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Abstract

This thesis addresses the development of stabilizing model predictive control algo-
rithms for nonlinear systems subject to input and state constraints and in the presence
of parametric and/or structural uncertainty, disturbances and measurement noise.

Our basic model predictive control (MPC) scheme consists of a finite horizon
MPC technique with the introduction of an additional state constraint which we
have denoted contractive constraint. This is a Lyapunov-based approach in which a
Lyapunov function chosen a priori is decreased, not continuously, but discretely; it
is allowed to increase at other times (between prediction horizons). We will show
in this work that the implementation of this additional constraint into the on-line
optimization makes it possible to prove rather strong stability properties of the closed-
loop system. In the nominal case and in the absence of disturbances, it is possible to
show that the presence of the contractive constraint renders the closed-loop system
exponentially stable. We will also examine how the stability properties weaken as
structural and/or parametric model/plant mismatch, disturbances and measurement
noise are considered.

Another important aspect considered in this work is the computational efficiency
and implementability of the algorithms proposed. The MPC schemes previously pro-
posed in the literature which are able to guarantee stability of the closed-loop system
involve the solution of a nonlinear programming problem at each time step in order
to find the optimal (or, at least, feasible) control sequence. Nonlinear programming
is the general case in which both the objective and constraint functions may be non-
linear, and is the most difficult of the smooth optimization problems.

Due to the difficulties inherent to solving nonlinear programming problems and
since MPC requires the optimal (or feasible) solution to be computed on-line, it is
important that an alternative implementation be found which guarantees that the

problem can be solved in a finite number of steps. It is well-known that both linear



vi
and quadratic programming (QP) problems satisfy this requirement.

If a standard quadratic objective function is used and the input/state constraints
are linear in the decision variables, then the contractive constraint (which is originally
a quadratic constraint) can be implemented in such a way that the optimization
problem to be solved in the prediction step of the MPC algorithm is reduced to a
QP. Having linear input/state constraints means that a linear approximation of the
original nonlinear system has to be used in the prediction as well as in the computation
of the contractive constraint. Thus, in order to make the algorithm more easily
implementable we introduce the difficulty of having to handle the mismatch between
the real nonlinear system and its linear approximation which is used for prediction.
In other words, we now have a robust MPC control problem at hand. In this case, it is
the contractive constraint which comes to the rescue and allows the MPC controller
to stabilize the closed-loop system in spite of the linear/nonlinear mismatch, for
certain choices of the contractive parameter (the parameter which defines how much
“shrinkage” of the states is required during one prediction horizon).

In summary, this thesis is an application of contractive principles to model predic-
tive control and it is dedicated to robust stability analysis, design and implementation

of state and output feedback “contractive” MPC schemes.
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Chapter 1 Introduction

The vast majority of industrial processes is typically operated using linear controllers,
although it is well known that many of these processes are highly nonlinear. The
major difficulty in the design of feedback control laws for nonlinear systems arises
from the necessity to explore the whole state space. The problem of the design
of feedback controls for nonlinear systems has found a general solution only in the
case of systems which are feedback equivalent to linear systems. The fact that most
nonlinear systems are not feedback equivalent to linear ones has motivated the study
of alternative control techniques which do not require construction of diffeomorphic
state-feedback transformations. One of these techniques is model predictive control
(MPC) - an optimal control based method for the construction of stabilizing feedback

control laws.

A key feature contributing to the success of model predictive control is that var-
ious process constraints can be incorporated directly into the on-line optimization
performed at each time step. In other words, model predictive control has the poten-
tial, not easily possessed by other methods, to globally stabilize linear and nonlinear
systems subject to control and/or state constraints. This is undoubtedly a very im-
portant feature since many practical control problems are dominated by constraints.

In [89], Mayne and Polak state:

“It can be argued that the most urgent, unresolved control problem is
an effective, practical method for the design of feedback controllers for

constrained dynamic systems, linear or nonlinear.”

Other important features of MPC are its ability to handle multi-input multi-output
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(MIMO) systems with very little changes in the formulation compared to the single-

input single-output (SISO) case, and its variable structure in the event of faults.

Besides being subject to input/state constraints, most real systems are represented by
process models which are not accurate. Furthermore, they are invariably subject to
disturbances of various kinds. Due to these practical problems, it is important for the
controllers designed to be robust (i.e., take into account the model/plant mismatch
which may exist and guarantee satisfactory stability and performance properties of

the closed-loop system) and present good disturbance rejection properties.

Regarding robustness, a very extensive theory [102] has been developed for the robust
control of linear systems without constraints. This theory has been proven successful
when applied to a number of academic case studies such as, e.g., high purity distilla-
tion columns (see [116]), with process constraints not taken into consideration. The
neglect of constraints has made this robust control theory unsuitable for industrial
applications. When constraints are considered, even if the plant is linear, the overall
control problem becomes nonlinear and this is the reason why constrained problems

are so much harder to deal with than unconstrained ones.

In spite of MPC’s considerable practical importance and extensive use, there is in
fact very little theory to guide the design and tuning of these controllers for stability,
performance and robustness, especially in the nonlinear case. Moreover, the exist-
ing stability and robustness analysis of MPC applied to nonlinear systems is rather

complicated and non-intuitive and the resulting controllers hardly implementable.

It is the goal of this thesis to develop a general theory for designing controllers for
nonlinear continuous-time systems subject to constraints with robust stability and ro-
bust performance guarantees. Several different problems will be considered, such as
output feedback, parametric model/plant mismatch, disturbance rejection, structural
model/plant mismatch, etc. One of the main concerns throughout this work is to de-
velop nonlinear MPC (NLMPC) controllers which involve a reasonable computational

effort and can be easily implemented.



1.1 Motivation

Most practical control problems are dominated by process constraints and nonlin-
earities. The most common process constraints are constraints on the manipulated
and /or state variables. Regarding the nonlinear character of most real systems, non-
linearities can be quantified as “weak” or “strong” (see [5, 6]) and it may be that
while a linear controller design is satisfactory for a “weakly nonlinear” system it will

most probably be inappropriate for a system with stronger nonlinearities.

With respect to process constraints, constraints on the manipulated variables are
present in the vast majority of processes and they result from physical limitations of
the actuators which cannot be exceeded under any circumstances. Safe operation of
a plant very often requires limitations on states as well, such as velocity, accelera-
tion, temperature and pressure. State constraints are also a natural way to express
control performance objectives in many applications. Although most control con-
straints should be respected throughout the operation (hard constraints), it may be
unavoidable to exceed the state constraints for some time, especially if the system is
subjected to disturbances not accounted for in advance. Therefore, the constraints

imposed on states and output variables are most often soft constraints.

Regarding system nonlinearities and model error (be it parametric and /or structural),
most model predictive control designs do not take these factors into account. The
presence of unmodeled nonlinearities and unknown parameter values can make the
tuning of MPC controllers for certain stability and performance requirements quite
cumbersome, if not impossible. In fact, if uncertainty in the structure of the nonlinear-
ities and/or in the parameter values is not properly accounted for, the performance
on the real system can be arbitrarily poor (the result could even be an unstable
closed-loop system). Therefore, since exact modeling of a plant is not feasible in
most practical cases, the controller must be designed to show very little sensitivity to

model uncertainty.
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A rich theory has been developed to address the robustness issue in unconstrained
linear systems (as will be discussed in the next section). For constrained and uncertain
linear systems the scope of results is not so vast. And, as one would expect, for
constrained and uncertain nonlinear systems results are few and incomplete. One
can surely say that the theory on constrained control of nonlinear systems (be it the
nominal or robust case) is still in its infancy. It is the goal of this thesis to add a

contribution to this area.

1.2 Previous work

1.2.1 A general look

Open-loop optimal feedback, dating back to a 1963 seminal paper by Propoi, [108],
is a general approach for the construction of stabilizing feedback laws for systems
subject to input constraints and other nonlinearities. Originally, it was based on
the idea that in a sampled-data system, the control to be applied between sampling
times can be determined by solving a fixed horizon open-loop optimal control problem
with or without constraints. Over the years, open-loop optimal feedback has been
explored under the names of model predictive control (to mention a few references,
see [48, 49, 50, 51, 73, 94, 107]) and moving horizon control (see, e.g., [62, 68, 69, 71,
81, 82, 83, 84, 85, 95]).

The literature dealing with linear MPC presents an enormous amount of results on
issues such as stability, reference trajectory tracking and constant disturbance rejec-
tion capabilities of the resulting feedback systems, under the assumption that control
and state variables are unconstrained (see, e.g., [33]). Nominal stability results for
constrained linear systems can be found in [31, 101, 91, 109], for robust analysis see

[66, 122, 127).

As far as moving horizon control is concerned, it has not always been realized that
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a naive application of the strategy can lead to instability. The early literature dealt
with the stabilizing properties of moving horizon control laws based on open-loop
optimal control for finite horizon optimal control problems with quadratic criteria and
no input constraints. More recently, [66, 69, 71, 128] dealt with linear time-varying
(LTV) systems, [1, 2, 3, 62, 92, 91] dealt with nonlinear discrete-time systems and [28,
81, 82, 83, 84, 85] have established the stability properties of nonlinear, continuous-
time systems with moving horizon control in the presence of constraints. In [95]
Mayne and Michalska examined the robust stability of a moving horizon control,
although the analysis is somewhat involved and the resulting hybrid control law (a
nonlinear MPC controller is used to drive the states to a small neighborhood of the
origin and the control law switches over from MPC to a linear controller which is
then used to drive the states asymptotically to the origin) is hard to implement even
for simple examples. [83, 85] took into account the non-trivial time needed for the
computation of the open-loop control law even in the nominal case. [125] analyzed
the robust stability problem by discretizing the problem into multiple linear feedback

control systems.

Dealing with the nonlinear control and estimation problems simultaneously we can
find [87], although the stability analysis presented in that work is quite complicated

and incomplete.

An adaptive receding horizon control scheme for constrained nonlinear systems can be
found in [88] although we can clearly say that adaptive control theory for constrained
systems (linear or nonlinear) is still in its infancy and this is only a very preliminary

work in the area.
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1.2.2 MPC and its different implementations

The basic formulation of an MPC problem for a nonlinear plant of the form

#P(t) = fP(aP(t),ult),t), aP(to) =: zh (1.1)
y(t) = ¢ (), u(t),?) (1.2)
is the following:
min @[z (t), u(?)] (1.3)
subject to:
z(t) = f(z(t),u(t),t), withz(ty) = xo and t € [ty, to + PT] (1.4)
k(x(t),u(t),t) =0 (1.5)
h(z(t),u(t),t) >0 (1.6)
where:
® .= performance criterion (a positive definite function)

f, fP := model and plant dynamics, respectively

g = output model

k,h = equality and inequality time-varying mixed input/state nonlinear
constraints (in the most general case), respectively

zP(t) := state vector of the plant

y(t) := output vector

x(t) := state vector of the model



u(t) := control vector

P .= prediction horizon; an integer number which can be finite or infinite
2}, To:= initial condition of the plant and model states, respectively

to  := initial time of computation

T  := sampling time

PT .= prediction time

Throughout this thesis the symbol “:=” means that the left-hand side is defined to

[13 %

be equal to the right-hand side; the reverse holds for “=:".

The control sequence u(t) is computed for ¢ € [to, o + PT] but only u(t) restricted
to t € [to,t1 := to + T is actually applied to the real plant (1.1). At time ¢; a
measurement y(?;) is obtained, the states of the plant are estimated (in the case
where not all states can be directly measured at sampling times) and with this new
initial condition zy := Z(¢;) (where (t) represents the estimated states of the plant at
time ¢) a new optimization problem is solved at time ¢;. This is known as a receding

horizon implementation of the control law.

The plant (1.1) is linear if its dynamics is given by:

#P(t) = fP(2P(t), u(t),t) .= AP(t)zP(t) + BP(t)u(t) (1.7)
y(t) = CP(8)aP(t) + DP(H)u(t) (1.8)

If all the matrices AP(t), BP(t), C?(t) and DP(t) are constant, the linear system (1.7),
(1.8) is said to be time-invariant (LTI system); if one or more of them vary in time,

we have a linear time-variant (LTV) system.

Let the linear model used in the prediction be given by:



z(t) = f(z(t),u(?),t) == A(t)z(t) + B(t)u(t) (1.9)
If f(z(t),u(t),t) ({A(),B(t)}) differ from fP(aP(t),u(t),t) ({AP(¢), BP(t)}) for some
t € [to,00) we have a nonlinear (linear) robust control problem at hands.

In general, the performance criterion ® is given by:

afa(t) u®] = [ ot (O uldldt + olio,xlto).te,a(te)]  (110)

to

where the functions ¢ : R X R* x R™ — R and ¢ : R x R” x R x R* — R are positive

(semi-)definite functions of their arguments.

Most commonly, ¢ is a time-invariant quadratic function of its arguments, i.e.,

olt, z(1), u(t)] = #(t) Qu(t) + u(t) Rul(t)

with ), R positive definite matrices, and ¢ = 0.

Within the context of the preceding formulation, MPC algorithms can be divided
into the following main categories:

(1) Finite prediction horizon [P € (0, 00)] for:

e Linear plants [27, 35, 49];
e Nonlinear plants [19, 20, 39, 48];
(2) Infinite prediction horizon [P — oo] for:

e Linear plants [66, 109, 127];

e Nonlinear plants [1, 3, 92];
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(3) Finite prediction horizon with end constraints’ (also known as stability con-

straints) for:

e Linear plants [13, 23, 32, 52, 69, 101, 122, 123, 127];

e Nonlinear plants [1, 2, 28, 62, 63, 81, 82, 83, 84, 85, 91, 95, 96, 124].

In the first category a simple finite horizon objective function is employed which
does not, per se, guarantee stability. This means that closed-loop stability cannot be
assumed simply because the on-line optimization finds a solution. The issue of closed-
loop stability is complicated by two facts: first, there is always uncertainty associated
with the model used in the prediction; second, the presence of constraints in the
optimization problem results in a nonlinear closed-loop system even if the model and
plant dynamics are linear. In [22] the authors underlined the poor stability properties

of finite prediction horizon schemes.

In the second category, [92, 109] propose a control algorithm which minimizes an
infinite horizon objective function subject to the constraint that the unstable modes
of the plant are set to zero at some finite time. This kind of control algorithm has
desirable stability properties in the nominal case but it cannot be extended in a
straightforward manner to plants with uncertainty. In [66], the authors propose a
technique which deals explicitly with model/plant uncertainty in LTV plants. The
goal in this technique is to design, at each time step, a state feedback control law
which minimizes a “worst-case” infinite horizon objective function, subject to con-
straints on the control inputs and plant outputs. The problem of minimizing an upper
bound on the “worst-case” objective function subject to constraints is reduced to a
convex optimization involving linear matrix inequalities (LMIs). It is shown that the
feasible receding horizon state feedback control design robustly stabilizes the set of
uncertain plants. In [1, 3], discrete-time nonlinear systems are considered and global
stability of the infinite prediction horizon scheme is shown under certain stabilizability

assumptions.

!By end constraint we mean any state constraint imposed at the end of the prediction horizon.
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It should be pointed out that one of the great restrictions of infinite prediction horizon

schemes (even with finite control horizons) is naturally computational.

The third category is the one with most of the desirable stability and robustness
characteristics. In the nonlinear context, MPC for discrete-time systems with mixed
state/control constraints is discussed in an important paper by Keerthi and Gilbert
[62]. The control action is determined by minimizing, at each k™ time step, a non-
linear cost function over the horizon [k, k + P;] (here the horizon P is not constant,
instead it is included as a decision variable in the optimization together with the con-
trol and represented by P) subject to the mixed state/control constraints and the
terminal equality constraint z(k + P|k) = 0 and setting the current control equal to
the first element of the minimizing sequence. Keerthi and Gilbert show that this con-
trol is, under certain conditions, stabilizing. The finite horizon approach for nonlinear
discrete-time systems proposed in [1, 2] is very similar to this found in [62], the only
apparent difference being that certain observability assumptions on the system can
be relaxed because the performance criterion is defined in terms of states and inputs
(instead of outputs and inputs as in [62]). In [91] the same end equality constraint is
used to show stability using Lyapunov arguments. The authors show in that paper
that systems which are feedback linearizable can be asymptotically stabilized with
MPC. They also find discrete-time systems which cannot be stabilized with contin-
uous feedback and they show that MPC generates a discontinuous feedback which

stabilizes such systems.

Model predictive control for nonlinear time-invariant continuous-time systems is in-
troduced in [28] but Mayne and Michalska [81, 82, 83, 84, 85] appear to provide the
first rigorous analysis. Here the value function for the (open-loop) finite horizon con-
trol problem, which is continuously solved, is employed as a Lyapunov function for
the closed-loop system. In order to apply standard Lyapunov theory, fairly strong as-
sumptions (including controllability of both the nonlinear system and its linearization
about every trajectory) are made to establish continuous differentiability of the value

function. The latter property is relaxed in [85] where only Lipschitz continuity of the
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value function is required, allowing for less strict assumptions on the behavior of the
linearized system. In each case, the finite horizon control requires exact solution, at
each time instant k, of a finite horizon nonlinear control problem with the terminal

equality constraint z(k + Pylk) = 0.

In [82] a relaxed version of the stability constraint for continuous-time nonlinear
systems is presented, i.e., instead of z(k+ Py|k) = 0, the authors use z(k+ Pilk) € W
(where W is some neighborhood of the origin). Since the terminal constraint has been
relaxed, the MPC strategy loses its stabilizing properties inside W. To compensate
for this effect, a linear, locally stabilizing controller designed for the linearized system

is used inside W. The resulting “hybrid” controller is shown to be globally stabilizing.

One common factor in the stability proofs of all MPC schemes mentioned here is
that the questions related to feasibility are eluded through the assumption that the
constrained control problem always remains solvable. In [113], it is argued that the
issue of feasibility is in fact central to the question of stability and that, therefore,
the feasibility assumption is inappropriate. In that work, a technique for systematic
handling of infeasibilities is proposed which is such that its use allows stability guar-
antees obtained under the assumptions of feasibility to be carried over to the usual
case when feasibility cannot be guaranteed (details of this technique are not found
in [113] but the authors claim that they will be published in the Ph.D. thesis of P.
Scokaert).

A rather comprehensive review of all these methods can be found in [70].
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1.3 Thesis overview

1.3.1 General contents

In chapter 2, we give a brief tutorial review of the state space formulation of MPC
for both linear and nonlinear systems. There we concentrate on the stability results
found in the literature for the three main classes of linear/nonlinear constrained MPC

controllers:

(1) Finite prediction horizon MPC.
(2) Infinite prediction horizon MPC.

(3) Finite prediction horizon MPC with (stabilizing) end constraints.

We see that for class (1) there are no stability guarantees. For class (2) the controller
is stabilizing if the optimization is feasible. And, finally, for class (3), even though
the prediction horizon is finite, the end constraints add stability (and sometimes

robustness) to the controller.

In chapter 3, we introduce our so-called Contractive MPC scheme. Contractive MPC
is a finite horizon nonlinear MPC algorithm which is stabilized through the addition
of an end constraint called contractive constraint. In that chapter, we introduce the
formulation, implementation and basic philosophy of the contractive MPC scheme and
discuss its stability properties in the nominal case and in the absence of disturbances.
The results show that the contractive constraint exponentially stabilizes the closed-
loop system when model uncertainty and disturbances are absent. We also discuss
the conditions under which the chosen standard quadratic objective function is a

Lyapunov function for the closed-loop system. Finally, four examples are introduced:

(1) A nonholonomic system (the model of a car)
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(2) A fluidized catalytic cracking unit (FCCU)

(3) A 2-degree of freedom robot

(4) A continuous stirred tank reactor (CSTR) + flash unit

We apply our contractive MPC scheme to these four examples which are of very dif-
ferent natures and present varied levels and sources of difficulties (that are discussed
there) and the obtained simulation results are compared with a standard finite pre-
diction horizon nonlinear MPC algorithm. Moreover, in the case of the car, we also
present a comparison of our results with some analytical control design techniques

derived especially for nonholonomic systems.

In chapter 4, we examine how the stability results are modified when the system is
subjected to an asymptotically decaying disturbance of bounded energy. Our results
demonstrate that the closed-loop system becomes uniformly asymptotically stable in
the presence of this class of disturbances (thus, the exponential stability properties of
contractive MPC are weakened to uniform asymptotic stability). We also show that
this kind of disturbance can be caused by introduction of an asymptotically conver-
gent observer into the closed-loop for purposes of state estimation. We then derive
sufficient conditions under which the association of an exponentially stable controller
(such as contractive MPC) with an asymptotically convergent observer, generates an
asymptotically stable closed-loop system. Furthermore, we design such an observer
for a continuous-time system with discrete observations and prove its asymptotic con-
vergence properties. The results reveal that if the outputs are measured continuously,
then this nonlinear observer has its convergence properties strengthened as it becomes

exponentially stabilizing.

At the end of that chapter, we perform simulations for the so-called van der Vusse
reactor, a benchmark CSTR. system. We study the closed-loop response under expo-
nentially decaying disturbances and the results are compared with the ones obtained

with a standard NLMPC algorithm. Then we design a discrete version of the nonlin-
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ear state estimator proposed in that chapter (the reason we use this discrete version
of the observer instead of the original mixed continuous/discrete one is to reduce the
differential Riccati equation to an algebraic Riccati equation) for the example men-
tioned above and examine the behavior of the closed-loop system generated by the

resulting output feedback controller.

In chapter 5, we first look into the state feedback control problem when persistent,
bounded and non-additive disturbances affect the nonlinear dynamics of the system.
In the nonlinear context, the problem posed by disturbances of this kind is equiva-
lent to having parameter uncertainty only (i.e., model and plant are matched in the
nonlinear structure, only some - or all - parameters are unknown). We demonstrate
that the most which can be guaranteed under non-additive bounded disturbances or
constant parameter mismatch, is that the states are driven to a control invariant set
whose size is proportional to the magnitude of the disturbances or parameter devia-
tion. Then, we examine how these results change when the states are also unknown
(which constitutes the output feedback case) if the parameters are unknown but con-
stant. We use a moving horizon-based least-squares estimator for state estimation.
Additionally, we study in that chapter how the results are modified if both states and
parameters are unknown, the parameters are time-varying, the system is subjected
to additive disturbances and the moving horizon least-squares estimation procedure

seeks to estimate states, disturbances and parameters.

The example used to test the robust state and output feedback contractive MPC
controllers proposed in chapter 5 is a biochemical reactor with substrate inhibition.
There we study how the closed-loop behaves when there is a constant parameter
deviation between the model used for prediction, computation of the contractive

constraint and estimation and the real nonlinear system.

The MPC schemes in chapters 3, 4 and 5 involve the solution of a nonlinear program-
ming problem at each time step to find the optimal (or, at least, feasible) control

sequence. Nonlinear programming is known to be the most difficult of the smooth
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optimization problems. Indeed there is no general agreement on the best approach to
be used for its solution and much research is still to be done. Due to the difficulties
inherent to solving nonlinear programming problems and since MPC requires the opti-
mal (feasible) solution to be computed on-line, we propose in chapter 6 an alternative
implementation which guarantees that the problem can be solved in a finite number
of steps. It is well-known that quadratic programming (QP) problems satisfy this
requirement. Thus, we show in that chapter how to pose the optimization problem as
a QP by means of using a linear approximation of the original nonlinear system in the
prediction step of the MPC control algorithm and by implementing the contractive
constraint in an appropriate way. We propose three different ways of implementation
of the contractive constraint, namely, the “approximate (or conservative) approach”,
the “penalty function approach” and the “approach based on sensitivity analysis of
the QP”. We also show how to pose the problem as a QP by appropriately defining

the Hessian matrix, the gradient vector and the constraint matrices.

Still in chapter 6, we describe the formulation, implementation and basic philosophy
of this computationally simplified but harder to analyze controller. The reason why
the analysis of the contractive MPC controller, under the local linear approximation
of the original nonlinear system, becomes more involved, comes from the fact that the
linearization introduces a structural mismatch between the plant and the model used
in the control computations (it is basically a linear/nonlinear mismatch, if no other
types of uncertainties are considered). Therefore, the controller must be robust with
respect to this mismatch (i.e., the controller must stabilize the states of the plant even
though nonlinearities are ignored in the prediction). Under certain assumptions on
this model/plant mismatch (a growth condition on the nonlinear terms of the model),
we show that the states of the plant can be driven to a control invariant set whose
size depends on how “strongly nonlinear” the system is. We also include bounded

disturbances and parameter mismatch in this analysis.

Finally, at the end of chapter 6, we present simulation results for this more computa-

tionally efficient contractive MPC algorithm applied to the 2-degree of freedom robot,
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the nonholonomic system/car, the FCCU, the CSTR + flash unit (all of these intro-
duced in chapter 3) and the van der Vusse reactor(introduced in chapter 4) and we
compare the results with the ones previously obtained for when the nonlinear system

itself is used in the prediction step of the MPC control algorithm.

1.3.2 List of theorems in the thesis
Chapter 3 State Feedback Contractive NLMPC: Nominal Case

Theorem 3.1 Exponential stability of the closed-loop system.

Theorem 3.2 Conditions for the objective function to be a Lyapunov function

for the closed-loop (not necessary for exponential stability).
Chapter 4 Output Feedback Contractive NLMPC: Nominal Case

Theorem 4.1 Uniform asymptotic stability of the closed-loop system in the
presence of asymptotically decaying disturbances in the state feedback

case.

Theorem 4.2 Feasibility condition (sufficient condition on the magnitude of
the asymptotically decaying disturbances so that feasibility can be as-

sured).

We then discuss how these asymptotically decaying additive disturbances
can be caused, for example, by introduction of an asymptotically stable
state estimator into the closed-loop. We propose a mixed continuous/discrete-

time nonlinear observer and examine its stability properties.

Theorem 4.3 Computation of a stability region for the nonlinear observer
proposed in this chapter. The observer is shown to provide asymptotically
convergent state estimates for a certain set of initial state estimation errors
and for systems with “not very strongly nonlinear” dynamic and output

maps.
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Theorem 4.4 Closed-loop stability in the output feedback case. The associa-
tion of the asymptotically convergent nonlinear observer proposed in this
chapter with the exponentially stabilizing contractive MPC controller is

shown to originate an asymptotically stable closed-loop.
Chapter 5 Robust Output Feedback Contractive NLMPC: Parameter Uncertainty

Theorem 5.1 Computation of a bound on the difference between model and
plant states at the end of prediction horizons, in the presence of parameter

uncertainty and in the state feedback case.

Theorem 5.2 Stabilizing properties of the state feedback controller in the pres-

ence of parameter uncertainty.

Theorem 5.3 Feasibility condition (sufficient condition on the magnitude of

the parameter uncertainty so that feasibility can be assured).

Theorem 5.6 Computation of a bound on the difference between true and esti-
mated states in the presence of parameter uncertainty. The state estimator

is a moving horizon-based least squares estimation (LSE) procedure.

Theorem 5.7 Stabilizing properties of contractive MPC in the presence of

parameter uncertainty and in the output feedback case.

Theorem 5.8 Feasibility condition (sufficient condition on the magnitude of
the parameter uncertainty so that feasibility can be assured in the presence

of state estimation errors).

Theorem 5.9 Using the LSE moving horizon-based procedure for both state
and parameter estimation, we compute a bound on the difference between
true and estimated “augmented” states (i.e., newly defined states which
comprise the states and parameters of the plant) at the beginning of the

estimation window.
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Chapter 6 Contractive NLMPC reformulated as a Quadratic Programming (QP)
Problem

Here, local linear approximations of the nonlinear system are used for predic-
tion and in the computation of the contractive constraint, in order to reduce the
optimization to a simple QP problem. Thus, we proceed to show how the stabil-
ity properties of the closed-loop are modified when this structural model/plant
(linear/nonlinear) mismatch is introduced. The presence of disturbances and

parameter uncertainty is also taken into consideration in our results.

Theorem 6.2 Computation of a bound on the difference between the states
of the nonlinear system and of its local linearization at the beginning of

prediction horizons.

Theorem 6.3 Feasibility condition (sufficient condition on the structural
model/plant mismatch and on the magnitude of possible parameter un-

certainty and disturbances, so that feasibility can be assured).

Theorem 6.4 Derivation of finite bounds on the norm of the continuous state
trajectory generated by the controller for all time ¢ > 0, demonstrating its

well-posedness.

Theorem 6.5 Feasibility conditions for systems with stable Jacobian in the
whole state space (derivation of a lower bound on the contractive parameter
so that feasibility can be assured) in the absence of parameter uncertainty

or disturbances.

Theorem 6.6 Stability and feasibility properties of the output feedback scheme
when the controller has to deal with the mismatch between the linear sys-
tem used in the control computations and the real nonlinear system, and
the nonlinear observer is asymptotically convergent. Parameter uncer-

tainty and disturbances are not considered here.
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Chapter 2 MPC: An Overview

2.1 Implementation aspects

A tutorial review of the state space formulation of Model Predictive Control for both

linear and nonlinear systems is presented in this chapter.

The various implementations of MPC are identical in their global structure but differ

in the details. The general structure of MPC schemes is shown in figure 2.1.

Reference

l

Optimizer - Plant

L ! Observer

o

Figure 2.1: Inherent structure in all MPC schemes.

The selected observer uses the input and output information (u and y, respectively)
and computes the state estimate . With this estimate, one can use an optimization
scheme to predict the trajectory of the controlled variables y over some prediction (or
output) horizon P with the manipulated variables u changed over some control (or

input) horizon M (M < P). This prediction step is represented in figure 2.2.

At time step k, the optimizer is used to compute the present and future manipulated

variable moves u(klk),...,u(k + M — 1|k) such that the predicted outputs follow
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Figure 2.2: Optimization problem at time k.

the selected reference trajectory in a satisfactory manner. The optimizer takes into
account the input and output constraints which may exist, by incorporating them
directly into the optimization. For linear systems, if a linear or quadratic objective
function is considered, the resulting optimization is a linear or a quadratic program-
ming problem, respectively. For nonlinear systems, independent of the chosen perfor-
mance criterion, the optimization becomes a nonlinear programming problem which

is non-convex in the majority of cases.

Only u(k|k), the first control move of the sequence, is implemented on the real plant
from time step k to k+1. At time step k+1 the measurement y(k+1) is used together
with u(k|k) by the observer to compute the new estimate Z(k + 1), the horizons M
and P are shifted ahead by one step and a new optimization problem is solved at time
step k+1 with the new initial condition Z(k+1). This procedure results in a so-called

moving horizon or receding horizon type of strategy. For computational reasons, the
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values of the horizons M and P are generally finite. However, it has been observed
that it is very hard to provide stability guarantees for an MPC scheme with finite
output horizon P (see [22]). Stability results can be obtained when P is infinite,
keeping M finite. It has been shown that such selection of controller parameters
makes it possible to guarantee certain stability properties of the closed-loop system

while keeping the computation effort reasonable in most cases.

2.2 Basic formulation

A very general and not very detailed formulation of the prediction step in MPC
algorithms was given in chapter 1. Here we will go into more details regarding the

shape of the objective function, prediction models, state estimators and constraints.

2.2.1 Prediction models
(1) Continuous-Time Systems

Linear: In its most general form, a linear prediction model is given by:

z(t) = A(@t)z(t) + Bt)u(t) + E(t); z(0) =: zo given (2.1)
y(t) = CO)z(t) + D(t)u(t) (2.2)

where z(t) € R™ denotes the state at time ¢, u(t) € R the manipulated
variables (or inputs) and y(¢) € ®? the controlled variables (or outputs).
Here we have not included the disturbance or the noise that the actual

plant may be subjected to.

In most cases, the independent term FE(t) is not included. If any of

A(t), B(t),C(t) or D(t) are functions of time the linear system is called
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time-varying (LTV), if they are all constant we have a linear time-invariant

(LTT) system.

Nonlinear:

z(t) = f(z(t),u(t),t); z(0) = o given (2.3)

In most cases, the nonlinear system is time-invariant, that is, f(.) : ®" x
R™ x R — R™ and g(.) : R x R™ x R — NP are not explicit functions
of time. Usually, f and g are assumed to be continuously differentiable

functions.
(2) Discrete-Time Systems

Linear:

z(k+1) = ®(k)z(k)+T(k)u(k) +n(k); z(0),u(0) given (2.5)
y(k) = C(k)z(k) + D(k)u(k) (2.6)

The matrix ®(k) is known as state transition matriz.

When the continuous-time linear system (2.1) is time-invariant, the dis-
crete form (2.5) can be easily obtained from that system by having ®(k),
I'(k),n(k) given by:

®(k) = AT (2.7)
T(k) = /OTeA(T’t)Bdt (2.8)
(k) = /OTeA(T“t)Edt (2.9)

where T is the sampling time.
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Nonlinear:

z(k+1) = F(z(k),u(k),k); z(0),u(0) given (2.10)
y(k) = G(x(k),u(k),k) (2.11)

In general, it is not possible to obtain a closed form solution of a general
continuous-time nonlinear system as given by (2.3) (the solution has to be
computed numerically), which means that F' and G are not know explicitly

for most systems modeled originally in continuous-time form.

2.2.2 State estimators

In general, state estimators have the following form:

Continuous-Time Systems:

In the case where f(.) is continuous (discrete) and linear, either because the plant is
linear or because we are using a linearized estimator for a nonlinear plant, K (t) (or

K(k)) is determined from the solution of a differential (algebraic) Riccati equation.
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2.2.3 Objective function

Various objective functions can be chosen depending on one’s goal in using MPC.

The most common one applies the 2—norm both spatially and temporally.

For continuous-time systems the following objective function is commonly used:

Viim Viwa = [ a) I+ 1) uelo) 3]t (2.16)

where || . || denotes the Euclidean norm of a vector and || z [|p:= m, with
P € R positive definite, is the weighted Euclidean norm of z € ®”. || . || also
denotes the Euclidean norm of a matrix. More generally, || . ||,, p > 1, denotes the
Holder or p-norm of a vector or matrix (note that when p = 2 the p—norm becomes

the Euclidean norm) and is given by:

Izl = (@l +...+|z.P)7, VzeR", p>1 (2.17)

|All, == sup I Az |,

. VA ¢ jgmxn (2.18)
w0, zewn || T ||p

where |z;| denotes the absolute value of 2; € R, Vi=1,...,n.

If we make p = 2 in definition (2.18) and A € R™™ ( C™*", in the general case

of complex matrices and vectors) we have the so-called induced (matriz) norm of A

corresponding to the Euclidean vector norm || . || on ®" (C"):
Az || ‘
al= s L0 g jary= sup Az (219)
a0, zern (2] = Jall<1

The p-norms satisfy certain important properties which will be used here and that

can be found in most books on matrix computations and numerical analysis (see, e.g.,
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(54, 58]).

Besides the Euclidean and Hdlder norms of vector and matrices, we will define ||| . ||
to be the induced norm on tensors. Let || . || be a given norm on R" (C™). Then, for

each tensor T € R™*™*" (T € C™ ") the quantity ||T'||| defined by

~ y,TIE 1~ 7~
W= s I yTe= s T
sy, zyerr Y2l je=pui=1 lell<t, llyli<1 |
(2.20)

is called the induced (tensor) norm of T corresponding to the vector norm | . ||.

The notation used in (2.16) is the following: zj are the states of the system at time
t; (in the output feedback case we would have Zj, that is, the estimate of zx); to
keep coherent with the discrete case, P is the output or prediction horizon (which
is a decision variable, together with the control, in some algorithms and therefore
we are allowing it to be a function of k); T is the sampling time; z;(¢) represents
the state trajectory of the model for all ¢ € [ty, tx + P;T| given the initial condition
Ty, at tg; ug(t) is the control trajectory to be computed for the same time interval
and initial condition; ) and R are positive definite matrices and they are controller

tuning parameters (known as weights in the objective function).

For simplified computation, most implementations of MPC generate a sequence of M!
discontinuous control moves, {u(k|k),...,u(k + M — 1]k)}, instead of a continuous
trajectory ug(t). In other words, these controllers require that ug(t) = u(k+il|k) for all
t€ [ty +iT,ty+ (i+1)T) and ¢ € [0, M — 1], and ux(t) = 0 for t € [ty + MT, t, + BT

In this case, the objective function can be rewritten as:

IIn the implementations where the output horizon is a decision variable there is no difference
between input and output horizons.
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tit+PT . M-1 ,
Vi 1= V(tg, zx) := / o, (t) Qur(t)dt + T > ulk +ilk) Ru(k +ilk) (2.21)
i=0

tg

If the system is linear or has a closed form solution it is possible to express the states
z1(t) and, consequently, the objective function, as an explicit function of the control

moves.

From this point forward we will consider P as a pre-specified tuning parameter, con-
stant throughout the computations, in order to simplify the notation (unless otherwise

necessary to make the distinction).

For discrete-time systems the most commonly used objective function is the quadratic

one given by:

P M-1
Vi = Zg:(k+zlk) Qu(k +ilk) + > u(k +ilk) Ru(k + ilk) +
1=0

+ Af Au(k +i)k) SAu(k + i|k) (2.22)

=0

where:
S is a positive definite matrix
Au(klk) := u(klk) — u(k — 1]k — 1)
Au(k +ilk) == u(k + k) —u(k +i—1|k), i € [1, M — 1]

In general, one can choose the weights @, R and S to be time-varying (i.e. functions

of k). For simplicity they are assumed to be time-invariant here.

Other popular but non-differentiable choices for the objective function are the 1 — 1
norm, the oo — 1 norm, the co — oo norm and the 1 — co norm (where the first

is the spatial norm and the second the temporal norm). A good description of the



27
advantages of using each of these, as well as some other special objective functions

can be found in [26].

2.2.4 Constraints

The optimization or prediction step in MPC can be subject to general mixed state/control

constraints of the form:

Equality Constraints:
k(z(t),u(t),t) =0 (2.23)

Inequality Constraints:

h{z(t),u(t),t) >0 (2.24)

Inequality constraints are found much more often than equality constraints. In a
nonlinear setting equality constraints can never be satisfied in a finite number of

algorithm iterations and are therefore avoided.

In most MPC problem formulations, the only two types of constraints considered
are input and state (in particular, output) constraints. The constraints on the input
variables are in general hard constraints which impose lower and upper bounds on

these variables, that is,

u(t) eU .= {u e R™: upmin <u < Upgz}, VEE[0,00) (2.25)

To make the control problem meaningful &/ must contain the origin.

Other very commonly used constraints are bounds on the rate of change of the ma-

nipulated variables given by:
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|Au;(k+ilk)] < AUmggj, Vi=0,...,M—=1, k>0, with Aty ; >0, Vi=1,....,m
(2.26)

where Au;(k + ilk), AUmezj, § = 1,...,m, are the components of the vectors
Au(k + ilk), Aumaz, respectively. We will express these constraints in the follow-

ing vector form:

[Au(k +i|k)| < AUmag, Vi=0,...,.M =1, k>0, Atiyyez >0 (2.27)

where we have committed some abuse of notation since Au(k + i|k) is a vector and
we have defined |.| to be a scalar norm. The reason for this notation is that we
do not want the norm used here (which is linear in the components of the vectors

Au(k +i)k)) to be confused with the 2—norm.

The output constraints are in general of the form:

Ymin <Yk +1ik) < Ymaz, Vi=1,...,P, k>0 (2.28)

or in the “soft” format:

Ymin — € S Yk + k) < Ymaz +6, Vi=1,...,P, k>0 (2.29)

where ¢ is an additional decision variable whose weighted quadratic norm is added
to the objective function. This formulation allows the bounds ¥, and Y., to be
violated by at most € whenever the problem with hard constraints is not feasible. The
norm of € is added to the objective function so as to minimize the violation of these

bounds.
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In addition to input and output constraints, the optimization may be subject to
physical constraints on the state variables (e.g., mole fractions have to lie between 0
and 1, temperatures in Kelvin degrees have to be always positive, concentrations are
always non-negative, etc). Other useful state constraints are constraints imposed at
the end of the (finite) prediction horizon known as end constraints. Some of these
constraints are used, for example, to guarantee stability of the closed-loop as we will

see later.
Two well-known “stabilizing” end constraints are:
Equality End Constraint:
z(k+ Plk) =0, Vk>0 (2.30)
Inequality End Constraint:
z(k+ Plk) e W, Vk>0 (2.31)

where W is some compact and convex “small” neighborhood of the origin.

2.3 State of the art on stability analysis of MPC:

main results

2.3.1 MPC for constrained linear plants: nominal case

For constrained linear systems, stability has been proven in two different cases: by
use of infinite prediction horizon [66, 109, 127] or finite prediction horizon with end
constraint [13, 23, 32, 52, 69, 101, 122, 123, 127]. For the still very popular MPC

formulation with finite prediction horizon no stability properties can be assured in
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the presence of constraints. Now we will briefly describe the stability results in the

cases of infinite prediction horizon and finite prediction horizon with end constraints.

Infinite prediction horizon MPC

Infinite horizon MPC with mixed state/control constraints for completely known
discrete-time LTI systems (i.e., no model/plant uncertainty) has been explored in

[109, 127].

Here we will reproduce the main results found in [109] due to their simplicity and

importance. In that work, an objective function of the type

o9}

2 [(k + ilk) Qz(k + i|k) + u(k + ilk) Ru(k + i|k)] (2.32)

is considered with u(k + ilk) = 0 for ¢« > M, where M is the finite control horizon.
Thus, even though the problem has infinite prediction horizon, the number of decision

variables is kept finite and the optimization can be solved on line as a quadratic

program (QP).

The plants considered are discrete-time LTI of the following form:

z(k+ i+ 1|k) = Az(k + ilk) + Bu(k + ilk), i€ [0,00), >0 (2.33)

In the absence of constraints we have the following results:

Theorem 2.1 (Open-Loop Stable Plants) For stable A and M > 1, the receding

horizon controller with objective function (2.32), is stabilizing.

Theorem 2.2 (Open-Loop Unstable Plants) For stabilizable {A, B} with r un-
stable modes and M > r, the receding horizon controller with objective function (2.32),

18 stabilizing.
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When input and state constraints of the kind

Du(k +ilk)

IA

d, i€[0,00), k>0 (2.34)

Ha(k+ilk) < h, i€[l,00), k>0 (2.35)

are considered, the stability results are as follows:

Theorem 2.3 (Open-Loop Stable Plants) For stable plants, the input constraints
are feasible independent of {A, B}, zq := x(0|0) and M. These input constraints can

obviously be converted into a finite set because of the form of the input,

Du(k+ilk) <d, i€[0,M—1], k>0 (2.36)

The state constraints may be infeasible, but they can be converted into a feasible set

by removing them for small k,

Holk+ilk) <h, k=kik+1,... (2.37)
with ki given by:
k1 := max{In( fimin )/In(Amaz), 0} (2.38)
v THTE@) oo 770 |

in which K (T) is the condition number of T (where A =TJT™! and J is the Jordan
form of A), hpen := min; h; and Apee = max; |A(A)|. Thus, for stable A and
M > 1, z, = 0 is an asymptotically stable solution of the closed-loop receding horizon

controller with objective function (2.32) and feasible constraints (2.36), (2.37).
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Theorem 2.4 (Open-Loop Unstable Plants) For stabilizable {A, B} with r un-
stable modes and M > r, x = 0 is an asymptotically stable solution of the closed-loop

receding horizon controller for the feasible quadratic program represented by equations

(2.82), (2.36), (2.37) and the additional constraints

g (k + M|k) =0 (2.39)

where z* are the unstable modes of the system. This constraint establishes that the
unstable modes of the system are brought to zero in M steps in the optimization
(although they only approach 0 asymptotically in the moving horizon implementation

of MPC) and the stable modes are left to approach 0 asymptotically.

In constraint (2.37) ky is now given by:

hmin )
ki =M +ma:c{ln(” HTTT11 26+ M8 ”)/ln()\max),O} (2.40)

where x* are the stable modes of the system.

Finite prediction horizon MPC with end constraints

In order to prove stability for the finite horizon MPC formulation, some additional
constraints may have to be introduced. Several researchers ([13, 32, 62, 69, 101], etc)
have proposed explicitly to include an additional constraint called “end constraint”.
The idea here is to force the state at the end of the prediction horizon to zero, i.e.,

z(k + PJk) = 0,Vk > 0.

This idea seems to have been originated by Kwon and Pearson [69] for the uncon-
strained case. Keerthi and Gilbert [62] proved that closed-loop stability can be guar-

anteed with this type of controller in the presence of input and output constraints
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provided that the resulting optimization problem is feasible. One of the require-
ments for the end constraint to be feasible is that the system described by (2.33) be

controllable.

One can actually show that with state feedback, feasibility of the optimization prob-
lem at k& = 0 implies feasibility for all future sampling times. However, this may
not hold true any longer when the state has to be estimated and/or when there are

disturbances present.

Other types of end constraints have been proposed in [122, 123, 127]. Instead of
forcing the states to zero at the end of the prediction horizon, they require the states
to “shrink” at some future time step k+ L (L < P) with respect to the states at time
step k. This “shrinkage” condition is expressed as an inequality end constraint which
has been shown in these works to guarantee asymptotic stability of the closed-loop

system.

2.3.2 MPC for constrained linear plants: robust case

Robust stability results for discrete-time LTI systems are presented in [66, 101, 122,
127].

Infinite prediction horizon MPC

In [66], an MPC-based technique for the control of LTV plants with uncertainties
is proposed. This technique is motivated by recent developments in the theory and
application (to control problems) of optimization involving linear matrix inequalities
(LMIs). The resulting LMI-based optimization to be solved at each time step can be
solved in polynomial time and can therefore be implemented on line. Thus, from the
computational point of view, we need to solve an LMI problem instead of a linear

or quadratic programming problem, which normally result from classical linear MPC
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implementations. The use of an infinite prediction horizon formulation guarantees

4

stability and since the minimization is performed over the “worst-case” objective

function, the resulting algorithm enjoys certain desirable robustness properties.

Finite prediction horizon MPC with end constraints

In [101], a preliminary investigation of the robustness properties of the MPC algo-
rithm with equality end constraints on the outputs for LTI plants was performed by

exploring its strict relations with infinite horizon predictive control.

Since the robust stability results found in [122, 127] are of very similar nature, we

have chosen to present here some of the main results in the latter work.

Once again, consider the discrete-time LTI system (2.33) and let us denote the nom-
inal model by (Ao, By) and the real plant by (A,, Bp). The actual plant (A,, B,) is
assumed to lie in some known completely arbitrary set, i.e., (4,, B,) € (A,B). The
goal is to design an MPC controller such that closed-loop stability is guaranteed for

all plants in the set.

The proposed controller structure is given by:

Step 0: Input the data.
Step 1: Set kg = k and i = 1, where k£ denotes the current time step.
Step 2: The current control move u(k) equals the first element u(k|k) of the sequence

{u(klk),...,u(k+M—1]k)} which is the minimizer of the optimization problem

) & ViAo, B 2.41
k u(kik),...,u(k:-:r]\l/j_Ilk),€(k) (Ao, Bo) ( )



35

subject to
([ w(k+jk) e U j=01,...,M~-1
|Au(k + k)| < Atmas j=0,1,..., M —1 2.42)
Au(k+ jlk) =0 j=M,M+1,...,00 '
| z(k +jlk) € Xewy j=0,1,...,00
and the robust stability constraint
sup || Afz(ko) + CrU (ko) [|p< A | z(ko) ||p, A €10,1) (2.43)

(A,B)

where the idea of “softening” (relaxing) state constraints with the extra decision
variable e(k) has been introduced. X.u) is the time-varying set within which the
states are required to remain between k and k + 1. The input constraint set U

has been defined in (2.25).

In this problem formulation, we have the following definitions:

Ve(A,B) = > |k +ilk) g +3_[ll w(k +ilk) [[7 + | Au(k +ilk) [I5] +

g1 1=0
+ etk 15, (2.44)
and
Ch, = [AL"IB Al-2p . B]
i u (ko) -

u(ko +4—1lko +i—1)

| u(k0+L— llk()—i-i—l) |
P Q. > 0 are weighting matrices

L := location of placement of stability constraint
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Step 3: Set k =k+1. If ¢ = L or || (ko + 1) ||[p< A || z(ko) ||p, go to Step 1;
otherwise, set ¢ = ¢+ 1 and go to Step 2.

This robust controller optimizes nominal performance subject to a robust stability
constraint. The stability result for this robust MPC scheme can be summarized in

the following lemma and theorem:

Lemma 2.1 (Feasibility Condition) Assume that A is stable for all A € A. Then
there exist an integer L and a constant \*(L, P) € [0,1) such that the optimization
problem in Step 2 is feasible for all X € [M\*(L, P),1).

Theorem 2.5 (Robust State Feedback) Assume that A is stable, then for all X €
[A*(L, ]5), 1), the closed-loop system with state feedback is globally asymptotically stable
with the given robust controller for all (A, B) € (A, B).

Here we have not gone into the notational details of the original work and the inter-
ested reader is encouraged to refer to [127] or [128] for better understanding of the
previously described robust MPC algorithm. The main idea, however, is that the
states of all the models in the set (A, B) (which include the real plant (A,, B,)) are
“contracted” by a factor of A € [0,1) with respect to the measured states at time
step kg. The robust stability constraint remains the same for a particular kg while 2
varies from 1 to L. When i = L, the stability constraint is redefined with respect to

the states measured at ko + L, z(ko + L), and imposed at ko + 2L.

This is one of the robust stability results in [128]. Extensions to the output feedback

case, e.g., can be found in this work but will not be mentioned here for lack of space.

2.3.3 MPC for constrained nonlinear plants: nominal case

Nominal stability results for constrained nonlinear systems can be found in [1, 2, 3,

62, 92] (discrete-time) and in [28, 63, 82] (continuous-time). In both cases, the basic
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suggested MPC algorithm is the same with finite prediction horizon and equality end
constraint z(k + Px|k) = 0, Vk > 0. Note that the prediction horizon is allowed to be
time-varying (i.e., P is a function of k). This type of MPC implementation is known
as Variable Horizon MPC. Now since the plant is nonlinear the optimization problem

is in general non-convex and one can expect at best to find a local optimal solution.

Let P(k, z) denote the optimization problem at sampling time & with initial condition

xr. The problem formulation at time step & for the continuous-time case is given by:

’P(k,.'L'k) : min{V(tk,xk)]uk(t) € L{, Pk € [O, Pmax],ﬂf(ik+1 =1, + PkT; ZEk,tk) = 0}
(2.45)

With certain controllability and observability assumptions and Lipschitz continuity

of the system dynamics and of the output map, the following results hold:

e for all z, € X, lim; o0 zg2i(k, zg) = 0;

e z = 0 is the only equilibrium state of the system with the computed control law

and it is uniformly asymptotically stable,

where the set X' is defined by:

X = {zy : P(k, xx) has an admissible sequence for which V := V (¢, zx) is finite}
(2.46)

Another form of guaranteeing stability for a constrained nonlinear system has been
presented in [83, 95] and it consists of imposing an inequality end constraint of the
type z(k+ Px|k) € W,, where W, is a small neighborhood of the origin whose “size” is
specified by the parameter «. In this case, the controller loses its stabilizing properties
within W,. In order to compensate for that and to guarantee asymptotic stability to
the origin, a stabilizing linear control law must be used inside W,. Thus, once the

states of the system lie inside the region W, one must switch over from MPC to a
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linear robustly asymptotically stabilizing controller. This kind of implementation of
MPC is known as hybrid or dual-mode MPC. The major difficulty lies in computing
the set W, so it is a Lyapunov set for the nonlinear system and for its linearization
around the origin. This is a general problem of constructing local Lyapunov functions

for nonlinear systems for which there is no established methodology.

The advantages of using an inequality instead of an equality end constraint are
twofold: first, in a nonlinear programming problem equality constraints can never
be satisfied in a finite number of algorithm iterations (which does not happen with
most inequality constraints) and, second, a conservative form of this type of inequal-
ity constraint (e.g., z(k + Py|k) € Wy 2) can be used to introduce robustness into this

MPC formulation as we will see in the next section.

As previously mentioned, the problem is posed with a time-varying prediction horizon
Py, k> 0. In [82, 83, 95] the horizon is considered as an additional decision variable
P, € [0, Poz] (where P, is a chosen upper bound to Py, Vk > 0, which determines
a balance between the control effort in solving the problem and the feasibility of the

constraints) so as to add more possibilities for making the constraints feasible.

The optimal control problem at time ¢ is defined in the following way:

P(k,l‘k) : min{V(tk,xk)[uk(t) S I/{, Pk - [0, Pmaac];if(tk—}—l =1 + PkT, l’k,tk) & Wa}
(2.47)

An important feature of this variable horizon MPC with end constraint (be it equality
or inequality constraint) is that optimality is not required for stability, only feasibility.
Moreover, if a feasible solution is found for the first optimal control problem, restric-
tions of this solution to smaller time intervals are feasible solutions of the optimization
problems at subsequent time steps. This means that, in the absence of disturbances,
if P(0, ) is feasible, feasibility of P(k,zx), k > 0, is ensured. Of course, one can im-
prove on this solution at time step k& by computing a control-horizon pair { Py, ux(t)}

that results in a smaller value of the cost function V' (tx, zx).



39

2.3.4 MPC for constrained nonlinear plants: robust case

Robust stability results for nonlinear plants can be found in [95]. In the first case, in
order to add robustness to the hybrid or dual-mode MPC algorithm a conservative
end inequality constraint is imposed in the optimization step. The motivation behind
this idea is to require the states of the model used in the prediction to be inside a
smaller set at the end of the prediction horizon (W, /s, for example) so that, if the
model/plant mismatch is not very large, the states of the plant will be within the
bigger set W,. Inside W, a robust linear stabilizing controller is used in order to drive
the states of the plant asymptotically to the origin. It is clear that the synthesis of
such a linear controller is not a trivial task, especially due to the model uncertainty.
W, now has to be a Lyapunov region for the real plant, the nonlinear model used in

the prediction and its linearization around the origin.

Also here, the prediction horizon is an additional decision variable and the problem

formulation is as follows:

'P(k,:ck) : min{V(tk,xk)]uk(t) eU,P, e [O,Pmaz],x(tkH =1y + PT; l‘k,tk) € WQ/Q}
(2.48)

Let fP(.) and f(.) denote the dynamics of the plant and of the model, respectively.

Then robust stability can be shown under the following conditions on f? and f:

e f?is continuously differentiable;
o || fP(z,u) — flz,u) |[5< B (w,u) || for all (z,u) € X xU, P> 0;

e f is Lipschitz continuous on X x U,

where the set X is defined as in (2.46).
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If state constraints are present, a conservative version of such constraints should be
used in the optimization to account for the model uncertainty. For example, if in the

nominal case P(k, z)) would be given by:

P(k,zy) : min{V (tg, z)|uk(t) € U; Py € [0, Phaz); (85 tk, zx) € &,
Vs € [tk, ty -+ PkT]; LU(t;H.l =ty + BT xy, tk) € Wa} (2.49)

The robust version of the problem would be as follows:

Pk, zy) : min{V (te, zx)|ur(t) € U; Py € [0, Praz]; z(s; te, 2x) € &,
Vs € [tk, tr + PkT]; 33(fk+1 =t + P xk,tk) € Wa/g} (250)

where the sets £ and & are closed subsets of R™ defined by:

E = {z|¢(x)<0,5€p}; p:={1,...,p} (2.51)

£ = {z|g’(z) < —¢j €p, >0} (2.52)

and contain the origin in their interiors. Thus we can see that € allows a margin of
error so that if the states of the prediction model are required to stay within &, the

states of the plant remain inside £, a larger set.
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Chapter 3 State Feedback Contractive NLMPC:

Nominal Case

3.1 Introduction

As we have mentioned before, there are no stability guarantees for finite horizon MPC.
The two alternative approaches proposed so far which ensure stability of the closed-
loop system under reasonable assumptions are infinite horizon MPC (for discrete-
time constrained linear systems) and finite horizon MPC with end constraints (for
continuous- and discrete-time constrained linear and nonlinear systems). These new
formulations of MPC have allowed for a relatively easy analysis of the closed-loop

behavior which had not been possible under the framework of finite horizon MPC.

The present work is devoted to the control of constrained nonlinear systems by using
a finite horizon MPC technique with the introduction of an additional state constraint
which we have denoted contractive constraint. This is a Lyapunov-based approach
in which a Lyapunov function chosen a priori is decreased, not continuously, but
discretely; it is allowed to increase at other times (between prediction horizons). This
is also an approach where stability is guaranteed by introducing an inequality end
constraint in a finite horizon MPC framework. As we will see later, the introduction
of this additional constraint into the on-line optimization makes it possible to prove
quite strong stability properties of the closed-loop system. In the nominal case and in
the absence of disturbances, it is possible to show that the presence of the contractive
constraint renders the closed-loop system exponentially stable. We will also examine
how the stability properties weaken as structural and/or parametric model/plant

mismatch, disturbances and measurement errors are considered. In the presentation
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of our results, we will begin with the basic idea in the simplest context (state feedback
+ no model uncertainty + no disturbances) and then develop into the more complex
situations showing that, in each case, some form of stability of the closed-loop system

can be obtained.

Another important aspect considered in this work is the computational efficiency and
implementability of the algorithms proposed. The previous work on stability analysis
of MPC applied to nonlinear systems (see [82, 95]) addresses only partially the issue of
the computational effort required in the controller implementation. These algorithms
require only feasibility and not optimality of the control problem, which is also true
for our Contractive MPC (finite horizon MPC + contractive constraint). However,
the ideas presented by Mayne and Michalska in [82, 95] with their variable horizon
MPC approach have the following limitations:

e in the nonlinear context, the equality end constraint, namely z(k + Py|k) = 0,

can never be satisfied in a finite number of algorithm iterations;

e the hybrid controller which results from imposing the inequality end constraint,
x(k + Pi|k) € W, and using a linear stabilizing controller inside W is theoreti-
cally sound but the computation of the region W and of the gain of the linear

stabilizing controller is a major difficulty in real implementation.

Another relevant negative aspect of such controllers is the fact that, in general, the
resulting optimization step is a non-convex problem. Even if only feasibility is required
for stability, the performance may suffer quite a lot by using feasible solutions only.
More serious yet is the fact that in nonlinear programming even the computation of

feasible solutions may be quite cumbersome, if not all together impossible.

In this work much attention was devoted to the implementation aspects of the con-
tractive MPC controller. We will show later that if a linear approximation of the
original nonlinear system computed at each sampling time k£ > 0 is used in the pre-

diction step, the contractive constraint can be implemented in such a way that the
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resulting optimization problem is reduced to a quadratic programming (QP) problem.
And, as we well know, there are many efficient and well-established algorithms in the
market today devoted to solving quadratic programs. This implementation of MPC
with local linearization of the nonlinear plant was first proposed by Garcia in [48] and

subsequently used by Ricker and Lee in [74, 110].

We will progress to this computational aspect later because in order to make the
controller computationally simpler we also need to make it robust (since a linear
model is used in the prediction of the states of the real nonlinear plant). Initially
we will be concerned only with the nominal stability analysis per se, without taking
into account the fact that the resulting controller involves the solution of a nonlinear
programming problem at each time step. The extensions to the basic problem will

be added with each chapter.

Problem 1 : State feedback, nominal case and no disturbances

3.2 Description of the contractive MPC algorithm

3.2.1 Description of the system

In this chapter we assume that the plant is nonlinear time-invariant (NLTI) and

described by the following differential equation:
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where f: R" x R™ — R” is continuously differentiable.

Throughout this thesis we will assume that the manipulated variables u(t) are subject

to the following hard constraints:

u(t) €U :={u € R™ : Upin < U < Umaz}, Yt E [0,00) (3.2)

Linear constraints on the rates of change of the manipulated variables are also com-

monly present, as we have pointed out in chapter 2 (see equations 2.26 and 2.27).

The solution of (3.1) at time ¢, corresponding to the initial time/state pair {to, zo}
and the input u(7), 7 € [to, t], is denoted by z(t, to, zo, u) or, in a simplified notation,

Ty (t)

3.2.2 Optimization step

Given any sampling time 9 := t; := tq + kPT, k € [0,00), and t, := t, + jT, j €
[0, P], with tf = t},; = tk41,Vk > 0, let us adopt the following notation z; :=
1Y = z(t), to, 2o, ), T, = x(t,tr, zx,u), 2h(t) = z(t,t),z},u) and ul(t) is the
continuous control law for ¢t € [t],¢, + PT]. In order to conform to MPC’s usual
implementation scheme, let us consider a discontinuous control law of the kind u{c t) =
w(kP+j+i|kP+7) for t € [t +iT,tL+ (i+1)T], i € [0, P—1], i.e., ul(¢) is constant
during one sampling time. Moreover, u(kP + j + i|kP + j) = u(kP +j + M —
1|/kP + j), Vi € [M,P —1]. Then the optimization problem at time ¢}, namely,
P(tl,zl), Vj € [0,P —1], k € [0,00), is represented by:

AN o o
min/ [z7.(t) Qzi(t) + ul(t) R ul(t) + 4l (t) S*ul(t)] dt (3.3)

ul (1) /8]

or, equivalently,
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. tj+P .
My (kP4 j|kP+j),.su(kP4+j+ M1}k P-+j) ft{ “ "L‘i: (t) H2Q dt +

+ 30 | ukP +j +ilkP +5) Iz + ZE5" | Au(kP + 5 +ilkP +5) 5 (3.4)

— R — S
where R := % and S := .

subject to:

#1(t) = f(@h(t),ul(t)), xl := measured states at t]

Umin < w(kP + 7+ ilkP + j) < Umaa, @ € [0, M — 1]

S |Au(kP + j+ilkP + j)| < Atupmae, @€ [0, M —1] (3.5)
Au(kP+j+ilkP+j)=0, i€ [M,P—1]

12t lp< o @k [lp. a€[0,1), P>0

where

() = f(Z(1), ul(t)), with 2} := 2 and T, = Z, '(]), for j > 1 (3.6)

is the trajectory of the model which is not updated with the states of the plant at ¢,
for j € [1, P — 1]. The states 7} (t) are only updated with the states of the plant at

t=t, + PT =:t¥, i.e., at intervals of one prediction horizon.

3.2.3 MPC algorithm implementation

The controller is implemented according to the following scheme:
Control Algorithm 1

Data: Initial Conditions: to and x,; Controller Parameters: horizons P, M
(M < P), weights Q, R, S, P > 0, contractive parameter o € [0,1), sampling

time T and control constraints Umin, Umaz, DNmaz -
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Step 0: Setk =20, j=0.

Step 1: Assuming that the optimal control problem ’P(tf;, xfc) is feasible for the chosen
set of parameters, then att = ti solve P(té, mfc) specified by the sets of equations
(8.4), (3.5) and (3.6). Local optimal solutions or even feasible solutions are
accepted. The result of this step is an optimal (or feasible) sequence of control

moves {u(kP + jlkP +j),...,u(kP+j+ M — 1|kP + j)}.

Step 2: Apply the first control move, u(kP + j|kP + j), to the plant (3.1) for t €
[t1,817'] and measure the states at ). Set zi*' equal to the measured states

and ™ = ().

Step 3: If j < P—1, set 3 = j+ 1 and go back to Step 1. If j = P — 1 set

) =z = af, 0 =tk =th,k=k+1,j =0, and go back to Step 1.

Remark 3.1 Notice that both the contractive constraint and its location (at time
it =ty + PT and with respect to xx) do not change for a fized k as j wvaries in
the interval [0, P — 1]. This means that if at time ty it is possible to find a control
sequence which makes the objective function finite and satisfies all the constraints
(i.e., P(tg,zr) is feasible) and if the constraints remain unaltered for a fized k while
J varies from 0 to P — 1, then the subsequent P — 1 control problems (corresponding
to the different values of j) will be feasible as well. So, all we need to be concerned

about is the feasibility of P(ty,xy), Yk > 0.

Due to the absence of model/plant mismatch and disturbances the following remarks

can be made:

Remark 3.2 The receding or moving horizon implementation of the control law gen-
erated by Control Algorithm 1 is not necessary for Problem 1. We could just
implement all the control moves {u(kP|kP),...,u(kP+M—1kP)} fromty to t,+PT

and only solve a new control problem with a new initial condition, xy,1, at the end of
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the Rorizon. Here we have chosen to present this moving horizon formulation because
this s the most usual one in the MPC context and will be adopted throughout this the-
sis. In the presence of any uncertainty or disturbance, this approach can significantly
enhance the performance of the closed-loop response due to the feedback provided by
measurements at each sampling time (instead of leaving the plant open-loop for the

period of a whole prediction horizon).

Therefore, for Problem 1, the previously presented receding horizon MPC scheme is
equivalent to the following simpler implementation (only one optimization problem,

namely P(ty,zr), is solved for a whole prediction horizon):

Control Algorithm 2

Data: Same as in Control Algorithm 1.
Step 0: Set k= 0.

Step 1: Assuming that P(ty, zi) is feasible for the chosen set of parameters, then at
t =t solve P(ty,zx), which is specified by:

+F

: k 2 P . 2
e, /tk | 2(t) |3 dt + £ || (kP +ilkP) |3
+ M || Au(kP + ilkP) |3 (3.7)

subject to:

k() = fzg(t), uk(t)), xx measured

Umin < W(kP +i|kP) < Upor, 1 € [0, M — 1]

|Au(kP + i|kP)| < Aupmag, 1€ [0, M — 1] (3.8)
Au(kP +i|kP) =0, i€ [M,P 1]

Il ks lpi=l 2 (8) lp< o | @ |y e €[0,1)



48
Step 2: Apply the computed sequence of control moves {u(kP|kP),...,
u(kP + M — 1|kP)} to the system (3.1) fort € [ty, tg+1], and set zxy1 equal to

the states of the system at ty;.

Step 3: Set k =k + 1 and go back to Step 1.

3.2.4 Basic assumptions and definitions

Without loss of generality, let us consider the regulation problem where the desired
operating point is the origin (z,u) = (0,0). Then, the following assumptions are

needed to ensure local stability:

Assumption 3.1 (z,u) = (0,0) is an equilibrium point of (3.1), i.e., £(0,0) = 0.

Assumption 3.2 The linearization of the model dynamics around the origin is sta-
bilizable, i.e., {%(0, 0), %(O, 0)} is a stabilizable pair.

Assumption 3.3 We assume that there exists a p € (0, 00) such that for all z), € B,,
the optimization problem at ty, P(ty, zx), is feasible. In other words, for all xy € B,,
we can find a contractive parameter « € [0, 1) so that with the chosen finite horizon P
all the constraints on the inputs and states can be satisfied and the objective function

18 finite.

Remark 3.3 Assumption 3.3 is not very resirictive since all that it establishes is
that there exists a non-empty convexr and compact set of initial conditions for which

the optimization problem at every P time steps is feasible.

For nonlinear systems with a unique globally exponentially stable equilibrium (which

obviously include open-loop stable linear systems), since all trajectories in R" satisfy
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the condition of exponential decay, it is always possible to find P so that the states
at the end of P steps are contracted by a factor o € [0,1) with respect to the initial

states.

For general nonlinear systems, if | %ﬁ gﬁ ] €Q, Vz, u (where Q C RVC+™)) - then

there ezists a matriz G(x,u) € 0 such that:

x
f(z,u) = G(z,u)
U
In other words, the nonlinear system can be replaced by a time-varying linear sys-
tem (idea which is implicit in the early work on absolute stability originating in the

Soviet Union; see the works of Lur’e and Postnikov [79, 80] and Popov [106]) and

this approach is known as global linearization. Of course, approzimating the set of

trajectories of the nonlinear system wvia linear differential inclusions (LDIs) can be
very conservative, i.e., there are many trajectories of the LDI which are not trajec-
tories of the nonlinear system. However, once the nonlinear system is represented in
LDI form, sufficient conditions for satisfaction of assumption 3.8 can be stated (see
[17], where sufficient conditions for exponential stability and an induced Ly—norm
performance objective are given) by using a single quadratic Lyapunov function ap-
proach. The unique quadratic Lyapunov function decreases along the trajectories of
the LDIs and, therefore, of the nonlinear system, which means that exponential sta-
bility is guaranteed and we can always find an o € [0,1) such that the states of the

nonlinear system are contracted by this factor in only one time step.

Remark 3.4 In remark 3.2 we pointed out that due to the absence of model un-
certainty or disturbances it follows that Ty, = xi *(tF) and, therefore, due to the
contractive constraint, we have || Tpp ||p< o || 2 ||p. This means that if g € B,,

then x, € By, C B, (since a € [0,1)). Thus, with our condition for feasibility

p

given in assumption 3.3, if P(to, zo) is feasible (or equivalently, if vo € B,) then the

sequence of control problems P(tg, xx), Yk > 0, is feasible as well.
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Assumption 3.4 We assume that if zx, € B,, Yk > 0 (with p € (0,00) defined in
assumption 3.3), then there ezists a constant § € (0,00) so that the transient states
of the model used in the computation of the contractive constraint (which is equal to

the prediction model and the plant for Problem 1) remain inside the set Bg,

pe, | ZL@®) 1< B || 2k |p< Bp, Vi=0,...,P =1, k>0,

Y

Remark 3.5 Since u is constrained, assumption 3.4 is always satisfied except for
systems with finite escape time. So, nonlinear systems with finite escape time are

ruled out from our investigation.

Definition 3.1 Under assumption 3.3, the reachable set X is defined by:

X o= {z(t) € R" | z(¢t) = z(t, to, zo,u), t € [ty,0); Tg € B,, u €U} (3.9)

Remark 3.6 Under assumption 3.4 and since we are addressing the nominal case in

the absence of disturbances, the reachable set X is equal to Bg,.

3.2.5 Basic philosophy of the controller design

Figures 3.1 and 3.2 illustrate the behavior of the closed-loop system generated by
the contractive MPC controller when no model/plant mismatch is present and no

disturbances affect the system, as specified in Problem 1.

Thus, while the optimization problem remains at constant size P for different values
of 7 and for a constant &, the number of steps between the beginning of the prediction
and the location of the contractive constraint is equal to P —j and therefore decreases

as j increases as we can clearly see in figure 3.1.

The exponential decay of the state trajectory is illustrated in figure 3.3.
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Figure 3.1: P control problems for a fixed k. Predicted trajectories generated by
contractive MPC for a fixed k£ and j varying in the interval j =0,..., P — 1.
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Figure 3.2: Exponential decay of the state trajectory.
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of | zo lp k>2

Figure 3.3: State trajectory generated by the contractive MPC scheme.

3.3 Stability analysis of contractive MPC

Theorem 3.1 (Exponential stability) Given o € [0,1) and p, 8 € (0,00) satis-
fying assumptions 3.3, 3.4, Control Algorithm 1 (and, consequentely, 2) renders
the closed-loop system exponentially stable on the set B,, i.e., for any zo € B,, the

resulting trajectory x(t) := x(t, to, Zo, u) satisfies the following inequality:

1—a) ———-Q—(t;; )

| z(t) ||<al 2o e with a > e (3.10)

Proof: From assumption 3.8 we have that the optimal control problems P(ty, zy),
Vk > 0, are feasible for all initial conditions o € B,. So, this means that all the
input/state constraints in (3.5) are satisfied at each sampling time t],7 € [0, P — 1],

k > 0. In the absence of model/plant mismatch or disturbances it immediately follows



53
that:

|2k [|p< o® | 20 |5, VE>0 (3.11)

and, therefore, for allt € [ty, txr1 := tx + PT], zx(t) satisfies the following inequality:

l2k(t) lp< B || zo llp, VE 20, t > to (3.12)

Now, since e®V —a >0 <= o < e 7% Vo € [0,1) and Yk > 0, it results

that:

INA

|z llp | o || p e * (3.13)

lze(®) lp < Bl |lpe " (3.14)

Notice that the bounds (3.13) and (8.14) are independent of the performance criterion.
The performance criterion influences only the feasibility question but if the problem

s feasible, stability is determined exclusively by the contractive constraint.

Although (8.14) establishes an exponentially discretely decaying bound on the states
for all times t > ty, our proof of exponential stability for the continuous-time system

(3.1) is not yet concluded.

The condition for exponential stability for continuous-time systems is given by: the

equilibrium 0 is (locally) exponentially stable if there exist p,a,b > 0 such that

| z(t, to, To, u) ||< a || 2o || e PE%), Wt >ty > 0, Vao € B, (3.15)



54
We can see that this is not quite what we have in (8.14) since that is a discrete bound
which remains constant for the period of a sampling time. So, we must find an expo-
nentially continuously decaying function which bounds Be (1=®%  for qll

t € [t,tks1], and for all k > 0.

The discrete bounds on the states, (3.13) and (8.14), and the continuous upper bound

are graphically represented in figure 3.4.

/Be(l—a) .
—(1—a)k
5 . Be

SR N— Bel1=0) g=(1-a) 5k
Be'(l”a) 7————;..\
fe—201-a) ._\;\\

| | .

0 1 2 k

Figure 3.4: Discrete and continuous-time exponentially decaying upper bounds for the
state trajectory.

So, as shown in figure 3.4, we want to find the least conservative continuously ex-
ponentially decreasing bound which matches the discrete bound exactly at the end of

horizons.

Since k = B0 and Sl < BZlo Vi € [to, 1), we can easily see that:

Bem (= < =Gy g > gel-a (3.16)

Thus, using equations (8.14) and (3.16) we finally have:
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|l z@) < a| 2o || et (t;tT), with a > fer™ (3.17)

which is what we wanted to prove. This means that if xo € B,, then the sequence of
optimal control problems P(ty,zx), k > 0, is feasible and the origin is an exponen-

tially stable equilibrium point inside the reachable set X = Bg,.

]

Now that exponential stability has been proven, we will show that, under certain
assumptions on the control law originated by MPC, the objective function minimized

in (3.7) is a Lyapunov function for the closed-loop system.

Before we start showing the conditions under which this is true, let us point out that
the objective function being a Lyapunov function is not a necessary condition for
stability of the closed-loop under the contractive MPC controller, as it may be for
other moving horizon-based MPC schemes. The closed-loop is stabilized by the con-
tractive MPC controller because the quadratic function which defines the contractive
constraint is itself a Lyapunov function which decreases discretely, not continuously,

at intervals of prediction horizons.

We will see in the next theorem that, in order for the objective function to be a
Lyapunov function as well, stronger assumptions are needed on the computed control
law and on the dynamics of the nonlinear system to be controlled. Here we want
to establish which and how strong these assumptions are because they are necessary
in proving exponential stability of the MPC scheme which uses the equality end
constraint z(k + Plk) = 0 (see [114]). In other words, we want to emphasize that
we are able to prove exponential stability of the closed-loop system under much less
restrictive assumptions when the contractive constraint, rather than the end equality

constraint, is used.
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Theorem 3.2 (Objective function as a Lyapunov function) Consider the sys-

tem (8.1) and take into account the simpler implementation of MPC presented in

remark 8.2. Suppose that f is C? for some integer ¢ > 1, and that f(0,0) = 0.

Let ug(t) = {u(kP|kP)...,u(kP+M—1|kP)} =: n(zx) =: {no(zx),- .., m—1(zx)} be
the feedback law applied to the system for t € [ty, tita], Vk >0, and for all xy € B,.
Then, let us define F () := f(zg, n(zk)).

Let us assume that the sequence of control moves computed at ty is such that
ni(0) = 0, Vi € [0,M — 1], and {no,...,nm-1} s Lipschitz continuous inside B,,

which means that there exists L > 0 such thai:

Im(@) =m@) lp< Ll z—yllp Yo,y € B, and Vie[0,M —1] (3.18)

Finally, suppose that, for some finite constant A > 0,

4 dF ’ B
| ;Z%(xk,n(xk)) =] E(xk) |p< A, Var € B,,, with a> Be' (3.19)

Under these conditions, the quadratic objective function at time ty defined as:

V(tk, QS]C) = tk+PT[CEk(t),Q$k(t) -+ uk(t)lR*uk(t)] dt (320)

tr

(i.e., we considered equation (3.3) with S* = 0 for simplicity), is a Lyapunov function
for the closed-loop system. This means that there exist constants c¢,d,e,l > 0 such

that:

1ocllap B V(e ze) < d |z |3,

2. V(tg,zx) = %V;(tk,a:k) < —ellz II3,
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3.l & (tkaxk) lp< il zxllp, Yk >0,Vzi € B,

Proof: The proof is constructive, i.e., we will compute the constants c,d, e, > 0 such
that the statement of the theorem holds.

Because the control law is discontinuous, equation (3.20) is equivalent to

ty+PT . R*
V(te, z4) = /t (1) Qi1 dt+2 (kP+i|kP) Ru(kP+ilkP), with R :
k

(3.21)

This is the form of V (tg, xx) which we will use next to compute our lower and upper
bounds.

e Upper Bound on V(t,zx): Let us first derive an upper bound for V (ty,zy), 1

let us compute a possible value for d > 0. Due to the constraint

| zk(t) | < B || zk || p» Yt E [tk, thta], we have that

P
V(t, 7x) < %521@ |z [|% + Y w(kP +i|kP) Ru(kP +i|kP) (3.22)

i=0
Now, since || u(kP + t|kP) || p==|| mi(zx) |p< L || zx |5, Vi € [0, M — 1] (this
inequality follows directly from (8.18) and from the fact that n;(0) = 0), we have

our desired upper bound on V (ty, z):

P 21 11 _
Amin(P) Pinaz (@)F°T + Mnaz(R)L?] || 2y 13=2d || 2 %

V(ty, zx) < (3.23)

e Upper Bound on the Gradient of V (#;, zy)

V(tk,a:k): Taking the derivative
from (8.20) we have that
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V(te on) =l 2i(te+PT) G =l on 1 + Il un(ts+ PT) [ — || us [ (3:24)

In our discontinuous control law notation we have:

Vitezr) = | @k G = 26 I3 + | (kP + P = 1[kP) 3 —
— lu((k—=1)P+P—1](k - 1)P) ||% (3.25)
Due to the contractive constraint, it follows that:
y )‘min
Vitwne) < =3280 =) o + | u(kP+ P~ 1kP) e -
~ | w((k=1)P+ P —1|(k - 1)P) ||%. (3.26)

Now, if instead of imposing u(kP+i|kP) = u(kP+M —1|kP), Vi € [M,P—1],
we have u(kP + i|kP) =0, Vi € [M,P — 1], and M < P (i.e., M 1is strictly
smaller than P), then it immediately follows from (8.26) that:

Vitoz) < 32280 0 o -
— [lu((k =1)P+ P —1|(k = 1)P) ||3.<
< B0 o= elalp (620
e Upper Bound on %(tk,xk): From (8.20) it follows that
g—;/];(tkyxk) _ A:k+1[df! 33(?57;: i) o 395(75(:);1,%) 4
Lol U(t,;z, zr) % 3“(12::1: xk)]dt (3.28)

Thus,
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[AATAPRY I Amwﬁ /t:’“‘”[d ” ””C’;f) lo 220, 4

du

Then, it results that:

ov 2/\ma:c P % L1 3 N ~
1)l < 2220 [ 0 (QF 1 0l0) I Aman (PN +

Amin(P)E It
-+ )\maz(R)%L “ U(t, tkaxk) Hlf’]dt

2)\mam(P)% 1 Ay L (6)‘PT“ 1)
< —_—__——7\_1_)\7”&1' 2)‘ma:cP2 ————
< e S P @ A (P18
+ Amaa(R)PLY] || llp=: 1 | e[| (3.30)
This follows from the fact that:
1.
t
Zi(t) =z + t Fla(r, tg, zy)]dr (3.31)
which means that
Ori(t) t dF (z (7)) Oxg(T)
=1y / e (3.32)
Thus,
| Oxi(t 1 ox
1220 1 < AP+ [ u—~ Dl 1 ZED s ar <
< Amas(P)E 42 n ax’“( ) 5 dr (3.33)
Tk

Using the Bellman-Grownwall (BG) inequality, it follows that:



60

B:ck (t)

Sy 19 Amaa(P) 72070 (3.34)

|

and

2. Since u(t, tg, xx) = mi(xx), Vi € [tp+iT, tp+ (i +1)T), and Vi € [0, M —1],
and n; is Lipschitz continuous for all i € [0, M — 1], it results from (8.18)
that:

| teur) lp < L@k |lp (3.35)

au(t,tk,:ck)

2R s < .
| =™ s < L (3.36)

e Lower Bound on V (t;,zx): As a result of condition (3.19) we have:

N Y YN ECIIY
> [L=A80F =t ll e llp (3.37)

It then follows, for example, that:

loe@ o2 L2212 o ve it 51 (3.38)

Thus, we have two cases to consider:
1. tk+1§tk+2—§-ﬂ— = PT<353

In this case,

Dy e 1 at >
'y €T P
A Dmin(P) BAp T =

PT[Mnax(Q) + 4L2 M\ (R)]
- A\ i (P)

V(tka xk)

v

/tk+1 [Amax(Q) + 4L2/\maw(R)

[ (3.39)
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2. tip 2tk + 55 = PTz;i—ﬁ

In this case,

tet5ng [/\max (Q) + 4L Aoz (R)]

Vi) = [ = e |13 dt >
Az (Q) + 4L Xpor (R)] |z |12 (3.40)
8\ min (P)AB F ‘

Thus, it follows that:

)\maw (Q) + 4L2)\maz (R)] Amam(Q) + 4L2)\max(R)} X
A pin(P) ’ 8Amin (P)AS
x |l 3= cllze |3 (3.41)

PT
V(tk,.’lik) > mm{ [

So, we have shown that, under the assumptions in the statement of the theorem,
the quadratic performance criterion (3.3) subject to the constraints (8.5), with
u(kP +i|kP) =0 fori € [M,P — 1] and M < P, is a Lyapunov function for

the closed-loop system. o

3.4 Algorithm implementation

Next we will show simulation results for various examples adopting the proposed
MPC algorithm. This algorithm was implemented using a preliminary version of
the MPC package in MATLAB written as the result of a semester thesis developed
at the Institute of Automatic Control at the Swiss Federal Institute of Technology
(ETH). This package is a combination of the well-known codes DASSL ([104]) and
NPSOL ([53]) in MATLAB. DASSL is used for integration of the sets of algebraic and
ordinary differential equations which describe the nonlinear dynamics of the model

and the plant and NPSOL is used for solving the nonlinear optimization problem.
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This code has not yet been optimized and our experience with it shows that a large
amount of the time spent in the computations is devoted to calling functions in MAT-
LAB which describe the model dynamics, the Jacobian of these dynamics, nonlinear
constraints (such as the contractive constraint) and the Jacobian of these constraints.
Therefore, it is likely that if DASSL and NPSOL are compiled together outside MAT-
LAB, the computation time would be reduced significantly. So, the CPU time which
we provide later for simulations of some examples only gives a rough idea of the order
of magnitude of the time spent in the computations and should be interpreted with

caution.

3.5 Example: A Nonholonomic System (Car)

3.5.1 Car (or “kinematic wheel”) dynamics

The example considered here is a nonholonomic system which is the model of a car

with no trailers. This system can be represented by the following set of equations:

T = cost v (3.42)
gy = sinf v (3.43)
0 = w (3.44)

where (z,y) represents the Cartesian position of the center of mass of the car, 6 is the
inclination of the car with respect to the horizontal axis and v and w are its forward
and angular velocities, respectively. The coordinate system for the car is illustrated
in figure 3.5. Forward and angular motion of the car is achieved by changing the
relative angular velocities of the wheels. Each wheel is driven by a stepper motor and

any desired wheel angular velocity is achieved by commanding the motors to turn the
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appropriate number of steps per second.

The inputs determined by the control law are v and w and the outputs are the state
variables z,y and 8. The objective is to drive the system from any given initial

condition to the origin with a satisfactory level of performance.

wheels

Figure 3.5: Coordinate system for the car.

This system violates Brockett’s necessary condition for smooth or even continuous
stabilization [24] and that is what makes the control design problem for this system
(and nonholonomic systems, in general) a real challenge. Since MPC can automati-
cally generate a discontinuous control law, we expect this controller to be suited for
the class of nonholonomic systems. Moreover, this system is not controllable on the
manifold of its equilibrium points, which also represents a difficulty from the control
point of view. We will see later what difficulties are encountered by our contractive

MPC scheme due to this fact.

Here the results obtained by using the proposed contractive MPC (CNTMPC) al-
gorithm will be compared to the standard finite horizon nonlinear MPC (SNLMPC)
scheme, the smooth controller found in [120], the homogeneous controller proposed

by M’Closkey and Murray in [90], Pomet’s controller [105] and, especially, the dis-
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continuous controller proposed by Astolfi in [10, 11] (these last four techniques are

analytic control designs devoted especially to nonholonomic systems).

3.5.2 Simulation results

Comparison between CNTMPC and Astolfi’s discontinuous controller (un-

constrained case)

In the plots shown in this section, the angle 6 at all initial conditions is equal to
6o = 0 (i.e., the car is parallel to the x—axis) and the angle at the origin is equal
to 0y = % (i.e., the car is parallel to the y—axis). We have adopted this convention
because Astolfi’s controller is analytically constructed to handle the output regulation

problem with (z,u,0) = (0,0, %) (and not (z,u, 8) = (0,0, 0)) as its target coordinate.

CNTMPC

Figure 3.6 shows the resulting paths in the zy—plane of the controlled car using

CNTMPC in the anconstrained case.

The controller parameters used in these simulations are given by:

Controller Parameters (figure 3.6)
Q = diag([1 1 0])) | R=0 | S=0
P=5 M=3|a=09

In all simulations for the car example the sampling time is equal to 7' = 0.1.

Astolfi’s discontinuous controller

The same kind of plot in the zy—plane for the controlled car was presented in
[10] (page 36) and we reproduce it in figure 3.7 with the same control gains, for

purpose of comparison.
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¥
i

0.5 7

Figure 3.6: Resulting paths in the zy—plane using CNTMPC when the car is initially
on the unit circle and parallel to the z—axis.

Comparison of results in figures 3.6 and 3.7

We should emphasize that the time taken by Astolfi’s analytic discontinuous
controller to compute these trajectories is less than a second, while CNTMPC
took between 9 and 12 minutes on average (using the non-optimized MPC

package which we discussed in section 3.4).

Moreover, because of the lack of controllability of this system at the origin,
the contractive MPC algorithm is only able to drive the system to a very close

neighborhood of the origin and then it stops (this effect cannot be really noticed
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0.5

Figure 3.7: Resulting paths in the zy—plane using the analytic discontinuous con-
troller when the car is initially on the unit circle and parallel to the z—axis.

in figure 3.6 due to scales). What happens is that, once the car is driven very
near to the origin, the control action generated in the optimization step is very
large - due to the lack of controllability - and the integration of the model

equations with such control value cannot be carried out by the integrator.

We can see from figures 3.6 and 3.7 that for both controllers the car performs its
maneuver towards the origin of the coordinate system in a very natural way and
without ever inverting its motion. Hence, the floor trajectories do not contain
any cusps. This response can be anticipated for the analytic discontinuous

controller because the control signal v is constructed to always have a constant
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sign. In the case of CNTMPC, the controller just automatically generates such

a response.

We also observe that CNTMPC generates trajectories which approach the origin
in an almost straight path. It is clear that the analytic discontinuous controller
cannot match this performance. This is not surprising since the construction
of the analytic controller does not take into account performance but only sta-
bilization. CNTMPC, on the other hand, minimizes a performance criterion at

every time step and the contractive constraint takes care of the stability issue.

Comparison between CNTMPC and SNLMPC (unconstrained and con-

strained cases)

Now that we have shown that CNTMPC performs satisfactorily in the unconstrained
case, we will compare the performance and stability properties of a standard nonlinear
MPC (SNLMPC) algorithm with CNTMPC in order to examine more closely the
influence of the contractive and input constraints on the closed-loop response. The
chosen initial condition is one used by M’Closkey in his experiments with the car at

the Department of Mechanical Engineering at Caltech in 1993:

Initial Condition

xo = —0.5945 | yo = 0.3299 | 6, = 0.8262

Unconstrained case

The unconstrained responses for SNLMPC and CNTMPC can be found in figure
3.8.

The controller parameters used in these simulations are given by:
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Figure 3.8: Car: State and control responses for SNLMPC and CNTMPC in the
unconstrained case.

Controller Parameters (figure 3.8)
Q = diag([1 1 0])) |R=0 | S=0

Naturally, the contractive parameter « is used only by the CNTMPC controller.

We notice that since the angle 8 and the second input variable w are not
weighted in the objective function, and since the system has two inputs and
three outputs, the SNLMPC controller cannot stabilize § which grows indefi-
nitely. The other two states, x, y, reach the origin quickly but then they oscillate

about it.

The CNTMPC controller is able to stabilize § (even though the system has

more states than inputs) due to the introduction of the contractive constraint.
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Besides, the settling time of the other variables is not increased (they reach the
origin after only one sampling time without further oscillations). Therefore,
we see that SNLMPC cannot stabilize § with the given controller parameter
choices but the contractive constraint makes it possible, without degrading the

performance of the response for the other state variables.

Constrained case

Case 1

The constrained responses for SNLMPC and CNTMPC can be found in

figure 3.9.
or - 0.4 /
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Figure 3.9: Car: State and control responses for SNLMPC and CNTMPC in the
constrained Case 1.
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The controller parameters in Case 1 are the following:

Controller Parameters (figure 3.9)
Q = diag([1 1 0.1]) | R=0.11, S=0
P=38 M=5 a=0.9
Umin = [—0.2  — 1.0] | Umee = [0.2 1.0}

The control bounds vy, and ., represent physical bounds on v and w
which were encountered by M’Closkey in his experiments with the car at

Caltech in 1993.

We can see from figure 3.9 that the Cartesian position y cannot be stabi-
lized by SNLMPC with the given controller parameter choices. It will not
reach the origin, even when given more time, because since v is already
settling to 0, ¢ is approaching 0 as well (as we can see from the model
equation (3.44)).

CNTMPC stabilizes the system but y shows a small offset due to the lack
of controllability of the car near the origin. This is a difficulty which causes

the code to stop before the origin is reached.

Case 2

From the results in Case 1, we would expect to stabilize the y—response
by adding more weight to this state in the objective function. Indeed, the

response improves if the controller parameters are selected as in:

Controller Parameters (figure 3.10)
Q = diag([1 5 0.1]) | R=10.01 I, S=0
P=28 M=5 a=209
Umin = [=0.2  — 1.0] | Upaz = [0.2 1.0]

The response with this new set of parameters can be found in figure 3.10.

Here the responses obtained with SNLMPC and CNTMPC have approx-

imately the same characteristics with the exception that the y—response



71

NLMPC (solid)

-0.6
0.8 CNTMPC (dashed)
0 2 4 ) 0 2 4 6
Time (t) t
0.2
il ot
=
-0.2
0.4
0.2}

Figure 3.10: Car: State and control responses for SNLMPC and CNTMPC in con-
strained Case 2.

obtained with CNTMPC has a smaller offset than with SNLMPC. Because
the system loses controllability at the origin and it has three states and two

inputs, a certain amount of offset remains in generally only one variable.

Comparison between CNTMPC and some classic controllers (constrained

case)

Here we want to compare the closed-loop response obtained by use of our CNTMPC
controller in the presence of input constraints with some classic analytic control design
techniques for nonholonomic systems. These techniques do not take into account
process constraints but, since the response for the given initial condition remains

between the bounds we used in our simulations with the CNTMPC controller, the
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comparison is fair.

The simulation results are shown in figures 3.11 (state response), 3.12 (control re-

sponse) and 3.13 (plots in the zy—plane).

The controller parameters used in the simulations with CNTMPC are:

Controller Parameters (figures 3.11, 3.12 and 3.13)
Q = diag([1 8 0.1]) | R=0.01 I, S=0

P =20 M=6 a=20.9

Umin = [—0.2 = 1.0] | Upaz = [0.2 1.0]
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Figure 3.11: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (state response).

From figures 3.11, 3.12 and 3.13, we can see that the smooth control law is not able to

stabilize the car since it violates Brockett’s necessary condition for stabilization of this
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Figure 3.12: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (control response).

class of systems. The angle 6 oscillates indefinitely and so does the z coordinate (with
oscillations of smaller magnitude). Pomet’s controller suffers from similar drawbacks
and while the angle # and the = coordinate oscillate indefinitely, the y position has
a very long settling time. The homogeneous controller performs better than the two
previous controllers but once again the states oscillate indefinitely (even though with
oscillations of much smaller magnitude than for the other two techniques). Astolfi’s
analytically constructed discontinuous controller is undoubtedly the best amongst
these four analytic control design techniques and it can actually stabilize the system
to the origin without oscillations. However, the comparison with the CNTMPC con-
troller shows that the response time is five times longer within approximately the
same control bounds. Therefore, we can conclude that the CNTMPC controller (and

the SNLMPC as well, for certain parameter choices) performs significantly better
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Figure 3.13: Car: Comparison of CNTMPC with other classic controllers for non-
holonomic systems (plots in the zy—plane).

than the classic analytic techniques showing, as we expected, that MPC is a success-
ful control technique for the class of nonholonomic systems. The introduction of the
contractive constraint only adds more reliability to it, guaranteeing stability as long

as feasibility can be assured.

3.6 Example: Fluid Catalytic Cracking Unit

3.6.1 Description of the system

Fluid catalytic cracking units (FCCUs) are commonly used to convert heavy petroleum

feed-stocks into lighter hydrocarbon products, a key step in actual petroleum refining,.
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Significant practical incentives exist for the real-time optimization and improved con-
trol of these units, because of the large volume of raw material processed, together

with their widespread use (see [12]). A schematic representation of the process is

presented in figure 3.14.

Gas products

Reactor

Regenerator

Figure 3.14: Schematic diagram of the FCCU.

This unit is composed of two vessels, a reactor where reaction and separation of
products occur and a regenerator, where the catalyst is regenerated by burning the
carbon deposits formed on its surface. After being vaporized, the feed is put in
contact with hot catalyst in the riser and converted into gasoline, distillates and

light olefins. All of these products exit the reactor in the gas phase. During this
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process, carbonaceous deposits also form on the surface of the catalyst particles.
These deposits considerably decrease the catalyst activity, introducing the need for
its regeneration in the adjoint vessel (also a fluidized bed) where the deposits are
burnt before the catalyst is recirculated back to the reactor. Because of the fast
kinetics involved, a high recirculation rate for the catalyst is required, causing the
mean catalyst residence time in the reactor to be typically on the order of seconds (as
reported in [12]). This introduces a significant interaction between the dynamics of
the two vessels. The temperature distribution and flow regime in the riser also have
a major impact on the product distributions obtained at the exit of the reactor. Due
to the nature of these interactions and their considerable nonlinear behavior, FCCUs
have been considered amongst the most complex and challenging processes in modern
refineries [57]. These characteristics make this process well-suited for testing more
advanced control structures such as MPC. The controllability of FCC units has been

studied in [59].

The interest in the more efficient control of these units is reflected by the large number
of different controller design approaches proposed for these processes. A few of the

main references in the area are [8, 25, 57, 55, 60, 103, 112].

3.6.2 FCCU dynamics

Here we will use the same semi-empirical model of FCCUs presented in [36] which is
a modification of the original model of Lee and Kugelman [75]. It consists of balance
equations for the mass of coke (carbonaceous material) and energy, both in the re-
actor and in the regenerator vessels. The main assumptions are a constant hold up
in both vessels (maintained by the use of equal spent and regenerated catalyst flow
rates), perfect mixing, physical properties independent of the temperature and negli-
gible heat loss to the surroundings. The state variables are Cj. (coke content in the
spent catalyst), Tr, (reactor bed temperature), C,, (coke content in the regenerated

catalyst) and T, (regenerator bed temperature). The model also considers five main
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input variables which are F;, (air flow rate), T, (air temperature), F; (feed rate), T

(feed temperature) and F, (catalyst recirculation rate). The equations which describe

the model are ([36, 75]):

Reactor coke balance:

d(Hr:cCsc)

L — FulCry = Cud) + Fey(T) (3.45)

Reactor energy balance:

d(HraszcTra:)

— = F,Cpo(Tyg—Tra)+ FiCop (Tr—Tro) — Fi(Mo+€(Tys) AH,,) (3.46)

Regenerator coke balance:

d(HyrgChry)

T = Fe(Cse — Crg) — Rep(Tg, Cry) (3.47)

Regenerator energy balance:

d(H,,CyTrg)

dt - FcCpc(Trac - Trg) + Fang(Ta - Trg) + Rcb(Trg: Crg)ch (348)

where:

Rate of carbon formation:

Ro(T)) = a. e 7 £°F, (3.49)
Rate of cracking:
Al —e™) ‘
T,) = .

«(Tr) A+ Al —e?) (3:50)

Rate of coke burning:

F,M.

Re = (0.21 — Co,) (3.51)

&CoMg
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78

E
(~ k)
be d CTQMQO‘COHTQ)

Co, = 021 6(_% T 3TF, Ma
A = Clew%;
A - tCCQE_ﬁ%%
t — H’I‘(l)
[+ — Fc
T, = 0.6T, +0.4T
Tin = CvchcTrg + CpthTf — Fi )

the model parameters are given by:

Cchc + Opth

Parameter and steady state input values for the FCC

aep = 1.404 x 10 A1
Cy = 6990

Che = 0.28 Btu/ 1b.°F
C,y = 0.2405 Btu/ 1b.°F
E.. = 2450 cal/gmol
H.,=4.0x10°1b

M, =13 1b/lbmol

n = —0.07

Q3 = —1.7 x 10 cal/lbmol
R =1.986 cal/gmol.’C
T) = 440° F

AH,, =120 Btu/lb

ace = 0.0195 1b coke/ 1b cat. A7t
Co=111.1

Cp = 0.75 Btu/ Ib.’F
E. = 3.76 x 10* cal/gmol
F, = 8.97 x 10° Ib/h

H,, =1.0x10°1b

M, = 29.2 1b/Ibmol

@1 = 1.0 x 10° cal/gmol
Qe = 1.37 x 10* Btu/Ib
T, =90°F

aco =1

Ao = 95 Btu/Ib

The nomenclature for this FCC model can be found in [75]. The numerical values for
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3.6.3 Computation of steady states

Let us now examine the steady state characteristics of the given FCC model, in
particular, the possibility of existence of multiple steady states. Such occurrences are
common in nonlinear processes where exothermic reactions take place, and have in

fact been identified in similar models of FCC units [7, 8, 42].

The steady states can be computed more easily by first eliminating some of the
unknowns in the model equations. For example, from the reactor and regenerator

coke balances we obtain:

Rcb(Trg, Crg)

Cse = Cpy + 3 (3.58)
Rcb (Trg> Crg) - Rcf (Trm) (359)
From the regenerator energy balance it results that:
a a Tr Ci rgy T
Trz — Trg . F. CPQ(T g) + R b(Tg C Q)ch (360)

FCCPC

And, finally, by substituting equation (3.60) into the regenerator energy balance, at

steady state, we obtain:

EC
RO T) + Fulli Ol (14 o
cpe

- E(AO+E(Trx)AHcr) = 0 (361)

)+ FCoy(Ty = Try) -

Further elimination of variables becomes difficult due to the complexity of expression

(3.61).
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By varying F, and F, in a range of £5% around their nominal values while keeping the
other potential inputs, F;, Ty, Fr, at their nominal values, one “hot” open-loop (OL)
stable and one OL unstable stationary point can be calculated and their coordinates

are given by:

Steady state values for the FCC
Variables unstable (1) | stable (2)
F, (Ib/h) 6.8 x 10° 7.2 x 108
F. (Ib/h) 8.95x 10° | 9.48 x 10
Cs. (Ib coke/ Ib cat) | 7.985 x 10=3 | 7.173 x 103
T (°F) 957.62 1149.88
Cry (Ib coke/ b cat) | 2.347 x 1073 | 3.571 x 1074
T,, (°F) 1163.46 1398.04

Previous studies (e.g., [42, 75]) have reported the possibility of existence of unstable
steady states for similar FCC units where it was noted that the system tended to
drift either to a state of complete combustion or to extinction. This fact together
with the significant nonlinear nature of the process makes the application of linear
controller design techniques for this system a significant challenge. Therefore, this

kind of system is a natural candidate for application of nonlinear MPC techniques.

Standard nonlinear MPC techniques have been applied previously to this process and
have been shown to perform rather well in the stable region of the state space for
specific controller parameter choices (see [36]). In the unstable region difficulties were
encountered due to the ill-conditioning of the nonlinear state space equations which

describe the model for this system.

As pointed out by Arbel et al. in [9], operation in the unstable region is not considered
important in most applications since this is a region where the temperatures in the
reactor and regenerator are lower than they are in one of the “hot” stable regimes

(the unstable equilibrium point