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Abstract

This thesis addresses the development of stabilizing model predictive control algo-
rithms for nonlinear systems subject to input and state constraints and in the presence
of parametric and/or structural uncertainty, disturbances and measurement noise.

Our basic model predictive control (MPC) scheme consists of a finite horizon
MPC technique with the introduction of an additional state constraint which we
have denoted contractive constraint. This is a Lyapunov-based approach in which a
Lyapunov function chosen a priori is decreased, not continuously, but discretely; it
is allowed to increase at other times (between prediction horizons). We will show
in this work that the implementation of this additional constraint into the on-line
optimization makes it possible to prove rather strong stability properties of the closed-
loop system. In the nominal case and in the absence of disturbances, it is possible to
show that the presence of the contractive constraint renders the closed-loop system
exponentially stable. We will also examine how the stability properties weaken as
structural and/or parametric model/plant mismatch, disturbances and measurement
noise are considered.

Another important aspect considered in this work is the computational efficiency
and implementability of the algorithms proposed. The MPC schemes previously pro-
posed in the literature which are able to guarantee stability of the closed-loop system
involve the solution of a nonlinear programming problem at each time step in order
to find the optimal (or, at least, feasible) control sequence. Nonlinear programming
is the general case in which both the objective and constraint functions may be non-
linear, and is the most difficult of the smooth optimization problems.

Due to the difficulties inherent to solving nonlinear programming problems and
since MPC requires the optimal (or feasible) solution to be computed on-line, it is
important that an alternative implementation be found which guarantees that the

problem can be solved in a finite number of steps. It is well-known that both linear



vi
and quadratic programming (QP) problems satisfy this requirement.

If a standard quadratic objective function is used and the input/state constraints
are linear in the decision variables, then the contractive constraint (which is originally
a quadratic constraint) can be implemented in such a way that the optimization
problem to be solved in the prediction step of the MPC algorithm is reduced to a
QP. Having linear input/state constraints means that a linear approximation of the
original nonlinear system has to be used in the prediction as well as in the computation
of the contractive constraint. Thus, in order to make the algorithm more easily
implementable we introduce the difficulty of having to handle the mismatch between
the real nonlinear system and its linear approximation which is used for prediction.
In other words, we now have a robust MPC control problem at hand. In this case, it is
the contractive constraint which comes to the rescue and allows the MPC controller
to stabilize the closed-loop system in spite of the linear/nonlinear mismatch, for
certain choices of the contractive parameter (the parameter which defines how much
“shrinkage” of the states is required during one prediction horizon).

In summary, this thesis is an application of contractive principles to model predic-
tive control and it is dedicated to robust stability analysis, design and implementation

of state and output feedback “contractive” MPC schemes.
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Chapter 1 Introduction

The vast majority of industrial processes is typically operated using linear controllers,
although it is well known that many of these processes are highly nonlinear. The
major difficulty in the design of feedback control laws for nonlinear systems arises
from the necessity to explore the whole state space. The problem of the design
of feedback controls for nonlinear systems has found a general solution only in the
case of systems which are feedback equivalent to linear systems. The fact that most
nonlinear systems are not feedback equivalent to linear ones has motivated the study
of alternative control techniques which do not require construction of diffeomorphic
state-feedback transformations. One of these techniques is model predictive control
(MPC) - an optimal control based method for the construction of stabilizing feedback

control laws.

A key feature contributing to the success of model predictive control is that var-
ious process constraints can be incorporated directly into the on-line optimization
performed at each time step. In other words, model predictive control has the poten-
tial, not easily possessed by other methods, to globally stabilize linear and nonlinear
systems subject to control and/or state constraints. This is undoubtedly a very im-
portant feature since many practical control problems are dominated by constraints.

In [89], Mayne and Polak state:

“It can be argued that the most urgent, unresolved control problem is
an effective, practical method for the design of feedback controllers for

constrained dynamic systems, linear or nonlinear.”

Other important features of MPC are its ability to handle multi-input multi-output
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(MIMO) systems with very little changes in the formulation compared to the single-

input single-output (SISO) case, and its variable structure in the event of faults.

Besides being subject to input/state constraints, most real systems are represented by
process models which are not accurate. Furthermore, they are invariably subject to
disturbances of various kinds. Due to these practical problems, it is important for the
controllers designed to be robust (i.e., take into account the model/plant mismatch
which may exist and guarantee satisfactory stability and performance properties of

the closed-loop system) and present good disturbance rejection properties.

Regarding robustness, a very extensive theory [102] has been developed for the robust
control of linear systems without constraints. This theory has been proven successful
when applied to a number of academic case studies such as, e.g., high purity distilla-
tion columns (see [116]), with process constraints not taken into consideration. The
neglect of constraints has made this robust control theory unsuitable for industrial
applications. When constraints are considered, even if the plant is linear, the overall
control problem becomes nonlinear and this is the reason why constrained problems

are so much harder to deal with than unconstrained ones.

In spite of MPC’s considerable practical importance and extensive use, there is in
fact very little theory to guide the design and tuning of these controllers for stability,
performance and robustness, especially in the nonlinear case. Moreover, the exist-
ing stability and robustness analysis of MPC applied to nonlinear systems is rather

complicated and non-intuitive and the resulting controllers hardly implementable.

It is the goal of this thesis to develop a general theory for designing controllers for
nonlinear continuous-time systems subject to constraints with robust stability and ro-
bust performance guarantees. Several different problems will be considered, such as
output feedback, parametric model/plant mismatch, disturbance rejection, structural
model/plant mismatch, etc. One of the main concerns throughout this work is to de-
velop nonlinear MPC (NLMPC) controllers which involve a reasonable computational

effort and can be easily implemented.



1.1 Motivation

Most practical control problems are dominated by process constraints and nonlin-
earities. The most common process constraints are constraints on the manipulated
and /or state variables. Regarding the nonlinear character of most real systems, non-
linearities can be quantified as “weak” or “strong” (see [5, 6]) and it may be that
while a linear controller design is satisfactory for a “weakly nonlinear” system it will

most probably be inappropriate for a system with stronger nonlinearities.

With respect to process constraints, constraints on the manipulated variables are
present in the vast majority of processes and they result from physical limitations of
the actuators which cannot be exceeded under any circumstances. Safe operation of
a plant very often requires limitations on states as well, such as velocity, accelera-
tion, temperature and pressure. State constraints are also a natural way to express
control performance objectives in many applications. Although most control con-
straints should be respected throughout the operation (hard constraints), it may be
unavoidable to exceed the state constraints for some time, especially if the system is
subjected to disturbances not accounted for in advance. Therefore, the constraints

imposed on states and output variables are most often soft constraints.

Regarding system nonlinearities and model error (be it parametric and /or structural),
most model predictive control designs do not take these factors into account. The
presence of unmodeled nonlinearities and unknown parameter values can make the
tuning of MPC controllers for certain stability and performance requirements quite
cumbersome, if not impossible. In fact, if uncertainty in the structure of the nonlinear-
ities and/or in the parameter values is not properly accounted for, the performance
on the real system can be arbitrarily poor (the result could even be an unstable
closed-loop system). Therefore, since exact modeling of a plant is not feasible in
most practical cases, the controller must be designed to show very little sensitivity to

model uncertainty.
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A rich theory has been developed to address the robustness issue in unconstrained
linear systems (as will be discussed in the next section). For constrained and uncertain
linear systems the scope of results is not so vast. And, as one would expect, for
constrained and uncertain nonlinear systems results are few and incomplete. One
can surely say that the theory on constrained control of nonlinear systems (be it the
nominal or robust case) is still in its infancy. It is the goal of this thesis to add a

contribution to this area.

1.2 Previous work

1.2.1 A general look

Open-loop optimal feedback, dating back to a 1963 seminal paper by Propoi, [108],
is a general approach for the construction of stabilizing feedback laws for systems
subject to input constraints and other nonlinearities. Originally, it was based on
the idea that in a sampled-data system, the control to be applied between sampling
times can be determined by solving a fixed horizon open-loop optimal control problem
with or without constraints. Over the years, open-loop optimal feedback has been
explored under the names of model predictive control (to mention a few references,
see [48, 49, 50, 51, 73, 94, 107]) and moving horizon control (see, e.g., [62, 68, 69, 71,
81, 82, 83, 84, 85, 95]).

The literature dealing with linear MPC presents an enormous amount of results on
issues such as stability, reference trajectory tracking and constant disturbance rejec-
tion capabilities of the resulting feedback systems, under the assumption that control
and state variables are unconstrained (see, e.g., [33]). Nominal stability results for
constrained linear systems can be found in [31, 101, 91, 109], for robust analysis see

[66, 122, 127).

As far as moving horizon control is concerned, it has not always been realized that
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a naive application of the strategy can lead to instability. The early literature dealt
with the stabilizing properties of moving horizon control laws based on open-loop
optimal control for finite horizon optimal control problems with quadratic criteria and
no input constraints. More recently, [66, 69, 71, 128] dealt with linear time-varying
(LTV) systems, [1, 2, 3, 62, 92, 91] dealt with nonlinear discrete-time systems and [28,
81, 82, 83, 84, 85] have established the stability properties of nonlinear, continuous-
time systems with moving horizon control in the presence of constraints. In [95]
Mayne and Michalska examined the robust stability of a moving horizon control,
although the analysis is somewhat involved and the resulting hybrid control law (a
nonlinear MPC controller is used to drive the states to a small neighborhood of the
origin and the control law switches over from MPC to a linear controller which is
then used to drive the states asymptotically to the origin) is hard to implement even
for simple examples. [83, 85] took into account the non-trivial time needed for the
computation of the open-loop control law even in the nominal case. [125] analyzed
the robust stability problem by discretizing the problem into multiple linear feedback

control systems.

Dealing with the nonlinear control and estimation problems simultaneously we can
find [87], although the stability analysis presented in that work is quite complicated

and incomplete.

An adaptive receding horizon control scheme for constrained nonlinear systems can be
found in [88] although we can clearly say that adaptive control theory for constrained
systems (linear or nonlinear) is still in its infancy and this is only a very preliminary

work in the area.
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1.2.2 MPC and its different implementations

The basic formulation of an MPC problem for a nonlinear plant of the form

#P(t) = fP(aP(t),ult),t), aP(to) =: zh (1.1)
y(t) = ¢ (), u(t),?) (1.2)
is the following:
min @[z (t), u(?)] (1.3)
subject to:
z(t) = f(z(t),u(t),t), withz(ty) = xo and t € [ty, to + PT] (1.4)
k(x(t),u(t),t) =0 (1.5)
h(z(t),u(t),t) >0 (1.6)
where:
® .= performance criterion (a positive definite function)

f, fP := model and plant dynamics, respectively

g = output model

k,h = equality and inequality time-varying mixed input/state nonlinear
constraints (in the most general case), respectively

zP(t) := state vector of the plant

y(t) := output vector

x(t) := state vector of the model



u(t) := control vector

P .= prediction horizon; an integer number which can be finite or infinite
2}, To:= initial condition of the plant and model states, respectively

to  := initial time of computation

T  := sampling time

PT .= prediction time

Throughout this thesis the symbol “:=” means that the left-hand side is defined to

[13 %

be equal to the right-hand side; the reverse holds for “=:".

The control sequence u(t) is computed for ¢ € [to, o + PT] but only u(t) restricted
to t € [to,t1 := to + T is actually applied to the real plant (1.1). At time ¢; a
measurement y(?;) is obtained, the states of the plant are estimated (in the case
where not all states can be directly measured at sampling times) and with this new
initial condition zy := Z(¢;) (where (t) represents the estimated states of the plant at
time ¢) a new optimization problem is solved at time ¢;. This is known as a receding

horizon implementation of the control law.

The plant (1.1) is linear if its dynamics is given by:

#P(t) = fP(2P(t), u(t),t) .= AP(t)zP(t) + BP(t)u(t) (1.7)
y(t) = CP(8)aP(t) + DP(H)u(t) (1.8)

If all the matrices AP(t), BP(t), C?(t) and DP(t) are constant, the linear system (1.7),
(1.8) is said to be time-invariant (LTI system); if one or more of them vary in time,

we have a linear time-variant (LTV) system.

Let the linear model used in the prediction be given by:



z(t) = f(z(t),u(?),t) == A(t)z(t) + B(t)u(t) (1.9)
If f(z(t),u(t),t) ({A(),B(t)}) differ from fP(aP(t),u(t),t) ({AP(¢), BP(t)}) for some
t € [to,00) we have a nonlinear (linear) robust control problem at hands.

In general, the performance criterion ® is given by:

afa(t) u®] = [ ot (O uldldt + olio,xlto).te,a(te)]  (110)

to

where the functions ¢ : R X R* x R™ — R and ¢ : R x R” x R x R* — R are positive

(semi-)definite functions of their arguments.

Most commonly, ¢ is a time-invariant quadratic function of its arguments, i.e.,

olt, z(1), u(t)] = #(t) Qu(t) + u(t) Rul(t)

with ), R positive definite matrices, and ¢ = 0.

Within the context of the preceding formulation, MPC algorithms can be divided
into the following main categories:

(1) Finite prediction horizon [P € (0, 00)] for:

e Linear plants [27, 35, 49];
e Nonlinear plants [19, 20, 39, 48];
(2) Infinite prediction horizon [P — oo] for:

e Linear plants [66, 109, 127];

e Nonlinear plants [1, 3, 92];
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(3) Finite prediction horizon with end constraints’ (also known as stability con-

straints) for:

e Linear plants [13, 23, 32, 52, 69, 101, 122, 123, 127];

e Nonlinear plants [1, 2, 28, 62, 63, 81, 82, 83, 84, 85, 91, 95, 96, 124].

In the first category a simple finite horizon objective function is employed which
does not, per se, guarantee stability. This means that closed-loop stability cannot be
assumed simply because the on-line optimization finds a solution. The issue of closed-
loop stability is complicated by two facts: first, there is always uncertainty associated
with the model used in the prediction; second, the presence of constraints in the
optimization problem results in a nonlinear closed-loop system even if the model and
plant dynamics are linear. In [22] the authors underlined the poor stability properties

of finite prediction horizon schemes.

In the second category, [92, 109] propose a control algorithm which minimizes an
infinite horizon objective function subject to the constraint that the unstable modes
of the plant are set to zero at some finite time. This kind of control algorithm has
desirable stability properties in the nominal case but it cannot be extended in a
straightforward manner to plants with uncertainty. In [66], the authors propose a
technique which deals explicitly with model/plant uncertainty in LTV plants. The
goal in this technique is to design, at each time step, a state feedback control law
which minimizes a “worst-case” infinite horizon objective function, subject to con-
straints on the control inputs and plant outputs. The problem of minimizing an upper
bound on the “worst-case” objective function subject to constraints is reduced to a
convex optimization involving linear matrix inequalities (LMIs). It is shown that the
feasible receding horizon state feedback control design robustly stabilizes the set of
uncertain plants. In [1, 3], discrete-time nonlinear systems are considered and global
stability of the infinite prediction horizon scheme is shown under certain stabilizability

assumptions.

!By end constraint we mean any state constraint imposed at the end of the prediction horizon.
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It should be pointed out that one of the great restrictions of infinite prediction horizon

schemes (even with finite control horizons) is naturally computational.

The third category is the one with most of the desirable stability and robustness
characteristics. In the nonlinear context, MPC for discrete-time systems with mixed
state/control constraints is discussed in an important paper by Keerthi and Gilbert
[62]. The control action is determined by minimizing, at each k™ time step, a non-
linear cost function over the horizon [k, k + P;] (here the horizon P is not constant,
instead it is included as a decision variable in the optimization together with the con-
trol and represented by P) subject to the mixed state/control constraints and the
terminal equality constraint z(k + P|k) = 0 and setting the current control equal to
the first element of the minimizing sequence. Keerthi and Gilbert show that this con-
trol is, under certain conditions, stabilizing. The finite horizon approach for nonlinear
discrete-time systems proposed in [1, 2] is very similar to this found in [62], the only
apparent difference being that certain observability assumptions on the system can
be relaxed because the performance criterion is defined in terms of states and inputs
(instead of outputs and inputs as in [62]). In [91] the same end equality constraint is
used to show stability using Lyapunov arguments. The authors show in that paper
that systems which are feedback linearizable can be asymptotically stabilized with
MPC. They also find discrete-time systems which cannot be stabilized with contin-
uous feedback and they show that MPC generates a discontinuous feedback which

stabilizes such systems.

Model predictive control for nonlinear time-invariant continuous-time systems is in-
troduced in [28] but Mayne and Michalska [81, 82, 83, 84, 85] appear to provide the
first rigorous analysis. Here the value function for the (open-loop) finite horizon con-
trol problem, which is continuously solved, is employed as a Lyapunov function for
the closed-loop system. In order to apply standard Lyapunov theory, fairly strong as-
sumptions (including controllability of both the nonlinear system and its linearization
about every trajectory) are made to establish continuous differentiability of the value

function. The latter property is relaxed in [85] where only Lipschitz continuity of the
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value function is required, allowing for less strict assumptions on the behavior of the
linearized system. In each case, the finite horizon control requires exact solution, at
each time instant k, of a finite horizon nonlinear control problem with the terminal

equality constraint z(k + Pylk) = 0.

In [82] a relaxed version of the stability constraint for continuous-time nonlinear
systems is presented, i.e., instead of z(k+ Py|k) = 0, the authors use z(k+ Pilk) € W
(where W is some neighborhood of the origin). Since the terminal constraint has been
relaxed, the MPC strategy loses its stabilizing properties inside W. To compensate
for this effect, a linear, locally stabilizing controller designed for the linearized system

is used inside W. The resulting “hybrid” controller is shown to be globally stabilizing.

One common factor in the stability proofs of all MPC schemes mentioned here is
that the questions related to feasibility are eluded through the assumption that the
constrained control problem always remains solvable. In [113], it is argued that the
issue of feasibility is in fact central to the question of stability and that, therefore,
the feasibility assumption is inappropriate. In that work, a technique for systematic
handling of infeasibilities is proposed which is such that its use allows stability guar-
antees obtained under the assumptions of feasibility to be carried over to the usual
case when feasibility cannot be guaranteed (details of this technique are not found
in [113] but the authors claim that they will be published in the Ph.D. thesis of P.
Scokaert).

A rather comprehensive review of all these methods can be found in [70].
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1.3 Thesis overview

1.3.1 General contents

In chapter 2, we give a brief tutorial review of the state space formulation of MPC
for both linear and nonlinear systems. There we concentrate on the stability results
found in the literature for the three main classes of linear/nonlinear constrained MPC

controllers:

(1) Finite prediction horizon MPC.
(2) Infinite prediction horizon MPC.

(3) Finite prediction horizon MPC with (stabilizing) end constraints.

We see that for class (1) there are no stability guarantees. For class (2) the controller
is stabilizing if the optimization is feasible. And, finally, for class (3), even though
the prediction horizon is finite, the end constraints add stability (and sometimes

robustness) to the controller.

In chapter 3, we introduce our so-called Contractive MPC scheme. Contractive MPC
is a finite horizon nonlinear MPC algorithm which is stabilized through the addition
of an end constraint called contractive constraint. In that chapter, we introduce the
formulation, implementation and basic philosophy of the contractive MPC scheme and
discuss its stability properties in the nominal case and in the absence of disturbances.
The results show that the contractive constraint exponentially stabilizes the closed-
loop system when model uncertainty and disturbances are absent. We also discuss
the conditions under which the chosen standard quadratic objective function is a

Lyapunov function for the closed-loop system. Finally, four examples are introduced:

(1) A nonholonomic system (the model of a car)
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(2) A fluidized catalytic cracking unit (FCCU)

(3) A 2-degree of freedom robot

(4) A continuous stirred tank reactor (CSTR) + flash unit

We apply our contractive MPC scheme to these four examples which are of very dif-
ferent natures and present varied levels and sources of difficulties (that are discussed
there) and the obtained simulation results are compared with a standard finite pre-
diction horizon nonlinear MPC algorithm. Moreover, in the case of the car, we also
present a comparison of our results with some analytical control design techniques

derived especially for nonholonomic systems.

In chapter 4, we examine how the stability results are modified when the system is
subjected to an asymptotically decaying disturbance of bounded energy. Our results
demonstrate that the closed-loop system becomes uniformly asymptotically stable in
the presence of this class of disturbances (thus, the exponential stability properties of
contractive MPC are weakened to uniform asymptotic stability). We also show that
this kind of disturbance can be caused by introduction of an asymptotically conver-
gent observer into the closed-loop for purposes of state estimation. We then derive
sufficient conditions under which the association of an exponentially stable controller
(such as contractive MPC) with an asymptotically convergent observer, generates an
asymptotically stable closed-loop system. Furthermore, we design such an observer
for a continuous-time system with discrete observations and prove its asymptotic con-
vergence properties. The results reveal that if the outputs are measured continuously,
then this nonlinear observer has its convergence properties strengthened as it becomes

exponentially stabilizing.

At the end of that chapter, we perform simulations for the so-called van der Vusse
reactor, a benchmark CSTR. system. We study the closed-loop response under expo-
nentially decaying disturbances and the results are compared with the ones obtained

with a standard NLMPC algorithm. Then we design a discrete version of the nonlin-
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ear state estimator proposed in that chapter (the reason we use this discrete version
of the observer instead of the original mixed continuous/discrete one is to reduce the
differential Riccati equation to an algebraic Riccati equation) for the example men-
tioned above and examine the behavior of the closed-loop system generated by the

resulting output feedback controller.

In chapter 5, we first look into the state feedback control problem when persistent,
bounded and non-additive disturbances affect the nonlinear dynamics of the system.
In the nonlinear context, the problem posed by disturbances of this kind is equiva-
lent to having parameter uncertainty only (i.e., model and plant are matched in the
nonlinear structure, only some - or all - parameters are unknown). We demonstrate
that the most which can be guaranteed under non-additive bounded disturbances or
constant parameter mismatch, is that the states are driven to a control invariant set
whose size is proportional to the magnitude of the disturbances or parameter devia-
tion. Then, we examine how these results change when the states are also unknown
(which constitutes the output feedback case) if the parameters are unknown but con-
stant. We use a moving horizon-based least-squares estimator for state estimation.
Additionally, we study in that chapter how the results are modified if both states and
parameters are unknown, the parameters are time-varying, the system is subjected
to additive disturbances and the moving horizon least-squares estimation procedure

seeks to estimate states, disturbances and parameters.

The example used to test the robust state and output feedback contractive MPC
controllers proposed in chapter 5 is a biochemical reactor with substrate inhibition.
There we study how the closed-loop behaves when there is a constant parameter
deviation between the model used for prediction, computation of the contractive

constraint and estimation and the real nonlinear system.

The MPC schemes in chapters 3, 4 and 5 involve the solution of a nonlinear program-
ming problem at each time step to find the optimal (or, at least, feasible) control

sequence. Nonlinear programming is known to be the most difficult of the smooth
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optimization problems. Indeed there is no general agreement on the best approach to
be used for its solution and much research is still to be done. Due to the difficulties
inherent to solving nonlinear programming problems and since MPC requires the opti-
mal (feasible) solution to be computed on-line, we propose in chapter 6 an alternative
implementation which guarantees that the problem can be solved in a finite number
of steps. It is well-known that quadratic programming (QP) problems satisfy this
requirement. Thus, we show in that chapter how to pose the optimization problem as
a QP by means of using a linear approximation of the original nonlinear system in the
prediction step of the MPC control algorithm and by implementing the contractive
constraint in an appropriate way. We propose three different ways of implementation
of the contractive constraint, namely, the “approximate (or conservative) approach”,
the “penalty function approach” and the “approach based on sensitivity analysis of
the QP”. We also show how to pose the problem as a QP by appropriately defining

the Hessian matrix, the gradient vector and the constraint matrices.

Still in chapter 6, we describe the formulation, implementation and basic philosophy
of this computationally simplified but harder to analyze controller. The reason why
the analysis of the contractive MPC controller, under the local linear approximation
of the original nonlinear system, becomes more involved, comes from the fact that the
linearization introduces a structural mismatch between the plant and the model used
in the control computations (it is basically a linear/nonlinear mismatch, if no other
types of uncertainties are considered). Therefore, the controller must be robust with
respect to this mismatch (i.e., the controller must stabilize the states of the plant even
though nonlinearities are ignored in the prediction). Under certain assumptions on
this model/plant mismatch (a growth condition on the nonlinear terms of the model),
we show that the states of the plant can be driven to a control invariant set whose
size depends on how “strongly nonlinear” the system is. We also include bounded

disturbances and parameter mismatch in this analysis.

Finally, at the end of chapter 6, we present simulation results for this more computa-

tionally efficient contractive MPC algorithm applied to the 2-degree of freedom robot,
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the nonholonomic system/car, the FCCU, the CSTR + flash unit (all of these intro-
duced in chapter 3) and the van der Vusse reactor(introduced in chapter 4) and we
compare the results with the ones previously obtained for when the nonlinear system

itself is used in the prediction step of the MPC control algorithm.

1.3.2 List of theorems in the thesis
Chapter 3 State Feedback Contractive NLMPC: Nominal Case

Theorem 3.1 Exponential stability of the closed-loop system.

Theorem 3.2 Conditions for the objective function to be a Lyapunov function

for the closed-loop (not necessary for exponential stability).
Chapter 4 Output Feedback Contractive NLMPC: Nominal Case

Theorem 4.1 Uniform asymptotic stability of the closed-loop system in the
presence of asymptotically decaying disturbances in the state feedback

case.

Theorem 4.2 Feasibility condition (sufficient condition on the magnitude of
the asymptotically decaying disturbances so that feasibility can be as-

sured).

We then discuss how these asymptotically decaying additive disturbances
can be caused, for example, by introduction of an asymptotically stable
state estimator into the closed-loop. We propose a mixed continuous/discrete-

time nonlinear observer and examine its stability properties.

Theorem 4.3 Computation of a stability region for the nonlinear observer
proposed in this chapter. The observer is shown to provide asymptotically
convergent state estimates for a certain set of initial state estimation errors
and for systems with “not very strongly nonlinear” dynamic and output

maps.
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Theorem 4.4 Closed-loop stability in the output feedback case. The associa-
tion of the asymptotically convergent nonlinear observer proposed in this
chapter with the exponentially stabilizing contractive MPC controller is

shown to originate an asymptotically stable closed-loop.
Chapter 5 Robust Output Feedback Contractive NLMPC: Parameter Uncertainty

Theorem 5.1 Computation of a bound on the difference between model and
plant states at the end of prediction horizons, in the presence of parameter

uncertainty and in the state feedback case.

Theorem 5.2 Stabilizing properties of the state feedback controller in the pres-

ence of parameter uncertainty.

Theorem 5.3 Feasibility condition (sufficient condition on the magnitude of

the parameter uncertainty so that feasibility can be assured).

Theorem 5.6 Computation of a bound on the difference between true and esti-
mated states in the presence of parameter uncertainty. The state estimator

is a moving horizon-based least squares estimation (LSE) procedure.

Theorem 5.7 Stabilizing properties of contractive MPC in the presence of

parameter uncertainty and in the output feedback case.

Theorem 5.8 Feasibility condition (sufficient condition on the magnitude of
the parameter uncertainty so that feasibility can be assured in the presence

of state estimation errors).

Theorem 5.9 Using the LSE moving horizon-based procedure for both state
and parameter estimation, we compute a bound on the difference between
true and estimated “augmented” states (i.e., newly defined states which
comprise the states and parameters of the plant) at the beginning of the

estimation window.
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Chapter 6 Contractive NLMPC reformulated as a Quadratic Programming (QP)
Problem

Here, local linear approximations of the nonlinear system are used for predic-
tion and in the computation of the contractive constraint, in order to reduce the
optimization to a simple QP problem. Thus, we proceed to show how the stabil-
ity properties of the closed-loop are modified when this structural model/plant
(linear/nonlinear) mismatch is introduced. The presence of disturbances and

parameter uncertainty is also taken into consideration in our results.

Theorem 6.2 Computation of a bound on the difference between the states
of the nonlinear system and of its local linearization at the beginning of

prediction horizons.

Theorem 6.3 Feasibility condition (sufficient condition on the structural
model/plant mismatch and on the magnitude of possible parameter un-

certainty and disturbances, so that feasibility can be assured).

Theorem 6.4 Derivation of finite bounds on the norm of the continuous state
trajectory generated by the controller for all time ¢ > 0, demonstrating its

well-posedness.

Theorem 6.5 Feasibility conditions for systems with stable Jacobian in the
whole state space (derivation of a lower bound on the contractive parameter
so that feasibility can be assured) in the absence of parameter uncertainty

or disturbances.

Theorem 6.6 Stability and feasibility properties of the output feedback scheme
when the controller has to deal with the mismatch between the linear sys-
tem used in the control computations and the real nonlinear system, and
the nonlinear observer is asymptotically convergent. Parameter uncer-

tainty and disturbances are not considered here.



19

Chapter 2 MPC: An Overview

2.1 Implementation aspects

A tutorial review of the state space formulation of Model Predictive Control for both

linear and nonlinear systems is presented in this chapter.

The various implementations of MPC are identical in their global structure but differ

in the details. The general structure of MPC schemes is shown in figure 2.1.

Reference

l

Optimizer - Plant

L ! Observer

o

Figure 2.1: Inherent structure in all MPC schemes.

The selected observer uses the input and output information (u and y, respectively)
and computes the state estimate . With this estimate, one can use an optimization
scheme to predict the trajectory of the controlled variables y over some prediction (or
output) horizon P with the manipulated variables u changed over some control (or

input) horizon M (M < P). This prediction step is represented in figure 2.2.

At time step k, the optimizer is used to compute the present and future manipulated

variable moves u(klk),...,u(k + M — 1|k) such that the predicted outputs follow
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Figure 2.2: Optimization problem at time k.

the selected reference trajectory in a satisfactory manner. The optimizer takes into
account the input and output constraints which may exist, by incorporating them
directly into the optimization. For linear systems, if a linear or quadratic objective
function is considered, the resulting optimization is a linear or a quadratic program-
ming problem, respectively. For nonlinear systems, independent of the chosen perfor-
mance criterion, the optimization becomes a nonlinear programming problem which

is non-convex in the majority of cases.

Only u(k|k), the first control move of the sequence, is implemented on the real plant
from time step k to k+1. At time step k+1 the measurement y(k+1) is used together
with u(k|k) by the observer to compute the new estimate Z(k + 1), the horizons M
and P are shifted ahead by one step and a new optimization problem is solved at time
step k+1 with the new initial condition Z(k+1). This procedure results in a so-called

moving horizon or receding horizon type of strategy. For computational reasons, the
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values of the horizons M and P are generally finite. However, it has been observed
that it is very hard to provide stability guarantees for an MPC scheme with finite
output horizon P (see [22]). Stability results can be obtained when P is infinite,
keeping M finite. It has been shown that such selection of controller parameters
makes it possible to guarantee certain stability properties of the closed-loop system

while keeping the computation effort reasonable in most cases.

2.2 Basic formulation

A very general and not very detailed formulation of the prediction step in MPC
algorithms was given in chapter 1. Here we will go into more details regarding the

shape of the objective function, prediction models, state estimators and constraints.

2.2.1 Prediction models
(1) Continuous-Time Systems

Linear: In its most general form, a linear prediction model is given by:

z(t) = A(@t)z(t) + Bt)u(t) + E(t); z(0) =: zo given (2.1)
y(t) = CO)z(t) + D(t)u(t) (2.2)

where z(t) € R™ denotes the state at time ¢, u(t) € R the manipulated
variables (or inputs) and y(¢) € ®? the controlled variables (or outputs).
Here we have not included the disturbance or the noise that the actual

plant may be subjected to.

In most cases, the independent term FE(t) is not included. If any of

A(t), B(t),C(t) or D(t) are functions of time the linear system is called
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time-varying (LTV), if they are all constant we have a linear time-invariant

(LTT) system.

Nonlinear:

z(t) = f(z(t),u(t),t); z(0) = o given (2.3)

In most cases, the nonlinear system is time-invariant, that is, f(.) : ®" x
R™ x R — R™ and g(.) : R x R™ x R — NP are not explicit functions
of time. Usually, f and g are assumed to be continuously differentiable

functions.
(2) Discrete-Time Systems

Linear:

z(k+1) = ®(k)z(k)+T(k)u(k) +n(k); z(0),u(0) given (2.5)
y(k) = C(k)z(k) + D(k)u(k) (2.6)

The matrix ®(k) is known as state transition matriz.

When the continuous-time linear system (2.1) is time-invariant, the dis-
crete form (2.5) can be easily obtained from that system by having ®(k),
I'(k),n(k) given by:

®(k) = AT (2.7)
T(k) = /OTeA(T’t)Bdt (2.8)
(k) = /OTeA(T“t)Edt (2.9)

where T is the sampling time.
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Nonlinear:

z(k+1) = F(z(k),u(k),k); z(0),u(0) given (2.10)
y(k) = G(x(k),u(k),k) (2.11)

In general, it is not possible to obtain a closed form solution of a general
continuous-time nonlinear system as given by (2.3) (the solution has to be
computed numerically), which means that F' and G are not know explicitly

for most systems modeled originally in continuous-time form.

2.2.2 State estimators

In general, state estimators have the following form:

Continuous-Time Systems:

In the case where f(.) is continuous (discrete) and linear, either because the plant is
linear or because we are using a linearized estimator for a nonlinear plant, K (t) (or

K(k)) is determined from the solution of a differential (algebraic) Riccati equation.
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2.2.3 Objective function

Various objective functions can be chosen depending on one’s goal in using MPC.

The most common one applies the 2—norm both spatially and temporally.

For continuous-time systems the following objective function is commonly used:

Viim Viwa = [ a) I+ 1) uelo) 3]t (2.16)

where || . || denotes the Euclidean norm of a vector and || z [|p:= m, with
P € R positive definite, is the weighted Euclidean norm of z € ®”. || . || also
denotes the Euclidean norm of a matrix. More generally, || . ||,, p > 1, denotes the
Holder or p-norm of a vector or matrix (note that when p = 2 the p—norm becomes

the Euclidean norm) and is given by:

Izl = (@l +...+|z.P)7, VzeR", p>1 (2.17)

|All, == sup I Az |,

. VA ¢ jgmxn (2.18)
w0, zewn || T ||p

where |z;| denotes the absolute value of 2; € R, Vi=1,...,n.

If we make p = 2 in definition (2.18) and A € R™™ ( C™*", in the general case

of complex matrices and vectors) we have the so-called induced (matriz) norm of A

corresponding to the Euclidean vector norm || . || on ®" (C"):
Az || ‘
al= s L0 g jary= sup Az (219)
a0, zern (2] = Jall<1

The p-norms satisfy certain important properties which will be used here and that

can be found in most books on matrix computations and numerical analysis (see, e.g.,
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(54, 58]).

Besides the Euclidean and Hdlder norms of vector and matrices, we will define ||| . ||
to be the induced norm on tensors. Let || . || be a given norm on R" (C™). Then, for

each tensor T € R™*™*" (T € C™ ") the quantity ||T'||| defined by

~ y,TIE 1~ 7~
W= s I yTe= s T
sy, zyerr Y2l je=pui=1 lell<t, llyli<1 |
(2.20)

is called the induced (tensor) norm of T corresponding to the vector norm | . ||.

The notation used in (2.16) is the following: zj are the states of the system at time
t; (in the output feedback case we would have Zj, that is, the estimate of zx); to
keep coherent with the discrete case, P is the output or prediction horizon (which
is a decision variable, together with the control, in some algorithms and therefore
we are allowing it to be a function of k); T is the sampling time; z;(¢) represents
the state trajectory of the model for all ¢ € [ty, tx + P;T| given the initial condition
Ty, at tg; ug(t) is the control trajectory to be computed for the same time interval
and initial condition; ) and R are positive definite matrices and they are controller

tuning parameters (known as weights in the objective function).

For simplified computation, most implementations of MPC generate a sequence of M!
discontinuous control moves, {u(k|k),...,u(k + M — 1]k)}, instead of a continuous
trajectory ug(t). In other words, these controllers require that ug(t) = u(k+il|k) for all
t€ [ty +iT,ty+ (i+1)T) and ¢ € [0, M — 1], and ux(t) = 0 for t € [ty + MT, t, + BT

In this case, the objective function can be rewritten as:

IIn the implementations where the output horizon is a decision variable there is no difference
between input and output horizons.
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tit+PT . M-1 ,
Vi 1= V(tg, zx) := / o, (t) Qur(t)dt + T > ulk +ilk) Ru(k +ilk) (2.21)
i=0

tg

If the system is linear or has a closed form solution it is possible to express the states
z1(t) and, consequently, the objective function, as an explicit function of the control

moves.

From this point forward we will consider P as a pre-specified tuning parameter, con-
stant throughout the computations, in order to simplify the notation (unless otherwise

necessary to make the distinction).

For discrete-time systems the most commonly used objective function is the quadratic

one given by:

P M-1
Vi = Zg:(k+zlk) Qu(k +ilk) + > u(k +ilk) Ru(k + ilk) +
1=0

+ Af Au(k +i)k) SAu(k + i|k) (2.22)

=0

where:
S is a positive definite matrix
Au(klk) := u(klk) — u(k — 1]k — 1)
Au(k +ilk) == u(k + k) —u(k +i—1|k), i € [1, M — 1]

In general, one can choose the weights @, R and S to be time-varying (i.e. functions

of k). For simplicity they are assumed to be time-invariant here.

Other popular but non-differentiable choices for the objective function are the 1 — 1
norm, the oo — 1 norm, the co — oo norm and the 1 — co norm (where the first

is the spatial norm and the second the temporal norm). A good description of the
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advantages of using each of these, as well as some other special objective functions

can be found in [26].

2.2.4 Constraints

The optimization or prediction step in MPC can be subject to general mixed state/control

constraints of the form:

Equality Constraints:
k(z(t),u(t),t) =0 (2.23)

Inequality Constraints:

h{z(t),u(t),t) >0 (2.24)

Inequality constraints are found much more often than equality constraints. In a
nonlinear setting equality constraints can never be satisfied in a finite number of

algorithm iterations and are therefore avoided.

In most MPC problem formulations, the only two types of constraints considered
are input and state (in particular, output) constraints. The constraints on the input
variables are in general hard constraints which impose lower and upper bounds on

these variables, that is,

u(t) eU .= {u e R™: upmin <u < Upgz}, VEE[0,00) (2.25)

To make the control problem meaningful &/ must contain the origin.

Other very commonly used constraints are bounds on the rate of change of the ma-

nipulated variables given by:
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|Au;(k+ilk)] < AUmggj, Vi=0,...,M—=1, k>0, with Aty ; >0, Vi=1,....,m
(2.26)

where Au;(k + ilk), AUmezj, § = 1,...,m, are the components of the vectors
Au(k + ilk), Aumaz, respectively. We will express these constraints in the follow-

ing vector form:

[Au(k +i|k)| < AUmag, Vi=0,...,.M =1, k>0, Atiyyez >0 (2.27)

where we have committed some abuse of notation since Au(k + i|k) is a vector and
we have defined |.| to be a scalar norm. The reason for this notation is that we
do not want the norm used here (which is linear in the components of the vectors

Au(k +i)k)) to be confused with the 2—norm.

The output constraints are in general of the form:

Ymin <Yk +1ik) < Ymaz, Vi=1,...,P, k>0 (2.28)

or in the “soft” format:

Ymin — € S Yk + k) < Ymaz +6, Vi=1,...,P, k>0 (2.29)

where ¢ is an additional decision variable whose weighted quadratic norm is added
to the objective function. This formulation allows the bounds ¥, and Y., to be
violated by at most € whenever the problem with hard constraints is not feasible. The
norm of € is added to the objective function so as to minimize the violation of these

bounds.
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In addition to input and output constraints, the optimization may be subject to
physical constraints on the state variables (e.g., mole fractions have to lie between 0
and 1, temperatures in Kelvin degrees have to be always positive, concentrations are
always non-negative, etc). Other useful state constraints are constraints imposed at
the end of the (finite) prediction horizon known as end constraints. Some of these
constraints are used, for example, to guarantee stability of the closed-loop as we will

see later.
Two well-known “stabilizing” end constraints are:
Equality End Constraint:
z(k+ Plk) =0, Vk>0 (2.30)
Inequality End Constraint:
z(k+ Plk) e W, Vk>0 (2.31)

where W is some compact and convex “small” neighborhood of the origin.

2.3 State of the art on stability analysis of MPC:

main results

2.3.1 MPC for constrained linear plants: nominal case

For constrained linear systems, stability has been proven in two different cases: by
use of infinite prediction horizon [66, 109, 127] or finite prediction horizon with end
constraint [13, 23, 32, 52, 69, 101, 122, 123, 127]. For the still very popular MPC

formulation with finite prediction horizon no stability properties can be assured in
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the presence of constraints. Now we will briefly describe the stability results in the

cases of infinite prediction horizon and finite prediction horizon with end constraints.

Infinite prediction horizon MPC

Infinite horizon MPC with mixed state/control constraints for completely known
discrete-time LTI systems (i.e., no model/plant uncertainty) has been explored in

[109, 127].

Here we will reproduce the main results found in [109] due to their simplicity and

importance. In that work, an objective function of the type

o9}

2 [(k + ilk) Qz(k + i|k) + u(k + ilk) Ru(k + i|k)] (2.32)

is considered with u(k + ilk) = 0 for ¢« > M, where M is the finite control horizon.
Thus, even though the problem has infinite prediction horizon, the number of decision

variables is kept finite and the optimization can be solved on line as a quadratic

program (QP).

The plants considered are discrete-time LTI of the following form:

z(k+ i+ 1|k) = Az(k + ilk) + Bu(k + ilk), i€ [0,00), >0 (2.33)

In the absence of constraints we have the following results:

Theorem 2.1 (Open-Loop Stable Plants) For stable A and M > 1, the receding

horizon controller with objective function (2.32), is stabilizing.

Theorem 2.2 (Open-Loop Unstable Plants) For stabilizable {A, B} with r un-
stable modes and M > r, the receding horizon controller with objective function (2.32),

18 stabilizing.
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When input and state constraints of the kind

Du(k +ilk)

IA

d, i€[0,00), k>0 (2.34)

Ha(k+ilk) < h, i€[l,00), k>0 (2.35)

are considered, the stability results are as follows:

Theorem 2.3 (Open-Loop Stable Plants) For stable plants, the input constraints
are feasible independent of {A, B}, zq := x(0|0) and M. These input constraints can

obviously be converted into a finite set because of the form of the input,

Du(k+ilk) <d, i€[0,M—1], k>0 (2.36)

The state constraints may be infeasible, but they can be converted into a feasible set

by removing them for small k,

Holk+ilk) <h, k=kik+1,... (2.37)
with ki given by:
k1 := max{In( fimin )/In(Amaz), 0} (2.38)
v THTE@) oo 770 |

in which K (T) is the condition number of T (where A =TJT™! and J is the Jordan
form of A), hpen := min; h; and Apee = max; |A(A)|. Thus, for stable A and
M > 1, z, = 0 is an asymptotically stable solution of the closed-loop receding horizon

controller with objective function (2.32) and feasible constraints (2.36), (2.37).
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Theorem 2.4 (Open-Loop Unstable Plants) For stabilizable {A, B} with r un-
stable modes and M > r, x = 0 is an asymptotically stable solution of the closed-loop

receding horizon controller for the feasible quadratic program represented by equations

(2.82), (2.36), (2.37) and the additional constraints

g (k + M|k) =0 (2.39)

where z* are the unstable modes of the system. This constraint establishes that the
unstable modes of the system are brought to zero in M steps in the optimization
(although they only approach 0 asymptotically in the moving horizon implementation

of MPC) and the stable modes are left to approach 0 asymptotically.

In constraint (2.37) ky is now given by:

hmin )
ki =M +ma:c{ln(” HTTT11 26+ M8 ”)/ln()\max),O} (2.40)

where x* are the stable modes of the system.

Finite prediction horizon MPC with end constraints

In order to prove stability for the finite horizon MPC formulation, some additional
constraints may have to be introduced. Several researchers ([13, 32, 62, 69, 101], etc)
have proposed explicitly to include an additional constraint called “end constraint”.
The idea here is to force the state at the end of the prediction horizon to zero, i.e.,

z(k + PJk) = 0,Vk > 0.

This idea seems to have been originated by Kwon and Pearson [69] for the uncon-
strained case. Keerthi and Gilbert [62] proved that closed-loop stability can be guar-

anteed with this type of controller in the presence of input and output constraints
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provided that the resulting optimization problem is feasible. One of the require-
ments for the end constraint to be feasible is that the system described by (2.33) be

controllable.

One can actually show that with state feedback, feasibility of the optimization prob-
lem at k& = 0 implies feasibility for all future sampling times. However, this may
not hold true any longer when the state has to be estimated and/or when there are

disturbances present.

Other types of end constraints have been proposed in [122, 123, 127]. Instead of
forcing the states to zero at the end of the prediction horizon, they require the states
to “shrink” at some future time step k+ L (L < P) with respect to the states at time
step k. This “shrinkage” condition is expressed as an inequality end constraint which
has been shown in these works to guarantee asymptotic stability of the closed-loop

system.

2.3.2 MPC for constrained linear plants: robust case

Robust stability results for discrete-time LTI systems are presented in [66, 101, 122,
127].

Infinite prediction horizon MPC

In [66], an MPC-based technique for the control of LTV plants with uncertainties
is proposed. This technique is motivated by recent developments in the theory and
application (to control problems) of optimization involving linear matrix inequalities
(LMIs). The resulting LMI-based optimization to be solved at each time step can be
solved in polynomial time and can therefore be implemented on line. Thus, from the
computational point of view, we need to solve an LMI problem instead of a linear

or quadratic programming problem, which normally result from classical linear MPC
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implementations. The use of an infinite prediction horizon formulation guarantees

4

stability and since the minimization is performed over the “worst-case” objective

function, the resulting algorithm enjoys certain desirable robustness properties.

Finite prediction horizon MPC with end constraints

In [101], a preliminary investigation of the robustness properties of the MPC algo-
rithm with equality end constraints on the outputs for LTI plants was performed by

exploring its strict relations with infinite horizon predictive control.

Since the robust stability results found in [122, 127] are of very similar nature, we

have chosen to present here some of the main results in the latter work.

Once again, consider the discrete-time LTI system (2.33) and let us denote the nom-
inal model by (Ao, By) and the real plant by (A,, Bp). The actual plant (A,, B,) is
assumed to lie in some known completely arbitrary set, i.e., (4,, B,) € (A,B). The
goal is to design an MPC controller such that closed-loop stability is guaranteed for

all plants in the set.

The proposed controller structure is given by:

Step 0: Input the data.
Step 1: Set kg = k and i = 1, where k£ denotes the current time step.
Step 2: The current control move u(k) equals the first element u(k|k) of the sequence

{u(klk),...,u(k+M—1]k)} which is the minimizer of the optimization problem

) & ViAo, B 2.41
k u(kik),...,u(k:-:r]\l/j_Ilk),€(k) (Ao, Bo) ( )
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subject to
([ w(k+jk) e U j=01,...,M~-1
|Au(k + k)| < Atmas j=0,1,..., M —1 2.42)
Au(k+ jlk) =0 j=M,M+1,...,00 '
| z(k +jlk) € Xewy j=0,1,...,00
and the robust stability constraint
sup || Afz(ko) + CrU (ko) [|p< A | z(ko) ||p, A €10,1) (2.43)

(A,B)

where the idea of “softening” (relaxing) state constraints with the extra decision
variable e(k) has been introduced. X.u) is the time-varying set within which the
states are required to remain between k and k + 1. The input constraint set U

has been defined in (2.25).

In this problem formulation, we have the following definitions:

Ve(A,B) = > |k +ilk) g +3_[ll w(k +ilk) [[7 + | Au(k +ilk) [I5] +

g1 1=0
+ etk 15, (2.44)
and
Ch, = [AL"IB Al-2p . B]
i u (ko) -

u(ko +4—1lko +i—1)

| u(k0+L— llk()—i-i—l) |
P Q. > 0 are weighting matrices

L := location of placement of stability constraint



36
Step 3: Set k =k+1. If ¢ = L or || (ko + 1) ||[p< A || z(ko) ||p, go to Step 1;
otherwise, set ¢ = ¢+ 1 and go to Step 2.

This robust controller optimizes nominal performance subject to a robust stability
constraint. The stability result for this robust MPC scheme can be summarized in

the following lemma and theorem:

Lemma 2.1 (Feasibility Condition) Assume that A is stable for all A € A. Then
there exist an integer L and a constant \*(L, P) € [0,1) such that the optimization
problem in Step 2 is feasible for all X € [M\*(L, P),1).

Theorem 2.5 (Robust State Feedback) Assume that A is stable, then for all X €
[A*(L, ]5), 1), the closed-loop system with state feedback is globally asymptotically stable
with the given robust controller for all (A, B) € (A, B).

Here we have not gone into the notational details of the original work and the inter-
ested reader is encouraged to refer to [127] or [128] for better understanding of the
previously described robust MPC algorithm. The main idea, however, is that the
states of all the models in the set (A, B) (which include the real plant (A,, B,)) are
“contracted” by a factor of A € [0,1) with respect to the measured states at time
step kg. The robust stability constraint remains the same for a particular kg while 2
varies from 1 to L. When i = L, the stability constraint is redefined with respect to

the states measured at ko + L, z(ko + L), and imposed at ko + 2L.

This is one of the robust stability results in [128]. Extensions to the output feedback

case, e.g., can be found in this work but will not be mentioned here for lack of space.

2.3.3 MPC for constrained nonlinear plants: nominal case

Nominal stability results for constrained nonlinear systems can be found in [1, 2, 3,

62, 92] (discrete-time) and in [28, 63, 82] (continuous-time). In both cases, the basic
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suggested MPC algorithm is the same with finite prediction horizon and equality end
constraint z(k + Px|k) = 0, Vk > 0. Note that the prediction horizon is allowed to be
time-varying (i.e., P is a function of k). This type of MPC implementation is known
as Variable Horizon MPC. Now since the plant is nonlinear the optimization problem

is in general non-convex and one can expect at best to find a local optimal solution.

Let P(k, z) denote the optimization problem at sampling time & with initial condition

xr. The problem formulation at time step & for the continuous-time case is given by:

’P(k,.'L'k) : min{V(tk,xk)]uk(t) € L{, Pk € [O, Pmax],ﬂf(ik+1 =1, + PkT; ZEk,tk) = 0}
(2.45)

With certain controllability and observability assumptions and Lipschitz continuity

of the system dynamics and of the output map, the following results hold:

e for all z, € X, lim; o0 zg2i(k, zg) = 0;

e z = 0 is the only equilibrium state of the system with the computed control law

and it is uniformly asymptotically stable,

where the set X' is defined by:

X = {zy : P(k, xx) has an admissible sequence for which V := V (¢, zx) is finite}
(2.46)

Another form of guaranteeing stability for a constrained nonlinear system has been
presented in [83, 95] and it consists of imposing an inequality end constraint of the
type z(k+ Px|k) € W,, where W, is a small neighborhood of the origin whose “size” is
specified by the parameter «. In this case, the controller loses its stabilizing properties
within W,. In order to compensate for that and to guarantee asymptotic stability to
the origin, a stabilizing linear control law must be used inside W,. Thus, once the

states of the system lie inside the region W, one must switch over from MPC to a
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linear robustly asymptotically stabilizing controller. This kind of implementation of
MPC is known as hybrid or dual-mode MPC. The major difficulty lies in computing
the set W, so it is a Lyapunov set for the nonlinear system and for its linearization
around the origin. This is a general problem of constructing local Lyapunov functions

for nonlinear systems for which there is no established methodology.

The advantages of using an inequality instead of an equality end constraint are
twofold: first, in a nonlinear programming problem equality constraints can never
be satisfied in a finite number of algorithm iterations (which does not happen with
most inequality constraints) and, second, a conservative form of this type of inequal-
ity constraint (e.g., z(k + Py|k) € Wy 2) can be used to introduce robustness into this

MPC formulation as we will see in the next section.

As previously mentioned, the problem is posed with a time-varying prediction horizon
Py, k> 0. In [82, 83, 95] the horizon is considered as an additional decision variable
P, € [0, Poz] (where P, is a chosen upper bound to Py, Vk > 0, which determines
a balance between the control effort in solving the problem and the feasibility of the

constraints) so as to add more possibilities for making the constraints feasible.

The optimal control problem at time ¢ is defined in the following way:

P(k,l‘k) : min{V(tk,xk)[uk(t) S I/{, Pk - [0, Pmaac];if(tk—}—l =1 + PkT, l’k,tk) & Wa}
(2.47)

An important feature of this variable horizon MPC with end constraint (be it equality
or inequality constraint) is that optimality is not required for stability, only feasibility.
Moreover, if a feasible solution is found for the first optimal control problem, restric-
tions of this solution to smaller time intervals are feasible solutions of the optimization
problems at subsequent time steps. This means that, in the absence of disturbances,
if P(0, ) is feasible, feasibility of P(k,zx), k > 0, is ensured. Of course, one can im-
prove on this solution at time step k& by computing a control-horizon pair { Py, ux(t)}

that results in a smaller value of the cost function V' (tx, zx).
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2.3.4 MPC for constrained nonlinear plants: robust case

Robust stability results for nonlinear plants can be found in [95]. In the first case, in
order to add robustness to the hybrid or dual-mode MPC algorithm a conservative
end inequality constraint is imposed in the optimization step. The motivation behind
this idea is to require the states of the model used in the prediction to be inside a
smaller set at the end of the prediction horizon (W, /s, for example) so that, if the
model/plant mismatch is not very large, the states of the plant will be within the
bigger set W,. Inside W, a robust linear stabilizing controller is used in order to drive
the states of the plant asymptotically to the origin. It is clear that the synthesis of
such a linear controller is not a trivial task, especially due to the model uncertainty.
W, now has to be a Lyapunov region for the real plant, the nonlinear model used in

the prediction and its linearization around the origin.

Also here, the prediction horizon is an additional decision variable and the problem

formulation is as follows:

'P(k,:ck) : min{V(tk,xk)]uk(t) eU,P, e [O,Pmaz],x(tkH =1y + PT; l‘k,tk) € WQ/Q}
(2.48)

Let fP(.) and f(.) denote the dynamics of the plant and of the model, respectively.

Then robust stability can be shown under the following conditions on f? and f:

e f?is continuously differentiable;
o || fP(z,u) — flz,u) |[5< B (w,u) || for all (z,u) € X xU, P> 0;

e f is Lipschitz continuous on X x U,

where the set X is defined as in (2.46).
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If state constraints are present, a conservative version of such constraints should be
used in the optimization to account for the model uncertainty. For example, if in the

nominal case P(k, z)) would be given by:

P(k,zy) : min{V (tg, z)|uk(t) € U; Py € [0, Phaz); (85 tk, zx) € &,
Vs € [tk, ty -+ PkT]; LU(t;H.l =ty + BT xy, tk) € Wa} (2.49)

The robust version of the problem would be as follows:

Pk, zy) : min{V (te, zx)|ur(t) € U; Py € [0, Praz]; z(s; te, 2x) € &,
Vs € [tk, tr + PkT]; 33(fk+1 =t + P xk,tk) € Wa/g} (250)

where the sets £ and & are closed subsets of R™ defined by:

E = {z|¢(x)<0,5€p}; p:={1,...,p} (2.51)

£ = {z|g’(z) < —¢j €p, >0} (2.52)

and contain the origin in their interiors. Thus we can see that € allows a margin of
error so that if the states of the prediction model are required to stay within &, the

states of the plant remain inside £, a larger set.
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Chapter 3 State Feedback Contractive NLMPC:

Nominal Case

3.1 Introduction

As we have mentioned before, there are no stability guarantees for finite horizon MPC.
The two alternative approaches proposed so far which ensure stability of the closed-
loop system under reasonable assumptions are infinite horizon MPC (for discrete-
time constrained linear systems) and finite horizon MPC with end constraints (for
continuous- and discrete-time constrained linear and nonlinear systems). These new
formulations of MPC have allowed for a relatively easy analysis of the closed-loop

behavior which had not been possible under the framework of finite horizon MPC.

The present work is devoted to the control of constrained nonlinear systems by using
a finite horizon MPC technique with the introduction of an additional state constraint
which we have denoted contractive constraint. This is a Lyapunov-based approach
in which a Lyapunov function chosen a priori is decreased, not continuously, but
discretely; it is allowed to increase at other times (between prediction horizons). This
is also an approach where stability is guaranteed by introducing an inequality end
constraint in a finite horizon MPC framework. As we will see later, the introduction
of this additional constraint into the on-line optimization makes it possible to prove
quite strong stability properties of the closed-loop system. In the nominal case and in
the absence of disturbances, it is possible to show that the presence of the contractive
constraint renders the closed-loop system exponentially stable. We will also examine
how the stability properties weaken as structural and/or parametric model/plant

mismatch, disturbances and measurement errors are considered. In the presentation
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of our results, we will begin with the basic idea in the simplest context (state feedback
+ no model uncertainty + no disturbances) and then develop into the more complex
situations showing that, in each case, some form of stability of the closed-loop system

can be obtained.

Another important aspect considered in this work is the computational efficiency and
implementability of the algorithms proposed. The previous work on stability analysis
of MPC applied to nonlinear systems (see [82, 95]) addresses only partially the issue of
the computational effort required in the controller implementation. These algorithms
require only feasibility and not optimality of the control problem, which is also true
for our Contractive MPC (finite horizon MPC + contractive constraint). However,
the ideas presented by Mayne and Michalska in [82, 95] with their variable horizon
MPC approach have the following limitations:

e in the nonlinear context, the equality end constraint, namely z(k + Py|k) = 0,

can never be satisfied in a finite number of algorithm iterations;

e the hybrid controller which results from imposing the inequality end constraint,
x(k + Pi|k) € W, and using a linear stabilizing controller inside W is theoreti-
cally sound but the computation of the region W and of the gain of the linear

stabilizing controller is a major difficulty in real implementation.

Another relevant negative aspect of such controllers is the fact that, in general, the
resulting optimization step is a non-convex problem. Even if only feasibility is required
for stability, the performance may suffer quite a lot by using feasible solutions only.
More serious yet is the fact that in nonlinear programming even the computation of

feasible solutions may be quite cumbersome, if not all together impossible.

In this work much attention was devoted to the implementation aspects of the con-
tractive MPC controller. We will show later that if a linear approximation of the
original nonlinear system computed at each sampling time k£ > 0 is used in the pre-

diction step, the contractive constraint can be implemented in such a way that the
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resulting optimization problem is reduced to a quadratic programming (QP) problem.
And, as we well know, there are many efficient and well-established algorithms in the
market today devoted to solving quadratic programs. This implementation of MPC
with local linearization of the nonlinear plant was first proposed by Garcia in [48] and

subsequently used by Ricker and Lee in [74, 110].

We will progress to this computational aspect later because in order to make the
controller computationally simpler we also need to make it robust (since a linear
model is used in the prediction of the states of the real nonlinear plant). Initially
we will be concerned only with the nominal stability analysis per se, without taking
into account the fact that the resulting controller involves the solution of a nonlinear
programming problem at each time step. The extensions to the basic problem will

be added with each chapter.

Problem 1 : State feedback, nominal case and no disturbances

3.2 Description of the contractive MPC algorithm

3.2.1 Description of the system

In this chapter we assume that the plant is nonlinear time-invariant (NLTI) and

described by the following differential equation:
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where f: R" x R™ — R” is continuously differentiable.

Throughout this thesis we will assume that the manipulated variables u(t) are subject

to the following hard constraints:

u(t) €U :={u € R™ : Upin < U < Umaz}, Yt E [0,00) (3.2)

Linear constraints on the rates of change of the manipulated variables are also com-

monly present, as we have pointed out in chapter 2 (see equations 2.26 and 2.27).

The solution of (3.1) at time ¢, corresponding to the initial time/state pair {to, zo}
and the input u(7), 7 € [to, t], is denoted by z(t, to, zo, u) or, in a simplified notation,

Ty (t)

3.2.2 Optimization step

Given any sampling time 9 := t; := tq + kPT, k € [0,00), and t, := t, + jT, j €
[0, P], with tf = t},; = tk41,Vk > 0, let us adopt the following notation z; :=
1Y = z(t), to, 2o, ), T, = x(t,tr, zx,u), 2h(t) = z(t,t),z},u) and ul(t) is the
continuous control law for ¢t € [t],¢, + PT]. In order to conform to MPC’s usual
implementation scheme, let us consider a discontinuous control law of the kind u{c t) =
w(kP+j+i|kP+7) for t € [t +iT,tL+ (i+1)T], i € [0, P—1], i.e., ul(¢) is constant
during one sampling time. Moreover, u(kP + j + i|kP + j) = u(kP +j + M —
1|/kP + j), Vi € [M,P —1]. Then the optimization problem at time ¢}, namely,
P(tl,zl), Vj € [0,P —1], k € [0,00), is represented by:

AN o o
min/ [z7.(t) Qzi(t) + ul(t) R ul(t) + 4l (t) S*ul(t)] dt (3.3)

ul (1) /8]

or, equivalently,
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. tj+P .
My (kP4 j|kP+j),.su(kP4+j+ M1}k P-+j) ft{ “ "L‘i: (t) H2Q dt +

+ 30 | ukP +j +ilkP +5) Iz + ZE5" | Au(kP + 5 +ilkP +5) 5 (3.4)

— R — S
where R := % and S := .

subject to:

#1(t) = f(@h(t),ul(t)), xl := measured states at t]

Umin < w(kP + 7+ ilkP + j) < Umaa, @ € [0, M — 1]

S |Au(kP + j+ilkP + j)| < Atupmae, @€ [0, M —1] (3.5)
Au(kP+j+ilkP+j)=0, i€ [M,P—1]

12t lp< o @k [lp. a€[0,1), P>0

where

() = f(Z(1), ul(t)), with 2} := 2 and T, = Z, '(]), for j > 1 (3.6)

is the trajectory of the model which is not updated with the states of the plant at ¢,
for j € [1, P — 1]. The states 7} (t) are only updated with the states of the plant at

t=t, + PT =:t¥, i.e., at intervals of one prediction horizon.

3.2.3 MPC algorithm implementation

The controller is implemented according to the following scheme:
Control Algorithm 1

Data: Initial Conditions: to and x,; Controller Parameters: horizons P, M
(M < P), weights Q, R, S, P > 0, contractive parameter o € [0,1), sampling

time T and control constraints Umin, Umaz, DNmaz -
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Step 0: Setk =20, j=0.

Step 1: Assuming that the optimal control problem ’P(tf;, xfc) is feasible for the chosen
set of parameters, then att = ti solve P(té, mfc) specified by the sets of equations
(8.4), (3.5) and (3.6). Local optimal solutions or even feasible solutions are
accepted. The result of this step is an optimal (or feasible) sequence of control

moves {u(kP + jlkP +j),...,u(kP+j+ M — 1|kP + j)}.

Step 2: Apply the first control move, u(kP + j|kP + j), to the plant (3.1) for t €
[t1,817'] and measure the states at ). Set zi*' equal to the measured states

and ™ = ().

Step 3: If j < P—1, set 3 = j+ 1 and go back to Step 1. If j = P — 1 set

) =z = af, 0 =tk =th,k=k+1,j =0, and go back to Step 1.

Remark 3.1 Notice that both the contractive constraint and its location (at time
it =ty + PT and with respect to xx) do not change for a fized k as j wvaries in
the interval [0, P — 1]. This means that if at time ty it is possible to find a control
sequence which makes the objective function finite and satisfies all the constraints
(i.e., P(tg,zr) is feasible) and if the constraints remain unaltered for a fized k while
J varies from 0 to P — 1, then the subsequent P — 1 control problems (corresponding
to the different values of j) will be feasible as well. So, all we need to be concerned

about is the feasibility of P(ty,xy), Yk > 0.

Due to the absence of model/plant mismatch and disturbances the following remarks

can be made:

Remark 3.2 The receding or moving horizon implementation of the control law gen-
erated by Control Algorithm 1 is not necessary for Problem 1. We could just
implement all the control moves {u(kP|kP),...,u(kP+M—1kP)} fromty to t,+PT

and only solve a new control problem with a new initial condition, xy,1, at the end of
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the Rorizon. Here we have chosen to present this moving horizon formulation because
this s the most usual one in the MPC context and will be adopted throughout this the-
sis. In the presence of any uncertainty or disturbance, this approach can significantly
enhance the performance of the closed-loop response due to the feedback provided by
measurements at each sampling time (instead of leaving the plant open-loop for the

period of a whole prediction horizon).

Therefore, for Problem 1, the previously presented receding horizon MPC scheme is
equivalent to the following simpler implementation (only one optimization problem,

namely P(ty,zr), is solved for a whole prediction horizon):

Control Algorithm 2

Data: Same as in Control Algorithm 1.
Step 0: Set k= 0.

Step 1: Assuming that P(ty, zi) is feasible for the chosen set of parameters, then at
t =t solve P(ty,zx), which is specified by:

+F

: k 2 P . 2
e, /tk | 2(t) |3 dt + £ || (kP +ilkP) |3
+ M || Au(kP + ilkP) |3 (3.7)

subject to:

k() = fzg(t), uk(t)), xx measured

Umin < W(kP +i|kP) < Upor, 1 € [0, M — 1]

|Au(kP + i|kP)| < Aupmag, 1€ [0, M — 1] (3.8)
Au(kP +i|kP) =0, i€ [M,P 1]

Il ks lpi=l 2 (8) lp< o | @ |y e €[0,1)
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Step 2: Apply the computed sequence of control moves {u(kP|kP),...,
u(kP + M — 1|kP)} to the system (3.1) fort € [ty, tg+1], and set zxy1 equal to

the states of the system at ty;.

Step 3: Set k =k + 1 and go back to Step 1.

3.2.4 Basic assumptions and definitions

Without loss of generality, let us consider the regulation problem where the desired
operating point is the origin (z,u) = (0,0). Then, the following assumptions are

needed to ensure local stability:

Assumption 3.1 (z,u) = (0,0) is an equilibrium point of (3.1), i.e., £(0,0) = 0.

Assumption 3.2 The linearization of the model dynamics around the origin is sta-
bilizable, i.e., {%(0, 0), %(O, 0)} is a stabilizable pair.

Assumption 3.3 We assume that there exists a p € (0, 00) such that for all z), € B,,
the optimization problem at ty, P(ty, zx), is feasible. In other words, for all xy € B,,
we can find a contractive parameter « € [0, 1) so that with the chosen finite horizon P
all the constraints on the inputs and states can be satisfied and the objective function

18 finite.

Remark 3.3 Assumption 3.3 is not very resirictive since all that it establishes is
that there exists a non-empty convexr and compact set of initial conditions for which

the optimization problem at every P time steps is feasible.

For nonlinear systems with a unique globally exponentially stable equilibrium (which

obviously include open-loop stable linear systems), since all trajectories in R" satisfy
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the condition of exponential decay, it is always possible to find P so that the states
at the end of P steps are contracted by a factor o € [0,1) with respect to the initial

states.

For general nonlinear systems, if | %ﬁ gﬁ ] €Q, Vz, u (where Q C RVC+™)) - then

there ezists a matriz G(x,u) € 0 such that:

x
f(z,u) = G(z,u)
U
In other words, the nonlinear system can be replaced by a time-varying linear sys-
tem (idea which is implicit in the early work on absolute stability originating in the

Soviet Union; see the works of Lur’e and Postnikov [79, 80] and Popov [106]) and

this approach is known as global linearization. Of course, approzimating the set of

trajectories of the nonlinear system wvia linear differential inclusions (LDIs) can be
very conservative, i.e., there are many trajectories of the LDI which are not trajec-
tories of the nonlinear system. However, once the nonlinear system is represented in
LDI form, sufficient conditions for satisfaction of assumption 3.8 can be stated (see
[17], where sufficient conditions for exponential stability and an induced Ly—norm
performance objective are given) by using a single quadratic Lyapunov function ap-
proach. The unique quadratic Lyapunov function decreases along the trajectories of
the LDIs and, therefore, of the nonlinear system, which means that exponential sta-
bility is guaranteed and we can always find an o € [0,1) such that the states of the

nonlinear system are contracted by this factor in only one time step.

Remark 3.4 In remark 3.2 we pointed out that due to the absence of model un-
certainty or disturbances it follows that Ty, = xi *(tF) and, therefore, due to the
contractive constraint, we have || Tpp ||p< o || 2 ||p. This means that if g € B,,

then x, € By, C B, (since a € [0,1)). Thus, with our condition for feasibility

p

given in assumption 3.3, if P(to, zo) is feasible (or equivalently, if vo € B,) then the

sequence of control problems P(tg, xx), Yk > 0, is feasible as well.
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Assumption 3.4 We assume that if zx, € B,, Yk > 0 (with p € (0,00) defined in
assumption 3.3), then there ezists a constant § € (0,00) so that the transient states
of the model used in the computation of the contractive constraint (which is equal to

the prediction model and the plant for Problem 1) remain inside the set Bg,

pe, | ZL@®) 1< B || 2k |p< Bp, Vi=0,...,P =1, k>0,

Y

Remark 3.5 Since u is constrained, assumption 3.4 is always satisfied except for
systems with finite escape time. So, nonlinear systems with finite escape time are

ruled out from our investigation.

Definition 3.1 Under assumption 3.3, the reachable set X is defined by:

X o= {z(t) € R" | z(¢t) = z(t, to, zo,u), t € [ty,0); Tg € B,, u €U} (3.9)

Remark 3.6 Under assumption 3.4 and since we are addressing the nominal case in

the absence of disturbances, the reachable set X is equal to Bg,.

3.2.5 Basic philosophy of the controller design

Figures 3.1 and 3.2 illustrate the behavior of the closed-loop system generated by
the contractive MPC controller when no model/plant mismatch is present and no

disturbances affect the system, as specified in Problem 1.

Thus, while the optimization problem remains at constant size P for different values
of 7 and for a constant &, the number of steps between the beginning of the prediction
and the location of the contractive constraint is equal to P —j and therefore decreases

as j increases as we can clearly see in figure 3.1.

The exponential decay of the state trajectory is illustrated in figure 3.3.
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Figure 3.1: P control problems for a fixed k. Predicted trajectories generated by
contractive MPC for a fixed k£ and j varying in the interval j =0,..., P — 1.
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Figure 3.2: Exponential decay of the state trajectory.
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of | zo lp k>2

Figure 3.3: State trajectory generated by the contractive MPC scheme.

3.3 Stability analysis of contractive MPC

Theorem 3.1 (Exponential stability) Given o € [0,1) and p, 8 € (0,00) satis-
fying assumptions 3.3, 3.4, Control Algorithm 1 (and, consequentely, 2) renders
the closed-loop system exponentially stable on the set B,, i.e., for any zo € B,, the

resulting trajectory x(t) := x(t, to, Zo, u) satisfies the following inequality:

1—a) ———-Q—(t;; )

| z(t) ||<al 2o e with a > e (3.10)

Proof: From assumption 3.8 we have that the optimal control problems P(ty, zy),
Vk > 0, are feasible for all initial conditions o € B,. So, this means that all the
input/state constraints in (3.5) are satisfied at each sampling time t],7 € [0, P — 1],

k > 0. In the absence of model/plant mismatch or disturbances it immediately follows
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that:

|2k [|p< o® | 20 |5, VE>0 (3.11)

and, therefore, for allt € [ty, txr1 := tx + PT], zx(t) satisfies the following inequality:

l2k(t) lp< B || zo llp, VE 20, t > to (3.12)

Now, since e®V —a >0 <= o < e 7% Vo € [0,1) and Yk > 0, it results

that:

INA

|z llp | o || p e * (3.13)

lze(®) lp < Bl |lpe " (3.14)

Notice that the bounds (3.13) and (8.14) are independent of the performance criterion.
The performance criterion influences only the feasibility question but if the problem

s feasible, stability is determined exclusively by the contractive constraint.

Although (8.14) establishes an exponentially discretely decaying bound on the states
for all times t > ty, our proof of exponential stability for the continuous-time system

(3.1) is not yet concluded.

The condition for exponential stability for continuous-time systems is given by: the

equilibrium 0 is (locally) exponentially stable if there exist p,a,b > 0 such that

| z(t, to, To, u) ||< a || 2o || e PE%), Wt >ty > 0, Vao € B, (3.15)
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We can see that this is not quite what we have in (8.14) since that is a discrete bound
which remains constant for the period of a sampling time. So, we must find an expo-
nentially continuously decaying function which bounds Be (1=®%  for qll

t € [t,tks1], and for all k > 0.

The discrete bounds on the states, (3.13) and (8.14), and the continuous upper bound

are graphically represented in figure 3.4.

/Be(l—a) .
—(1—a)k
5 . Be

SR N— Bel1=0) g=(1-a) 5k
Be'(l”a) 7————;..\
fe—201-a) ._\;\\

| | .

0 1 2 k

Figure 3.4: Discrete and continuous-time exponentially decaying upper bounds for the
state trajectory.

So, as shown in figure 3.4, we want to find the least conservative continuously ex-
ponentially decreasing bound which matches the discrete bound exactly at the end of

horizons.

Since k = B0 and Sl < BZlo Vi € [to, 1), we can easily see that:

Bem (= < =Gy g > gel-a (3.16)

Thus, using equations (8.14) and (3.16) we finally have:
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|l z@) < a| 2o || et (t;tT), with a > fer™ (3.17)

which is what we wanted to prove. This means that if xo € B,, then the sequence of
optimal control problems P(ty,zx), k > 0, is feasible and the origin is an exponen-

tially stable equilibrium point inside the reachable set X = Bg,.

]

Now that exponential stability has been proven, we will show that, under certain
assumptions on the control law originated by MPC, the objective function minimized

in (3.7) is a Lyapunov function for the closed-loop system.

Before we start showing the conditions under which this is true, let us point out that
the objective function being a Lyapunov function is not a necessary condition for
stability of the closed-loop under the contractive MPC controller, as it may be for
other moving horizon-based MPC schemes. The closed-loop is stabilized by the con-
tractive MPC controller because the quadratic function which defines the contractive
constraint is itself a Lyapunov function which decreases discretely, not continuously,

at intervals of prediction horizons.

We will see in the next theorem that, in order for the objective function to be a
Lyapunov function as well, stronger assumptions are needed on the computed control
law and on the dynamics of the nonlinear system to be controlled. Here we want
to establish which and how strong these assumptions are because they are necessary
in proving exponential stability of the MPC scheme which uses the equality end
constraint z(k + Plk) = 0 (see [114]). In other words, we want to emphasize that
we are able to prove exponential stability of the closed-loop system under much less
restrictive assumptions when the contractive constraint, rather than the end equality

constraint, is used.
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Theorem 3.2 (Objective function as a Lyapunov function) Consider the sys-

tem (8.1) and take into account the simpler implementation of MPC presented in

remark 8.2. Suppose that f is C? for some integer ¢ > 1, and that f(0,0) = 0.

Let ug(t) = {u(kP|kP)...,u(kP+M—1|kP)} =: n(zx) =: {no(zx),- .., m—1(zx)} be
the feedback law applied to the system for t € [ty, tita], Vk >0, and for all xy € B,.
Then, let us define F () := f(zg, n(zk)).

Let us assume that the sequence of control moves computed at ty is such that
ni(0) = 0, Vi € [0,M — 1], and {no,...,nm-1} s Lipschitz continuous inside B,,

which means that there exists L > 0 such thai:

Im(@) =m@) lp< Ll z—yllp Yo,y € B, and Vie[0,M —1] (3.18)

Finally, suppose that, for some finite constant A > 0,

4 dF ’ B
| ;Z%(xk,n(xk)) =] E(xk) |p< A, Var € B,,, with a> Be' (3.19)

Under these conditions, the quadratic objective function at time ty defined as:

V(tk, QS]C) = tk+PT[CEk(t),Q$k(t) -+ uk(t)lR*uk(t)] dt (320)

tr

(i.e., we considered equation (3.3) with S* = 0 for simplicity), is a Lyapunov function
for the closed-loop system. This means that there exist constants c¢,d,e,l > 0 such

that:

1ocllap B V(e ze) < d |z |3,

2. V(tg,zx) = %V;(tk,a:k) < —ellz II3,



57
3.l & (tkaxk) lp< il zxllp, Yk >0,Vzi € B,

Proof: The proof is constructive, i.e., we will compute the constants c,d, e, > 0 such
that the statement of the theorem holds.

Because the control law is discontinuous, equation (3.20) is equivalent to

ty+PT . R*
V(te, z4) = /t (1) Qi1 dt+2 (kP+i|kP) Ru(kP+ilkP), with R :
k

(3.21)

This is the form of V (tg, xx) which we will use next to compute our lower and upper
bounds.

e Upper Bound on V(t,zx): Let us first derive an upper bound for V (ty,zy), 1

let us compute a possible value for d > 0. Due to the constraint

| zk(t) | < B || zk || p» Yt E [tk, thta], we have that

P
V(t, 7x) < %521@ |z [|% + Y w(kP +i|kP) Ru(kP +i|kP) (3.22)

i=0
Now, since || u(kP + t|kP) || p==|| mi(zx) |p< L || zx |5, Vi € [0, M — 1] (this
inequality follows directly from (8.18) and from the fact that n;(0) = 0), we have

our desired upper bound on V (ty, z):

P 21 11 _
Amin(P) Pinaz (@)F°T + Mnaz(R)L?] || 2y 13=2d || 2 %

V(ty, zx) < (3.23)

e Upper Bound on the Gradient of V (#;, zy)

V(tk,a:k): Taking the derivative
from (8.20) we have that
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V(te on) =l 2i(te+PT) G =l on 1 + Il un(ts+ PT) [ — || us [ (3:24)

In our discontinuous control law notation we have:

Vitezr) = | @k G = 26 I3 + | (kP + P = 1[kP) 3 —
— lu((k—=1)P+P—1](k - 1)P) ||% (3.25)
Due to the contractive constraint, it follows that:
y )‘min
Vitwne) < =3280 =) o + | u(kP+ P~ 1kP) e -
~ | w((k=1)P+ P —1|(k - 1)P) ||%. (3.26)

Now, if instead of imposing u(kP+i|kP) = u(kP+M —1|kP), Vi € [M,P—1],
we have u(kP + i|kP) =0, Vi € [M,P — 1], and M < P (i.e., M 1is strictly
smaller than P), then it immediately follows from (8.26) that:

Vitoz) < 32280 0 o -
— [lu((k =1)P+ P —1|(k = 1)P) ||3.<
< B0 o= elalp (620
e Upper Bound on %(tk,xk): From (8.20) it follows that
g—;/];(tkyxk) _ A:k+1[df! 33(?57;: i) o 395(75(:);1,%) 4
Lol U(t,;z, zr) % 3“(12::1: xk)]dt (3.28)

Thus,
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[AATAPRY I Amwﬁ /t:’“‘”[d ” ””C’;f) lo 220, 4

du

Then, it results that:

ov 2/\ma:c P % L1 3 N ~
1)l < 2220 [ 0 (QF 1 0l0) I Aman (PN +

Amin(P)E It
-+ )\maz(R)%L “ U(t, tkaxk) Hlf’]dt

2)\mam(P)% 1 Ay L (6)‘PT“ 1)
< —_—__——7\_1_)\7”&1' 2)‘ma:cP2 ————
< e S P @ A (P18
+ Amaa(R)PLY] || llp=: 1 | e[| (3.30)
This follows from the fact that:
1.
t
Zi(t) =z + t Fla(r, tg, zy)]dr (3.31)
which means that
Ori(t) t dF (z (7)) Oxg(T)
=1y / e (3.32)
Thus,
| Oxi(t 1 ox
1220 1 < AP+ [ u—~ Dl 1 ZED s ar <
< Amas(P)E 42 n ax’“( ) 5 dr (3.33)
Tk

Using the Bellman-Grownwall (BG) inequality, it follows that:
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B:ck (t)

Sy 19 Amaa(P) 72070 (3.34)

|

and

2. Since u(t, tg, xx) = mi(xx), Vi € [tp+iT, tp+ (i +1)T), and Vi € [0, M —1],
and n; is Lipschitz continuous for all i € [0, M — 1], it results from (8.18)
that:

| teur) lp < L@k |lp (3.35)

au(t,tk,:ck)

2R s < .
| =™ s < L (3.36)

e Lower Bound on V (t;,zx): As a result of condition (3.19) we have:

N Y YN ECIIY
> [L=A80F =t ll e llp (3.37)

It then follows, for example, that:

loe@ o2 L2212 o ve it 51 (3.38)

Thus, we have two cases to consider:
1. tk+1§tk+2—§-ﬂ— = PT<353

In this case,

Dy e 1 at >
'y €T P
A Dmin(P) BAp T =

PT[Mnax(Q) + 4L2 M\ (R)]
- A\ i (P)

V(tka xk)

v

/tk+1 [Amax(Q) + 4L2/\maw(R)

[ (3.39)
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2. tip 2tk + 55 = PTz;i—ﬁ

In this case,

tet5ng [/\max (Q) + 4L Aoz (R)]

Vi) = [ = e |13 dt >
Az (Q) + 4L Xpor (R)] |z |12 (3.40)
8\ min (P)AB F ‘

Thus, it follows that:

)\maw (Q) + 4L2)\maz (R)] Amam(Q) + 4L2)\max(R)} X
A pin(P) ’ 8Amin (P)AS
x |l 3= cllze |3 (3.41)

PT
V(tk,.’lik) > mm{ [

So, we have shown that, under the assumptions in the statement of the theorem,
the quadratic performance criterion (3.3) subject to the constraints (8.5), with
u(kP +i|kP) =0 fori € [M,P — 1] and M < P, is a Lyapunov function for

the closed-loop system. o

3.4 Algorithm implementation

Next we will show simulation results for various examples adopting the proposed
MPC algorithm. This algorithm was implemented using a preliminary version of
the MPC package in MATLAB written as the result of a semester thesis developed
at the Institute of Automatic Control at the Swiss Federal Institute of Technology
(ETH). This package is a combination of the well-known codes DASSL ([104]) and
NPSOL ([53]) in MATLAB. DASSL is used for integration of the sets of algebraic and
ordinary differential equations which describe the nonlinear dynamics of the model

and the plant and NPSOL is used for solving the nonlinear optimization problem.
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This code has not yet been optimized and our experience with it shows that a large
amount of the time spent in the computations is devoted to calling functions in MAT-
LAB which describe the model dynamics, the Jacobian of these dynamics, nonlinear
constraints (such as the contractive constraint) and the Jacobian of these constraints.
Therefore, it is likely that if DASSL and NPSOL are compiled together outside MAT-
LAB, the computation time would be reduced significantly. So, the CPU time which
we provide later for simulations of some examples only gives a rough idea of the order
of magnitude of the time spent in the computations and should be interpreted with

caution.

3.5 Example: A Nonholonomic System (Car)

3.5.1 Car (or “kinematic wheel”) dynamics

The example considered here is a nonholonomic system which is the model of a car

with no trailers. This system can be represented by the following set of equations:

T = cost v (3.42)
gy = sinf v (3.43)
0 = w (3.44)

where (z,y) represents the Cartesian position of the center of mass of the car, 6 is the
inclination of the car with respect to the horizontal axis and v and w are its forward
and angular velocities, respectively. The coordinate system for the car is illustrated
in figure 3.5. Forward and angular motion of the car is achieved by changing the
relative angular velocities of the wheels. Each wheel is driven by a stepper motor and

any desired wheel angular velocity is achieved by commanding the motors to turn the
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appropriate number of steps per second.

The inputs determined by the control law are v and w and the outputs are the state
variables z,y and 8. The objective is to drive the system from any given initial

condition to the origin with a satisfactory level of performance.

wheels

Figure 3.5: Coordinate system for the car.

This system violates Brockett’s necessary condition for smooth or even continuous
stabilization [24] and that is what makes the control design problem for this system
(and nonholonomic systems, in general) a real challenge. Since MPC can automati-
cally generate a discontinuous control law, we expect this controller to be suited for
the class of nonholonomic systems. Moreover, this system is not controllable on the
manifold of its equilibrium points, which also represents a difficulty from the control
point of view. We will see later what difficulties are encountered by our contractive

MPC scheme due to this fact.

Here the results obtained by using the proposed contractive MPC (CNTMPC) al-
gorithm will be compared to the standard finite horizon nonlinear MPC (SNLMPC)
scheme, the smooth controller found in [120], the homogeneous controller proposed

by M’Closkey and Murray in [90], Pomet’s controller [105] and, especially, the dis-
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continuous controller proposed by Astolfi in [10, 11] (these last four techniques are

analytic control designs devoted especially to nonholonomic systems).

3.5.2 Simulation results

Comparison between CNTMPC and Astolfi’s discontinuous controller (un-

constrained case)

In the plots shown in this section, the angle 6 at all initial conditions is equal to
6o = 0 (i.e., the car is parallel to the x—axis) and the angle at the origin is equal
to 0y = % (i.e., the car is parallel to the y—axis). We have adopted this convention
because Astolfi’s controller is analytically constructed to handle the output regulation

problem with (z,u,0) = (0,0, %) (and not (z,u, 8) = (0,0, 0)) as its target coordinate.

CNTMPC

Figure 3.6 shows the resulting paths in the zy—plane of the controlled car using

CNTMPC in the anconstrained case.

The controller parameters used in these simulations are given by:

Controller Parameters (figure 3.6)
Q = diag([1 1 0])) | R=0 | S=0
P=5 M=3|a=09

In all simulations for the car example the sampling time is equal to 7' = 0.1.

Astolfi’s discontinuous controller

The same kind of plot in the zy—plane for the controlled car was presented in
[10] (page 36) and we reproduce it in figure 3.7 with the same control gains, for

purpose of comparison.
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¥
i

0.5 7

Figure 3.6: Resulting paths in the zy—plane using CNTMPC when the car is initially
on the unit circle and parallel to the z—axis.

Comparison of results in figures 3.6 and 3.7

We should emphasize that the time taken by Astolfi’s analytic discontinuous
controller to compute these trajectories is less than a second, while CNTMPC
took between 9 and 12 minutes on average (using the non-optimized MPC

package which we discussed in section 3.4).

Moreover, because of the lack of controllability of this system at the origin,
the contractive MPC algorithm is only able to drive the system to a very close

neighborhood of the origin and then it stops (this effect cannot be really noticed
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0.5

Figure 3.7: Resulting paths in the zy—plane using the analytic discontinuous con-
troller when the car is initially on the unit circle and parallel to the z—axis.

in figure 3.6 due to scales). What happens is that, once the car is driven very
near to the origin, the control action generated in the optimization step is very
large - due to the lack of controllability - and the integration of the model

equations with such control value cannot be carried out by the integrator.

We can see from figures 3.6 and 3.7 that for both controllers the car performs its
maneuver towards the origin of the coordinate system in a very natural way and
without ever inverting its motion. Hence, the floor trajectories do not contain
any cusps. This response can be anticipated for the analytic discontinuous

controller because the control signal v is constructed to always have a constant
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sign. In the case of CNTMPC, the controller just automatically generates such

a response.

We also observe that CNTMPC generates trajectories which approach the origin
in an almost straight path. It is clear that the analytic discontinuous controller
cannot match this performance. This is not surprising since the construction
of the analytic controller does not take into account performance but only sta-
bilization. CNTMPC, on the other hand, minimizes a performance criterion at

every time step and the contractive constraint takes care of the stability issue.

Comparison between CNTMPC and SNLMPC (unconstrained and con-

strained cases)

Now that we have shown that CNTMPC performs satisfactorily in the unconstrained
case, we will compare the performance and stability properties of a standard nonlinear
MPC (SNLMPC) algorithm with CNTMPC in order to examine more closely the
influence of the contractive and input constraints on the closed-loop response. The
chosen initial condition is one used by M’Closkey in his experiments with the car at

the Department of Mechanical Engineering at Caltech in 1993:

Initial Condition

xo = —0.5945 | yo = 0.3299 | 6, = 0.8262

Unconstrained case

The unconstrained responses for SNLMPC and CNTMPC can be found in figure
3.8.

The controller parameters used in these simulations are given by:
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Figure 3.8: Car: State and control responses for SNLMPC and CNTMPC in the
unconstrained case.

Controller Parameters (figure 3.8)
Q = diag([1 1 0])) |R=0 | S=0

Naturally, the contractive parameter « is used only by the CNTMPC controller.

We notice that since the angle 8 and the second input variable w are not
weighted in the objective function, and since the system has two inputs and
three outputs, the SNLMPC controller cannot stabilize § which grows indefi-
nitely. The other two states, x, y, reach the origin quickly but then they oscillate

about it.

The CNTMPC controller is able to stabilize § (even though the system has

more states than inputs) due to the introduction of the contractive constraint.
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Besides, the settling time of the other variables is not increased (they reach the
origin after only one sampling time without further oscillations). Therefore,
we see that SNLMPC cannot stabilize § with the given controller parameter
choices but the contractive constraint makes it possible, without degrading the

performance of the response for the other state variables.

Constrained case

Case 1

The constrained responses for SNLMPC and CNTMPC can be found in

figure 3.9.
or - 0.4 /
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Figure 3.9: Car: State and control responses for SNLMPC and CNTMPC in the
constrained Case 1.
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The controller parameters in Case 1 are the following:

Controller Parameters (figure 3.9)
Q = diag([1 1 0.1]) | R=0.11, S=0
P=38 M=5 a=0.9
Umin = [—0.2  — 1.0] | Umee = [0.2 1.0}

The control bounds vy, and ., represent physical bounds on v and w
which were encountered by M’Closkey in his experiments with the car at

Caltech in 1993.

We can see from figure 3.9 that the Cartesian position y cannot be stabi-
lized by SNLMPC with the given controller parameter choices. It will not
reach the origin, even when given more time, because since v is already
settling to 0, ¢ is approaching 0 as well (as we can see from the model
equation (3.44)).

CNTMPC stabilizes the system but y shows a small offset due to the lack
of controllability of the car near the origin. This is a difficulty which causes

the code to stop before the origin is reached.

Case 2

From the results in Case 1, we would expect to stabilize the y—response
by adding more weight to this state in the objective function. Indeed, the

response improves if the controller parameters are selected as in:

Controller Parameters (figure 3.10)
Q = diag([1 5 0.1]) | R=10.01 I, S=0
P=28 M=5 a=209
Umin = [=0.2  — 1.0] | Upaz = [0.2 1.0]

The response with this new set of parameters can be found in figure 3.10.

Here the responses obtained with SNLMPC and CNTMPC have approx-

imately the same characteristics with the exception that the y—response
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Figure 3.10: Car: State and control responses for SNLMPC and CNTMPC in con-
strained Case 2.

obtained with CNTMPC has a smaller offset than with SNLMPC. Because
the system loses controllability at the origin and it has three states and two

inputs, a certain amount of offset remains in generally only one variable.

Comparison between CNTMPC and some classic controllers (constrained

case)

Here we want to compare the closed-loop response obtained by use of our CNTMPC
controller in the presence of input constraints with some classic analytic control design
techniques for nonholonomic systems. These techniques do not take into account
process constraints but, since the response for the given initial condition remains

between the bounds we used in our simulations with the CNTMPC controller, the
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comparison is fair.

The simulation results are shown in figures 3.11 (state response), 3.12 (control re-

sponse) and 3.13 (plots in the zy—plane).

The controller parameters used in the simulations with CNTMPC are:

Controller Parameters (figures 3.11, 3.12 and 3.13)
Q = diag([1 8 0.1]) | R=0.01 I, S=0

P =20 M=6 a=20.9

Umin = [—0.2 = 1.0] | Upaz = [0.2 1.0]
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Figure 3.11: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (state response).

From figures 3.11, 3.12 and 3.13, we can see that the smooth control law is not able to

stabilize the car since it violates Brockett’s necessary condition for stabilization of this
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Figure 3.12: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (control response).

class of systems. The angle 6 oscillates indefinitely and so does the z coordinate (with
oscillations of smaller magnitude). Pomet’s controller suffers from similar drawbacks
and while the angle # and the = coordinate oscillate indefinitely, the y position has
a very long settling time. The homogeneous controller performs better than the two
previous controllers but once again the states oscillate indefinitely (even though with
oscillations of much smaller magnitude than for the other two techniques). Astolfi’s
analytically constructed discontinuous controller is undoubtedly the best amongst
these four analytic control design techniques and it can actually stabilize the system
to the origin without oscillations. However, the comparison with the CNTMPC con-
troller shows that the response time is five times longer within approximately the
same control bounds. Therefore, we can conclude that the CNTMPC controller (and

the SNLMPC as well, for certain parameter choices) performs significantly better
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Figure 3.13: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (plots in the zy—plane).

than the classic analytic techniques showing, as we expected, that MPC is a success-
ful control technique for the class of nonholonomic systems. The introduction of the
contractive constraint only adds more reliability to it, guaranteeing stability as long

as feasibility can be assured.

3.6 Example: Fluid Catalytic Cracking Unit

3.6.1 Description of the system

Fluid catalytic cracking units (FCCUs) are commonly used to convert heavy petroleum

feed-stocks into lighter hydrocarbon products, a key step in actual petroleum refining,.
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Significant practical incentives exist for the real-time optimization and improved con-
trol of these units, because of the large volume of raw material processed, together

with their widespread use (see [12]). A schematic representation of the process is

presented in figure 3.14.

Gas products

Reactor

Regenerator

Figure 3.14: Schematic diagram of the FCCU.

This unit is composed of two vessels, a reactor where reaction and separation of
products occur and a regenerator, where the catalyst is regenerated by burning the
carbon deposits formed on its surface. After being vaporized, the feed is put in
contact with hot catalyst in the riser and converted into gasoline, distillates and

light olefins. All of these products exit the reactor in the gas phase. During this
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process, carbonaceous deposits also form on the surface of the catalyst particles.
These deposits considerably decrease the catalyst activity, introducing the need for
its regeneration in the adjoint vessel (also a fluidized bed) where the deposits are
burnt before the catalyst is recirculated back to the reactor. Because of the fast
kinetics involved, a high recirculation rate for the catalyst is required, causing the
mean catalyst residence time in the reactor to be typically on the order of seconds (as
reported in [12]). This introduces a significant interaction between the dynamics of
the two vessels. The temperature distribution and flow regime in the riser also have
a major impact on the product distributions obtained at the exit of the reactor. Due
to the nature of these interactions and their considerable nonlinear behavior, FCCUs
have been considered amongst the most complex and challenging processes in modern
refineries [57]. These characteristics make this process well-suited for testing more
advanced control structures such as MPC. The controllability of FCC units has been

studied in [59].

The interest in the more efficient control of these units is reflected by the large number
of different controller design approaches proposed for these processes. A few of the

main references in the area are [8, 25, 57, 55, 60, 103, 112].

3.6.2 FCCU dynamics

Here we will use the same semi-empirical model of FCCUs presented in [36] which is
a modification of the original model of Lee and Kugelman [75]. It consists of balance
equations for the mass of coke (carbonaceous material) and energy, both in the re-
actor and in the regenerator vessels. The main assumptions are a constant hold up
in both vessels (maintained by the use of equal spent and regenerated catalyst flow
rates), perfect mixing, physical properties independent of the temperature and negli-
gible heat loss to the surroundings. The state variables are Cj. (coke content in the
spent catalyst), Tr, (reactor bed temperature), C,, (coke content in the regenerated

catalyst) and T, (regenerator bed temperature). The model also considers five main
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input variables which are F;, (air flow rate), T, (air temperature), F; (feed rate), T

(feed temperature) and F, (catalyst recirculation rate). The equations which describe

the model are ([36, 75]):

Reactor coke balance:

d(Hr:cCsc)

L — FulCry = Cud) + Fey(T) (3.45)

Reactor energy balance:

d(HraszcTra:)

— = F,Cpo(Tyg—Tra)+ FiCop (Tr—Tro) — Fi(Mo+€(Tys) AH,,) (3.46)

Regenerator coke balance:

d(HyrgChry)

T = Fe(Cse — Crg) — Rep(Tg, Cry) (3.47)

Regenerator energy balance:

d(H,,CyTrg)

dt - FcCpc(Trac - Trg) + Fang(Ta - Trg) + Rcb(Trg: Crg)ch (348)

where:

Rate of carbon formation:

Ro(T)) = a. e 7 £°F, (3.49)
Rate of cracking:
Al —e™) ‘
T,) = .

«(Tr) A+ Al —e?) (3:50)

Rate of coke burning:

F,M.

Re = (0.21 — Co,) (3.51)

&CoMg
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E
(~ k)
be d CTQMQO‘COHTQ)

Co, = 021 6(_% T 3TF, Ma
A = Clew%;
A - tCCQE_ﬁ%%
t — H’I‘(l)
[+ — Fc
T, = 0.6T, +0.4T
Tin = CvchcTrg + CpthTf — Fi )

the model parameters are given by:

Cchc + Opth

Parameter and steady state input values for the FCC

aep = 1.404 x 10 A1
Cy = 6990

Che = 0.28 Btu/ 1b.°F
C,y = 0.2405 Btu/ 1b.°F
E.. = 2450 cal/gmol
H.,=4.0x10°1b

M, =13 1b/lbmol

n = —0.07

Q3 = —1.7 x 10 cal/lbmol
R =1.986 cal/gmol.’C
T) = 440° F

AH,, =120 Btu/lb

ace = 0.0195 1b coke/ 1b cat. A7t
Co=111.1

Cp = 0.75 Btu/ Ib.’F
E. = 3.76 x 10* cal/gmol
F, = 8.97 x 10° Ib/h

H,, =1.0x10°1b

M, = 29.2 1b/Ibmol

@1 = 1.0 x 10° cal/gmol
Qe = 1.37 x 10* Btu/Ib
T, =90°F

aco =1

Ao = 95 Btu/Ib

The nomenclature for this FCC model can be found in [75]. The numerical values for
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3.6.3 Computation of steady states

Let us now examine the steady state characteristics of the given FCC model, in
particular, the possibility of existence of multiple steady states. Such occurrences are
common in nonlinear processes where exothermic reactions take place, and have in

fact been identified in similar models of FCC units [7, 8, 42].

The steady states can be computed more easily by first eliminating some of the
unknowns in the model equations. For example, from the reactor and regenerator

coke balances we obtain:

Rcb(Trg, Crg)

Cse = Cpy + 3 (3.58)
Rcb (Trg> Crg) - Rcf (Trm) (359)
From the regenerator energy balance it results that:
a a Tr Ci rgy T
Trz — Trg . F. CPQ(T g) + R b(Tg C Q)ch (360)

FCCPC

And, finally, by substituting equation (3.60) into the regenerator energy balance, at

steady state, we obtain:

EC
RO T) + Fulli Ol (14 o
cpe

- E(AO+E(Trx)AHcr) = 0 (361)

)+ FCoy(Ty = Try) -

Further elimination of variables becomes difficult due to the complexity of expression

(3.61).
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By varying F, and F, in a range of £5% around their nominal values while keeping the
other potential inputs, F;, Ty, Fr, at their nominal values, one “hot” open-loop (OL)
stable and one OL unstable stationary point can be calculated and their coordinates

are given by:

Steady state values for the FCC
Variables unstable (1) | stable (2)
F, (Ib/h) 6.8 x 10° 7.2 x 108
F. (Ib/h) 8.95x 10° | 9.48 x 10
Cs. (Ib coke/ Ib cat) | 7.985 x 10=3 | 7.173 x 103
T (°F) 957.62 1149.88
Cry (Ib coke/ b cat) | 2.347 x 1073 | 3.571 x 1074
T,, (°F) 1163.46 1398.04

Previous studies (e.g., [42, 75]) have reported the possibility of existence of unstable
steady states for similar FCC units where it was noted that the system tended to
drift either to a state of complete combustion or to extinction. This fact together
with the significant nonlinear nature of the process makes the application of linear
controller design techniques for this system a significant challenge. Therefore, this

kind of system is a natural candidate for application of nonlinear MPC techniques.

Standard nonlinear MPC techniques have been applied previously to this process and
have been shown to perform rather well in the stable region of the state space for
specific controller parameter choices (see [36]). In the unstable region difficulties were
encountered due to the ill-conditioning of the nonlinear state space equations which

describe the model for this system.

As pointed out by Arbel et al. in [9], operation in the unstable region is not considered
important in most applications since this is a region where the temperatures in the
reactor and regenerator are lower than they are in one of the “hot” stable regimes

(the unstable equilibrium point is found between two stable equilibria, a “hot” and
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a “cold”). There is no practical cold state in an FCC. Although one can compute a
cold state, the temperature is so low that the feed will not be vaporized. There will

be no reaction and no catalyst flow. The unit will merely fill up with unvaporized

feed.

Since the open-loop unstable steady state is always an intermediate state between
the desirable hot state and the unoperational cold one, the most important control
task in this unit is, if the operation conditions are changed (manually or due to
disturbances) and the stable hot steady state is lost, the control circuit should be

able to act immediately, bringing the operation back to the hot steady state.

Thus, maintaining operation around the unstable steady state is not really the ob-
jective in these FCC units. The main interest is to design a controller which can
restore the unit from the unstable region back to the “hot” stable one. However,
since stabilizing the system around the unstable steady state is a challenging control
problem, we will consider it here just for the sake of studying the stabilizing properties
of the proposed contractive MPC controller under such unfavorable and challenging

conditions.

Here we will adopt F, and F, as the manipulated variables (inputs). Thus, this is
a 4-state 2-input system and, in this chapter, we consider that all the states are
measurable and the measurements are noise-free. In practice, T;, and T,, are the
controlled variables (outputs) since they can be easily measured and C,, and C,, are

estimated states.

3.6.4 Simulation results

Our goal in the simulations that follow is to test the stability and performance char-
acteristics of the proposed contractive MPC (CNTMPC) scheme against those of a
finite horizon standard nonlinear MPC (SNLMPC) algorithm.
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Here we will study two different steady state transitions:

Transition 1: a step change in the state values from steady state (1) (unstable) to

steady state (2) (stable),

Transition 2: a step change in the state values from steady state (2) (stable) to

steady state (1) (unstable).

Our results will reveal that while SNLMPC performs well in Transition 1 (even
though, as we will be showing, it can go unstable for certain controller parameter
choices), we could not find a set of parameters for which SNLMPC generated a stable
closed-loop system in Transition 2. On the other hand, CNTMPC is able to handle
the step change to the unstable region due to the stabilizing effect of the contractive

constraint.

The difficulty in operating in the unstable region comes from the fact that the model
equations become much more ill-conditioned than they are in the neighborhood of
the stable steady state. This behavior introduces difficulties in the convergence of
the control response of the nonlinear algorithm, due to the extreme sensitivity of the

equations to input changes.

The input and state variables which will be plotted for the FCC example are the

deviation variables with respect to the desired steady state values.

Transition 1

Case 1

The simulation for Transition 1 under no input constraints is illustrated
in figure 3.15 for both SNLMPC and CNTMPC. For the chosen controller

parameters, the responses are equal and in this transition to the stable
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steady state, the beneficial stabilizing effects of the contractive constraint

cannot be felt.
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Figure 3.15: FCCU: State and control responses for SNLMPC/CNTMPC in the
unconstrained Case 1 (Transition 1).

The controller parameters used in Case 1 are given by:

Controller Parameters (figure 3.15)
Q = diag([0 10 1 0)) | R=011,|S=0
P=5 M=5 a=109

In all simulations for this example we used a sampling time 7' = 0.5 h.

Case 2

Now we want to show that, even when the desired steady state is open-loop

stable, the response obtained with SNLMPC can be easily made unstable.



84
Our results will reveal that if no weights are added to the inputs in the
objective function (i.e., R = 0), the manipulated variables settle to high
values and cannot be brought to zero. Meanwhile, the temperatures T,
and T}, show a large offset and the concentrations C., and C,. go unstable.

These simulations are illustrated in figure 3.16.
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Figure 3.16: FCCU: State and control responses for SNLMPC in the unconstrained
Case 2 (Transition 1).

The controller parameters used in Case 2 are given by:

Controller Parameters (figure 3.16)
Q = diag([0 1073 1 0)) [R=0 | S=0
P=5 M=3

Since the control effort is very little in Case 1, where both SNLMPC and CNTMPC
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are stable (due to the weight on u in the objective function), there is no need to

analyze the constrained case. Therefore, we will move straight into Transition 2.

Transition 2

SNLMPC

In this case, the control problem is much harder and the SNLMPC algo-
rithm produces unstable responses as we can see from figures 3.17 (Case
1) and 3.18 (Case 2). Case 1 and Case 2 represent simulations with

SNLMPC for different sets of controller parameters:

Controller Parameters (figures 3.17 and 3.18)
Case 1
Q@ = diag([1072 10 0.1 107?)) [ R=0 S=0
P=38 M=5
Case 2
Q = diag([107™* 1072 1 107*]) | R=10.011, | S=0
P=15 M=5

In Case 1 (figure 3.17), the state responses are highly oscillatory and show
significant offset. The manipulated variables oscillate around their stable
steady state values.

In Case 2 (figure 3.18), T,,, T, have large offsets once again (this time
without oscillatory behavior) and C,,, Cs. go unstable, increasing indef-
initely. Meanwhile, the manipulated variables settle to zero in only one
sampling time, leaving the system open-loop.

Thus, the parameter change from Case 1 to Case 2 causes a very different

unstable closed-loop response.
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Figure 3.17: FCCU: State and control responses for SNLMPC in the unconstrained
Case 1 (Transition 2).

CNTMPC

CNTMPC generates a stable closed-loop with the state variables settling

to the desired steady state in approximately eight sampling times (¢t = 4

h). The results are depicted in figure 3.19.

The controller parameters used in these simulations are given by:

Controller Parameters (figure 3.19)

P=12

Q = diag([107% 1072 1 107%))

R=0.011I,
M=6

Due to the severe degree of difficulty in this control problem, we will not be

considering the influence of input constraints. The main challenge which
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we have found in this case is to find a set of control parameters for which

the optimization is feasible in the vicinity of the unstable operating point.
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3.7 Example: 2-Degree of Freedom Robot

3.7.1 Robot dynamics

The top view and cross section of the robot are shown in figure 3.20. The workspace

of the robot is illustrated in figure 3.21.

The dynamics of the robot is represented by the following equations:

(J +mr2)o +2mrig = T (3.62)
pmi — pmré? = Ty (3.63)

Introducing Tp = Ts /p the following matrix description results:

J+mr? 0 mri mr T
SRam R B I (3.64)
0 m T —mr¢ 0 T T,
R g SR , g N . ,
M(q) g Clg:4) q T

where:

m mass of the cart

J the joint moment of inertia

#(t)  position of the robot arm ¢ € [0°...270°]

r(t) position of the cart re€[0.27m. . .1m)]

T12(t) the torque of the arm and the cart, respectively
q(t) the state vector [¢ 7]

Therefore, equations (3.62) and (3.63) can be rewritten as:
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Figure 3.20: Top view and cross section of the robot.

M(g) §+C(q,4)-¢=T (3.65)

The states of the system are: the position ¢(¢), the velocity ¢(¢) and the acceleration

¢(t) of the arm and the cart.

The parameters used in the simulations performed here are given by:

Parameters for the robot

m=10|J=6.43141 | p=1.0
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Figure 3.21: The robot workspace.

3.7.2 Simulation results

In this mechanical system, our goal is to take the robot arm to a specified position and
angle beginning at the origin. In other words, we have a setpoint tracking problem
at hand. This is a 2-input 2-output system where the outputs are the angle ¢ and

the position 7 and the inputs are the torques v := [T} T3].

The desired setpoint in these simulations is given by:

Setpoint
ro=08|dg=0|7 =0

$o =

wln

The initial condition is the origin.
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The unconstrained and constrained responses of our contractive MPC (CNTMPC)
algorithm will be compared to those produced by a standard nonlinear finite horizon

(SNLMPC) scheme, as we did for the previous examples.

Unconstrained case

Case 1

The comparison between the results obtained with SNLMPC and CNTMPC
can be found in figure 3.22.

15 =
7 0.6
1r 1 /
< / 0.4} 4
05 1/ SNLMPC (solid) /
) / 0.2¢
/ CNTMPC (dashed)
0 - 0
0 1 2 3 0 1 2 3
Time (t) t
4 - , 3
A
I
% 1/
oLl
32 ] (RN
J ¢\
O .\ o
0 1 2 3 2 3
t
100F | 1 20} }
I
i
= O : ! = = 10 :
[ Ori. 7
-100 | J—Ll_!_r;r‘v
-10 ==
0 1 2 3 0 1 2 3
t t

Figure 3.22: Robot: State and control responses for SNLMPC and CNTMPC in the
unconstrained Case 1.

The controller parameters used in Case 1 are given by:
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Controller parameters (figure 3.22)
Q@ = diag([10 10 1 1]) | R=0 | S=0
P=6 M=4|a=0.38

In all the simulations for this example, the sampling time is equal to 1" =
0.1.

We notice from figure 3.22 that the same response speed is obtained with
both algorithms at the expense of a slightly higher control effort from
CNTMPC (especially for u; := T}).

Case 2

The speed of the response obtained with CNTMPC can be increased if
we decrease the value of . This effect is illustrated in figure 3.23, where
the results obtained with o = 0.8 are compared to the ones obtained with

a = 0.3, while keeping the remaining control parameters unchanged.

We see that the response speed for @ = 0.3 has improved at the expense
of a higher control effort in comparison with the results obtained with
o = 0.8. Thus, « is not only a parameter for stability guarantee but it

also strongly influences the performance.

Constrained case

The simulation results for SNLMPC and CNTMPC are illustrated in figure
3.24.

The controller parameters used in these simulations are as follows:

Controller parameters (figure 3.24)
Q = diag([10 10 1 1]) | R=0 S =0
P=7 M=5 a=0.9
Unin = [~10 — 5] Umaz = [10 5]
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Figure 3.23: Robot: State and control responses for SNLMPC and CNTMPC in the
unconstrained Case 2.
The results show that the two controllers behave very similarly, with CNTMPC
being slightly more aggressive (within the constraint bounds) due to the pres-

ence of the contractive constraint.
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Figure 3.24: Robot: State and control responses for SNLMPC and CNTMPC in the
constrained case.
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3.8 Example: Continuous Stirred Tank Reactor

(CSTR) + Flash Unit

3.8.1 Description of the system

We consider now the application of our contractive MPC scheme to the process rep-

resented in figure 3.25.

F4) T47 C4

Fq, Ty, Cy Fy Ts Cs
} i_ ) )

F4:F2—F3
Ty=T;s

Figure 3.25: Schematic diagram of the CSTR and flash unit.

This process includes a continuous stirred tank reactor and a flash unit with a recycle
stream. The reactor model is based on an example of Economou in [41] where a

first-order endothermic reversible reaction is assumed to occur.

In figure 3.25 the variables C;, ¢+ = 1,2, 3, 4, are concentrations of B given in @8@
and F;, 1 = 1,2,3,4, are the flow rates given in % For simplicity, we will consider

that all the streams have the same density p = 1 { and that the concentrations are

equal to the molar fractions of A and B (this would be the case if the molecular
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weights of A and B are the same and equal in value to the density of the streams).
In this case, feed stream 1 contains F;C} g—m—(S)LE and Fi(1 — CY) gr_n_cs)l_é. In the
reactor, A is decomposed into B in a reversible reaction. B is the product in which

we are interested.

Accumulation in the reactor is possible in the transient phase. The flash is assumed
to operate at steady state (i.e., Fy = F3+F}) and no reaction takes place in it. Stream
2 enters the flash where B, being a more volatile species, can be obtained with higher
degree of purity in stream 3 than in the feed stream 2, depending on the operating

conditions. Ideally, stream 4 contains mostly A and small amounts of B.

The flash drum is also assumed to operate at constant pressure and temperature.
The liquid-vapor equilibrium constant for component B is assumed to depend only
on the temperature in the separator, T3. We assume that the fluid properties are
preserved in the recycled stream and that no time delays are present in the material

recirculation.

Our intention with the introduction of the flash and the recycle stream, is to increase
the molar fraction of B in the final product (stream 3, in this case) compared to
its molar fraction in the reactor C,. We will see that depending on the operating

conditions, the obtained product can be very significantly purified.

This is a SISO system where the output is Cs, the input is 73 and the three states are
V, Cy, T3. The control objective is to operate the system at the point of maximum
conversion of B in stream 3. The coordinates of V, C,, T, and T3 at the equilibrium
point of maximum conversion can be computed by using the three equations of the
model and the condition of optimality, namely %—% = (. Thus, this optimal operating
point is a point of zero steady state gain, which makes it difficult for linear controllers

to stabilize the system around this point with satisfactory performance.

We will see that while the manipulated variable T3 does not have much influence on

the value of Cy, it can increase C'3 to much higher levels. In other words, the output
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is highly sensitive to input values.

3.8.2 CSTR 4 flash dynamics

The dynamic model of the process, including dynamic balance equations for the

reactor and algebraic equations for the connecting streams, is described by:

Reactor equations:

av

VC
d‘(——dt—Q) = F16’1 -+ F4C4 - FQCQ -+ |% T(TQ, 02) (367)
dVT) = N+ FT,— FTL,+V (ZAH) r(Ts, Cs) —
dt C,
UA
- o - i) (3.68)
p

These equations can be re-written in a simplified form as:

av

¥ R+R-R (3.69)
d F FiCy — F,—
Gy _ (RCi+ A, = G +7(T, Cy) — Cy (B + Fa = 1) (3.70)
dt % V
dl, (AT + F15; - Fy1;) | (-AH)
dt - V + Cp T(T2a C?)
UA'1 (F1+F4—‘F2)
- — = (T —-T,)-T: 71
o7 BT Ty (3.7)
Flash equations:
C; = K.(T3) Cy (3.72)
F, = F5+F (3.73)

BECy, = F;C3+ FuCy (374)
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Mixed equations:

r(Ty,Cy) = Kn(Ty) (1—Cy) — Kpo(Ty) Cs (3.75)
Kn(Ty) = A, e BaiT2 (3.76)
Ko(Ty) = Ay e a2l (3.77)
K.(T3) = al107%T (3.78)
F, = kV (3.79)
Fy, = BF, with >0 (3.80)

The numerical values of the parameters used in the simulations are (for a compatible

set of units which are omitted here):

Parameters for the CSTR + flash unit
Ci=0 Ty =45
Fi=179%x107% | a =211 x 10*

A; =5.0 x 10 b=18.5

Ay =1.0x10% | (Z2E)=5.0 x 1072

CP
E, =45 (&) =135%x107
Eun =175 B =1.32
T, = 6.0 k, =05

3.8.3 Computation of steady states

The first step in the study of this system is the computation of steady states. Given a
steady state input value u** = T3° we can then compute the steady state coordinates

through the following equations:

Vss — _:i (1+ﬂ) (381)
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Krl (Tzss) + Giky

cp = R .
Kn(T3°) + Kra(T5°) + ko i)
~AH  1+8 ud, 1

_ EE] S8y __ ) TSS
0 = ( c, ) () @t ) [1+5+(CP)F1} 7

UA, T
UA T, s 3.
(Cp)F1+ 1+ 015 (3.89)

Thus, the volume V*® and reactor temperature 75° are computed directly through
equations (3.81) and (3.83), respectively. The concentration Cyss can be computed

through equation (3.82) once T3* is known.

For the chosen plant parameters and for 735° in the operating region of interest, we
have verified that the computed steady state is unique and stable. Besides, for given
steady state coordinates V**, Cs5°, T5* there is only one corresponding input value

88
Tss.

In spite of the absence of steady state multiplicity, one of the interesting features of

this example is the high sensitivity of the output (C3) with respect to the input (73).

The output C5 is computed by:

C,
Cs = [ Bh R (3.84)
koV  Ke(T3)
At steady state, equation (3.84) reduces to:
Ko (T5°) (1+ 6)
Cy = ¢y ! 3.85
From equation (3.85) we see that, for K, = 1 (which implies that T3 = I-(E?O-E =

T; = 4.2782), we have C§* = C5°, which means that there is no advantage in having
the separation unit after the reactor. If K. < 1 (or T3 < T5) we have C§* < Cs*.

Therefore, we are only interested in operating the plant at 73 > T7.
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From equation (3.85) we also notice that, C§* = C35* if 3 = 0. Large values of 8 will

increase the value of C§° for high values of T3. However, if T3 is low, limg_,oo C§° =

The coordinates V, Cy, T2, T3 of the point of maximum conversion are computed by

using equations (3.81, 3.82, 3.83) and the following equation:

dC: 1+ dCy dT: C. dK,
> = ( ﬂ)[Ke—-%——z+ﬂ 2 =8 =0 (3.86)
dls K.+ dly dil3 K.+ (3 dI;
where:
ﬁ(g K log,ga
dT; ¢ T2
dC2 Krl Ealkae kvcl Kr2
e Krr E - Ea + - Ea +Ea
dT2 T22(K7-1 +K7'2 +kv?§_j—_ﬁ)2 [ 2( al 2) Ke +B 1 +,3 ( 1 2 Krl)]
ar; _ (45) + (B s Ry phe T
df: 1+ (B mamm + (5 H)Tg Tk K (Ke + B)(Eax — Ear) = koK Eai

For the chosen plant parameters, the steady state of maximum conversion has the

following coordinates:

Steady state values for the CSTR + flash unit
TS = 6.109444 | V5 = 8.3056 x 1072

C3* = 0.459498 | T5° = 5.454972

C3* = 0.999338

Thus, operation at the steady state of maximum conversion gives us a product con-

taining 99.93% of B.

Our control objective is to drive the system to the operating point of maximum
conversion and keep it there starting from arbitrary initial conditions or from steady

states of low conversion of B.
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3.8.4 Simulation results

In the following simulations we will demonstrate the stabilizing properties of contrac-

tive MPC (CNTMPC) for this chemical process example.

Case 1

In Case 1, we will perform a steady state change from a steady state of low flash
temperature 73° = T3, which means that C§° = C5°, to the optimal operating
point. The results will reveal a high sensitivity of C5 to T3 while C, varies very

little in this operating range.

We will examine the situation where the system is operating initially at the

following steady state:

Initial condition
T30 = 4.278166 | V;, = 8.3056 x 1072
Cop = 0428721 | T, = 4.43389

)

03,0 = 0.428721

Thus, the system operates initially in a very undesirable regime with Csg =
C20 < 45%. In this operating region, one can see no advantage in using the

separation unit after the reactor.

Notice that since the parameters and operational variables are the same for the
chosen initial condition (which is a steady state) and the target steady state,
the initial and final volumes are also the same (see equation 3.81, where it is
shown that the steady state value of the volume does not depend on the input

or the other states).

The input and state variables which will be plotted for the CSTR+flash example
are the deviation variables with respect to the desired target steady state values.

However, for better illustration of the behavior of the output C5 in comparison



with the concentration in the reactor C'g, the real values of these variables will

be plotted in the same graph.

The simulation results in the unconstrained case can be found in figure 3.26.
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Figure 3.26: CSTR + Flash: State and control responses Case 1.

The controller parameters used in Case 1 are given by:

Controller parameters (figure 3.26)

P=1

Q = diag([1 100 1])

R=0
M=1

S =0
a=0.1

In the simulations for this example the sampling time is equal to T = 10.

As we can see from figure 3.26, the controller performs a very smooth transition
to the steady state of maximum conversion and the response occurs in two

sampling times with very little control effort involved.
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Notice that since the point of maximum conversion is open-loop stable, we were

able to impose a very tight contraction requirement (o = 0.1) in only one time

step.

Case 2

Since the control effort involved in Case 1 was very small and we could not
examine the influence of input constraints, let us now consider the following

initial condition:

Initial condition

T30 = arbitrary |V = 1

I E]

03’0 —_ O

A comparison of the results obtained in the unconstrained and constrained cases

can be found in figure 3.27.

The controller parameters used in Case 2 are given by:

Controller parameters (figure 3.27)
Q = diag(]1 100 1)) | R=0 S=0
P=1 M=1 a=04
Upmin = 0 Umar = 0.0

From figure 3.27 we can see that tight input constraints do not delay the re-
sponse, the system still responds in two samples. This fact is due mostly to
the fact that the optimum is an OL stable equilibrium. The plot of Cy, C3 x ¢
shows that the sensitivity of C3 to variations in 73 in this transition is more

than twice that of (5.

In conclusion, our contractive MPC scheme is able to perform the transition from

arbitrary initial conditions to the point of maximum conversion, where almost pure
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Figure 3.27: CSTR + Flash: State and control responses in Case 2.

B is produced in the distillate of the flash drum, in spite of the high sensitivity of the

model to the input values of T5.
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Chapter 4 Output Feedback Contractive
NLMPC: Nominal Case

In this chapter we will be dealing initially with the following control problem:

Problem 2 : State feedback, nominal case and asymptotically decaying disturbance

Later we will show that this problem is equivalent to dealing with the output feedback

case when the state estimator is asymptotically convergent.

4.1 Introduction

In the previous chapter we have shown that, in the case of no model/plant mismatch,
state feedback and no disturbances, the contractive constraint makes the closed-loop
exponentially stable for all initial conditions zy € B,. It has been proven that if the
sequence of optimal control problems P(tx, 2%), k > 0, is feasible (or, equivalently, if
xr, € B, for all k > 0) then the contractive MPC scheme is an exponentially stabilizing
controller inside the reachable set X'. Moreover, we have shown that the commonly
used quadratic objective function with finite prediction horizon is a Lyapunov function
for the closed-loop system in the presence of the contractive constraint under extra,

more conservative assumptions.

Now we will examine the stability properties of the closed-loop system subject to
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Control Algorithm 2 but now under the conditions in Problem 2. Thus, our

plant is now given by the following dynamic equation:

2P (t) = (2P (1), u(t)) + d(t) (4.1)

where the additive disturbance d(t) belongs to a compact, convex set D with

0 € D° := interior(D) and is asymptotically decaying, i.e.:

d(t) > 0ast— oo (4.2)

And the model (used in the prediction step of the MPC scheme) is given by:

z(t) = f(x(t), u(t)) (4.3)

It is important to notice that even an exponentially decaying disturbance
(d(t) < ae™®, where a,b > 0) can destabilize a nonlinear system, possibly result-

ing in finite escape time (as observed in [86]).

Thus, our main motivation for demonstrating perturbed stability for MPC is to show
that a stable state estimator may be cascaded with a stabilizing controller with no
risk of instability (given that certain conditions on the initial state estimate and on
the nonlinear dynamics of the plant are satisfied). This has been done in the context
of predictive control with linear models (see [93]). The result relies on exponential
stability of the state estimator (usually a Kalman filter), asymptotic nominal stability

of the system with state feedback and Lipschitz continuity of the control law.

In the nonlinear context, however, stable state estimators are difficult to formulate,
let alone exponentially stable ones. Here we will show that this problem can be cir-

cumvented and our result is that any asymptotically stable nonlinear state estimator
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may be cascaded with the proposed exponentially stabilizing nonlinear MPC con-
troller to produce an asymptotically stable closed-loop response. This property has
been previously demonstrated in [114] for discrete-time nonlinear systems of the kind
Try1 = f(zp, ug) +dg, k € [0,00). In that work, the authors conclude that the closed-
loop system generated by applying MPC with end equality constraint, zx,.p = 0, to a
system subjected to an asymptotically decaying disturbance, i.e., dy — 0 as k£ — oo,
is asymptotically stable. The authors suggest that this asymptotically decaying dis-
turbance could originate from a state estimation procedure but they do not proceed

to formulate a stable observer for the nonlinear system.

The formulation of stable nonlinear state estimators is an active area of research.
An estimator based on minimization of a moving horizon cost function is presented
in [100, 111]. Another variation of this technique is presented for continuous-time

systems in [97].

The estimator proposed here is a recursive nonlinear dynamic observer based on
a continuous-time system with discrete observations and we will provide sufficient
conditions under which this estimator produces locally asymptotically convergent

estimates.

But first let us show that Control Algorithm 2 applied to a system of the form
(4.1) subject to a disturbance of the kind (4.2) results in an asymptotically stable

closed-loop system.
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4.2 Stability of MPC under asymptotically decay-

ing disturbances
4.2.1 Basic stability definitions

Consider a nonlinear system of the kind: #(t) = f(z(¢)) with initial condition zq at

to and f: R™ — R”™ continuously differentiable.

Definition 4.1 The equilibrium x = 0 is uniformly attractive if there exists a number

r > 0 such that

Il zollp< T, t0>0 == x(t,to,z0) =0 as t - o0, wniformly in zo,t, (4.4)

or, equivalently, if for each € > 0 there exists a T = T(€) such that

| zo [l[p<7, t0>0 = || z(t,to,x0) [lp< €, YVi>T(e) + 1t (4.5)

Definition 4.2 The equilibrium x = 0 1s uniformly stable if, for each ¢ > 0, there

exists a & = 0(€) such that

| zo llp< 0(€), to >0 == [zt to,20) [[p<e, VE>t (4.6)

Definition 4.3 The equilibrium x = 0 s asymptotically stable if it is stable and

attractive. It is uniformly asymptotically stable if it is uniformly stable and uniformly

attractive.

These definitions hold for any p—norm (or Hélder norm), with p > 1.
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4.2.2 Basic assumptions

Besides assumptions 3.1, 3.2, 3.3 and 3.4 in chapter 3, the following additional as-

sumptions will be made in the derivation of the results in this chapter:

Assumption 4.1 The disturbance satisfies the following boundedness condition:

di(t) € By :={d € R":|| d||p< pfi} for pf €[0,00), t € [tx, tx + PT), Yk >0,
(4.7)
and the asymptotic properties of d(t) are described as:

For any e > 0,3 a finitek := k(e) € N so that p} <e, Vk € [k, 0),

and k(€) = 0o if e =0

where N is the set of non-negative integers.

Assumption 4.2 The function f : R* xR™ — R" is Lipschitz continuous, i.e., there

exists L > 0 such that

| faP,u) — f(Z,u) ||[p < L ||2P—2Z||p, 2P, Z€R" and ueld (4.8)

Remark 4.1 Let the reachable set for the closed-loop system resulting from imple-
mentation of Control Algorithm 2 to the plant (4.1), using the model (4.3) for

prediction, be defined by:

X = {a"(t),2(t) end z(t) € R* | 2P(t) = 2” (¢, bo, 70, u, d), x(t) = z(t, b, 25, u, 0)

and Z(t) = Z(t, to, 20, u,0), t € [to,00); 2 € B,, u € U, d € D} (4.9)

Then, equation (4.8) only needs to be satisfied for 2, T € X. The reason why we
do not state assumption 4.2 in this less conservative way is because the set X is not

known a priori. Thus, in this form, condition (4.8) cannot be checked.
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4.2.3 Stability analysis

Before the main result of this section is proven, we will prove the following lemma
which will be very useful in our stability analysis of different variations of the con-

tractive MPC controller throughout this thesis.

Lemma 4.1 Consider the discrete linear system:

Zpy1 S Qpzg + b, keN (410)

If ar, € [0,1) and b, > 0, Vk € N, then system (4.10) is stable in the practical sense,

1.€.,

1. Z/C<Zo+—m&—, Vk e N

2. im0 21 < bmaz

1—amaz

where Gpmae = MaXgeny Gg aNd by = Maxgey by.

Proof: From equation (4.10) it follows that:

k-1 k-1

H ai)zo + > ( [I a;)bi (4.11)
1=0 j=i+1
Therefore, we have:
k
2k < aF .20 + bar 3 alin ) (4.12)
i=1
Since amez € [0,1), we get:
(i—-1) 1
lim Z amaz —_— (4.13)

k—)oo - Gmaz
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Thus, from (4.12), it follows that:

brnaz
2 < agmeo + —, Vke N (414)

1~ Amar

Since amaz € [0,1), we finally obtain:

b
2 < 2zp+ i——'r—n;i", Vk e N (415)
and
m z D — .
k—ro0 b= 1 — Gmaz
O

Theorem 4.1 (Stabilizing properties of Control Algorithm 1 in the pres-
ence of asymptotically decaying disturbances) Let Assumptions 3.1, 3.2, 3.3,
3.4, 4.1 and 4.2 be satisfied and let 2%, T € B,, Yk > 0. Then, the closed-loop sys-
tem resulting from application of Control Algorithm 1 to system (4.1) is uniformly
asymptotically stable (UAS).

Proof:

The difference between the dynamics of the model and of the plant for t € [ti,tiﬂ],

18 given by:

£29(6) — (1) = £ (1), ud (1) — (b0, ul(0) + i) (417)
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Then, since the states of the model are updated as the states of the plant at every ti,

j=0,...,P—1, Yk >0, we can integrate (4.17) and obtain:

)~ wl(t) = [ (), () — FL) uldr + [ diryar  (419)

Therefore, using (4.7) and (4.8), we have:

196 -0 s < [ 1S ),ulr) ~ Fedn), ) I dr +
b [l 11p dr <
L[N af9() =) lp dr o+ [ 1 di(r) lp dr <

< L[ o) = 5h) Nl dr 4+ it~ ) (4.19)

IA

Using the Bellman-Grownwall (BG) inequality and evaluating the right-hand-side of
(4.19) at t =t | it results that:

I 237 (8) — 2} (t) | p< pTe"T (4.20)

1

Thus, for 7 = P — 1, we have:

| Zhir — Trs1 lIp < piTeLT (4.21)

Since the trajectory Z(t) used to compute the contractive constraint is only updated

with the states of the plant at every iy, the following bound holds:

|| 22(t) — Z(t) || p < PEPTEMT, Yt € [ty typd] (4.22)



114
Due to the contractive constraint we know that || Tpi1 ||p< a || 2% || p, Vk > 0. Thus,

using the triangle inequality we have:

I iy o< |l 2} |l +oRPTe™™ (4.23)

Using assumption 4.1 and from equation (4.23), it follows that:

| 2h 1 |p< el 2% ||p +ePTe™T, vk € [k, o) (4.24)

Then, since o € [0,1) we can use the results of lemma 4.1 and obtain:

T gy LPT ) ePTet"™
| Thoyu lp= o 1 2 Ml +(Z%af )ePTe < o |lap s e V>0
(4.25)
Thus, by taking the limit as e — 0, we have:
lim |2, lp < o lim a2, lls (4.26)

and if now we take the limit as | — oo knowing that k(e) — oo for e — 0 and that

ol — 0 exponentially fast as ] — oo, we finally obtain:

fim (i | o llp] < (imo!) [lim o, lle] = 0 (@27)

or

e
Jim [ 2 {[p= 0 (4.28)

which means asymptotic convergence to the origin.
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So, we have shown that as long as 2%, z, € B,, it follows that 2t — 0 as k — oo,
k p k

which means that the origin is an attractive equilibrium point.

Let us now proceed to show that (z,u) = (0,0) is actually uniformly attractive. Using

(4.22), (4.24) and the triangle inequality, we get:

122 () <l Zx(t) | p +ePTe™™, Wt > tg =ty (4.29)

But we know from our transient state constraints that || Zx(t) |p< B || 2k ||p with

zh € B,. Thus, for each x§ € B,, ty > 0, we have:

| 2P (t, to, 28, u) || p< Bp+ ePTeT =€, Vi >ty = T(€) + (4.30)

This means from definition 4.1 that the equilibrium (z,u) = (0,0) is uniformly

attractive.

Let us now proceed to show that (x,u) = (0,0) is also uniformly stable. Using (4.22)

and the triangle inequality, we get:

122 (&) <1l Zr(D) | 4k PTEe™™ (4.31)

But we know that || Zx(t) || p< B || 2% ||p with «} € B,. Thus, from (4.81) we have:
| 5 (8) I5< Bp+ p"PTe"™ =: ¢ (4.32)

where p? := maxgen {pi}.

Therefore, from (4.32), it follows that p = g—“eﬁgg—?——m =: 0(€).
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With these definitions, we finally have the following result. For

H .’L’i “13< p = 5(5), t, >0 — ][ l‘p(t, tk,lik) ”15< €, Vt € [tk,tk+1], vk >0 (433)

From our definition of uniform stability 4.2 if follows that (z,u) = (0,0) is an

uniformly stable equilibrium point of the closed-loop system.

Since we have shown that (z,u) = (0, 0) is both uniformly attractive and uniformly sta-

ble we finally conclude, from definition 4.3, that (0,0) is an uniformly asymptotically

stable equilibrium point.
O

We have shown so far that if Control Algorithm 1 is well-defined, i.e., if 2%, 7 €
B,, Yk > 0, the origin is a uniformly asymptotically stable equilibrium point of the
closed-loop system which results from implementation of this control strategy on the

plant (4.1).

We shall now proceed to derive a sufficient condition on the disturbance d(¢) under
which the well-posedness condition is satisfied, i.e., a condition which guarantees that
zh, Ty, stay inside B,, the set of initial conditions for which P (¢, z%) is feasible for all

k> 0.

Theorem 4.2 (Feasibility condition) Using the Lipschitz assumption on the func-
tion f, 4.2, and on the disturbance, 4.1, if pg < ﬁ”%}%%w, then there ezists py € (0, p)
such that for all 2% € B,,, the sequences {ah}E_, and {Zx}r_, resulting from use of

Control Algorithms 1 or 2 are well-defined and stay inside the set B,.

Proof: In the proof of theorem 4.1 we have deriwed that:

|20 1 |p< el 2h || p +pePTeT < a|| 2% || p +p*PTe ™ (4.34)
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LPT

By defining 2 :=|| =} || 5, a := « and b := p?PTe and using lemma 4.1 we have

the following result:
deTeLPT

I % <l 28 11+

(4.35)
Now, if 2§ € B,,, the application of Control Algorithm 1 to system (4.1) assures

that the states at the end of prediction horizons are bounded by:

pd PT eLPT

P
I 1< oo+ 2

(4.36)

Therefore, a sufficient condition for the optimization problems P(ty,z%), Vk > 0, to

be feasible, i. e., {z}}32, € B,, is given by:

d p,LPT
p*PTe
> —_ 4.37
P> po-+ I~ ( )
or, equivalently,
d LPT
p*PTe ,
< p— —— 4.38
Po < p 1— o ( )
Thus, since pg < If(TleZ’;)T, it follows that po > 0 (or, equivalently, B,, is a non-empty
set).
So, we conclude that there exists py < p — M thus, py < p) so that if =} €
P 1-o
B,, C B,, then 2} € B,, with p > M, and P(ty, x) is well posed for all k > 0.
Po p k p 1—o k

Since from the contractive constraint we have || Zx1q [|p< a || 2% ||p and it has been
shown that 3 py > 0 such that for zfy € B,,, =i € B,, Yk > 0, then &1 € By,, C B,
and Ty € B,, C B,, Yk > 1.

Thus, we have proven that under the conditions of the theorem, the sequences {x}}32,

and {Z; }32, remain inside the set of feasible initial conditions, B,.
]
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By now we have shown that Control Algorithms 1 and 2 applied to the plant (4.1)
are well-defined and that they produce an uniformly asymptotically stable closed-
loop. Next we will show that this additive asymptotically decaying disturbance can
be produced by introduction of an asymptotically convergent state estimator in the
closed-loop system for estimation of the states of the nominal system (4.3). So our
next step is to propose a recursive dynamic observer to estimate the states of the
system (4.3) and study the conditions under which this nonlinear observer is asymp-
totically stable. Finally we will show that, under these conditions, the association
of our exponentially stabilizing contractive MPC controller and the state estimator

proposed in the next section, generates an asymptotically stable closed-loop.

Thus, we now address the following problem:

Problem 3 : OQutput feedback with asymptotically convergent observer in the

nominal case

4.3 Dynamic observers for nonlinear systems

4.3.1 Observer design

Designing an observer for a nonlinear system is quite a challenge. In our design
we follow guidelines similar to the ones used to derive the extended Kalman filter
(EKF). The extended Kalman filter is a well-known standard linearization method
for approximate nonlinear filtering. The available literature is vast and we refer the

reader to [61, 76], and the references therein. In particular, in the context of param-
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eter estimation for linear stochastic systems, a fairly systematic and comprehensive

convergence analysis of the EKF is presented in [78].

Let us now consider a continuous-time dynamical system with discrete observations

and nonlinear output map:

i‘k(t) = F(.’Ek(t)), zk(tk) = T

ye = H(zy) (4.39)

fort € [tk, tk+1] and k > 0.

Remark 4.2 We will envision the system (4.89) as being resultant from implemen-

tation of Control Algorithm 1 to the following original system:

1/.)z,k(t) - f("/}x,k(t)auk(t))
Yyh = h(er, ur) (4.40)

where we have made a distinction between the states x(t) and ¥,(t) to allow for

dynamic feedback (instead of restricting ourselves to static feedback).

We assume that F' : R* — R and H : R® — R? are smooth, at least twice differen-

tiable, and therefore we define:
A(z) :=DF(z) and C(z):= DH(x) (4.41)

where D(.) := £(.) and A4, C are the n x n and p x n matrices of first derivatives,

respectively.

Motivated by the procedure commonly used for linear systems, we will construct an

observer for system (4.39) as an approximation to the corresponding deterministic
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estimator. Associate the following “noisy” system with (4.39):

a(t) = F(a(t) + Rywe(t), ze(te) =2, € [ty tis],

G = H(zx) +Rovg, VE20 (4.42)

As usual, we assume that zp, w(¢) and v(t) are jointly Gaussian and mutually inde-
pendent. Furthermore 2g ~ A (29, P5'), w(t) ~ N(0,1,) and v(t) ~ N(0,1,). We
also assume that the design variables R, R, and P, are always chosen such that R,

has rank n and R, and P, are positive definite.

Then let us propose the following structure for the nonlinear observer for the associ-

ated “noisy” system (4.42):

Estimation Procedure 1

Zx(t) = F(2(t)) + Pe(t) TCL(R,R) ™ ¢ — H(d1)], dolte) =: 2o (chosen) (4.43)

and P(t) satisfies the following differential Riccati equation:

Py(t) = —Pu(t) A(@x(1)) = A@@(8)) Pe(t) — Pot) Ru R, Pi(t) + QQx,  Polto) =: Po

(4.44)
where Cy := C(Zx) (analogous definition applies for Ax) and Qi = R;'Cy, for
t € [tk, tgr1) and Yk > 0.

Before we start our proof of asymptotic convergence of the estimator (4.43, 4.44)

when applied to system (4.42), let us make some useful additional assumptions:

Assumption 4.3 The linearized system determined by (Ag(z),Cx) (where Agx(z) :=
A(Zk(t)), t € [tk, ter1]), along the estimated trajectory of the observer (4.48, 4.44), is

uniformly observable, that is, (Ax(z), Cy) satisfies the uniform observability condition
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presented in [14, 38] for linear systems and in [118] for linear and nonlinear systems.

Assumption 4.4 Let A(z), C(z) be as defined in (4.41) and DA(z) := D?F(z) €
L(R™, L(R™,R")) and DC(z) := D?*H(z) € L(R", L(R?,R")). Then the following

norms are bounded:

[Al=swp AR and  [Cl=swp [CEI (@)
| D*F ||:= sup | DF() (| and || D*H = sup || D*H(:) || (446

Assumption 4.5 Let G(z,y) := H(z) — H(y) — C(y)(z —y), and suppose that there
exists G € [0,00) such that || G(z,y) | G || D*H || ||z —y || for all z, y € R".

Remark 4.3 From the mean value theorem and continuity of the function G(z,vy),

we can always compute G € [0,00) such that assumption 4.5 is satisfied.

Under assumptions 4.3, 4.4 it is possible to show that the error covariance P(¢)™!
and its inverse P(t) are uniformly bounded (see [14] for derivation of these bounds).
If assumption 4.3 holds then, since R, is positive definite, we have that (Ax(z), Q)
is a uniformly observable pair, that is, there exists a bounded Borel matrix-valued

function A(z) such that

V (Ag(z) + A@)Qp)v < —ag || v |2, a9 >0, Vo€ R and k> 0. (4.47)

In addition, we assume that the pair (Ax(z), R,) is uniformly controllable Vk > 0,

that is, there exists a bounded Borel function I'(z) such that

1 (Ar(z) + RoD(x)p < Bo | w113 Bo >0, Vz € R and k > 0. (4.48)
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Then one can prove that the covariance matrices satisfy the following bounds:

Ry |2+ A 2 _
| Ry |I” + 1| Al — g

1P < ) B e (4.49)
0
— _ 2 r 2
1Pe1 s R AEIEE (4.50)
0
where || @ = maxicr || Qe [l | T 1= supyeqe || T&) [ and || A = sup,eqn

Il A(z) ||. Proof can be found in [14].

These bounds p and § are functions of the design parameters P,, R, and R,, and the
given nonlinear functions F' and H. Also, let R,, be such that RwR;U > rl, for some

r > 0.

4.3.2 Asymptotic convergence

We wish to prove that the system (4.43, 4.44) is an observer for the nonlinear system
(4.42). We will see that this is possible provided that we can bound the region where
the initial condition lies and provided the second derivatives of F' and H are not too

large.

We should point out that the stability proof will be given for the noise-free case, that
is, even though in equation (4.43) we have used the true measurements (x, in the next
theorem we will substitute this real measurements with the “noise-free measurements”

i (as it is normally done for stability analysis purposes - see, e.g., [14, 118]).

Remark 4.4 Proofs of asymptotic convergence of nonlinear observers applied to both
continuous-time systems with continuous observations and linear output maps and
discrete-time systems with discrete observations can be found in the literature [14, 118,
117] but here we are addressing the observer design problem for nonlinear continuous-

time systems with discrete-observations and nonlinear output maps.

The reason we choose a continuous-time representation for the nonlinear system is
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that most systems are modeled by a set of differential/algebraic equations in continu-
ous time and, in general, there is no closed-form discrete description for these systems.
The discrete observations are also a much more reasonable assumption since, in re-

ality, measurements are always taken at discrete periods of time, rarely continuously.

Theorem 4.3 (Stability region for the nonlinear observer) Lett, =0 and as-

sume that

r

H Tg — .’f?g ” (p(DZF, DQH, pg, RU, Rw) < T (451)
P || Bl
with the function ¢ defined as:
1. Linear Output Map (yr = Cz, = H(2y) and, consequently, D*H = 0)
¢(D*F,D*H, Py, R,, R,,) :=|| D*F || (4.52)

2. Nonlinear Qutput Map

1 o
)2 | Cll ke | RyR, |71 G || D*H ||
(4.53)

@©(D*F, D*H, Py, Ry, Ry) :=|| D*F ||| +2(

h-RE-T

where K, is the condition number of the nonsingular symmetric matriz R, R, .

Then the dynamical system (4.43, 4.44) is an asymptotically stable observer for the
nonlinear system (4.39) provided that assumptions 4.3, 4.4, 4.5 hold. That is, there

exists a constant 6 > 0 such that

Virr = Vi = V(tier) = V(te) =l Péyewss I = | Pex [P< =6, V>0 (4.54)

B
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where Py, := Py(ty), the1 = te+T (notice that the notation used in this theorem differs
from the previous notation for t,, where tyyy =ty +PT) and V(t) :=|| P(t)ze(t) |2
will be shown to be a Lyapunov function for the closed-loop system which decreases

discretely, at sampling times ty, Yk > 0, for all initial estimates satisfying (4.51).

Proof: Let e,(t) := xx(t) — Zx(t) be the estimation error at time t € [ty, tg11]. Then,

from (4.43) and (4.39) we have:

éx(t) = F(zi(t)) — F(2x(t)) — Pu(t) ' Ci(RyR,) ™ [H (z4) — H(&)] (4.55)
Using assumption 4.5 we can rewrite (4.55) as:

éx(t) = F(zk(t)) — F(2(t)) — Po(t) 'CL(RyR,) " [Crex + Gk, &) (4.56)

—(ex(t) Pu(t)ex(t)) = 2ex(t) Po(t)[F(zi(t)) — F(2x(t))] — 2ex(t) QQrex —
~ 2e;(t) CL(RyR,) "Gy, — ex(t) [2P,(t) A(2x(2)) +
+ Py(t)RyR,Pi(t) — Q.Qxlex(t) (4.57)

where Gy == G(xy, Ty).

The mean value theorem states that:

F(a) - F() = | " DF(sa(t) + (1 — 8)3(t))dse(t / DF(3(t) + se(t))dse(t)
(4.58)

Thus, by ezpanding the operator DF (Z(t) + se(t)) around Z(t), we can rewrite the
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preceding expression as:

F(z(t)) — F(a(t) — 2E(&())e(t) = /O 1 /0 ' GD2F(3(t) + ooe(t))e(t)2do do (4.59)

Using equation (4.59), we can rewrite (4.57) as:

Slerlt) Peex(®)) = 2a(0)Belt) [ [ oD*F(an(t) + ooen(t))ex(t)dodo -
— e (t) Py(t) R Ry Pe(t)ex(t) + ex(1) QuQrex(t) —
— 2k (t) QuQrex — 26 (t) Cy(RyR,) "Gy <

ex(®) [l| Pe(t)2ex(t) || 5° ||| D2F || —;—QJekm +

+ () QuQulex(t) — 2] — 2x(t) Cy(R,R,)'Gy  (4.60)

IN

Since we are only taking measurements at discrete sampling times ti, k > 0, the most
we can expect is that the state estimation error at sampling times, namely e, k > 0,
converges to zero (but nothing can be said about ex(t), t € (tg,tk+1), Yk > 0). So,
as we said before, we are looking for a Lyapunov function for the closed-loop system

which decreases discretely rather than continuously.

Let us then evaluate (4.60) at time ty:

§g<ek<t>'ﬁk<t>ek<t>> bt < [l PZex | 5 || D2F || el -
— 26, C(RyR,) ' Gl || Quex |I°<
< [|| Biex | ﬁ%mD?Fm—q.%wu ex ||| Ci || x

ko || RoR, |7 GIID2HI|] || e |I? (4.61)

X
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Thus, if we have

_1 1 . / _ T
| Plex | B2ID°FIl+2 [l e [ 1| Ck || %0 | BB, |71 GID*HI|| < Z-1 1>0

(4.62)
Vk > 0, then, from (4.61), it follows that:
d, - ,
7 (ee(t) Fe(t)ex(t)) le=ee< = [l ex | (4.63)
But from (4.50) we have that:
oo | Pie |
e [I°=> 5 (4.64)
And thus, from (4.63) and (4.64) we obtain:
d = L Y = 1 1
[ I Be()2ex(®) | +3 | Pe(t)2ex(t) |I] =<0 (4.65)

Iftyy1—tp = T is sufficiently small, then inequality (4.65) will hold for allt € [tg, tr41)

and we can integrate (4.65) between t; and tyiq

/tk.,.1 d || Pe(t)2ex(t) ll+1dt) <0 (4.66)
v RO P /

which results in

_1
2% I
(e ly 17 (4.67)

g i
| Peex | P
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Thus, it follows that:

-1 .1 _ _1
| Peoren || < || Plex || €77 <|| Plex|l, VkeN (4.68)

Then, as a consequence of (4.68) we have that:

1 _1
| Fo'eo [l= max [| Pey || (4.69)

and

lexl<a® | 7 |l |l eo (4.70)

_1
Therefore, since G2 >|| P ||, a sufficient condition for (4.62) to be satisfied is given
by:
1 T

leo || ID2FI+2(D)% 1O |l wy | RE, |7 G [|D2H]|] < ()
P p2 || Pg |l ¢
(4.71)

It is straightforward to see that if the output map is linear (4.71) is reduced to:

1
1
2

IR

(=—7), 7>0 (4.72)

leo || ID*FI|l < =

p

[T

In conclusion, if (4.71) is satisfied then there exists § > 0 such that

Bof—

Virr = Ve =l Plern | = [ Plex [< =5, 6> 0 (4.73)

which implies asymptotic convergence of the state estimation error.
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Remark 4.5 If the output map were continuous then, under condition (4.51) and us-
ing continuity arguments, the proposed nonlinear observer can be proven exponentially

stable, i.e., there exist constants o, K > 0, such that

lz(t) — &) | K || 2o — 2o || €77, VE>0 (4.74)

Remark 4.6 As pointed out in [118], if the output map is nonlinear it may be locally
transformed via a coordinate change into a linear form provided the Jacobian of H
has constant rank. In order to obtain this result rigorously the noisy system has to be
constructed after the coordinate change since otherwise the noise terms become state

dependent.

Remark 4.7 An alternative way of posing the observer problem when we have known
controls is to replace F(zx(t)) and H(zy) by f(xk(t), uk(t)) and h(xk, ug) and assume
that assumption 4.3 holds with the following bounds:

1A = swfl Zo(eu) I o R uwe Ry, (4.75)
1CN = sup{l S ue) I o € R e € Bk 20}, (476)
ID%FIl = supf] 2L @) 1 o € B e wm, (@77)
IDHI = sup{l T ue) - 2 € R up e ROk S0}, (478)
(4.79)

Then theorem 4.3 holds with the appropriate replacements. However, as we already
mentioned, assumpition 4.3 is closely tied with the observability properties of the sys-
tem, which can be input dependent in the nonlinear case. Then, when known controls
are considered the standard observability analysis s modified to “uniform observabil-

ity” in the inputs (see [56]).
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4.4 MPC algorithm with state estimation

the following way:

Control Algorithm 3

In order to include state estimation, Control Algorithm 1 has to be modified in

Data: Initial Conditions: to and Z,; Controller Parameters: P,M,Q,R,S, f’,a,

T, Umin, Umaz, DUmaz; Observer Parameters: Py, R,, R,,; Output measurement

at to T Yo.

Step 0: Set k=0, j=0.

Step 1: Solve the optimal control problem P(t,, 1) specified by:

. tJ+P 3 !
MINy (kP4 jkP+7),u(kP+j+M—1kP+j) ft{ zh(t) Q zi.(¢t) dt +
+ 3P u(kP +j+ilkP +j) Ru(kP+j+ikP+j)+

+ M Au(kP + j +ilkP +5) S Au(kP + j +i|kP + j)

subject to:

4 . . . . . .
z(t) = f(xl(t),ul(t)), zi = T}, := estimated states at 1],

Umin < (kP + 7+ ilkP + 7) < Umaz, 1 € [0, M — 1]
$ JAUkP + § +ilkP + §)] < Atmga, € [0, M — 1]
Au(kP+j+ilkP+35)=0, i€ [M,P]

1L (#) o< el 3 [l @ €[0,1)

() = f(E(),wl(t), with1d =iy and &, = 22" (&), forj > 1

(4.80)

(4.81)

(4.82)
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s the trajectory of the model which is not updated with the estimated states of
the plant at tf; for j € [1,P —1]. The states a’cfc(t) are only updated with the
states of the estimator at t = t, + PT =:tL, i.e., at intervals of one prediction

horizon.

Step 2: Apply the first control move, u(kP + j|kP + j), to the real system for t €
[ti, tiﬂ], measure the output at tﬁl, yi“, and estimate the states of the system
at 51 (i.e., obtain i) using the following equations with initial conditions

2 pJ .
Iy, and Py

B = @), wkP +jkP +5)) + BI()"(CL) (R.E,)™ x
x [y} — H (&}, u(kP + jkP + j))] (4.83)

with

= j

Py(t) = =Pl () A(&(8)) — A&, (1) PL(t) ~ PL(t) Ru R, PL(t) + (QL) QF (4.84)

where t € [t], "],

Result of the estimation: &5 = #1(t/™") and PI*' := PI(t]™).

Step 3: If j < P—1, set j = j+ 1 and go back to Step 1. Ifj = P — 1 set

B = de =2F, th =tk =t, k=k+1, =0 and go back to Step 1.

where we have used the notation xy := 2,y := y2 and Py := F,.
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4.5 Stability properties of contractive MPC +

nonlinear observer

In section 4.2 we have shown that contractive MPC applied to a nonlinear plant
subjected to an asymptotically decaying disturbance is uniformly asymptotically sta-
bilizing. Then in section 4.3 we proposed a nonlinear state estimator and showed that
if the initial estimation error and the nonlinearities are “small” then this estimator

is asymptotically stable.

Now we will formally enunciate the main result of this chapter, that is, that Control

Algorithm 3 is uniformly asymptotically stabilizing for a set of initial estimates.
In the state feedback case, the state evolution of the model used in the prediction

step of the contractive MPC algorithm at time step k is given by:

n®) =+ [ F(oe(r), w(r) dr, W€ [ty + PT] (4.85)

b g,
which makes it equal to the state evolution of the plant.

In the output feedback case, the trajectory of the model is given by:

t
() = & + /t  flai(r), uk(r)) dr, Vit € [ty t + PT) (4.86)
ky Lk
The difference between the two model dynamics can be represented by an additive

disturbance, i.e., the output feedback case is equivalent to the state feedback case

modified to:

x(t) = f(or(t), up(t)) + de(t) with z4(ty) = o7 (4.87)
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If di(t) = d, = constant for ¢t € [tg, tx + T, integration of (4.87) results in:

t
QIk(t) = LC% + . P f(xk('r), ’U,k(’l')) dr + dk(t - tk) (488)
ki Ty
Thus, we want to compute di so that it represents the difference in the dynamic
behavior of the model caused by the estimation, i.e., the states in equation (4.88)

have to be equal to the states in (4.86) for any t € [t, tx + T]. Thus, by subtracting

equation (4.86) from equation (4.88) and evaluating at ¢t = tx + T, we have:

N tr+T tp+T
AT =& —af+ [ flan(r),us(r) dr - /t  flak(n),u(r) dr - (4.89)
s Tk ki T
Therefore, if e, := 2} — &) we obtain:
. - ~ _ F A N
dy = e + F(:Ck + €, Uk) (xk, Ug) (4.90)

T

where the function F: R* x ™ — R” is defined by:

t2

f@(r),u(r)) dr = F(z(t2), u(t2)) — F(2(t1), u(tr)) (4.91)

t1

If F is Lipschitz continuous, i.e., if there exists Lp € [0, 00) such that:

| F(z1,u) — F(zg,u) || < Lp || 21 — 22 ||, Vz1, 22 € R" and ueld (4.92)

then, from equation (4.90), we have the following bound:
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- L Lr+1
ldi | < Lr |lex || with Lp:= FT (4.93)
From the results of Theorem 4.3, we can then find Ly € [0, 00) such that:
_1 _1
Ple 2
s el el < LB Dyt w0 o
p2

So, onto this chapter’s main result:

Theorem 4.4 (Closed-loop stability with output feedback) Let py, p € (0, 00)
be as defined in equation ({.94) and Assumption 3.3, respectively. Let z}, Iy, %) €
B,, Vk > 0, and z{y, € B,,, with py := p — ﬂil?f:—lji, and let the initial estimate of
the states &g be such that ey and the functions F' and H (i.e., the system dynamics
after implementation of the control law - see equation (4.39)) satisfy condition (4.51)
for the chosen observer parameters Py, Ry, Ry,. Then, if p¢ < %}?}%, the control
problem 1s well-posed, the observer produces asymptotically convergent estimates and

the resulting closed-loop system is uniformly asymptotically stable.

Proof: The proof follows straightforwardly from Theorems 4.1, 4.2 and 4.3 (and the

assumptions made in their derivations) and equation (4.94).
|
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4.6 Example: van der Vusse Reactor

4.6.1 van der Vusse reactor dynamics

A benchmark problem for nonlinear control system design based on a continuous
stirred tank reactor (CSTR) is described in [29, 43, 50]. The reactor is considered
at an operating point where optimal yield with respect to the desired product is
achieved. Operation at this point is very desirable for economic reasons but can
considerably complicate the control system design. In particular, this benchmark

problem is characterized by two interesting features:

e The steady state gain changes its sign at the operating point. Therefore, linear
controllers will not be able to stabilize this reactor and accomplish satisfactory

performance [98].

e The zero dynamics changes its stability properties at this operating point. There-
fore, the qualitative behavior of the CSTR differs considerably for different

setpoints and disturbances.

A more detailed discussion on the reasons and implications of these features can be

found in [65].

The reactor under consideration is a continuous stirred tank reactor in which cy-
clopentenol is produced from cyclopentadiene by acid-catalyzed electrophylic hydra-
tion in aqueous solution. The description of the system used here is the same as
in [64] with the only change being that the dynamics of the jacket used to cool the
reactor are not taken into consideration (the fluid in the jacket is assumed to be at
constant temperature). Details on the derivation of the chemical parameters and the

chemical background can be found in [64].
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Figure 4.1 shows a schematic diagram of the reactor. The main reaction is given
by transformation of cyclopentadiene (substance A) into the product, cyclopentenol
(substance B). The cyclopentadiene also reacts in an unwanted parallel reaction to
originate the by-product dicyclopentadiene (substance D). Furthermore, cyclopen-
tanediol (substance C') is formed in an unwanted decomposition of the product cy-
clopentenol. This so-called van der Vusse reaction is represented by the following

reaction scheme:

B
24 B8 D (4.95)

‘| }
Q= kWAR(OK —_ 0)
A, B, C, D

Figure 4.1: Schematic representation of the van der Vusse reactor.
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The flow F fed to the reactor contains only cyclopentadiene (substance A) with
concentration C4o and temperature §y. The temperature of the fluid in the cooling

jacket is equal to fx and is considered constant.

The dynamics of the reactor are described by the following nonlinear differential
equations which are derived from mass balances for substances A and B and from

energy balance for the reactor:

F

Cas = —k(0)Cy— ks(8)C% + v (Cao — Cl), Ca>0 (4.96)
Gy = k(6)Ca~ k(0)C5 ~ T Cs >0 (4.97)
. 1 )
0 = ﬁb—a{AHRABkl(g)OA -+ AHRBck2(0)CB -+ AHRADk‘g(H)Cﬁ] -+
¥4
F kw AR
— (6, -6 .y 4.98
+ V(o )+p0pv(0x ) (4.98)
y = Cg (4.99)

where C'4 and Cg are the concentrations of A and B, respectively, @ is the temperature
in the reactor, u := —‘F7 is the flow rate to the reactor and it is the manipulated variable
for this system, @ := kw Ag (0 —0k) is the rate of heat exchanged between the reactor
and the surroundings and C4o, 0y are the concentration of A and the temperature
in the feed stream, respectively. The reaction rates, k;, ¢ = 1,2, 3, are assumed to
depend on the temperature via the Arrhenius law:

E;
0(°C) + 273.15

ki(0) = ki exp( ), i=1,2,3 (4.100)

where 6(°C) means that the temperature 6 should be expressed in Celsius degrees
in this equation. F;, ¢ = 1,2,3, are the activation energies for the three different

reactions occurring in the system.

Values for the physical and chemical parameters in the equations of this model are

the following:
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Parameters for the van der Vusse reactor

k1o = 1.287 x 102 h™! koo = 1.287 x 102 b1
kso = 9.043 x 10° — 1 | By = 9758.3 K
E, = 9758.3 K E; = 8560.0 K
_ kJ _ kJ

AHp,, =42 5 AHpy, = —11.0 =49=
AHp,, = —41.85 | p=0.9342 kg/1

_ kJ o 3
kw = 4032.0 H—Ik{l—n? Ap = 0.215 m?
Ca0 = 5.10 mol/1 6, = 378.05 K
O = 386.05 K

4.6.2 Computation of steady states

We desire to operate the reactor at an equilibrium point where optimal yield with
respect to product B is achieved. The yield ® of product B is defined as the ratio
between product concentration Cp at steady state (Cj) and the concentration of
reactant A in the feed, Cyy, i.e.,

cy

o = 4.101
Cus (4.101)

and is a measure of the effectiveness in the production of B. This optimal operating
point is found by optimization of the steady state yield with respect to the steady
state flow (a design variable), u®® := gss. The coordinates of the optimal operating

point are given by:

Steady state values for the van de Vusse reactor
u'® = 14.19 h™! C% = 2.2291 mol/1
C¥ = 1.0887 mol/l | 6*° = 386.0518 K
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4.6.3 Simulation results

Here we will compare the nominal performance and stability properties of our contrac-
tive MPC (CNTMPC) scheme with those of a standard nonlinear MPC (SNLMPC)
algorithm, when applied to the van der Vusse reactor, in three different situations

(for both the unconstrained and constrained cases):

(1) No disturbances.
(2) Exponentially decaying additive disturbances.

(8) Output feedback case with use of an asymptotically convergent observer for com-

putation of the state estimates.

The plotted variables for the van der Vusse reactor are the deviation variables with

respect to the desired steady state (the point of maximum conversion).

In all the simulations for this example, the sampling time is equal to 7' = 0.1 h.

(1) No disturbances

Unconstrained case

Case 1

The results obtained for simulations with SNLMPC and CNTMPC for the

following initial condition

Initial Condition

Cao=1{Cpy=1]0 =150

are shown in figure 4.2.

The controller parameters used in Case 1 are:
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Figure 4.2: van der Vusse CSTR: State and control responses for SNLMPC and

CNTMPC in the unconstrained Case 1.

Controller Parameters (figure 4.2)

Q = diag([0 1 0.5])
P=4

R=0
M =2

S=0
a=0.7

We notice from figure 4.2 that the output response (Cp) for both controllers
is very quick as the conversion of B can be brought to its maximum in
about two sampling times. However, while Cy and 6 are brought to zero
in only one sampling time by the CNTMPC controller, they show large
offsets when SNLMPC is used. The fact that C4 is not weighted in the

objective function explains the large offset displayed by this variable.
The same explanation applies for the offset in the input variable. The pres-

ence of offset is mostly due to the fact that we have only one manipulated

variable and three states, so there are insufficient degrees of freedom in




140
the SNLMPC formulation to bring all the states to the origin. Moreover,
since we wish to operate the reactor near the point of maximum yield,
additional difficulties (which we have discussed in section 4.6.1) contribute

to the poor performance of SNLMPC.

The presence of the contractive constraint in the CNTMPC algorithm is
what makes it possible to set all the states to zero in about the same time
(it imposes an additional performance requirement which is not present in
SNLMPC). Furthermore, we notice that the maximum control effort for the
CNTMPC is equal to u = 3.1 x 1073, while for the SNLMPC, it reaches a
maximum higher than v = 6.1. In both cases, we have let the optimization
routine find the initial guess for the input values so the poor performance

of SNLMPC cannot be explained by inappropriate initialization.

Case 2

Since the control effort was rather small with the CNTMPC controller for
the initial condition of Case 1 (even though it represents a considerable
deviation from the desired steady state), in the next simulations we will

change the initial condition to:

Initial Condition

CA():—‘l CB()‘—"IO 903—100

The controller parameters used for simulations with this new initial con-

dition are:

Controller Parameters (figure 4.3)
Q = diag([0 1 05)) | R=0 | S=0

The simulation results are presented in figure 4.3.

From figure 4.3 it is clear that the SNLMPC scheme generates a response

with offset in C4 and # and for both controllers the output settles in



141

1 10
A\
\ —
N
< Al -~ @ 5
v 0 &)
SNLMPC (solid)
;| CNTMPC @ashea) of - .
0 1 5 2 0 0.5 1 15 2
Time (t) t
_—_————————— 20
S
> _50 =10
= SNLMPC
-100 0 - -
0 0.5 i 15 2 0 05 ) 15 2
20 :
<
=
=10
= CNTMPC
0
0 05 1 15 2

Figure 4.3: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the unconstrained Case 2.

approximately two sampling times for comparable control effort (slightly

higher for CNTMPC).

Case 3

As we have seen, in Case 1 and Case 2 the responses of Cy, 6 and u = g
obtained with SNLMPC show considerable offset while CNTMPC performs
satisfactorily. In order to try to improve the performance obtained with
SNLMPC and eliminate (or at least reduce) offset, we will choose a new
set of controller parameters where the variables which have shown offset

previously are now added more weight to in the objective function. The

new set of controller parameters considered is the following:
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Controller Parameters (figure 4.4)
Q = diag((0.5 1 1)) | R=01]S=0
P=4 M=2 |a=06

The initial condition used in Case 3 is the same one of Case 2.

The simulation results are shown in figure 4.4.
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g 0.1} CNTMPC
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Figure 4.4: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the unconstrained Case 3.

From figure 4.4 we can see that in spite of the increased weights in the ob-
jective function, the simulations with SNLMPC still show offsets in C4, 6

_ F
andu—V.

The offset in C4 decreased to about half its value in Case
2 but the offset in 6 remained the same. Different sets of weights and
horizons have also been tried out but we did not succeed in improving the
quality of the response obtained with SNLMPC. Regarding CNTMPC, we

see that the new set of controller parameters reduces the control effort very
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significantly compared to Case 2 (compare figures 4.4 and 4.3) without
compromising the response of the state variables.
So, as we see, it is very hard to adjust parameters in SNLMPC controllers
in an ad hoc manner and predict the response. The contractive constraint
takes away this guess work since, if the problem is feasible at the beginning

of all prediction horizons, then exponential stability can be assured.

Constrained case

Since the performance displayed by SNLMPC in the unconstrained case was
very poor and the presence of constraints will only deteriorate the response

even further, here we will only show simulations obtained with CNTMPC.

The controller parameters used in these simulations are the following:

Controller Parameters (figure 4.5)
Q = diag(]0 1 05]) | R=0 |S=0
P =4 M=2 |a=06

Umin = 0 Umar = 1

The initial condition is the same used in the unconstrained Case 2. Thus,
we have the same control problem as in the unconstrained Case 2 but now
the input variable is tightly constrained (since the maximum value of u in the

unconstrained simulations was higher than 18, as we can see from figure 4.3).
The simulation results are found in figure 4.5.

By comparing figures 4.3 and 4.5 we can see that the presence of input con-

straints does not deteriorate the response of any of the states.

(2) Exponentially decaying additive disturbance

Here we will look at the responses of both SNLMPC and CNTMPC when an ex-

ponentially decaying additive disturbance acts on the system, i.e., given a nominal
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Figure 4.5: van der Vusse CSTR: State and control responses for CNTMPC in the
constrained case.

system of the form

the “perturbed” system is given by:
aP(t) = f(&(t), u(t)) + d(t)

with d(t) being an exponentially decaying deterministic disturbance.

The kind of disturbances which will be treated here are of the form:

di(t) = a; e, a;, b; >0, fori=1,2,...

Thus, for different simulations, we will just use different values of a; and b;. a;
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determines an upper bound on the magnitude of the disturbance d;(¢) (its initial

value) and b; its “duration” (the smaller b; is, the longer the disturbance lasts).

We will examine unconstrained and constrained responses of both SNLMPC and

CNTMPC to two different disturbances:

Disturbances
dy do
a; = 50 | ap = 100
by =01]| by =05

Thus, disturbance d; has an upper bound which is half the size of the upper bound

on dy but it has a longer duration.

Unconstrained case

The simulation results for d; and the disturbance itself are illustrated in figure

4.6. For dy, the corresponding figure is 4.7.

The controller parameters and initial condition used in the simulations with

disturbances d; and ds are given by:

Controller Parameters (figures 4.6 and 4.7)
Q = diag([0.5 1 0.1]) | R=0 | S=0
P=4 M=2|a=05

Initial Condition

CAQ = —2 CBO _ 20 9() _ ——200

From figures 4.3, 4.4, 4.6, 4.7 we notice that the disturbances have actually
favored the asymptotic responses of C4 and € in the case of the SLNMPC

controller. The offsets, which we could not eliminate with various choices of
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Figure 4.6: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the unconstrained case and under exponentially decaying disturbance

d;.

controller parameters in the absence of disturbances, are eliminated here due to
the constant excitation that the exponentially decaying disturbance provokes
on C4 and 0. For both controllers, f settles to its steady state value in only one
sampling time. However, the responses for C4 and Cpg are slowed down very

significantly (especially in the case of the longer lasting disturbance ds).

For both disturbances, the SNLMPC and CNTMPC controllers originate very
similar state responses but the initial control effort demonstrated by SNLMPC
is always higher than the one needed by CNTMPC for virtually the same per-
formance. Especially for d;, which is a disturbance of large magnitude in the
beginning, the CNTMPC controller has an initial control effort almost four
times smaller than SNLMPC. In both cases, we have let the optimization rou-

tine find the initial guess for the input values so the higher initial control effort of
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Figure 4.7: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the unconstrained case and under exponentially decaying disturbance
ds.

SNLMPC cannot be attributed to inappropriate initialization of this controller.

Constrained case

Since d, was a harder disturbance to eliminate in the unconstrained case, we
will only look at constrained simulations with SNLMPC and CNTMPC under

the influence of ds.

The controller parameters used in these simulations are:

Controller Parameters (figure 4.8)
Q =diag([0.5 1 0.1]) |R=0 |S=0

Umin = 0 Umaz = 1
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The simulation results are illustrated in figure 4.8.

2 : . 20
15} ] 15}
SNLMPC (solid)
S S0
CNTMPC (dashed)
0.5 5
0o 20 40 60 %\\J 40 60
Time (t) t
O 1 e -
|
|
5o 0.8 |
|
Z 0.6 |
@ -100 ‘ﬁ‘ '\
= 0.4} \\
— - ~
150 0.2 S
|
-200 0 '
0 0.05 Oﬂ 0.15 0.2 0 20 ¢ 40 60

Figure 4.8: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the constrained case and under exponentially decaying disturbance ds.

The results in figure 4.8 show that the two controllers perform equally well and
that the presence of the constraints does not degrade the performance (compare

with figure 4.7).

(3) Output feedback case with a nonlinear asymptotically convergent

observer

Here we will study the output feedback case for both controllers, SNLMPC and
CNTMPC. For state estimation, an asymptotically convergent observer will be used.
In this chapter, we have proposed a formulation for such a nonlinear observer, designed

for continuous-time systems with discrete observations. As we have seen, solving for
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the current state estimates means that we have to find the solution of a differential
Riccati equation. Since it is inconvenient to solve this kind of equation, we will use
a discrete version of our proposed observer which involves the solution of a simple
algebraic Riccati equation. This observer is a discrete extended Kalman filter and it
has been proven exponentially stable for discrete-time systems, for initial conditions

in a certain set and for systems which are not too strongly nonlinear (see [118]).

Let us consider a nonlinear system of the following form:

zk(t) = flxe(t),ux(t)), zo unknown, for t € [tg,tri1] (4.102)

Yo = h(zr,ux), VE2>0 (4.103)

and its associated “noisy” system:

() = f(zh(®), w(t)) + Nuwy (4.104)
yp = h(af,ux) + Ry (4.105)

Then, the extended Kalman filter for the associated system is given by the following

equations:

Measurement update:

Ty = Tp + K [yﬁ—h(fck,uk)], (4106)
Pt = B+ € (R,R,)7ECy (4.107)
Time update:
— ~ tk+1 —
Tpor = &+ /t F(Z(t), up(t)) dt (4.108)
k

Peyn = AWP.A, + N,N, (4.109)
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where:

K¢ := By (CkP.C, + R,R,)™} (4.110)
of .

A = E_in("”’“) (4.111)
oh

As usual, 28, Dy, Wy, are assumed jointly Gaussian and mutually independent. Fur-
thermore, z§ ~ N (Zo, ), wy ~ N(0,1,) and vy ~ N(0,1,). Ny, R, and Py are
design variables and they should be chosen such that N, has rank » and R, and P,

are positive definite.

Here we will define the “scaled” noises wy := N,w; and v, := R, 7 and these are the

noise variables which will be plotted.

Let us compare the responses obtained in the output feedback case for the SNLMPC
and CNTMPC controllers. In our case, Cy = [0 1 0], ie., Cp is our “noisy”

measured output.

Unconstrained case

The simulations for this case are illustrated in figure 4.9. The dynamic and

output noises, namely, wy and vy, are also shown in figure 4.9.

The initial conditions for integration of the plant and for state estimation are

chosen as:

Initial Conditions

Plant: CAO = -2 CBO =20 90 = —200

Model/Observer: | Cyo = —1.5 | Cgy = 15 | §y = —150

The controller and estimator parameters used in these simulations are given by:
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Figure 4.9: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the unconstrained output feedback case.

Controller and Estimator Parameters (figure 4.9)
Q =diag([0.5 1 0.1) | R=0 | S=0
P=4 M=2a=07

Our results show that, in spite of the initial state estimation error, § responds
in only one sampling interval. However, the responses of the other two variables
are dramatically affected by the noise in the system. We also notice that the
CNTMPC responses for C'4 and Cg are much less oscillatory than the ones
produced by SNLMPC. The same observation extends to the control profile
which is not only less oscillatory in the CNTMPC case, but also displays a

smaller control effort.
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The simulations for the constrained case can be found in figure 4.10. The

dynamic and output noises, namely, wy and vy, are also shown in figure 4.10.
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Figure 4.10: van der Vusse CSTR: State and control responses for SNLMPC and
CNTMPC in the constrained output feedback case.

For the constrained responses we utilized the same initial conditions as in the

unconstrained case and the following controller and estimator parameters:

Controller and Estimator Parameters (figure 4.10)

Q = diag([0.5 1 0.1])
P=28
Umin = 0

R=0
M=5
Umaz = 1

S=0
a=0.9
PO:In

Notice that we needed to increase the prediction and control horizons, and the

contractive parameter as well, in order to guarantee feasibility in the constrained

case. Once again, 6 responds in only one sampling time for both controllers.
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As we can see from figures 4.9 and 4.10, even though the responses for CNTMPC
and SNLMPC were very similar in the unconstrained case, the performance
shown by CNTMPC in the presence of input constraints is much superior to
that shown by SNLMPC. Even though the response speed is basically the same,
C4 and Cp are much more affected by the noises when SNLMPC is used (which
is revealed by their highly oscillatory behavior). Thus, in the presence of con-
straints, the beneficial effects of the introduction of the contractive constraint

can be felt more strongly than in the unconstrained case.
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Chapter 5 Robust Output Feedback Contractive
NLMPC: Parameter Uncertainty

In this chapter we will be dealing with the following problem:

Problem 4 : State feedback in the robust case (parameter uncertainty only)

5.1 Introduction

In the previous chapter we looked into the stabilizing properties of Control Algo-
rithm 3 in the nominal case and when the states of the plant are not available for
measurement and must therefore be estimated. We have shown that the output feed-
back case with use of an asymptotically convergent nonlinear observer is equivalent
to the state feedback case when the plant is subjected to an asymptotically decaying

additive disturbance which is not being estimated.

Since Control Algorithms 1 and 2 were proven exponentially stabilizing in the
nominal case and in the absence of disturbances, we could show in the previous
chapter that the association of such a controller with Estimation Procedure 1
(in the fashion shown in Control Algorithm 3) generates an asymptotically stable

closed-loop system.

In this chapter we will explore the stabilizing properties of Control Algorithm 1
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when the plant is subjected to a non-additive disturbance (a disturbance which is
part of the nonlinear dynamics of the plant) which is not considered in the prediction
step (i.e., the model used for prediction does not take into account the disturbance).
The only assumption on the disturbance behavior is that it is bounded, i.e., it re-
mains inside a convex and compact set containing the origin for all ¢ > 0. From the
controller design point of view, bounded, deterministic or stochastic, disturbances
introduce a very different (and more complex) problem than asymptotically decaying
disturbances. It is no longer possible to drive the states to the origin. If the dis-
turbance is unknown but bounded (as in our assumption) then the best that can be
hoped for is that the states are steered to a control invariant set and that is what will

be shown here later.

A disturbance of this kind, which modifies the nonlinear dynamics of the plant, in-
troduces a model/plant mismatch and makes it necessary for the designed controller
to be robust. In the nonlinear context, there is no difference between this kind of

disturbance and bounded parameter uncertainty.

After showing how the presence of this bounded disturbance affects the stabilizing
properties of Control Algorithm 1 under state feedback, we will then look into the
output feedback case. This time we will use a least squares nonlinear state estimator

to study the resulting stability properties of the closed-loop system.

First we will specialize the obtained results for the case where the dynamics of the
plant is influenced by a set of constant unknown parameters which are not estimated.
Then we will explore the case where the parameters can be time-varying and the
estimation step is a combined nonlinear state/parameter least squares estimation

procedure as proposed in [111].
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5.2 Stability of contractive MPC in the presence

of bounded disturbances

Let us now consider a nonlinear plant specified by the following set of equations:

#*(t) = f(2"(t), u(t), d(t)) (5.1)

with f: R" x ™ x R? — R" continuously differentiable and where d(t) € R? is an
unknown bounded time-varying disturbance which belongs to a compact and convex
set D for all t > 0, with 0 € D° (where D° := interior(D)). More specifically, let
D= By = {de %] d||< o).

Let the model used in the prediction step of our MPC algorithm be given by:

(1) = f(2(t), u(t), 0) (5.2)

Thus, we are considering the case where no structural model/plant mismatch exists.
The disturbance can also be seen as a set of unknown time-varying parameters and,
in that case, we have a robust control problem at hand where the model error is due

exclusively to parameter uncertainty.

5.2.1 Basic assumptions

The following assumptions are necessary in the derivation of the results in this section:

Assumption 5.1 (z,u,d) = f(z,u,d) : " x R™ x R? — R" is at least twice

continuously differentiable and f(0,0,0) = 0.

Our usual feasibility assumption:
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Assumption 5.2 We assume that there exists a p € (0, 00) such that for all zy, € B,,
P(ti,zi) is feasible. In other words, for all z, € B,, we can find a contractive
parameter o € [0,1) so that with the chosen finite horizon P, all the constraints on

the inputs and states can be satisfied and the objective function is finite.

Assumption 5.3 The continuous function f is locally Lipschitz continuous, i.e,

there exists a finite constant L > 0 such that:

| f(z1,u1,dr) = f@o,un,do) ||p < L|lor—2o|lp+||ur—ug ||+ || di —da] ],

VSL‘I,QTZ € %n’ Uy, Ug € U, dl,dz € de (53)

with U defined, as usual, by:

u(t) eU == {u € R™ : Upmin < U < Upaz}, VEE [0, 00) (5.4)

Remark 5.1 Strictly speaking, assumption 5.3 only needs to be satisfied for x,, xzo €
X, where X is the reachable set defined in this case by:

X = {2P(t) = 2P(t, b0, 28, u, d) or z(t) = z(t, to, 2}, u,0), t € [ty, o0);

o € B,, ue€lU, de By} (5.5)

Since this condition cannot be checked a priori (given that zP(t), z(t) are trajectories
generated through application of the controller), we require the Lipschitz condition on

f to be valid everywhere in the state space.
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5.2.2 Stability analysis of Control Algorithm 1

Under the previously established assumptions, the following result can be derived:

Theorem 5.1 (Bound on the difference between model and plant states
in the presence of parameter uncertainty: state feedback case) Let p €
(0,00) and L € [0, 00) satisfy assumptions 5.2 and 5.8, respectively. Then if 2%,z €
B,, Yk > 0, there ezist A\, A € [0,00) such that:

A
>
—~

o

(@]
~—

|z} — x|

Iz =2k llp < A VE>0 (5.7)

with A, X = 0 as p? — 0.

Proof: Using the notation in Control Algorithm 1, the difference between the
dynamics of the plant (5.1) and that of the model (5.2) for a fized k, k > 0, is given

by:

7 (1) — ik (1) = [} (1), uk(8), dh (1) — f(2f(t), ul(1),0), te[H, 47  (5.8)

where j =0,..., P —1.

By integrating (5.8), knowing that x, is set to b7 we get:

() = k() = [] ) () i) = Sl w0 dr (59)

Then, it follows that:
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IA

14270 =l e < [ 1 @), ulr), dir) = F@r), ud(7),0) |1 dr <

< L[N0 = 2) s + 1 ) [ (5.10)

Using the BG inequality and the fact that || di(t) ||< p%, j € [0,P — 1], Vk > 0, and

making t = tI*' it results that:

H xiy(j+1) _ $i+1 HP < deTeLT (5.11)

In particular, if j = P — 1, we have:

| 20— Tkga [l pi=ll 28" = af |p< p' LT = X, VE>0 (5.12)
Since the trajectory Z(t) is only updated with the states of the plant at the end of

prediction horizons, the integration of (5.8) is carried out from ty to tyy1 and the

following bound s obtained:

| 281 — Zert ||p < pPLPTEMTT = ) (5.13)
Thus, A\, A = 0 as p® — 0, which is the result we wanted to prove.
Theorem 5.2 (Stabilizing properties of the state feedback controller in the

presence of parameter uncertainty) Under our assumptions and if x},x, €

B,, Vk > 0, then it follows that:
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Iz llp < Il s +v (5.14)

and

. p )

Jim ] 2k [[p<y (5.15)

with v — 0 as p? — 0. Thus, since we have a bounded disturbance which does not
necessarily decay to zero asymptotically, the states converge to the interior of a control

invariant set B, :={z e R" | || 2z ||p< v}

Proof: Since the contractive constraint imposes || Tr41 ||p< @ || 24 ||, then using

the triangle inequality and equation (5.11) it results that:

| 2h lp < Zkar llp +'LPTEMT < a2} ||p +p*LPTe"™ (5.16)

Then, using lemma 4.1, we arrive at the following bounds:

d LPT
ALPTe
lzillp <llagllp +=—F—>— (5.17)
and
d LPT
. p*LPTe
Jim ] 2 [|[p< =5 ——— =7 (5.18)

So, v — 0 as p® — 0, which is the result we wanted to prove.
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Theorem 5.3 (Feasibility condition) Under the previously established assumptions
on the function f and on the disturbance d, if v < p, then there exists py € (0, p]
such that for all zfy € B,,, the sequences {z}}32, and {zy}i2, resulting from use of

Control Algorithm 1 are well-defined and stay inside the set B,.

Proof: Due to our Lipschitz continuity assumption on f, the proof is very similar to
the one presented in the previous chapter for additive disturbances and will be omitted

here for that reason.
O

Remark 5.2 If instead of a bounded time-varying disturbance we have a constant

unknown parameter p € RY, i.e., the dynamacs of the plant is given by:

2P (t) = f(aP (), u(t), p) (5.19)

and the model used in the prediction is:

#(t) = f(z(t), u(t), p) (5.20)

where p € NY is the nominal parameter value, then in the state feedback case, the states
converge asymptotically to a control invariant set By, i.e., limy_ o || 2} || p< ¥, with

~ given by:

- LPTelrT

—— lp-7l (5.21)

i.e., p? is replaced by the weighed norm of the difference between true and nominal

parameter values. Naturally, ¥ =0 if p = p.
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In the following section we will address the following problem:

Problem 5 : Output feedback in the robust case (parameter uncertainty only)

5.3 Stability of MPC + state estimation scheme

in the presence of parameter uncertainty

In the previous section we have analyzed the stability of Control Algorithm 1 when
unknown bounded disturbances or unknown constant parameters affect the dynamics
of the system. We saw that in the case of parameter uncertainty, the states of the
plant converge asymptotically to a control invariant set whose size is proportional to

the weighted norm of the difference between true and nominal parameter values, i.e.,

. P . — ~ A
Jim [z ], < 7 ~ llp=pl (5.22)

where the symbol ~ means proportionality.

Now we want to study how this result is modified in the output feedback case when a
nonlinear least squares procedure for state estimation is used in combination with
Control Algorithm 1. The state estimation procedure used here is a moving
horizon-based approach for least squares estimation which has been proposed by

Robertson et al. in [111].

The dynamics of model and plant considered in this section are given by:
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Plant:
aP(t) = f(a"(t),u(?),p) (5.23)
v = 9(z}:p) (5.24)

Model:
o(t) = [f(z(?),u(t), D) (5.25)
Ye = g(zx,D) (5.26)

where =, := zP(t;,) and xy := x(t), with ¢ := t; + kT, k > 0, t; is the initial time for

computations and p,p € R? are the true and nominal parameter values, respectively.

5.3.1 Moving horizon formulation of the least squares

estimation (LSE) procedure

The objective of batch state estimation at time ¢, can be stated as:

Given an initial estimate z; at ¢;, the measurement sequence {yi,...,yx},

and the model (5.25),(5.26), estimate the error in the initial estimate

z¢(1|k) := z(1|k) — 1.

Once estimates of the unknown states, z(1|k), have been determined, the current

state estimate, z(k|k), is obtained via the model equations.

The size of the estimation problem posed in this way increases linearly with the
number of measurements. For an estimation technique to be computationally feasible,
we must be able to bound the number of variables to be estimated. The batch

estimation problem can be modified to employ a fixed-size moving window in which
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the number of measurements that we base our estimate on (and hence the size of
the optimization) remains constant. The moving horizon state estimation problem
at time ¢, with horizon size of m — 1 (here the horizon size is equal to the number of

measurements used minus one) is formulated as follows:

Estimation Procedure 2

e(km131|k) J(B,z(k —m+1[k)) = L[(z°(k = m + 1|k)) P(k — m + 1|k — 1) X

xz®(k —m+1[k) + Zig_mpr v(Uk) Rw(1k)] (5.27)

subject to:

v(llk) = of —g(z(|k),p), l=k—m+1,... k (5.28)

B(tk) = F@@k),w,p), t€tnt], l=k—m+1,....k  (5.29)

where z¢(k — m + 1|k) == z(k —m + 1|k) —z(k —m+ 1|k — 1), z({|k) := z(t;|k) and
u(t) is constant for t € [ti_y, ;] and equal to w_y, for alll € [k —m + 1, k].

z(k—m+1|k—1) represents the least squares estimate of t(k—m+1|k) at t = tg_pmiy
obtained at time ty—1 and P(k —m + 1|k — 1) is the weighting matriz expressing the
confidence in the estimate (e.g., inverse of the conditional covariance of x(k—m+1|k)
at time tx_1). At the beginning of the estimation, the number of measurements is
allowed to grow until it reaches the size of the horizon (i.e., from t; to t,,). At the
next time step the initial estimate z(1|\m — 1) is replaced by x(2|m) and the weighting
matriz P(1lm — 1) is replaced by P(2|m). The first measurement y, is discarded
as the current measurement y,,.1 is made available. This procedure is repeated at
each time step, and the optimization remains at constant size for all future times.

Given the probabilistic interpretation of P~*(k — m + 1|k — 1) as the covariance of
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z(k — m + 1k) — z(k — m + 1|k — 1), we can calculate P~1(k — m + 2|k) from
P7Yk —m+ 1|k — 1), Yk > m, using linear filtering theory:

Pl ek-m+1k)=P Y e-—m+1k-1)—-P i k—m+1k-1Z x
X[EPYk—m+1k—1)E + R'ZP Y (k—m+ 1]k — 1) (5.30)
P Yk —m+2|k) = ®P ' (k — m + 1]k)®’ (5.31)

where ® := ZL(z(k — m + 1|k), we—mt1, D), = = g%(a:(k ~m+ 1|k —1),p) and R~

represents a quantitative measure of our confidence in the output model.

In [111], Robertson et al. have shown the equivalence between the well-known ex-
tended Kalman filter (EKF) technique and the moving horizon least squares algorithm
when a linearized output model is used and m = 1. When m = 1 the state equations
do not appear in the formulation and the problem becomes a linear least squares
problem. The obtained solution corresponds to the measurement correction step of
the EKF. Thus, the EKF-based moving horizon estimator is equivalent to the EKF
when m = 1. Furthermore, the horizon size is the only additional tuning parameter

other than the ones used in the EKF formulation.

The effect of increasing the horizon size is that the moving horizon estimator retains
all of the most recent information and is more efficient than the EKF at summarizing
past information (because it uses m + 2 instead of only three statistics as the EKF
does). None of the information contained in the last m measurements is lost, and the
estimation is based on the nonlinear model over this measurement horizon. When
the system is linear, these two procedures are equivalent independent of the size
of the horizon. However, when the system is nonlinear, the conditional density is

non-Gaussian and use of the EKF means that some information will be lost.
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5.3.2 Basic assumptions

Assumption 5.4 We assume that for any p € R?, (z,u) = (0,0) is an equilibrium
point of the system (5.19), i.e., f(0,0,p) = 0 and g(0,p) = 0.

Assumption 5.5 The feasibility assumption for the control problem P(tyanp, x(m+
nP|m+nP)),n > 0,is slightly altered in this case due to the fact that the contractive
constraint will be imposed with respect to a state estimate 2P steps behind, x(m +
(n—1)P|lm+nP) (instead of P steps behind as in the state feedback case), as we will
see later. Also, since the contractive constraint is not changed for the period of one
horizon, if P(tminp,z(m + nP|m + nP)) is feasible for a particular n > 0, then the
subsequent P—1 control problems, P(t, x(k|k)), k= m+nP+1,...,m+(n+1)P-1

will be feasible as well.

Thus, we will assume that there exists p > 0 such that P(tx, z(k|k)), k > m, is feasible
for all z(m + (n — 1)Plm +nP), 2, ., 1)p € B,, ¥n > 0.

The following assumptions hold for all z,,zs € R", uy, us € U, and arbitrary param-

eters pyp, pa:

1. Assumptions on f : R" x R™ x R? — R

Assumption 5.6
| f (@1, u1,p1) = fl@2,u2,p1) (IS Lp(pr) [ oy — a2 || + [fwa =2 f|]  (5.32)

Then, if us = uy, we have:

| flzy,ut,p1) — fl@o,ur, p1) [|< Ly(pr) || 1 — 2 || (5.33)

which implies that
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0
12 @) 5 2500) = 14 (5.34)
Assumption 5.7 Growth condition on f:

I f (@, s, p1) IS ()1 ([ o | + [ [T =214 L2 ]+ T []](5.35)

Assumption 5.8

I fl@y,u,p1) = flayunp) ISy llpr—p2 e I+ 1w ] (5.36)

Assumption 5.9 From assumptions 5.6 and 5.8, we have:

| flz,u,p) = flma,ug,p2) IS Lylll 20 — 22 || + || wr — ug || +

+ v llpr=p2 [z [+ [ |]] (5.37)

2. Assumptions on g : R x RY — RP

Assumption 5.10
| 9(z1,1) — g(2,p1) [|< Ly(p1) || 21 — 22 || (5.38)

from which, it follows that:
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9y
Assumption 5.11
| 9(z1,p1) = 9(@1,p2) IS99 [ 1 = p2 || [ 21 || (5.40)

Assumption 5.12 From assumptions 5.10 and 5.11, it follows that:

1 9(z1,p1) = g(@2,p2) S Ly |21 =22 ([ +yg I pr—p2 [ [ 2 | (5.41)

Remark 5.3 Assumptions 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 only need to be satisfied

for x1, 9 inside the reachable set.

With control computations starting at t = t,, (after m measurements, {y1,...,Ym},
have been obtained), with the estimate for the unknown states of the plant, zP , being

denoted by x(m|m), our reachable set, X, for any values of p and p, is defined as:

X = {2P(t) = 2P (t, b, 2D, u, p) or x(t) = (¢, tm, x(m|m), u,p), t € [ty, 00);
zf, z(1m) € B,, u € U} (5.42)
Assumption 5.13 Let m p = m dim(y) > n := dim(z) and let P(z(k —

m + 1|k),p) denote the optimal estimation problem to be solved at time t = t;, with

Plk—m+ 1k —1) =0, Yk > m, and R = I, (i.e., the objective function is
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reduced to the sum of the output errors from k — m +1 to k) and in the absence of
measurement noise, being x(k —m + 1|k) and p the decision variables and parameter
values, respectively. Then, if p = (no parameter uncertainty), P(z(k —m + 1|k), p)
admits a unique optimal solution x*(k — m + 1|k) which is equal to the states of the

plant at ty_mi1, t.e, (k —m+1lk) =2_,..;.

Remark 5.4 Since the objective function is quadratic in the output error, v(l|k), | =
k—m+1,...,k, and in the decision variable z¢(k — m + 1|k), if both f and g
(which represent the state and output model, respectively) are convez functions of

z(k — m + 1|k), then the optimal estimation problem is convex. In this case, every

local solution z*(k — m + 1|k) is a global solution, and the set of global solutions is
convez (see [{6]). Furthermore, if f and g are such that J(p,z%(k — m + 1]k)) is

strictly conver, then any global solution is also unique. 5.183.

5.3.3 MPC with state estimation: implementation

In order to include the moving horizon least squares state estimation procedure,

Control Algorithm 1 has to be modified in the following way:

Control Algorithm 4

Data: Initial Conditions: t; and xz,; Controller Parameters: P,M,Q,R,S,
]5, a, T, Umin, Umazy Dmaz; Observer Parameters: m — 1 = P (i.e., choose

prediction horizon equal to estimation horizon), P, R; Output measurement at

tl-' Y-
Step 0: Sett =1t.

Step 1: Solve the optimal control problem P(t1,x1) (assuming that it is feasible for

the chosen initial estimate x1 ).
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Result:  Optimal (or feasible) control sequence {u(1|1),...,u(P|1)} with
u(i|1) = u(M|1) fori € [M +1, P].

Step 2: Apply the whole sequence of control moves {u(1|1),...,u(P|1)} to the plant,

measuring the output at every sampling time. Thus, at t,, we have the sequence

of m outputs {y1,...,Ym}-

t1 tn

I I
x(1jm —1) x(m|m — 1)

Y1 Ym

Step 3: Set k =m, P(1lm —1) := P, and z(1|m — 1) := z;.

Step 4: Withx(k—m+1/k—1),P(k—m+1lk—1), {Yk—m+1s---,Yx} and the m —1
control moves most recently applied to the plant, calculate x(k — m + 1|k) by

solving P(z(k — m + 1]k), p).

Step 5: Compute x(k|k) by integrating the model equations (5.20) with the m — 1

control moves most recently applied to the plant.

k
| 1
I /
Yk-m+1 /7 Yk
/’
7’
Estimation -~
_’
— - -
e e e - — - » x(klk) = New initial
x(k —m+1/k) . condition for
Integration

prediction
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Step 6: Solve the optimal control problem P (ty, z(k|k)).

Result: {u(klk),...,u(k+ M —1]k)}.

Step 7: Apply u(k|k) to the plant and measure the output at tgi1, Yrt1-

P '— _
7
y I
// -—-=
Prediction , :u
VA
/
L1 bl |
] 1
/
Yk—m+1 %’k-mjuz xqukrk/) Yk+1
| -
i . . Phd
| Estimation -
i _--"
e T . »x(k+ 1k + 1)

x(k-m+2k+1)
Integration

Step 8: Setk=k+1.

Step 9: Compute P71 (k—m+1|k—1) from P~ (k —m|k —2) using equations (5.30)
and (5.31) and go to Step 4.

Remark 5.5 For k > 2m — 1, the m — 1 control moves most recently applied to the
plant are {u(k —m+ 1k —m+1),...,u(k -1k - 1)}.

Remark 5.6 It is important to notice that we can accept feasible solutions (instead
of optimal solutions) of the control problem without interfering with the stability prop-
erties of the closed-loop. However, for the estimator, it is important that an optimal
solution be found. This will be clear later in our stability analysis but it is important

to call attention to this property of the algorithm at this point.
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Remark 5.7 Here we will not address the issue of feasibility of the optimal estimation
problem. We are assuming that P(x(k — m + 1|k), D) is feasible for all k > m and

that an optimal solution can always be found.

Remark 5.8 The optimal control problems P(t;,z(1lm — 1)) and P(t, z(k|k)),
k > m, are formulated as in Control Algorithm 3 with the only exception being

the contractive constraint which is here given by:

1. Contractive constraint for P(t1,z(1jm — 1)):

| z(mlm —1) [|p< a || z(1jm = 1) || (5.43)

2. Contractive constraint for P(t;,z(jlj)) with j = k — P,...,k — 1 and
k=m+1iP, 1=1,...,00:

I Z(kl7) [lp< o || 2(k = 2Pk = P) [[p=: o || zk—2p || (5.44)

Let us remember that the states Z(t) are only updated with the estimated states at
every tyiip, © > 0. The contractive constraint is only satisfied by the states of the

model (i.e., not the predicted states) at j =k — 1. Thus, we have:

| Z(klk — 1) |p< o || Te—2p ||p (5.45)

where T(k|k — 1) are the states of the model used for computation of the contractive

constraint at ty and x,_op are the estimated states at t, — 2PT.

Remark 5.9 Note that the horizon for imposing the contractive constraint is now
equal to 2P (instead of P, as in our previous algorithms). This is due to the as-
sociation of the contractive MPC controller with the moving horizon least squares

estimation scheme which has an estimation window equal to m —1 = P.
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Remark 5.10 Our combined MPC + estimation procedure generates the following

trajectories for the interval of 2P:

P=m-1
k-P k k+P

| | |

| | |
x(k — Plk) = xx_p x(klk) *x(k+Pk+P—-1)=Xy.p

+ Integration Prediction +
Estimated states Predicted states
at k—P at k+P

~

P

Contractive Constraint: || Xxip ||[p< @ || xk-p

5.3.4 Stability analysis of Control Algorithm 4

The generalization of the classical implicit function theorem can be fruitfully used
in various branches of mathematical analysis. Here we will enunciate the existence
theorem for an implicit function and the classical implicit function theorem which we

will then use as tools in the stability analysis of Control Algorithm 4.

Theorem 5.4 (Existence theorem for an implicit function) Let X be a topo-
logical space, let Y and Z be Banach spaces, let W be a neighborhood of a point (xg, yo)
in X xY, let U be a mapping from W into Z, and let ¥ (zo,yy) = 2o-

If

1. the mapping x — V(x,yo) is continuous at the point xo;

2. there exists a continuous linear operator A :'Y — Z such that, given any € > 0,

there exists a number & > 0 and a neighborhood = of the point xo possessing
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the property that the condition x € Z and the inequalities || v — yo ||< & and

Il " — yo ||< & imply the inequality
| Oz, y) — 9z, y") — Al —y") lI<ellv' =" |I; (5.46)
3. AY = Z;

then there ezists a number K > 0, a neighborhood Y of the point (zo,yo) in X X Z
and a mapping ¢ : ¥ — Y such that:

o U(z,p(z,2)) = 2

and

o llol@2) —pl< K || ¥(z,5) -z .

Theorem 5.5 (Classical implicit function theorem) Let X,Y and Z be Banach
spaces, let W be a neighborhood in X x Y, and let ¥ : W — Z be a mapping of class
cYwW). If

L. \I/('Z‘():y()) = O;

2. there exists the inverse operator [U,(zo,y0)] ™t € L(Z,Y),

then there exist € > 0, 6 > 0 and a mapping ¢ : B°(xy,6) — Y (with B(z,r) =
{y € R dim() | |y—z ||< 7} and B°(z,r) == interior(B(z,r))) of class C*(B°(xy, §))
such that:

® (xo) = Yo,
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o the equality ¥(z,y) = 0 is possible in the “rectangle” B°(xzq,0) X B°(yo,€) only

for y = o(z);

o ¢ (x) = —[¥y(z, (2))] " ¥a(z, p(2)).

Proof: Proof of both theorems can be found in many books which address geometric

differential methods. A good reference is [4].

Now, let the operator ¥ be the gradient of the objective function (5.27) of the esti-
mation problem. Then, since #%_,, is the unique solution of the estimation problem

ﬁ(xk_mﬂ,p), where zy_py1 = z(k —m + 1]k), we have:

oJ

m(pa Th 1) =0 (5.47)

Then, let o = p, yo = 24_,00, X =R, Y =R, Z = R and W a neighborhood

in R x R™. If the Hessian matrix %gi—(p, Tk—m+1) 18 invertible in L(R, R"), then
k—m+1

there exist p, > 0, p, > 0 and a mapping ¢ : B°(p, pp) — R" of class C*(B°(p, pp))
such that:

® p(p) = xZ—mH;

o [5-pl<r = || ¢(B) = 2f_ms < pz and 555, ¢(p)) = 0;

aJ
8xk-—m+l

e the equality (P, Tx—m+1) = 0 is possible in the “rectangle” B°(p, pp) X

B° (:L.i—m+17 pw) OIlly for Tk—m+1 = ’/}0(17)

Now, if the conditions of theorem 5.4 are satisfied, with W, x, yo defined as above, it

follows that zg = 0 and there exists K > 0 such that:

oJ

BT | (5:48)

I 0(®@) = 2% =20 Tmmir = 2f_pir (IS K]
8xk—m+1
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Thus, if we find an upper bound for || (p, Tk-m+1) || evaluated at (p, z}_,,. ;)

ka

we immediately obtain a bound on the state estimation error at tx_p1-

Our task is then to find an upper bound for || Mi‘] - Dy zh_ 1) |-

Theorem 5.6 (Bound on the difference between true and estimated states
in the presence of parameter uncertainty) Under assumptions 5.6, 5.7, 5.8,
5.9, 5.10, 5.11, 5.12 and 5.13, let xy_my1 and z},_,, ., denote the solutions of the
estimation problems "ﬁ(ﬁ, Tgemt1) and 75(39, Tg—m+1), Tespectively. Then, there erists

K €]0,00) such that

A1 oJ
“ Tk-m+1 — Cﬂi_mﬂ HP < K Apaa(P)? ” ) (;D, $i—m+1) HS
B iﬂk—m—i—l ‘
< K| p-pll< Kpp (5.49)

for all nominal parameter values p € B°(p, p,).

Proof: We begin by evaluating Bac (p, Th—mt1) with P(k—m+1lk—1) =0, Vk >
m, and R = I, (so that assumption 5.13 can be satisfied):

8J k ’ 81/[
L Bt = S v 5.50
axkz—m—%—l (p k +1) l:,g,:nﬂ ! axk—m-H ( )

But, from (5.28), we have:

Ov, __0g(z,p) _  0Bg(z,p)  dx
OTp—m+1 OTk—m+1 0x;  OTk—m+1

cl=k-m+1,...,k  (551)

From (5.50) and (5.51), it follows that:

Y prim) IS Nl S ) |

OTh—m41 I=k—m+1 ! 3$k —m+1

I I (5:52)
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Using assumption 5.10 we have:

oJ k 0z
D, Tk—m < L — 5.53
I o (Ps Themy1) || g l:gnﬂ IRZBIN] TR I (5.53)

Then, from the equations of the model (5.25), we obtain:

2O = pmu+ [ @), u(r),p) dr (5.54)

them+1

Thus, by differentiating with respect to Ty_m+1 and taking the 2—norm we get:

gz as [ L) o | dr (5.55)

a Tk—m+1 k—m+

Using assumption 5.6 and the BG inequality, it follows that:

H aix(llk) “S eLf(tl“tk—mﬁ-l)’ =k —m+ 1’,._,k (556)
k-m-+1
which means that
ox(llk
| ) | ortn, i€ -t 1, (5.5)

Now that we have obtained a bound for || %ﬂ% I, all that is left to do is to find
a bound on || v ||:=|| g(af,p) — g(z(l|k),p) || (note that v, is being evaluated in the
noise-free case). From assumption 5.12, in order to find a bound for || v ||, it is
necessary to find bounds for || 2¥ || and || 2 — z(l|k) ||, which is what we will proceed

to do nezt.
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1. Upper bound on || ¥ ||:

From the equations which govern the dynamics of the plant, (5.28), we get:

19O IS o 1+ [ NSO ut)) ) dr (559)

k—m-1

Using the growth condition on f, (5.7), it results that:

| 970) 1< i |+, (L ) m = DT 40y [ [ a2(r) | (5.59)

k—-m--1
where @ = max{|| Umin ||, || Umaz |}
Thus, by applying the BG inequality, we obtain:
122 | < [l Thomss | +0,(L+T) (m = 1)T ] M tromer) (5.60)

And at t = tl,

I af (1< 1l s | F0p (L + @) (m = DT i) =k —m 41,k
(5.61)

2. Upper bound on || zf — z, ||

Subtracting (5.25) from (5.23), taking the 2—norm and using assumption 5.9,

we get:

27 @) —2(@) | < | #k-ms1 = Temmir [| +ysa(m = DT [ p=p || +

A 12 =Bl fn N 2?(0) Il dr + Ly fy N 2P(7) = (1) || dr (5.62)

But, by integrating (5.59), we know that:
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/t | 2% (7) || dr < [Hi%}ﬂiun%l—kﬂ)(m—l)T](e"f{t"i’“”'"“]-1) (5.63)
k—m1 f

Thus, by substituting (5.63) into (5.62) and evaluating the resulting inequality
att=1t, 1 €k —m+1,k|, we obtain:

P
122 = al<fylp-5l [@m-17+ 1 Zemal s (14 @) (m - 1)7) x
(@I D) a e ||l ] (5.64)

where z; .= z(l|k).

Then, by using (5.61) and (5.64) we obtain the following bound on || v, ||,
Vi€ [k—m+1,k:

v

Tho—m _
lull < Loty o5l [am - 1T + (LZemar | bl I+ (14 a)m - 17
(@I Dy || bt 4

+ Yo llp =Bl [ 2R | 07 (1 + @) (m — 1T tr=tmsa ] (5.65)

Finally, we are able to derive an upper bound for || axka_{nﬂ (B, Thomas1) ||
oJ , i
I CEN (D, Zhemt1) | £ i | Zhnss — Thoemi1 || Fp2 | — D || (5.66)

with
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k
pp = Lg > 2Ll —te—me1] (5.67)
l=k—m+1
k
pe = L, > ebitt=timmuil ([, o0 [G(m — 1)T +
l=k—m+1
p )
+ (H xk——m—%—l “ + (1 + E)(m . 1)T)(enf(m—l)T i 1) ] eLf[tl”tk~m+1} +
ng
+ Y [ @b I 4L+ @) (m = DT | el temsily, (5.68)

where we could replace t; — ty_my1 by (I —k+m —1)T.

From (5.49), we see that in order to obtain an upper bound on the estimation error
at time tg_m11, we need to evaluate the inequality (5.66) at Tg_pmi1 = x4_,, 1. Then,
it s clear from (5.66) that the first term of the right side of the inequality vanishes

and all we are left with is:

oJ

e Ol EN A ER (5:69)

|

Thus, from (5.49), we end up with:

A1 oJ
| 2hmrs = Tkemt1 S KAmaz(P)? || m(l’» Th_my1) || <
< Kdmae(P)ips [p—5ll= Kllp-5|< Kpp (5.70)

And we have finally concluded our proof.

Theorem 5.7 (Stabilizing properties of Control Algorithm 4 in the pres-
ence of parameter uncertainty) Under assumptions 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,

5.10, 5.11, 5.12 and 5.13, and given that the contractive constraint in the control
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problem P(tip-1,2(k+ P —1lk+ P — 1)), k > m, is given by:

| Zrsp lp =2k + P+ P-1) |l < allzprp llp (5.71)

if z(m+(n—1)Plm+nP), 2} . 1p € By, ¥n >0, the control problems P (ty, z(k|k))

are well-defined (according to assumption 5.5) and it follows that there exists p > 0

such that:
| 2 monyp llp < max{|| =7 ||, | 27, s} + 5, Yn >0 (5.72)
and
lin | @hnp llp < (5.73)

i.e., under the constant parameter deviation, || p—p ||, the best that we can be assured
to achieve is that the states will be driven to a neighborhood of the origin B; (a control
invariant set) whose size is determined by this deviation between nominal and true

parameter values, with p =0 if p = p.

Proof: Subtracting the equations of the model used in the computation of the con-

tractive constraint from the equations of the plant we get:

2(t) — z(t) = f(a"(t), u(t), p) — f(2(t), u(t), p) (5.74)

We know that the optimal control problem P(ty, x(kl|k)) is solved after x(klk) is ob-
tained by integration of the model equations with initial condition Tj_p,p1 Gt Tg_mar.
Thus, we can integrate (5.74) from ty_ms1 = toeep = tx — PT to any t € [ty — PT, 1), +
PT)] (i.e., within an interval of 2P) and obtain:
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[2?(t) —z(t) || < {wllp—pl [2aPT+ (M%E—“- +2(1+a)PT)(e™ ™ —1)] +

+ || h_p — app ||Jets O] (5.75)
Then, at ty,p = tx + PT, using inequality (5.70) and the fact that:
S L Ay L
Amin(P)7 1< Mlp < Amae(P)7 |-l (5.76)
we have:
I #kep = Zrip lp< 01 | 25 _p llp +02 (5.77)
where:
- P\E Af (2 PT 2L¢PT
01i= Amas(P)7 JH(ET = 1) gy (5.78)
- A1 B B _ :
b= Amaw(P)3{yf[20PT +2(1 + @) PT(M T — 1)] + -Kye?haPTy,
Notice that 61, 65 = 0 if there is no parameter uncertainty, i.e., pp = 0.
Using our contractive constraint and the triangle inequality we get:
lokip llp < o llmnp llp+01 [ 2hop lp+02, k2 m (5.79)

Then, from (5.70), it follows that:
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l2bopllp < (@+01) | 2h_pllp +02+aK py=:61 || 2h_p [|p +62 (5.80)

Thus, we have an inequality of the kind:

I xfn+(n+1)P lp < 61 | xﬁw(nq)P lp+02, n=>0 (5.81)

So, zb, . p is related to z¥,_p = o¥ via (5.81), b, ,p is related to b, ab  5p is related

to zt . p and so on.

Thus, we have an inequality of the kind:

Zni1 < @ zpo1+b, Yn2>0 (5.82)

where zy, 22” xgﬁnp ”ﬁ-

This is slightly different from what we had in lemma 4.1 since there z,1 was related

to z, directly. In this case, following the same procedure used to prove lemma 4.1, we

get:
n—1 )
Zope1 < a"z_; + b (Z a), n>1 (5.83)
i=0
and
n—-1
Zom < a"zg + b (Z a), n>1 (5.84)
1=0
Thus, for any n > 1, of
a =0 <1 (5.85)

we have:
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n*—1
zn < a" max{z_1,20}+ b (D). da'); n>1
i=0
where n* 1= mt("z—ﬂ) and int(r) denotes the integer part of r, Vr € R.

Therefore, the following bounds can be obtained:

zn < max{z_1,20} + b
x{z_1, e
n 1540 1—a
and

I b

nEHL Zn < 1—a

or, in our original notation,

02
M nyp o< max{ll oT {lp, || #m llo} + 35 n 20

and

. 02
A | e llp < 75 =

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

Since 0, = 0 if p = p then it follows that p =0 if p = p and B, is a control invari-

ant set to which the states of the plant (5.23) converge asymptotically when Control

Algorithm 4 is used for output feedback control.

O

Theorem 5.8 (Feasibility condition) Let 2f, 2, € B,,. Then, if po < p— (p +

K p,) (notice that the set B,,, with py satisfying this inequality, is non-empty if and

only if p+K pp < p) it follows that xfn+(n_1)P, Tmy(n-1)P € By, Vn > 0, and therefore
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the control problems P(ty, z(k|k)), Vk > m, are well-posed.

Proof: In theorem 5.7 we have shown that the contractive MPC controller associated

with the least squares estimator produces real states which satisfy:

| i n-pyp lp<max{|| ¥ 5, | 27, lp} + A, Vn =0 (5.91)

Thus, if ¥, z£, € B,,, we have:

| Zhienyp Ip < Po + (5.92)

Now, from equation (5.70) we know that:

| Zrin-vyp = Tmt-vp lp = || Zoymonyp — 2(m+ (n = L)Pim +nP) || <

< K [lp-pll< Kpp (5.93)

Then, using the triangle inequality, we have:

| Zmitm-vp 5 <l Thsmnyp 1p +E pp (5.94)

Taking inequality (5.92) into consideration, it results that:

H Tm+(n—-1)P ”}5 < po+ )5'*' K Pp, Vn >0 (595)

If py satisfies:
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po < p—(p+K pp) (5.96)

with the parameter uncertainty being such that:

p+Kp, < p (5.97)

so that pg > 0 and po = p if || p— D ||= pp = 0, we have xﬁz+(n_1)p, Tmi(n—1)P €
B,, ¥n > 0, and, according to assumption 5.5, the control problems P (tx, z(k|k)) are

well-posed (feasible) for all k > m.
O

5.4 Mixed state/parameter LSE problem

We have so far studied the state estimation problem in the presence of parameter
uncertainty (constant parameters), examined its implementation together with the
contractive MPC controller and analyzed the stability properties of the closed-loop
system originated by this combination. In that case, we were using in both the es-
timation and prediction steps a model with constant parameter deviation from the
plant. Our stability analysis shows that this uncertainty only allows us to drive the
states of the plant asymptotically to a control invariant set whose size depends on
the parameter error. Now, we are prepared to study the properties of the mixed
state/parameter estimation problem when there is no structural mismatch between
the model used in the estimation and the real plant. Then, by combining this estima-
tor with contractive MPC we can see how the obtained stability results compare with
the ones we got previously. We will see that even though the analysis is slightly more
complicated the results are highly intuitive. Since the analysis will follow a similar
reasoning to what has been already presented, we will not go into as much detail as

we did in the previous sections.
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The moving horizon-based least squares state/parameter estimation problem is posed

as:

Estimation Procedure 3

Min xe (k- m1[k), {B(k-m+118),.aokk)) J{DUE) g i1, X(k—m+1[k)) =
= L(X(k—m+1k) Pk —m+ 1]k - DX°(k —m+1k) +
F YR R Bw(UE) + (k) Qo (1]k)]} (5.98)

subject to:

v(llk) =y — g(X(l|k)), l=k—-m+1,....,k (5.99)
X(tk) = f(XHE),u_) +@(tk), t € [ti, b)), L €[k —m+1,k] (5.100)

where X (1lk) := X(4|k) := [zt ]k)T  p(t|k)T]" € R™9 is the “augmented” state
vector, containing the n model states and the q parameters to be estimated. Moreover,
we are adopting the following notation: w(l|k) = w(t|k) € R is the dynamic
disturbance vector, v(l|k) = v(t/|k) € RP is the vector of output errors, X¢(k —m +
k) := X(k—m+1|k) — X(k—m+ 1|k — 1) is the state/parameter estimation error
of the estimates at time ty_,,.1 computed at time step k — 1 relatively to the newly
computed estimates at time step k and u(t) is constant for t € [t;_1,t] and equal to

uj_q foralll=k—m+1,...,k.

Remark 5.11 When the dynamics of the parameters to be estimated is unknown,
the most common model to use in the estimation procedure is a continuous (discrete)
random walk process where wP(t) (W} ) is a zero-mean, uncorrelated random trajectory

(sequence). In this case, the combined output/state/parameter model is given by:
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v(llk) = of — g(x(lk), B(I|k)), l=k-—m+1,..k
#(tlk) = f(a(tk), uir, p(tR)) + @7(tK), T € [tir,ti), L€ [k —m+ 1, K]

p(tlk) =  wP(t[k), t € [th-m1, 8] (5.101)

Similarly to what we had before, P~ (k—m~+ 1|k — 1) is interpreted as the covariance
of X(k —m + 1|k) computed at time ty_; and can be calculated using linear filtering

theory:

Pl k—m+1k)=P Y k-m+1k—1)— P Y k-m+1lk - 1)E x
X[EP Y k—m+1lk—1DE + R'EP bk —m+ 1]k - 1) (5.102)
P Yk —m+2|k) =P ' (k—m +1|k)d +Q (5.103)

where ® 1= ZL(X (k—m+1lk), ug-ms1), E = 22 (X (k—m+1]k—1)) and Q~', R

represent a quantitative measure of our confidence in the state/parameter and output

models, respectively.

5.4.1 Basic assumptions

Assumption 5.14 Lipschitz assumption on f : R"T4 x R™ — Rn+a

| f( X1, u) = f( Xz u2) IS Ly [l Xo = Xo || + [ v — ue |]] (5.104)

which implies that
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0
I 9L ) < Ly (5,105

Assumption 5.15 Lipschitz assumption on g : R"T1 — RP

| 9(X1) — g(Xo) [|< Ly || X1 — X2 | (5.106)

from which, it follows that:

I 55X I Ly (5.107)

Assumption 5.16 The unknown disturbances are norm bounded, i.e., there exists a

constant Wyqy € (0,00), such that:

wt) eW = {we L(0,00) |w € By,..}, Vte]0,00) (5.108)
where w denotes the disturbances in the real system and B, . = {w € R"*? |

| w HS wmaz}'

Assumption 5.17 Let the output measurement at time step 1, y;, be given by:

y = g(X7) + Ry (5.109)

where v ~ N(0,1,), VI >0, is a discrete Gaussian sequence and R, is a positive-

definite matriz (a design parameter).
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Assumption 5.18 Let m p = m dim(y) > n+q = dim(X) and let
P k)Y ymi1, X (E — m + 1|k)) denote the optimal estimation problem to be
solved at time t = tx with P(k — m + 1|k — 1) = 0, Yk > m, and in the absence
of measurement noise, being X (k —m + 1|k) and {@w(k — m + 1]k),..., w(k|k)} the
decision variables (all independent). Then, if the estimated sequence of disturbances
{w(l|k) Yot _ms1 s equal to the sequence of disturbances which affect the real system,
{wi} i1 (where wy == w(t;)), the estimate of the augmented states at time ty_pm11
computed at time step k is X (k—m+1lk) = X|_,,.,. Moreover, we assume that the

solution corresponding to w(l|k) = wy, VI € [k — m + 1, k], is unique.

5.4.2 Properties of Estimation Procedure 3

Theorem 5.9 (Bound on the difference between true and estimated aug-
mented states) Under assumptions 5.14, 5.15, 5.17 and 5.18, let Xy_pmr1 and
X2 _,.41 denote the solutions of the estimation problems P({@(Ik)}_y_ni1r X (k —
m + 1)k)) and P({wi}fy_ o1 X (k —m + 1|k)) , respectively. Then, there exists a

quadratic function of its arguments, V(py, Wimaz, Pv), Such that

N

H Xlzc)——m—i—l - Xk—m‘H ”13 < \I/(pw, Wmaz, pv) (5110)

where p, :==|| R, ||.

In other words, the difference between true and estimated augmented states (which in-
cludes estimated states and parameters) is bounded by a function of the uncertainty on
the disturbance values, the magnitude of the real disturbances and of the measurement

noise.

Proof: Any (local or global) optimal solution {{w*({|k)}f_y_s1, X*(k —m + 1]k)}
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satisfies the following set of equations:

OJ (i vk . _
o {0 UR) Y i, X (B = m + 1]k)) = 0 (5.111)

where A = [w(k —m+ k)T, ..., 0kk)T X(k-m+1]k)T 7.

As a consequence of assumption 5.18, we have:

aJ i
o o et XEon) = 0 (5.112)

Thus, if (W?—IT %))—1 exists, as a consequence of the classical implicit function
theorem 5.5 and of the uniqueness assumption 5.18, there exist p,, px > 0 and a
mapping ¢ : B°(w, py) — R of class C'(B°(w, py,)) (where w represents w(t), V¢ >

0) such that:

® O(Whoma1,- o> W) = le—m-H‘

o maxXie, 40 | w(E) —DEk) 1< pw = | o{DUE) ek —mi1) = Xhmia 1<
px and GL{0UE) Mo —mirs 0{OUR) Hopomsr)) = 0 with A = [ @(k — m +
1&)T ... w(k|k)T o(w(k —m+ 1]k),...,o(k|k))T |T.

o the equality 5({w(l|k)}y_pmir, X(k — m + 1|k)) = 0 is possible in the
“rectangle” B°(w, p,) X B°(Xi_,.i1,px) only for X(k — m + 1|k) =
e{@(UE) ok —mi1)-

So, as a consequence of the implicit function theorem, there exists p, > 0 such that
for w(tlk) € B°(w, pw), Yt € [tkmas1,tx], it follows that { {w(Uk)}F s iq, X (k —

m + 1K) } with X(k —m + 1|k) = o({@(Uk)Hop_pmir) € B (XL i1, 0x), is an

optimal solution of the optimization problem at time step k.

Thus, since there exists such py, > 0 and from assumption 5.16, it follows that:
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(k) | <l wt) | +p0 < Wmae + pu =1 Dmas (5.113)

for all t € [ty_my1,te], kK > m.

As a consequence of the existence theorem for an implicit function 5.4, there ezists

K > 0 such that:

= Xeemir | = N Xiog = X (B —m+ 1) ||<

H XI;[c)-—m—H
aJ . _
< K| 510U i XE ) |

(5.114)

Thus, in order to find an upper bound for || X;_,, .1 — Xk—m+1 ||, once again we need

to find an upper bound for the gradient of the objective function J with respect to the

decision variables in A evaluated at X%t_, |, i.e.:

A= [wk-m+1k)T .wklk)T (X, )T (5.115)
The 2—norm of the gradient of J with respect to A is then given by:
oJ
H HQ*H I1? + Z 5= 117 (5.116)
8X1€ m+1 byl O
where we have omitted the arguments of J to shorten the notation
Thus, we will proceed to find upper bounds for the individual gradients
= Yihoms1 VIK)TR 15%&@—
(5.117)

1. 72—
8Xk__ 11

2. ML=k, kTR | g <lik>T©‘14J—2""%éf1
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Since @a—%ﬂ = 0y, where Oy = 1 ifl =1 and §; = 0 if | 5 1, we have:

1.nﬁf;w<zMnmwwmmnanmm%%Ln
LI Q1T 0GR) |+ Sl [|20R) IR 1) 282

o;

(5.118)
2. || &

O,

So, let us find upper bounds for the 2—norm of the derivatives of v(l|k) with respect
to A:

1| B <) S ) ) SR (5.119)
2 | a1 25 0 e (5.120)

We will not go into a lot of details in the derivation of these upper bounds because

the procedure is stmilar to what we did before in the state estimation case only.

e Upper bound on || Q%%Iiﬂ I, Vi=k—-—m+1,...,k:

From equation (5.119) and assumption 5.15, we have:

| 28 < g, g 20 (5121
Since
X(tk) = XP_, . + /tt FOX (k) u(r))dr +/ dr,  (5.122)

the decision variables are mutually independent and assumption 5.14 is used,

we have:
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t L
|25 ar+ [ 25 e (5.123)

th—m+1

| 200 <, [

ti. m+1

Then, using the BG inequality and the fact that Q%%E@ =14dtt>1t and 591”(;%@ =
0 it <t;, it follows that:

| 288 || < (m— 1)Telsttomn) 4f 4 >, (5.124)
12389 ) = 0 if n<t (5.125)

Thus, using assumption 5.15, we finally get:

| B9 | < Ly(m - DTkt if f2t (5120)

O

[

Ow;

=0 if i<t (5.127)

6u(l|k) “ .
—m+1

e Upper bound on || 55r———

Using equation (5.120) and assumption 5.15, we have:

| _ov(ilk) aX (I[k
| axXT_ < Lyl B_Xé—iﬁ: I (5.128)

Taking the derivative of equation (5.122) with respect to Xy_,, .., applying the
2—norm and using the BG inequality, it results that:

H a(?()g(tk) H < eLf(t—tk—m-t—l) (5129)

By substituting this expression into (5.128), we get:

| 5ol || < Ly ebitite-met) | =k —m+41,...,k (5.130)
kwm-1
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Now, in order to compute the gradient of J with respect to the decision variables we
still need to compute an upper bound for || v(l|k) ||. Using assumptions 5.15 and 5.17,

it results that:

I v(lk) =0 9(X7) — g(XUE)) + Ro v | < Ly | X7 = XUE) | + || By || (5.131)

So, let us evaluate XP(t) — X (tlk), Vt € [tp—ms1, tx)-

X=Xk = [ ). - AKX k) u(r)] dr +

[ ) - wk)] dr (5.132)

te—m+1

Using assumption 5.14, the fact that w(tlk) € B°(w, pw), Vt € [tk—m+1, k], and the

BG inequality, we obtain:

| XP = X (k) | < pulm —1)T ehslitioms) (5.133)

And, by substituting this expression into (5.181), we finally get the desired bound on

I vk I

(k) | < Ly (m = DT eBteome) p, || Ry || =2 Gipu + py (5.134)

Thus, from (5.118) and the previous upper bound computations, it follows that there

exist constants 01,1, 09, 03 € (0,00), such that:
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1. HEYSQ_%;H S Ulpw’*'&lpv

2. ” 5{211‘{: “ < H Q_l ” Wiaz + 020w + G2py

(5.135)

and, from (5.116), it results that there exists a quadratic function of its arguments,

V(z,y,z), such that:

- = 1
H %({w(”k)}f:k—-m+1?le—m—)—l) [] S \p(pwawmazapv)z (5136)

which, from (5.114), means that:
” Xl{:)-m%-l - Xk—m+1 [[ S \Il(pwywmaxypv)% (5137)

where ¥ := K.

Thus, a sufficient condition for obtaining error-free estimates, i.e., Xp_mi1 = Xp_0 11,
s gwen by py = 0, Wy = 0 and p, = 0. If these three conditions are satisfied si-
multaneously, it means that there are no disturbances (w(t) = w(tlk) = 0, V¢ €
[tk—m+1, tk], k > m) and no measurement noise (v, =0, Vl € [k—m+1,k], k > mD)
Thus, the stability analysis follows in the same way as for the state estimation prob-
lem with parameter uncertainty with the only differences being that the term K p,
is replaced by ¥(py, Wnag, pv)% in the results previously derived, and the contrac-
tive constraint is now imposed on the augmented states X (assuming that the same

nonlinear state/parameter model is used in the prediction and estimation steps).
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5.5 Example: Biochemical Reactor

5.5.1 Biochemical reactor dynamics

The chemical engineering example adopted here is a continuous bioreactor with sub-

strate inhibition. Figure 5.1 is a schematic representation of this CSTR system.

F

sf__l

Figure 5.1: Schematic representation of a continuous bioreactor with substrate inhi-
bition.

For some regions of the parameter and input variable space, this system exhibits

multiple and saddle type of steady state behavior. The state equations are:

#(t) = [u()— D) z(t) (5.138)

$(t) = [ss(t) = s(t)] D(t) —

(5.139)

where
fimaz(1)8(2)
t) + s(t) + k1(¢)s2(¢)

pu(t) = P
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The dilution rate, D, is manipulated to control the cell mass concentration, x. The
other state and parameters are the substrate concentration, s, the specific growth

rate, u, the yield of cell mass, y, and the substrate concentration in the feed stream,

Sf.

Eaton and Rawlings [40] apply a classical nonlinear model predictive control strategy
to this example and they show that for a step in the setpoint from a stable to a saddle
point, if some of the parameters of the plant differ slightly from their nominal values,
the system will not be stable unless frequent measurements from the plant are taken

into consideration in the control computations.

The performance objective in this example is to obtain specific cell mass and substrate

concentrations without large control efforts.

According to our notation, we have:

1K

2 (t)=[24(t) 25(0)]" with o](t)=2(t) — 2 and 25(t)=s(t) — s

d(t)ﬁSf (t) — Sf.ss

p(1)=[p1(t) p2(t) p3(t) pa(®)]” with pi(t) = Lmas(t) = fimas,sss P2(E)Zkm(t) — Kmyss,

D3 (t) = kl (t) - k1,337 D4 (t)éy(t) — Yss

where finaz,ssy Km,ss, Fissy Yss are the nominal values of the parameters, sy, is the
nominal value of the input variable and x,s, ss5, uss represent the desired steady

state values of the two states and manipulated variables, respectively.

Naturally, since cell and substrate concentrations and the dilution rate are all positive

quantities, the physical constraints on the state space and control variables are:

V() > —zs5, aH(t) > —54, u(t) > =Dy, Vit e [0,00)
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5.5.2 Computation of steady states

With ug,, dgs and pgs representing the steady state values of the manipulated variable,

input variable and parameters, respectively, we have:

L. if (uss — p1.ss)® > 4ul posspass the system presents three distinct steady states

given by (0, dss), (Pa,55(dss — T355), T 55) AN (Pa,ss(dss — T3 45), T3), Where:

(S E

- _ Pi,ss — Uss — [(uss - pl,ss)2 - 4ugsp2,ssp3,ss]

5.140
1;2’35 2p3,ssuss ( )
1
:1]'; — Di,ss = Uss + [(uss - p1,ss)2 — 4u35p2’ssp3’ss] - (5141)
)88 2p3,ssuss

2. if (ugs — pl,ss)2 = 4u? p, ¢sp3 s the system presents two distinct steady states

given by (0, dss)a (p4,ss(dss - z?,ss); 372,33)7 where:

Tg 50 = (E220)3 (5.142)
p3,53

3. if (ugs — D1gs)? < 4ulpo sspass the system presents only one steady state given

by (0, dss).
The stability properties of these equilibrium points are:

First Equilibrium Point: (0, d;;)

1. if ug, = Ples . then:
1+2(p2,35p3,ss)§
1
2

(1.1) if dgs # (2222)2 the equilibrium point is a sink.

(1.2) if dgs = (i—ﬁ“ﬁf)% the equilibrium point is a center (here we denote by
center stationary points at which the linearization has one or more eigenvalues
on the imaginary axis; the stability characteristics of these points cannot be

determined by this first order analysis).
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Pl,ss

: 1
2. if D2,ssD3,ss 2 1 and Uss >
1+2(p2,ssp3,ss)

the equilibrium point is a sink.

3. if ugs € [0, — L=+ then:

’ 1'}‘2(172,.53173,33)E
(3.1) if us; = 0 the equilibrium point is a center.
3.2) if u,s € (0, —F222 ) we have:
( ) 58 ( 1"}"2(172,ezsp.?.,ss).2 )

(3.2.1) if dy, = d, or dy, = d

5, where

ot

d;—s = P1yss — Uss — [(uss - p1755)2 - 4u§sp2,ssp3,ss}
2p3,ssuss

d:; = P1,ss 7 Uss + [(uss - p1,53)2 - 4“33172,%1?3,53]
2p3,ssuss

(5.143)

DO

(5.144)

the equilibrium point is a center.

(3.2.2) if dys € (dj,, d7,) the equilibrium point is a saddle.

587 7’88

(3.2.3) if d,; € [0,d3,) or dys > df, the equilibrium point is a sink.

and u,; € ( Plee | PLes ) the equilibrium point is
1+2(p2,ssp3.ss)§ 1_2(172.3573&53)?

o it

. if p2,ssp3,ss <

a sink.

Pl,ss
1_2(172,55173,38 ) 2

. if posspa,ss < 1 and ug > we have:
(5.1) if dss = d, or dss = d7, the equilibrium point is a center.
(5.2) if dys € [0,d,) or dgs > dF, the equilibrium point is a sink.

(5.3) if dgs € (d,, df,) the equilibrium point is a saddle.

587 'ss

Second Equilibrium Point: (ps(dss — 254,), 2.45)

. if ugy = 0 and dys > x4, the equilibrium point is a center.

cifug € (0, —P22 ) and dy,; > 73, the equilibrium point is a sink.
1+2(p2,ssp3,3s)7 ’

cifug € (0, —222—) and d,, = 75 ,, the equilibrium point is a center.
1+2(p2,33p3,3s)7 ’
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+

Third Equilibrium Point: (py(dss — 23 ,,), 23s)

1. if uss = 0 and dys > 27, = 0 the equilibrium point is a center.

2. if ugs € (0 Blass and d,, > 74 ., the equilibrium point is a saddle.
,88

’ 1
1+2(p2,ssp3,ss ) 2

3. if ugs € (0, —2=——) and d,, = 23, the equilibrium point is a center.

3
1+2(p2,ssp3,ss) 2

In the case where uy, = P12

one and this point is a center.

I
1+2(P2,55P3,ss) 2

the two last equilibrium points coincide into

This local stability analysis allows us to better interpret the results obtained from

simulations of the closed-loop system.

5.5.3 Simulation results

The nominal values of the parameters, disturbance and input variable used in the

simulations performed here are:

Nominal parameter and disturbance

values for the bioreactor

Hmaz = 0.53
ki = 0.4545
d:= Sf = 4.0

km = 0.12
y=04

The steady state coordinates for these parameter and disturbance steady state values

for both the open-loop stable and unstable equilibria are:

Steady state values for the biochemical reactor

Variables | Unstable (1) Stable (2)
u:=2D 0.3 0.3
T 0.9951 1.5302
s 1.5122 0.1746
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We will use the biochemical CSTR to demonstrate how contractive MPC handles
both time-variant and time-invariant parameter uncertainty in the model used for

prediction, in both state and output feedback case.

A variety of situations for two main cases will be considered here:

Transition 1: Step change from steady state (1) to steady state (2),

Transition 2: Step change from steady state (2) to steady state (1).

Naturally, the step change proposed in Transition 2 is more challenging than the
one in Transition 1 due to the unstable characteristics of the steady state around
which we wish to operate the plant. For each of these transitions we will consider six

different scenarios in our simulations:

Case 1: State Feedback

Case 1.1 Nominal case, no disturbances.
Case 1.2 Constant parameter deviation between model and plant.

Case 1.3 Non-additive, bounded, exponentially decaying disturbance which

converges to a non-zero value.

Case 1.4 Non-additive, bounded, exponentially decaying disturbance which

converges to zero.

Case 2: Output Feedback under constant parameter deviation between

plant and model

Case 2.1 Using the state estimator (the extended Kalman filter) in
chapter 4.

Case 2.2 Using a least-squares moving horizon-based estimation (LSE) algo-

rithm as proposed in this chapter.
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In all of these cases we will examine the unconstrained and constrained responses
obtained with our contractive MPC algorithm (which is modified to deal with Case

2.2 and assumes the form of Control Algorithm 4).

The input and state variables which will be plotted for the bioreactor example are

the deviation variables with respect to the desired steady state values.

Transition 1

Case 1.1

This is a very simple case since there is no model/plant mismatch and the
targeted steady state is open-loop stable. The simulations for the unconstrained

and constrained cases are shown in figure 5.2.

The controller parameters used in Case 1.1 are given by:

Controller Parameters (figure 5.2)
Q =diag([l 0.1]) | R=0 S=0

Umin = -1 Umnaz = 0

Unless otherwise indicated, the hard control constraints for the simulations of

Transition 1 will be the same as the ones used here in the nominal case.

As we can see from figure 5.2, the response in the unconstrained case occurs in
approximately two sampling times. The effect of tight input constraints (more
than four times smaller than the maximum control effort in the unconstrained

case) is to delay the response by a few samples.
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Figure 5.2: Bioreactor: State and control responses in Case 1.1 (Transition 1).

Case 1.2

In this case, the parameters of the model and the plant are constant and dif-
ferent. As discussed earlier in this chapter, asymptotic stability cannot be
guaranteed in this case any longer. Due to the stabilizing effects of the con-
tractive constraint, we can assure that the states will converge asymptotically
to a control invariant set whose size depends on the constant parameter devi-
ation. Moreover, if integral action is introduced, we can eliminate offset in as
many states as there are inputs (in this case, one) at the expense of perhaps

introducing larger offsets in the responses of the other states.

The simulation results for the unconstrained and constrained cases are depicted

in figure 5.3.
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Figure 5.3: Bioreactor: State and control responses in Case 1.2 (Transition 1).

The controller and model/plant parameters used in Case 1.2 are:

Controller Parameters (figure 5.3)
Q =diag([l 0.1)) | R=0 | S=0

Model/Plant Parameters

Parameters | Plant | Model

[maz 0.53 | 0.424
K 0.12 | 0.108
ky 0.4545 | 0.409

y 0.4 0.32
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As we can see from figure 5.3, C4 shows a small offset, i.e., due to the parameter
uncertainty, exponential (or even asymptotic) stability to the origin cannot be
achieved for both states since we have only one manipulated variable. We call
this convergence to a small control invariant set containing the origin “practical
stability”. Once again, the effect of the input constraints is to delay the state

response by a few samples.

Case 1.3

In this case, the variable sy (the substrate concentration in the feed), which is
commonly seen as a non-manipulated input variable, will work as a disturbance
acting on the system. We will simulate sy as an exponentially decaying distur-
bance which starts at ¢ = 0 at its nominal value s¢ ., = 4.0 and converges to a

value 5% smaller. Thus, sf(t) is given by:

sp(t)=3.8 + 02¢e77

In the beginning, since the disturbance is near its nominal value, we expect that
the response will not be very different from the one obtained in the nominal
case. Thus, the important consideration in this simulation is the asymptotic
behavior of the closed-loop, when the disturbance settles to a value different

from the value it should have at steady state.

The expected results are that the states can be taken to a control invariant
set containing the origin and be kept there. Asymptotic stability cannot be

expected since this is a persistent disturbance.

The unconstrained and constrained simulations taking into account this dis-
turbance in sy are illustrated in figure 5.4. The disturbance behavior is also

depicted in figure 5.4.

The controller parameters used in Case 1.3 are the following:
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Figure 5.4: Bioreactor: State and control responses in Case 1.3 (Transition 1).

Controller Parameters (figure 5.4)
Q =diag([l 0.1]) | R=0 | S=0
P =6 M=4|a=09

As we notice from figure 5.4, this level of asymptotic disturbance deviation from
its nominal value and the persistence of such disturbance do not allow the states

to be brought to the origin.

Some of the oscillation obtained in the response as ¢ increases is due to numerical
instabilities which we could not eliminate completely with our adjustments of

tolerance parameters in both the optimization and integration routines.

In spite of the numerical problems which we were not able to avoid, we can see

that our theoretical prediction of the closed-loop response was correct and the
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states can indeed be brought to the interior of a control invariant set and be
kept there as ¢ — oco. In order to keep the states inside this neighborhood of
the origin, the control variable does not settle to the origin either but stays in

a close vicinity of it.

The effect of the input constraints is to reduce the controller’s power of action
in the beginning and, therefore, delay the response. The constraints do not
have any effect on the asymptotic response since they are no longer active at

that stage.

Case 1.4

Here we want to study the transient effect of a disturbance which converges
exponentially to its nominal value. Once again, the disturbance is introduced
in the substrate concentration in the feed, sy. Contrary to what we experienced
in Case 1.3, we expect that the initial response will be largely perturbed but

the states should still be able to reach the origin asymptotically.

The time-varying behavior of s;(¢) is modeled in the following manner:

sp(t) = 4.0 + 2.0¢73

The responses for the unconstrained and constrained simulations can be found

in figure 5.5. The disturbance behavior is also illustrated in this figure.

The controller parameters used in Case 1.4 are as follows:

Controller Parameters (figure 5.5)
Q =diag([l 01])) |R=0 |S=0
P=6 M=4|a=09

The obtained results are as expected from our theoretical investigations for
this class of disturbances and they also show that the influence of the input

constraints is not strongly felt in this case.
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Figure 5.5: Bioreactor: State and control responses in Case 1.4 (Transition 1).

Case 2.1

In this case, the parameters of the plant and the model used in the prediction
step of the contractive MPC algorithm are different and constant and only one of
the states (the cell concentration in the reactor, z) is available for measurement.
The measurement is corrupted by noise and the plant is also simulated with the

influence of additive dynamic random noise.

The state estimator used here is the discrete version of the asymptotically stable

continuous-time filter introduced in chapter 4.

Our objective is to compare the closed-loop responses obtained with state es-
timation to the ones previously presented for the state feedback case (Case

1.2).
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The simulation results for the constrained case are depicted in figure 5.6. The

behavior of the dynamic and output noises is also shown in this figure.
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Figure 5.6: Bioreactor: State and control responses in the constrained Case 2.1
(Transition 1).

The control and estimation parameters and initial conditions for the plant and

estimator/model used in Case 2.1 are given by:

Controller and Estimator Parameters (figure 5.6)
Q =diag([l1 0.1])) | R=0 S=0
P=5 M=3 a=09

Umin, = —1 Upaz = 0 POZIn
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Initial Conditions

Plant: zo = —0.5351 | 59 = 1.3376
Model/Observer: | 7o = —0.4351 | 5, = 1.4376

Model/Plant Parameters

Parameters | Plant | Model
Hmaz 0.53 0.424
km 0.12 0.108
ky 0.4545 | 0.409
Y 0.4 0.32

As we can see from figure 5.6, the extended Kalman filter provides estimates
which converge asymptotically to the states of the model with nominal param-
eter values (thus, showing offset with respect to the states of the plant) and the
contractive MPC controller is able to drive the states of the plant to a control

invariant set containing the origin and keep them there.

Because of the imposed input constraints, the control action cannot change its
sign (Umee = 0) and the system is left open-loop after a few initial samples.
Since the target steady state is open-loop stable, the system evolves towards it

in spite of the constraints.

Case 2.2

Here we applied the combined control/state estimation procedure proposed in
this chapter (Control Algorithm 4) to the biochemical reactor, under the
same constant parameter deviation used in the state feedback case (Case 1.2)

and when an extended Kalman filter is the state estimator (Case 2.1).
The unconstrained and constrained responses are illustrated in figure 5.7.

The dynamic and output noises used in the present simulations are of much

higher magnitude than the noises used in the case of state estimation with the
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Figure 5.7: Bioreactor: State and control responses in the constrained Case 2.2
(Transition 1).

EKF but they are not persistent (the scaling factors for the noises, i.e., the
matrices N,, and R, are of asymptotically decaying magnitude). This was done
here so that we could examine the effect of larger noises in the transient behavior
of the closed-loop system. The behavior of the simulated random noises is also

illustrated in figure 5.7.

The control and estimation parameters and initial conditions for the plant and

estimator/model used in Case 2.2 are given by:
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Controller and Estimator Parameters (figure 5.7)

Q =diag([l 0.1)) | R=0
P=5 M=3

Umin = —1 Umaz = 1

m = P, =0.011,

S=0
a=0.9
Rl'=101,

Initial Conditions

Plant: Tg = —0.5351 | s = 1.3376
Model/Observer: | T, = —0.4351 | 5 = 1.4376

Model/Plant Parameters
Parameters | Plant | Model
Hmaz 0.53 | 0.424
km 0.12 0.108
k1 0.4545 | 0.409
Y 0.4 0.32

As we notice from figure 5.7, the states of the plant still converge to a small

control invariant set around the origin. Notice also the offset in u = D.

The transient behavior of the closed-loop for the implementation with the LSE

scheme is worse than in Case 2.1 (estimation with EKF) due to the noise being

of initial magnitude 20 times higher than the noise used there.

Transition 2

Case 1.1

The unconstrained and constrained simulations with the plant being the same

as the model and in the absence of disturbances are shown in figure 5.8.

The controller parameters used in Case 1.1 are given by:
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Figure 5.8: Bioreactor: State and control responses in Case 1.1 (Transition 2).

Controller Parameters (figure 5.8)
Q =diag([l 0.1]) | R=0 S=0
P=4 M=2 a=0.6
Uppin = 0 Umag = 0.5

Unless otherwise indicated, the hard control constraints used in the simulations
of the step change from steady state (2) to (1) will be the same as the ones

used here in the nominal case.

As we can see from figure 5.8, the response in the unconstrained case occurs in
only one sampling time. The effect of tight input constraints (approximately
nine times smaller than the maximum control effort in the unconstrained case)

is to delay the response which now occurs only after thirteen samples.
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Case 1.2

The simulation results for the unconstrained and constrained cases are depicted

in figure 5.9.

0.5 Unconstrained (solid)

041 O . Constrained (dashed)

1.5 0 0.5 1 1.5

0 O'5Time(t)1 t
4_
3
aF
1
0 05 1 15

Figure 5.9: Bioreactor: State and control responses in Case 1.2 (Transition 2).

The controller and model/plant parameters used in Case 1.2 are:

Controller Parameters (figure 5.9)
Q =diag([l 01])) | R=0 | S=0
P=4 M=2|a=09
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Model/Plant Parameters

Parameters | Plant | Model
Hmazx 0.53 0.424
km 0.12 0.12
kq 0.4545 | 0.4545
Y 0.4 0.32

As we can see from figure 5.9, the states show a small offset, i.e., due to the
parameter uncertainty, exponential (or even asymptotic) stability to the origin
cannot be achieved. Once again, the effect of the input constraints is to delay

the state response by a few samples (approximately nine, in this case).

Case 1.3

The disturbance in sy considered here has the behavior shown in figure 5.4, i.e.,

it decays exponentially to a value 5% below its value at steady state.

The same observations which we made regarding the stability properties of the
closed-loop under this kind of disturbance for Transition 1 hold for Transition

2.

The unconstrained and constrained simulations taking into account this distur-

bance in sy are illustrated in figure 5.10.

The controller parameters used in Case 1.3 are the following:

Controller Parameters (figure 5.10)
Q =diag([1 0.1)) |R=0 | S=0
P =38 M=4|a=09

As we notice from figure 5.10, this level of asymptotic disturbance deviation
from its nominal value and the persistence of such disturbance do not allow the

states to be brought to the origin.
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Figure 5.10: Bioreactor: State and control responses in Case 1.3 (Transition 2).

As in the simulations for the previous step change, some of the oscillation ob-
tained in the response as ¢ increases is due to numerical instabilities which we
were not able to eliminate completely with our adjustments of tolerance param-

eters in both the optimization and integration routines.

Even in the unstable operating region and in spite of the numerical problems
which we could not avoid through change of tolerance parameters for both the
optimization and integration routines, we can see that our theoretical prediction
of the closed-loop response was correct and the states can indeed be brought to

the interior of a control invariant set and be kept there as t — .

As in most cases, the effect of the input constraints is to delay the response.
The constraints do not have any effect on the asymptotic response since they

are no longer active at that stage.
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Case 1.4

The responses for the unconstrained and constrained simulations can be found

in figure 5.11. The disturbance behavior is also shown in this figure.
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Figure 5.11: Bioreactor: State and control responses in Case 1.4 (Transition 2).

The controller parameters used in Case 1.4 are as follows:

Controller Parameters (figure 5.11)
Q =diag([l1 0.1]) | R=0 S=0

Unnin = —0.05 Unaz = 1

The obtained results are as expected from our theoretical investigations of this

class of disturbances and they also show that the influences of the input con-
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straints and of the open-loop instability of the final steady state are not felt

strongly in this case.

Case 2.1

As we have noticed from the previous simulations, controlling the operation
around the unstable point with contractive MPC in the state feedback case,
has not presented much more of a challenge than in the case of operation in the

stable region.

The following simulation results will tell a different story for the output feed-
back case. The introduction of an initial estimation error and of measurement
and dynamic noises in the simulations near the unstable operating point causes
many more difficulties for the EKF to provide asymptotically convergent esti-
mates than in the step change to the stable steady state (especially if there are
active input constraints). The fact that the linearization of the system near the
operating point is open-loop unstable has made the filter (which utilizes this
linearization for update of the state estimates and covariance matrices) more

sensitive to the effects of noise and initial estimation error.

Since the introduction of parameter uncertainty represents an additional dif-
ficulty, we have simulated the output feedback response for reasonably small
initial state deviations but in the presence of a considerable amount of noise
and the closed-loop is shown to be asymptotically stable in figure 5.12. The

output and dynamic random noises are also plotted in this figure.

The control/estimator parameters and initial conditions for these simulations

are:

Controller and Estimator Parameters (figure 5.12)
Q =diag([l 0.1)) | R=0|S5S=0

P=3 M=5|a=09

Py=1,
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Figure 5.12: Bioreactor: State and control responses in the unconstrained output
feedback nominal case using EKF (Transition 2).

Initial Conditions
Plant: zo = —0.5351 | sg = 1.3376
Model/Observer: | T, = —0.52 50=1.31

Contrary to what happens in the stable operating regime, the EKF provides
estimates which completely diverge from the states of the plant in the presence
of parameter uncertainty and, since the contractive constraint is imposed on the
states of the model (which are obtained by integration of the model equations
with the estimated states as initial condition at each sampling time), the closed-

loop response is unstable as we can see in figure 5.13.

The level of noise used here is the same as in the output feedback simulation of

the nominal case (figure 5.12).
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Figure 5.13: Bioreactor: State and control responses in the unconstrained output
feedback robust case using EKF (Transition 2).

The model/plant, controller and estimator parameters in Case 2.1 are given

by:

Controller and Estimator Parameters (figure 5.13)

Q = diag([1 0.1})
P=23

R=0
M=5

S =10
a=10.9
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Model/Plant Parameters

Parameters | Plant | Model
Hmag 0.53 | 0.424
km 0.12 0.108
ky 0.4545 | 0.409
Y 0.4 0.32

The initial conditions are:

Initial Conditions
Plant: Zo = 0.5351 | s = —1.3376
Model/Observer: | 7, = 0.5 50=—1.2

As we can see from figure 5.13, due to the relatively small level of noise, and
because the measured output is the concentration of cells in the reactor, z, the
estimates of x provided by the EKF converge to the true cell concentration (as
they should). However, since the estimates of s (the substrate concentration in
the reactor) diverge completely, the closed-loop becomes unstable even in the

absence of input constraints.

Case 2.2

We will see here that the LSE procedure does not suffer from the same draw-
backs that we pointed out for the EKF in Transition 2 (Case 2.1). LSE
is able to provide better estimates in this case because it uses the nonlinear
system model (as explained earlier in this chapter) in the optimal estimation
procedure and not the unstable linear approximation. Moreover, the estimates
are computed using m = P + 1 previous measurements and not only the most

recent one as with the Kalman filter.

The results show that the LSE provides as good estimates as it did in Transi-

tion 1.
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Figure 5.14: Bioreactor: State and control responses in the output feedback robust
case using LSE (Transition 2).

The unconstrained and constrained responses are illustrated in figure 5.14.

Also here, the dynamic and output noises used in the present simulations are of
much higher magnitude than the noises used in the case of state estimation with
the EKF but they are not persistent. The behavior of the simulated random

noises is also illustrated in figure 5.14.

The controller/estimator parameters and initial conditions for the plant and

model/observer used in Case 2.2 are given by:
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Controller and Estimator Parameters (figure 5.14)

Q=diag((l 0)) | R=0 |S=0
P=5 M=3 a=0.9
Umin = —2 Umae = 2 | Po = In
m = Pl=I,|R=0

Model/Plant Parameters

Parameters | Plant | Model
Hmaz 0.53 0.424
km 0.12 0.108
ky 0.4545 | 0.409
Yy 0.4 0.32

Initial Conditions
Plant: xg = —0.5351 | sp = 1.3376
Model/Observer: | 7, = 0.5 50 =-1.3

The transient behavior of the closed-loop is poor due to the high levels of process

noise up to time ¢t = 5.
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Chapter 6 Contractive NLMPC reformulated as

a Quadratic Programming (QP) Problem

In this chapter we will be dealing with the following problem:

Problem 6 : Stability and computational properties of contractive MPC when the
model used for prediction is a linearization of the nonlinear plant about the predicted

trajectory

6.1 Introduction

In the previous chapters we have shown how the contractive constraint exponen-
tially stabilizes the closed-loop system when no model uncertainty or disturbances
are present. Then, we demonstrated that the closed-loop becomes uniformly asymp-
totically stable if asymptotically decaying disturbances affect the system. We have
also shown that this kind of disturbance could be caused by introduction of an asymp-
totically convergent observer into the closed-loop for state estimation. We derived
sufficient conditions under which the association of an exponentially stable controller
(such as contractive MPC) with an asymptotically convergent observer generates an
asymptotically stable closed-loop system. Furthermore, we have designed such an

observer for a continuous-time system with discrete observations.
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In the last chapter, we have first looked into the state feedback control problem when
persistent, bounded and non-additive disturbances affect the nonlinear dynamics of
the system. In the nonlinear context, the problem posed by disturbances of this kind
is equivalent to having parameter uncertainty only (i.e., model and plant are matched
in the nonlinear structure, only some - or all - parameters are unknown). We have
demonstrated that the most which can be guaranteed under non-additive bounded
disturbances or parameter mismatch, is that the states are driven to a control in-
variant set whose size is proportional to the “size” of the disturbances or parameter
deviation. Then, we examined how these results change when the states are also
unknown (output feedback case) if the parameters are unknown but constant. We
have used a moving horizon-based estimator as proposed in [111] for state estima-
tion. Finally, we studied how the results are modified if both states and parameters
are unknown, the parameters are time-varying, the system is subject to additive dis-
turbances and the estimation procedure seeks to estimate states, disturbances and

parameters.

All the previously proposed MPC schemes involve the solution of a nonlinear pro-
gramming problem at each time step to find the optimal (or, at least, feasible) con-
trol sequence. Nonlinear programming is the general case in which both the objective
and constraint functions may be nonlinear, and is the most difficult of the smooth
optimization problems. Indeed there is no general agreement on the best approach
to be used for its solution and much research is still to be done. Penalty and barrier
functions constitute a global approach to nonlinear programming but they suffer from
well-known computational deficiencies and are not entirely efficient. An alternative
way to proceed is to consider local methods which perform well in a neighborhood
of the solution as described, e.g., in [45, 46, 72]. Some well-known local methods
are Newton’s method (applied to the first-order conditions that arise in the method
of Lagrange multipliers). It can be shown that this method generalizes to give the
sequential quadratic programming (SQP) method. This method converges locally at

second order and has the same standing for nonlinear programming as Newton’s
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method does for unconstrained minimization. Another idea which has attracted a lot
of attention is that of a feasible direction method which generalizes the active set type
of method for linear constraints and aims to avoid the use of a penalty function. Al-
though software is available for this type of method, there are nonetheless difficulties

in determining a fully reliable algorithm.

Due to the difficulties inherent to solving nonlinear programming problems and since
MPC requires the optimal (feasible) solution to be computed on-line, it is important
that an alternative implementation be found which guarantees that the problem can
be solved in a finite number of steps. It is well-known that both linear and quadratic
programming (QP) problems satisfy this requirement. A QP problem is an optimiza-
tion problem in which the objective function is quadratic and the constraint functions

are linear. Thus the problem is to find a solution z* to

minimize J(2) := 12 Hz+h'z
subject to az=>b, i€E,

2

az>b, i€l (6.1)

where z are the decision variables, J(z) is the performance criterion, H is a symmet-
ric positive (semi-)definite matrix, E and I are the sets of equality and inequality
constraints, respectively, and the matrix A and vector b define the linear equality
and inequality constraints on the optimization variable z. As in linear programming,
the problem may be infeasible or the solution may be unbounded; however, these
possibilities are readily detected in the standard algorithms, so for the most part it is
assumed that a solution z* exists. If the Hessian matrix H is positive semi-definite,
z* is a global solution, and if H is positive definite, z* is also unique. These results
follow from the (strict) convexity of J(z), so that (6.1) is a convex programming
problem. Thus, results which apply to convex optimization automatically apply for
QPs. When the Hessian H is indefinite then local solutions which are not global can

occur, and the computation of any such local solution is of interest.
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In [48] one can find for the first time an implementation of MPC to nonlinear systems
where the model used for prediction is a linearization of the original nonlinear dy-
namics around the states at the current time step. Combining that with a quadratic
objective function and linear constraints on the control variables, the MPC problem
is formulated as a QP to be solved at each time step. The resulting MPC strategy
is known as quadratic dynamic matrix control (QDMC). This is a very simple and
effective alternative implementation of MPC from a computational point of view but
the resulting closed-loop may be unstable. In the present chapter, we will look into
how to combine the attractive computational features of Garcia’s method in [48], and
subsequently used by Ricker and Lee in [74, 110] (by linearizing the nonlinear sys-
tem about the predicted trajectory) with the stability guarantees which we obtained
through the use of the contractive constraint. We will see that even though the con-
tractive constraint is a quadratic constraint (and not a linear one as required for the
problem to be posed as a QP), there are ways to incorporate this constraint into the
optimization in combination with a quadratic objective function, a linear prediction

model and other additional linear constraints, and still obtain a QP.

Since the model used for prediction is a linear approximation of the original nonlin-
ear dynamics, this linearization procedure which makes the algorithm much simpler
from a computational point of view, makes the stability analysis much more com-
plex because of the model/plant mismatch caused by the linear approximation. It
is no longer possible to guarantee exponential or even asymptotic stability of the
closed-loop system to the origin. We will show that the states can be steered to a
neighborhood of the origin whose size is proportional to the mismatch between the
nonlinear system and its linear approximation. We know that the dynamics of a non-
linear model and that of its linearization about an equilibrium point converge locally,
i.e., in a small neighborhood of the considered equilibrium point (see [121]). Indeed,
even though we are performing linearization at transient points (and not equilibrium
points), the state trajectories of the nonlinear plant and that of the linear model are

very close to one another if the sampling time is small.
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6.2 Contractive MPC posed as a QP

6.2.1 Description of the system

The nonlinear systems considered in this chapter are described by the following equa-

tions:

z(t) = f(z(t), u(t), p(t), d(t)) (6.2)

where Z(t) € R" is the vector of state variables, u(t) € R™ are the manipulated
variables, p(t) € R° is the vector of unknown time-varying parameters, d(t) € R¢ are
the unknown time-varying disturbances which affect the system and f : R” x ®™ x
R x R4 — R” represents the function that models the uncertainties and nonlinearities

in the plant. f is assumed to be a continuously differentiable function.

Now, let (Z,a,p,d) = (z*,u*,p*,d*) be the equilibrium point at which one desires
to operate the system. p* and d* denote the nominal values of the parameters and

disturbance variables, respectively.

So let the following deviation variables be defined:

() = 3(t) -z
ult) = a(t) —u*
p(t) = p(t)—p

dt) = dt)—d*

Under this change of variables, the original system (6.2) is expressed as:

#(t) = f(@P(t), u(t), p(t), d(t)) (6-3)
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where the definition of the continuously differentiable function f follows straightfor-

wardly from equation (6.2).

It is assumed that d(¢) € D and p(t) € P,Vt € [0,00), where the sets D and P are
defined by:

D = {dt)eR| || d)||< es, VtE[0,00)} (6.4)
P o= {plt) eR°| || p(t) I< ¢, Vte[0,00)} (6.5)
where €4, €, € [0, 00) are known constant values.

Besides, the hard constraints on the manipulated variables, u(t), will be expressed in

the usual manner:
uw(t) eU :={u € R™: Upin < U < Upaz}, VE € [0,00) (6.6)

where Umin, Umez € R™ are known constant vectors.

Linear constraints on the rates of change of the manipulated variables are also com-

monly present, as we have pointed out in chapter 2 (see equations 2.26 and 2.27).

6.2.2 State feedback contractive MPC algorithm with

linear approximation

Control Algorithm 5

Data: Initial Conditions: to and zf := aP(ty); Controller Parameters: horizons
P, M, weights Q, R, S, P > 0, contractive parameter o € [0,1), sampling time

T and control constraints Umin, Umazs DUmaz-
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Step 0: Set k=0, 7 =0.

Step 1: Assuming that the optimal control problem P(tl, z27) is feasible for the cho-

sen set of parameters, then at t =t} solve P(t], x27) which is specified by:

MDYk P45k P+f),uk P44 M—1kP+f) Jh = Sorey | (kP + j +ilkP + ) |13
+ MG kP + 5+ ilkP + j) ||% + || Au(kP + 5 +ilkP +j) |I2] (6.7)

subject to:

,

@l (t) = Cl + ALzl (t) + Biul(t), = measured states att], (z27)
tmin < W(EP + j + kP + ) < tmag, i € [0,M — 1]

¢ JAu(kP +j+ilkP +j)| < Atmaq, € [0, M —1]
Au(kP+j+ilkP+j)=0, i € [M,P—1]

| 56D p< @ ll 2L 5 € [0,1)

(6.8)
where (kP + j + i|kP + j) are the predicted states at time t,™" computed with
information up to time tl, i.e., z(kP +j +i|kP + j) := 2L(tJ) and

Z(t) = O + AV (t) + Blul(t), withzl := 2% = aP(t;) and 7 = 17 (),

(6.9)
for 7 > 1, is the trajectory of the linearized model which is not updated with the
states of the plant at t1, for j € [1, P—1]. The states Z,(t) are only updated with
the states of the plant at t = t, + PT =: t¥, i.e., at intervals of one prediction
horizon. Moreover, the nonlinear system is not re-linearized at every sampling
time for computation of the states Z(t) as it is for computation of the predicted
states z(t). In other words, while the matrices A, B, C are re-calculated at every
ti, j=0,...,P—1, for computation of the predicted trajectories, they are only
re-calculated at the beginning of prediction horizons for purpose of computation

of the contractive constraini.

The result of this step is an optimal sequence of control mowves

{u(kP + jlkP +7),...,u(kP + j + M — 1|kP + j)}.
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Step 2: Apply the first control move, uw(kP + j|kP + j), to the plant (6.8) for t €

[t1,60Y] and measure the states at t)". Set 2" equal to the measured states,

2T = gp (), and T = 2 (), 5> 0.

Step 3: If j < P—1, set j = j+ 1 and go back to Step 1. If j = P — 1 set
T = Tpy1 = Thyy, oy = ey =8, k=k+1, j =0, and go back to

Step 1.

Remark 6.1 Notice that in Problem 6 the states x(t) and Z(t) are computed using
linear approzimations of the original nonlinear system (6.8). The matrices Ai, Bi, C’,Z

are given by:

Al = 8L(z],4],0,0) (6.10)
Bl = 2%(z],4i,0,0) (6.11)
Ci = f(xl,ul,0,0) — Alal — Blul (6.12)

e., these matrices are computed at nominal values of disturbances and parameters,
d*, p*, respectively. Thus, the linear approzimation of the nonlinear system (6.3) is
simply obtained by expanding the nonlinear dynamics in a Taylor series erpansion

and neglecting second and higher order terms.

Remark 6.2 The optimization step formulated as in Control Algorithm 5 is a
convez programming problem in the control variables (and no longer a general non-
linear programming problem, as we had in the previous chapters). The convezity of
the optimization is due to the fact that the objective function is quadratic in the deci-
ston variables Au, the trajectory and input constraints are linear and the contractive
constraint is quadratic and convez (since the matriz H in the term (Au) H Au, which
results from writing the contractive constraint as a function of the decision variables,
s positive definite - this is easy to verify since the contractive constraint is derived in
the same way as the objective function which is convex, the only difference being the

independent terms in the former).
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The problem of minimizing a convex function on a convex set K s what we call a

convex programming problem. These problems have the following structure:

minimize J(2)

subject to ¢;(2) >0, i=1,...,nc (6.13)

where nc s the number of constraints, J(z) is a convex function on K and the func-

tions ¢;(z), 1 =1,...,nc, are concave on R".

It is a well-known result that every local solution z* to a convex programming problem
(6.13) is a global solution, and the set of global solutions is convex. Furthermore, if

J(z) is strictly convez on K then any global solution s unique.

Thus, just by using linear models for prediction and computation of constraints,
we have reduced a potentially complex nonlinear programming problem into a very
tractable conver problem. Well-established constrained optimization algorithms such
as the sequential quadratic programming (SQP) method (also known as Lagrange-
Newton method), feasible direction method, etc., are known to perform quite well with

convex problems.

Even though, posed as it is, Control Algorithm 5 is much simpler than Control
Algorithm 1 from a computational point of view, further improvement can still be
achieved. In fact, since the prediction model is linear and the constraints on the
control variable are also linear, the optimization would be a quadratic programming
(QP) problem in the absence of the state constraints (which are quadratic in the
control variables). There are, however, alternative ways to implement these quadratic
state constraints into the optimization step such that the optimization can still be

posed as a QP. We will examine these alternatives in the next section.
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6.2.3 Transforming the optimization into a QP

We have identified three different ways to incorporate the contractive constraint into

the optimization step of our contractive MPC scheme in order to pose it as a QP:

Procedure 1: Approximate it by a set of 2n + 1 (where n is the dimension of the

state vector) linear constraints.

Procedure 2: Add it to the objective function, pre-multiplied by a chosen scalar
weight v > 0, and remove it from the list of constraints. This leads to an
iterative procedure on the weight v which is carried out until the contractive

constraint is satisfied (this is known as a penalty function approach).

Procedure 3: Re-write it as:

[EACSN R oA (6.14)

where 5,{ = l"fjjg,é’))l'l'{, with g?fc (t) being the trajectory used in the computation
AN ALY o

of the contractive constraint at j =0,..., P — 1 for a given k.
The modified contractive constraint (6.14), can then be written as a set of 2n+1

linear constraints in the control variables (this will be shown when we explain

procedure 1 in more details).

The purpose is then to find, at time tf;, 5£ > 0 such that (5,{ = Ii}l—;%%% for
the chosen control parameters. Thus, we have an optimization problem (a QP)
whose solution depends now on the parameter 5,{. The computation of this
parameter value is done through a uni-directional search resulting from a first-

order sensitivity analysis of the optimality conditions of the QP with respect to

this parameter.

Unlike the penalty function approach, the QP needs to be solved only once at

each time step. Then, a linear system is solved and a uni-directional search
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. . wJ (4P
is performed on the parameter ¢7 until the desired equality, 6} = (4G QIR

AT
obtained [21].

Now we will go into a more detailed description of the three previous approaches to

transforming the optimization problem into a QP:

Procedure 1 (approximate or conservative approach)

Since || . |y > || . |2 > 1 . |l 5, we have that if
ol 2 b > 2 T

)‘maa:

I FE) < ——— [ 2% |l (6.15)

2

then the original contractive constraint is automatically satisfied. In other words,

equation (6.15) is a sufficient condition for satisfaction of the contractive constraint.

It is well-known that 1—norm constraints can be re-written as a set of linear con-

straints adding new decision variables to the optimization problem.

To illustrate the procedure, let us consider the constraint:
ol < a (6.16)

with b € R and a > 0 a scalar. Then, we can re-write constraint (6.16) component-

wise, i.e.,
b, < ¢, it=1,...,n
_bz g Ciy L= 1, » TV
n
Yo < oa (6.17)
i=1
where the vector ¢ (vector whose components are ¢;, i = 1,...,n) constitutes a

set of n new optimization variables. Thus, this procedure increases the size of the



236

optimization by n and the number of constraints by 2n.

The new objective function at step k, j for the problem with modified constraints is
given by:

Jo= S+ (d)d (6.18)

i.e., the objective function is now minimized with respect to the newly introduced

variables, ¢, as well.

Since the contractive constraint is here approximated by conservative linear con-
straints, if an optimal solution is found under the new constraints, it means that we

may be “over-satisfying” the contractive constraint.

Procedure 2 (penalty function approach)

In this approach, the objective function is modified to:
Jo= J+y 153 3, v>0 (6.19)

i.e., the contractive constraint is added as a penalty to the original objective function.
Simultaneously, the contractive constraint is removed from the list of constraints
to which the minimization is subjected. Thus, we still have a quadratic objective

function on the control variables and all the constraints are linear.

It is easy to see that by solving this new optimization problem (a QP) for an arbitrary
value of the weight v > 0 does not necessarily imply satisfaction of the contractive
constraint. Thus, the QP problem has to be solved iteratively on v until it is large
enough so that the contractive constraint is satisfied. Naturally, we do not want to
start by choosing a large value of v because we are then giving less importance to
the minimization of the chosen performance criterion J. This means that although
stability will be assured, the resulting performance can become rather poor. Further-

more, we do not want to “over-satisfy” the contractive constraint by choosing a larger
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~ than necessary.

If the optimization problem is well-posed and feasible for an o € [0,1), then the
existence of a finite « for which the corresponding optimal solution satisfies the con-

tractive constraint is guaranteed.

A major disadvantage of this procedure is that several QPs (for different values of )
may have to be solved at the beginning of prediction horizons. Because the P — 1
subsequent control problems are feasible if the optimization at the beginning of the
horizon is feasible, these optimizations are solved with the same v computed then.

Still, this procedure can become very expensive computationally.

Procedure 3 (sensitivity analysis approach)

Here we will show a procedure for a very simple first-order sensitivity analysis of
QPs . For an important reference on sensitivity and stability analysis in nonlinear

programming the reader is referred to [44].

As previously described, this procedure consists in trying to find, at time t“,i, a pa-

A
rameter & = ;b kL

= = or, alternatively, to satisfy the constraint:
[EAG]I

N3t 1 < adf |2} llp (6.20)
As we saw in procedure 1, this constraint can be re-written as 2n+1 linear constraints

with the introduction of n additional optimization variables. Notice that only the last

constraint in (6.17) is directly dependent on the parameter (5%.

The quadratic programming problem to be solved at time ti, has the following format:

minimize  J(2) == 12 Hz + R’z
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_ G 0 b
subject to z > (6.21)
0 a co
where a := —1, (with 1, being a row vector of n ones) and ¢ := a || 2} ||, as it

should be clear from (6.17). For simplicity of notation, we have written (and will
write from this point on) & in (6.21) instead of 6} but it should not be forgotten that

this parameter will be re-computed at sampling times.

In our problem, the decision variable z has dimension mM + n (number of control
moves multiplied by the size of the control vector plus a number of “dummy” variables

introduced to re-define the contractive constraint as 2n + 1 linear constraints).

The computation of the Hessian matrix H, the gradient vector h, the constraint
matrix G and the lower bound vector b will be demonstrated in the following section.
The dimensions of these matrices and vectors are H € R(?MAn)x(mM+n) p o pmM+n

G e §R(4mM—i—2n)me and b € RamM~+2n

Thus, at time step k (i.e., at the beginning of horizons) we need an initial guess for

the parameter value J so as to solve our QP with. Let us make 60 .= — L o

Amaz(P)2
be our initial guess. This choice of § makes us solve the same QP as if we were using
procedure 1, i.e., we are solving the QP to satisfy a constraint which is a sufficient
condition for satisfaction of the original contractive constraint. Therefore, if the

contractive constraint is feasible so will be our modified constraint with §(®.

Assuming that the contractive constraint is feasible, we then solve our QP for 6%

and find the optimal solution 2(¥.

This optimal solution obviously satisfies the optimality conditions for the QP prob-
lem which are given, for a general nonlinear programming (NLP) problem, by the
Kuhn-Tucker (KT) conditions [67]. It is worth just mentioning these Kuhn-Tucker

conditions which are first-order necessary conditions for optimality of an NLP.
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Given a general NLP problem represented by

minimize J(2)
subject to  ¢;(2) =0, i€F

ci(2) >0, 1€l (6.22)

the following theorem holds:

Theorem 6.1 (First-order necessary conditions or KT conditions) If z* is a
local minimizer of problem (6.22) and if certain regularity assumptions (see [{6] for
these assumptions) hold at z*, then there exist Lagrange multipliers \* such that z*, \*

satisfy the following system of equations:

c(z) = 0, i€k
e(z) >0, iel
Ao > 0
Aici(z) = 0, Wi (6.23)
with
L(z,A):=J(z) =) Neil2) (6.24)

The point z* which satisfies equations (6.24) is often known as a KT point. L(z,))

is called a Lagrangian function.

The final condition Ajc} = 0 is referred to as the complementarity condition and states
that both Af and ¢ cannot be non-zero, or equivalently that inactive constraints have
a zero multiplier. If there is no ¢ such that A} = ¢ = 0, then strict complementarity
is said to hold. The case A} = ¢ = 0 is an intermediate state between a constraint

being strongly active and being inactive.
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Returning to our QP problem, there are two distinct possibilities when it comes to

our modified contractive constraint (6.20):

e For the chosen 60 the constraint (6.20) is active (which means that the con-

tractive constraint is active).

e For the chosen §(% the constraint (6.20) is inactive (which means that the

contractive constraint may or may not be active).

© _ 127¢)ih )/ - . _ _ . _
If 6% = 120 P where Z,’(t) is the optimal linear trajectory obtained by solving
k \Pg JUP

the QP with 6 = 6%, then we are done and the sensitivity analysis is not necessary.

If not, we should proceed as explained below.

Let us examine the KT conditions which originate when constraint (6.20) is active

and inactive.

(1) KT conditions for constraint (6.20) active:

The Lagrangian function in this case is represented by:

1, : , G 0 b
L= —zHz+hz—-\ z - (6.25)
2 0 a cé

Thus, according to (6.23), the KT conditions are:

oL =Hz+h-— « 0 A=0
0 a
col [s (6.26)
0 a ° T cé
A >0

where GG and b represent the set of active constraints. The dimension of the

Lagrange multiplier vector is A € RimM+2n+1,
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(2) KT conditions for constraint (6.20) inactive:

The Lagrangian function in this case is represented by:

L= -;-z’HHh’z-X {[G 0]z — b} (6.27)

Therefore, according to (6.23), the KT conditions are:

9%  =Hz+h-[G 0] A=0
A >0

Thus, A € RimM+2n,

In order to perform our first-order sensitivity analysis of these optimality conditions,
we need to compute the gradients of z and X with respect to the parameter §. Let us

denote these gradients Vsz and Vs, respectively.

Using our KT conditions (6.26) and (6.28), let us then examine how these gradient

computations are performed in the case of (6.20) being active and inactive.

(1) Gradient computations when constraint (6.20) is active:

These gradients are computed by differentiating the equality KT conditions in
(6.26) with respect to . The resulting linear system in Vsz and Vs is given

by:
G 0 0
ng = (6.29)
0 a C
G 0
0 a
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Notice that Vsz can be computed from (6.29) first and then substituted in
(6.30) for computation of VsA.

(2) Gradient computations when constraint (6.20) is inactive:

These gradients are computed by differentiating the equality KT conditions in
(6.28) with respect to . The resulting linear system in Vsz and VA is given
by:

[G 0]Vsz = 0 == V;zeKer(G¥), withG*:=[G 0] (6.31)
(G*) VsA = HV;z (6.32)
It is easy to show that as a consequence of equations (6.31), (6.32) and the fact

that H is positive definite and, therefore, invertible, it follows that Vs = 0. If
(6.32) is pre-multiplied by H~! and then by G* we obtain:

G*H ' (G") VsA = G*Vsz = 0 (6.33)

Since G* H~! (G*)' is a positive definite matrix, it follows that V;\ = 0.

Once a new value for § is chosen, the ezact optimal solution of the QP for this § can

be computed from the previous one through the following equations:

20 = 20 L (Vs2)® AsEHD
MG = XG4 (750) @ AFEHD (6.34)

where AU+ = §0+D) — 5@ w; > 0, and (V52)®, (V5A)® are the gradients com-

puted through equations (6.29), (6.30) (if constraint (6.20) is active) or (6.31), (6.32)

(if constraint (6.20) is inactive) with G(;), b;) being the active constraint sets used in

these gradient computations.

Thus, once the QP is solved for 6§ = 6 (i.e., the optimal solution z(9) is obtained)
tP

and if 60 # —lﬁ—(—%)l'{'—l the exact optimal solutions for different values of § can be
P
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o)
obtained from (6.34) until 6®) = “—%EQ%I:—I for some i € (0, 00).
P

12 ¢2)1h
12 ()

in order to compute z(*tY) we will be off again unless (V;2)® = 0, i.e., 601 £

(i+1)
Iz L for (v,2)® 20,

The methodology used to update ¢ is a separate issue. If we choose §¢+1) =

EISRIG

Since F(62) := 80 — Hﬁggg))“% is a monotonic function in ¢ (if we increase § it becomes
easier to satisfy constraint (6.20) and if we decrease it we make this constraint tighter
or even infeasible) and we want to find ¢ so that F(d) = 0, a good strategy is to use
a bisection algorithm to find this value of §. Suppose that we start with a large J so
that F'(6) > 0, then we can decrease it until F'(§) < 0. Since we know that the § we
search for lies in the interval between the last § for which F'(§) > 0 and the first & for
which F(6) < 0 (F(6) is monotonic) we can then perform a bisection in this interval

to find our solution. An analogous procedure applies if we start with a value of § for

which F(4) < 0.

However, we cannot change the values of § and recompute the optimal solutions (6.34)
without checking if the configuration of the active and inactive sets of constraints has
changed. If it has, we must re-compute the gradients using (6.29) and (6.30) (or (6.31)
and (6.32), depending on constraint (6.20) being active or inactive) and update our

optimal solutions accordingly.

The equations used to check if our choice of 6@, i > 0, preserves the inactive con-
straint set (which, if the problem is feasible, means that the active set has also

remained unchanged) are:

(Glimy2® = ba-ny) + Gy (V52)070 A6D > 0 (6.35)
AO 4 (V00 A0 > 0 (6.36)

where G’Z‘i_l), B(i_l) represent the inactive constraint sets computed at iteration 4,

with ¢ > 0, in the iterative procedure of computing 6. 29, A\® is the optimal solution
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computed via (6.34) once ¢ is selected.

In order to check if the contractive constraint has become inactive, we must check if:
a* 29 —¢c 59 >0 (6.37)

where a* ;= [a 0] and (a*) € R™M+n,

Once this checking has been done for the chosen value of §®, if the constraint sets
have changed (i.e., if some of the inactive constraints have now become active due
to the choice of §), new constraint sets need to be computed. This is a straightfor-
ward procedure given the optimal solution 2. All we need to do is to check which
inequality constraints have now become equalities (active constraints) and shift this

once inactive constraints into the set G’(i), B(i) of active constraints.

With these newly computed active constraint sets we can re-compute the gradients,
i.e., obtain (Vs2)®, (VsA\)®; update the optimal solution with these gradients and
the new value of 6, §0*+D: check if 60+1) = i'![“éfn(%; If the equality is not satisfied,
check if the constraint sets have been preserved and repeat the whole procedure; if
the equality is indeed satisfied, we are done and the optimal solution of the QP is

given by z(+1) A0+,

We have explained so far how to compute 89, i.e., the parameter ¢ at the beginning
of prediction horizons. However, at each j = 1,...,P — 1, for a fixed £k > 0, we
need to calculate a new parameter 6/ which satisfies &, = %%g—))ﬁ—; using the same
technique discussed for computation of §2. However, to repeat the sensitivity analysis
at each sampling time can become computationally expensive. Once we have found

w, we know that there exists a control sequence at each j=1,...,P —1

such that the constraints

| Z0) |, < adl || 22 |5 (6.38)

are feasible. Thus, at time ¢}, Vj € [1,P — 1], we should solve the QP with
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§ = 6?. Then, with the obtained trajectory zi(t), t € [t,t177], we can check if

the contractive constraint at tj, is satisfied, i.e., if

I E) s < o lafllp (6.39)

If yes, we accept the computed control sequence u(kP + j|kP + j),...,u(kP + j +
M — 1|kP + j). If not, rigorously, we should have to solve for ¢ = % using
sensitivity analysis of the QP problem at time ¢,. However, since we only need to
have the contractive constraint satisfied at j = P — 1 for stability purposes, we can
solve the optimization problems at j = 1,..., P — 2 with § = ¢ (which are feasible if
the problem at ; with & is feasible), and only check for satisfaction of the contractive
constraint at ¢; ~'. In case it is not satisfied by using the control sequence computed

= P —
with 6 = 60 (which implies that 67! := 12 (0l 69), then we should use the

Tz D

search procedure, described previously for computation of 62, in order to calculate
§F71. In this case, the computation of § using sensitivity analysis of the QP would
be repeated only twice for a whole prediction horizon and stability would still be

assured.

All along we have been saying that the updated solutions given by equations (6.34)
are ezact optimal solutions of the QP for the new parameter value even if the active
constraint set changes. We must emphasize that this is the case because our optimiza-
tion is a QP. For a general nonlinear programming problem this does not hold true,
i.e., an update given by (6.34) is only a first-order approximation of the exact solution
and does not have much significance. The only reason why this first-order update is
optimal is due to the fact that the Kuhn-Tucker conditions for a QP are linear. It
is very straightforward to prove that the solutions are indeed optimal, all we need to
do is to replace the updated solution into the optimality conditions for the previous
solution (with an updated active constraint set, if it has changed) and we will verify
that they satisfy these conditions as a result of the way in which the gradients are
computed. Thus, if the optimality conditions are satisfied by the first-order update,

this is indeed an optimal solution.
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6.2.4 QP format

Here we will illustrate how the optimization problem in Control Algorithm 5 can
be re-written in QP format (as in (6.1)) for each of the three procedures proposed for

implementation of the contractive constraint.

The Hessian matrix H and the gradient vector &’ are basically the same (with minor
modifications, which we will point out) for the three methods. The main change
occurs in the definition of the constraint matrices because of the different ways of

implementing the contractive constraint.

In the optimization step in Control Algorithm 5, the objective function is defined in
terms of states z, control moves u and rates of change of the control variables Au. Let
us then adopt Au to be our decision variables and in order to write the problem at time

step k, 7 in QP format, we need to express x and u as functions of the M optimization

variables Au(kP+jlkP+7),...,Au(kP+j+M —1|kP+j), j€[0,P—1], k> 0.

Our continuous-time linear approximation of the nonlinear dynamics of the model
used in the prediction step can be put into discrete form with discretization time

equal to the sampling time 7. The discrete state trajectory is then given by:

2(kP+j+i+1kP+j) = (31) Dz (kP+jlkP+5)+ > (®)) [TLu(kP+j+1|kP+j)+m])]
[==0
(6.40)
fori=0,...,P—1,Vj=0,...,P—1, for each £ > 0 and z(kP + j|kP + j) set
.7

equal to the states of the plant measured at time ti, zy”. The matrices CI% F{;, ni

are defined by:

@i = M7

M = /TeAi(T—t)Bjdt
k- 0 k

J r AL (T—t) i
n = / eALT-007 gt (6.41)
0
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@7 is known as the state transition matrix computed at time 7.

Moreover, from the definition of Au(kP + j + i|kP + j) it is easy to see that:

i+1
u(kP+j+i+1|kP+j) = u(kP+j—1|kP+j—1)+>_ Au(kP+j+IkP+j) (6.42)
=0

fort=0,....M -1, Vj=1,...,P—1, and

w(kP+ilkP) = u((k-l)P+P—1|(k—l)P+P—1)+§i: Au(kP+I[kP), i=0,..., P-1
= (6.43)

By substituting (6.43) and (6.42) into (6.40) we have:

z(kP+j+i+1kP+35) = (9 z(kP 4 jlkP +j) +
+ S(@D T wkP+j—1kP +j— 1) + 5] +
0

o~
I

+ (@) P{E Au(kP +j+nlkP+j)]  (6.44)

0 n=j

I

o~
Il

fori=0,...,P—1,Vj=1,...,P—1, and

(kP +i+1kP) = (8D 2(kP|kP) +

+ 3 (@Y Mu((k—1)P+P—1|(k—1)P+P—1)+n +

=0
7 i—l

+ S@)'TY S Au(kP +nlkP)], i=0,...,P—1 (6.45)
=0 n=0

By substituting equations (6.42), (6.43), (6.44), (6.45) into the expression for the
objective function (6.7) and through a rather cumbersome process of collecting all
the linear and quadratic terms in Au(kP+j|kP+j),...,Au(kP+j+ M —1|kP +7)

(a process which we will omit here because it has been described in detail for models
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in step response format in [99]), we obtain:
JI = Av(k) H] Av (k) + (h]) Al (k) (6.46)

where Au?(k) := [Au(kP + jlkP +j) ... Au(kP+j+ M —1kP + ;)] and the

matrix H] and vector hj are defined by:

Hessian matrix

“Block” diagonal elements Hy, [ =1,..., M:

P-l 1

S (@)IQ BT + S+ [M = (1— DR (6.47)

[
=0 g=0 q=0

Hy :=T'{

Lower “block” diagonal elements H;,, I =p,..., M, Vp=1,...,M - 1:

p-1 i—(-1) i—(p—1)
Hy = PI{; [ ;} (2)7Q z_:o O+ [M — (I - 1)]R (6.48)

For simplicity of notation, we have here omitted the subscripts and superscripts on
the matrices H, ®, I', but it should be clear that in order to compute H,Z we should

J 1Y
use &, I'y.

Since H is symmetric, the upper diagonal elements are given by H;, = Hzl)l, Vi < p.
Each “block” element Hy,; I,p=1,..., M; is an m X m matrix.
Elements of the gradient vector h;, l=1,....M
h; ! 1! I Pl : ’ i_—(l_l)
5 = M =(=DJ)R+[w)T +n] 30 {D(2)1Q[ X I+
i={-1 ¢=0 q=0

i—(I-1

P—1 )
+ (@) { X (@) Q[ Z_% 9} (6.49)

i=l—1
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Each “element” h;, I =1,...,M, is a row vector of dimension m. u* is equal to
w(kP+j—1kP+j—1),Vj=1,...,P —1, for the problem at iteration j, being k
fixed. u* is equal to u((k—1)P+ P — 1|{(k —1)P + P — 1) for j = 0. z* is equal to
z(kP + jlkP + j) = 2%’ for the problem at time step k, j.

The constraints on the control moves and rate of change of these control moves,

keeping in mind that Au’(k) are our decision variables, can be expressed as:

Au(kP + j|kP + §)

Au(kP+j+1kP+j :
o ( j | l 7) > (6.50)
| Au(kP+j+ M —1|kP +j) |
with G and b given by:
]m Om Om Om
Om Om Om Im
-1, On 0, Op
G = (6.51)
I, 0m ... On Oy
I, I, On O
I, I, I, I,
-'Im —Im Om Om
-1, I, ... =1, —I,




where I,,, 0,, are the identity and zero matrices of dimension m, respectively,

and

with u* as previously defined.
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—Aty,(0)
— AUz (1)

—AUpee (M — 1)
—Almaz(0)
—AUpaz (1)

—~Aper (M — 1)
Umin(0) — u*

Umin (1) — u*

umm(M - 1) —u*

—~Umaz(0) + u

—Upae (1) + u*

— Uz (M — 1) + u*

(6.52)

Notice that we are allowing for different lower and upper bounds on the control moves

and rate of change of the control moves predicted at different time steps.

Now we will examine how the matrices H}, G and vectors (h]) and b are aug-

mented in each of the three different procedures proposed for implementation of the

contractive constraint.



251

Procedure 1 (approximate or conservative approach)

In this case, the number of decision variables is increased by n as previously discussed
and the objective function at time step k, j is re-defined as:
Au? (k)

Awlk) |, [(h1) 0] (6.53)

!

Ho= [ad k) ()] (H)

where c,7C are the new optimization variables introduced in the implementation of the
contractive constraint and (H*) is defined by:

‘ Hl  Omursn
(H), o= B (6.54)

Onme In
where 0,,arxn 1S @ zero matrix with mM rows and n columns.

So, all we did was to augment H} in order to include the new decision variables in

the objective function.

The constraint matrix G' and vector b must also be augmented in order to include the

2n + 1 state constraints. Thus, our constraints are now defined as:

Au(kP + j|kP + j5)
Au(kP + j + 1|kP + j)

G, | Au(kP+j+M—1kP+3) | > )] (6.55)

(c1)i

(Cn)i

with G*, b* (notice that we have dropped the subscripts and superscripts to simplify
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the notation) are given by:

G O4mM><n
-T* I,
Gt = (6.56)
T* I,
R lemM "'171 ]
where:
T = T OnX(M—p)m : (657)
with ) -
Sl SIS . ¢l T
gl ST L. 5T
T = Z"? %% Zl‘f % : (6.58)
DI N Do MR s i
and )
b |
P 8
: (Tu* +n) + PPz
. S (650
o= Ry .59)
- : (Tu* +1n) — dPz*
S b
“_?Z‘I‘T a || o g
A Arnaz(F) _
where ¢}, I = 1,...,n, represents the (" row of the matrix ® and p:= P~ 3, j =
0,...,P — 1, represents the number of steps the initial condition for the prediction

at time ¢}, namely z(kP + j|kP + j), lies behind the point where the contractive
constraint is imposed, i.e., tf. Here, the matrices ®, ', 5 are actually ®3,T% 7l since
the linearization of the plant used in the computation of the contractive constraint is

only updated at the beginning of horizons.
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Procedure 2 (penalty function approach)

In this case, the objective function J{ has to be modified to have the term ~ ||

Zx(tF) ||  added to it as previously explained.

The new objective function at time ti is specified by the following Hessian matrix

(H*)] and gradient vector (h*)’:

Hessian matrix

“Block” diagonal elements H};, [ =1,..., M:

Hy=Hy+~T [ Y (@)9Q] 3 @4r (6.60)

Pej-1 P—j—1
= q:O

Y
<

Lower “block” diagonal elements Hy,, l=p,...,M, Vp=1,...,M - 1:

P—j-i P—j—p

Hipi=Hy+7 T [ 3 (@)1 3 7T (6.61)

q:

<o

For simplicity of notation, we have here omitted the subscripts and superscripts on

the matrices H*, H, ¢, T.

Elements of the gradient vector hy, [=1,..., M
! 1 I ’ 7 P_]_—l 7 P_J_.l 7 ; 7 P_J_l
(A1) = h+2y {{(w) T 0] [( 3 (@)NQ( Y. )T+(z) (P ) Q[ Y 9}
q=0 q=0 ¢=0

(6.62)

The constraint matrix G' and vector b are not changed since in this formulation there

are no explicit state constraints but only control constraints.
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Procedure 3 (sensitivity analysis approach)

Here H, h' and G are augmented in the same way as in procedure 1. The vector b is

the only one to be changed to depict the modified contractive constraint (6.20), i.e.,

b ]
oo B
: (Tu* +n) + PPz
Yo ¢
b= p“_fb i (6.63)
1=0 ¢1
- : (Tu* +n) — dPz*
2o O
A A

The only difference with respect to procedure 1 is that the factor ——L—— in the last
mazx

element of b* is now replaced by the parameter (5i which is iterated upon until the

original quadratic contractive constraint is satisfied.

6.2.5 Basic philosophy of the controller design

Figures 6.1 and 6.2 illustrate the behavior of the contractive MPC controller in Con-
trol Algorithm 5 when there is structural/parameter mismatch between the model
used in the computation of the contractive constraint (which is linear in Problem

6) and the nonlinear plant.

In these figures we have:

o z(kP|kP) = af := 2P(tx), Yk > 0 in the state feedback case

o z(kP|kP) = 2 := &(tx), Vk > 0 in the output feedback case
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| z(kP|kP) || p z(kP +i|kP) = Z(kP +i|kP)

a || z(kP|kP) || p

-

P

t tl

te t} tP Pt
Z(kP + 2+ i|kP + 2)
z(kP + 2+ ilkP + 2)

| z(kP|kP) | p
a || z(kP[kP) | p
J=2 i
i
i i >
tr ti tz tf’ tf+2
i
I
I
| &(kP+P - 1+ilkP+P~1)
I
| 2(kP+P —1+ikP+P 1)
| 2(kPIEP) llp A ow====~ S * o((k +1)P|(k +1)P)
a || z(kP[kP) ||
I -
e tkp—l oyl o= tkP tiP

Figure 6.1: P control problems for a fixed k. Predicted trajectories generated by
the robust contractive MPC scheme for a fixed k& and j varying in the interval j =
0,....,P—1.



256

Il z((k +1)P|(k +1)P) || o((k+ 1P +i|(k + 1)P) = z((k+ 1)P +i|(k + 1)P)

- allz((k+1)P|(k+1)P) |l

-
PP
tk+1 - tk

z((k+1)P+1+i|(k+1)P+1)
Z((k+1)P+1+il(k+1)P+1)
Ao ((k+1)P+il(k+1)P)

allz((k+1)P|(k+1)P) ||

T+l

I 2((k + DP|(k+1)P) |5
ji=1

-
-------

+DP+2+i(k+1)P+2)

| 2((k + DP|(k+1)P) || all z((k+ D)P|(k+ 1)P) ||

j=2

I
¥
|
i
i
1

1 2
tetitgiy Lt

8

(k+1)P+P—1+il(k+1)P+P—1)
2(k+1)P+P—1+il(k+1)P+P—1)
o z((k+2)P|(k+2)P)
allz((k+1)P|(k+1)P) ||

I
1
I
I
!
I
i
1

Il z((k +1)P|(k+1)P) ||

j=P-1
Pll ‘P
thr it topr = tete ts

Figure 6.2: Next P control problems at £+ 1. Predicted trajectories generated by the
robust contractive MPC scheme at k+1 and j varying in the interval j = 0,..., P—1.
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Thus, while the optimization problem remains solved over P time steps for different
values of j and for a constant k, the number of steps between the beginning of the
prediction and the location of the contractive constraint is equal to P—j and therefore

decreases as j increases, as we can clearly see in figures 6.1 and 6.2.

Let us consider, for generalization purposes, the output feedback problem. Let X be
the reachable set and B, the set of initial conditions for which the optimization prob-
lem at time step k, k£ > 0, is feasible. Then the trajectories of the linear model used
for computation of the contractive constraint, the nonlinear plant and the observer

are illustrated in figure 6.3.

Trajectories of:
Plant: x}(t)
Model: X (t)

Observer: Xi(t)

l Mismatch (linear/nonlinear)

Disturbance + Measurement error

X = reachable set

Figure 6.3: State trajectories generated by the contractive MPC scheme.
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6.3 Stability analysis of Control Algorithm 5

In this section we will examine how the results obtained in chapter 3, when the
models used in the prediction and in the computation of the contractive constraint
exactly match the nonlinear dynamics of the plant, are modified by use of a linear
approximation of the nonlinear system in the control computations. As previously
pointed out, this procedure, which simplifies the controller from a computational
point of view, introduces a model/plant mismatch which needs to be quantified and

dealt with by the controller.

Finding appropriate uncertainty descriptions for nonlinear systems is an area only
quite recently explored and much remains to be done. In [15, 34, 47, 77}, e.g., in
order to achieve either stabilization or tracking, some assumptions were introduced
regarding the structure of the uncertainties and are often referred to as matching
condition, a rather restrictive assumption. Recently, [18] brings up the so-called
generalized matching condition for a class of nonlinear systems and [16, 30, 119, 115,
126] conduct the robustness analysis of uncertain dynamical systems for mismatched

uncertainties.

Here we will express our linear/nonlinear mismatch through a conic sector bound.
This description of the mismatch is appropriate in this set up because it is well-
known that a nonlinear model and its linearization behave very similarly in a close
neighborhood of the point where the linearization is performed. Thus, as long as our
sampling time is reasonably small, the difference between the dynamics of the linear
model and that of the nonlinear plant should lie within a conic sector bound. In other
words, this bound assumes that in a close vicinity of the point of linearization, the
second and higher order terms of the dynamics of the nonlinear system are “small”

in magnitude when compared to the linear ones.

Through this description of the linear/nonlinear mismatch and other assumptions

which we will soon consider, our stability analysis will reveal that the states of the
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closed-loop system can be driven to a control invariant set as long as the contractive

parameter « stays within certain lower and upper bounds in the interval [0, 1).

6.3.1 Basic assumptions for the state feedback controller

Assumption 6.1 It is assumed that there exists a constant p € (0,00) such that for
all ¥, %) € B, the QP problem to be solved in the prediction step of our contractive
MPC controller at time step k, k > 0, is feasible. Since the contractive constraint does
not change for the subsequent P — 1 time steps, if P(ty,zh) is feasible then P(ti, xﬁ’j)
18 also feasible for all j = 1,...,P — 1. Moreover, the properly restricted optimal

solution of P(tx,x%) is a feasible solution of the following P — 1 control problems.
The basic assumptions on the nonlinear system are:

Assumption 6.2 We assume that if 2, Z; € B,, Vk > 0 (with p € (0,00) defined
in assumption 6.1), then there exists a constant 3 € (0,00) so that the transient states
of the model used in the computation of the contractive constraint remain inside the

set Bpja, |, i-€., | TL(t) |p< B 1l zx < Bp, Vi =0,...,P—1, k>0.

Assumption 6.3 The linearization of the plant characterized by the pair (A, B) :=
(gﬁ(x*, u*,0,0), g—g(a;*, u*), 0,0) is stabilizable for all points (z*,u*) € R* x R™ around
which the linearization is performed.

It is assumed that there exists a Lipschitz constant L € [0, c0) and a so-called mod-
eling bound v € [0,00) such that for all zP, Z € R*; u € U; d € D and p € P, the

following bounds hold:

Assumption 6.4

IC+AZ+Bullp < LI Z[p+1ul] (6.64)
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where A = %ﬁ-(a:*,u*,0,0), B = g—ﬁ(x*,u*,o,()), C = f(z*,u*0,0) — Az* — Bu*

with (z*,u*,0,0) being the point around which the linearization is performed.

Assumption 6.5

| f(z*,u,p,d) = £(Z,u,0,0) =]l f(a?,u,p,d) - C — Az —
Bu — F(z,u,0,0) [p< Ll 2 =2 |5 + | p [| + || & |I] (6.65)

F(z,u,0,0) represents the second and higher order terms of the Taylor series expan-

sion of f(Z,u,0,0) around the point (z*,u*,0,0).

Assumption 6.6 Growth condition on F':

| F(@u,0,0)l[p< v [l Z2llp+1lull] (6.66)

Remark 6.3 Let the reachable set of states X be defined by:

= {237 (t), 7(t) and T (t) € R | &} (1) := 227 (¢, 8}, 257, ul. (1), PL(2), B4 (1)),
wl(t) = o} (8, 8, 257, ul(2),0,0) and T(8) == T4 (¢, 1, 7' (1), uh(2),0,0),
te [t %), 2%, 2 € B,,ul(t) € U, pl(t) € P,dL(t) € D;
j=0,...,P—1,Yk >0} (6.67)

Then, it is only necessary to satisfy assumptions 6.4, 6.5 and 6.6 along the trajectories
generated by the contractive MPC' algorithm, i.e., 227 (t) and ZL(t) € X for all j =
0,....,°P—1and ¥V k > 0. Because this is difficult to check beforehand (since we



261
do not know a priori which control moves will be computed by the contractive MPC
controller and, consequently, which trajectories will be generated), we have posed the

assumptions in a more conservative way, as valid for all 2P, T € R".

6.3.2 Stability results for the state feedback MPC controller

Theorem 6.2 (Bound on the difference between model and plant states at
tx, Vk > 1) Let p € (0,00) and L,y € [0,00) satisfy assumptions 6.1, 6.4 and 6.5,
6.6, respectively. Then if 2k, T € B,,Vk > 0, there exist A1, Ay € [0,00) so that

| Zhr = Tean lp < Ml 2 llp +A2y VR 20 (6.68)

with Ay =+ 0 asy—=0and Ay =0 as v, ¢, ¢g — 0.

Proof: First note that the optimal control problem P(tx, 2%) has a solution for all k >
0 since we assume that o, T € B,. As a result, the state trajectory z*(t,to, 25, u(t))

s well-defined.

Given 7%, Tr € B, and ug(t) € U, for t € [ty,tkr1 = t7], obtained by solving
Pty,xh), let 28 (t) and Tx(t) be the state trajectories of the plant and of its linear

approzimation computed for t € [ty, tyi1], Yk > 0, respectively.

Then since the states T(t) are set to zf at t = t, and using the assumptions in the

previous section, we have that for all t € [tg,tx11], the following inequality holds:

| 2k (t) = 2x(t) 1< Jy, | F(2R(r), un(7), pi(7), di(7)) — Ok — gy (r) —
—Biug(7) |p dr < [} | F(@h(7), we(7), pe(7), di(7)) — Cp — ArZi(7) —
—Byug(7) = F(@x(1), wk(7),0,0) |p dr + fi, || F(Zk(7),ux(r),0,0) || dr <
< LePT + L f} || 28(7) = @(7) |p dr + v@PT +~ [ || Zx(7) || p d7  (6.69)
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where € := €4 + €, and @ = max{|| Umin ||, || Umaz ||}-

Besides, for all t € [ty, ty41], we have:

t
I llp < g llp+ [ Oxt Ade(r) + Buanr) |lp dr <

¢
< ek llp+LaPT+L [ || au(r) |lp dr (6.70)
k
Now, using the Bellman-Grownwall (BG) inequality, we get:
I 2(t) 1< [l 2F I p +LaPT ] et (6.71)

By integrating both sides of inequality (6.71), we obtain:

[ Waaie) lp ar < LB XLEPT] iir (6.72)

By substituting (6.72) into (6.69), it results that:

| 22(t) = 2u(t) llp < LePT +PTac"™ + ("7 —1) || af |5 +

+ L[ sk —aulr) I dr (6.73)

Finally, using the BG inequality once more and setting t = ty. 1, we get:

| Zhir — Zesr lp < %BLPT(GLPT ~1) || 2} ||p +LePTe*™™ + yPTue? FT =:

= M2 s+ (6.74)
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Thus, A1, Ay are given by:

A= % LPT (eLPT _ 1) (6.75)

Ny = [yuae!tT + Le ] PTeM"T (6.76)

From these definitions we clearly see that Ay — 0 asy — 0 and Ao — 0 as vy, €q, €, —
0. Moreover, both A1 and Ay tncrease as L and v increase, which is natural since these

constants “quantify” the strength of the nonlinearities in the system.
O

Since we have established in assumption 6.1 that there exists a non-empty set of
initial conditions B, for which feasibility of the successive optimal control problems is
guaranteed, we must now establish conditions on the controller and plant parameters
under which the state trajectory {zf}%2,, {Z}2, remains inside this set. In the next

theorem we will compute bounds on the contractive parameter « so that stability and

feasibility are guaranteed within these bounds.

Theorem 6.3 (Feasibility condition) Let the constants o, L, v, €, €4 and p be
as previously postulated. Then, there exists & € [0,00) such that if @ < & the closed-
loop system is stable and the states of the plant can be steered to a control invariant

set B; where p is a function of a, v, L, p, €, €q and p — 0 as 7y, €, €¢g — 0.

Proof: The proof is constructive, i.e., we calculate & so that the statement of the

theorem holds.

From the triangle inequality it follows that:

I 2k llp < ok = Tera llp + 1l Toa llp (6.77)
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Now, using the contractive constraint, i.e., || Zg+1 ||p< o || 2% ||p, V& > 0, we get:

Iz <1 281 = Zrsa [lp +a ll 2k I (6.78)

Then by substituting (6.74) into (6.78), we obtain:

I 2hi o< At a) |2k llp +Ao = 0" [ 2} [l +22 (6.79)

Using the Contraction Mapping Principle we conclude that stability will hold if o* =
a+ A1 < 1, which implies that:

LPT (,LPT _ {
a<1-2LS (2 ) _ a0 (6.80)

Naturally, since o > 0 a necessary condition on the nonlinearities of the system so

that @V exists is that:

L

v < eLPT(eLPT _ 1) (6.81)

Now, applying the results of lemma 4.1, we get:

1.
Ao Ag
s <l 28 llp +—2— < po+ 82
E T E I " (652
for all initial conditions zf) € B,,.

2.

lim || 22 || < e p (6.83)
k—oo kWP — 1—ao* )

Thus, p is given by:
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LPT e [yuelT + Le]

= .84
L(1 — @) + 7eLPT(eLPT — 1) (6.84)

Using equations (6.84) and (6.83), we conclude that:
lim p= lim [lim ||z} |5] =0 (6.85)

Y-€p,€4—>0 7Y,€p,€4—+0"k—00

Therefore, the states are driven by Control Algorithm 5 to the interior of the
control invariant set B; asymptotically and the size of this set decreases the less
disturbances and parameter uncertainty there exist and the weaker the nonlinearities
of the system are. Also, notice that p decreases for smaller values of . This makes
sense since we should be able to drive the states of the plant to a smaller control
invariant set by requiring a stronger contraction of the model states. p increases as
v increases for a < 1 — £ (e""T — 1) (we can see that by ezamining -g—g). Thus, if
e = 0, p increases as 7y increases for any chosen o. Moreover, p always increases as

€ increases.

Our next step is to establish conditions which guarantee that i, Ty € B,, Yk > 0.
Using inequality (6.82), a sufficient condition on the control and plant parameters so

that xf, remains inside B, for all k > 0 is given by:

0 < pp+p <p (6.86)

Since || T [|a< a || 28 |5, if inequality (6.86) is satisfied then the states Ty also
+1 P kP

remain inside B, for all k > 0 (since Zq is set to zf € B,, ).

A necessary condition on the nonlinearities, disturbances and parameter mismatch,
given the chosen controller parameters o, P, T, for B,  C B, with py satisfying

inequality (6.86) not to be an empty set is obviously that:
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LPTe PT[yuelPT + Le]

L(1 — &) + velPT(elPT — 1) < p (6.87)

Or, expressed in terms of the contractive parameter o, we have:

1 — ZeLPT(eLPT 1) - [yiie!*T + Le] PTelFT

= a® .
7 p a (6.88)

a <
Since & < aW for all p € [0,00) and a@ — & if p — oo (i.e., if the optimization
problems P(ty, x%) are feasible for all initial conditions z}, € R", then the bound on
the contractive parameter a is dictated only by the stability requirement as in (6.80))

then we have that & is defined by:

_ leLPT(eLPT _1)— [yae!FT + Le] PTe"PT

7 ; (6.89)

a < a =1
Naturally, since a > 0, a necessary condition on the combined effect of disturbances,

parameter uncertainty and linear/nonlinear mismatch so that & is meaningful is given

by:

LPT 1y 4 [yaeltT + Le| PTe T

b eLPT(
P

€ <1 (6.90)
Then, for a < & both feasibility and asymptotic stability to the control invariant set

B; are guaranteed.
O

Theorem 6.4 (Well-posedness of the controller) Let & and py be as defined in

theorem 6.8 and § € (0,00) be as in assumption 6.2. Then,

1. there emists a Ay € (0,00) such that for any zf € B,,, it follows that
| 2k (¢ te, 2k, we(8), pi(t), die (1)) [[p< As, € [ty e, VE >0, and



267
2. there exists a Ag € (0,00), depending on <y and €, such that Ay — 0 as~y, € = 0
and for any x§ € B,,, the trajectory xP(t,to, 25, u(t), p(t), d(t)),t € [to,00),
satisfies the inequality limy o || 27(t, to, o, u(t), (), d(2)) || < As.

Proof: We want to prove that for any zf € B,, we have || zh(t) | p:=
| h(t, te, 28, un(t), pi(t), di(t)) ||p bounded for all t € [ty,tpi1] and k > 0. We
know that:

(@) llp < [l @) = 2@) lp + 1 2(2) [, VE € [ttt (6.91)

with Ty (t) == T(t, t, 2%, ux(t), 0, 0).

Besides, the transient states Ty(t) satisfy the inequality:

| Z6(t) 1p< Bl 2} |5y B€(0,00), tE[th,tin], VE20 (6.92)

We also know from theorem 6.2 that:

| k() — 2k (t) lp< Ax [ 2k llp +22 (6.93)

Thus, by substituting (6.92) and (6.93) into equation (6.91), we obtain:

F2k@) lp < B+ M) l2i flp A2 < (B+M)p+ Ao =2 Ay (6.94)

Therefore, we conclude that:

| 2(®) |p< Ar <00, tE [ty thya], VE>0 (6.95)
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Next, it follows from the proof of theorem 6.8 that limy_, || 2% ||p< p. Hence, from

(6.94) we have:

Jim || <(0) llp < (B+A0lim [l af llp] + 2 < (B+A)p+de =40 (6.90)
So, we have proven that:

klim | 22(t) |p< Ax <00, ¢ € [ty tota], VEEN (6.97)

—00

Since p, Aa — 0 as 7y, €, €4 = 0 it follows from (6.96) that Ay — 0 as v, €, € — 0.
O

The results derived in theorems 6.2, 6.3, 6.4 were based on the assumption that there
exists a non-empty set B, of initial conditions for which feasibility of the optimization
step in Control Algorithm 5 is guaranteed. This is the same assumption which
we have used in previous chapters when the optimization problem in our contractive

MPC scheme was a general NLP.

Here, we will take advantage of the fact that the model used in the computation of
the contractive constraint is linear to derive a lower bound ¢ on « € [0,1) which
establishes a sufficient condition for feasibility. This lower bound can only be derived

under a more restrictive assumption than assumption 6.3, namely that:

Assumption 6.7 A .= %5(33*, u*,0,0) is stable (i.e., it has all eigenvalues located in
the left half plane) for all points (z*,u*) € R™ x R™ around which the linearization is

performed.

Theorem 6.5 (Feasibility conditions for systems satisfying assumption 6.7)

If assumption 6.7 is satisfied, then there exists o > 0 such that if o > « then the
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optimization at time step k in the prediction step of Control Algorithm 5 is feasible
for all k > 0.

Proof: From (6.40) it is clear that:

T(kP+j+i+1kP+j) = @&Hﬂ-wp+gmp+ﬂ

+ Y TOu(kP + 5 4+ 1|kP + j) +1°] (6.98)
= O

foralli=0,...,P~1andj=0,...,P—1. Z(kP+jlkP+j) = (kP+jlkP+j—1)
forj=1,...,P—1 and Z(kP|kP) = z%.

Because the local linearization is assumed stable, the worst case scenario in terms of
trying to satisfy the contractive constraint is if the applied control action is such that
Brul(t) = —Cy for all t € [t], 5] and j = 0,...,P — 1 (i.e., there are no driving
terms in the system). Obviously, we are not considering the case when one may be

trying to drive the states of the system away from the origin.

In this case, we have:

Z(kP +j+i+ 1|kP +7) = () 2(kP + j|kP + §) (6.99)

Since the trajectories T (t) do not differ for different values of j if Byul(t) lies in
the range of Cy, then we can drop the superscript j and by applying the P—norm we

have:

| 2(kP+i+1kP) |5 < VAmao(PF @Y P=3) |2l |5, i=0,...,P—1 (6.100)
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4] . . . .
where ®, represents ®) := e4kF'T i.e., the state transition matriz computed at time

tk-

Fori= P — 1, we have:

| Z((k + 1)PIEP) ||5< Y Amaa(P} ®F P=3) || 2d || =

= Amaa(PF eAPT P=3) || 22 |5 = o |22 |5 (6.101)

with Ay, representing AY.

Since our contractive constraint is given by:

I Z((k+ DPIEP) [[p < a [l 2k [ (6.102)

Then, if

a > a = sup \/)\max(}s% eAPT P=3) = \//\mam(IS% eAPT P=3), (6.103)

k>0
the QP is feasible at time step k, Yk > 0. Thus, since we have assumed that A
18 stable for all k > 0, there always exists a finite prediction horizon P long enough

(since eAFT decreases the larger P is for A stable) such that o € [0,1).
O

Remark 6.4 Thus, according to the results in Theorems 6.3 and 6.5 and in the

absence of disturbances, if Assumption 6.7 is satisfied and if o is such that o <

o < auwitha:=1-— lﬂ%—@ﬂl and o 1= \/)\mm(}s% eAPT 15_%), then feastbility

and asymptotic stability to the control invariant set B, with p given by
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X LPT ~u e*LPT
p= LPT(LPT (6.104)
L(1 — o) + yelPT(elPT — 1)

are guaranteed.

Notice that the inequality ¢ < « < & only has meaning if the nonlinearity

“strength” (expressed in the magnitude of v) is such that 0 < a < a <1, i.e.,

L (1 = \/Anaa(PF e4PT P-3))
7 < eLPT (¢LPT _ 1)

(6.105)

6.3.3 Output feedback contractive MPC algorithm with

linear approximation

We have seen in chapter 4 that, in the nominal case, the exponentially stabilizing
contractive MPC, when associated with an asymptotically convergent state estima-
tor, originates a uniformly asymptotically stable closed-loop. In the previous section
of this chapter, we have derived stability results for the contractive MPC controller in
the case where the models used for prediction and computation of the contractive con-
straint are linear. We have seen that this mismatch between the real nonlinear plant
and its linear approximation used in the optimization step of Control Algorithm 5
(quantified in assumption 6.6 through a linear growth condition on the nonlinearities)
weakens the stability results. The exponential stability properties of the nominal case
are now lost and, instead, we can only guarantee to steer the states to the interior of

a control invariant set whose size is proportional to this linear/nonlinear mismatch.

Now we want to combine these results in chapter 4 with the results in the previous
section of this chapter to analyze the closed-loop response in the output feedback case
when the model used by the contractive MPC controller is a linear approximation

of the nonlinear plant and the nonlinear state estimator produces asymptotically
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convergent estimates in the absence of disturbances and parameter uncertainty (as,

e.g., the nonlinear Estimation Procedure 1 derived in chapter 4).

In the state feedback case, the states of the model used in the computation of the

contractive constraint at step k after one sampling time are given by:

Tty + T) = ®pah + Ui [Bug + CF] (6.106)

where the matrices ®;, ¥, are defined as:

T
&y =T and Uy = / e (Tt gy (6.107)
0

In the output feedback case, these model states are given by:

.f?k(tk -+ T) = QT + \Ilk[Bguk + C,g] (6.108)
The difference between the two model dynamics can be represented by an additive

disturbance, i.e., the state evolution of the model in the output feedback case is

equivalent to the state feedback case modified to:

Zp(t) = AYTk(t) + Blug(t) + CP + di(t) with Zy(ty) = 2} 6.109)
k

If dj(t) = dy, = constant for ¢ € [t;, t, + T, integration of (6.109) results in:

Tr(ty + T) = Opat + Vi[Bluy, + OF + dy] (6.110)

Thus, we want to compute dj so that it represents the difference in the dynamic

behavior of the model caused by the estimation, i.e., the states in equation (6.110)
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have to be equal to the states in (6.108). Thus, by subtracting equation (6.108) from
(6.110), we have:

CZ]g - \Illzl (I)k € = —[G_AgT - In]—l Az €L (6111)

where I, is the identity matrix of dimension n and ey is the estimation error defined

as eg := Iy — 2h.
Applying the P—norm to equation (6.111), we get:
7 -AYT —1 40 . e

ldillp <\ em™" = L] Ap llp Nl ex llp =2 & [l ex ll 5= pk (6.112)
Thus, the additive disturbance is proportional to the estimation error. In [37] the
author proposes a nonlinear observer for continuous-time systems with discrete obser-
vations which produces asymptotically convergent estimates if the initial estimation
error is not very large and the nonlinearities are reasonably weak (the exact sufficient

conditions can be found in that reference). In this case, there exists K € [0, 00) such

that the estimation error at any sampling time ¢; satisfies the following inequality:

lexllp < K [leallpy VE20 (6.113)

From equations (6.112) and (6.113) we obviously have:

ldillp < ok K |l €0 ||< 0K | eo || p=: p* (6.114)

where ¢ := maxg>o P.

Thus, if an asymptotically stable nonlinear observer is used (such as the one proposed
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in [37]) then its effect is to introduce an additive asymptotically decaying disturbance
into the dynamics of the models used in the prediction and in the computation of the

contractive constraint.

Assumption 6.8 Let the asymptotically decaying properties of the discrete distur-

bance sequence {d,c}kzo introduced by the observer be expressed as:

For any € > 0,3 a finite k := k(€) € N so that p} <€ Vk € [k, c0),

and k(&) = oo if € =0

Our stability results in the output feedback case will reveal that we can still drive the
states of the plant to the same control invariant set B; to which they could be driven

in the state feedback case. This result is proven in the following theorem.

Theorem 6.6 (Stability and feasibility properties of the output feedback
scheme) Let p, L, v, p? € (0,00) be as defined in Assumptions 6.1, 6.4 and
6.5, 6.6 and equation (6.114), respectively, and let the state estimator be asymptot-
ically stable (such that Assumption 6.8 holds). Then, if the norm of the additive

disturbance caused by introduction of the observer into the closed-loop is bounded by,

[L(A = o) —ye" T (2T —1)]
LPT eLPT

ldillp < o < lp— K Il eo ll] = 7ae""T, ¥k >0

(6.115)

the output feedback control problem is well-posed (since 2%, Ty, ) € B,, Yk > 0, and
zh € B,, which is a non-empty set) and the states of the resulting closed-loop system

converge asymptotically to B, with p given by:
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A ~uLPTeLrT
p = (6.116)
L(1 = ) + velPT(elPT 1)

which means that the states converge to the same control invariant set B, as in the

state feedback case (compare with equation (6.84)).

Proof: Following the same procedure used to prove Theorem 6.2, if the model used
in the computation of the contractive constraint is now given by (6.109) due to the

state estimation error, we obtain:

, gl _
I oh 1 =Tesr [[p< €T T=1) || o} [l +yae" ™ +og] PT™ =t 1 || 2 llp +Azs

L
(6.117)

where (6.117) follows directly from (6.74) by making €4 = 0 and by adding the term
resulting from integration of the additive discrete disturbance sequence Jk, - Jk+p_1

(which satisfies equation (6.112)).

Using the contractive constraint and the triangle inequality in equation (6.117), we

have:

| 2% 1< (@ 4+ M) (12} (lp A2 (6.118)

Since the state estimation error is such that for any € > 0, 3k := k(&) € N large
enough so that pi < € for k € [k, o), then from (6.118) it follows that:

| zhoq |p< (a+ A1) || 2h ||p +[va elPT 4 €|PT P vk e [k, 00) (6.119)

Then, if a + Ay =: o* € [0,1), we can use the results of Lemma 4.1 to obtain:
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l22olle < (@) | 2he s+ Z Vil [yue"T + & PTe T <
[ elPT + g PTelPT

< (a*)l H l‘g(g) “}5 1 s Vi>0 (6.120)

_a*

Thus, by taking the limit as € — 0, we have:

. * . 2LPT
limeso | 220., l15< (@) limeno || 22, ] + 222277 =

. 2LPT
= (o) [limeso || 28, ] + p=deetrprrr— =

== (a*)l ﬂin’lg__,() H 3’)1}(%) []p] + ﬁ (6121)

and if now we take the limit as I — oo knowing that k(€) — oo for € — 0 and that

ol — 0 exponentially fast as | — oo, we finally obtain:

lim [lm || 23, lp] < (limo))lim || 23, [ls]+5 =5 (6.122)
or
» i p R ~
Jim [}z lp < 0 (6.123)

which means asymptotic convergence of the plant states to the control invariant set

B;.

Now, it remains to be shown that z, Tr, Zx € B,, Yk > 0. From equation (6.117)

and the definition of p?, we have:

| 2511 =Fisn < LB 7T ( T =1) || f || +lyae T+ p | PTe™T =i o | af |5 +2o

L
(6.124)

Thus, using the contractive constraint and the results of Lemma 4.1, we obtain:
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2\ A = LPT_{_ d LPT LPT
2 gyt 2 gy PILPT ¢ ,
L(l _ a) — ’)/eLPT(eLPT _ 1)

I % la<ll 2 llp + 122 < o+ T
(6.125)

Vk > 0 and 2 € B,,.

We have then found an upper bound on the states of the plant at the end of horizons.
Since the estimated states are given by &y =z}, + e; and the estimation error satisfies

equation (6.113), we have the following bound on the estimated states:

[’yﬂeLPT + pd]LPT el PT
L(l — Od) — fyeLPT(eLPT —_ 1)

+ K || e |lp, Vk > 0 andzf € B,
(6.126)

| 2k |p< po +

. o LPT a LPT . 7 .

Thus, if po == p—K || € || p *szfa)_;‘i;?ﬁzful) and the disturbance {dy}r>o satis-
fies (6.115), it follows that po > 0, {z}}520, {2k} € B, and, due to the contractive
constraint, we also have {Ty}32, € B,, which means that the control problem P(ty, &)

is feasible and well-defined for all k > 0.
0O

6.4 Examples

The examples examined here have been previously introduced in chapters 3 and 4,
where closed-loop simulations of the systems using contractive MPC and standard
nonlinear finite horizon MPC were performed using the exact nonlinear model of the
system as the prediction model and in the computation of the contractive constraint.
In some cases, we addressed the effect of parameter uncertainty, bounded, additive
and non-additive, persistent and non-persistent disturbances and state estimation
with different nonlinear observers, using different levels of noise and initial state

estimation error.
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Here we will perform simulations of the same examples but by applying the compu-
tationally simpler and more efficient implementation of contractive MPC proposed
in the present chapter. The optimization problem to be solved at each time step
is now a QP and, therefore, the simulations run at a much faster speed, allowing,
e.g., the exploration of longer prediction and control horizons without making the

computation time unacceptable.

The contractive constraint is implemented as suggested in procedure 3, i.e., by solving
the QP using a linear version of the constraint, while iterating on the parameter 4,
until the original quadratic contractive constraint is satisfied. The QP is solved only

once at each sampling time.

Exponential stability can no longer be guaranteed for all controller parameter choices
which render the optimization feasible at every sample (i.e., feasibility does not imply
exponential stability even in the absence of disturbances and parameter mismatch).
The reason for this weakening of the closed-loop stability properties is that the model
used in the prediction is a local linearization of the original nonlinear system and
this linear/nonlinear mismatch makes it necessary for the controller to be robust. In
mathematical terms, this robustness condition translates into an upper bound on «
above which stability cannot be assured and below which, convergence of the states
to a control invariant set containing the origin is guaranteed. The size of this control
invariant set depends on the chosen controller parameters and on the linear/nonlinear
mismatch (i.e., on the “strength” of the nonlinearities neglected in the prediction step

of the MPC controller).

In the simulations which follow, we will plot the state responses for the original
nonlinear system and for the linear approximation used in the computation of the
contractive constraint (which is only updated with the states of the plant at the end

of prediction horizons).
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6.4.1 Example 1: A Nonholonomic System (Car)

Computation of upper bound on the contractive parameter

Due to the simplicity of the model dynamics for this example, it is possible to calculate
an upper bound on the contractive parameter o, @ < 1, such that the optimization
problem is feasible for o € [0,&) and, therefore, the closed-loop response is stable.

As we saw in chapter 3, for this example, we have:

State Vector X:

x
X =
0
Input Vector u:
v
u =
w
Nonlinear Dynamics f(X,u):
cos(6) v
f(X,u) = | sin(d) v

Linearization at an arbitrary point (X*, u*):

—sin(0*)v* (0 — 6*) + cos(0%) (v — v*) + cos(6*)v*
A X +Bu+C" == | cos(6*)v*(0 — 6*) + sin(6*)(v — v*) + sin(6*)v*

w
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Thus, for any X, X € " and v € R™, it follows that:

I f(X,u) = f(X,u) || < 2] (6.127)

which shows that f(X, u) does not satisfy Lipschitz condition (6.65). Moreover,

I F(X,u) =[] f(X,u) = A"X = B*u— C" [| < v (10 = 6"] + |v]) (6.128)

with v := max{2, |[v*|, \/|v*|}.

If the control constraints are such that |v] < v, for a chosen v, > 0, inequality

(6.128) is satisfied for any point (X*, u*) around which the linearization is performed
if v := max{2, |Vmaz|, \/|Vmaz!}-

Therefore, using equation (6.69), we get the following bound on the difference between
the states of the nonlinear system and the linearization performed at (X, u;) at time

tg, for t € [tk, tk+1], Vk > 0:

| XE(t) — Xi(2) || < 2/t:!vk(v-)|d7+v/t:(]9k(7)_e,c[HUk(T)])dT (6.129)

|v| is bounded given the input constraint |v| < vy,q, and from the dynamic equation

on § we get:

u(r) — 0 = | " we(r)dr (6.130)

ty,

Therefore, given the constraint on w, |w| < Wyey, it results that:

lak(t) - ﬁkl < wmaw(t - tk) (6131)
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Using these bounds in equation (6.129), we obtain:

H XIIc]—H - Xk—!—l H S PT [Umaa:(2 + ’Y) + 2

] (6.132)
Since the contractive constraint imposes that || Xz11 || < a || X7 || (where we have

adopted P = I,, for simplicity), we have:

’Ywmaw PT

I XEa Il < o | X | +PT [omae (2 +7) + —

] (6.133)

Given that « € [0,1) by definition, we can apply lemma 4.1 to show that:

PT max 2 wmazPT
maz (2 +9) + 72577 5 g (6.134)

XP <l X,
| XE l<ll Xo I + =L

and

_ PT [z (2 + ) + Vema=PT]
p 2 —
Jim [} X f|< s =1 p (6.135)

From equation (6.134), a sufficient condition for X} € B, (which translates into

feasibility of the control problem, as stated in assumption 6.1) is given by:

PT [Vmas (2 + 7) + 1= ]

1 -«

p > po+ (6.136)
This inequality re-written as a condition on «, gives us the upper bound & which we

wanted to derive:

PT maz P
a<a:=1-— [vmax(2+7)+ﬂ_
P = po 2

] (6.137)
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Naturally, this bound only has significance only if ;1;%5 [Vmaz (2 +7) + ﬂ"igmﬂ] < 1.
Notice that p increases as & increases, i.e., the larger we allow « to be, the larger
the set of initial conditions for which the optimization problem is feasible. Thus, if
we re-write equation (6.137) to express p as a function of & we can easily verify that
limg_,1 p — oco. However, as we have previously discussed, determining p is not a

trivial task and that is the main obstacle in actually computing numerical values of

& so that stability and feasibility are guaranteed for a € [0, &).

It is also interesting to notice that even though f(X,u) does not satisfy a Lipschitz
condition in ®™ x R™, it was possible to derive an upper bound on « in the same
fashion used in theorems 6.2 and 6.3. However, because f is not Lipschitz continuous,
this bound does not possess the same properties of that derived in theorem 6.3, namely
that @ = 1 if v = 0 (this bound meaning that in the absence of model/plant mismatch

we are allowed to choose « as near to one as desired; see equation (6.89)).

Thus, in the simulations which follow, we will not test if this bound is satisfied. Since
the bound is derived from a sufficient condition to guarantee feasibility and stability,
if the control problems in our simulations are feasible at successive time steps, then
o may or may not satisfy the bound. All that matters for simulation purposes is that
we choose the control parameters P and « in a way that feasibility is obtained at all
time steps. If the result is an unstable closed-loop, we know that for the given P, we
must reduce « or, if feasibility can no longer be guaranteed for this smaller value of
o, we should increase the horizon and search for a new « small enough to provide

stability and large enough to ensure feasibility.
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6.4.2 Comparison between contractive MPC with local
linearization and Astolfi’s discontinuous controller

(unconstrained case)
Contractive MPC with local linearization
Figure 6.4 shows the resulting paths in the zy—plane of the controlled car using

our contractive MPC scheme with local linearization in the absence of input

constraints.

0.5

|
o
u
1

Figure 6.4: Resulting paths in the zy—plane using contractive MPC with local lin-
earization when the car is initially on the unit circle and parallel to the z—axis.



284

The controller parameters used in these simulations are given by:

Controller Parameters (figure 6.4)
Q = diag([50 1 0]) | R=0 [ S=0
P=3 M=1|a=028

Better trajectories are obtained in figure 6.5 where the controller is finely re-

tuned for each initial condition.
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Figure 6.5: Resulting paths in the zy—plane using contractive MPC with local lin-
earization when the car is initially on the unit circle and parallel to the x—axis.

The controller parameters used for simulations with the different initial condi-

tions in figure 6.5 are given by:
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1. Initial conditions: [xg, Yo, fo] = [£1, 0, O]

Controller Parameters (figure 6.5)
Q = diag(]10 1 0)) | R=0 | S=0

2. Initial conditions: [xq, yo, o] = [0, £1, 0]

Controller Parameters (figure 6.5)
Q = diag([5.9 1 0)) | R=0 | S=0
P=3 M=1|a=079

3. Initial conditions: [xo, yo, fo] = {[V2, V2, 0], [-V2, —V/2, 0]}

Controller Parameters (figure 6.5)
Q = diag([7T 1 0)) | R=0 | S=0

4. Initial conditions: [x¢, yo, 0] = {[V2, —V2, 0], [-V2, V2, 0]}

Controller Parameters (figure 6.5)
Q = diag([7510) | R=0 | S=0
P=3 M=1|a=085

The sampling time used is equal to T' = 0.1.

Astolfi’s discontinuous controller

The same kind of plot in the xy—plane for the controlled car using Astolfi’s
discontinuous controller has been presented in figure 3.7 and we reproduce it
here in figure 6.6 for comparison with the results obtained using our contractive

MPC scheme with local linearization.
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0.5

T

Figure 6.6: Resulting paths in the zy—plane using the analytical discontinuous con-
troller when the car is initially on the unit circle and parallel to the r—axis.

Comparison of results in figures 6.4 and 6.6

The fact that contractive MPC with local linearization has been implemented
here as a QP has reduced the time to compute the state trajectories dramatically
and each simulation took on average between 3 and 5 seconds (compared to
an average between 9 and 12 minutes for contractive MPC with a nonlinear

prediction model).

We can see from figures 6.4 and 6.6 that, for both controllers, the car performs

its maneuver towards the origin of the coordinate system in a very natural way.
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We also observe that while the contractive MPC scheme with a nonlinear predic-
tion model generates trajectories which approach the origin in a very optimized
manner (as shown in figure 3.6 in chapter 3), the contractive MPC scheme with
local linearization leads to a worse performance. The reason for this degra-
dation in performance is that we are now optimizing a performance criterion
which takes into consideration the state evolution of the local linearization of
the system at each time step and not the states of the real nonlinear system.
Besides, contraction after each set of P steps is now imposed on the states of the
linear model computed at the beginning of the P steps and not on the nonlinear

model] states.

Comparing figures 6.4 and 6.6, we cannot really say that one performance is
clearly superior to the other and it is obvious that we can improve (degrade)
the performance of each controller by choosing different controller parameters

(as shown for the contractive MPC controller in figure 6.5).

The fact that the linearization of this system around the origin is not control-
lable generates the same problem for contractive MPC which we discussed in
detail in chapter 3. In order to prevent it, we set tolerances for the deviation
of the final states with respect to the origin and stopped the control once these

were satisfied.

Comparison between contractive and standard MPC controllers with

local linearization (unconstrained and constrained cases)

Standard MPC with local linearization

In chapter 3, nominal stability and performance properties of contractive MPC
(CNTMPC) were compared to those of a standard nonlinear finite horizon MPC
(SNLMPC) scheme. There we noticed that certain controller parameter choices

could destabilize SNLMPC while CNTMPC preserved its stability characteris-
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tics as long as the optimization problem at the beginning of each horizon was

feasible.

Now the existing model/plant mismatch makes it even easier to find controller
parameters for which standard MPC with local linearization generates an un-

stable closed-loop response as we can see in figure 6.7.

The same experimental initial condition used in chapter 3 will be adopted in

the simulations performed here. The sampling time for this example is equal to

T =0.1.

»0.5
0

0 5 1t0 15 20
1
05

2 -05 -

0
-1 - : : -0.5

0 5 1t0 15 20 -1 -0.5 0 0.5

X

Figure 6.7: Car: State and control responses and zy—plot generated by standard
MPC with local linearization in the constrained case.

The controller parameters used in these simulations are:
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Controller Parameters (figure 6.7)
Q = diag([1 1 0)) |R=0 S=0
P=3 M=5
Urmin = [—0.2 = 1.0] | Umap = [1.0 1.0]

From figure 6.7 we notice that the angle 6§ decreases linearly in time and goes
unstable due to the fact that w is equal to —1 for all £ > 0.1 and, from the
equations of the model, 6 = w. Thus, for this control parameter choice, the
standard MPC controller with local linearization is unable to stabilize the angle

of the car with respect to the r—axis.
Contractive MPC with local linearization

The unconstrained and constrained responses obtained with contractive MPC

are shown in figure 6.8.

The controller parameters used in these simulations are given by:

Unconstrained case

Controller Parameters (figure 6.8)
Q = diag([1 10 1]) | R=011, | S=0
P =30 M =18 a=0.8

Constrained case

Controller Parameters (figure 6.8)
Q = diag([1 10 0]) | R=0.21, S=0
P =32 M =20 a=10.8
Umin = [—0.2  — 1.0] | tmas = [0.2 1.0]

The control and prediction horizons have been increased in the constrained case

in order to guarantee feasibility of the QPs. We notice that the input constraints
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Figure 6.8: Car: State and control responses and xy—plot generated by contractive
MPC in the unconstrained and constrained cases.

delay the closed-loop response but bring the responses of the linear model and

of the original nonlinear system closer together.

In both cases, we notice that at time ¢ = 3 (¢ = 3.2 in the constrained case),
the states of the linear model are set to be equal to the states of the plant
and the trajectory of the model (the “linear” trajectory) begins tangent to the
“nonlinear” trajectory at this point (i.e., at the points where the contractive
constraint is satisfied by the “linear” states). We also notice that the #-response
is matched exactly by the linear approximation. Naturally, this comes from the
fact that the equation which governs the dynamics of this variable is linear and

uncoupled with the other two equations of the system.
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6.4.3 Example 2: Continuous Stirred Tank Reactor (CSTR)

+ Flash Unit

Here we will examine the same control problem of chapter 3 (Case 1), i.e., beginning
at a steady state where the conversion of product in the distillate of the flash drum,
Cs, is low and equal to the concentration of B in the reactor, Cs, we want to reach
the point of maximum conversion. The parameters of the model and the sampling

time are the same as the ones used in chapter 3.

The initial condition is a steady state of low conversion with the following coordinates:

Initial condition
Tso = 4.278166 | V; = 8.3056 x 1072
Coo = 0.428721 | T,y = 4.43389

3

’

Case 1: No disturbances or uncertainty

The simulation results in the constrained case are depicted in figure 6.9.

The controller parameters used in Case 1 are the following:

Controller parameters (figure 6.9)
Q = diag([1 100 1]) | R=0 |S=0
P=1 M=1 a=04

Upin = —0.1 Upnaz = 0

From figures 6.9 and 3.26 we can see that the mismatch between the linear system
used in the and computation of the contractive constraint and the real nonlinear
system does not compromise the responses of the states which still settle in two

samples. However, this linear/nonlinear mismatch causes the input variable to have
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Figure 6.9: CSTR + Flash: State and control responses in the constrained Case 1.

opposite sign to what it has in the simulations where the nonlinear system is used for

prediction (see figure 3.26).

Here we did not plot the states of the model used in the computation of the contractive
constraint because the horizon is equal to P = 1 and since we set the states of the
model equal to the states of the plant at every step, then the plots of the “linear”

and “nonlinear” states coincide in this case.

Case 2: Parameter uncertainty

Here the linear model used in the prediction is computed at nominal parameter values

while the plant is simulated with the real parameters. The set of uncertain parame-
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ters is composed by the pre-exponential kinetic factors A;, A; which are commonly
unknown. In the simulations performed, the true parameters are 10% smaller than
their nominal values. Simulation results in the constrained case are shown in figure

6.10.
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Figure 6.10: CSTR + Flash: State and control responses in the constrained Case 2.

The controller and model/plant parameters used in Case 2 are as follows:

Controller parameters (figure 6.10)
Q = diag([1 100 1)) | R=0 |S=0
P=5 M =5 a=0.5

Umin = —0.1 Umaz = 0
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Model/Plant Parameters

Parameters Plant Model
Ay 4.5x%10% | 5.0 x 103
A, 9.0 x 10° | 1.0 x 108

As we can see from figure 6.10, the parameter mismatch causes the state response to
show offset. The states of the linear model show a tendency to converge to the origin,
which is natural since they are computed using the nominal parameter values but
they are brought to the states of the plant at every five time steps (P = 5). Thus, in
this case, the closed-loop system is still stable but the states converge asymptotically

to a small neighborhood of the origin and not to the origin itself.

The offset displayed by the output C5 could not be reduced with various choices
of controller parameters. The 10% deviation of the parameters with respect to their
nominal values causes the plant to settle to another steady state, where the conversion

of B in stream 3 is lower and equal to 98.14%, in only two samples.

Case 3: Exponentially decaying disturbances

Finally, we will study the effect of exponentially decaying disturbances on some of
the non-manipulated input variables. The variables we have chosen to perturb are
F; (input flow rate to the reactor) and 7; (temperature of the input stream). These

exponentially decaying disturbances are of the form:

dit) = d* [1+ae®™, t>0, a,b>0 (6.138)

where d(t) := [F1(t) Ti(t)] and d* is the vector of nominal values of these input
variables. The chosen values of ¢ and b in the next simulations are ¢ = 0.5 and
b = 0.01, i.e., at ¢ = 0 these variables are perturbed and assume values 50% larger

than their nominal, steady state values. Then, they decay exponentially to these
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steady state values. The theoretical prediction is that, if the sequence of successive

local linear approximations mimic well the behavior of the original nonlinear system,

then the states should converge to the desired steady state.

Simulation results in the constrained case are shown in figure 6.11. The disturbance

behavior is depicted in figure 6.12.
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Figure 6.11: CSTR + Flash: State and control responses in the constrained Case 3.

The controller parameters used in Case 3 are as follows:

Controller parameters (figure 6.12)
Q = diag([1 100 1)) |R=0 S=0
P=1 M=1 o = 04

Umin = —0.1 Umag = 0.1
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Exponentially Decaying Disturbances
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Figure 6.12: Exponentially decaying disturbances used in the simulations shown in
figure 6.11.

From figures 6.11 and 6.12 we see that the controller is able to stabilize the system
to the origin (in spite of the linear/nonlinear mismatch) as soon as the disturbances
vanish. Comparison with figure 6.9 shows that the state response is considerably

delayed by the disturbances.

6.4.4 Example 3: 2-Degree of Freedom Robot

For this example we will address the same setpoint tracking problem presented in
chapter 3. The sampling time, the nominal parameter values and the initial and final

states are the same as in that chapter.
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Case 1: No disturbances or uncertainty

Unconstrained and constrained simulations for this system are depicted in figure 6.13.
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Figure 6.13: Robot: State and control responses in Case 1.

The controller parameters used in Case 1 are the following:

Controller Parameters (figure 6.13)

Q = diag([10 10 1 1])
P=5

E=0
M=5
Umaz = [10 5]

S=0
a=0.8

As we can see from figure 6.13, the state response of the local linearizations with

the implemented control moves (one-step ahead response) represents very well the
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response of the original nonlinear system. The presence of tight input constraints

delays the response ever so slightly.

Case 2: Parameter uncertainty

Next we will examine the effect of computing the local linearizations at nominal
parameter values and have the dynamics of the system evolve with true parameter

values. Thus, besides the linear/nonlinear mismatch, we will introduce parameter

uncertainty.

In the constrained simulations shown in figure 6.14, the linear model is computed using
nominal parameter values (the same that we used in chapter 3) but the equations of

the nonlinear system are integrated with J = 3.2157 (i.e., the true value of the

moment of inertia is half the nominal value).

The controller parameters used in Case 2 are given by:

Controller Parameters (figure 6.14)

Q = diag([10 10 1 1])
P=5
Umin = [-10  — 5]

R=0
M=25
Umaz = [10 5]

S=0
a=0.79

Figure 6.14 shows that even with this considerable parameter mismatch the linear
model is a good approximation of the nonlinear dynamics especially for the output
variables, ¢ and r. In this case, even with the sizeable constant parameter mismatch,

and for our choice of controller parameters, it is still possible to drive the outputs to

the setpoint exactly.
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Figure 6.14: Robot: State and control responses in the constrained Case 2.

6.4.5 Example 4: Fluid Catalytic Cracking Unit (FCCU)

Transition 1: Step change from the OL unstable steady state to the OL
stable steady state

Case 1.1: No disturbances or uncertainty

The parameters of the plant and the coordinates of the OL stable and unstable

steady states are the same as used in chapter 3.
The simulation results in the unconstrained case are shown in figure 6.15.

The controller parameters used in Case 1.1 are:
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Figure 6.15: FCCU: State and control responses in the unconstrained Case 1.1.

Controller Parameters (figure 6.15)

Q = diag([0 107% 1 0])
P=3

R=011L,
M=3

S=0
a=109

The sampling time is equal to 7' = 0.5 h.

As we can see from figure 6.15, the use of local linear approximations of the

original highly nonlinear FCC model for prediction and computation of the

contractive constraint, does not at all compromise the performance obtained

when there is no model/plant mismatch and the system operates in the stable

regime (compare figures 6.15 and 3.15).

The reason why we will not examine the influence of input constraints on the

closed-loop response comes from the fact that the control effort is very small
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because the weight on u in the objective function is non-zero (this is the same

behavior which we observed in chapter 3).

Case 1.2: Exponentially decaying disturbances

Next we will examine what happens when the three other input (non-manipulated)
variables, namely, 7, (air temperature), Ty (feed temperature) and F; (feed
rate), are subjected to exponentially decaying perturbations. These variables
behave as in equation (6.138) and, for the present example, we have: d(t) :=
[T, Ty Fi] and d** is the vector of nominal values of these input variables.

Here we will use a = [1 1 0.5] and b = 0.1.

The simulations in the presence of these exponentially decaying disturbances in
the operational variables are represented in figure 6.16. The disturbances are

plotted against time in figure 6.17.

The controller parameters used in Case 1.2 are:

Controller Parameters (figure 6.16)
Q = diag([0 1073 1 0]) | R=0.11,|S=0

We notice that the contractive MPC controller is able to stabilize the system to
the desired OL stable steady state as soon as the disturbances start to vanish.
It is also clear that the linear model used in the prediction is a rather good
approximation of the dynamics of the original system in this stable operating
region, especially once the perturbed input variables approach their nominal

values.

Case 1.3: Persistent disturbances

If the perturbed variables do not settle to their nominal values, but rather,

to values 5% larger, then we should expect to see offset in at least two of
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Figure 6.16: FCCU: State and control responses in the unconstrained Case 1.2.

the state variables. For the FCC, it turns out that the model equations are
extremely sensitive to variations in these non-manipulated input variables and
the resulting offset can be quite large, for a small deviation of these input

variables with respect to their nominal values.

Here we have chosen exponentially decaying disturbances on T,, Ty, F; given

by:

dit) = ¢ + ae™® (6.139)

where d(t) == [T,(t) T;(t) Fi(t)], c=1.05d* (with @ = [T}* T F
being the steady state coordinates), b= 0.1 and a = [T;* T§* 0.5F7*]. Thus,

this disturbance behavior is very similar to what we illustrated in figure 6.17
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Exponentially Decaying Disturbances
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Figure 6.17: Exponentially decaying disturbances used in the simulations shown in
figure 6.16.

except that a 5% error remains and the initial perturbation is slightly larger.
The simulation results are shown in figure 6.18.

The controller parameters used in Case 1.3 are the following:

Controller Parameters (figure 6.18)
Q = diag([0 10* 1 0)) | R=011,|S=0
P =12 M=28 a=0.9

Figure 6.18 reveals that the temperatures 7,, and T, (which are highly corre-
lated to one another, as observed in [36]) are very sensitive to this persistent
constant disturbance in the input non-manipulated variables and show consid-

erable deviations from their steady state coordinates. The concentrations C,,
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Figure 6.18: FCCU: State and control responses in the unconstrained Case 1.3.

and C,, are much less sensitive and can in fact be brought to their steady state

values in spite of the disturbance.

We have tried to eliminate or just reduce the offset on 7, and T, , with different
controller parameter choices. One of the possibilities was obviously to increase
their corresponding weights in the objective function, but if this is done, the
other two states (the concentrations Cy, and Cy) start showing offset and the
improvement in the responses of the temperatures is very small. We have also
tried using a weight P in the computation of the contractive constraint different
from I, i.e., we weighted the temperatures with much smaller weights than the

concentrations. This attempt did not award us much success either.
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Transition 2: Step change from the OL stable steady state to the OL

unstable steady state

Case 2.1

This is a much more challenging control problem, as we discussed in chapter 3.

The simulation results are shown in figure 6.19.
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Figure 6.19: FCCU: State and control responses in the unconstrained Case 2.1.

The controller parameters used in Case 2.1 are:

Controller Parameters (figure 6.19)
Q = diag([0 1 1 0)) | R=10"%1, | S=0
P =15 M =10 a=0.9
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The sampling time used here is equal to 7" = 0.02 h. The reason why we needed
to reduce the sampling time by a factor of 25 was due to the fact that local
linear approximations do not represent very well the behavior of the highly
ill-conditioned nonlinear model in the unstable operating regime. Therefore,
we cannot afford to leave the linear model used in the computation of the
contractive constraint open-loop for a very long period of time. In other words,
we made the sampling time and the prediction horizon as small as possible
within the region where feasibility can be guaranteed. Besides, we left o at a
large value so as to be able to use as short an interval as possible for contraction

of the “linear” states to occur and still retain feasibility.

Once again, when the exact nonlinear model was used in the prediction (see
chapter 3), the algorithm breaks down once the states are very near their OL
unstable steady state coordinates. This means that a feasible solution cannot
be found with the chosen control parameters in a close-neighborhood of the OL

unstable steady state.

We are able to drive both the temperatures in the reactor and in the regenerator
to their steady state values (as one can see from figure 6.19) but the algorithm
breaks (i.e., we cannot find a set of controller parameters which makes the
optimization problem feasible from that point on) once the concentrations start
approaching their coordinates at equilibrium. The control variables settle to

the origin and show no offset.

Case 2.2

Simulations with a new set of control parameters are shown in figure 6.20.
The sampling time used in this case is equal to 7" = 0.05 h.

The controller parameters used in Case 2.2 are:
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Figure 6.20: FCCU: State and control responses in the unconstrained Case 2.2.

Controller Parameters (figure 6.20)

Q = diag([0 1073 1 0])
P=3

R=011,
M=3

S =0
a=109

Here, the code does not break down and, as we can see from figure 6.20, both

the temperatures in the reactor and in the regenerator are brought to the origin.

However, the concentrations Cy. and C,, cannot be stabilized. This is mostly

due to the fact that the state variables are of very different order of magnitude,

so appropriate weighting in the contractive constraint (especially) and in the

objective function has to be observed. Besides, since the system has only two

manipulated variables and four states and the temperatures are so highly cor-

related, it is natural that, without appropriate weighting of the state variables,
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the controller is only able to stabilize as many controlled variables as there are
manipulated variables. Therefore, the contractive constraint is ineffective for
the states Cy. and C,, because of the difficulty in finding a proper weight P.
Trying to scale the problem through weights in the objective function and in
the contractive constraint was proven to be very challenging and we could not

obtain a set of weights for which the results were completely satisfactory.

6.4.6 Example 5: van der Vusse Reactor

Here we will investigate the same control problem as in chapter 4, i.e., beginning
at certain arbitrary initial conditions, we want to be able to control the system to
the point of maximum conversion of product B. The initial condition used here is
zo = [—2 20 —200] for the deviation of the states with respect to the coordinates of
the steady state of maximum conversion, unless otherwise indicated. The sampling

time is 7' = 0.1 h.

Case 1: State feedback

Case 1.1: No disturbances or uncertainty

The results of the simulation in the constrained case are shown in figure 6.21.

The controller parameters used in Case 1.1 are given by:

Controller Parameters (figure 6.21)
Q = diag([0.5 1 0.1)) | R=0 S =0
pP=2 M=2 a=0.7
Umin =0 Urnaz = 0.5

Figure 6.21 reveals that the states settle to the origin very quickly (in ap-

proximately two samples) even in the presence of tight input constraints. The
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Figure 6.21: van der Vusse CSTR: State and control responses in the constrained
Case 1.1.
temperature in the reactor 8 has very fast dynamics and it settles to its steady

state value in only one sampling time.

Case 1.2: Parameter uncertainty

The set of uncertain parameters is composed of kyg, kso, k30 (kinetic constants
or collision factors), Ar (surface of the cooling jacket) and ky (heat transfer
coefficient for the cooling jacket). These parameters are commonly unknown
in true experimental set-ups of reactor systems. In the present simulations,
we consider that the true parameter values are 10% larger than their nominal

counterparts.

The simulation for the unconstrained case can be found in figure 6.22.
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Figure 6.22: van der Vusse CSTR: State and control responses in the unconstrained
Case 1.2.

The controller parameters used in Case 1.2 are:

Controller Parameters (figure 6.22)
Q = diag(j0.5 1 0.1]) | R=0 | S=0
P=2 M=2|a=09

We notice from figure 6.22 that the first state variable, C'4, shows an offset with
respect to its value at the steady state of maximum yield due to the parameter

mismatch. The other variables, however, are not sensitive to this parameter

uncertainty.
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Case 1.3: Exponentially decaying disturbances

The perturbed variables are C 4 (concentration of reactant A in the feed) and
0o (inflow temperature) which are non-manipulated input variables. The dis-
turbance behavior is as described by equation 6.138 but now d(t) := [Cao 6]
and d*° represents the vector of nominal values of these input variables. Now
a =[1 1] and b = 0.1. Thus, initially, due to some perturbation in the feed
stream, Cgo and 6y increase to twice their values at the desired steady state
and then they decrease exponentially to their nominal values. The constrained
response under these disturbances is shown in figure 6.23. The disturbance

behavior is also illustrated in figure 6.23.
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Figure 6.23: van der Vusse CSTR: State and control responses in the constrained
Case 1.3.
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The controller parameters used in Case 1.3 are:

Controller Parameters (figure 6.23)
Q = diag([0.5 1 0.1])) | R=0 S =0

Umin = 0 Umaz = 1

Figure 6.23 shows that, since the states of the linear model are not affected by
the disturbances, except every twelve steps when they are updated with the
states of the plant, the model shows this behavior of “pushing” the nonlinear
system towards the origin. This effect is felt more strongly in the first state,
C4. Once again, the temperature, 6, approaches the origin in only one time

step.

The presence of these long lasting disturbances delay the response quite signifi-
cantly compared to the response under no disturbances (look at the time scales

in figure 6.23 and compare them with the ones in 6.21).

Case 1.4: Exponentially decaying disturbances (reactor operating initially

at the desired steady state)

If the system is initially operating at the steady state of maximum conversion
and the feed stream is perturbed as previously described (i.e., Cyq and 6, have
their values doubled at { = 0 and decay exponentially to their nominal values
in the fashion shown in figure 6.23), the constrained closed-loop response is

illustrated in figure 6.24.
The controller parameters used in Case 1.4 are the same as in Case 1.3.

As we notice from figure 6.24, the contractive MPC controller is able to re-
stabilize the system back to the desired steady state as soon as the disturbances
start to subside. The three states have approximately the same response time

(opposite to what happens in the step change from a different initial condition,
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Figure 6.24: van der Vusse CSTR: State and control responses in the constrained
Case 1.4.

where the dynamics of the temperature are always much faster than those of

the concentrations of A and B in the reactor).

Case 2: Output feedback

Finally, we will analyze the closed-loop response to the step change in the states from
zo = [—2 20 — 200] to the origin. The least-squares moving horizon-based state
estimator proposed in chapter 5 is used to provide state estimates, in the presence of

asymptotically decaying random noise. C'p is the only (noisy) output variable.

The closed-loop response in the presence of input constraints is illustrated in figure

6.25. The dynamic and output noises are also plotted in figure 6.25.
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Figure 6.25: van der Vusse CSTR: State and control responses in the constrained
Case 2.

The controller /estimator parameters and initial conditions used in Case 2 are:

Controller and Estimator Parameters (figure 6.25)

@ = diag([0.5 1 0.1]) | R =10.01 S=0

P =20 M =14 a=09

Umin =0 Umaz = 1

m = 21 P=10731,|R'=101,
Initial Conditions

Plant: Cao=-2 | Cpo=20|6 =-200

Model/Observer: | Cyo = —1.5 | Cgy = 15 | fy = —150
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As we see from figures 6.25 the closed-loop system is stabilized to the origin and
the estimator provides asymptotically convergent estimates. Notice that Cy4 is more
sensitive to the dynamic noise than Cp and 6 (which is not at all sensitive to the

noise or initial state estimation error).
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