratios () yield:

X(CH,)
In %(CH,D)=In %,(CH,D) + ¥_In m (4.8)
or equivalently,
CH,D CH,) \=
X(CHD) (X 4)) 4.9)
X (CH,D) X(CH,)

where X,,(CH;D) and ¥ (CH,) are the initial mixing ratios of these gases as they enter the
stratosphere. A rough estimate of k, can be made if we set Y5,;=0.67 (averaged from
190K to 250K using the rate constants reported by DeMore et al. [1994]), Yor&£ 0.735

(from the evaluation by Wallington and Hurley [1992] at 295K), and yo(xD)zl (see Kaye

[1987]). Model calculations by one of us (RJS) indicate that between about 16 km and 30
km, about 50% of the destruction of CH, is by OH, 29% by CI and 21% by o('D).

Substituting these laboratory data and model results, K, ~0.78, suggesting that the lifetime

of CH,D is significantly longer than that of CH,, and enrichment of deuterium in methane
can occur as the CH, mixing ratio decreases. We emphasize that this is only a rough
estimation as none of the experiments measuring the kinetic rate constants of OH or Cl with
CH,D were made at the cold temperatures typical of the lower stratosphere, and we are
unaware of any laboratory measurements of the O(!D)+ CH,D rate constant.

ATMOS measurements of the mixing ratios of CH,D are plotted against co-located

measurements of CH, in the upper panel of Figure 4.1. We assume that Xo(CHy) =
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(1.71£0.03)x 10" (from global 1992 tropospheric measurements reported in WMO [1995],

and where we have assumed a 2% error). From a best fit line of ln X(CH,;D) vs
In x(CH,), we observe K, = (0.84 £ 0.02) (1o precision), higher than our initial estimate

of 0.78. Note that the error in K,, is not affected by systematic errors in the measured

stratospheric mixing ratios of CH,D and CH, (which instead affect the error in the

intercept). On average, the stratospheric lifetime of CH,D should be K;v' (=1.1910.02)

times that of CH,, or about 190 years based on a stratospheric CH, lifetime of 160 years
[Prather and Spivakovsky, 1990]. From the fitted line at a tropospheric CH, mixing ratio

of (1.71£0.03)x10, we find the mixing ratio of CH,D entering the stratosphere to be

(9.9140.8)x10°!9 (15 combined precision and systematic error).

The lower panel of Figure 4.1 shows the enrichment of CH;D with CH, mixing
ratio, as well as the average enrichment calculated using the fitted line from the upper
panel. Although there is considerable scatter in the data, it is seen that methane becomes

progressively enriched in deuterium as the mixing ratio of CH,D decreases. With a

tropospheric CH, mixing ratio of (1.7140.03)x10°9, the average 8D in methane entering
the stratosphere is —(71£74)%0 (10 combined precision and systematic error). This is
within error of the ATMOS Spacelab 3 measurements of Rinsland et al. [1991], who

found 8D in stratospheric methane near latitudes of 30°N and 49°S to be —(49+44)%o and

+(24%125)%o respectively. This is also within error of free tropospheric measurements by
Ehhalt [1973], who reported values of -86%0 and -94%o, and Wahlen et al. [1987], who

reported —(80%8)%o.
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4.4 Measurement of HDO vs CH;D and implications for HD

In the mid to lower stratosphere, atomic H is distributed primarily among CH 4
H,0 and H,, with negligible amounts among other species. It appears that oxidation of H,
is roughly balanced by its production via oxidation of CH, through a short-lived CH,O
intermediate [Dessler et al, 1994; Abbas et al., 1995]. Similarly, deuterium is most likely
distributed mainly among CH,D, HDO, and HD (with HD produced by oxidation of
CH3D and destroyed by oxidation to HDO). However, in the mid to lower stratosphere, it
may not necessarily be the case that the mixing ratio of HD is as weakly varying as that of
H,. As suggested by Ehhalt et al. [1989], the lower reaction rate constant of OH and HD
compared to that of OH and H, may serve to enrich tropospheric hydrogen gas in
deuterium. However, stratospheric destruction of HD is regulated not only by rates of OH
attack, but also to a large extent by those of O(!D), and the rate constant of the O(!D)
reaction is not expected to be significantly affected by deuterium substitution [Kaye,
1987]. (Reaction with Cl is a much more minor sink for hydrogen than for methane using
the rate constants given by DeMore et al. [1994].) For production of HD, account must
be taken of not only the oxidation rates of CH,D, but also the partitioning of D in the short-
lived species in the reaction pathway from CH,D to HD (e.g. the yield of CH,D vs CH,,
or that of CHDO vs CH,O0). In the absence of direct measurement of HD, a test for
changes in the HD mixing ratio is examination of those for HDO and CH;D. Assuming

the sum of the mixing ratios of HDO, CH,D, and HD constant, then:

dyHDO) . _dx(HD) - _1 (4.10)
dy(CH,D)  dy(CH,D)

and any deviation of dx(HDO)/dy(CH,D) from -1 through the mid and lower stratosphere

implies a changing mixing ratio of HD.
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In order to compare HDO and CH,D mixing ratios, we use the relationship in

Equation 4.8 (with k = 0.84+0.02, x,(CH,) = (1.71+0.03)x1075, and x,(CH,D) =

(9.920.8)x10719) to estimate the CH,D mixing ratio in filters 2 and 9 from measurements

of CH,. Figure 4.2 is a scatter plot of the HDO mixing ratio versus this derived CH;D

mixing ratio. We calculate dy(HDO)/dy(CH,D) by a least-squares straight line fit, but
fitted only where CH, mixing ratios were less than 1.4x107% to avoid seasonal effects in

HDO in the lower stratosphere. The calculated slope, —(1.0£0.1) (1o combined precision
and systematic error), indicates that HDO production is in near balance with CH;D
destruction. Large effects are still possible for HD within the error, however. As about
10% of stratospheric deuterium is in HD, small deviations in dy(HDO)/dY(CH;D) from -1
can have significant effects in the HD mixing ratio, similar to the case for H, (e.g.,
Dessler et al. [1994]). Large effects may also occur in the D/H ratio of stratospheric
hydrogen, particularly if the H, mixing ratio does not change in the mid to lower

stratosphere. While we cannot find statistically significant evidence for changes in HD, the

results in this report can provide some constraints below about 10 mb. To illustrate this,
we assume a constant H, mixing ratio of 0.5x107% and a 3D in hydrogen entering the
stratosphere of +(70£30)%o [Friedman and Scholz, 1974], giving an initial HD mixing

ratio of (1.6740.05)x10719, Results here indicate that if CH,D enters the stratosphere at a

mixing ratio of 9.9x10719, then when half of the CH,D is destroyed, the change in the HD
mixing ratio is constrained to be +5x10°!! and the change in 8D in hydrogen can be

constrained to +320%o.



Chapter IV 102 HDO and CH3D

4.5 Conclusions
We have analyzed ATMOS spectra for mid to lower stratospheric HDO and CH;D
mixing ratios. The average D/H ratio in methane entering the stratosphere was found to be
-(71£74)%o, but as the lifetime for CH;D is greater than that of CH, by a factor of
(1.1910.02), this D/H ratio increases as methane becomes oxidized. Stratospheric
production of HDO is (1.0+0.1) times that of CH,D loss, and assuming deuterated species

other than HDO, CH,D and HD are in negligible abundance, changes in HD abundance are

thus constrained to be 0.1 molecules HD per molecule CH;D destroyed (16 combined

precision and systematic error). To better understand these phenomena, research is
warranted into the partitioning of deuterium in CH,D destruction products (including a
comparison of the photolysis rates of CHDO vs that of CH,0), and direct stratospheric
measurements of the HD mixing ratio.
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Table 4.1: Spectral intervals and lines used for HDO and CH;D analyses

Spectral Interval Altitude Line Line Intensity Air- Ground- Temperature
Interval Width Range Center at 296 K broadened state Sensitivity of
Center (cm!) (km) (ecm!)  (cm molecule!) half-width energy Line Intensity at
(cmh (cm/atm at 296K) (cm™!) 230K (% K1)
CH.D
2050.84 024 1028 29508514 2.81x10-23 0.072 266.3 0.07
3061.56 0.20 15-36 3061.4148 5.21x1023 0.077 89.9 -0.4
3078.34 0.17 15-28 3078.3125 1.61x1023 0.070 217.1 -0.07
3078.3551 2.09x10-23 0.072 184.7 -0.2
3098.91 0.15 10-24 3098.8832 1.58x10723 0.068 346.0 0.3
HDO
1408.35 0.25 10-34 1408.3914 9.62x10°%* 0.102 29.8 -0.6
1421.62 0.40 13-42 1421.6073 1.26x10°23 0.077 233.1 0.02
1439.93 0.32 15-40 1439.8887 1.54x10723 0.095 150.1 -0.2
1451.40 0.34 10-29 1451.4597 1.21x10°23 0.093 265.2 0.07
1469.43 0.23 17-40 1469.3658 2.53x10723 0.095 156.4 -0.2
1474.09 0.31 19-40 1474.1110 1.30x1023 0.094 156.4 -0.2
1475.62 0.31 20-33 1475.5917 1.37x10°23 0.096 150.2 -0.2
1479.96 0.42 10-26 1480.0941 5.81x10°%4 0.093 225.9 -0.04
1484.11 0.25 15-40 1484.1065 2.44x10°23 0.092 225.9 -0.04
1488.16 0.48 20-40 1488.0252 1.09x10°23 0.093 221.9 -0.04
1488.1937 1.33x10°23 0.100 32.5 -0.6
1494.86 0.29 15-29 1494.8598 8.34x10°%4 0.095 221.8 -0.05
1497.85 0.34 15-40 1497.8807 2.08x10°23 0.085 308.6 0.02

Note: The temperature dependence for air-broadened half-widths is T-0-75 for CH;D and T-0-%4 for HDO.
Line parameters for CH3D are from Rinsland et al. [1991]. HDO line parameters are discussed in Brown et
al. [1995].



HDO and CH3;D

107

Chapter IV

"Xa10A 3Y3 3PISINO pue 3pisul suor3al pey sa1joid rejod SWOS AN (917) NoOS-NoOE = ‘(85) NoOE-NoST © “(ZT) NoSI-0 T “(98) X3HOA
OPISUL §469-SoSL #  ‘(98) XOHOA IPISING §469-SeSL X €-SVILY ‘(£9)X3HOA OPISUl NoOL-NoS9 =  ‘XIHOA 3PISINO NOL-NoS9 7 (87) SoST
-So0S & T-SVILY ‘(46) So0Z-So0S + :I-SVILY ‘(06) NoTE-No9Z X “(6) So8F ® : qe[aoedg :pasn SUONEAISSGO JO JOqUINU 3y} AYedIpuI

sasoyjuared ur s1aquinyN “([oued Jomof) onel Surxiw YD sA dueyjow ur (9 pue (joued 1oddn) oyea Surxiw PHO) sa onea Suxiw qEHD :1°p danSiy

_€
— — ooz-
- - (4]
L . O
n M 0 =
- 3
C 7 )
- —002 =
- = Y]
- e 3
- 7 2
— —00¥ 3¢
N aAoge aul| papl} woly pajejnoje) —— " : =
— oneJ Buixiw YHO sA sueyiaw Ul gQ - 009
L "
e 1 n X — — i _ PSS U N S S RO S T S S S S PR L | PRI VS S W GO S N VT EUA SO ST ST UL VN0 VN S I A SR A S T VU S Y L w
[T T T v T v _Jw< L A D B A A AL AL AL AL B = S L A AL
.| " |.N
o o e ~
(2]
o
u t4 w
x
- g RWu
B 19 ®
~ L o
L -8
= ofes Buxiw *HO sSA Q°HO 1 4,
+ 6
" " + L N - N " PIPUS ST T WS DU S OSSN NS VU SR S DU N PR SO S ) IS VTS S ST ST S T (0 S WU T TS0 ST TN ST S N WU S S S R ST S S S




Chapter IV 108 HDO and CH3;D

1~2 LR L TT LI T T 1771 [T T T T T 17 T T T T T T T T

B ]
r ]
- . ]
E HDO vs CH3D mixing ratios ]
[ o ]
1.0 — 4 ]
L 4
c ]
~ 7
= 4
[ ]
c,’o" 0.8 N .
T F 1
Rel . i
s L ]
o) - 4
£ I ]
1S3 L J
O 06} ¥4
o L
I 5
ot o
04 -
C 1
[ 4
L PO 4
: + ><+xx :
02 ]
C PSSR T N TN NN TN S YOO ST S N A S N M N N SN WY NN YA ST S0 N SO Y SO N N N S N s
0.4 0.6 0.8 1.0 1.2

Estimated CH,D mixing ratio (x109 )

Figure 4.2: HDO mixing ratio vs CH;D mixing ratio. The line is fitted only where the CH, is less than

1.4 x 10°, Number in parentheses indicate the number of observations used: Spacelab 3: ® 49°S (13),
x 26°N-31°N (33); ATLAS-1: + 55°S-30°S (118), e 10°S-15°N (36), a 15°N-30°N (10);
ATLAS-2: v 50°S-30°S (40), 2 65°N-70°N, outside vortex (35); ATLAS-3: = 75°S-65°S, outside

vortex (82), o 12°N(4), o 15°N-30°N(25), = 30°N-50°N (122).



Appendix A 109 Error sources and treatment

Appendix A

A brief note on error sources and their treatment



Appendix A 110 Error sources and treatment

This appendix briefly reviews some error sources and their treatment in analyses of
ATMOS spectra. Discussion of the instrumental errors of Fourier-transform
interferometers is given by Chamberlain [1979] and Beer [1992]. A full description of the
equations used in analyzing ATMOS spectra can be found in Norton and Rinsland [1991].
Shaffer et al. [1984] discuss systematic sources of error in solar occultation-type
measurements in general, while discussions about ATMOS error determinations in
particular can be found in Abrams et al. [1995] and Gunson et al. [1995].

Al.1 Spectral intensities and ground state energies
A full spectra and spectral lineshapes can be found elsewhere (e.g., Webster et al.

[1988]), but a quick look at spectral line intensities may be helpful in understanding
retrieval errors. The spectral intensity of a rotational-vibrational transition at frequency v is

given by

"

Q.(Ty) Q,(Ty) hcE [L_ 1 U 1 -exp(—hcv/kT)
T0

S = -
S0 Q(T) QM) exp( k T ) 1—exp(—hev/kT,)

(Al.1)

where S, S, = line intensity at temperature T and T, respectively (T, is usually 296 K)
Q,, Qg = vibrational and rotational partition functions, respectively

E" = ground state energy (cm™)

v = frequency of the line

¢ = speed of light

h = Planck's constant

k = Boltzmann's constant
Absorption coefficients across a spectrum for an individual line are calculated by
multiplying the line intensity by an appropriate lineshape function (e.g., a Voigt or Lorentz

profile), followed by convolution with the instrumental function. See Norton and
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Rinsland [1991]). Spectral databases, such as the ATMOS linelist [Brown et al., 1995],
contain information on Sg, E” and v for over 250,000 lines of some 50 atmospheric gases.

Most of the systematic error in a mixing ratio retrieval will be caused by errors in S,. For
example, a line intensity that is 10% too high will result in a retrieved mixing ratio that is
10% too low. Spectral intensity uncertainties for gases studies by ATMOS can range from
2-4% for minor gases such as CO,, H,O or N,O to as high as 15% for HNO; and 20 %
for CCl,. Brown et al. [1995] lists estimates of line intensity uncertainties for gases
retrieved by ATMOS.

Errors in the temperature profile affect the calculated intenéity through the partition
functions and the ground-state energy, E", but at stratospheric temperatures, it is only the
E" term that can lead to significant error in the line intensity. As mentioned in Section
1.1.5, ATMOS trace gas profile retrieval methods utilize a 150 km/150 layer pressure
temperature model developed individually for each occultation. The temperature error in
such a model profile can range to +4K. Therefore, wherever possible, lines are chosen
with ground-state energies between 100 cm'! and 400 cm™! to keep the temperature
sensitivity of the intensities on the order of 1% K1.

Al.2 Pressure-temperature profiles

The precision and accuracy of ATMOS retrievals from space is greatly aided by
CO, absorption features within spectra that can be analyzed for determining precise tangent
pressures and temperatures, the CO, mixing ratio being nearly constant through most of the
atmosphere. This makes ATMOS a "self-contained” instrument that does not need external
instrumentation to gather temperature and pressure information. ATMOS determination of
these profiles is described by Rinsland et al. [1992], Stiller et al. [1995] and Abrams et
al. [1995b]. A near-constant CO, mixing ratio profile is assumed (e.g., for 1992, 360

ppmv in the troposphere decreasing to a constant 347 ppmv from 21 km to the turbopause
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[Gunson et al., 1995]). The software used to determine tangent pressures for individual
spectra is the same used to determine mixing ratios, except here the mixing ratio of the
target gas, CO,, is fixed but the pressure is allowed to vary. Temperature sensitive CO,
are used lines to determine temperatures, while maintaining hydrostatic equilibrium. (An
iterative pressure-temperature determination using temperature-sensitive CO, lines is used
for filters 1 and 3 because they lack adequate temperature-insensitive CO, lines. See

Stiller et al. [1995].)

However, like any other gas that ATMOS measures, errors from noise and spectral
parameter inaccuracies affect retrievals of CO,. As they affect the molecular density within
a pressure-temperature model, random errors from pressure soundings become systematic
errors in the determination of gas mixing ratios for the occultation from which they were
derived. For ATMOS profiles, the random error in a pressure sounding retrieval is

determined as

2 71-172

, OT, (v,2) /3D

EPressure(Z)z P(Z) Zl( 1 2 2 2) (AIZ)
ﬁcoz(z) (‘S’W) +Ri

where: v, = frequency at spectral grid point i (cml)
z = altitude (km)
T; .(v,,z) = calculated transmission at spectral grid point i
P(z) = pressure at altitude z
Y0, = assumed mixing ratio for CO,

SNR = signal-to-noise ratio
Note that the addition of the signal-to-noise error assures that (A1.2) can never be zero,

even in the case of a perfect fit. Systematic errors in the CO, line intensities add a 4%
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error, while an estimated 2% error is from the assumed CO, profile. Systematic and
precision errors are combined in quadrature to produce a total error varying from about
10% for all filters decreasing to about 5% near 25 km. Tangent pressure errors tend to
increase substantially below 100 mb due to CO, line saturation; at 10 km, the tangent
pressure error is about 30% in filter 9, 10% in filter 3, and about 5-6% in filters 1, 2, 9 and
12.
A1.3 Signal-to-noise and residual errors
The signal-to-noise ratio (SNR) varies for the spectral filters used by ATMOS by
‘the amount of incident radiation on the detector; the broader the spectral bandpass, the
lower the SNR. The trade-off is that limiting the spectral bandpass limits the number of
co-located gases measurable. While a precise signal-to-noise ratio (SNR) can (and is)
calculated by examining out-of-bandpass regions of the spectrum, Filter 1 (600-1200)
generally has been shown to have a high SNR of =300:1, while with its broad bandpass,
Filter 9 has an SNR of =100:1. From Table Mountain, however, the ability to take
‘measurements within a narrow range of solar zenith angles allows averaging, and an

increased SNR:

SNR SNR «/ number of individual spectra (A1.3)

average individual

Such averaging must be done judiciously, however, because as the solar zenith angle
changes, so does the number of molecules in the instrument's line of sight.
The signal-to-noise error will be manifested in fitted spectra's residual of the fitted

and observed transmission. The residual error in a mixing ratio retrieval is calculated by:

2 [T,0,2 - T,0,0)]
Nz, 3T v, 2)/09]

(Al.4)
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where: T , T = observed and synthetic transmission, respectively, at frequency v, of

spectral grid point i and altitude z.

U = the target gas mixing ratio

N = the number of inflection points in (9T /09), usually about the number of target

lines in a microwindow.
The residual error is combined into a total root-sum-of-squares error with estimated errors
from pressure sounding, zero transmission uncertainty, and propagated error from
uncertainties in mixing ratio retrievals from higher altitudes. These latter two errors tend to
be small. Note that SNR ratio is implicitly counted twice: once from its contribution to the
tangent pressure error and once from its contribution to the residual. This tends to produce
a conservative error, even with an excellent spectral fit.
Al1l.4 Averaging and combined errors
As mentioned in Section 1.1.5, when several microwindows are available for a
mixing ratio retrieval, an averaged result is determined weighted by the inverse error of
precision:
=, (0,/¢2)

m (A1.5)

mn "~

The precision of this weighted average is calculated two ways. The first is the reduced
standard error of the mean:

1

=— (A1.6)
X 1/¢,

rsa
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The second method is the error on the estimation of the mean,

T (9,/e))°
T (1/€])
™M-1)%,(1/¢,)

T, (00780~

2 —
std

€

where M is the number of "effective” microwindows;

[z.are)]
T (1/€)

Error sources and treatment

(A1.7)

(A1.8)

M is less than the actual number of microwindows except where all the precision errors are

the same. The final precision quoted is the greater of (A1.6) or (A1.7).
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This section briefly describes contributions by the author to works in addition to

those in Chapters 2, 3, and 4.

B.1 Stratospheric trace gas column burdens from Table Mountain Observatory.

Perturbations to stratospheric chemistry can be long-term, such as the effects of
atmospheric loading of the photolysis products of chlorofluorocarbons, and shorter-term
such as increased aerosol loading by events such as volcanic eruptions. Such effects may
be detected in the mixing ratios of several "active" species, such as O, and "sink" species,
such as HCI, HF, and HNO,, all of which primarily reside in the stratosphere and can be
measured from ground-based infrared solar absorption techniques. During the delay of
shuttle missions due the Challenger accident, the ATMOS instrument was at Table
Mountain Facility, Wrightwood, CA (TMF; 34.4°N, 117.7°W), where it took a series of
solar absorption spectra spanning from 1985 to 1990. The use of the TMF site has been
described in Chapters II and III of this thesis. Measurements of O,, HCI, HF, and HNO,
column burdens from TMF were made in order to evaluate the precision attainable by solar
absorption Fourier-transform spectrometry for this purpose and evaluate the suitability of
TMF as a site for detection of stratospheric change. This research is described in Gunson
and Irion [1991]. While the time interval in which measurements were taken did not allow
a good evaluation of long-term trends in the stratosphere for these gases, the TMF site was
shown to be adequate for this purpose, and the spectra and measurements provide a

baseline from which future measurements can be compared and trends determined.
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B.2 Collation and analyses of previously measured chloroflurocarbon,
hydrochloroftuorocarbon and halon mixing ratio profiles in the stratosphere

The loading and location of active chlorine and bromine in the stratosphere depends
not only on the stratospheric loading of their source gases, such as the chlorofluorocarbons
and halons, but also the stratospheric lifetimes of these source gases; longer-lived gases
can reach and be destroyed at higher altitudes. Stratospheric lifetimes of halogenated
source gases, with lifetimes larger than transport time scales, are usually not measured
directly. They are instead measured relative to that of N,O by determining the slope of the
stratospheric mixing ratio of the source gas plotted against co-located N,O mixing ratios.

In regions where the slope is linear, their lifetimes are related by:

*
TSOUTCC gas _ dﬂ Nzo ﬁSOUrCC gas

TNZO dd source gas ) ;“20 (B 1 )

where T is the lifetime, ¥ is mixing ratio, and 9* is a mixing ratio representative of that in

the troposphere. (See Plumb, R. A. and M. K. W. Ko, Interrelationships between mixing
ratios of long-lived stratospheric constituents, J. Geophys. Res., 97, 10145-10156, 1992.)
In an effort to quantify stratospheric mixing ratios and lifetimes for several source
halocarbons, and intercompare results by different techniques, previously measured results
from in-situ and remote sensing techniques for some 20 gases were compiled and
compared and, where possible, their mixing ratios plotted against those of N,O and the
slope determined. From these, stratospheric lifetimes with respect to N,O could be
calculated. An example of these plots, for CCLF,, are shown in Figures B.1 and B.2.

Full results are given in Fraser et al. [1994).
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B.3 The use of laboratory spectral cross-sections to infer chlorofluorocarbon
and hydrochlorofluorocarbon trace gas mixing ratios

Usually, the modelling of solar absorption spectra requires the calculation of
spectral cross-sections based on knowledge of precise spectral line frequencies, line
intensities and ground-state energies for the molecules of interest. These spectral line
parameters can be difficult to obtain for chlorofluorocarbons, hydrochlorofluorocarbons
and N,Oy as these molecules show broad, unresolved features in their infrared absorptions
even at the best available resolutions. Calculation of their line intensities and frequencies
from theory are difficult. Determination of their stratospheric mixing ratios using ATMOS
softwate previously relied on empirical pseudo-line parameters, but these were prone to
systematic errors in the band intensities and measurement uncertainties from poorly
modelled temperature and pressure-broadening effects.

Rather than calculating cross-sections for these gases from pseudo-line parameters,
a more efficient, if less flexible approach was to use laboratory-derived cross-sections
directly in modelling atmospheric absorptions. This required the integration of new code
into existing ATMOS software so that it can simultaneously use both linelists and tables of
cross-section data to model absorptions of several gases simultaneously within a spectral
window. For a spectral band of a particular molecule, a series of laboratory-derived
empirical cross-section data, taken at temperatures and pressures exemplary of the vertical
structure of the stratosphere, were first evaluated for suitability and consistency and then
converted to a standard binary format. When these cross-sections were used in ATMOS
retrievals for a particular model temperature and pressure, the methodology was to
interpolate the cross-sections by temperature (or log pressure) to match model parameters,
and then to interpolate across wavenumber to match the spectral grid. Absorptions by other
molecules (calculated from spectral linelists) were then added into the window to model the

total atmospheric absorption. The benefit of this technique was that it was computationally
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very fast and avoided the need for psuedo-line parameters. The drawback was that
uncertainties increased if an occultation's termperature/pressure profile was highly different
from the conditions under which the cross-sections were originally measured, and could
give poor results if the cross-section data were of poorer resolution than that of the ATMOS
instrument. Overall, however, the approach has been successful for retrievals of various
species, and its use is continually extended and modified as new laboratory data become
available. (See, for example, the absorption of HCFC-142b in Figure 1.2.1.) The
ATMOS linelist and cross-section data currently used are described in Brown et al. [1995],
and representative ATMOS retrievals using the cross-section algorithm can be found in

Rinsland et al. [1995a,b], and Zander et al. [1995].

B.4 Analyses of stratospheric H,0 and CH,

There were several motivations to investigate the stratospheric abundances of H,O
and CH, from ATMOS measurements. First, as discussed in Section 1.5, the study of the
deuterated isotopomers HDO and CH,D in the stratosphere cannot be done outside the
context of the more abundant H,O and CH,; it is the variations of deuterium in total water
or methane, and the reasons for such variations, that are of interest,. Second, the
partitioning of hydrogen among H,0, CH, and H, in the upper stratosphere and lower
mesosphere was not well measured. Assuming that the total amount of hydrogen residing
in species other than H,0, CH, and H, is inconsequential, then co-located measurements
of H,0O and CH, can be used to deduce variations in the vertical H, mixing ratio profile.
Third, and again as discussed in Section 1.5, the exact mechanisms for transport of water
from the troposphere to the stratosphere are not well understood. Much as any proposed
mechanism must account for the abundance of HDO in the stratosphere, so must any
mechanism account for any seasonal variation of H,O in the lower stratosphere. As

ATMOS can simultaneously determine CH, and H,O, increases in the H,O mixing ratio
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from methane oxidation can be subtracted, and the seasonal variation of water entering the
stratosphere through the tropics deduced.

As a contribution in the study of these issues, spectral features of H,0, HDO, and
CH,D absorptions in ATMOS spectra were selected and tested for their precision in mixing
ratio determination and to evaluate their optimal vertical range. (Spectral intervals for CH,
analyses were not selected by the author.) For the work described by Moyer et al. [1995],
briefly summarized in Section 1.5, results of ATMOS mixing ratio retrievals were used to
determine deuterium depletions in water, both corrected and uncorrected for methane
oxidation. When modelled depletions of deuterium in water were compared to ATMOS
results, the amounts of deuterium in stratospheric water suggested transport through the
troposphere in fast convective updrafts, and not solely by gradual uplift through the
troposphere and across the tropopause.

In connection with studies of the stratospheric hydrogen budget, co-located
retrievals of H,0 and CH, for each mission were plotted against each other over the range
of ATMOS measurements. Examples of these are shown in Figure B.3. In order to
determine the amount of H,O produced by the stratospheric oxidation of CH,, lines were
fitted within the 20-35 km range. Again, assuming that the total amount of hydrogen
residing in species other than H,0, CH, and H, is minor, deviations of the slopes of H,O
vs. CH, correlations from -2 indicate net production or destruction of H,. However, the
proximity of the slopes of the solid fitted lines in Figure B.3 to -2 indicate that H, oxidation
does not consitute a significant net source of H,O within the 20-35 km range, and that H,0
production is effectively balanced by CH, oxidation. In regions where the CH, mixing
ratio is = 250 pptv (about 50 km), the mixing ratios of water are generally higher than that
expected by CH, oxidation (shown by the dashed curves in Figure B.3), indicating

additional net production of H,O from H, oxidation. At even lower CH, mixing ratios, the
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amount of H,O decreases because of H,O photolysis. This study was described in detail
by Abbas et al. [1995a].

The seasonal variation of water injected into the stratosphere was investigated by
analyses of ATMOS retrievals of CH, and H,O in the lower tropical stratosphere.
Averaged retrieval results are shown in Figure B.4. As airmasses enter the stratosphere
across the tropical tropopause throughout the year and slowly move upwards, a significant
seasonal variation is imprinted on the mixing ratio of H,O, but not on CH,. Assuming that
the minimum at 40 mb (about 22.5 km) in the water vapor mixing ratio corresponds to
entry across the tropopause at 100 mb during January and February, and the maximum at
55 mb (about 19 km) corresponds to entry during June and July, an average upward
velocity of ~7-8 km year™! was inferred for the region near 22 km. Full details of the study

are given in Abbas et al. [1995b].
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Appendix C

Column and profile data from ATMOS on the
Space Shuttle and at Table Mountain

Note: ATMOS space-based retrieval data for CH 4 HZO, HDO, CH3D and most other
gases are publicly available through the internet:

ftp: remus.jpl.nasa.gov; login anonymous
WWWw: ftp://remus.jpl.nasa.gov/pub/results/vers2/
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Table C.1: Average column burdens over Table Mountain Facility

Columns have not been scaled to sea level. Read col. error=random error in column;
6680, enrich=1%0160'80 enrichment; 5980, enr. err=random error in '®0'¢0!80

enrichment.

Year Day of 4803 48O3 668O3 66803 66303 65803 CHF,Cl CHF,CI
Year column col. error column col. error  enrich enr.err  column  col. error
(x10!8 molec. cm2)  (x10!5 molec. cm2) (%) (%)  (x10'5 molec. cm2)
1985 274 7.96 043 3.58 0.16 12.2 7.9 1.05 0.08
1986 345 1.21 0.10
346 7.13 0.43 3.42 0.17 20.1 9.3
1987 58 8.96 0.40 4.28 0.26 19.5 9.0 1.16 0.09
84 8.96 0.34 4.29 0.21 19.8 1.5
85 8.65 0.45 442 0.28 27.7 10.4 1.16 0.09
139 9.31 0.28 4.56 0.39 22.5 11.1
140 9.60 0.38 4.52 0.39 17.7 11.1 1.29 0.10
141 9.47 0.32 4.58 0.28 20.9 8.4 1.20 0.10
154 8.86 0.43 4.26 0.28 20.2 9.8 1.22 0.10
168 8.34 0.27 4.08 0.25 22.4 8.5 1.21 0.10
238 8.19 0.35 3.88 0.30 18.5 10.4 1.30 0.10
272 7.98 0.31 3.75 0.19 17.4 7.4 1.21 0.10
280 7.39 0.34 3.54 0.30 19.9 11.7
288 7.53 0.34 3.52 0.17 16.8 7.8 1.25 0.10
314 7.78 0.34 3.62 0.22 16.3 8.7 1.24 0.10
1988 77 7.71 0.36 3.65 0.18 18.2 8.1 1.22 0.10
84 8.20 0.40 3.90 0.19 19.0 8.3 1.25 0.10
20 9.47 0.65 4.40 0.27 16.9 10.7 1.24 0.10
124 8.76 0.38 4.15 0.21 18.8 7.8 1.29 0.10
130 8.31 0.34 3.77 0.32 13.4 10.8
154 8.25 0.38 4.08 0.35 23.7 12.1
176 8.05 0.49 3.78 0.19 17.4 9.2 1.22 0.10
182 8.12 0.30 3.72 0.22 14.5 7.9 1.28 0.10
190 7.81 0.51 3.70 0.18 18.6 9.7 1.27 0.10
196 7.98 0.30 3.77 0.21 17.9 7.8 1.39 0.11
209 7.92 0.39 3.74 0.23 18.1 9.2 1.30 0.10
216 7.77 0.42 3.50 0.31 12.6 11.6 1.26 0.10
223 7.94 0.35 3.79 0.19 19.1 8.0 1.32 0.11
231 7.82 0.28 3.69 0.21 18.1 7.8 1.39 0.11
252 8.02 0.25 3.63 0.18 13.2 6.6 1.38 0.11
259 743 0.45 3.52 0.17 18.4 9.3 1.36 0.11
293 7.62 0.32 3.47 0.17 13.9 7.5 1.32 0.11
301 7.11 0.25 3.30 0.20 16.0 8.2 1.36 0.11

321 7.38 0.30 3.37 0.17 14.0 7.3 1.43 0.11
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Table C.1 continued

Year  Dayof 430, 430, 6680, 6680, 6680, 6680, CHF,Cl CHF,CI
Year column col. error column col. error  enrich enrich. column col. error
(x10!8 molec. cm2)  (x10'3 molec. cm™2) (%) (%) (x10'S molec. cm2)
1989 9 8.14 0.45 3.55 0.31 9.1 11.1
31 7.89 0.25 3.66 0.31 15.8 10.6
206 7.89 0.45 3.56 0.31 12.7 11.6
207 8.15 0.58 3.73 0.19 14.3 9.9 1.41 0.11
208 1.33 0.11
209 7.89 0.46 3.67 0.18 16.2 8.9 1.36 0.11
243 7.81 0.25 3.68 0.18 17.0 6.9 1.42 0.11
250 7.90 0.51 3.80 0.19 20.2 9.8 1.39 0.11
257 7.72 0.33 3.61 0.18 17.0 7.7 1.45 0.12
1990 122 8.45 0.41 3.97 0.20 17.3 8.2
123 8.42 0.48 3.90 0.13 15.8 7.6 1.45 0.12
124 8.15 0.37 3.81 0.26 16.9 9.6 1.52 0.12
201 7.76 0.41 3.63 0.18 16.9 8.5 1.45 0.12
204 7.76 0.34 3.51 0.30 13.1 10.9
205 7.95 0.30 3.89 0.33 224 11.5

206 1.50 0.12
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Table C.2: ATMOS ozone volume mixing ratios and heavy ozone enrichments.

This table contains data only from 26 to 2.6 mb retrievals only where '90°0!80 and/or
160180160 were simultaneously measurable with 160160160,

Mixing ratios and random errors are in units of 10¢ for 1016010, Latitude and

longitude are given for the 30 km tangent height. Random errors for the enrichments were

RE, ¥ (RE,

— |+

MR, | (MR,

where:RE_ and RE | are the mixing ratio random errors of the substituted ozone molecule

(160160180 or 160180160) and 480,, respectively,
MR and MR, are the mixing ratios of the substituted ozone molecule and 480,

calculated as:

. 8, (%)
Enrichment error (%)= 100 x —m0—+ 1

respectively,

85 is the enrichment of the substituted ozone molecule in %.

Read: sl3=Spacelab 3, at1=ATLAS-1, at2=ATLAS-2, at3=ATLAS-3
Alt=altitude, Press=pressure, vmr=volume mixing ratio, err=random error
sr=sunrise occultation, ss=sunset occultation
480, vmr = 160190160 volume mixing ratio x 10
80, err = 160160160 volume mixing ratio random error x 10
6880, enr=190160"80 enrichment (%)

6680, enr err =!90!60'80 enrichment random error (%)
6860, enr=1901801%0 enrichment (%)
6860, enr err =190'80160 enrichment random error (%)
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