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Abstract 

This thesis addresses the development of stabilizing model predictive control algo

rithms for nonlinear systems subject to input and state constraints and in the presence 

of parametric and/ or structural uncertainty, disturbances and measurement noise. 

Our basic model predictive control (MPC) scheme consists of a finite horizon 

MPC technique with the introduction of an additional state constraint which we 

have denoted contractive constraint. This is a Lyapunov-based approach in which a 

Lyapunov function chosen a priori is decreased, not continuously, but discretely; it 

is allowed to increase at other times (between prediction horizons). We will show 

in this work that the implementation of this additional constraint into the on-line 

optimization makes it possible to prove rather strong stability properties of the closed

loop system. In the nominal case and in the absence of disturbances, it is possible to 

show that the presence of the contractive constraint renders the closed-loop system 

exponentially stable. We will also examine how the stability properties weaken as 

structural and/or parametric model/plant mismatch, disturbances and measurement 

noise are considered. 

Another important aspect considered in this work is the computational efficiency 

and implementability of the algorithms proposed. The MPC schemes previously pro

posed in the literature which are able to guarantee stability of the closed-loop system 

involve the solution of a nonlinear programming problem at each time step in order 

to find the optimal (or, at least, feasible) control sequence. Nonlinear programming 

is the general case in which both the objective and constraint functions may be non

linear, and is the most difficult of the smooth optimization problems. 

Due to the difficulties inherent to solving nonlinear programming problems and 

since MPC requires the optimal (or feasible) solution to be computed on-line, it is 

important that an alternative implementation be found which guarantees that the 

problem can be solved in a finite number of steps. It is well-known that both linear 
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and quadratic programming (QP) problems satisfy this requirement. 

If a standard quadratic objective function is used and the input/state constraints 

are linear in the decision variables, then the contractive constraint (which is originally 

a quadratic constraint) can be implemented in such a way that the optimization 

problem to be solved in the prediction step of the MPC algorithm is reduced to a 

QP. Having linear input/state constraints means that a linear approximation of the 

original nonlinear system has to be used in the prediction as well as in the computation 

of the contractive constraint. Thus, in order to make the algorithm more easily 

implementable we introduce the difficulty of having to handle the mismatch between 

the real nonlinear system and its linear approximation which is used for prediction. 

In other words, we now have a robust MPC control problem at hand. In this case, it is 

the contractive constraint which comes to the rescue and allows the MPC controller 

to stabilize the closed-loop system in spite of the linear/nonlinear mismatch, for 

certain choices of the contractive parameter (the parameter which defines how much 

"shrinkage" of the states is required during one prediction horizon). 

In summary, this thesis is an application of contractive principles to model predic

tive control and it is dedicated to robust stability analysis, design and implementation 

of state and output feedback "contractive" MPC schemes. 
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Chapter 1 Introduction 

The vast majority of industrial processes is typically operated using linear controllers, 

although it is well known that many of these processes are highly nonlinear. The 

major difficulty in the design of feedback control laws for nonlinear systems arises 

from the necessity to explore the whole state space. The problem of the design 

of feedback controls for nonlinear systems has found a general solution only in the 

case of systems which are feedback equivalent to linear systems. The fact that most 

nonlinear systems are not feedback equivalent to linear ones has motivated the study 

of alternative control techniques which do not require construction of diffeomorphic 

state-feedback transformations. One of these techniques is model predictive control 

(MPC) - an optimal control based method for the construction of stabilizing feedback 

control laws. 

A key feature contributing to the success of model predictive control is that var

ious process constraints can be incorporated directly into the on-line optimization 

performed at each time step. In other words, model predictive control has the poten

tial, not easily possessed by other methods, to globally stabilize linear and nonlinear 

systems subject to control and/ or state constraints. This is undoubtedly a very im

portant feature since many practical control problems are dominated by constraints. 

In [89], Mayne and Polak state: 

"It can be argued that the most urgent, unresolved control problem is 

an effective, practical method for the design of feedback controllers for 

constrained dynamic systems, linear or nonlinear." 

Other important features of MPC are its ability to handle multi-input multi-output 
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(MIMO) systems with very little changes in the formulation compared to the single

input single-output (SISO) case, and its variable structure in the event of faults. 

Besides being subject to input/state constraints, most real systems are represented by 

process models which are not accurate. Furthermore, they are invariably subject to 

disturbances of various kinds. Due to these practical problems, it is important for the 

controllers designed to be robust (i.e., take into account the model/plant mismatch 

which may exist and guarantee satisfactory stability and performance properties of 

the closed-loop system) and present good disturbance rejection properties. 

Regarding robustness, a very extensive theory [102] has been developed for the robust 

control of linear systems without constraints. This theory has been proven successful 

when applied to a number of academic case studies such as, e.g., high purity distilla

tion columns (see [116)), with process constraints not taken into consideration. The 

neglect of constraints has made this robust control theory unsuitable for industrial 

applications. When constraints are considered, even if the plant is linear, the overall 

control problem becomes nonlinear and this is the reason why constrained problems 

are so much harder to deal with than unconstrained ones. 

In spite of MPC's considerable practical importance and extensive use, there is in 

fact very little theory to guide the design and tuning of these controllers for stability, 

performance and robustness, especially in the nonlinear case. Moreover, the exist

ing stability and robustness analysis of MPC applied to nonlinear systems is rather 

complicated and non-intuitive and the resulting controllers hardly implementable. 

It is the goal of this thesis to develop a general theory for designing controllers for 

nonlinear continuous-time systems subject to constraints with robust stability and ro

bust performance guarantees. Several different problems will be considered, such as 

output feedback, parametric model/plant mismatch, disturbance rejection, structural 

model/plant mismatch, etc. One of the main concerns throughout this work is to de

velop nonlinear MPC (NLMPC) controllers which involve a reasonable computational 

effort and can be easily implemented. 
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1.1 Motivation 

Most practical control problems are dominated by process constraints and nonlin

earities. The most common process constraints are constraints on the manipulated 

and/ or state variables. Regarding the nonlinear character of most real systems, non

linearities can be quantified as "weak" or "strong" (see [5, 6]) and it may be that 

while a linear controller design is satisfactory for a "weakly nonlinear" system it will 

most probably be inappropriate for a system with stronger nonlinearities. 

With respect to process constraints, constraints on the manipulated variables are 

present in the vast majority of processes and they result from physical limitations of 

the actuators which cannot be exceeded under any circumstances. Safe operation of 

a plant very often requires limitations on states as well, such as velocity, accelera

tion, temperature and pressure. State constraints are also a natural way to express 

control performance objectives in many applications. Although most control con

straints should be respected throughout the operation (hard constraints), it may be 

unavoidable to exceed the state constraints for some time, especially if the system is 

subjected to disturbances not accounted for in advance. Therefore, the constraints 

imposed on states and output variables are most often soft constraints. 

Regarding system nonlinearities and model error (be it parametric and/or structural), 

most model predictive control designs do not take these factors into account. The 

presence of unmodeled nonlinearities and unknown parameter values can make the 

tuning of MPC controllers for certain stability and performance requirements quite 

cumbersome, if not impossible. In fact, if uncertainty in the structure of the nonlinear

ities and/or in the parameter values is not properly accounted for, the performance 

on the real system can be arbitrarily poor (the result could even be an unstable 

closed-loop system). Therefore, since exact modeling of a plant is not feasible in 

most practical cases, the controller must be designed to show very little sensitivity to 

model uncertainty. 
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A rich theory has been developed to address the robustness issue in unconstrained 

linear systems (as will be discussed in the next section). For constrained and uncertain 

linear systems the scope of results is not so vast. And, as one would expect, for 

constrained and uncertain nonlinear systems results are few and incomplete. One 

can surely say that the theory on constrained control of nonlinear systems (be it the 

nominal or robust case) is still in its infancy. It is the goal of this thesis to add a 

contribution to this area. 

1.2 Previous work 

1.2.1 A general look 

Open-loop optimal feedback, dating back to a 1963 seminal paper by Propoi, [108], 

is a general approach for the construction of stabilizing feedback laws for systems 

subject to input constraints and other nonlinearities. Originally, it was based on 

the idea that in a sampled-data system, the control to be applied between sampling 

times can be determined by solving a fixed horizon open-loop optimal control problem 

with or without constraints. Over the years, open-loop optimal feedback has been 

explored under the names of model predictive control (to mention a few references, 

see [48, 49, 50, 51, 73, 94, 107]) and moving horizon control (see, e.g., [62, 68, 69, 71, 

81) 82, 83, 84, 85, 95]). 

The literature dealing with linear MPC presents an enormous amount of results on 

issues such as stability, reference trajectory tracking and constant disturbance rejec

tion capabilities of the resulting feedback systems, under the assumption that control 

and state variables are unconstrained (see, e.g., [33]). Nominal stability results for 

constrained linear systems can be found in [31, 101, 91, 109], for robust analysis see 

[66, 122, 127]. 

As far as moving horizon control is concerned, it has not always been realized that 
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a naive application of the strategy can lead to instability. The early literature dealt 

with the stabilizing properties of moving horizon control laws based on open-loop 

optimal control for finite horizon optimal control problems with quadratic criteria and 

no input constraints. More recently, [66, 69, 71, 128] dealt with linear time-varying 

(LTV) systems, [1, 2, 3, 62, 92, 91] dealt with nonlinear discrete-time systems and [28, 

81, 82, 83, 84, 85] have established the stability properties of nonlinear, continuous

time systems with moving horizon control in the presence of constraints. In [95] 

Mayne and Michalska examined the robust stability of a moving horizon control, 

although the analysis is somewhat involved and the resulting hybrid control law (a 

nonlinear MPC controller is used to drive the states to a small neighborhood of the 

origin and the control law switches over from MPC to a linear controller which is 

then used to drive the states asymptotically to the origin) is hard to implement even 

for simple examples. [83, 85] took into account the non-trivial time needed for the 

computation of the open-loop control law even in the nominal case. [125] analyzed 

the robust stability problem by discretizing the problem into multiple linear feedback 

control systems. 

Dealing with the nonlinear control and estimation problems simultaneously we can 

find [87], although the stability analysis presented in that work is quite complicated 

and incomplete. 

An adaptive receding horizon control scheme for constrained nonlinear systems can be 

found in [88] although we can clearly say that adaptive control theory for constrained 

systems (linear or nonlinear) is still in its infancy and this is only a very preliminary 

work in the area. 
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1.2.2 MPC and its different implementations 

The basic formulation of an MPC problem for a nonlinear plant of the form 

is the following: 

subject to: 

j;P(t) 

y(t) 

fP(xP(t), u(t), t), xP(to) =: Xb 

gP(xP(t), u(t), t) 

min <I>[x(t), u(t)] 
u(t) 

(1.1) 

(1.2) 

(1.3) 

x(t) = f (x(t), u(t), t), with x(t0) = x0 and t E [t0 , t0 +PT] (1.4) 

where: 

K,(x(t), u(t), t) = 0 (1.5) 

h(x(t), u(t), t) ;::: 0 (1.6) 

<I> := performance criterion (a positive definite function) 

J, JP := model and plant dynamics, respectively 

gP := output model 

K,, h := equality and inequality time-varying mixed input/state nonlinear 

constraints (in the most general case), respectively 

xP(t) := state vector of the plant 

y(t) := output vector 

x(t) := state vector of the model 
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u(t) := control vector 

P := prediction horizon; an integer number which can be finite or infinite 

xg, x0 := initial condition of the plant and model states, respectively 

t 0 := initial time of computation 

T := sampling time 

PT := prediction time 

Throughout this thesis the symbol ":=" means that the left-hand side is defined to 

be equal to the right-hand side; the reverse holds for "=:". 

The control sequence u(t) is computed for t E [t0 , t0 +PT] but only u(t) restricted 

to t E [t0 , ti := t 0 + T] is actually applied to the real plant (1.1). At time ti a 

measurement y(ti) is obtained, the states of the plant are estimated (in the case 

where not all states can be directly measured at sampling times) and with this new 

initial condition Xi := x(ti) (where x(t) represents the estimated States of the plant at 

time t) a new optimization problem is solved at time ti. This is known as a receding 

horizon implementation of the control law. 

The plant (1.1) is linear if its dynamics is given by: 

j;P ( t) 

y(t) 

jP(xP(t), u(t), t) := AP(t)xP(t) + BP(t)u(t) 

CP(t)xP(t) + DP(t)u(t) 

(1.7) 

(1.8) 

If all the matrices AP(t), BP(t), CP(t) and DP(t) are constant, the linear system (1.7), 

(1.8) is said to be time-invariant (LTI system); if one or more of them vary in time, 

we have a linear time-variant (LTV) system. 

Let the linear model used in the prediction be given by: 
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x(t) = j (x(t), u(t), t) := A(t)x(t) + B(t)u(t) (1.9) 

If j(x(t), u(t), t) ( {A(t), B(t)}) differ from fP(xP(t), u(t), t) ( {AP(t), BP(t)}) for some 

t E [t0 , oo) we have a nonlinear (linear) robust control problem at hands. 

In general, the performance criterion <I> is given by: 

<J>[x(t), u(t)] := {tp:=to+PT <,b[t, x(t), u(t)]dt + cp[to, x(to), tp, x(tp )] (1.10) 
lt0 

where the functions ¢ : R x Rn x Rm --+ R and cp : R x Rn x R x Rn --+ R are positive 

(semi-)definite functions of their arguments. 

Most commonly, ¢is a time-invariant quadratic function of its arguments, i.e., 

<,b[t, x(t), u(t)] = x(t)' Qx(t) + u(t)' Ru(t) 

with Q, R positive definite matrices, and cp = 0. 

Within the context of the preceding formulation, MPC algorithms can be divided 

into the following main categories: 

(1) Finite prediction horizon [PE (0, oo)] for: 

• Linear plants [27, 35, 49]; 

• Nonlinear plants [19, 20, 39, 48]; 

(2) Infinite prediction horizon [P--+ oo] for: 

• Linear plants [66, 109, 127]; 

• Nonlinear plants [1, 3, 92]; 
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(3) Finite prediction horizon with end constraints1 (also known as stability con

straints) for: 

• Linear plants [13, 23, 32, 52, 69, 101, 122, 123, 127]; 

• Nonlinear plants [1, 2, 28, 62, 63, 81, 82, 83, 84, 85, 91, 95, 96, 124]. 

In the first category a simple finite horizon objective function is employed which 

does not, per se, guarantee stability. This means that closed-loop stability cannot be 

assumed simply because the on-line optimization finds a solution. The issue of closed

loop stability is complicated by two facts: first, there is always uncertainty associated 

with the model used in the prediction; second, the presence of constraints in the 

optimization problem results in a nonlinear closed-loop system even if the model and 

plant dynamics are linear. In [22] the authors underlined the poor stability properties 

of finite prediction horizon schemes. 

In the second category, [92, 109] propose a control algorithm which minimizes an 

infinite horizon objective function subject to the constraint that the unstable modes 

of the plant are set to zero at some finite time. This kind of control algorithm has 

desirable stability properties in the nominal case but it cannot be extended in a 

straightforward manner to plants with uncertainty. In [66], the authors propose a 

technique which deals explicitly with model/plant uncertainty in LTV plants. The 

goal in this technique is to design, at each time step, a state feedback control law 

which minimizes a "worst-case" infinite horizon objective function, subject to con

straints on the control inputs and plant outputs. The problem of minimizing an upper 

bound on the "worst-case" objective function subject to constraints is reduced to a 

convex optimization involving linear matrix inequalities (LMis). It is shown that the 

feasible receding horizon state feedback control design robustly stabilizes the set of 

uncertain plants. In [1, 3], discrete-time nonlinear systems are considered and global 

stability of the infinite prediction horizon scheme is shown under certain stabilizability 

assumptions. 

1 By end constraint we mean any state constraint imposed at the end of the prediction horizon. 
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It should be pointed out that one of the great restrictions of infinite prediction horizon 

schemes (even with finite control horizons) is naturally computational. 

The third category is the one with most of the desirable stability and robustness 

characteristics. In the nonlinear context, MPC for discrete-time systems with mixed 

state/control constraints is discussed in an important paper by Keerthi and Gilbert 

[62]. The control action is determined by minimizing, at each kth time step, a non

linear cost function over the horizon [k, k +Pk] (here the horizon P is not constant, 

instead it is included as a decision variable in the optimization together with the con

trol and represented by Pk) subject to the mixed state/control constraints and the 

terminal equality constraint x( k + Pk I k) = 0 and setting the current control equal to 

the first element of the minimizing sequence. Keerthi and Gilbert show that this con

trol is, under certain conditions, stabilizing. The finite horizon approach for nonlinear 

discrete-time systems proposed in [1, 2] is very similar to this found in [62], the only 

apparent difference being that certain observability assumptions on the system can 

be relaxed because the performance criterion is defined in terms of states and inputs 

(instead of outputs and inputs as in [62]). In [91] the same end equality constraint is 

used to show stability using Lyapunov arguments. The authors show in that paper 

that systems which are feedback linearizable can be asymptotically stabilized with 

MPC. They also find discrete-time systems which cannot be stabilized with contin

uous feedback and they show that MPC generates a discontinuous feedback which 

stabilizes such systems. 

Model predictive control for nonlinear time-invariant continuous-time systems is in

troduced in [28] but Mayne and Michalska [81, 82, 83, 84, 85] appear to provide the 

first rigorous analysis. Here the value function for the (open-loop) finite horizon con

trol problem, which is continuously solved, is employed as a Lyapunov function for 

the closed-loop system. In order to apply standard Lyapunov theory, fairly strong as

sumptions (including controllability of both the nonlinear system and its linearization 

about every trajectory) are made to establish continuous differentiability of the value 

function. The latter property is relaxed in [85] where only Lipschitz continuity of the 
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value function is required, allowing for less strict assumptions on the behavior of the 

linearized system. In each case, the finite horizon control requires exact solution, at 

each time instant k, of a finite horizon nonlinear control problem with the terminal 

equality constraint x(k + Pklk) = 0. 

In [82] a relaxed version of the stability constraint for continuous-time nonlinear 

systems is presented, i.e., instead of x(k+Pklk) = 0, the authors use x(k+Pklk) E W 

(where W is some neighborhood of the origin). Since the terminal constraint has been 

relaxed, the MPC strategy loses its stabilizing properties inside W. To compensate 

for this effect, a linear, locally stabilizing controller designed for the linearized system 

is used inside W. The resulting "hybrid" controller is shown to be globally stabilizing. 

One common factor in the stability proofs of all MPC schemes mentioned here is 

that the questions related to feasibility are eluded through the assumption that the 

constrained control problem always remains solvable. In [113], it is argued that the 

issue of feasibility is in fact central to the question of stability and that, therefore, 

the feasibility assumption is inappropriate. In that work, a technique for systematic 

handling of infeasibilities is proposed which is such that its use allows stability guar

antees obtained under the assumptions of feasibility to be carried over to the usual 

case when feasibility cannot be guaranteed (details of this technique are not found 

in [113] but the authors claim that they will be published in the Ph.D. thesis of P. 

Scokaert). 

A rather comprehensive review of all these methods can be found in [70]. 
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1.3 Thesis overview 

1.3.1 General contents 

In chapter 2, we give a brief tutorial review of the state space formulation of MPC 

for both linear and nonlinear systems. There we concentrate on the stability results 

found in the literature for the three main classes of linear/nonlinear constrained MPC 

controllers: 

(1) Finite prediction horizon MPC. 

(2) Infinite prediction horizon MPC. 

(3) Finite prediction horizon MPC with (stabilizing) end constraints. 

We see that for class (1) there are no stability guarantees. For class (2) the controller 

is stabilizing if the optimization is feasible. And, finally, for class (3), even though 

the prediction horizon is finite, the end constraints add stability (and sometimes 

robustness) to the controller. 

In chapter 3, we introduce our so-called Contractive MPG scheme. Contractive MPC 

is a finite horizon nonlinear MPC algorithm which is stabilized through the addition 

of an end constraint called contractive constraint. In that chapter, we introduce the 

formulation, implementation and basic philosophy of the contractive MPC scheme and 

discuss its stability properties in the nominal case and in the absence of disturbances. 

The results show that the contractive constraint exponentially stabilizes the closed

loop system when model uncertainty and disturbances are absent. We also discuss 

the conditions under which the chosen standard quadratic objective function is a 

Lyapunov function for the closed-loop system. Finally, four examples are introduced: 

( 1) A nonholonomic system (the model of a car) 
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(2) A fluidized catalytic cracking unit (FCCU) 

(3) A 2-degree of freedom robot 

( 4) A continuous stirred tank reactor (CSTR) + flash unit 

We apply our contractive MPC scheme to these four examples which are of very dif

ferent natures and present varied levels and sources of difficulties (that are discussed 

there) and the obtained simulation results are compared with a standard finite pre

diction horizon nonlinear MPC algorithm. Moreover, in the case of the car, we also 

present a comparison of our results with some analytical control design techniques 

derived especially for nonholonomic systems. 

In chapter 4, we examine how the stability results are modified when the system is 

subjected to an asymptotically decaying disturbance of bounded energy. Our results 

demonstrate that the closed-loop system becomes uniformly asymptotically stable in 

the presence of this class of disturbances (thus, the exponential stability properties of 

contractive MPC are weakened to uniform asymptotic stability). We also show that 

this kind of disturbance can be caused by introduction of an asymptotically conver

gent observer into the closed-loop for purposes of state estimation. We then derive 

sufficient conditions under which the association of an exponentially stable controller 

(such as contractive MPC) with an asymptotically convergent observer, generates an 

asymptotically stable closed-loop system. Furthermore, we design such an observer 

for a continuous-time system with discrete observations and prove its asymptotic con

vergence properties. The results reveal that if the outputs are measured continuously, 

then this nonlinear observer has its convergence properties strengthened as it becomes 

exponentially stabilizing. 

At the end of that chapter, we perform simulations for the so-called van der Vusse 

reactor, a benchmark CSTR system. We study the closed-loop response under expo

nentially decaying disturbances and the results are compared with the ones obtained 

with a standard NLMPC algorithm. Then we design a discrete version of the nonlin-
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ear state estimator proposed in that chapter (the reason we use this discrete version 

of the observer instead of the original mixed continuous/discrete one is to reduce the 

differential Riccati equation to an algebraic Riccati equation) for the example men

tioned above and examine the behavior of the closed-loop system generated by the 

resulting output feedback controller. 

In chapter 5, we first look into the state feedback control problem when persistent, 

bounded and non-additive disturbances affect the nonlinear dynamics of the system. 

In the nonlinear context, the problem posed by disturbances of this kind is equiva

lent to having parameter uncertainty only (i.e., model and plant are matched in the 

nonlinear structure, only some - or all - parameters are unknown). We demonstrate 

that the most which can be guaranteed under non-additive bounded disturbances or 

constant parameter mismatch, is that the states are driven to a control invariant set 

whose size is proportional to the magnitude of the disturbances or parameter devia

tion. Then, we examine how these results change when the states are also unknown 

(which constitutes the output feedback case) if the parameters are unknown but con

stant. We use a moving horizon-based least-squares estimator for state estimation. 

Additionally, we study in that chapter how the results are modified if both states and 

parameters are unknown, the parameters are time-varying, the system is subjected 

to additive disturbances and the moving horizon least-squares estimation procedure 

seeks to estimate states, disturbances and parameters. 

The example used to test the robust state and output feedback contractive MPC 

controllers proposed in chapter 5 is a biochemical reactor with substrate inhibition. 

There we study how the closed-loop behaves when there is a constant parameter 

deviation between the model used for prediction, computation of the contractive 

constraint and estimation and the real nonlinear system. 

The MPC schemes in chapters 3, 4 and 5 involve the solution of a nonlinear program

ming problem at each time step to find the optimal (or, at least, feasible) control 

sequence. Nonlinear programming is known to be the most difficult of the smooth 



15 

optimization problems. Indeed there is no general agreement on the best approach to 

be used for its solution and much research is still to be done. Due to the difficulties 

inherent to solving nonlinear programming problems and since MPC requires the opti

mal (feasible) solution to be computed on-line, we propose in chapter 6 an alternative 

implementation which guarantees that the problem can be solved in a finite number 

of steps. It is well-known that quadratic programming (QP) problems satisfy this 

requirement. Thus, we show in that chapter how to pose the optimization problem as 

a QP by means of using a linear approximation of the original nonlinear system in the 

prediction step of the MPC control algorithm and by implementing the contractive 

constraint in an appropriate way. We propose three different ways of implementation 

of the contractive constraint, namely, the "approximate (or conservative) approach", 

the "penalty function approach" and the "approach based on sensitivity analysis of 

the QP". We also show how to pose the problem as a QP by appropriately defining 

the Hessian matrix, the gradient vector and the constraint matrices. 

Still in chapter 6, we describe the formulation, implementation and basic philosophy 

of this computationally simplified but harder to analyze controller. The reason why 

the analysis of the contractive MPC controller, under the local linear approximation 

of the original nonlinear system, becomes more involved, comes from the fact that the 

linearization introduces a structural mismatch between the plant and the model used 

in the control computations (it is basically a linear/nonlinear mismatch, if no other 

types of uncertainties are considered). Therefore, the controller must be robust with 

respect to this mismatch (i.e., the controller must stabilize the states of the plant even 

though nonlinearities are ignored in the prediction). Under certain assumptions on 

this model/plant mismatch (a growth condition on the nonlinear terms of the model), 

we show that the states of the plant can be driven to a control invariant set whose 

size depends on how "strongly nonlinear" the system is. We also include bounded 

disturbances and parameter mismatch in this analysis. 

Finally, at the end of chapter 6, we present simulation results for this more computa

tionally efficient contractive MPC algorithm applied to the 2-degree of freedom robot, 
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the nonholonomic system/ car, the FCCU, the CSTR + flash unit (all of these intro

duced in chapter 3) and the van der Vusse reactor(introduced in chapter 4) and we 

compare the results with the ones previously obtained for when the nonlinear system 

itself is used in the prediction step of the MPC control algorithm. 

1.3.2 List of theorems in the thesis 

Chapter 3 State Feedback Contractive NLMPC: Nominal Case 

Theorem 3.1 Exponential stability of the closed-loop system. 

Theorem 3.2 Conditions for the objective function to be a Lyapunov function 

for the closed-loop (not necessary for exponential stability). 

Chapter 4 Output Feedback Contractive NLMPC: Nominal Case 

Theorem 4.1 Uniform asymptotic stability of the closed-loop system in the 

presence of asymptotically decaying disturbances in the state feedback 

case. 

Theorem 4.2 Feasibility condition (sufficient condition on the magnitude of 

the asymptotically decaying disturbances so that feasibility can be as

sured). 

We then discuss how these asymptotically decaying additive disturbances 

can be caused, for example, by introduction of an asymptotically stable 

state estimator into the closed-loop. We propose a mixed continuous/discrete

time nonlinear observer and examine its stability properties. 

Theorem 4.3 Computation of a stability region for the nonlinear observer 

proposed in this chapter. The observer is shown to provide asymptotically 

convergent state estimates for a certain set of initial state estimation errors 

and for systems with "not very strongly nonlinear" dynamic and output 

maps. 
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Theorem 4.4 Closed-loop stability in the output feedback case. The associa

tion of the asymptotically convergent nonlinear observer proposed in this 

chapter with the exponentially stabilizing contractive MPC controller is 

shown to originate an asymptotically stable closed-loop. 

Chapter 5 Robust Output Feedback Contractive NLMPC: Parameter Uncertainty 

Theorem 5.1 Computation of a bound on the difference between model and 

plant states at the end of prediction horizons, in the presence of parameter 

uncertainty and in the state feedback case. 

Theorem 5.2 Stabilizing properties of the state feedback controller in the pres

ence of parameter uncertainty. 

Theorem 5.3 Feasibility condition (sufficient condition on the magnitude of 

the parameter uncertainty so that feasibility can be assured). 

Theorem 5.6 Computation of a bound on the difference between true and esti

mated states in the presence of parameter uncertainty. The state estimator 

is a moving horizon-based least squares estimation (LSE) procedure. 

Theorem 5. 7 Stabilizing properties of contractive MPC in the presence of 

parameter uncertainty and in the output feedback case. 

Theorem 5.8 Feasibility condition (sufficient condition on the magnitude of 

the parameter uncertainty so that feasibility can be assured in the presence 

of state estimation errors). 

Theorem 5.9 Using the LSE moving horizon-based procedure for both state 

and parameter estimation, we compute a bound on the difference between 

true and estimated "augmented" states (i.e., newly defined states which 

comprise the states and parameters of the plant) at the beginning of the 

estimation window. 
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Chapter 6 Contractive NLMPC reformulated as a Quadratic Programming (QP) 

Problem 

Here, local linear approximations of the nonlinear system are used for predic

tion and in the computation of the contractive constraint, in order to reduce the 

optimization to a simple QP problem. Thus, we proceed to show how the stabil

ity properties of the closed-loop are modified when this structural model/plant 

(linear/nonlinear) mismatch is introduced. The presence of disturbances and 

parameter uncertainty is also taken into consideration in our results. 

Theorem 6.2 Computation of a bound on the difference between the states 

of the nonlinear system and of its local linearization at the beginning of 

prediction horizons. 

Theorem 6.3 Feasibility condition (sufficient condition on the structural 

model/plant mismatch and on the magnitude of possible parameter un

certainty and disturbances, so that feasibility can be assured). 

Theorem 6.4 Derivation of finite bounds on the norm of the continuous state 

trajectory generated by the controller for all time t 2: 0, demonstrating its 

well-posedness. 

Theorem 6.5 Feasibility conditions for systems with stable Jacobian in the 

whole state space (derivation of a lower bound on the contractive parameter 

so that feasibility can be assured) in the absence of parameter uncertainty 

or disturbances. 

Theorem 6.6 Stability and feasibility properties of the output feedback scheme 

when the controller has to deal with the mismatch between the linear sys

tem used in the control computations and the real nonlinear system, and 

the nonlinear observer is asymptotically convergent. Parameter uncer

tainty and disturbances are not considered here. 
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Chapter 2 MPC: An Overview 

2.1 Implementation aspects 

A tutorial review of the state space formulation of Model Predictive Control for both 

linear and nonlinear systems is presented in this chapter. 

The various implementations of MPC are identical in their global structure but differ 

in the details. The general structure of MPC schemes is shown in figure 2.1. 

Reference 

u y 
Optimizer Plant 

,__ _ __._. 0 bserver 

Figure 2.1: Inherent structure in all MPC schemes. 

The selected observer uses the input and output information ( u and y, respectively) 

and computes the state estimate x. With this estimate, one can use an optimization 

scheme to predict the trajectory of the controlled variables y over some prediction (or 

output) horizon P with the manipulated variables u changed over some control (or 

input) horizon M (M :SP). This prediction step is represented in figure 2.2. 

At time step k, the optimizer is used to compute the present and future manipulated 

variable moves u(klk), ... , u(k + M - Ilk) such that the predicted outputs follow 
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• 
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Reference Trajectory r 
- ---- --. - --+- ---·--·- ---• 
• 
Predicted Outputs y(k +ilk) 

Manipulated Inputs u(k +ilk) 

k+M-1 k+P 
~-- Control Horizon "" 
-------- Prediction Horizon > 

Figure 2.2: Optimization problem at time k. 

the selected reference trajectory in a satisfactory manner. The optimizer takes into 

account the input and output constraints which may exist, by incorporating them 

directly into the optimization. For linear systems, if a linear or quadratic objective 

function is considered, the resulting optimization is a linear or a quadratic program

ming problem, respectively. For nonlinear systems, independent of the chosen perfor

mance criterion, the optimization becomes a nonlinear programming problem which 

is non-convex in the majority of cases. 

Only u ( k I k), the first control move of the sequence, is implemented on the real plant 

from time step k to k+l. At time step k+l the measurement y(k+l) is used together 

with u(klk) by the observer to compute the new estimate x(k + 1), the horizons M 

and P are shifted ahead by one step and a new optimization problem is solved at time 

step k + 1 with the new initial condition x( k + 1). This procedure results in a so-called 

moving horizon or receding horizon type of strategy. For computational reasons, the 
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values of the horizons M and P are generally finite. However, it has been observed 

that it is very hard to provide stability guarantees for an MPC scheme with finite 

output horizon P (see [22]). Stability results can be obtained when P is infinite, 

keeping M finite. It has been shown that such selection of controller parameters 

makes it possible to guarantee certain stability properties of the closed-loop system 

while keeping the computation effort reasonable in most cases. 

2. 2 Basic formulation 

A very general and not very detailed formulation of the prediction step in MPC 

algorithms was given in chapter 1. Here we will go into more details regarding the 

shape of the objective function, prediction models, state estimators and constraints. 

2.2.1 Prediction models 

(1) Continuous-Time Systems 

Linear: In its most general form, a linear prediction model is given by: 

±(t) 

y(t) 

A(t)x(t) + B(t)u(t) + E(t); x(O) =: x0 given 

C(t)x(t) + D(t)u(t) 

(2.1) 

(2.2) 

where x(t) E Rn denotes the state at time t, u(t) E Rm the manipulated 

variables (or inputs) and y(t) E RP the controlled variables (or outputs). 

Here we have not included the disturbance or the noise that the actual 

plant may be subjected to, 

In most cases, the independent term E(t) is not included. If any of 

A(t), B(t), C(t) or D(t) are functions of time the linear system is called 
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time-varying (LTV), if they are all constant we have a linear time-invariant 

(LTI) system. 

Nonlinear: 

±(t) 

y(t) 

f (x(t), u(t), t); x(O) = x0 given 

g(x(t), u(t), t) 

(2.3) 

(2.4) 

In most cases, the nonlinear system is time-invariant, that is, f (.) : Rn x 

Rm x R -+ Rn and g(.) : Rn x Rm x R -+ RP are not explicit functions 

of time. Usually, f and g are assumed to be continuously differentiable 

functions. 

(2) Discrete-Time Systems 

Linear: 

x(k + 1) 

y(k) 

<I>(k )x(k) + f ( k )u( k) + rJ( k); x(O), u(O) given (2.5) 

C(k)x(k) + D(k)u(k) (2.6) 

The matrix <I> ( k) is known as state transition matrix. 

When the continuous-time linear system (2.1) is time-invariant, the dis

crete form (2.5) can be easily obtained from that system by having <I>(k), 

r(k), rJ(k) given by: 

<I>(k) ·-

f(k) ·-

rJ(k) ·-

where T is the sampling time. 

eAT 

T lo eA(T-t) Bdt 

for eA(T-t) Edt 

(2.7) 

(2.8) 

(2.9) 



Nonlinear: 

x(k + 1) 

y(k) 
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F(x(k), u(k), k); x(O), u(O) given 

G(x(k), u(k), k) 

(2.10) 

(2.11) 

In general, it is not possible to obtain a closed form solution of a general 

continuous-time nonlinear system as given by (2.3) (the solution has to be 

computed numerically), which means that F and G are not know explicitly 

for most systems modeled originally in continuous-time form. 

2.2.2 State estimators 

In general, state estimators have the following form: 

Continuous-Time Systems: 

±(t) 

y(t) 

Discrete-Time Systems: 

i(k) 

y(k) 

f (x(t), u(t), t) + K(t) [y(t) - y(t)] 

g(x(t), u(t), t) 

F(x(k), u(k), k) + K(k) [y(k) - y(k)] 

G(x(k), u(k), k) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

In the case where J (.) is continuous (discrete) and linear, either because the plant is 

linear or because we are using a linearized estimator for a nonlinear plant, K ( t) (or 

K (k)) is determined from the solution of a differential (algebraic) Riccati equation. 
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2.2.3 Objective function 

Various objective functions can be chosen depending on one's goal in using MPC. 

The most common one applies the 2-norm both spatially and temporally. 

For continuous-time systems the following objective function is commonly used: 

(2.16) 

where II . II denotes the Euclidean norm of a vector and II x lip:= V x' f>x, with 

f> E Rnxn positive definite, is the weighted Euclidean norm of x E Rn. II . /I also 

denotes the Euclidean norm of a matrix. More generally, II . llP, p 2: 1, denotes the 

Holder or p-norm of a vector or matrix (note that when p = 2 the p-norm becomes 

the Euclidean norm) and is given by: 

II x llp 
1 ·- (lx1IP + ... + lxnlP)iJ, \::/x E Rn, p 2: 1 

II A lip ·- sup II Ax /IP \::/A E Rmxn 
x:fO, xE~n /I X I Ip ' 

where lxil denotes the absolute value of xi E R, Vi= 1, ... , n. 

(2.17) 

(2.18) 

If we make p = 2 in definition (2.18) and A E Rnxn ( cnxn, in the general case 

of complex matrices and vectors) we have the so-called induced (matrix) norm of A 

corresponding to the Euclidean vector norm II . II on Rn (Cn): 

II A II:= sup 
x,tO, xE~n 

II Ax II 
II x II sup ii Ax II = sup 11 Ax 11 (2.19) 

llxll=l ilxll:Sl 

The p-norms satisfy certain important properties which will be used here and that 

can be found in most books on matrix computations and numerical analysis (see, e.g., 
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[54, 58]). 

Besides the Euclidean and Holder norms of vector and matrices, we will define Ill . Ill 
to be the induced norm on tensors. Let II . II be a given norm on Rn (en). Then, for 

each tensor t E Rnxnxn (TE cnxnxn), the quantity 111t111 defined by 

lllTlll ·- sup 
x,y#O, x,yEfRn 

II y'i'x II 

II Y 1111 x II 
sup 

llxll=llYll=l 
II y'i'x II = sup 

llxll::;I, llYll9 
II y'i'x II 

(2.20) 

is called the induced (tensor) norm of T corresponding to the vector norm II . 11-

The notation used in (2.16) is the following: Xk are the states of the system at time 

tk (in the output feedback case we would have ik, that is, the estimate of xk); to 

keep coherent with the discrete case, Pk is the output or prediction horizon (which 

is a decision variable, together with the control, in some algorithms and therefore 

we are allowing it to be a function of k); T is the sampling time; xk(t) represents 

the state trajectory of the model for all t E [tk, tk + PkT] given the initial condition 

Xk at tk; uk(t) is the control trajectory to be computed for the same time interval 

and initial condition; Q and R are positive definite matrices and they are controller 

tuning parameters (known as weights in the objective function). 

For simplified computation, most implementations of MPC generate a sequence of M 1 

discontinuous control moves, { u(klk), ... , u(k + M - llk)}, instead of a continuous 

trajectory uk(t). In other words, these controllers require that uk(t) = u(k+ilk) for all 

t E [tk +iT, tk + (i+ l)T) and i E [O, M -1], and uk(t) = 0 fort E [tk +MT, tk +PkT]. 

In this case, the objective function can be rewritten as: 

1 In the implementations where the output horizon is a decision variable there is no difference 
between input and output horizons. 
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(2.21) 

If the system is linear or has a closed form solution it is possible to express the states 

xk(t) and, consequently, the objective function, as an explicit function of the control 

moves. 

From this point forward we will consider Pas a pre-specified tuning parameter, con

stant throughout the computations, in order to simplify the notation (unless otherwise 

necessary to make the distinction). 

For discrete-time systems the most commonly used objective function is the quadratic 

one given by: 

P M-1 

Vi ·- L x(k + ilk)
1 

Qx(k +ilk)+ L u(k + ilk)
1 

Ru(k +ilk)+ 
i=l i=O 
M-1 

+ L !:iu(k + iJk)' S!:iu(k +ilk) (2.22) 
i=O 

where: 

S is a positive definite matrix 

!:iu(klk) := u(klk) - u(k - lJk - 1) 

!:iu(k +ilk) := u(k + iJk) - u(k + i - lJk), i E [1, M - 1] 

In general, one can choose the weights Q, Rand S to be time-varying (i.e. functions 

of k). For simplicity they are assumed to be time-invariant here. 

Other popular but non-differentiable choices for the objective function are the 1 - 1 

norm, the oo - 1 norm, the oo - oo norm and the 1 - oo norm (where the first 

is the spatial norm and the second the temporal norm). A good description of the 
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advantages of using each of these, as well as some other special objective functions 

can be found in [26]. 

2.2.4 Constraints 

The optimization or prediction step in MPC can be subject to general mixed state/control 

constraints of the form: 

Equality Constraints: 

ti:(x(t), u(t), t) = 0 (2.23) 

Inequality Constraints: 

h(x(t), u(t), t) :::: 0 (2.24) 

Inequality constraints are found much more often than equality constraints. In a 

nonlinear setting equality constraints can never be satisfied in a finite number of 

algorithm iterations and are therefore avoided. 

In most MPC problem formulations, the only two types of constraints considered 

are input and state (in particular, output) constraints. The constraints on the input 

variables are in general hard constraints which impose lower and upper bounds on 

these variables, that is, 

u(t) Eu:= {u E Rm: Umin::::; u::::; Umax}, Vt E [O, oo) (2.25) 

To make the control problem meaningful U must contain the origin. 

Other very commonly used constraints are bounds on the rate of change of the ma

nipulated variables given by: 
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J.6.uj(k+ilk)J s; .6.umax,j, Vi= 0, ... , M -l, k 2:: 0, with .6.umax,j > 0, Vj = 1, ... , m 

(2.26) 

where .6.uj(k + ilk), .6.umax,j, j = 1, ... , m, are the components of the vectors 

.6.u(k + ilk), .6.umax, respectively. We will express these constraints in the follow

ing vector form: 

J .6. U ( k + i I k) J s; .6. Umax, Vi = 0, ... , M - 1, k 2:: 0, .6. Umax > 0 (2.27) 

where we have committed some abuse of notation since .6.u(k +ilk) is a vector and 

we have defined I· I to be a scalar norm. The reason for this notation is that we 

do not want the norm used here (which is linear in the components of the vectors 

.6.u(k + ijk)) to be confused with the 2-norm. 

The output constraints are in general of the form: 

Ymin s; y(k + i/k) s; Ymax, 'Vi= 1, ... , P, k > 0 (2.28) 

or in the "soft" format: 

Ymin - E s; y( k + i I k) s; Ymax + E, Vi = 1, ... , P, k 2:: 0 (2.29) 

where <:: is an additional decision variable whose weighted quadratic norm is added 

to the objective function. This formulation allows the bounds Ymin and Ymax to be 

violated by at most E whenever the problem with hard constraints is not feasible. The 

norm of E is added to the objective function so as to minimize the violation of these 

bounds. 
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In addition to input and output constraints, the optimization may be subject to 

physical constraints on the state variables (e.g., mole fractions have to lie between 0 

and 1, temperatures in Kelvin degrees have to be always positive, concentrations are 

always non-negative, etc). Other useful state constraints are constraints imposed at 

the end of the (finite) prediction horizon known as end constraints. Some of these 

constraints are used, for example, to guarantee stability of the closed-loop as we will 

see later. 

Two well-known "stabilizing" end constraints are: 

Equality End Constraint: 

x(k + Pjk) = 0, Vk > 0 (2.30) 

Inequality End Constraint: 

x(k + Pjk) E W, Vk;:::: 0 (2.31) 

where W is some compact and convex "small" neighborhood of the origin. 

2.3 State of the art on stability analysis of MPC: 

main results 

2.3.1 MPC for constrained linear plants: nominal case 

For constrained linear systems, stability has been proven in two different cases: by 

use of infinite prediction horizon [66, 109, 127] or finite prediction horizon with end 

constraint [13, 23, 32, 52, 69, 101, 122, 123, 127]. For the still very popular MPC 

formulation with finite prediction horizon no stability properties can be assured in 
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the presence of constraints. Now we will briefly describe the stability results in the 

cases of infinite prediction horizon and finite prediction horizon with end constraints. 

Infinite prediction horizon MPC 

Infinite horizon MPC with mixed state/control constraints for completely known 

discrete-time LTI systems (i.e., no model/plant uncertainty) has been explored in 

[109, 127]. 

Here we will reproduce the main results found in [109] due to their simplicity and 

importance. In that work, an objective function of the type 

00 

Vi:= L [x(k + iJk)' Qx(k +ilk)+ u(k +ilk)' Ru(k +ilk)] (2.32) 
i=O 

is considered with u(k +ilk) = 0 for i 2 M, where M is the finite control horizon. 

Thus, even though the problem has infinite prediction horizon, the number of decision 

variables is kept finite and the optimization can be solved on line as a quadratic 

program (QP). 

The plants considered are discrete-time LTI of the following form: 

x(k + i + llk) = Ax(k +ilk)+ Bu(k +ilk), i E [O, oo), k 2 0 (2.33) 

In the absence of constraints we have the following results: 

Theorem 2.1 (Open-Loop Stable Plants) For stable A and M 2 1, the receding 

horizon controller with objective function (2.32), is stabilizing. 

Theorem 2.2 (Open-Loop Unstable Plants) For stabilizable {A, B} with r un

stable modes and M 2 r, the receding horizon controller with objective function (2.32), 

is stabilizing. 
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When input and state constraints of the kind 

Du(k +ilk) < d, i E [O, oo), k 2:: 0 

Hx(k +ilk) < h, i E [1, oo), k 2:: 0 

are considered, the stability results are as follows: 

(2.34) 

(2.35) 

Theorem 2.3 (Open-Loop Stable Plants) For stable plants, the input constraints 

are feasible independent of {A, B}, x0 := x(OIO) and M. These input constraints can 

obviously be converted into a finite set because of the form of the input, 

Du(k+ilk):::;; d, i E [O,M-1], k 2:: 0 (2.36) 

The state constraints may be infeasible, but they can be converted into a feasible set 

by removing them for small k, 

Hx(k +ilk):::;; h, k = k1, k1+1, ... (2.37) 

with k1 given by: 

{ hmin )/ } 
k1 :=max ln( II H II K(T) II Xo II ln(Amax), 0 (2.38) 

in which K(T) is the condition number of T (where A= T JT-1 and J is the Jordan 

form of A), hmin := mini hi and Amax := maxi />-.i(A)/. Thus, for stable A and 

M 2:: 1, xk = 0 is an asymptotically stable solution of the closed-loop receding horizon 

controller with objective function (2.32) and feasible constraints (2.36), (2.37). 
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Theorem 2.4 (Open-Loop Unstable Plants) For stabilizable {A,B} with run

stable modes and M 2 r, xk = 0 is an asymptotically stable solution of the closed-loop 

receding horizon controller for the feasible quadratic program represented by equations 

(2.32), (2.36), (2.37) and the additional constraints 

(2.39) 

where xu are the unstable modes of the system. This constraint establishes that the 

unstable modes of the system are brought to zero in M steps in the optimization 

(although they only approach 0 asymptotically in the moving horizon implementation 

of MPG) and the stable modes are left to approach 0 asymptotically. 

In constraint (2.37) k1 is now given by: 

k1 := M + max{ln( II H 1111 T II ~m;:(k + Mlk) II )/ln(Amax), O} (2.40) 

where X 8 are the stable modes of the system. 

Finite prediction horizon MPC with end constraints 

In order to prove stability for the finite horizon MPC formulation, some additional 

constraints may have to be introduced. Several researchers ([13, 32, 62, 69, 101], etc) 

have proposed explicitly to include an additional constraint called "end constraint". 

The idea here is to force the state at the end of the prediction horizon to zero, i.e., 

x(k + Plk) = 0, 'Ilk 2 0. 

This idea seems to have been originated by Kwon and Pearson [69] for the uncon

strained case. Keerthi and Gilbert [62) proved that closed-loop stability can be guar

anteed with this type of controller in the presence of input and output constraints 
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provided that the resulting optimization problem is feasible. One of the require

ments for the end constraint to be feasible is that the system described by (2.33) be 

controllable. 

One can actually show that with state feedback, feasibility of the optimization prob

lem at k = 0 implies feasibility for all future sampling times. However, this may 

not hold true any longer when the state has to be estimated and/ or when there are 

disturbances present. 

Other types of end constraints have been proposed in [122, 123, 127]. Instead of 

forcing the states to zero at the end of the prediction horizon, they require the states 

to "shrink" at some future time step k + L (L ~ P) with respect to the states at time 

step k. This "shrinkage" condition is expressed as an inequality end constraint which 

has been shown in these works to guarantee asymptotic stability of the closed-loop 

system. 

2.3.2 MPC for constrained linear plants: robust case 

Robust stability results for discrete-time LTI systems are presented in [66, 101, 122, 

127]. 

Infinite prediction horizon MPC 

In [66], an MPC-based technique for the control of LTV plants with uncertainties 

is proposed. This technique is motivated by recent developments in the theory and 

application (to control problems) of optimization involving linear matrix inequalities 

(LMis). The resulting LMI-based optimization to be solved at each time step can be 

solved in polynomial time and can therefore be implemented on line. Thus, from the 

computational point of view, we need to solve an LMI problem instead of a linear 

or quadratic programming problem, which normally result from classical linear MPC 
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implementations. The use of an infinite prediction horizon formulation guarantees 

stability and since the minimization is performed over the "worst-case" objective 

function, the resulting algorithm enjoys certain desirable robustness properties. 

Finite prediction horizon MPC with end constraints 

In [101], a preliminary investigation of the robustness properties of the MPC algo

rithm with equality end constraints on the outputs for LTI plants was performed by 

exploring its strict relations with infinite horizon predictive control. 

Since the robust stability results found in [122, 127] are of very similar nature, we 

have chosen to present here some of the main results in the latter work. 

Once again, consider the discrete-time LTI system (2.33) and let us denote the nom

inal model by (A0 , B0 ) and the real plant by (AP, Bp)- The actual plant (Ap, Bp) is 

assumed to lie in some known completely arbitrary set, i.e., (AP, Bp) E (A, B). The 

goal is to design an MPC controller such that closed-loop stability is guaranteed for 

all plants in the set. 

The proposed controller structure is given by: 

Step 0: Input the data. 

Step 1: Set k0 = k and i = 1, where k denotes the current time step. 

Step 2: The current control move u(k) equals the first element u(klk) of the sequence 

{u(klk), ... , u(k+M-llk)} which is the minimizer of the optimization problem 

Vi= . min Vi(Ao, Bo) 
u(klk), ... ,u(k+M-l[k),E(k) 

(2.41) 
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subject to 

u(k+jlk) EU j = O,l, ... ,A1 - 1 

J~u(k + Jlk)I:::; ~Umax j = 0, 1, .. ·, A1 - 1 

~u(k + jJk) = 0 

x(k + jlk) E XE(k) 

and the robust stability constraint 

j = A1, A1+1, ... '00 

j = 0,1, ... ,oo 

(2.42) 

where the idea of ((softening" (relaxing) state constraints with the extra decision 

variable <:( k) has been introduced. XE(k) is the time-varying set within which the 

states are required to remain between k and k + 1. The input constraint set U 

has been defined in (2.25). 

In this problem formulation, we have the following definitions: 

p M 

Vi(A, B) ·- L II x(k +ilk) II~+ 2:[11 u(k +ilk) II~+ II ~u(k +ilk) II~]+ 
i=l i=O 

+ 11 t(k) 11~€ (2.44) 

and 
CL ·- [AL-l B AL-Z B ... B] 

u(ko) 

U(koli) ·-
u(ko + i - 2) 

u ( ko + i - 1 I ko + i - 1) 

u ( ko + L - 1 I ko + i - 1) 

P, Q E > 0 are weighting matrices 

L ·- location of placement of stability constraint 
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Step 3: Set k = k + 1. If i = L or II x(ko + i) lip:::; ,\ II x(ko) llp, go to Step l; 

otherwise, set i = i + 1 and go to Step 2. 

This robust controller optimizes nominal performance subject to a robust stability 

constraint. The stability result for this robust MPC scheme can be summarized in 

the following lemma and theorem: 

Lemma 2.1 (Feasibility Condition) Assume that A is stable for all A EA. Then 

there exist an integer L and a constant ,\*(L, P) E [O, 1) such that the optimization 

problem in Step 2 is feasible for all,\ E [>.*(L, P), 1). 

Theorem 2.5 (Robust State Feedback) Assume that A is stable, then for all>. E 

(,\*(L, P), 1), the closed-loop system with state feedback is globally asymptotically stable 

with the given robust controller for all (A, B) E (A, B). 

Here we have not gone into the notational details of the original work and the inter

ested reader is encouraged to refer to (127] or [128] for better understanding of the 

previously described robust MPC algorithm. The main idea, however, is that the 

states of all the models in the set (A, B) (which include the real plant (Ap, Bp)) are 

"contracted" by a factor of,\ E [O, 1) with respect to the measured states at time 

step k0 . The robust stability constraint remains the same for a particular k0 while i 

varies from 1 to L. When i = L, the stability constraint is redefined with respect to 

the states measured at k0 + L, x(k0 + L), and imposed at k0 + 2L. 

This is one of the robust stability results in [128]. Extensions to the output feedback 

case, e.g., can be found in this work but will not be mentioned here for lack of space. 

2.3.3 MPC for constrained nonlinear plants: nominal case 

Nominal stability results for constrained nonlinear systems can be found in [1, 2, 3, 

62, 92] (discrete-time) and in [28, 63, 82] (continuous-time). In both cases, the basic 
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suggested MPC algorithm is the same with finite prediction horizon and equality end 

constraint x(k +Pk lk) = 0, Vk 2: 0. Note that the prediction horizon is allowed to be 

time-varying (i.e., Pis a function of k). This type of MPC implementation is known 

as Variable Horizon MPG. Now since the plant is nonlinear the optimization problem 

is in general non-convex and one can expect at best to find a local optimal solution. 

Let P(k, xk) denote the optimization problem at sampling time k with initial condition 

xk. The problem formulation at time step k for the continuous-time case is given by: 

P(k, xk) : min{V(tk, xk)luk(t) EU, Pk E [O, PmaxJ, x(tk+1 := tk + PkT; xk, tk) = O} 

(2.45) 

With certain controllability and observability assumptions and Lipschitz continuity 

of the system dynamics and of the output map, the following results hold: 

• x = 0 is the only equilibrium state of the system with the computed control law 

and it is uniformly asymptotically stable, 

where the set X is defined by: 

X = {xk : P(k, xk) has an admissible sequence for which Vi := V(tk, xk) is finite} 

(2.46) 

Another form of guaranteeing stability for a constrained nonlinear system has been 

presented in [83, 95) and it consists of imposing an inequality end constraint of the 

type x(k+PkJk) E Wco where W°' is a small neighborhood of the origin whose "size" is 

specified by the parameter a. In this case, the controller loses its stabilizing properties 

within W°'. In order to compensate for that and to guarantee asymptotic stability to 

the origin, a stabilizing linear control law must be used inside W°'. Thus, once the 

states of the system lie inside the region W°' one must switch over from MPC to a 
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linear robustly asymptotically stabilizing controller. This kind of implementation of 

MPC is known as hybrid or dual-mode MPG. The major difficulty lies in computing 

the set Wa so it is a Lyapunov set for the nonlinear system and for its linearization 

around the origin. This is a general problem of constructing local Lyapunov functions 

for nonlinear systems for which there is no established methodology. 

The advantages of using an inequality instead of an equality end constraint are 

twofold: first, in a nonlinear programming problem equality constraints can never 

be satisfied in a finite number of algorithm iterations (which does not happen with 

most inequality constraints) and, second, a conservative form of this type of inequal

ity constraint (e.g., x(k+Pklk) E Wa;2 ) can be used to introduce robustness into this 

MPC formulation as we will see in the next section. 

As previously mentioned, the problem is posed with a time-varying prediction horizon 

Pk, k 2: 0. In [82, 83, 95] the horizon is considered as an additional decision variable 

Pk E [O, Pmax] (where Pmax is a chosen upper bound to Pk, Vk 2: 0, which determines 

a balance between the control effort in solving the problem and the feasibility of the 

constraints) so as to add more possibilities for making the constraints feasible. 

The optimal control problem at time tk is defined in the following way: 

P(k, xk) : min{V(tk, Xk)luk(t) EU, Pk E [O, PmaxJ, x(tk+l := tk + PkT; Xk, tk) E Wa} 

(2.47) 

An important feature of this variable horizon MPC with end constraint (be it equality 

or inequality constraint) is that optimality is not required for stability, only feasibility. 

Moreover, if a feasible solution is found for the first optimal control problem, restric

tions of this solution to smaller time intervals are feasible solutions of the optimization 

problems at subsequent time steps. This means that, in the absence of disturbances, 

if P(O, x0 ) is feasible, feasibility of P(k, xk), k > 0, is ensured. Of course, one can im

prove on this solution at time step k by computing a control-horizon pair {Pk, uk(t)} 

that results in a smaller value of the cost function V(tk, xk)· 
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2.3.4 MPC for constrained nonlinear plants: robust case 

Robust stability results for nonlinear plants can be found in [95]. In the first case, in 

order to add robustness to the hybrid or dual-mode MPC algorithm a conservative 

end inequality constraint is imposed in the optimization step. The motivation behind 

this idea is to require the states of the model used in the prediction to be inside a 

smaller set at the end of the prediction horizon (Wa; 2 , for example) so that, if the 

model/plant mismatch is not very large, the states of the plant will be within the 

bigger set Wa. Inside Wa a robust linear stabilizing controller is used in order to drive 

the states of the plant asymptotically to the origin. It is clear that the synthesis of 

such a linear controller is not a trivial task, especially due to the model uncertainty. 

Wa now has to be a Lyapunov region for the real plant, the nonlinear model used in 

the prediction and its linearization around the origin. 

Also here, the prediction horizon is an additional decision variable and the problem 

formulation is as follows: 

P(k, Xk) : min{V(tk, Xk)luk(t) EU, Pk E [O, Pmax], x(tk+l := tk + PkT; Xk, tk) E Wa;2} 

(2.48) 

Let f P (.) and f (.) denote the dynamics of the plant and of the model, respectively. 

Then robust stability can be shown under the following conditions on JP and f: 

• JP is continuously differentiable; 

• II JP(x, u) - f (x, u) llp:'.S f3 II (x, u) llP for all (x, u) E X x U, P > O; 

• f is Lipschitz continuous on X x U, 

where the set X is defined as in (2.46). 
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If state constraints are present, a conservative version of such constraints should be 

used in the optimization to account for the model uncertainty. For example, if in the 

nominal case P(k, xk) would be given by: 

P(k, xk) : min{V(tk, Xk)luk(t) EU; Pk E [O, Pmax]; x(s; tk, xk) EE, 

Vs E [tk, tk + PkT]; x(tk+l := tk + PkT; xk, tk) E Wa} 

The robust version of the problem would be as follows: 

P(k, xk) : min{V(tk, Xk)luk(t) EU; Pk E (0, Pmax]; x(s; tk, Xk) E EE, 

Vs E [tk, tk + PkT]; x(tk+l := tk + PkT; Xk, tk) E Wa;2} 

where the sets E and EE are closed subsets of Rn defined by: 

E ·- {xlgi(x)::::; O,j E p}; p := {1, ... ,p} 

EE ·- {xlgi(x)::::; -E,j E p, E > O} 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

and contain the origin in their interiors. Thus we can see that E allows a margin of 

error so that if the states of the prediction model are required to stay within EE the 

states of the plant remain inside E, a larger set. 
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Chapter 3 State Feedback Contractive NLMPC: 

Nominal Case 

3 .1 Introduction 

As we have mentioned before, there are no stability guarantees for finite horizon MPC. 

The two alternative approaches proposed so far which ensure stability of the closed

loop system under reasonable assumptions are infinite horizon MPC (for discrete

time constrained linear systems) and finite horizon MPC with end constraints (for 

continuous- and discrete-time constrained linear and nonlinear systems). These new 

formulations of MPC have allowed for a relatively easy analysis of the closed-loop 

behavior which had not been possible under the framework of finite horizon MPC. 

The present work is devoted to the control of constrained nonlinear systems by using 

a finite horizon MPC technique with the introduction of an additional state constraint 

which we have denoted contractive constraint. This is a Lyapunov-based approach 

in which a Lyapunov function chosen a priori is decreased, not continuously, but 

discretely; it is allowed to increase at other times (between prediction horizons). This 

is also an approach where stability is guaranteed by introducing an inequality end 

constraint in a finite horizon MPC framework. As we will see later, the introduction 

of this additional constraint into the on-line optimization makes it possible to prove 

quite strong stability properties of the closed-loop system. In the nominal case and in 

the absence of disturbances, it is possible to show that the presence of the contractive 

constraint renders the closed-loop system exponentially stable. We will also examine 

how the stability properties weaken as structural and/or parametric model/plant 

mismatch, disturbances and measurement errors are considered. In the presentation 
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of our results, we will begin with the basic idea in the simplest context (state feedback 

+ no model uncertainty + no disturbances) and then develop into the more complex 

situations showing that, in each case, some form of stability of the closed-loop system 

can be obtained. 

Another important aspect considered in this work is the computational efficiency and 

implementability of the algorithms proposed. The previous work on stability analysis 

of MPC applied to nonlinear systems (see [82, 95]) addresses only partially the issue of 

the computational effort required in the controller implementation. These algorithms 

require only feasibility and not optimality of the control problem, which is also true 

for our Contractive MPG (finite horizon MPC + contractive constraint). However, 

the ideas presented by Mayne and Michalska in [82, 95] with their variable horizon 

MPC approach have the following limitations: 

• in the nonlinear context, the equality end constraint, namely x(k + Pklk) = 0, 

can never be satisfied in a finite number of algorithm iterations; 

• the hybrid controller which results from imposing the inequality end constraint, 

x ( k + Pk I k) E W, and using a linear stabilizing controller inside W is theoreti

cally sound but the computation of the region W and of the gain of the linear 

stabilizing controller is a major difficulty in real implementation. 

Another relevant negative aspect of such controllers is the fact that, in general, the 

resulting optimization step is a non-convex problem. Even if only feasibility is required 

for stability, the performance may suffer quite a lot by using feasible solutions only. 

More serious yet is the fact that in nonlinear programming even the computation of 

feasible solutions may be quite cumbersome, if not all together impossible. 

In this work much attention was devoted to the implementation aspects of the con

tractive MPC controller. We will show later that if a linear approximation of the 

original nonlinear system computed at each sampling time k 2': 0 is used in the pre

diction step, the contractive constraint can be implemented in such a way that the 
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resulting optimization problem is reduced to a quadratic programming (QP) problem. 

And, as we well know, there are many efficient and well-established algorithms in the 

market today devoted to solving quadratic programs. This implementation of MPC 

with local linearization of the nonlinear plant was first proposed by Garcia in [48] and 

subsequently used by Ricker and Lee in (74, 110]. 

We will progress to this computational aspect later because in order to make the 

controller computationally simpler we also need to make it robust (since a linear 

model is used in the prediction of the states of the real nonlinear plant). Initially 

we will be concerned only with the nominal stability analysis per se, without taking 

into account the fact that the resulting controller involves the solution of a nonlinear 

programming problem at each time step. The extensions to the basic problem will 

be added with each chapter. 

Problem 1 : State feedback, nominal case and no disturbances 

3.2 Description of the contractive MPC algorithm 

3.2.1 Description of the system 

In this chapter we assume that the plant is nonlinear time-invariant (NLTI) and 

described by the following differential equation: 

x(t) = f(x(t), u(t)) (3.1) 
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where f : Rn x Rm -+ Rn is continuously differentiable. 

Throughout this thesis we will assume that the manipulated variables u(t) are subject 

to the following hard constraints: 

u(t) Eu:= {u E Rm: Umin::::; u::::; Umax}, Vt E [0,oo) (3.2) 

Linear constraints on the rates of change of the manipulated variables are also com

monly present, as we have pointed out in chapter 2 (see equations 2.26 and 2.27). 

The solution of (3.1) at time t, corresponding to the initial time/state pair {t0 , x 0 } 

and the input u(T), TE [t0 , t], is denoted by x(t, t0 , x0 , u) or, in a simplified notation, 

xo(t). 

3.2.2 Optimization step 

Given any sampling time tg := tk := t0 + kPT, k E [O, oo), and ti := tk + jT, j E 

[O, P], with tf = tg+1 = tk+1 , Vk ;::: 0, let us adopt the following notation xk := 

x~ := x(tg,t0 ,x0 ,u), xi:= x(ti,tk,xk,u), xi(t) := x(t,ti,xi,u) and ui(t) is the 

continuous control law for t E [ti, ti + PT]. In order to conform to MPC's usual 

implementation scheme, let us consider a discontinuous control law of the kind ui(t) = 

u(kP+ j +ilkP+ j) fort E [t{+iT, ti+ (i+l)T], i E [O, P-1), i.e., ui(t) is constant 

during one sampling time. Moreover, u(kP + j + ilkP + j) = u(kP + j + M -

llkP + j), Vi E [M, P - l]. Then the optimization problem at time ti, namely, 

P(t{,x{), Vj E [O,P-1], k E [0,oo), is represented by: 

min rtt+P [x{(t)' Qx{(t) + u{(t)' R*u{(t) + u{(t)' S*ui(t)] dt (3.3) 
u1(t) }t{ 

or, equivalently, 
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·+p 

minu(kP+jlkP+j), ... ,u(kP+j+M-llkP+j) fl II xk(t) II~ dt + 
k 

+ I:f=o II u(kP + j + ilkP + j) 111 + I:['!01 II !:iu(kP + j + ilkP + j) II~ (3.4) 

where R := ~· and S := ~;. 

subject to: 

where 

±L(t) = f(x{(t), u{(t)), xL := measured states at tL 

Umin s u(kP + j + ilkP + j) s Umax, i E [O, M - 1] 

j.6.u(kP + j + ilkP + j)j S .6.Umax, i E [O, M - 1] (3.5) 

.6.u(kP + j + ijkP + j) = O, i E [M, P - 1] 

II xL(tf) llpS o: II xk lip, o: E [o, 1), P > o 

x{(t) = f(xL(t), uk(t)), with .xg := Xk and x{ = xC1(tL), for j 2: 1 (3.6) 

is the trajectory of the model which is not updated with the states of the plant at tL 
for j E [1, P - 1]. The states xk(t) are only updated with the states of the plant at 

t = tk +PT=: tf, i.e., at intervals of one prediction horizon. 

3.2.3 MPC algorithm implementation 

The controller is implemented according to the following scheme: 

Control Algorithm 1 

Data: Initial Conditions: t0 and x0 ; Controller Parameters: horizons P, M 

(M S P), weights Q, R, S, P > 0, contractive parameter o: E [O, 1), sampling 

time T and control constraints Umin' Umax' .6. Umax. 
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Step 0: Set k = 0, j = 0. 

Step 1: Assuming that the optimal control problem P(tL xn is feasible for the chosen 

set of parameters, then at t = t{ solve P(t{, x{) specified by the sets of equations 

(3.4), (3. 5) and (3. 6). Local optimal solutions or even feasible solutions are 

accepted. The result of this step is an optimal (or feasible) sequence of control 

moves { u(kP + jlkP + j), ... , u(kP + j + M - llkP + j)}. 

Step 2: Apply the first control move, u(kP + jlkP + j), to the plant (3.1) fort E 

[t{, t{+1
] and measure the states at t{+l. Set x{+l equal to the measured states 

d -j+l - -j (_,__j+l) an xk - xk i1c . 

Step 3: If j < P - 1, set j = j + 1 and go back to Step 1. If j = P - 1 set 

xg+l =: Xk+I = xf, tg+I = tk+l = tf, k = k + 1,j = 0, and go back to Step 1. 

Remark 3.1 Notice that both the contractive constraint and its location (at time 

t = tk + PT and with respect to xk) do not change for a fixed k as j varies in 

the interval [O, P - l]. This means that if at time tk it is possible to find a control 

sequence which makes the objective function finite and satisfies all the constraints 

(i.e., P(tk, xk) is feasible) and if the constraints remain unaltered for a fixed k while 

j varies from 0 to P - 1, then the subsequent P - 1 control problems (corresponding 

to the different values of j) will be feasible as well. So, all we need to be concerned 

about is the feasibility of P(tk, xk), Vk 2: 0. 

Due to the absence of model/plant mismatch and disturbances the following remarks 

can be made: 

Remark 3.2 The receding or moving horizon implementation of the control law gen

erated by Control Algorithm 1 is not necessary for Problem 1. We could just 

implement all the control moves {u(kPlkP), ... , u(kP+M-llkP)} from tk to tk+PT 

and only solve a new control problem with a new initial condition, Xk+I, at the end of 



47 

the horizon. Here we have chosen to present this moving horizon formulation because 

this is the most usual one in the MPG context and will be adopted throughout this the

sis. In the presence of any uncertainty or disturbance, this approach can significantly 

enhance the performance of the closed-loop response due to the feedback provided by 

measurements at each sampling time (instead of leaving the plant open-loop for the 

period of a whole prediction horizon). 

Therefore, for Problem 1, the previously presented receding horizon MPG scheme is 

equivalent to the following simpler implementation (only one optimization problem, 

namely P( tk, xk), is solved for a whole prediction horizon): 

Control Algorithm 2 

Data: Same as in Control Algorithm L 

Step 0: Set k = 0. 

Step 1: Assuming that P(tki xk) is feasible for the chosen set of parameters, then at 

t = tk solve P(tk, xk), which is specified by: 

. 1tf mm 
u(kPlkP),. . .,u(kP+M-IlkP) tk 

II xk(t) II~ dt + Ef:o II u(kP + ilkP) Ilic 

+ Ef!0
1 II !::.u(kP + ijkP) II~ (3.7) 

subject to: 

:h(t) = f(xk(t), uk(t)), Xk measured 

Umin::::; u(kP + ilkP) :::; Umax, i E [O, M - 1) 

l!::.u(kP + ilkP)I :S !::.umax, i E [O, M - 1] 

f::.u(kP + ilkP) = 0, i E [M, P - 1] 

II Xk+I llp:=ll xk(tf) llp:S a II xk llp, a E [O, 1) 

(3.8) 
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Step 2: Apply the computed sequence of control moves { u(kPlkP), ... , 

u(kP + M - llkP)} to the system (3.1) fort E [tk, tk+iL and set xk+l equal to 

the states of the system at tk+l · 

Step 3: Set k = k + 1 and go back to Step 1. 

3.2.4 Basic assumptions and definitions 

Without loss of generality, let us consider the regulation problem where the desired 

operating point is the origin (x, u) = (0, 0). Then, the following assumptions are 

needed to ensure local stability: 

Assumption 3.1 (x, u) = (0, 0) is an equilibrium point of (3.1), i.e., f(O, 0) = 0. 

Assumption 3.2 The linearization of the model dynamics around the origin is sta

bilizable, i.e., {¥x(o, 0), ~(O, O)} is a stabilizable pair. 

Assumption 3.3 We assume that there exists a p E (0, oo) such that for all Xk E Bp, 

the optimization problem at tk, P(tk, xk), is feasible. In other words, for all Xk E BP, 

we can find a contractive parameter a E [O, 1) so that with the chosen finite horizon P 

all the constraints on the inputs and states can be satisfied and the objective function 

is finite. 

Remark 3.3 Assumption 3.3 is not very restrictive since all that it establishes is 

that there exists a non-empty convex and compact set of initial conditions for which 

the optimization problem at every P time steps is feasible. 

For nonlinear systems with a unique globally exponentially stable equilibrium (which 

obviously include open-loop stable linear systems), since all trajectories in ~n satisfy 
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the condition of exponential decay, it is always possible to find P so that the states 

at the end of P steps are contracted by a factor a E [O, 1) with respect to the initial 

states. 

For general nonlinear systems, if [ ~ ~ J E D, Vx, u (where D ~ ~nx(n+m) ), then 

there exists a matrix G ( x, u) E D such that: 

f(x, u) = G(.x, u) [ : ] 

In other words, the nonlinear system can be replaced by a time-varying linear sys

tem (idea which is implicit in the early work on absolute stability originating in the 

Soviet Union; see the works of Lur'e and Postnikov [79, 80} and Popov [106}) and 

this approach is known as global linearization. Of course, approximating the set of 

trajectories of the nonlinear system via linear differential inclusions (LDis) can be 

very conservative, i.e., there are many trajectories of the LDI which are not trajec

tories of the nonlinear system. However, once the nonlinear system is represented in 

LDI form, sufficient conditions for satisfaction of assumption 3.3 can be stated (see 

[17}, where sufficient conditions for exponential stability and an induced L 2 - norm 

performance objective are given) by using a single quadratic Lyapunov function ap

proach. The unique quadratic Lyapunov function decreases along the trajectories of 

the LDis and, therefore, of the nonlinear system, which means that exponential sta

bility is guaranteed and we can always find an a E [O, 1) such that the states of the 

nonlinear system are contracted by this factor in only one time step. 

Remark 3.4 In remark 3.2 we pointed out that due to the absence of model un

certainty or disturbances it follows that Xk+l = xf-1 (tf) and, therefore, due to the 

contractive constraint, we have II Xk+l llJ:>:S: a II Xk II?· This means that if x 0 E BP, 

then Xk E Bakp C BP (since a E [O, 1 )). Thus, with our condition for feasibility 

given in assumption 3.3, if P(t0 , x 0 ) is feasible (or equivalently, if x0 E Bp) then the 

sequence of control problems P(tk, xk), Vk > 0, is feasible as well. 
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Assumption 3.4 We assume that if Xk E BP, Vk ~ 0 (with p E (0, oo) defined in 

assumption 3. 3), then there exists a constant (J E ( 0, oo) so that the transient states 

of the model used in the computation of the contractive constraint (which is equal to 

the prediction model and the plant for Problem 1) remain inside the set B 8llxk II?, 

i.e., II x{(t) llr:::; (J II xk llr:::; (Jp, Vj = o, ... , P - 1, k ~ o. 

Remark 3.5 Since u is constrained, assumption 3.4 is always satisfied except for 

systems with finite escape time. So, nonlinear systems with finite escape time are 

ruled out from our investigation. 

Definition 3.1 Under assumption 3.3, the reachable set X is defined by: 

X := { x(t) E Rn I x(t) = x(t, to, x0, u), t E [to, oo ); Xo E Bp, u EU} (3.9) 

Remark 3.6 Under assumption 3.4 and since we are addressing the nominal case in 

the absence of disturbances, the reachable set X is equal to B,ep· 

3.2.5 Basic philosophy of the controller design 

Figures 3.1 and 3.2 illustrate the behavior of the closed-loop system generated by 

the contractive MPC controller when no model/plant mismatch is present and no 

disturbances affect the system, as specified in Problem 1. 

Thus, while the optimization problem remains at constant size P for different values 

of j and for a constant k, the number of steps between the beginning of the prediction 

and the location of the contractive constraint is equal to P - j and therefore decreases 

as j increases as we can clearly see in figure 3.1. 

The exponential decay of the state trajectory is illustrated in figure 3.3. 
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x(kP + 2 + ilkP + 2) 

x(kP + ijkP) 

Figure 3.1: P control problems for a fixed k. Predicted trajectories generated by 
contractive MPC for a fixed k and j varying in the interval j = 0, ... , P - 1. 

x((k + l)P + il(k + l)P) 

x((k + 2)P + il(k + 2)P) 

Figure 3.2: Exponential decay of the state trajectory. 
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p 

a II Xo II? 

a
2 II xo II? 

ak II xo II?, k > 2 

Figure 3.3: State trajectory generated by the contractive MPC scheme. 

3.3 Stability analysis of contractive MPC 

Theorem 3.1 (Exponential stability) Given a E [O, 1) and p, (J E (0, oo) satis

fying assumptions 3.3, 3.4, Control Algorithm 1 (and, consequentely, 2) renders 

the closed-loop system exponentially stable on the set BP, i.e ... for any x 0 E BP, the 

resulting trajectory x(t) := x(t, t 0 , x 0 , u) satisfies the following inequality: 

II x(t) ll:S a II Xo II e-(l-a)(t~,f1l, with a :::=:: ,Bel-a (3.10) 

Proof: From assumption 3.3 we have that the optimal control problems P(tk, xk), 

Vk :::=:: 0, are feasible for all initial conditions x 0 E BP. So, this means that all the 

input/state constraints in (3. 5) are satisfied at each sampling time t{, j E [O, P - 1], 

k :::=:: 0. In the absence of model/plant mismatch or disturbances it immediately follows 



53 

that: 

(3.11) 

and, therefore, for all t E [tk, tk+l := tk +PT], xk(t) satisfies the following inequality: 

(3.12) 

Now, since e(a-l) - a ::'.:'.: 0 -{:::::::} ak ::; e-(l-a)k, Va E [O, 1) and Vk ::'.:'.: 0, it results 

that: 

II Xk llP < II Xo llP e-(l-a)k 

II xk(t) llP < f3 II Xo llP e-(l-a)k 

(3.13) 

(3.14) 

Notice that the bounds (3.13) and (3.14) are independent of the performance criterion. 

The performance criterion influences only the feasibility question but if the problem 

is feasible, stability is determined exclusively by the contractive constraint. 

Although (3.14) establishes an exponentially discretely decaying bound on the states 

for all times t ::'.:'.: t 0 , our proof of exponential stability for the continuous-time system 

(3.1) is not yet concluded. 

The condition for exponential stability for continuous-time systems is given by: the 

equilibrium 0 is (locally) exponentially stable if there exist p, a, b > 0 such that 

II x(t, to, Xo, u) II::; a II Xo II e-b(t-to), Vt> to > 0, Vxo E BP (3.15) 
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We can see that this is not quite what we have in (3.14) since that is a discrete bound 

which remains constant for the period of a sampling time. So, we must find an expo

nentially continuously decaying function which bounds (3e-(l-a)k for all 

t E [tk, tk+l], and for all k 2 0. 

The discrete bounds on the states, (3.13) and (3.14), and the continuous upper bound 

are graphically represented in figure 3.4. 

(Je(l-a) 

/3 

(Je-(1-a) 

(Je-2(1-a) 

0 

\ 
\ 

\ 
\ 

' ',, _ (3e-(l-a)k ---,, 

1 

', t-t0 ',, ----· (Je(l-a) e-(1-a) PT 

' ' 

--- --- ---

2 k 

Figure 3.4: Discrete and continuous-time exponentially decaying upper bounds for the 
state trajectory. 

So, as shown in figure 3.4, we want to find the least conservative continuously ex

ponentially decreasing bound which matches the discrete bound exactly at the end of 

horizons. 

Since k = ti;;0 and t;;!J < t"p~0 , Vt E [t0 , tk), we can easily see that: 

( )k ( ) (t-t0 ) 
(Je- 1-a ::::; ae- 1-a PT ' \:;/a 2 (3e1-a (3.16) 

Thus, using equations (3.14) and (3.16) we finally have: 
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( ) 
(t-to) 

II x(t) ll:S a II Xo II e- l-a PT , with a ~ (3e 1-a (3.17) 

which is what we wanted to prove. This means that if x 0 E BP, then the sequence of 

optimal control problems P(tk, xk), k ~ 0, is feasible and the origin is an exponen

tially stable equilibrium point inside the reachable set X = Bf3p· 

D 

Now that exponential stability has been proven, we will show that, under certain 

assumptions on the control law originated by MPC, the objective function minimized 

in (3. 7) is a Lyapunov function for the closed-loop system. 

Before we start showing the conditions under which this is true, let us point out that 

the objective function being a Lyapunov function is not a necessary condition for 

stability of the closed-loop under the contractive MPC controller, as it may be for 

other moving horizon-based MPC schemes. The closed-loop is stabilized by the con

tractive MPC controller because the quadratic function which defines the contractive 

constraint is itself a Lyapunov function which decreases discretely, not continuously, 

at intervals of prediction horizons. 

We will see in the next theorem that, in order for the objective function to be a 

Lyapunov function as well, stronger assumptions are needed on the computed control 

law and on the dynamics of the nonlinear system to be controlled. Here we want 

to establish which and how strong these assumptions are because they are necessary 

in proving exponential stability of the MPC scheme which uses the equality end 

constraint x(k + Plk) = 0 (see [114]). In other words, we want to emphasize that 

we are able to prove exponential stability of the closed-loop system under much less 

restrictive assumptions when the contractive constraint, rather than the end equality 

constraint, is used. 
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Theorem 3.2 (Objective function as a Lyapunov function) Consider the sys

tem (3.1) and take into account the simpler implementation of MPG presented in 

remark 3.2. Suppose that f is Cq for some integer q 2:: 1, and that f (0, 0) = 0. 

Let uk(t) = { u(kPlkP) ... , u(kP+ M - llkP)} =: 77(xk) =: { TJo(xk), ... , T/M-1 (xk)} be 

the feedback law applied to the system fort E [tk, tk+I], Vk 2:: 0, and for all xk E BP. 

Then, let us define F(xk) := f(xk, 77(xk)). 

Let us assume that the sequence of control moves computed at tk is such that 

T/i(O) = 0, Vi E [O, M - 1], and {770 , ... , 1JM-i} is Lipschitz continuous inside BP, 

which means that there exists L > 0 such that: 

II TJi(x) - T/i(Y) llp:'.S L II x - y llp, Vx, y E Bp and Vi E [O, M - 1] (3.18) 

Finally, suppose that, for some finite constant ,\ 2:: 0, 

Under these conditions, the quadratic objective function at time tk defined as: 

(3.20) 

(i.e., we considered equation ( 3. 3) with S* = 0 for simplicity), is a Lyapunov function 

for the closed-loop system. This means that there exist constants c, d, e, l > 0 such 

that: 
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3. II g~ (tk, xk) II?::;; l II Xk llf>, Vk 2:: 0, Vxk E BP. 

Proof: The proof is constructive, i.e., we will compute the constants c, d, e, l > 0 such 

that the statement of the theorem holds. 

Because the control law is discontinuous, equation (3.20) is equivalent to: 

l
tk+PT I p I R* 

V(tk, xk) := xk(t) Qxk(t) dt+ 2: u(kP+ilkP) Ru(kP+ilkP), with R ·= -
tk i=O . T 

(3.21) 

This is the form of V(tk, xk) which we will use next to compute our lower and upper 

bounds. 

• Upper Bound on V(tk, xk): Let us first derive an upper bound for V(tk, xk), i.e., 

let us compute a possible value for d > 0. Due to the constraint 

II xk(t) II?::;; f3 II Xk II?, Vt E [tk, tk+1L we have that 

V(tk, xk) ::;; Amax(C?) /32 PT II Xk IJ~ + t u(kP + ilkP)
1 

Ru(kP + ilkP) (3.22) 
Amin(P) i=O 

Now, since II u(kP + iJkP) 11?:=11 TJi(xk) II?::;; L 11 Xk II?, Vi E [O, M - 1] (this 

inequality follows directly from ( 3.18) and from the fact that T/i ( 0) = 0), we have 

our desired upper bound on V(tk, xk): 

• Upper Bound on the Gradient of V(tk, xk), V(tk, xk): Taking the derivative 

from ( 3. 20) we have that 
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In our discontinuous control law notation we have: 

V(tk, xk) - II Xk+I II~ - II Xk II~ + II u(kP + P - l lkP) 111· -

- II u((k - l)P + P - ll(k - l)P) 111· (3.25) 

Due to the contractive constraint, it fallows that: 

< - Amin(~) (1 - a 2
) II Xk II~+ II u(kP + P - lJkP) 111· -

Amax(P) 
- 11 u((k - l)P + P - ll(k - l)P) II~· (3.26) 

Now, if instead of imposing u(kP+ilkP) = u(kP+M -llkP), Vi E [M, P-1], 

we have u(kP + ilkP) = 0, Vi E [M, P - l], and M < P (i.e., M is strictly 

smaller than P ), then it immediately follows from {3.26) that: 

< - Amin(~) (1 - a 2 ) JI Xk II~ -
Amax(P) 

- II u((k - l)P + P - ll(k - l)P) 11~· ~ 

< Amin ( Q) ( 2) IJ 112 !'I 112 
- A 1 - a xk p=: -e Xk p 

Amax(P) 
(3.27) 

• Upper Bound on g:;: (tk, xk): From (3.20) it follows that 

- ltk+l rd II x(t, tk, Xk) II~ ox(t, tk, Xk) 
tk ' dx oxk + 

+ d 11 u(t, tk, xk) 11~ ou(t, tk, xk) Jdt 
du oxk 

(3.28) 

Thus, 
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(3.29) 

Then, it results that: 

This follows from the fact that: 

1. 

(3.31) 

which means that 

Thus, 

(3.33) 

Using the Bellman-Grown wall (BG) inequality, it follows that: 
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(3.34) 

and 

2. Since u(t, tki xk) = TJi(xk), Vt E [tk + iT, tk + ( i + l)T], and Vi E [O, M -1], 

and T/i is Lipschitz continuous for all i E [O, M - 1], it results from (3.18) 

that: 

• Lower Bound on V(tk, xk): As a result of condition (3.19) we have: 

> II Xk JJp -,\ lt II xk(r) llP dr 
tk 

> [l - Af3(t - tk)] jJ Xk IJp 

It then follows, for example, that: 

II Xk(t) l'p.?: II x; llP r t [t t 1 ] 
JOT' E k, k + 2).(3 

Thus, we have two cases to consider: 

1. tk+i ::::; tk + 2l/3 ~ PT::::; 2l/3 
In this case, 

> 1tk+1 [Amax(Q) + 4£~ Amax(R)] II Xk II~ dt?: 
tk 4).min(P) 

> PT[Amax(Q) + 4~2 
Amax(R)] II X 'l2, 

4).min(P) k J p 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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2. tk+I 2:: tk + 2~13 ~ PT 2:: 2~13 
In this case, 

Thus, it follows that: 

> min { PT [Amax ( Q) + 4~ 2 
Amax ( R)] ' Amax ( Q) + 4~ 2 

Amax ( R) } x 
4Amin ( P) 8Amin ( P) A/3 

x II Xk 11~=: c II Xk II~ (3.41) 

So, we have shown that, under the assumptions in the statement of the theorem, 

the quadratic performance criterion ( 3. 3) subject to the constraints ( 3. 5), with 

u(kP + ilkP) = 0 for i E [M, P - 1] and M < P, is a Lyapunov function for 

the closed-loop system. 
D 

3.4 Algorithm implementation 

Next we will show simulation results for various examples adopting the proposed 

MPC algorithm. This algorithm was implemented using a preliminary version of 

the MPC package in MATLAB written as the result of a semester thesis developed 

at the Institute of Automatic Control at the Swiss Federal Institute of Technology 

(ETH). This package is a combination of the well-known codes DASSL ([104]) and 

NPSOL ([53]) in MATLAB. DASSL is used for integration of the sets of algebraic and 

ordinary differential equations which describe the nonlinear dynamics of the model 

and the plant and NPSOL is used for solving the nonlinear optimization problem. 
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This code has not yet been optimized and our experience with it shows that a large 

amount of the time spent in the computations is devoted to calling functions in MAT

LAB which describe the model dynamics, the Jacobian of these dynamics, nonlinear 

constraints (such as the contractive constraint) and the Jacobian of these constraints. 

Therefore, it is likely that if DASSL and NPSOL are compiled together outside MAT

LAB, the computation time would be reduced significantly. So, the CPU time which 

we provide later for simulations of some examples only gives a rough idea of the order 

of magnitude of the time spent in the computations and should be interpreted with 

caution. 

3.5 Example: A Nonholonomic System (Car) 

3. 5 .1 Car (or "kinematic wheel") dynamics 

The example considered here is a nonholonomic system which is the model of a car 

with no trailers. This system can be represented by the following set of equations: 

x 

y 

0 

cosO v 

sinO v 

w 

(3.42) 

(3.43) 

(3.44) 

where (x, y) represents the Cartesian position of the center of mass of the car, 0 is the 

inclination of the car with respect to the horizontal axis and v and w are its forward 

and angular velocities, respectively. The coordinate system for the car is illustrated 

in figure 3.5. Forward and angular motion of the car is achieved by changing the 

relative angular velocities of the wheels. Each wheel is driven by a stepper motor and 

any desired wheel angular velocity is achieved by commanding the motors to turn the 
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appropriate number of steps per second. 

The inputs determined by the control law are v and w and the outputs are the state 

variables x, y and 8. The objective is to drive the system from any given initial 

condition to the origin with a satisfactory level of performance. 

Figure 3.5: Coordinate system for the car. 

This system violates Brockett's necessary condition for smooth or even continuous 

stabilization [24] and that is what makes the control design problem for this system 

(and nonholonomic systems, in general) a real challenge. Since MPC can automati

cally generate a discontinuous control law, we expect this controller to be suited for 

the class of nonholonomic systems. Moreover, this system is not controllable on the 

manifold of its equilibrium points, which also represents a difficulty from the control 

point of view. We will see later what difficulties are encountered by our contractive 

MPC scheme due to this fact. 

Here the results obtained by using the proposed contractive MPC (CNTMPC) al

gorithm will be compared to the standard finite horizon nonlinear MPC (SNLMPC) 

scheme, the smooth controller found in [120], the homogeneous controller proposed 

by M'Closkey and Murray in [90], Pomet's controller [105] and, especially, the dis-
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continuous controller proposed by Astolfi in [10, 11] (these last four techniques are 

analytic control designs devoted especially to nonholonomic systems). 

3.5.2 Simulation results 

Comparison between CNTMPC and Astolfi 's discontinuous controller ( un

constrained case) 

In the plots shown in this section, the angle B at all initial conditions is equal to 

Bo = 0 (i.e., the car is parallel to the x-axis) and the angle at the origin is equal 

to B1 = i (i.e., the car is parallel to the y-axis). We have adopted this convention 

because Astolfi's controlJer is analytically constructed to handle the output regulation 

problem with (x, u, B) = (0, 0, i) (and not (x, u, B) = (0, 0, 0)) as its target coordinate. 

CNTMPC 

Figure 3.6 shows the resulting paths in the xy-plane of the controlled car using 

CNTMPC in th€ unconstrained case. 

The controller parameters used in these simulations are given by: 

Controller Parameters (figure 3.6) 

Q = diag([l 1 OJ) IR= 0 S=O 
I 

P=5 I M=3 O'. = 0.9 

In all simulations for the car example the sampling time is equal to T = 0.1. 

Astolfi's discontinuous controller 

The same kind of plot in the xy-plane for the controlled car was presented in 

[10] (page 36) and we reproduce it in figure 3. 7 with the same control gains, for 

purpose of comparison. 
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Figure 3.6: Resulting paths in the xy-plane using CNTMPC when the car is initially 
on the unit circle and parallel to the x-axis. 

Comparison of results in figures 3.6 and 3.7 

We should emphasize that the time taken by Astolfi's analytic discontinuous 

controller to compute these trajectories is less than a second, while CNTMPC 

took between 9 and 12 minutes on average (using the non-optimized MPC 

package which we discussed in section 3.4). 

Moreover, because of the lack of controllability of this system at the origin, 

the contractive MPC algorithm is only able to drive the system to a very close 

neighborhood of the origin and then it stops (this effect cannot be really noticed 
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Figure 3. 7: Resulting paths in the xy-plane using the analytic discontinuous con
troller when the car is initially on the unit circle and parallel to the x-axis. 

in figure 3.6 due to scales). What happens is that, once the car is driven very 

near to the origin, the control action generated in the optimization step is very 

large - due to the lack of controllability - and the integration of the model 

equations with such control value cannot be carried out by the integrator. 

We can see from figures 3.6 and 3. 7 that for both controllers the car performs its 

maneuver towards the origin of the coordinate system in a very natural way and 

without ever inverting its motion. Hence, the floor trajectories do not contain 

any cusps. This response can be anticipated for the analytic discontinuous 

controller because the control signal v is constructed to always have a constant 
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sign. In the case of CNTMPC, the controller just automatically generates such 

a response. 

We also observe that CNTMPC generates trajectories which approach the origin 

in an almost straight path. It is clear that the analytic discontinuous controller 

cannot match this performance. This is not surprising since the construction 

of the analytic controller does not take into account performance but only sta

bilization. CNTMPC, on the other hand, minimizes a performance criterion at 

every time step and the contractive constraint takes care of the stability issue. 

Comparison between CNTMPC and SNLMPC (unconstrained and con

strained cases) 

Now that we have shown that CNTMPC performs satisfactorily in the unconstrained 

case, we will compare the performance and stability properties of a standard nonlinear 

MPC (SNLMPC) algorithm with CNTMPC in order to examine more closely the 

influence of the contractive and input constraints on the closed-loop response. The 

chosen initial condition is one used by M'Closkey in his experiments with the car at 

the Department of Mechanical Engineering at Caltech in 1993: 

Initial Condition 

x 0 = -0.5945 j y0 = 0.3299 j 00 = 0.8262 

Unconstrained case 

The unconstrained responses for SNLMPC and CNTMPC can be found in figure 

3.8. 

The controller parameters used in these simulations are given by: 
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Figure 3.8: Car: State and control responses for SNLMPC and CNTMPC in the 
unconstrained case. 

Controller Parameters (figure 3.8) 

Q = diag([l 1 OJ) R=O S=O 

P=5 M=3 O'. = 0.9 

Naturally, the contractive parameter a is used only by the CNTMPC controller. 

We notice that since the angle (} and the second input variable w are not 

weighted in the objective function, and since the system has two inputs and 

three outputs, the SNLMPC controller cannot stabilize (} which grows indefi

nitely. The other two states, x, y, reach the origin quickly but then they oscillate 

about it. 

The CNTMPC controller is able to stabilize (} (even though the system has 

more states than inputs) due to the introduction of the contractive constraint. 
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Besides, the settling time of the other variables is not increased (they reach the 

origin after only one sampling time without further oscillations). Therefore, 

we see that SNLMPC cannot stabilize () with the given controller parameter 

choices but the contractive constraint makes it possible, without degrading the 

performance of the response for the other state variables. 

Constrained case 

Case 1 

The constrained responses for SNLMPC and CNTMPC can be found in 

figure 3.9. 
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Figure 3.9: Car: State and control responses for SNLMPC and CNTMPC m the 
constrained Case 1. 
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The controller parameters in Case 1 are the following: 

Controller Parameters (figure 3.9) 

Q = diag([l 1 0.1]) R = 0.1 Im S=O 

P=8 M=5 0: = 0.9 

Umin= [-0.2 - 1.0] Umax = [0.2 1.0] 

The control bounds Umin and Umax represent physical bounds on v and w 

which were encountered by M'Closkey in his experiments with the car at 

Caltech in 1993. 

We can see from figure 3.9 that the Cartesian position y cannot be stabi

lized by SNLMPC with the given controller parameter choices. It will not 

reach the origin, even when given more time, because since v is already 

settling to 0, iJ is approaching 0 as well (as we can see from the model 

equation (3.44)). 

CNTMPC stabilizes the system but y shows a small offset due to the lack 

of controllability of the car near the origin. This is a difficulty which causes 

the code to stop before the origin is reached. 

Case 2 

From the results in Case 1, we would expect to stabilize the y-response 

by adding more weight to this state in the objective function. Indeed, the 

response improves if the controller parameters are selected as in: 

c t 11 p on ro er t arame ers (fi gure 3 10) . 
Q= diag([l 5 0.1]) R = 0.01 Im S=O 

P=8 M=5 0: = 0.9 

Umin= [-0.2 - I.OJ Umax = [0.2 1.0] 

The response with this new set of parameters can be found in figure 3.10. 

Here the responses obtained with SNLMPC and CNTMPC have approx

imately the same characteristics with the exception that the y-response 
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Figure 3.10: Car: State and control responses for SNLMPC and CNTMPC in con
strained Case 2. 

obtained with CNTMPC has a smaller offset than with SNLMPC. Because 

the system loses controllability at the origin and it has three states and two 

inputs, a certain amount of offset remains in generally only one variable. 

Comparison between CNTMPC and some classic controllers (constrained 

case) 

Here we want to compare the closed-loop response obtained by use of our CNTMPC 

controller in the presence of input constraints with some classic analytic control design 

techniques for nonholonomic systems. These techniques do not take into account 

process constraints but, since the response for the given initial condition remains 

between the bounds we used in our simulations with the CNTMPC controller, the 
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comparison is fair. 

The simulation results are shown in figures 3.11 (state response), 3.12 (control re

sponse) and 3.13 (plots in the xy-plane). 

The controller parameters used in the simulations with CNTMPC are: 

Controller Parameters (figures 3.11, 3.12 and 3.13) 

Q = diag([l 8 0.1]) R = 0.01 Im 

p = 20 M=6 

Umin= [-0.2 - 1.0] Umax = [0.2 
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Figure 3.11: Car: Comparison of CNTMPC with other classic controllers for non
holonomic systems (state response). 

From figures 3.11, 3.12 and 3.13, we can see that the smooth control law is not able to 

stabilize the car since it violates Brockett's necessary condition for stabilization of this 
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Figure 3.12: Car: Comparison of CNTMPC with other classic controllers for non
holonomic systems (control response). 

class of systems. The angle() oscillates indefinitely and so does the x coordinate (with 

oscillations of smaller magnitude). Pomet's controller suffers from similar drawbacks 

and while the angle (} and the x coordinate oscillate indefinitely, the y position has 

a very long settling time. The homogeneous controller performs better than the two 

previous controllers but once again the states oscillate indefinitely (even though with 

oscillations of much smaller magnitude than for the other two techniques). Astolfi's 

analytically constructed discontinuous controller is undoubtedly the best amongst 

these four analytic control design techniques and it can actually stabilize the system 

to the origin without oscillations. However, the comparison with the CNTMPC con

troller shows that the response time is five times longer within approximately the 

same control bounds. Therefore, we can conclude that the CNTMPC controller (and 

the SNLMPC as well, for certain parameter choices) performs significantly better 
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Figure 3.13: Car: Comparison of CNTMPC with other classic controllers for non
holonomic systems (plots in the xy-plane). 

than the classic analytic techniques showing, as we expected, that MPC is a success

ful control technique for the class of nonholonomic systems. The introduction of the 

contractive constraint only adds more reliability to it, guaranteeing stability as long 

as feasibility can be assured. 

3.6 Example: Fluid Catalytic Cracking Unit 

3.6.1 Description of the system 

Fluid catalytic cracking units (FCCUs) are commonly used to convert heavy petroleum 

feed-stocks into lighter hydrocarbon products, a key step in actual petroleum refining, 
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Significant practical incentives exist for the real-time optimization and improved con

trol of these units, because of the large volume of raw material processed, together 

with their widespread use (see [12]). A schematic representation of the process is 

presented in figure 3.14. 

Gas products 

Reactor 

Flue gas 

Regenerator Feed 

Air 

Figure 3.14: Schematic diagram of the FCCU. 

This unit is composed of two vessels, a reactor where reaction and separation of 

products occur and a regenerator, where the catalyst is regenerated by burning the 

carbon deposits formed on its surface. After being vaporized, the feed is put in 

contact with hot catalyst in the riser and converted into gasoline, distillates and 

light olefins. All of these products exit the reactor in the gas phase. During this 
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process, carbonaceous deposits also form on the surface of the catalyst particles. 

These deposits considerably decrease the catalyst activity, introducing the need for 

its regeneration in the adjoint vessel (also a fluidized bed) where the deposits are 

burnt before the catalyst is recirculated back to the reactor. Because of the fast 

kinetics involved, a high recirculation rate for the catalyst is required, causing the 

mean catalyst residence time in the reactor to be typically on the order of seconds (as 

reported in [12]). This introduces a significant interaction between the dynamics of 

the two vessels. The temperature distribution and flow regime in the riser also have 

a major impact on the product distributions obtained at the exit of the reactor. Due 

to the nature of these interactions and their considerable nonlinear behavior, FCCUs 

have been considered amongst the most complex and challenging processes in modern 

refineries [57]. These characteristics make this process well-suited for testing more 

advanced control structures such as MPC. The controllability of FCC units has been 

studied in [59]. 

The interest in the more efficient control of these units is reflected by the large number 

of different controller design approaches proposed for these processes. A few of the 

main references in the area are [8, 25, 57, 55, 60, 103, 112]. 

3.6.2 FCCU dynamics 

Here we will use the same semi-empirical model of FCCUs presented in [36] which is 

a modification of the original model of Lee and Kugelman [75]. It consists of balance 

equations for the mass of coke (carbonaceous material) and energy, both in the re

actor and in the regenerator vessels. The main assumptions are a constant hold up 

in both vessels (maintained by the use of equal spent and regenerated catalyst flow 

rates), perfect mixing, physical properties independent of the temperature and negli

gible heat loss to the surroundings. The state variables are Csc (coke content in the 

spent catalyst), Trx (reactor bed temperature), Crg (coke content in the regenerated 

catalyst) and Trg (regenerator bed temperature). The model also considers five main 
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input variables which are Fa (air flow rate), Ta (air temperature), Ft (feed rate), T1 

(feed temperature) and Fe (catalyst recirculation rate). The equations which describe 

the model are ([36, 75]): 

Reactor coke balance: 

(3.45) 

Reactor energy balance: 

Regenerator coke balance: 

(3.47) 

Regenerator energy balance: 

where: 

Rate of carbon formation: 

(3.49) 

Rate of cracking: 

(3.50) 

Rate of coke burning: 

(3.51) 
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(-~) 
(

- acbe R rg CrgMgacoHrg) 
0.21 C 0.21FaMc 

-2.L C1e- RTr 

-9..3_ 
tcC2e- RTr 

Hrx 

Fe 
0.6Tr + 0.4Tmix 

CpcFcTrg + CpfFtTJ - FtAo 

CpcFc + CpfFt 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

The nomenclature for this FCC model can be found in [75]. The numerical values for 

the model parameters are given by: 

Parameter and steady state input values for the FCC 

acb = 1.404 X 1011 h- 1 

C1 = 6990 

Cpc = 0.28 Btu/ lb.° F 

Cpg = 0.2405 Btu/ lb.° F 

Ecc = 2450 cal/ gmol 

Hrg = 4.0 X 105 lb 

Mc= 13 lb/lbmol 

n = -0.07 

Q3 = -1. 7 x 103 cal/lbmol 

I 
R = 1.986 cal/gmol.°C 

T1 = 440° F 

I l::iHcr = 120 Btu/lb 

ace = 0.0195 lb coke/ lb cat. h-1 

C2 = 111.1 

Cpf = 0. 75 Btu/ lb. ° F 

Ecb = 3. 76 x 104 cal/ gmol 

Ft = 8.97 x 105 lb/h 

Hrx = 1.0 X 105 lb 

Mg= 29.2 lb/lbmol 

Q1 = 1.0 x 105 cal/ gmol 

Qcb = 1.37 X 104 Btu/lb 

Ta= 90° F 

aco = 1 

>.0 = 95 Btu/lb 
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3.6.3 Computation of steady states 

Let us now examme the steady state characteristics of the given FCC model, in 

particular, the possibility of existence of multiple steady states. Such occurrences are 

common in nonlinear processes where exothermic reactions take place, and have in 

fact been identified in similar models of FCC units [7, 8, 42]. 

The steady states can be computed more easily by first eliminating some of the 

unknowns in the model equations. For example, from the reactor and regenerator 

coke balances we obtain: 

From the regenerator energy balance it results that: 

(3.58) 

(3.59) 

(3.60) 

And, finally, by substituting equation (3.60) into the regenerator energy balance, at 

steady state, we obtain: 

Further elimination of variables becomes difficult due to the complexity of expression 

(3.61). 
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By varying Fa and Fe in a range of ±5% around their nominal values while keeping the 

other potential inputs, Ft, T1, Fe, at their nominal values, one "hot" open-loop (OL) 

stable and one OL unstable stationary point can be calculated and their coordinates 

are given by: 

Steady state values for the FCC 

Variables unstable (1) stable (2) 

Fa (lb/h) 6.8 x 105 7.2 x 105 

Fe (lb/h) 8.95 x 106 9.48 x 106 

Cse (lb coke/ lb cat) 7.985 x 10-3 7.173 x 10-3 

Trx (° F) 957.62 1149.88 

Cr9 (lb coke/ lb cat) 2.347 x 10-3 3.571 x 10-4 

Tr9 (° F) 1163.46 1398.04 

Previous studies (e.g., [42, 75]) have reported the possibility of existence of unstable 

steady states for similar FCC units where it was noted that the system tended to 

drift either to a state of complete combustion or to extinction. This fact together 

with the significant nonlinear nature of the process makes the application of linear 

controller design techniques for this system a significant challenge. Therefore, this 

kind of system is a natural candidate for application of nonlinear MPC techniques. 

Standard nonlinear MPC techniques have been applied previously to this process and 

have been shown to perform rather well in the stable region of the state space for 

specific controller parameter choices (see [36]). In the unstable region difficulties were 

encountered due to the ill-conditioning of the nonlinear state space equations which 

describe the model for this system. 

As pointed out by Arbel et aL in [9], operation in the unstable region is not considered 

important in most applications since this is a region where the temperatures in the 

reactor and regenerator are lower than they are in one of the "hot" stable regimes 

(the unstable equilibrium point is found between two stable equilibria, a "hot" and 
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a "cold"). There is no practical cold state in an FCC. Although one can compute a 

cold state, the temperature is so low that the feed will not be vaporized. There will 

be no reaction and no catalyst flow. The unit will merely fill up with unvaporized 

feed. 

Since the open-loop unstable steady state is always an intermediate state between 

the desirable hot state and the unoperational cold one, the most important control 

task in this unit is, if the operation conditions are changed (manually or due to 

disturbances) and the stable hot steady state is lost, the control circuit should be 

able to act immediately, bringing the operation back to the hot steady state. 

Thus, maintaining operation around the unstable steady state is not really the ob

jective in these FCC units. The main interest is to design a controller which can 

restore the unit from the unstable region back to the "hot" stable one. However, 

since stabilizing the system around the unstable steady state is a challenging control 

problem, we will consider it here just for the sake of studying the stabilizing properties 

of the proposed contractive MPC controller under such unfavorable and challenging 

conditions. 

Here we will adopt Fe and Fa as the manipulated variables (inputs). Thus, this is 

a 4-state 2-input system and, in this chapter, we consider that all the states are 

measurable and the measurements are noise-free. In practice, Trx and Tr9 are the 

controlled variables (outputs) since they can be easily measured and Csc and Crg are 

estimated states. 

3.6.4 Simulation results 

Our goal in the simulations that follow is to test the stability and performance char

acteristics of the proposed contractive MPC (CNTMPC) scheme against those of a 

finite horizon standard nonlinear MPC (SNLMPC) algorithm. 
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Here we will study two different steady state transitions: 

Transition 1: a step change in the state values from steady state (1) (unstable) to 

steady state (2) (stable), 

Transition 2: a step change in the state values from steady state (2) (stable) to 

steady state (1) (unstable). 

Our results will reveal that while SNLMPC performs well in Transition 1 (even 

though, as we will be showing, it can go unstable for certain controller parameter 

choices), we could not find a set of parameters for which SNLMPC generated a stable 

closed-loop system in Transition 2. On the other hand, CNTMPC is able to handle 

the step change to the unstable region due to the stabilizing effect of the contractive 

constraint. 

The difficulty in operating in the unstable region comes from the fact that the model 

equations become much more ill-conditioned than they are in the neighborhood of 

the stable steady state. This behavior introduces difficulties in the convergence of 

the control response of the nonlinear algorithm, due to the extreme sensitivity of the 

equations to input changes. 

The input and state variables which will be plotted for the FCC example are the 

deviation variables with respect to the desired steady state values. 

Transition 1 

Case 1 

The simulation for Transition 1 under no input constraints is illustrated 

in figure 3.15 for both SNLMPC and CNTMPC. For the chosen controller 

parameters, the responses are equal and in this transition to the stable 
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steady state, the beneficial stabilizing effects of the contractive constraint 

cannot be felt. 

x 10-4 

0 
I / 

Cll 15 I = I Csc (solid) Cll 
-50 Trx (solid) 

0 
I :.::: 

E 10 I 
..... = ~ \ 
CJ 

I = 5 0 
u ..... 

..... 

erg (dashed) 

~ = -100 Tr 9 (dashed) ..... 
cu 
'"' ~ 8 -150 I 

I 

~ -200 I 
I 

0 
-250 

0 4 0 1 2 3 4 
t 

x 10
5 x 10

4 

0 0 

--1 
c.; 

IJo.i -~"'-1 
'Z' -2 ..... 

.,_., 
~ 

cu 
~ -3 ~ -2 

~ ~ 
0 

s::: -4 
0 

s::: -3 

-5 - -4 -
0 1 2 3 4 0 1 2 3 4 

t t 

Figure 3.15: FCCU: State and control responses for SNLMPC/CNTMPC m the 
unconstrained Case 1 (Transition 1). 

The controller parameters used in Case 1 are given by: 

Controller Parameters (figure 3.15) 

Q = diag([O 10-3 1 OJ) R = 0.1 Im S=O 

P=5 M=5 a= 0.9 

In all simulations for this example we used a sampling time T = 0.5 h. 

Case 2 

Now we want to show that, even when the desired steady state is open-loop 

stable, the response obtained with SNLMPC can be easily made unstable. 



0.01 

VJ 0.008 
= 0 ... 
~ 0.006 --= ~ 0.004 

= 0 
u 0.002 

2 
-. 

"" ~ 
0 '-' 

Q,j -c-= 
~ 2 
~-
0 -~ 

-4 

84 

Our results will reveal that if no weights are added to the inputs in the 

objective function (i.e., R = 0), the manipulated variables settle to high 

values and cannot be brought to zero. Meanwhile, the temperatures Trg 

and Trx show a large offset and the concentrations Crg and Csc go unstable. 

These simulations are illustrated in figure 3.16. 
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Figure 3.16: FCCU: State and control responses for SNLMPC in the unconstrained 
Case 2 (Transition 1). 

The controller parameters used in Case 2 are given by: 

Controller Parameters (figure 3.16) 

Q = diag([O 10-3 1 OJ) R=O S=O 

P=5 M=3 

Since the control effort is very little in Case 1, where both SNLMPC and CNTMPC 
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are stable (due to the weight on u in the objective function), there is no need to 

analyze the constrained case. Therefore, we will move straight into Transition 2. 

Transition 2 

SNLMPC 

In this case, the control problem is much harder and the SNLMPC algo

rithm produces unstable responses as we can see from figures 3.17 (Case 

1) and 3.18 (Case 2). Case 1 and Case 2 represent simulations with 

SNLMPC for different sets of controller parameters: 

Controller Parameters (figures 3.17 and 3.18) 

Case 1 

Q = diag([10-2 10 0.1 10-2]) R=O S=O 

P=8 M=5 

Case 2 

Q = diag([10-4 10-2 1 10-4]) R = 0.01 Im S=O 

p = 15 M=5 

In Case 1 (figure 3.17), the state responses are highly oscillatory and show 

significant offset. The manipulated variables oscillate around their stable 

steady state values. 

In Case 2 (figure 3.18), Trx, Trg have large offsets once again (this time 

without oscillatory behavior) and Cr9 , Csc go unstable, increasing indef

initely. Meanwhile, the manipulated variables settle to zero in only one 

sampling time, leaving the system open-loop. 

Thus, the parameter change from Case 1 to Case 2 causes a very different 

unstable closed-loop response. 
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Figure 3.17: FCCU: State and control responses for SNLMPC in the unconstrained 
Case 1 (Transition 2). 

CNTMPC 

CNTMPC generates a stable closed-loop with the state variables settling 

to the desired steady state in approximately eight sampling times ( t = 4 

h). The results are depicted in figure 3.19. 

The controller parameters used in these simulations are given by: 

Controller Parameters (figure 3.19) 

Q = diag([10-6 10-2 1 10-6]) R = 0.01 Im S=O 

p = 12 M=6 a= 0.9 

Due to the severe degree of difficulty in this control problem, we will not be 

considering the influence of input constraints. The main challenge which 
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Figure 3.18: FCCU: State and control responses for SNLMPC in the unconstrained 
Case 2 (Transition 2). 

we have found in this case is to find a set of control parameters for which 

the optimization is feasible in the vicinity of the unstable operating point. 
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case (Transition 2). 
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3. 7 Example: 2-Degree of Freedom Robot 

3. 7.1 Robot dynamics 

The top view and cross section of the robot are shown in figure 3.20. The workspace 

of the robot is illustrated in figure 3.21. 

The dynamics of the robot is represented by the following equations: 

( J + mr2)¢ + 2mrr¢ 

pmr - pmr¢2 

Introducing T2 = T2f p the following matrix description results: 

[ 
J + mr

2 

0 ] · [ ~ l + [ mrr. mr¢ ] · [ ~ l [ ~1 l 
0 m r -mr</> 0 r T2 

--~-----~-- '--...---' '---..----" 
M(q) ij C(q,q) q T 

where: 

m mass of the cart 

J the joint moment of inertia 

</>(t) position of the robot arm </> E [0° ... 270°] 

r(t) position of the cart rE[0.27m ... lm] 

T1,2 (t) the torque of the arm and the cart, respectively 

q(t) the state vector [</> r]' 

Therefore, equations (3.62) and (3.63) can be rewritten as: 

(3.62) 

(3.63) 

(3.64) 
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Figure 3.20: Top view and cross section of the robot. 

lvf(q) · ij + C(q, q) · q = T (3.65) 

The states of the system are: the position q(t), the velocity q(t) and the acceleration 

ij(t) of the arm and the cart. 

The parameters used in the simulations performed here are given by: 

Parameters for the robot 

m = i. o I 1 = 6 .43141 1 p = i. o 
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Figure 3.21: The robot workspace. 

3. 7.2 Simulation results 

In this mechanical system, our goal is to take the robot arm to a specified position and 

angle beginning at the origin. In other words, we have a setpoint tracking problem 

at hand. This is a 2-input 2-output system where the outputs are the angle </> and 

the position r and the inputs are the torques u := [T1 T2]. 

The desired setpoint in these simulations is given by: 

Set point 

</>o = ~ j ro = 0.8 I J>o = 0 I ro = 0 

The initial condition is the origin. 
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The unconstrained and constrained responses of our contractive MPC ( CNTMPC) 

algorithm will be compared to those produced by a standard nonlinear finite horizon 

(SNLMPC) scheme, as we did for the previous examples. 

Unconstrained case 

Case 1 

The comparison between the results obtained with SNLMPC and CNTMPC 

can be found in figure 3.22. 
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Figure 3.22: Robot: State and control responses for SNLMPC and CNTMPC in the 
unconstrained Case 1. 

The controller parameters used in Case 1 are given by: 
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Controller parameters (figure 3.22) 

Q = diag([lO 10 1 1]) R=O S=O 

P=6 M=4 a= 0.8 

In all the simulations for this example, the sampling time is equal to T 

0.1. 

We notice from figure 3.22 that the same response speed is obtained with 

both algorithms at the expense of a slightly higher control effort from 

CNTMPC (especially for u1 := T1). 

Case 2 

The speed of the response obtained with CNTMPC can be increased if 

we decrease the value of a. This effect is illustrated in figure 3.23, where 

the results obtained with a = 0.8 are compared to the ones obtained with 

a = 0.3, while keeping the remaining control parameters unchanged. 

We see that the response speed for a = 0.3 has improved at the expense 

of a higher control effort in comparison with the results obtained with 

a = 0.8. Thus, a is not only a parameter for stability guarantee but it 

also strongly influences the performance. 

Constrained case 

The simulation results for SNLMPC and CNTMPC are illustrated in figure 

3.24. 

The controller parameters used in these simulations are as follows: 

Controller parameters (figure 3.24) 

Q = diag([lO 10 1 1]) R=O S=O 

P=7 M=5 a= 0.9 

Umin= [-10 -5] Umax = [10 5] 
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Figure 3.23: Robot: State and control responses for SNLMPC and CNTMPC in the 
unconstrained Case 2. 

The results show that the two controllers behave very similarly, with CNTMPC 

being slightly more aggressive (within the constraint bounds) due to the pres

ence of the contractive constraint. 
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constrained case. 
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3.8 Example: Continuous Stirred Tank Reactor 

(CSTR) + Flash Unit 

3.8.1 Description of the system 

We consider now the application of our contractive MPC scheme to the process rep

resented in figure 3.25. 

T3 

Figure 3.25: Schematic diagram of the CSTR and flash unit. 

This process includes a continuous stirred tank reactor and a flash unit with a recycle 

stream. The reactor model is based on an example of Economou in [41] where a 

first-order endothermic reversible reaction is assumed to occur. 

In figure 3.25 the variables Ci, i = 1, 2, 3, 4, are concentrations of B given in gm~l B 

and Fi, i = 1, 2, 3, 4, are the flow rates given in !. For simplicity, we will consider 

that all the streams have the same density p = 1 7- and that the concentrations are 

equal to the molar fractions of A and B (this would be the case if the molecular 
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weights of A and B are the same and equal in value to the density of the streams). 

. . gmol B ( ) gmol A In this case, feed stream 1 contams F1C1 s and F 1 1 - C1 s . In the 

reactor, A is decomposed into B in a reversible reaction. B is the product in which 

we are interested. 

Accumulation in the reactor is possible in the transient phase. The flash is assumed 

to operate at steady state (i.e., F2 = F3 +F4 ) and no reaction takes place in it. Stream 

2 enters the flash where B, being a more volatile species, can be obtained with higher 

degree of purity in stream 3 than in the feed stream 2, depending on the operating 

conditions. Ideally, stream 4 contains mostly A and small amounts of B. 

The flash drum is also assumed to operate at constant pressure and temperature. 

The liquid-vapor equilibrium constant for component B is assumed to depend only 

on the temperature in the separator, T3 . We assume that the fluid properties are 

preserved in the recycled stream and that no time delays are present in the material 

recirculation. 

Our intention with the introduction of the flash and the recycle stream, is to increase 

the molar fraction of B in the final product (stream 3, in this case) compared to 

its molar fraction in the reactor C2 . We will see that depending on the operating 

conditions, the obtained product can be very significantly purified. 

This is a SISO system where the output is C3 , the input is T3 and the three states are 

V, C2 , T2 . The control objective is to operate the system at the point of maximum 

conversion of Bin stream 3. The coordinates of V, C2 , T2 and T3 at the equilibrium 

point of maximum conversion can be computed by using the three equations of the 

model and the condition of optimality, namely 1fj{ = 0. Thus, this optimal operating 

point is a point of zero steady state gain, which makes it difficult for linear controllers 

to stabilize the system around this point with satisfactory performance. 

We will see that while the manipulated variable T3 does not have much influence on 

the value of C2 , it can increase C3 to much higher levels. In other words, the output 
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is highly sensitive to input values. 

3.8.2 CSTR + flash dynamics 

The dynamic model of the process, including dynamic balance equations for the 

reactor and algebraic equations for the connecting streams, is described by: 

Reactor equations: 

dV 

dt 
d(VC2) 

dt 
d(VT2 ) 

dt 

FiC1 + F4C4 - F2C2 + V r(T2, C2) 

(-6.H) 
FiT1 + F4T3 - F2T2 + V C r(T2, C2) -

p 

UA 
- C (T2-Ts) 

p 

These equations can be re-written in a simplified form as: 

dV 

dt 
dC2 
dt 
dT2 

dt 

Flash equations: 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3. 71) 

(3.72) 

(3.73) 

(3.74) 
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Mixed equations: 

r(T2, C2) Kr1 (T2) (1 - C2) - Kr2(T2) C2 (3.75) 

Kr1(T2) A1 e-Ea1/T2 (3.76) 

Kr2(T2) A2 e-Ea2/T2 (3.77) 

Ke(T3) a 10-b/T3 (3.78) 

F2 kv V (3.79) 

F4 (3 F1, with (3 ~ 0 (3.80) 

The numerical values of the parameters used in the simulations are (for a compatible 

set of units which are omitted here): 

Parameters for the CSTR + flash unit 

C1=0 T1 = 4.5 

F1 = 1.79 x 10-2 a= 2.11x104 

A1 = 5.0 x 103 b = 18.5 

A2 = 1.0 x 106 (-~H) = 5.0 X 10-2 
p 

Ea1 = 45 (~A)= 1.35 X 10-3 
p 

Ea2 = 75 (3 = 1.32 

Ts= 6.0 kv = 0.5 

3.8.3 Computation of steady states 

The first step in the study of this system is the computation of steady states. Given a 

steady state input value uss = T;8 we can then compute the steady state coordinates 

through the following equations: 

vss :1 (1 + (3) 
v 

(3.81) 
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(3.82) 

0 

(3.83) 

Thus, the volume vss and reactor temperature T.J, 8 are computed directly through 

equations (3.81) and (3.83), respectively. The concentration C2ss can be computed 

through equation (3.82) once T.]8 is known. 

For the chosen plant parameters and for Tr in the operating region of interest, we 

have verified that the computed steady state is unique and stable. Besides, for given 

steady state coordinates vss, c2s, T.J, 8
, there is only one corresponding input value 

T.88 
3 . 

In spite of the absence of steady state multiplicity, one of the interesting features of 

this example is the high sensitivity of the output ( C3 ) with respect to the input (T3 ). 

The output C3 is computed by: 

1 + (3F1 Ke(T3)-l 
kv V Ke(T3) 

At steady state, equation (3.84) reduces to: 

css Ke(T38
) (1 + fJ) 

2 Ke(T:f8) + {J 

From equation (3.85) we see that, for Ke = 1 (which implies that T3 = 

(3.84) 

(3.85) 

b 

r; = 4.2782)' we have c3s = c2s' which means that there is no advantage in having 

the separation unit after the reactor. If Ke < 1 (or T3 < T;) we have c3s < c2s. 
Therefore, we are only interested in operating the plant at T3 > T;. 
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From equation (3.85) we also notice that, c3s = C.i8 if (3 = 0. Large values of (3 will 

increase the value of c3s for high values of T3 . However, if T3 is low, lim/3-+oo c3s = 0. 

The coordinates V, C2 , T2, T3 of the point of maximum conversion are computed by 

using equations (3.81, 3.82, 3.83) and the following equation: 

(3.86) 

where: 
dKe _ K log10 a 
dT

3 
- e T} 

dC2 Krl Ea1kvKe kvCl Kr2 
dT

2 
- T.2(K K k _&_) 2 [ Kr2(Ea1 - Ea2) + K + f3 - l + f3 (Eal+ Ea2 K)] 

2 rl + r2 + v Ke+/3 e · rl 

For the chosen plant parameters, the steady state of maximum conversion has the 

following coordinates: 

Steady state values for the CSTR + flash unit 

Tis - 6.109444 vss - 8.3056 x 10-2 - -

c2s - 0.459498 rss - 5.454972 - 2 -

c3s - 0.999338 -

Thus, operation at the steady state of maximum conversion gives us a product con

taining 99.93% of B. 

Our control objective is to drive the system to the operating point of maximum 

conversion and keep it there starting from arbitrary initial conditions or from steady 

states of low conversion of B. 
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3.8.4 Simulation results 

In the following simulations we will demonstrate the stabilizing properties of contrac

tive MPC (CNTMPC) for this chemical process example. 

Case 1 

In Case 1, we will perform a steady state change from a steady state of low flash 

temperature T3s = T;, which means that c~s = c~s, to the optimal operating 

point. The results will reveal a high sensitivity of C3 to T3 while C2 varies very 

little in this operating range. 

We will examine the situation where the system is operating initially at the 

following steady state: 

Initial condition 

T3o - 4.278166 Vo - 8.3056 x 10-2 -, 

C20 - 0.428721 T20 - 4.43389 -, , 

C30 - 0.428721 -, 

Thus, the system operates initially in a very undesirable regime with C3,0 = 

C2,0 < 45%. In this operating region, one can see no advantage in using the 

separation unit after the reactor. 

Notice that since the parameters and operational variables are the same for the 

chosen initial condition (which is a steady state) and the target steady state, 

the initial and final volumes are also the same (see equation 3.81, where it is 

shown that the steady state value of the volume does not depend on the input 

or the other states). 

The input and state variables which will be plotted for the CSTR+flash example 

are the deviation variables with respect to the desired target steady state values. 

However, for better illustration of the behavior of the output C3 in comparison 
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with the concentration in the reactor C2 , the real values of these variables will 

be plotted in the same graph. 

The simulation results in the unconstrained case can be found in figure 3.26. 
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Figure 3.26: CSTR + Flash: State and control responses Case 1. 

The controller parameters used in Case 1 are given by: 

Controller parameters (figure 3.26) 

Q = diag([l 100 1]) R=O S=O 

P= 1 M=l a= 0.1 

In the simulations for this example the sampling time is equal to T = 10. 

As we can see from figure 3.26, the controller performs a very smooth transition 

to the steady state of maximum conversion and the response occurs in two 

sampling times with very little control effort involved. 
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Notice that since the point of maximum conversion is open-loop stable, we were 

able to impose a very tight contraction requirement (o: = 0.1) in only one time 

step. 

Case 2 

Since the control effort involved in Case 1 was very small and we could not 

examine the influence of input constraints, let us now consider the following 

initial condition: 

Initial condition 

T30 - arbitrary Vo - 1 -
' 

C20 - 0 T20 - 0 -
' ' 

C3,o - 0 -

A comparison of the results obtained in the unconstrained and constrained cases 

can be found in figure 3.27. 

The controller parameters used in Case 2 are given by: 

Controller parameters (figure 3.27) 

Q = diag([l 100 1]) R=O S=O 

p = 1 M=l ();' = 0.4 

Umin= 0 Umax = 0.05 

From figure 3.27 we can see that tight input constraints do not delay the re

sponse, the system still responds in two samples. This fact is due mostly to 

the fact that the optimum is an 01 stable equilibrium. The plot of C2 , C3 x t 

shows that the sensitivity of C3 to variations in T3 in this transition is more 

than twice that of C2 . 

In conclusion, our contractive MPC scheme is able to perform the transition from 

arbitrary initial conditions to the point of maximum conversion, where almost pure 
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Figure 3.27: CSTR + Flash: State and control responses in Case 2. 

B is produced in the distillate of the flash drum, in spite of the high sensitivity of the 

model to the input values of T3 . 
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Chapter 4 Output Feedback Contractive 

NLMPC: Nominal Case 

In this chapter we will be dealing initially with the following control problem: 

Problem 2 : State feedback, nominal case and asymptotically decaying disturbance 

Later we will show that this problem is equivalent to dealing with the output feedback 

case when the state estimator is asymptotically convergent. 

4.1 Introduction 

In the previous chapter we have shown that, in the case of no model/plant mismatch, 

state feedback and no disturbances, the contractive constraint makes the closed-loop 

exponentially stable for all initial conditions x 0 E Bp. It has been proven that if the 

sequence of optimal control problems P(tk, xD, k ~ 0, is feasible (or, equivalently, if 

Xk E BP for all k ~ 0) then the contractive MPC scheme is an exponentially stabilizing 

controller inside the reachable set X. Moreover, we have shown that the commonly 

used quadratic objective function with finite prediction horizon is a Lyapunov function 

for the closed-loop system in the presence of the contractive constraint under extra, 

more conservative assumptions. 

Now we will examine the stability properties of the closed-loop system subject to 
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Control Algorithm 2 but now under the conditions in Problem 2. Thus, our 

plant is now given by the following dynamic equation: 

i;P(t) = f(xP(t), u(t)) + d(t) (4.1) 

where the additive disturbance d(t) belongs to a compact, convex set D with 

O E V 0 := interior(D) and is asymptotically decaying, i.e.: 

d(t) -+ 0 as t-+ oo (4.2) 

And the model (used in the prediction step of the MPC scheme) is given by: 

x(t) = f(x(t), u(t)) ( 4.3) 

It is important to notice that even an exponentially decaying disturbance 

(d(t) :::::; ae-bt, where a, b > 0) can destabilize a nonlinear system, possibly result

ing in finite escape time (as observed in [86]). 

Thus, our main motivation for demonstrating perturbed stability for MPC is to show 

that a stable state estimator may be cascaded with a stabilizing controller with no 

risk of instability (given that certain conditions on the initial state estimate and on 

the nonlinear dynamics of the plant are satisfied). This has been done in the context 

of predictive control with linear models (see [93]). The result relies on exponential 

stability of the state estimator (usually a Kalman filter), asymptotic nominal stability 

of the system with state feedback and Lipschitz continuity of the control law. 

In the nonlinear context, however, stable state estimators are difficult to formulate, 

let alone exponentially stable ones. Here we will show that this problem can be cir

cumvented and our result is that any asymptotically stable nonlinear state estimator 
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may be cascaded with the proposed exponentially stabilizing nonlinear MPC con

troller to produce an asymptotically stable closed-loop response. This property has 

been previously demonstrated in [114] for discrete-time nonlinear systems of the kind 

xk+l = f(xk, uk) +dk, k E [O, oo). In that work, the authors conclude that the closed

loop system generated by applying MPC with end equality constraint, Xk+P = 0, to a 

system subjected to an asymptotically decaying disturbance, i.e., dk --+ 0 ask--+ oo, 

is asymptotically stable. The authors suggest that this asymptotically decaying dis

turbance could originate from a state estimation procedure but they do not proceed 

to formulate a stable observer for the nonlinear system. 

The formulation of stable nonlinear state estimators is an active area of research. 

An estimator based on minimization of a moving horizon cost function is presented 

in [100, 111]. Another variation of this technique is presented for continuous-time 

systems in [ 97]. 

The estimator proposed here is a recursive nonlinear dynamic observer based on 

a continuous-time system with discrete observations and we will provide sufficient 

conditions under which this estimator produces locally asymptotically convergent 

estimates. 

But first let us show that Control Algorithm 2 applied to a system of the form 

(4.1) subject to a disturbance of the kind (4.2) results in an asymptotically stable 

closed-loop system. 



109 

4.2 Stability of MPC under asymptotically decay-

ing disturbances 

4.2.1 Basic stability definitions 

Consider a nonlinear system of the kind: x(t) = f(x(t)) with initial condition x 0 at 

t 0 and f : Rn ---+ Rn continuously differentiable. 

Definition 4.1 The equilibrium x = 0 is uniformly attractive if there exists a number 

r > 0 such that 

II xo lip< r, to 2: 0 ===} x(t, to, xo) ---+ 0 as t---+ oo, uniformly in x 0 , t 0 ( 4.4) 

or, equivalently, if for each E > 0 there exists a T = T ( E) such that 

II Xo llp< r, to 2: 0 ===} II x(t, to, xo) llp< E, Vt 2: T(c) +to (4.5) 

Definition 4.2 The equilibrium x = 0 is uniformly stable if, for each E > 0, there 

exists a 6 = o ( E) such that 

II Xo llp< b(E), to 2: 0 ===} II x(t, to,xo) llp< E, Vt 2: to (4.6) 

Definition 4.3 The equilibrium x = 0 is asymptotically stable if it is stable and 

attractive. It is uniformly asymptotically stable if it is uniformly stable and uniformly 

attractive. 

These definitions hold for any p-norm (or Holder norm), with p 2: 1. 
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4.2.2 Basic assumptions 

Besides assumptions 3.1, 3.2, 3.3 and 3.4 in chapter 3, the following additional as

sumptions will be made in the derivation of the results in this chapter: 

Assumption 4.1 The disturbance satisfies the following boundedness condition: 

dk(t) E BPt := {d E ?Rn :II d llp::S p%} for P% E [O, oo), t E [tk, tk +PT], Vk 2: 0, 

(4.7) 

and the asymptotic properties of d(t) are described as: 

For any E > 0, 3 a finite k := k(E) EN so that p~:::; E, Vk E [k, oo), 

andk(E)--+oo ifE--+0 

where N is the set of non-negative integers. 

Assumption 4.2 The function f : ?Rn x ?Rm --+ ?Rn is Lipschitz continuous, i.e., there 

exists L > 0 such that 

II f(xP, u) - f(x, u) llP:::; L II xP - x llp, xP, x E ?Rn and u EU (4.8) 

Remark 4.1 Let the reachable set for the closed-loop system resulting from imple

mentation of Control Algorithm 2 to the plant (4.1), using the model (4.3) for 

prediction, be defined by: 

{ xP(t), x(t) and x(t) E Rn J xP(t) = xP(t, t0 , x{;, u, d), x(t) = x(t, t0 , xf;, u, 0) 

and x(t) = x(t, t 0 , x{;, u, 0), t E [t0 , oo); x{; E BP, u EU, d E 'D} (4.9) 

Then, equation (4.8} only needs to be satisfied for xP, x E X. The reason why we 

do not state assumption 4.2 in this less conservative way is because the set X is not 

known a priori. Thus, in this form, condition (4.8) cannot be checked. 
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4.2.3 Stability analysis 

Before the main result of this section is proven, we will prove the following lemma 

which will be very useful in our stability analysis of different variations of the con

tractive MPC controller throughout this thesis. 

Lemma 4.1 Consider the discrete linear system: 

(4.10) 

If ak E [O, 1) and bk::::: 0, Vk EN, then system (4.10) is stable in the practical sense, 

i.e., 

1 Zk < Z + bmax 
· 0 1-amax' 

Vk EN 

2 l • < bmax 
. lmk-+oo Zk - 1-amax 

Proof: From equation ( 4 .10) it fallows that: 

k-1 k-1 k-1 

zk :::; (II ai)zo + 2:) II aj )bi (4.11) 
i=O i=O j=i+I 

There! ore, we have: 
k 

Zk :::; a~axZo + bmax La~~~) (4.12) 
i=l 

Since amax E [O, 1), we get: 

k . 1 
lim '°' a(i-l) = ---
k L..., max 1 

-+oo i=l - amax 
( 4.13) 
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Thus, from (4.12), it follows that: 

Vk EN ( 4.14) 

Since amax E [O, 1), we finally obtain: 

Vk EN (4.15) 

and 

1. < bmax 
lm Zk _ 

k-tcx:; 1 - amax 
(4.16) 

D 

Theorem 4.1 (Stabilizing properties of Control Algorithm 1 in the pres

ence of asymptotically decaying disturbances) Let Assumptions 3.1, 3.2, 3.3, 

3.4, 4.1 and 4.2 be satisfied and let x~, x E BP, Vk 2:: 0. Then, the closed-loop sys

tem resulting from application of Control Algorithm 1 to system (4.1) is uniformly 

asymptotically stable (U AS). 

Proof: 

The difference between the dynamics of the model and of the plant fort E [t{, ~+1 ], 

is given by: 

( 4.17) 
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Then, since the states of the model are updated as the states of the plant at every t{, 

j = 0, ... , P - 1, Vk 2: 0, we can integrate (4.17) and obtain: 

x~'j(t) - x{(t) = J;[f(x~'j(r),u{(r)) - f(x{(r),u{(r))]dr + £.t d{(r)dr (4.18) 
k k 

Therefore, using (4. 7) and (4.8), we have: 

II xf'j (t) - xi(t) llP < 1t II f(xf'j(r), u{(r)) - f(x{(r), u{(r)) Jlp dr + 
ti 

+ rt II d1(r) llP dr::; 
it{ 

< L rt II x~'j(r) - x{(r) llP dr + rt II d{(r) llP dr::; 
}ti }ti 

< L 1t II xf'j(r) - x{(r) llP dr + p~(t - t{) (4.19) 
ti 

Using the Bellman-Grown wall {BG) inequality and evaluating the right-hand-side of 

+1 (4.19) at t = t{ , it results that: 

( 4.20) 

Thus, for j = P - 1, we have: 

( 4.21) 

Since the trajectory x(t) used to compute the contractive constraint is only updated 

with the states of the plant at every tk, the following bound holds: 

( 4.22) 
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Due to the contractive constraint we know that 11 Xk+l llp".S: a 11 x~ llp, Vk ~ 0. Thus, 

using the triangle inequality we have: 

II x~+1 llp".S: a II x~ llP +p~PTeLPT ( 4.23) 

Using assumption 4.1 and from equation (4.23), it follows that: 

II x~+1 llp".S: a II x~ llP +ePTeLPT, Vk E [k, oo) (4.24) 

Then, since a E [O, 1) we can use the results of lemma 4.1 and obtain: 

(4.25) 

Thus, by taking the limit as E -+ 0, we have: 

( 4.26) 

and if now we take the limit as l -+ oo knowing that k ( E) -+ oo for E -+ 0 and that 

ci -+ 0 exponentially fast as l -+ oo, we finally obtain: 

lim [ lim II Xt( )+l llP J < ( lim a
1
) [ lim II Xt( ) llP J 

l--+oo t--+0 £ l--+oo E--+0 £ 
0 ( 4.27) 

or 

lim II x~ lip= 0 
k--+oo 

( 4.28) 

which means asymptotic convergence to the origin. 
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So, we have shown that as long as x~, Xk E BP, it follows that x~ -t 0 as k -t oo, 

which means that the origin is an attractive equilibrium point. 

Let us now proceed to show that (x, u) = (0, 0) is actually uniformly attractive. Using 

(4.22), (4.24) and the triangle inequality, we get: 

( 4.29) 

But we know from our transient state constraints that II xk(t) llP~ /3 II x~ Jlp with 

x~ E Bp. Thus, for each x{; E Bp, t 0 > 0, we have: 

This means from definition 4 .1 that the equilibrium ( x, u) (0, 0) is uniformly 

attractive. 

Let us now proceed to show that (x, u) = (0, 0) is also uniformly stable. Using (4.22) 

and the triangle inequality, we get: 

(4.31) 

But we know that II xk(t) 11.P~ /3 II x~ llP with x~ E BP. Thus, from (4.31) we have: 

( 4.32) 

where pd := maxkEN {PO· 

· - dpT LPT 
Therefore, from (4.32), it follows that p = E-p /3 e =: b(<} 
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With these definitions, we finally have the following result. For 

From our definition of uniform stability .. ef..2 if follows that (x, u) 

uniformly stable equilibrium point of the closed-loop system. 

(0, 0) is an 

Since we have shown that (x, u) = (0, 0) is both uniformly attractive and uniformly sta

ble we finally conclude, from definition 4.3, that (0, 0) is an uniformly asymptotically 

stable equilibrium point. 
0 

We have shown so far that if Control Algorithm 1 is well-defined, i.e., if x~, Xk E 

BP, 'Ilk ~ 0, the origin is a uniformly asymptotically stable equilibrium point of the 

closed-loop system which results from implementation of this control strategy on the 

plant (4.1). 

We shall now proceed to derive a sufficient condition on the disturbance d(t) under 

which the well-posedness condition is satisfied, i.e., a condition which guarantees that 

x~, Xk stay inside BP, the set of initial conditions for which P(tk, xD is feasible for all 

k ~ o. 

Theorem 4.2 (Feasibility condition) Using the Lipschitz assumption on the func

tion f, 4.2, and on the disturbance, 4.1, if Pd< J:K-;,~~' then there exists p0 E (O,p] 

such that for all x{; E Bp0 , the sequences {xU~=o and {xk}~=o resulting from use of 

Control Algorithms 1 or 2 are well-defined and stay inside the set BP. 

Proof: In the proof of theorem 4.1 we have derived that: 

( 4.34) 
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By defining Zk :=II x~ lip, a:= a and b := pdPTeLPT and using lemma 4.1 we have 

the fallowing result: 
pdPTeLPT 

II x~ llp<ll Xb llP + 1 _a ( 4.35) 

Now, if Xb E Bp0 , the application of Control Algorithm 1 to system (4.1} assures 

that the states at the end of prediction horizons are bounded by: 

( 4.36) 

Therefore, a sufficient condition for the optimization problems P(tk, xn, Vk ::'.:". 0, to 

be feasible, i. e., {x~}k0=0 E Bp, is given by: 

or, equivalently, 
pd PTeLPT 

Po<p- l -a 

( 4.37) 

( 4.38) 

Thus, since Pd < ;t-;,~~, it follows that Po > 0 (or, equivalently, Bp0 is a non-empty 

set). 

Pd PTeLPT { } p So, we conclude that there exists Po < p - l-a thus, p0 < p so that if x 0 E 

BPO c Bp, then x~ E Bp, with p > pd~r_e:PT' and P(tk, xn is well posed for all k ::'.:". o. 

Since from the contractive constraint we have 11 xk+l llp:S a II x~ llP and it has been 

shown that :l Po > 0 such that for Xb E Bp0 , xf E BP, Vk ::'.:". 0, then x1 E Bapo C BP 

and xk E Bap c Bp, Vk > 1. 

Thus, we have proven that under the conditions of the theorem, the sequences { xf }k0= 0 

and {xk}~0 remain inside the set of feasible initial conditions, Bp. 
D 
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By now we have shown that Control Algorithms 1 and 2 applied to the plant ( 4.1) 

are well-defined and that they produce an uniformly asymptotically stable closed

loop. Next we will show that this additive asymptotically decaying disturbance can 

be produced by introduction of an asymptotically convergent state estimator in the 

closed-loop system for estimation of the states of the nominal system (4.3). So our 

next step is to propose a recursive dynamic observer to estimate the states of the 

system ( 4.3) and study the conditions under which this nonlinear observer is asymp

totically stable. Finally we will show that, under these conditions, the association 

of our exponentially stabilizing contractive MPC controller and the state estimator 

proposed in the next section, generates an asymptotically stable closed-loop. 

Thus, we now address the following problem: 

Problem 3 : Output feedback with asymptotically convergent observer zn the 

nominal case 

4.3 Dynamic observers for nonlinear systems 

4.3.1 Observer design 

Designing an observer for a nonlinear system is quite a challenge. In our design 

we follow guidelines similar to the ones used to derive the extended Kalman filter 

(EKF). The extended Kalman filter is a well-known standard linearization method 

for approximate nonlinear filtering. The available literature is vast and we refer the 

reader to [61, 76], and the references therein. In particular, in the context of param-
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eter estimation for linear stochastic systems, a fairly systematic and comprehensive 

convergence analysis of the EKF is presented in [78]. 

Let us now consider a continuous-time dynamical system with discrete observations 

and nonlinear output map: 

xk(t) F(xk(t)), xk(tk) =: Xk 

Yk H(xk) ( 4.39) 

Remark 4.2 We will envision the system (4.39) as being resultant from implemen

tation of Control Algorithm 1 to the following original system: 

'¢x,k(t) 

'l/;y,k 

f('l/;x,k(t), uk(t)) 

h( 'l/Jx,k, Uk) ( 4.40) 

where we have made a distinction between the states x(t) and 'l/;x(t) to allow for 

dynamic feedback (instead of restricting ourselves to static feedback). 

We assume that F : Rn -+ Rn and H : Rn -+ RP are smooth, at least twice differen

tiable, and therefore we define: 

A(x) := DF(x) and C(x) := DH(x) ( 4.41) 

where D(.) := fx(.) and A, Care then x n and p x n matrices of first derivatives, 

respectively. 

Motivated by the procedure commonly used for linear systems, we will construct an 

observer for system ( 4.39) as an approximation to the corresponding deterministic 
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estimator. Associate the following "noisy" system with ( 4.39): 

( 4.42) 

As usual, we assume that z0 , w(t) and v(t) are jointly Gaussian and mutually inde

pendent. Furthermore z0 ,...., N(z0 , P0
1 
), w(t) ,...., N(O,In) and v(t) "' N(O,Iv)· We 

also assume that the design variables Rw, Rv and P0 are always chosen such that Rw 

has rank n and Rv and Po are positive definite. 

Then let us propose the following structure for the nonlinear observer for the associ

ated "noisy" system ( 4.42): 

Estimation Procedure 1 

and P(t) satisfies the following differential Riccati equation: 

:__ - l - - I - I 

Pk(t) = -Pk(t)A(xk(t)) - A(xk(t)) Pk(t) - Pk(t)RwRwPk(t) + QkQk, Po(to) =:Po 

( 4.44) 

where Ck := C(xk) (analogous definition applies for Ak) and Qk ·- R;; 1Ck, for 

t E [tki tk+1] and 'ilk 2: 0. 

Before we start our proof of asymptotic convergence of the estimator ( 4.43, 4.44) 

when applied to system ( 4.42), let us make some useful additional assumptions: 

Assumption 4.3 The linearized system determined by (Ak(x), Ck) (where Ak(x) := 

A(xk(t)), t E [tk, tk+i]), along the estimated trajectory of the observer (4.43, 4-44), is 

uniformly observable, that is, (Ak(x), Ck) satisfies the uniform observability condition 
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presented in {14, 38} for linear systems and in {118} for linear and nonlinear systems. 

Assumption 4.4 Let A(z), C(z) be as defined in (4-41) and DA(z) := D 2 F(z) E 

L(Rn,L(Rn,Rn)) and DC(z) := D 2 H(z) E L(Rn,L(RP,Rn)). Then the following 

norms are bounded: 

II A II:= sup II A(z) II and II c II:= sup II C(z) II (4.45) 
zE)Rn zE)Rn 

Ill D
2 
F Ill:= sup Ill D

2 
F(z) Ill and Ill D 2 H Ill:= sup Ill D 2 H(z) Ill ( 4.46) 

zE)Rn zE)Rn 

Assumption 4.5 Let G(x, y) := H(x) - H(y) - C(y)(x -y), and suppose that there 

exists GE [O, oo) such that 11 G(x, y) II::; G Ill D 2 H 111 II x - y 11 2 for all x, y E Rn. 

Remark 4.3 From the mean value theorem and continuity of the function G(x, y), 

we can always compute GE [O, oo) such that assumption 4.5 is satisfied. 

Under assumptions 4.3, 4.4 it is possible to show that the error covariance P(t)- 1 

and its inverse P(t) are uniformly bounded (see [14] for derivation of these bounds). 

If assumption 4.3 holds then, since Rv is positive definite, we have that (Ak(x), Qk) 

is a uniformly observable pair, that is, there exists a bounded Borel matrix-valued 

function A( x) such that 

v' (Ak(x) + A(x)Qk)v::; -ao 11v1/2, ao > 0, Vx E Rn and k 2:: 0. (4.47) 

In addition, we assume that the pair (Ak(x), Rw) is uniformly controllable Vk ;:::: 0, 

that is, there exists a bounded Borel function f(x) such that 

µ' (Ak(x) + Rwf (x) )µ ::; /Jo JI µ 11 2
, /Jo > 0, Vx E Rn and k 2:: 0. ( 4.48) 
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Then one can prove that the covariance matrices satisfy the following bounds: 

II P(t)- 1 11 < II p-1 II +II Rw 11
2 
+ II A 11

2 
=: fj 

0 2o:o 
( 4.49) 

II P(t) II < II Po II +II Q 1122;0 II r 112 -· i5 (4.50) 

where II Q II:= maxkEN II Qk 11, II r II:= SUPxEiJ?n II r(x) II and II A II:= supxEiJ?n 

II A(x) II· Proof can be found in [14]. 

These bounds j5 and fj are functions of the design parameters Po, Rv and Rw and the 

given nonlinear functions F and H. Also, let Rw be such that RwR~ ~ rln for some 

r > 0. 

4.3.2 Asymptotic convergence 

We wish to prove that the system ( 4.43, 4.44) is an observer for the nonlinear system 

(4.42). We will see that this is possible provided that we can bound the region where 

the initial condition lies and provided the second derivatives of F and H are not too 

large. 

We should point out that the stability proof will be given for the noise-free case, that 

is, even though in equation ( 4.43) we have used the true measurements (k, in the next 

theorem we will substitute this real measurements with the "noise-free measurements" 

Yk (as it is normally done for stability analysis purposes - see, e.g., [14, 118]). 

Remark 4.4 Proofs of asymptotic convergence of nonlinear observers applied to both 

continuous-time systems with continuous observations and linear output maps and 

discrete-time systems with discrete observations can be found in the literature (14, 118, 

117} but here we are addressing the observer design problem for nonlinear continuous

time systems with discrete-observations and nonlinear output maps. 

The reason we choose a continuous-time representation for the nonlinear system is 
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that most systems are modeled by a set of differential/ algebraic equations in continu

ous time and, in general, there is no closed-form discrete description for these systems. 

The discrete observations are also a much more reasonable assumption since, in re

ality, measurements are always taken at discrete periods of time, rarely continuously. 

Theorem 4.3 (Stability region for the nonlinear observer) Let t 0 = 0 and as

sume that 

(4.51) 

with the function r.p defined as: 

1. Linear Output Map (yk = Czk = H(zk) and, consequently, D 2 H =OJ 

( 4.52) 

2. Nonlinear Output Map 

(4.53) 

where K,v is the condition number of the nonsingular symmetric matrix RvR~. 

Then the dynamical system (4.43, 4.44) is an asymptotically stable observer for the 

nonlinear system (4.39) provided that assumptions 4.3, 4.4, 4.5 hold. That is, there 

exists a constant b > 0 such that 

1 1 

Vi+i - Vi := V(tk+1) - V(tk) :=II Pk2+1 ek+I 11 2 
- II Pl ek 11 2

::; -b, Vk ::?: 0 ( 4.54) 
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where Pk := Pk(tk), tk+l := tk+T (notice that the notation used in this theorem differs 

from the previous notationfortk+l, where tk+l := tk+PT) and V(t) :=II P(t)!e(t) 11 2 

will be shown to be a Lyapunov function for the closed-loop system which decreases 

discretely, at sampling times tk, 'Ilk -2: 0, for all initial estimates satisfying (4.51). 

Proof: Let ek(t) := xk(t) - xk(t) be the estimation error at time t E [tk, tk+I]· Then, 

from (4.43) and (4-39} we have: 

Using assumption 4-5 we can rewrite (4.55) as: 

Thus, 

2ek(t)' Pk(t)[F(xk(t)) - F(xk(t))] - 2ek(t)
1 

Q~Qkek -

- 2ek(t)
1

C~(RvR~)-1 Gk - ek(t)
1

[2Pk(t)A(xk(t)) + 

+ Pk(t)RwR~Pk(t) - Q~Qk]ek(t) ( 4.57) 

The mean value theorem states that: 

F(x(t)) - F(x(t)) = fo 1 

DF(sx(t) + (1 - s)x(t))dse(t) = fo 1 

DF(x(t) + se(t))dse(t) 

( 4.58) 

Thus, by expanding the operator DF(x(t) + se(t)) around x(t), we can rewrite the 
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preceding expression as: 

F(x( t)) - F(x( t)) - ~~ (x( t) )e( t) 

Using equation (4.59 ), we can rewrite (4.57) as: 

2ek(t)' Pk(t) fo1 fo 1 

aD2 F(xk(t) + a(}ek(t))ek(t) 2dadf2 -

- ek(t)' Pk(t)RwR~Pk(t)ek(t) + ek(t)' Q~Qkek(t) -
, I I f I I 1 - 2ek(t) QkQkek - 2ek(t) Ck(RvRv)- Gk S 

< ek(t)'[ll Pk(t)~ek(t) II j5~ Ill D2F Ill - ~2 ]ek(t) + 
q 

+ ek(t)' Q~Qk[ek(t) - 2ek] - 2ek(t)' C~(RvR~)- 1 Gk ( 4.60) 

Since we are only taking measurements at discrete sampling times tk, k ~ 0, the most 

we can expect is that the state estimation error at sampling times, namely ek, k ~ 0, 

converges to zero (but nothing can be said about ek(t), t E (tk, tk+i), \::/k ~ 0). So, 

as we said before, we are looking for a Lyapunov function for the closed-loop system 

which decreases discretely rather than continuously. 

Let us then evaluate (4.60) at time tk: 

< [II Pk~ek II P~ Ill D2 F Ill - :] II ek 11
2 

-
q 

- 2e~C~(RvR~r 1 ck- II Qkek ll 2s 
-l i r 

< [ II Pk2 ek II f5 2 lllD2 Fiii - -2 + 2 II ek 1111 ck II x q 

X Kv II RvR~ 11-l GlllD2 Hiii] II ek 11 2 
( 4.61) 
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Thus, if we have 

( 4.62) 

Vk ::'.:: 0, then, from (4.61}, it follows that: 

( 4.63) 

But from (4. 50) we have that: 

( 4.64) 

And thus, from (4.63} and (4.64) we obtain: 

( 4.65) 

Iftk+i-tk =Tis sufficiently small, then inequality (4.65} will hold for allt E [tk, tk+i] 

and we can integrate (4. 65) between tk and tk+l 

( 4.66) 

which results in 

- 1 

In( II Pk
2

+~ek+1 II)+ ~T:::;; 0 
II Plek II P 

( 4.67) 
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-7=T e P 

Then, as a consequence of (4.68) we have that: 

and 

Vk EN ( 4.68) 

( 4.69) 

(4.70) 

Therefore, since qt ~II P0t 11-1
, a sufficient condition for (4.62) to be satisfied is given 

by: 

II eo II [lllD2 Fiii + 2( ~) t II c II 
p 

It is straightforward to see that if the output map is linear (4- 71) is reduced to: 

1 r 
II eo II lllD2 Fiii :S 

1 
_ 1 L 2 - 1), I> 0 

jPi II Po2 II q 
(4.72) 

In conclusion, if (4. 71) is satisfied then there exists 6 > 0 such that 

which implies asymptotic convergence of the state estimation error. 
D 
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Remark 4.5 If the output map were continuous then, under condition (4.51) and us

ing continuity arguments, the proposed nonlinear observer can be proven exponentially 

stable, i.e., there exist constants O", K > 0, such that 

II x(t) - x(t) ll:S K II Xo - Xo II e-at, Vt> 0 (4.74) 

Remark 4.6 As pointed out in {118}, if the output map is nonlinear it may be locally 

transformed via a coordinate change into a linear form provided the Jacobian of H 

has constant rank. In order to obtain this result rigorously the noisy system has to be 

constructed after the coordinate change since otherwise the noise terms become state 

dependent. 

Remark 4. 7 An alternative way of posing the observer problem when we have known 

controls is to replace F(xk(t)) and H(xk) by f(xk(t), uk(t)) and h(xki uk) and assume 

that assumption 4-3 holds with the following bounds: 

llAll ·- sup{ II ~~ (x, u) IJ: x E ~r, u E Rm}, ( 4.75) 

llCll ·- sup{JI ~~(xk,uk) II: Xk E Rn, Uk E Rm,k 2: O}, (4.76) 

lllD2Flll ·- sup{IJ ~~ (x, u) JJ: x E Rn, u E Rm}, ( 4.77) 

lllD2Hlll 
fPh 

Xk E Rn,uk E Rm,k 2: O}, (4.78) ·- sup{ JI ox2 (xk, Uk) JI: 
(4.79) 

Then theorem 4.3 holds with the appropriate replacements. However, as we already 

mentioned, assumption 4.3 is closely tied with the observability properties of the sys

tem, which can be input dependent in the nonlinear case. Then, when known controls 

are considered the standard observability analysis is modified to 11uniform observabil

ity" in the inputs (see {56}). 
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4.4 MPC algorithm with state estimation 

In order to include state estimation, Control Algorithm 1 has to be modified in 

the following way: 

Control Algorithm 3 

Data: Initial Conditions: t0 and x0 ; Controller Parameters: P, M, Q, R, S, P, a, 

T, Umin, Umax' Llumax; Observer Parameters: Po, Rv, Rw; Output measurement 

at to: Yo· 

Step 0: Set k = 0, j = 0. 

Step 1: Solve the optimal control problem P(t{, xL) specified by: 

ty+P . 

minu(kP+jlkP+j), ... ,u(kP+j+M-llkP+j) J/ x{(t)' Q x{(t) dt + 
k 

+ Lko u(kP + j + ilkP + j)' R u(kP + j + ilkP + j) + 

+ 'Lf!o1 Llu(kP + j + ilkP + j) 1 s Llu(kP + j + ilkP + j) (4.80) 

subject to: 

where 

±{(t) = f(x{(t), u{(t)), x{ = x{ := estimated states at t{ 

Umin ::; u(kP + j + ilkP + j) ::; Umax, i E [O, M - 1] 

lllu(kP + j + ilkP + j)/ ::; Llumax, i E [O, M - 1] 

Llu(kP + j + ilkP + j) = 0, i E [M, P] 

11 x{ ( tf) 11 fa::; a II x k II fa, a E [ 0, 1) 

( 4.81) 

x{(t) = J(x{(t), u{(t)), with x~ := xk and x{ = x{-1(tL), for j;::: 1 (4.82) 
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is the trajectory of the model which is not updated with the estimated states of 

the plant at t{ for j E [1, P - l]. The states x{(t) are only updated with the 

states of the estimator at t = tk + PT =: tf, i.e., at intervals of one prediction 

horizon. 

Step 2: Apply the first control move, u(kP + jlkP + j), to the real system fort E 

[t{, t{+1
], measure the output at t{+l, y{+l, and estimate the states of the system 

at t{+1 (i.e., obtain x{+l) using the following equations with initial conditions 

x{ and Pi: 

:i~(t) f(x{(t), u(kP + jlkP + j)) + Pi(t)- 1 (C~)
1 

(RvR~)- 1 x 

x [y~ - H(x{, u(kP + jlkP + j))] ( 4.83) 

with 

P~(t) = -Plc(t)A(x{(t)) -A(xk(t))' P?c(t) -Plc(t)RwR~Plc(t) + (Q{)' Qi (4.84) 

' '+1 
where t E [t{, t{ ]. 

Result of the estimation: x{+1 :=xHt{+1
) andPlc+1 :=Plc(t{+1

). 

Step 3: If j < P - 1, set j = j + 1 and go back to Step 1. If j = P - 1 set 

i;~+l =: i;k+l = xf, t~+l = tk+l = tf, k = k + 1, j = 0 and go back to Step 1. 

where we have used the notation Xk := x~, Yk := YZ and Po :=Pg. 
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4.5 Stability properties of contractive MPC + 
nonlinear observer 

In section 4.2 we have shown that contractive MPC applied to a nonlinear plant 

subjected to an asymptotically decaying disturbance is uniformly asymptotically sta

bilizing. Then in section 4.3 we proposed a nonlinear state estimator and showed that 

if the initial estimation error and the nonlinearities are "small" then this estimator 

is asymptotically stable. 

Now we will formally enunciate the main result of this chapter, that is, that Control 

Algorithm 3 is uniformly asymptotically stabilizing for a set of initial estimates. 

In the state feedback case, the state evolution of the model used in the prediction 

step of the contractive MPC algorithm at time step k is given by: 

( 4.85) 

which makes it equal to the state evolution of the plant. 

In the output feedback case, the trajectory of the model is given by: 

( 4.86) 

The difference between the two model dynamics can be represented by an additive 

disturbance, i.e., the output feedback case is equivalent to the state feedback case 

modified to: 

( 4.87) 
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constant for t E [tk, tk + T], integration of ( 4.87) results in: 

( 4.88) 

Thus, we want to compute dk so that it represents the difference in the dynamic 

behavior of the model caused by the estimation, i.e., the states in equation ( 4.88) 

have to be equal to the states in ( 4.86) for any t E [tki tk + T]. Thus, by subtracting 

equation ( 4.86) from equation ( 4.88) and evaluating at t = tk + T, we have: 

( 4.89) 

Therefore, if ek := x~ - Xk we obtain: 

(4.90) 

where the function F : ~n x ~m --+ ~n is defined by: 

If Pis Lipschitz continuous, i.e., ifthere exists LF E [O,oo) such that: 

then, from equation (4.90), we have the following bound: 
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with LA ·- Lp + 1 
F .- T ( 4.93) 

From the results of Theorem 4.3, we can then find Lp E [O, oo) such that: 

( 4.94) 

So, onto this chapter's main result: 

Theorem 4.4 (Closed-loop stability with output feedback) Let Pd, p E (0, oo) 

be as defined in equation (4.94) and Assumption 3.3, respectively. Let x~, Xk, Xk E 

p B . h Pd PTeLPT d l h . . . l . f Bp, Vk 2: 0, and x 0 E Po' wit p0 := p - l-a , an et t e initia estimate o 

the states x0 be such that e0 and the functions F and H (i.e., the system dynamics 

after implementation of the control law - see equation (4.39)) satisfy condition (4.51} 

for the chosen observer parameters P0 , Rv, Rw. Then, if pd < f,K-;,~~, the control 

problem is well-posed, the observer produces asymptotically convergent estimates and 

the resulting closed-loop system is uniformly asymptotically stable. 

Proof: The proof follows straightforwardly from Theorems 4.1, 4.2 and 4.3 (and the 

assumptions made in their derivations} and equation (4.94). 
D 
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4.6 Example: van der Vusse Reactor 

4.6.1 van der Vusse reactor dynamics 

A benchmark problem for nonlinear control system design based on a continuous 

stirred tank reactor (CSTR) is described in [29, 43, 50]. The reactor is considered 

at an operating point where optimal yield with respect to the desired product is 

achieved. Operation at this point is very desirable for economic reasons but can 

considerably complicate the control system design. In particular, this benchmark 

problem is characterized by two interesting features: 

• The steady state gain changes its sign at the operating point. Therefore, linear 

controllers will not be able to stabilize this reactor and accomplish satisfactory 

performance [98]. 

• The zero dynamics changes its stability properties at this operating point. There

fore, the qualitative behavior of the CSTR differs considerably for different 

setpoints and disturbances" 

A more detailed discussion on the reasons and implications of these features can be 

found in (65]. 

The reactor under consideration is a continuous stirred tank reactor in which cy

clopentenol is produced from cyclopentadiene by acid-catalyzed electrophylic hydra

tion in aqueous solution. The description of the system used here is the same as 

in (64] with the only change being that the dynamics of the jacket used to cool the 

reactor are not taken into consideration (the fluid in the jacket is assumed to be at 

constant temperature). Details on the derivation of the chemical parameters and the 

chemical background can be found in [64]. 
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Figure 4.1 shows a schematic diagram of the reactor. The main reaction is given 

by transformation of cyclopentadiene (substance A) into the product, cyclopentenol 

(substance B). The cyclopentadiene also reacts in an unwanted parallel reaction to 

originate the by-product dicyclopentadiene (substance D). Furthermore, cyclopen

tanediol (substance C) is formed in an unwanted decomposition of the product cy

clopentenol. This so-called van der Vusse reaction is represented by the following 

reaction scheme: 

r 
Q 

A~ B~C 

2A ~ D 

Q := kwAR((;IK - (;I) 
A,B, C,D 

Figure 4.1: Schematic representation of the van der Vusse reactor. 

( 4.95) 
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The flow F fed to the reactor contains only cyclopentadiene (substance A) with 

concentration CAo and temperature B0 . The temperature of the fluid in the cooling 

jacket is equal to BK and is considered constant. 

The dynamics of the reactor are described by the following nonlinear differential 

equations which are derived from mass balances for substances A and B and from 

energy balance for the reactor: 

-k1(B)CA - k3 (B)C~ + ~ (CAo - CA), CA 2: 0 (4.96) 

F 
k1(B)CA - k2(B)Cn - VCn, Cn 2: 0 (4.97) 

B - Cl [f:iHRABk1(B)CA + f:iHRBck2(B)Cn + f:iHRAvk3(B)C~J + 
p p 

F kw AR + - (Bo - B) + (BK - B) (4.98) 
V pCvV 

y Cn ( 4.99) 

where CA and Cn are the concentrations of A and B, respectively, Bis the temperature 

in the reactor, u := ~ is the flow rate to the reactor and it is the manipulated variable 

for this system, Q :=kw AR (B-OK) is the rate of heat exchanged between the reactor 

and the surroundings and CAo, Bo are the concentration of A and the temperature 

in the feed stream, respectively. The reaction rates, ki, i = 1, 2, 3, are assumed to 

depend on the temperature via the Arrhenius law: 

i = 1,2,3 ( 4.100) 

where B(°C) means that the temperature B should be expressed in Celsius degrees 

in this equation. Ei, i = 1, 2, 3, are the activation energies for the three different 

reactions occurring in the system. 

Values for the physical and chemical parameters in the equations of this model are 

the following: 
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Parameters for the van der Vusse reactor 

k10 =1.287 x 1012 h-1 k20 = 1.287 x 1012 h-1 

k30 = 9.043 x 109 
{ h mo A. 

E 1 = 9758.3 K 

E 2 = 9758.3 K E3 = 8560.0 K 

- kJ 
t:,.HRAB - 4.2 mol A !:,.HRBc = -11.0 m~1 B 

- kJ 
t:,.HRAD - -41.85 mol A p = 0.9342 kg/1 

- kJ Gp - 3.01 kg . K V = 0.01 m3 

kw = 4032.0 h . ~J. m2 AR= 0.215 m2 

CAo = 5.10 mol/l Bo = 378.05 K 

()K = 386.05 K 

4.6.2 Computation of steady states 

We desire to operate the reactor at an equilibrium point where optimal yield with 

respect to product B is achieved. The yield <I> of product B is defined as the ratio 

between product concentration CB at steady state (CJJ) and the concentration of 

reactant A in the feed, C Ao, i.e., 

( 4.101) 

and is a measure of the effectiveness in the production of B. This optimal operating 

point is found by optimization of the steady state yield with respect to the steady 

state flow (a design variable), uss := f ss. The coordinates of the optimal operating 

point are given by: 

Steady state values for the van de Vusse reactor 

USS= 14.19 h-l c1s = 2.2291 mol/1 

CJJ = 1.0887 mol/l ess = 386.0518 K 
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4.6.3 Simulation results 

Here we will compare the nominal performance and stability properties of our contrac

tive MPC (CNTMPC) scheme with those of a standard nonlinear MPC (SNLMPC) 

algorithm, when applied to the van der Vusse reactor, in three different situations 

(for both the unconstrained and constrained cases): 

(1) No disturbances. 

(2) Exponentially decaying additive disturbances. 

(3) Output feedback case with use of an asymptotically convergent observer for com

putation of the state estimates. 

The plotted variables for the van der Vusse reactor are the deviation variables with 

respect to the desired steady state (the point of maximum conversion). 

In all the simulations for this example, the sampling time is equal to T = 0.1 h. 

(1) No disturbances 

Unconstrained case 

Case 1 

The results obtained for simulations with SNLMPC and CNTMPC for the 

following initial condition 

Initial Condition 

CAo=l CBO=l 00 =150 

are shown in figure 4.2. 

The controller parameters used in Case 1 are: 
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Figure 4.2: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained Case 1. 

Controller Parameters {figure 4.2) 

Q = diag([O 1 0.5]) R=O S=O 

P=4 M=2 a= 0.7 

We notice from figure 4.2 that the output response (CB) for both controllers 

is very quick as the conversion of B can be brought to its maximum in 

about two sampling times. However, while CA and 0 are brought to zero 

in only one sampling time by the CNTMPC controller, they show large 

offsets when SNLMPC is used. The fact that CA is not weighted in the 

objective function explains the large offset displayed by this variable. 

The same explanation applies for the offset in the input variable. The pres

ence of offset is mostly due to the fact that we have only one manipulated 

variable and three states, so there are insufficient degrees of freedom in 
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the SNLMPC formulation to bring all the states to the origin. Moreover, 

since we wish to operate the reactor near the point of maximum yield, 

additional difficulties (which we have discussed in section 4.6.1) contribute 

to the poor performance of SNLMPC. 

The presence of the contractive constraint in the CNTMPC algorithm is 

what makes it possible to set all the states to zero in about the same time 

(it imposes an additional performance requirement which is not present in 

SNLMPC). Furthermore, we notice that the maximum control effort for the 

CNTMPC is equal to u = 3.1 x 10-3 , while for the SNLMPC, it reaches a 

maximum higher than u = 6.1. In both cases, we have let the optimization 

routine find the initial guess for the input values so the poor performance 

of SNLMPC cannot be explained by inappropriate initialization. 

Case 2 

Since the control effort was rather small with the CNTMPC controller for 

the initial condition of Case 1 (even though it represents a considerable 

deviation from the desired steady state), in the next simulations we will 

change the initial condition to: 

Initial Condition 

C Ao = -1 I C Bo = 10 I Oo = -100 

The controller parameters used for simulations with this new initial con

dition are: 

Controller Parameters (figure 4.3) 

Q = diag([O 1 0.5]) R=O S=O 

P=4 M=2 a= 0.6 

The simulation results are presented in figure 4.3. 

From figure 4.3 it is clear that the SNLMPC scheme generates a response 

with offset in CA and e and for both controllers the output settles in 
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Figure 4.3: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained Case 2. 

approximately two sampling times for comparable control effort (slightly 

higher for CNTMPC). 

Case 3 

As we have seen, in Case 1 and Case 2 the responses of CA, e and u F 
v 

obtained with SNLMPC show considerable offset while CNTMPC performs 

satisfactorily. In order to try to improve the performance obtained with 

SNLMPC and eliminate (or at least reduce) offset, we will choose a new 

set of controller parameters where the variables which have shown offset 

previously are now added more weight to in the objective function. The 

new set of controller parameters considered is the following: 
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Controller Parameters (figure 4.4) 

Q = diag([0.5 1 1]) R= 0.1 S=O 

P=4 M=2 0: = 0.6 

The initial condition used in Case 3 is the same one of Case 2. 

The simulation results are shown in figure 4.4. 
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Figure 4.4: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained Case 3. 

From figure 4.4 we can see that in spite of the increased weights in the ob

jective function, the simulations with SNLMPC still show offsets in CA, 0 

and u = f. The offset in CA decreased to about half its value in Case 

2 but the offset in () remained the same. Different sets of weights and 

horizons have also been tried out but we did not succeed in improving the 

quality of the response obtained with SNLMPC. Regarding CNTMPC, we 

see that the new set of controller parameters reduces the control effort very 
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significantly compared to Case 2 (compare figures 4.4 and 4.3) without 

compromising the response of the state variables. 

So, as we see, it is very hard to adjust parameters in SNLMPC controllers 

in an ad hoc manner and predict the response. The contractive constraint 

takes away this guess work since, if the problem is feasible at the beginning 

of all prediction horizons, then exponential stability can be assured. 

Constrained case 

Since the performance displayed by SNLMPC in the unconstrained case was 

very poor and the presence of constraints will only deteriorate the response 

even further, here we will only show simulations obtained with CNTMPC. 

The controller parameters used in these simulations are the following: 

Controller Parameters (figure 4.5) 

Q = diag([O 1 0.5]) I R = 0 S=O 

P=4 I M=2 a= 0.6 

Umin= 0 Umax = 1 

The initial condition is the same used in the unconstrained Case 2. Thus, 

we have the same control problem as in the unconstrained Case 2 but now 

the input variable is tightly constrained (since the maximum value of u in the 

unconstrained simulations was higher than 18, as we can see from figure 4.3). 

The simulation results are found in figure 4.5. 

By comparing figures 4.3 and 4.5 we can see that the presence of input con

straints does not deteriorate the response of any of the states. 

(2) Exponentially decaying additive disturbance 

Here we will look at the responses of both SNLMPC and CNTMPC when an ex

ponentially decaying additive disturbance acts on the system, i.e., given a nominal 
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Figure 4.5: van der Vusse CSTR: State and control responses for CNTMPC in the 
constrained case. 

system of the form 

x(t) = J(x(t), u(t)), 

the "perturbed" system is given by: 

i;P(t) = f(xP(t), u(t)) + d(t) 

with d(t) being an exponentially decaying deterministic disturbance. 

The kind of disturbances which will be treated here are of the form: 

Thus, for different simulations, we will just use different values of ai and bi. ai 
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determines an upper bound on the magnitude of the disturbance di(t) (its initial 

value) and bi its "duration" (the smaller bi is, the longer the disturbance lasts). 

We will examine unconstrained and constrained responses of both SNLMPC and 

CNTMPC to two different disturbances: 

Disturbances 

di d2 

a1 = 50 a2 = 100 

bi= 0.1 b1 = 0.5 

Thus, disturbance d1 has an upper bound which is half the size of the upper bound 

on d2 but it has a longer duration. 

Unconstrained case 

The simulation results for d1 and the disturbance itself are illustrated in figure 

4.6. For d2, the corresponding figure is 4. 7. 

The controller parameters and initial condition used in the simulations with 

disturbances d1 and d2 are given by: 

Controller Parameters (figures 4.6 and 4.7) 

Q = diag([0.5 1 0.1]) R=O S=O 

P=4 M=2 a= 0.5 

Initial Condition 

C Ao = - 2 I C BO = 20 I Bo = - 200 
I 

From figures 4.3, 4.4, 4.6, 4. 7 we notice that the disturbances have actually 

favored the asymptotic responses of CA and () in the case of the SLNMPC 

controller. The offsets, which we could not eliminate with various choices of 
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Figure 4.6: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained case and under exponentially decaying disturbance 
d1. 

controller parameters in the absence of disturbances, are eliminated here due to 

the constant excitation that the exponentially decaying disturbance provokes 

on CA and iJ. For both controllers, () settles to its steady state value in only one 

sampling time. However, the responses for CA and CB are slowed down very 

significantly (especially in the case of the longer lasting disturbance d2 ). 

For both disturbances, the SNLMPC and CNTMPC controllers originate very 

similar state responses but the initial control effort demonstrated by SNLMPC 

is always higher than the one needed by CNTMPC for virtually the same per

formance. Especially for d1 , which is a disturbance of large magnitude in the 

beginning, the CNTMPC controller has an initial control effort almost four 

times smaller than SNLMPC. In both cases, we have let the optimization rou

tine find the initial guess for the input values so the higher initial control effort of 
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Figure 4.7: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained case and under exponentially decaying disturbance 
d2. 

SNLMPC cannot be attributed to inappropriate initialization of this controller. 

Constrained case 

Since d2 was a harder disturbance to eliminate in the unconstrained case, we 

will only look at constrained simulations with SNLMPC and CNTMPC under 

the influence of d2 • 

The controller parameters used in these simulations are: 

Controller Parameters (figure 4.8) 

Q = diag([0.5 1 0.1]) R=O S=O 

P=4 M=2 a= 0.5 

Umin= 0 Umax = 1 



148 

The simulation results are illustrated in figure 4.8. 
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Figure 4.8: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the constrained case and under exponentially decaying disturbance d2 . 

The results in figure 4.8 show that the two controllers perform equally well and 

that the presence of the constraints does not degrade the performance (compare 

with figure 4. 7). 

( 3) Output feedback case with a nonlinear asymptotically convergent 

observer 

Here we will study the output feedback case for both controllers, SNLMPC and 

CNTMPC. For state estimation, an asymptotically convergent observer will be used. 

In this chapter, we have proposed a formulation for such a nonlinear observer, designed 

for continuous-time systems with discrete observations. As we have seen, solving for 
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the current state estimates means that we have to find the solution of a differential 

Riccati equation. Since it is inconvenient to solve this kind of equation, we will use 

a discrete version of our proposed observer which involves the solution of a simple 

algebraic Riccati equation. This observer is a discrete extended Kalman filter and it 

has been proven exponentially stable for discrete-time systems, for initial conditions 

in a certain set and for systems which are not too strongly nonlinear (see [118]). 

Let us consider a nonlinear system of the following form: 

:h(t) f(xk(t), uk(t)), Xo unknown, for t E [tk, tk+I] 

h(xk, uk), 'Ilk 2: 0 

and its associated "noisy" system: 

x~(t) 

yf 

(4.102) 

(4.103) 

( 4.104) 

( 4.105) 

Then, the extended Kalman filter for the associated system is given by the following 

equations: 

Measurement update: 

Time update: 

p-1 
k 

ftk+l 
xk + ltk f(xk(t), uk(t)) dt 

AkPkA~ + NwN~ 

(4.106) 

( 4.107) 

( 4.108) 

( 4.109) 
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where: 

Kk ·-
- / - I I 1 

PkCk (CkPkCk + RvRJ- (4.110) 

Ak ·- of C) (4.111) - Xk ox 
oh 

( 4.112) ck ·- ox (xk) 

As usual, Xb, Dk, wk, are assumed jointly Gaussian and mutually independent. Fur

thermore, Xb ,...,,, N(xo, Po), wk ,...,,, N(O, In) and vk "" N(O, Ip)· Nm, Rv and Po are 

design variables and they should be chosen such that N w has rank n and Rv and Po 

are positive definite. 

Here we will define the "scaled" noises wk := Nwwk and vk := RvDk and these are the 

noise variables which will be plotted. 

Let us compare the responses obtained in the output feedback case for the SNLMPC 

and CNTMPC controllers. In our case, Ck = [O 1 OJ', i.e., Cs is our "noisy" 

measured output. 

Unconstrained case 

The simulations for this case are illustrated in figure 4.9. The dynamic and 

output noises, namely, wk and vk, are also shown in figure 4.9. 

The initial conditions for integration of the plant and for state estimation are 

chosen as: 

Initial Conditions 

Plant: CAo = -2 Cso = 20 Oo = -200 

Model/Observer: CAo = -1.5 Cso = 15 Bo=-150 

The controller and estimator parameters used in these simulations are given by: 
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Figure 4.9: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the unconstrained output feedback case. 

Controller and Estimator Parameters (figure 4.9) 

Q = diag([0.5 1 0.1]) R=O S=O 

P=4 M=2 a= 0.7 

Po= In 

Our results show that, in spite of the initial state estimation error, () responds 

in only one sampling interval. However, the responses of the other two variables 

are dramatically affected by the noise in the system. We also notice that the 

CNTMPC responses for CA and C8 are much less oscillatory than the ones 

produced by SNLMPC. The same observation extends to the control profile 

which is not only less oscillatory in the CNTMPC case, but also displays a 

smaller control effort. 
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Constrained case 

The simulations for the constrained case can be found in figure 4.10. The 

dynamic and output noises, namely, wk and vk, are also shown in figure 4.10. 
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Figure 4.10: van der Vusse CSTR: State and control responses for SNLMPC and 
CNTMPC in the constrained output feedback case. 

For the constrained responses we utilized the same initial conditions as in the 

unconstrained case and the following controller and estimator parameters: 

Controller and Estimator Parameters (figure 4.10) 

Q = diag([0.5 1 0.1]) R=O 5=0 

P=8 M=5 0: = 0.9 

I Umin= 0 Umax = 1 Po= In 

Notice that we needed to increase the prediction and control horizons, and the 

contractive parameter as well, in order to guarantee feasibility in the constrained 

case. Once again, fJ responds in only one sampling time for both controllers. 
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As we can see from figures 4.9 and 4.10, even though the responses for CNTMPC 

and SNLMPC were very similar in the unconstrained case, the performance 

shown by CNTMPC in the presence of input constraints is much superior to 

that shown by SNLMPC. Even though the response speed is basically the same, 

CA and CB are much more affected by the noises when SNLMPC is used (which 

is revealed by their highly oscillatory behavior). Thus, in the presence of con

straints, the beneficial effects of the introduction of the contractive constraint 

can be felt more strongly than in the unconstrained case. 
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Chapter 5 Robust Output Feedback Contractive 

NLMPC: Parameter Uncertainty 

In this chapter we will be dealing with the following problem: 

Problem 4 : State feedback in the robust case (parameter uncertainty only) 

5 .1 Introduction 

In the previous chapter we looked into the stabilizing properties of Control Algo

rithm 3 in the nominal case and when the states of the plant are not available for 

measurement and must therefore be estimated. We have shown that the output feed

back case with use of an asymptotically convergent nonlinear observer is equivalent 

to the state feedback case when the plant is subjected to an asymptotically decaying 

additive disturbance which is not being estimated. 

Since Control Algorithms 1 and 2 were proven exponentially stabilizing in the 

nominal case and in the absence of disturbances, we could show in the previous 

chapter that the association of such a controller with Estimation Procedure 1 

(in the fashion shown in Control Algorithm 3) generates an asymptotically stable 

closed-loop system. 

In this chapter we will explore the stabilizing properties of Control Algorithm 1 
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when the plant is subjected to a non-additive disturbance (a disturbance which is 

part of the nonlinear dynamics of the plant) which is not considered in the prediction 

step (i.e., the model used for prediction does not take into account the disturbance). 

The only assumption on the disturbance behavior is that it is bounded, i.e., it re

mains inside a convex and compact set containing the origin for all t ;:?:: 0. From the 

controller design point of view, bounded, deterministic or stochastic, disturbances 

introduce a very different (and more complex) problem than asymptotically decaying 

disturbances. It is no longer possible to drive the states to the origin. If the dis

turbance is unknown but bounded (as in our assumption) then the best that can be 

hoped for is that the states are steered to a control invariant set and that is what will 

be shown here later. 

A disturbance of this kind, which modifies the nonlinear dynamics of the plant, in

troduces a model/plant mismatch and makes it necessary for the designed controller 

to be robust. In the nonlinear context, there is no difference between this kind of 

disturbance and bounded parameter uncertainty. 

After showing how the presence of this bounded disturbance affects the stabilizing 

properties of Control Algorithm 1 under state feedback, we will then look into the 

output feedback case. This time we will use a least squares nonlinear state estimator 

to study the resulting stability properties of the closed-loop system. 

First we will specialize the obtained results for the case where the dynamics of the 

plant is influenced by a set of constant unknown parameters which are not estimated. 

Then we will explore the case where the parameters can be time-varying and the 

estimation step is a combined nonlinear state/parameter least squares estimation 

procedure as proposed in [111]. 
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5.2 Stability of contractive MPC in the presence 

of bounded disturbances 

Let us now consider a nonlinear plant specified by the following set of equations: 

i;P(t) = f(xP(t), u(t), d(t)) (5.1) 

with f : Rn x Rm x Rq -+ Rn continuously differentiable and where d(t) E Rq is an 

unknown bounded time-varying disturbance which belongs to a compact and convex 

set D for all t ~ 0, with 0 E D 0 (where D 0 := interior(D)). More specifically, let 

D := Bpd := {d E Rq :II d 11::::: pd}. 

Let the model used in the prediction step of our MPC algorithm be given by: 

x(t) = f (x(t), u(t), 0) (5.2) 

Thus, we are considering the case where no structural model/plant mismatch exists. 

The disturbance can also be seen as a set of unknown time-varying parameters and, 

in that case, we have a robust control problem at hand where the model error is due 

exclusively to parameter uncertainty. 

5.2.1 Basic assumptions 

The following assumptions are necessary in the derivation of the results in this section: 

Assumption 5.1 (x, u, d) ===} f (x, u, d) : Rn x Rm x Rq -+ Rn zs at least twice 

continuously differentiable and f (0, 0, 0) = 0. 

Our usual feasibility assumption: 
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Assumption 5.2 We assume that there exists a p E (0, oo) such that for all Xk E Bp, 

P(tk, xk) is feasible. In other words, for all Xk E BP, we can find a contractive 

parameter a E [O, 1) so that with the chosen finite horizon P, all the constraints on 

the inputs and states can be satisfied and the objective function is finite. 

Assumption 5.3 The continuous function f is locally Lipschitz continuous, i. e, 

there exists a finite constant L > 0 such that: 

II f (xi, ui, di) - f (x2, u2, d2) II? < L [ II X1 - X2 II?+ II ui - u2 II + II di - d2 II ], 

Vx1,x2 E ~Jr, ui,u2 Eu, di,d2 E Bpd (5.3) 

with U defined, as usual, by: 

u(t) Eu:= {u E Rm: Umin :Su :S Umax}, Vt E [O, oo) (5.4) 

Remark 5.1 Strictly speaking, assumption 5.3 only needs to be satisfied for x 1 , x 2 E 

X, where X is the reachable set defined in this case by: 

X ·- { xP(t) = xP(t, t0 , Xb, u, d) or x(t) = x(t, t 0 , xb, u, 0), t E [t0 , oo ); 

Xb E BP, u EU, d E Bpd} (5.5) 

Since this condition cannot be checked a priori (given that xP(t), x(t) are trajectories 

generated through application of the controller), we require the Lipschitz condition on 

f to be valid everywhere in the state space. 
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5.2.2 Stability analysis of Control Algorithm 1 

Under the previously established assumptions, the following result can be derived: 

Theorem 5.1 (Bound on the difference between model and plant states 

in the presence of parameter uncertainty: state feedback case) Let p E 

(0, oo) and LE [O, oo) satisfy assumptions 5.2 and 5.3, respectively. Then if x~, xk E 

BP, 'Ilk 2 0, there exist A, ,\ E [O, oo) such that: 

II x~ - Xk Iii> < A, 

JI x~ - Xk Iii> < :\, 'Ilk > 0 

with A, ,\ -+ 0 as pd -+ 0. 

(5.6) 

(5.7) 

Proof: Using the notation in Control Algorithm 1, the difference between the 

dynamics of the plant (5.1) and that of the model (5.2) for a fixed k, k 2 0, is given 

by: 

where j = 0, ... , P - 1. 

By integrating ( 5. 8), knowing that x{ is set to x~,j, we get: 

x~'j(t) - x{(t) =kt [f(x~'j(T), u{(T), d{(T)) - f(x{(T), u{(T), O)] dT (5.9) 
k 

Then, it fallows that: 
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II x~,j (t) - x{(t) llP 

Using the BG inequality and the fact that 11 d{(t) ll:S pd, j E [O, P - 1], Vk ::'.': 0, and 

making t = t{+1, it results that: 

(5.11) 

In particular, if j = P - 1, we have: 

(5.12) 

Since the trajectory x(t) is only updated with the states of the plant at the end of 

prediction horizons, the integration of (5.8) is carried out from tk to tk+l and the 

fallowing bound is obtained: 

(5.13) 

Thus, A, .>:. -+ 0 as pd -+ 0, which is the result we wanted to prove. 
0 

Theorem 5.2 (Stabilizing properties of the state feedback controller in the 

presence of parameter uncertainty) Under our assumptions and if x~, xk E 

BP, Vk ::'.': 0, then it follows that: 
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II x~ llP < II Xb llP +r (5.14) 

and 

lim II x~ llp< I 
k--+oo 

(5.15) 

with r --+ 0 as pd --+ 0. Thus, since we have a bounded disturbance which does not 

necessarily decay to zero asymptotically, the states converge to the interior of a control 

invariant set B1 := {x E ~n I II x llpS 1}. 

Proof: Since the contractive constraint imposes II Xk+l lips o: II ~ llp, then using 

the triangle inequality and equation ( 5.11) it results that: 

II x~+1 llP S II Xk+1 llP +pd LPTeLPT < o: II x~ llP +pd LPTeLPT (5.16) 

Then, using lemma 4.1, we arrive at the following bounds: 

and 

pdLPTeLPT 
II x~ llP < II Xb llP + 1 _ o: 

lim 
k--+oo 

dLPT LPT 
II P 11 · p e -· xk p< 1 -./ 

- 0: 

So, r--+ 0 as pd--+ 0, which is the result we wanted to prove. 

(5.17) 

(5.18) 

0 
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Theorem 5.3 (Feasibility condition) Under the previously established assumptions 

on the function f and on the disturbance d, if I < p, then there exists p0 E (0, p] 

such that for all x{; E Bp0 , the sequences { x~}k0=0 and { xk}~0 resulting from use of 

Control Algorithm 1 are well-defined and stay inside the set Bp· 

Proof: Due to our Lipschitz continuity assumption on f, the proof is very similar to 

the one presented in the previous chapter for additive disturbances and will be omitted 

here for that reason. 
D 

Remark 5.2 If instead of a bounded time-varying disturbance we have a constant 

unknown parameter p E ~q, i.e., the dynamics of the plant is given by: 

i;P(t) = f(xP(t), u(t),p) (5.19) 

and the model used in the prediction is: 

x(t) = f(x(t), u(t),p) (5.20) 

where j5 E ~q is the nominal parameter value, then in the state feedback case, the states 

converge asymptotically to a control invariant set B,0 i.e., limk-+oo II x~ llp< "(, with 

1 given by: 

LPTeLPT 
1 == II p- i5 II 1-a 

(5.21) 

i.e., pd is replaced by the weighed norm of the difference between true and nominal 

parameter values. Naturally, 1 = 0 if p = j5. 



162 

In the following section we will address the following problem: 

Problem 5 Output feedback in the robust case (parameter uncertainty only) 

5.3 Stability of MPC + state estimation scheme 

in the presence of parameter uncertainty 

In the previous section we have analyzed the stability of Control Algorithm 1 when 

unknown bounded disturbances or unknown constant parameters affect the dynamics 

of the system. We saw that in the case of parameter uncertainty, the states of the 

plant converge asymptotically to a control invariant set whose size is proportional to 

the weighted norm of the difference between true and nominal parameter values, i.e., 

lim 11 x~ 11 f> < 1 rv 11 p - p 11 
k--too 

(5.22) 

where the symbol rv means proportionality. 

Now we want to study how this result is modified in the output feedback case when a 

nonlinear least squares procedure for state estimation is used in combination with 

Control Algorithm 1. The state estimation procedure used here is a moving 

horizon-based approach for least squares estimation which has been proposed by 

Robertson et al. in [ 111 J. 

The dynamics of model and plant considered in this section are given by: 



Plant: 

Model: 

:i;P(t) 

y~ 

±( t) 

Yk 
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f(xP(t), u(t),p) 

g(x1,p) 

f (x(t), u(t), p) 

g(xk,f5) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

where x~ := xP(tk) and xk := x(tk), with tk := t 1 + kT, k 2'.: 0, t 1 is the initial time for 

computations and p, p E Rq are the true and nominal parameter values, respectively. 

5.3.1 Moving horizon formulation of the least squares 

estimation (LSE) procedure 

The objective of batch state estimation at time tk can be stated as: 

Given an initial estimate x1 at ti, the measurement sequence {y1 , ... , yk}, 

and the model (5.25),(5.26), estimate the error in the initial estimate 

xe(ljk) := x(ljk) - X1. 

Once estimates of the unknown states, x(llk), have been determined, the current 

state estimate, x(kjk), is obtained via the model equations. 

The size of the estimation problem posed in this way increases linearly with the 

number of measurements. For an estimation technique to be computationally feasible, 

we must be able to bound the number of variables to be estimated. The batch 

estimation problem can be modified to employ a fixed-size moving window in which 
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the number of measurements that we base our estimate on (and hence the size of 

the optimization) remains constant. The moving horizon state estimation problem 

at time tk with horizon size of m - 1 (here the horizon size is equal to the number of 

measurements used minus one) is formulated as follows: 

Estimation Procedure 2 

mm J(p, x(k - m + llk)) := ~[(xe(k - m + llk))' P(k - m + llk - 1) x 
xe(k-m+Ilk) 

subject to: 

v(llk) 

x(tik) 

xxe(k - m + llk) + 'E7=k-m+I v(llk)' R-1v(llk)J (5.27) 

yf - g ( x ( l I k), p), l = k - m + 1, ... , k 

f(x(tlk), Uz-i,p), t E [t1-1, tz], l = k - m + 1, ... , k 

(5.28) 

(5.29) 

where xe(k - m + llk) := x(k - m + llk) - x(k - m + llk - 1), x(llk) := x(tzlk) and 

u(t) is constant fort E [t1_ 1 , tz] and equal to u1_ 1 , for all l E [k - m + 1, k]. 

x(k-m+ llk-1) represents the least squares estimate of x(k-m+ llk) at t = tk-m+l 

obtained at time tk-l and P(k - m + llk - 1) is the weighting matrix expressing the 

confidence in the estimate (e.g., inverse of the conditional covariance of x(k-m+llk) 

at time tk_1). At the beginning of the estimation, the number of measurements is 

allowed to grow until it reaches the size of the horizon (i.e., from t1 to tm)· At the 

next time step the initial estimate x(llm-1) is replaced by x(2lm) and the weighting 

matrix P(llm - 1) is replaced by P(2lm). The first measurement y1 is discarded 

as the current measurement Ym+l is made available. This procedure is repeated at 

each time step, and the optimization remains at constant size for all future times. 

Given the probabilistic interpretation of p-1 (k - m + llk - 1) as the covariance of 
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x(k - m + llk) - x(k - m + llk - 1), we can calculate p-1 (k - m + 2lk) from 

p-1 (k - m + llk - 1), Vk?: m, using linear filtering theory: 

p-1(k - m + llk) = p-1(k - m + llk - 1) - p-1(k - m + llk - 1)2' x 

x [2P-1(k - m + llk - 1)2' + R]-12P-1(k - m + llk - 1) (5.30) 

p-1(k - m + 2lk) = <I>P-1(k - m + llk)<I>' (5.31) 

where <I>:= ~(x(k - m + llk),uk-m+liP), 2 := ~(x(k - m + llk - 1),p) and Jl-1 

represents a quantitative measure of our confidence in the output model. 

In [111], Robertson et al. have shown the equivalence between the well-known ex

tended Kalman filter (EKF) technique and the moving horizon least squares algorithm 

when a linearized output model is used and m = 1. When m = 1 the state equations 

do not appear in the formulation and the problem becomes a linear least squares 

problem. The obtained solution corresponds to the measurement correction step of 

the EKF. Thus, the EKF-based moving horizon estimator is equivalent to the EKF 

when m = 1. Furthermore, the horizon size is the only additional tuning parameter 

other than the ones used in the EKF formulation. 

The effect of increasing the horizon size is that the moving horizon estimator retains 

all of the most recent information and is more efficient than the EKF at summarizing 

past information (because it uses m + 2 instead of only three statistics as the EKF 

does). None of the information contained in the last m measurements is lost, and the 

estimation is based on the nonlinear model over this measurement horizon. When 

the system is linear, these two procedures are equivalent independent of the size 

of the horizon. However, when the system is nonlinear, the conditional density is 

non-Gaussian and use of the EKF means that some information will be lost. 
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5.3.2 Basic assumptions 

Assumption 5.4 We assume that for any p E ~q' (x, u) = (0, 0) is an equilibrium 

point of the system (5.19), i.e., f(O,O,p) = 0 and g(O,p) = 0. 

Assumption 5.5 The feasibility assumption for the control problem P(tm+nP, x(m+ 

nPjm + nP)), n 2: O,is slightly altered in this case due to the fact that the contractive 

constraint will be imposed with respect to a state estimate 2P steps behind, x(m + 
( n - 1 )Pjm + nP) (instead of P steps behind as in the state feedback case), as we will 

see later. Also, since the contractive constraint is not changed for the period of one 

horizon, if P(tm+nP, x(m + nPjm + nP)) is feasible for a particular n 2: 0, then the 

subsequent P-1 control problems, P(tk, x(klk)), k = m+nP+l, ... , m+(n+l)P-1 

will be feasible as well. 

Thus, we will assume that there exists p > 0 such that P(tk, x(kjk)), k 2: m, is feasible 

for all x(m + (n - l)Plm + nP), ~+(n-l)P E BP, Vn 2: 0. 

The following assumptions hold for all x1 , x2 E ~n, u1 , u2 EU, and arbitrary param

eters P1, P2: 

Assumption 5.6 

Then, if u 2 = u 1, we have: 

(5.33) 

which implies that 
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(5.34) 

Assumption 5.7 Growth condition on f: 

Assumption 5.8 

Assumption 5.9 Prom assumptions 5.6 and 5.8, we have: 

+ /f II Pl - P2 II [II X1 II + II U1 Ill (5.37) 

2. Assumptions on g : ~n x ~q -t ~P 

Assumption 5.10 

from which, it J allows that: 
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(5.39) 

Assumption 5.11 

Assumption 5.12 From assumptions 5.10 and 5.11, it follows that: 

Remark 5.3 Assumptions 5.6, 5. 7, 5.8, 5.9, 5.10, 5.11, 5.12 only need to be satisfied 

for x 1 , x 2 inside the reachable set, 

With control computations starting at t = tm (after m measurements, {y1 , ... , Ym}, 

have been obtained), with the estimate for the unknown states of the plant, x~, being 

denoted by x( mlm), our reachable set, X, for any values of p and p, is defined as: 

X ·- {xP(t) = xP(t, tm, x~ii u,p) or x(t) = x(t, tm, x(mlm), u,p), t E [tm, oo); 

xf, x(llm) E BP, u EU} (5.42) 

Assumption 5.13 Let m p := m dim(y) 2: n := dim(x) and let P(x(k -

m + 1 I k), p) denote the optimal estimation problem to be solved at time t = tk with 

P(k - m + llk - 1) = 0, Vk 2: m, and R = Ip (i.e., the objective function is 
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reduced to the sum of the output errors from k - m + 1 to k) and in the absence of 

measurement noise, being x(k - m + ljk) and j5 the decision variables and parameter 

values, respectively. Then, if p = j5 (no parameter uncertainty), P(x(k - m + ljk),p) 

admits a unique optimal solution x* ( k - m + 1 I k) which is equal to the states of the 

plant at tk-m+1, i.e., x*(k - m + ljk) = xLm+I· 

Remark 5.4 Since the objective function is quadratic in the output error, v(llk), l = 

k - m + 1, ... , k, and in the decision variable xe(k - m + llk), if both f and g 

(which represent the state and output model, respectively) are convex functions of 

x(k - m + llk), then the optimal estimation problem is convex. In this case, every 

local solution x* ( k - m + 1 I k) is a global solution, and the set of global solutions is 

convex (see {46}). Furthermore, if f and g are such that J(p, xe(k - m + 1 lk)) is 

strictly convex, then any global solution is also unique. 5.13. 

5.3.3 MPC with state estimation: implementation 

In order to include the moving horizon least squares state estimation procedure, 

Control Algorithm 1 has to be modified in the following way: 

Control Algorithm 4 

Data: Initial Conditions: t 1 and x 1 ; Controller Parameters: P, M, Q, R, S, 

P, o:, T, Umin, Umax, flumax; Observer Parameters: m - 1 = P (i.e., choose 

prediction horizon equal to estimation horizon), P1 , R; Output measurement at 

ti: YI. 

Step 0: Sett= ti. 

Step 1: Solve the optimal control problem P(t1 , x 1) (assuming that it is feasible for 

the chosen initial estimate x 1). 
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Result: Optimal (or feasible) control sequence { u(lll), ... , u(Pll)} with 

u(ill) = u(Mll) for i E [M + 1, P]. 

Step 2: Apply the whole sequence of control moves {u(lll), ... , u(Pll)} to the plant, 

measuring the output at every sampling time. Thus, at tm we have the sequence 

of m outputs {yi, ... , Ym}· 

{ u(lll), ... , u(Pll)} 

x(llm - 1) x(mlm -1) 

Ym 

Step 3: Set k = m, P(llm - 1) :=Pi and x(llm - 1) := x1 . 

Step 4: With x(k-m+ lJk-1), P(k- m+ lJk-1), {Yk-m+i, ... , yk} and them- l 

control moves most recently applied to the plant, calculate x ( k - m + 1 I k) by 

solving P(x(k - m + llk),p). 

Step 5: Compute x(kjk) by integrating the model equations (5.20) with the m - 1 

control moves most recently applied to the plant. 

Yk-rn+1 

/ 
Estimation ; 

; 

/ 
; 

k 

~ 
/ 

/ Yk 

-~ --... -- - - - - - - - - - >-- x(klk) 
x(k - rn + llk) 

Integration 

= New initial 
condition for 

prediction 
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Step 6: Solve the optimal control problem P(tk,x(klk)). 

Result: { u(kjk), ... , u(k + M - ljk)}. 

Step 7: Apply u(klk) to the plant and measure the output at tk+1, Yk+I· 

/ 
y / 

I 
- - - J 

Prediction 1
1 1 

IU _,_ - ... 
I I 

ru(klk;~ 
Yk 

I 

x~k{k') Yk+i 

EstimatioIJ. .... ..-

I - -

- -

.,.. .: ~:: - - - - - - - - - - - - .-x(k + llk + 1) 
x(k - m + 2lk + 1) 

Integration 

Step 8: Set k = k + 1. 

Step 9: Compute p-1(k-m+ ljk-1) from p-1(k- mlk- 2) using equations (5.30) 

and (5.31) and go to Step 4. 

Remark 5.5 Fork 2: 2m - 1, the m - 1 control moves most recently applied to the 

plant are {u(k - m + ljk - m + 1), ... , u(k - llk - 1)}. 

Remark 5.6 It is important to notice that we can accept feasible solutions (instead 

of optimal solutions) of the control problem without interfering with the stability prop

erties of the closed-loop. However, for the estimator, it is important that an optimal 

solution be found. This will be clear later in our stability analysis but it is important 

to call attention to this property of the algorithm at this point. 
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Remark 5. 7 Here we will not address the issue of feasibility of the optimal estimation 

problem. We are assuming that P ( x ( k - m + 1 I k), p) is feasible for all k 2:: m and 

that an optimal solution can always be found. 

Remark 5.8 The optimal control problems P(t1 , x(llm - 1)) and P(tk, x(klk)), 

k ;:::= m, are formulated as in Control Algorithm 3 with the only exception being 

the contractive constraint which is here given by: 

1. Contractive constraint for P( t 1 , x(l Im - 1)): 

II x(mJm - 1) lit::; o: II x(llm - 1) llt 

2. Contractive constraint for P(tj, x(jlJ)) with j = k - P, ... , k 

k = m + iP, i = 1, ... , oo: 

II x(klj) lit::; o: II x(k - 2Plk - P) llt=: o: II Xk-2P llt 

(5.43) 

1 and 

(5.44) 

Let us remember that the states x(t) are only updated with the estimated states at 

every tm+iP, i > 0. The contractive constraint is only satisfied by the states of the 

model (i.e., not the predicted states) at j = k - 1. Thus, we have: 

II x(klk - 1) lit::; a II xk-2P llt (5.45) 

where x(klk - 1) are the states of the model used for computation of the contractive 

constraint at tk and xk_2p are the estimated states at tk - 2PT. 

Remark 5.9 Note that the horizon for imposing the contractive constraint is now 

equal to 2P (instead of P, as in our previous algorithms). This is due to the as

sociation of the contractive MPG controller with the moving horizon least squares 

estimation scheme which has an estimation window equal to m - 1 = P. 
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Remark 5.10 Our combined MPG + estimation procedure generates the following 

trajectories for the interval of 2P: 

P=m-1 

k-P k 

I I 
x(k - Pjk) =: Xk-P x(kjk) t Integration 

Estimated states 
at k-P 

k+P 

I 
x(k+Plk+P-1) =: xk+P 

Prediction t 
Predicted states 
at k+P 

Contractive Constraint: II Xk+P ll:P < a II Xk-P ll:P 

5.3.4 Stability analysis of Control Algorithm 4 

The generalization of the classical implicit function theorem can be fruitfully used 

in various branches of mathematical analysis. Here we will enunciate the existence 

theorem for an implicit function and the classical implicit function theorem which we 

will then use as tools in the stability analysis of Control Algorithm 4. 

Theorem 5.4 (Existence theorem for an implicit function) Let X be a topo

logical space, let Y and Z be Banach spaces, let W be a neighborhood of a point (x0 , y0 ) 

in X x Y, let \II be a mapping from W into Z, and let \Il(x0 , y0 ) = z0 . 

If 

1. the mapping x--+ \Il(x, y0 ) is continuous at the point x0 ; 

2. there exists a continuous linear operator A : Y --+ Z such that, given any E > 0, 

there exists a number r5 > 0 and a neighborhood 2 of the point x 0 possessing 
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the property that the condition x E 3 and the inequalities 11 y' - y0 11 < o and 

11 y" - Yo 11 < O imply the inequality 

II w(x, y') - w(x, y") - A(y' - y") II< E II y' - y" II; (5.46) 

3. AY = Z; 

then there exists a number K > 0, a neighborhood Y of the point (x0 , y0 ) in X x Z 

and a mapping cp : Y -+ Y such that: 

• w(x, cp(x, z)) = z; 

and 

• II cp(x, z) - Yo II~ K II w(x, Yo) - z 11. 

Theorem 5.5 (Classical implicit function theorem) Let X, Y and Z be Banach 

spaces, let W be a neighborhood in X x Y, and let W : W -+ Z be a mapping of class 

c 1 (w). If 

1. W(xo, Yo) = 0, 

2. there exists the inverse operator [wy(x0 , y0)J-1 E £(Z, Y), 

then there exist E > 0, 0 > 0 and a mapping cp : B 0 (xo, o) -+ y (with B(x, r) := 

{y E ~dim(x) I II y-x II~ r} andB0 (x,r) := interior(B(x,r))) ofclassC1(B 0 (xo,o)) 

such that: 

• cp(xo) =Yo; 

• II x - Xo II< 0 ===} II cp(x) - Yo II< E and w(x, cp(x)) = O; 
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• the equality W ( x, y) = 0 is possible in the ((rectangle" B 0 
( x 0 , b) x B 0 (y0 , E) only 

for y = rp(x); 

Proof: Proof of both theorems can be found in many books which address geometric 

differential methods. A good reference is [4}. 

Now, let the operator W be the gradient of the objective function (5.27) of the esti

mation problem. Then, since x~-m+i is the unique solution of the estimation problem 

P(xk-m+1,p), where Xk-m+l := x(k - m + llk), we have: 

a1 ( p ) -a p, xk-m+l - 0 
Xk-m+l 

(5.47) 

Then, let x 0 = p, Yo = xLm+l' X = Rq, Y = Rn, Z = R and W a neighborhood 

in Rq x Rn. If the Hessian matrix 8/J2J (p, Xk-m+i) is invertible in £(R, Rn), then 
k-m+l 

there exist Px > 0, Pp > 0 and a mapping rp : B 0 (p, pp) -+ Rn of class C1(B 0 (p, pp)) 

such that: 

• rp(p) = xLm+l; 

• II f5 - P II< PP ::::} II rp(p) - xLm+l II< Px and ~~ (p, rp(p)) = O; 

• the equality 8 aJ (p, Xk-m+i) = 0 is possible in the "rectangle" B 0 (p, pp) x 
Xk-m+I 

B 0 (xLm+ll Px) only for Xk-m+l = rp(p). 

Now, if the conditions of theorem 5.4 are satisfied, with W, x0 , y0 defined as above, it 

follows that z0 = 0 and there exists K > 0 such that: 

II rp(p) - xLm+l 11=:11 Xk-m+l - xLm+l ll:S K II a aJ (p, xLm+l) II 
Xk-m+l 

(5.48) 
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Thus, if we find an upper bound for II axk~~+i (p, Xk-m+1) JI evaluated at (p, xLm+l) 

we immediately obtain a bound on the state estimation error at tk-m+l · 

Our task is then to find an upper bound for II axk~~+i (p, xLm+1 ) IJ. 

Theorem 5.6 (Bound on the difference between true and estimated states 

in the presence of parameter uncertainty) Under assumptions 5. 6, 5. 7, 5. 8, 

5.9, 5.10, 5.11, 5.12 and 5.13, let Xk-m+l and xLm+l denote the solutions of the 

estimation problems f>(p, Xk-m+i) and f>(p, Xk-m+i), respectively. Then, there exists 

k E [O, oo) such that 

A 1 oJ p 
II Xk-m+l - xLm+l lip < K Amax(P) 2 II a (p, xk-m+l) ll:S; 

Xk-m+l 
< k II .P - P 11 :S; kpp (5.49) 

for all nominal parameter values p E B 0 (p, pp)· 

Proof: We begin by evaluating 8 aJ (p,xk-m+i) with P(k-m+llk-l) = 0, Vk 2: 
Xk-rn+l 

m, and R =Ip (so that assumption 5.13 can be satisfied): 

a1 _ ~· , ov1 
---(p, Xk-m+l) = L,, Vt --
OXk-m+l l=k-m+l OXk-m+l 

But, from (5.28), we have: 

og(x1,.P) 
OXk-m+l 

og(x1,.P) OX[ a ' l = k - m + 1, ... 'k 
OXt Xk-m+l 

From (5.50) and (5.51), it follows that: 

II ax~~+i (p,x,_m+il II s: ,~,~+i II v, 1111 ::, (x,,p) 1111 ax~~~+i II 

(5.50) 

(5.51) 

(5.52) 
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Using assumption 5.10 we have: 

Then, from the equations of the model (5.25), we obtain: 

Thus, by differentiating with respect to Xk-m+l and taking the 2-norm we get: 

Using assumption 5. 6 and the BG inequality, it follows that: 

which means that 

II 8x(llk) II:=; eL1(m-l)T, Vl E [k - m + 1, k] 
axk-m+l 

(5.54) 

(5.57) 

Now that we have obtained a bound for II /x(lJk) II, all that is left to do is to find 
Xk-m+l 

a bound on II Vt Jl:=JI g(xf,p) - g(x(llk),p) 11 (note that Vz is being evaluated in the 

noise-free case). From assumption 5.12, in order to find a bound for II v1 II, it is 

necessary to find bounds for 11 xf IJ and 11 xf - x(llk) IJ, which is what we will proceed 

to do next. 
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1. Upper bound on II xf II: 

From the equations which govern the dynamics of the plant, (5.23), we get: 

II xP(t) 11~11 xLm+l II+ 1:_m+i II f(xP(T), u(T),p) II dT (5.58) 

Using the growth condition on f, (5. 7), it results that: 

II xP(t) 11~11 xLm+1 II +111(1 + u)(m - l)T + 171 1t II xP(T) II dT (5.59) 
tk-m+l 

where u := max{ll Umin II, II Umax II}. 

Thus, by applying the BG inequality, we obtain: 

II xP(t) II ~ [II xLm+1 II +ru(1 + u)(m - l)T l e77iCt-tk-=+ 1 l (5.60) 

And at t = tz, 

II xf II~ [II xLm+l II +111(1 + u)(m - l)T]e77J(ti-tk-m+i), l = k - m + 1, ... 'k 

(5.61) 

2. Upper bound on II xf - xz II: 

Subtracting (5.25) from (5.23), taking the 2-norm and using assumption 5.9, 

we get: 

II xP(t) - x(t) II ~ II xLm+l - Xk-m+l II +11u(m - l)T II P - f5 II + 

+11 II P - f5 II ft~-m+l II xP(T) II dT + L1 ft~-m+i II xP(T) - x(T) II dT (5.62) 

But, by integrating (5.59), we know that: 
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lt II xP(T) II dT:::; [II xLm+i 11 +(l+u)(m-l)T](e7JJ[t-tk-m+1l 1) (5.63) 
tk-m+l 'fJJ 

Thus, by substituting (5. 63) into (5. 62) and evaluating the resulting inequality 

at t = t1, l E [k - m + 1, k], we obtain: 

II xf - x1 ll::S { /f II P - P II [u(m - l)T + (II xLm+i II + (1 + u)(m - l)T) x 
'fJJ 

x (e71J(m-l)T - 1)]+ II xLm+l - Xk-m+l ll}eL1[t1-tk-m+il (5.64) 

where x1 := x(llk). 

Then, by using (5.61) and (5.64) we obtain the following bound on II v1 II, 
\fl E [k - m + 1, k]: 

II Vz II < L9 { /f II P - p II [u(m - l)T + (II x~;;+i II + (1 + u)(m - l)T) x 

x (e7JJ(m-l)T - 1)]+ II xLm+l - Xk-m+l ll}eL1[t1-tk-m+il + 

+ rg II P - 'P II [II ~-m+1 11 +rJ1(1 + u)(m - 1)T]e711 lti-tk-m+1 l (5.65) 

Finally, we are able to derive an upper bound for II 8 
81 (p, xk-m+i) II: 

Xk-m+l 

&J II & (p, Xk-m+I) II :::; µ1 II xLm+l - Xk-m+l II +µ2 II p - p II (5.66) 
Xk-m+l 

with 
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k 
·- L2 2= e2L f[t1-tk-m+il g 

l=k-m+l 
k 

·- Lg 2= eL1[t1-tk-m+il{ Lg/f [ u(m _ l)T + 
l=k-m+l 

+ (II xLm+l II + (1 + u)(m - l)T)(e11J(m-l)T - 1) l eL1[t1-tk-m+il + 
'r/f 

(5.67) 

+ rg [ II xLm+1 11 +TJ1(1 + u)(m - 1)T l e111 [ti-tk-m+il}, (5.68) 

where we could replace t1 - tk-m+l by ( l - k + m - 1 )T. 

From (5.49), we see that in order to obtain an upper bound on the estimation error 

at time tk-m+l, we need to evaluate the inequality (5. 66) at xk-m+l = xLm+i · Then, 

it is clear from (5.66) that the first term of the right side of the inequality vanishes 

and all we are left with is: 

II a aJ (f5, xLm+i) II ::; µ2 II P - i5 II 
Xk-m+l 

(5.69) 

Thus, from (5.49), we end up with: 

II xLm+l 
A 1 aJ 

Xk-m+l llp::; K Amax(P) 2 II a (p, xLm+l) II < 
Xk-m+l 

A' 1 - -

< K Amax ( P )2 µ2 11 P - P 11 =: K 11 P - P I J ::; K Pp (5.70) 

And we have finally concluded our proof. 
0 

Theorem 5. 7 (Stabilizing properties of Control Algorithm 4 in the pres

ence of parameter uncertainty) Under assumptions 5.4, 5.5, 5.6, 5. 7, 5.8, 5.9, 

5.10, 5.11, 5.12 and 5.13, and given that the contractive constraint in the control 
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problem P(tk+P-i, x(k + P - llk + P - 1)), k;:::: m, is given by: 

II xk+P llP := II x(k + Plk + P - 1) llP ::::; a II xk-P lip (5.71) 

if x(m+(n-l)PJm+nP), x~+(n-I)P E Bp, Vn 2: 0, the control problems P(tk, x(kjk)) 

are well-defined (according to assumption 5. 5) and it follows that there exists p > 0 

such that: 

II x~+(n-I)P llP < max{ll xf_ IJp, II x~ Jlp} + p, Vn 2: 0 (5.72) 

and 

lim II X~+nP llP < P n-+oo 
(5.73) 

i.e., under the constant parameter deviation, 11 p - p JI, the best that we can be assured 

to achieve is that the states will be driven to a neighborhood of the origin B fJ (a control 

invariant set) whose size is determined by this deviation between nominal and true 

parameter values, with p = 0 if p = p. 

Proof: Subtracting the equations of the model used in the computation of the con

tractive constraint from the equations of the plant we get: 

j;P(t) - x(t) = f(xP(t), u(t),p) - f(i(t), u(t),p) (5.74) 

We know that the optimal control problem P(tk, x(klk)) is solved after x(klk) is ob

tained by integration of the model equations with initial condition Xk-m+l at tk-m+l · 

Thus, we can integrate (5. 74) from tk-m+I = tk-P = tk - PT to any t E [tk -PT, tk + 
PT] (i.e., within an interval of 2P) and obtain: 
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II xP(t) - x(t) II < { /f II p - p II [2uPT + (II xLp II + 2(1 + u)PT)(e217f PT - 1)] + 
T/f 

+ II xfc_p - Xk-P ll}eLJ[t-tk-m+il (5.75) 

Then, at tk+P = tk +PT, using inequality (5. 10) and the fact that: 

A 1 A 1 

Amin(P) 2 II· II =:; JI · Jlp =:; Amax(P) 2 II · II (5.76) 

we have: 

(5.77) 

where: 

61 := Amax(P)! ~(e2ruPT - l)e2L1PT Pp 

62 := Amax(P)!{11[2uPT + 2(1 + u)PT(e217JPT - 1)] + Ami~(P)}e2L1PT Pp 
(5.78) 

Notice that 61 , 62 = 0 if there is no parameter uncertainty, i.e., pp = 0. 

Using our contractive constraint and the triangle inequality we get: 

Then, from (5. 10), it follows that: 
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(5.80) 

Thus, we have an inequality of the kind: 

II X~+(n+l)P llP :S 61 II X~+(n-l)P llP +62, n > 0 (5.81) 

So, x~+P is related to x~-P = xf via (5.81), x~+2P is related to x~,, x~+3P is related 

to x~+P and so on. 

Thus, we have an inequality of the kind: 

Zn+l < a Zn-1 + b, Vn 2 0 (5.82) 

where Zn :=II X~+nP llP· 

This is slightly difjerent from what we had in lemma 4.1 since there Zn+i was related 

to Zn directly. In this case, following the same procedure used to prove lemma .,f_.1, we 

get: 

n-1 

Z2n-l < anz_1 + b (2: ai), n 2 1 (5.83) 
i=O 

and 
n-1 

Z2n < anzo + b (2: ai), n>l (5.84) 
i=O 

Thus, for any n 2 1, if 

a ·- 61 < 1 (5.85) 

we have: 
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n*-1 

Zn < an* max{z-1, zo} + b ( L ai); n > 1 
i=O 

where n* := int( nil) and int(r) denotes the integer part of r, \.fr E R. 

Therefore, the following bounds can be obtained: 

and 

or, in our original notation, 

b 
Zn< max{Z-1, zo} + --

1 - a 

b 
lim Zn < 

n-too 1 - a 

c52 
II x~+(n-l)P IJp< max{JI x)_ Jlp, JI x~ Jlp} + 

1 
_ 

61
' n 2: 0 

and 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

Since c52 = 0 if f5 = p then it follows that p = 0 if f5 = p and Bp is a control invari

ant set to which the states of the plant (5.23) converge asymptotically when Control 

Algorithm 4 is used for output feedback control. 
D 

Theorem 5.8 (Feasibility condition) Let x'f, x~ E BPo. Then, if p0 < p - (p + 
k Pp) (notice that the set Bp0 , with Po satisfying this inequality, is non-empty if and 

only if p+ k Pp < p) it follows that x~+(n-l)P' Xm+(n-l)P E BP, \.In 2: 0, and therefore 
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the control problems P(tk, x(klk)), 'Ilk~ m, are well-posed. 

Proof: In theorem 5. 7 we have shown that the contractive MPG controller associated 

with the least squares estimator produces real states which satisfy: 

II X~+(n-I)P llp< max{ll xf llp, II x~ lip} + p, Vn ~ 0 (5.91) 

Thus, if xi, x~ E Bp0 , we have: 

II X~+(n-l)P llP < Po + P (5.92) 

Now, from equation ( 5. 70) we know that: 

II X~+(n-l)P - Xm+(n-l)P llP ·- II X~+(n-l)P - x(m + (n - l)P/m + nP) llP ~ 

< k II p - p II ~ k Pp (5.93) 

Then, using the triangle inequality, we have: 

II Xm+(n-l)P llP ~ II X~+(n-l)P llP +k Pp (5.94) 

Taking inequality ( 5. 92) into consideration, it results that: 

II Xm+(n-l)P llP ~ Po+ P + K Pp, Vn ~ 0 (5.95) 

If Po satisfies: 
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Po< p- (p+K Pp) (5.96) 

with the parameter uncertainty being such that: 

p+K Pp < p (5.97) 

so that Po > 0 and Po = p if II p - p II= PP = 0, we have x~+(n-I)P' Xm+(n-l)P E 

BP, Vn 2: 0, and, according to assumption 5.51 the control problems P(tk, x(kjk)) are 

well-posed (feasible) for all k 2: m. 
D 

5.4 Mixed state/parameter LSE problem 

We have so far studied the state estimation problem in the presence of parameter 

uncertainty (constant parameters), examined its implementation together with the 

contractive MPC controller and analyzed the stability properties of the closed-loop 

system originated by this combination. In that case, we were using in both the es

timation and prediction steps a model with constant parameter deviation from the 

plant. Our stability analysis shows that this uncertainty only allows us to drive the 

states of the plant asymptotically to a control invariant set whose size depends on 

the parameter error. Now, we are prepared to study the properties of the mixed 

state/parameter estimation problem when there is no structural mismatch between 

the model used in the estimation and the real plant. Then, by combining this estima

tor with contractive MPC we can see how the obtained stability results compare with 

the ones we got previously. We will see that even though the analysis is slightly more 

complicated the results are highly intuitive. Since the analysis will follow a similar 

reasoning to what has been already presented, we will not go into as much detail as 

we did in the previous sections. 



187 

The moving horizon-based least squares state/parameter estimation problem is posed 

as: 

Estimation Procedure 3 

mmxe(k-m+ilk), {w(k-m+ilk), ... ,w(klk)} J( { w(llk)}7=k-m+u X(k - m + llk)) ·

:= H(Xe(k - m + llk))
1 

P(k - m + llk - l)Xe(k - m + llk) + 

(5.98) 

subject to: 

v(llk) = yf - g(X(llk)), l = k - m + 1, ... , k (5.99) 

X(tlk) = f(X(tlk), uz-1) + w(tlk), t E [tz-1, tz], l E [k - m + 1, k] (5.100) 

where X(llk) := X(tzlk) := [x(tzlkf p(tzlkf]T E Rn+q is the ''augmented" state 

vector, containing the n model states and the q parameters to be estimated. Moreover, 

we are adopting the following notation: w(llk) := w(t11k) E Rn+q is the dynamic 

disturbance vector, v(llk) := v(t11k) ERP is the vector of output errors, xe(k - m + 
llk) := X(k - m + llk) - X(k - m + llk - 1) is the state/parameter estimation error 

of the estimates at time tk-m+l computed at time step k - 1 relatively to the newly 

computed estimates at time step k and u(t) is constant fort E [t1_ 1 , tz] and equal to 

Uz-1 for all l = k - m + 1, ... , k. 

Remark 5 .11 When the dynamics of the parameters to be estimated is unknown, 

the most common model to use in the estimation procedure is a continuous (discrete) 

random walk process where wP(t) (wV is a zero-mean, uncorrelated random trajectory 

(sequence). In this case, the combined output/state/parameter model is given by: 
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v(llk) = yf - g(x(llk),p(llk)), k m + 1, ... , k 

x(tjk) = f(x(tik), Uz-i,p(tik)) + wx(tik), t E [t1-1, tz], l E [k - m + 1, k] 

p(tlk) = wP(tlk), t E [tk-m+l, tk] (5.101) 

Similarly to what we had before, p-l ( k - m + 1 I k - 1) is interpreted as the covariance 

of X(k - m + llk) computed at time tk-I and can be calculated using linear filtering 

theory: 

p- 1 (k - m + ljk) = p- 1 (k - m + llk - 1) - p- 1 (k - m + llk - 1)2' x 

x[2P-1 (k - m + llk -1)2' + R]-12P-1 (k - m + llk - 1) (5.102) 

p-1(k - m + 2jk) = <I>P- 1(k - m + llk)<J>' + Q (5.103) 

where <I>:= U-(X(k- m + ljk), uk-m+i), 2 = ~(X(k- m + ljk-1)) and Q-1 , R-1 

represent a quantitative measure of our confidence in the state/parameter and output 

models, respectively. 

5.4.1 Basic assumptions 

Assumption 5.14 Lipschitz assumption on f: Rn+q x Rm--+ Rn+q 

(5.104) 

which implies that 
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8f II ax (X, u) llS Lt (5.105) 

Assumption 5.15 Lipschitz assumption on g: Rn+q --+ RP 

(5.106) 

from which, it follows that: 

II :~ (X) llS Lg (5.107) 

Assumption 5.16 The unknown disturbances are norm bounded, i.e., there exists a 

constant Wmax E ( 0, oo), such that: 

w(t) E w ·- {w E L~n+q)[O, oo) I w E Bwmax}, Vt E [O, oo) (5.108) 

where w denotes the disturbances in the real system and Bwmax ·- { w E Rn+q I 

II W llS Wmax}. 

Assumption 5.17 Let the output measurement at time step l, y1, be given by: 

Yz g(Xf) + Rv Vz (5.109) 

where v1 rv N(O, Ip), Vl 2:: 0, is a discrete Gaussian sequence and Rv is a positive

definite matrix (a design parameter). 
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Assumption 5.18 Let m p ·- m dim(y) > n + q ·- dim(X) and let 

P( { w(llk)}f=k-m+l' X(k - m + llk)) denote the optimal estimation problem to be 

solved at time t = tk with P(k - m + llk - 1) = 0, 'Ilk ~ m, and in the absence 

of measurement noise, being X(k - m + llk) and {w(k - m + llk), ... , w(klk)} the 

decision variables (all independent). Then, if the estimated sequence of disturbances 

{ w(llk )}f=k-m+l is equal to the sequence of disturbances which affect the real system, 

{ w1H=k-m+l (where Wz := w(t1)), the estimate of the augmented states at time tk-m+I 

computed at time step k is X ( k - m + 1 I k) = Xf-m+ 1 . Moreover, we assume that the 

solution corresponding to w(llk) = wi, \fl E [k - m + 1, k], is unique. 

5.4.2 Properties of Estimation Procedure 3 

Theorem 5.9 (Bound on the difference between true and estimated aug

mented states) Under assumptions 5.14, 5.15, 5.17 and 5.18, let Xk-m+l and 

Xf-m+l denote the solutions of the estimation problems P({w(llk)}f=k-m+l,X(k

m + llk)) and P({w1}f=k-m+l,X(k - m + llk)) , respectively. Then, there exists a 

quadratic function of its arguments, \II (Pw, Wmax, Pv), such that 

where Pv :=II Rv II· 

1 

\Il(pw, Wmax, Pv) 2 (5.110) 

In other words, the difference between true and estimated augmented states (which in

cludes estimated states and parameters) is bounded by a function of the uncertainty on 

the disturbance values, the magnitude of the real disturbances and of the measurement 

nozse. 

Proof: Any {local or global) optimal solution {{ w*(llk)}f=k-m+l' X*(k - m + llk)} 
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satisfies the following set of equations: 

~~ ( { w*(llk)}7=k-m+l' X*(k - m + llk)) = 0 (5.111) 

where A := [ w(k - m + llk)r, ... , w(klkf X(k - m + llk)T ]T. 

As a consequence of assumption 5.18, we have: 

OJ ({ }k rp ) _ 
8A Wz l=k-m+l' xk-m+l - 0 (5.112) 

Thus, if (ax 8 (gD)-1 exists, as a consequence of the classical implicit function 
k-m+l 

theorem 5.5 and of the uniqueness assumption 5.18, there exist Pw, Px > 0 and a 

mapping rp: B 0 (w, Pw)-+ Rn+q of class C1(B 0 (w, Pw)) (where w represents w(t), Vt 2 

0) such that: 

• maxtE[tk-m+1h] II w(t) - w(tlk) II< Pw ==} II rp( { w(llk)}7=k-m+1) - XLm+l II< 
Px and g~({w(llk)}7=k-m+l,rp({w(llk)}7=k-m+l)) = 0 with A= [ w(k - m + 
llkf ... w(klk)r rp(w(k - m + llk), ... , w(klk)f ]T. 

•the equality g~({w(llk)}f=k-m+1'X(k - m + llk)) = 0 is possible in the 

"rectangle" B 0 (w, Pw) X B 0 (XLm+1' Px) only for X(k - m + llk) 

rp( { w(llk)}f=k-m+l). 

So, as a consequence of the implicit function theorem, there exists Pw > 0 such that 

for w(tlk) E B 0 (w,pw), Vt E [tk-m+l,tk], it follows that { {w(llk)}f=k-m+ 1 ,X(k -

m +Ilk))} with X(k - m +Ilk)= rp({w(lJk)}f=k-m+i) E B 0 (Xf-m+ 1 ,px), is an 

optimal solution of the optimization problem at time step k. 

Thus, since there exists such Pw > 0 and from assumption 5.16, it follows that: 
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II w(tlk) II < II w(t) II +Pw < Wmax + Pw -· Wmax (5.113) 

As a consequence of the existence theorem for an implicit function 5.4, there exists 

K > 0 such that: 

II XLm+l - xk-m+l II ·- II XLm+l - X(k - m +Ilk) 11::; 

< K II ~~ ( { w(llk)}?=k-m+l' XLm+1) II (5.114) 

Thus, in order to find an upper bound for JI Xf-m+l - Xk-m+l 11, once again we need 

to find an upper bound for the gradient of the objective function J with respect to the 

decision variables in A evaluated at Xf-m+u i.e.: 

A ·- [ w(k - m + Ilkf ... w(klkf (Xf-m+if Jr (5.115) 

The 2-norm of the gradient of J with respect to A is then given by: 

II 
01 

11
2

=11 ~1 11
2 + t 

fJA fJXk-m+l i=k-m+l 
(5.116) 

where we have omitted the arguments of J to shorten the notation. 

Thus, we will proceed to find upper bounds for the individual gradients: 

1. ax%J = L:?=k-m+l v(llkf R,-l /J;Cllk) 
k-m+l k-m+l 

2 . a! = "'k_ [v(llk)T .n-1 av(~lk) + w(llk)TQ- -1 aw(Dk)] aw; ut-k-m+l aw; OWi 

(5.117) 
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Since 0~g~k) = 61i, where 6ti = 1 if l = i and 6ti = 0 if l f i, we have: 

I. II &xffJ 11:::; L~=k-m+l 11 v(llk) 1111 R-l 1111 &;,(llk) II 
k-m+l k-m+l (5.118) 

2. II ggi 11:::;11 CJ-1 1111 w(ilk) II + l:~=k-m+1 11 v(llk) 1111 R-1 1111 °~~ik) II 

So, let us find upper bounds for the 2-norm of the derivatives of v(llk) with respect 

to A: 

I. II 
01~:) 11:::;11 &g(:J}k)) 1111 °~~!k) II 

2. II a~(zJk) 11:::;11 &g(:Jlk)) 1111 &~{Olk) II 
k-m+l l k-m+l 

(5.119) 

(5.120) 

We will not go into a lot of details in the derivation of these upper bounds because 

the procedure is similar to what we did before in the state estimation case only. 

• Upper bound on II 0~~ik) II, Vi= k - m + 1, ... , k: 

From equation ( 5.119) and assumption 5.15, we have: 

(5.121) 

Since 

X(tlk) = XLm+l + 1:_m+1 f(X(rlk), u(r))dr + 1:_m+l w(r)dr, (5.122) 

the decision variables are mutually independent and assumption 5.14 is used, 

we have: 
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II BX(Tlk) II dr + rt II aw(~lk) II dr 
aw, ltt aw, 

k-m+l 

(5.123) 

Then, using the BG inequality and the fact that a~~~k) = 1 it t ~ ti and a~~~k) = 
0 if t < ti, it follows that: 

II a~~jk) II 

Thus, using assumption 5.15, we finally get: 

II a~~:) II 0 if tz < ti 

a 'llk) • Upper bound on II a;,t II: 
k-m+l 

Using equation (5.120) and assumption 5.15, we have: 

II a~czikl II ~ L II a-1iczikl II 
axk-m+l g axk-m+l 

(5.124) 

(5.125) 

(5.126) 

(5.127) 

(5.128) 

Taking the derivative of equation ( 5.122) with respect to XLm+l' applying the 

2-norm and using the BG inequality, it results that: 

(5.129) 

By substituting this expression into ( 5.128), we get: 

II a8};(llk) II ~ Lg eLJ(t1-tk-m+1)' l = k - m + 1, ... 'k 
k-m+l 

(5.130) 
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Now, in order to compute the gradient of J with respect to the decision variables we 

still need to compute an upper bound for II v(l lk) II· Using assumptions 5.15 and 5.1 'l, 

it results that: 

II v(llk) 11=11 g(Xf) - g(X(llk)) + Rv Vz II < Lg II xr - X(llk) II + II Rv II (5.131) 

So, let us evaluate XP(t) - X(tjk), Vt E [tk-m+b tk]: 

XP(t) - X(tlk) 1:_m+i [f (XP(r), u(r)) - f(X(rlk), u(r))] dr + 

+ lt [w(r) - w(rlk)j dT (5.132) 
tk-m+l 

Using assumption 5.14, the fact that w(tlk) E B 0 (w, Pw), Vt E [tk-m+1, tk], and the 

BG inequality, we obtain: 

(5.133) 

And, by substituting this expression into (5.131), we finally get the desired bound on 

11v(llk)11: 

II v(llk) II :s; Lg (m - l)T eLt(tz-tk-m+l) Pw + II Rv II =: 61Pw + Pv (5.134) 

Thus, from (5.118) and the previous upper bound computations, it follows that there 

exist constants D"1 ,0-1 , a 2 , 0-2 E (O,oo), such that: 
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l. II axf1 II ::; CT1 Pw + 0-1 Pv 
k-m+l 

2. II ggi II ::; II Cj-l II Wmax + CT2Pw + i'T2Pv 
(5.135) 

and, from ( 5.116), it results that there exists a quadratic function of its arguments, 

'1l(x, y, z), such that: 

(5.136) 

which, from (5.114), means that: 

(5.137) 

where \Ii := K'11. 

Thus, a sufficient condition for obtaining error-free estimates, i.e., Xk-m+l = XLm+l' 

is given by Pw = 0, Wmax = 0 and Pv = 0. If these three conditions are satisfied si

multaneously, it means that there are no disturbances (w(t) = w(tlk) = 0, Vt E 

[tk-m+1 , tk], k 2 m) and no measurement noise (vz = 0, Vl E [k - m + 1, k], k 2 m). 
D 

Thus, the stability analysis follows in the same way as for the state estimation prob

lem with parameter uncertainty with the only differences being that the term K Pp 

is replaced by \li(pw, Wmax, Pv)~ in the results previously derived, and the contrac

tive constraint is now imposed on the augmented states X (assuming that the same 

nonlinear state/parameter model is used in the prediction and estimation steps). 
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5.5 Example: Biochemical Reactor 

5.5.1 Biochemical reactor dynamics 

The chemical engineering example adopted here is a continuous bioreactor with sub

strate inhibition. Figure 5.1 is a schematic representation of this CSTR system. 

F 
D:=~ 

F 

s(t) 
x(t) 

Figure 5.1: Schematic representation of a continuous bioreactor with substrate inhi
bition. 

For some regions of the parameter and input variable space, this system exhibits 

multiple and saddle type of steady state behavior. The state equations are: 

where 

x(t) 

s(t) 

[µ(t) - D(t)] x(t) 

[s (t) - s(t)] D(t) - µ(t)x(t) 
f y(t) 

µmax( t)s(t) 
µ(t) = km(t) + s(t) + k1(t)s2 (t) 

(5.138) 

(5.139) 
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The dilution rate, D, is manipulated to control the cell mass concentration, x. The 

other state and parameters are the substrate concentration, s, the specific growth 

rate, µ, the yield of cell mass, y, and the substrate concentration in the feed stream, 

SJ. 

Eaton and Rawlings [40] apply a classical nonlinear model predictive control strategy 

to this example and they show that for a step in the setpoint from a stable to a saddle 

point, if some of the parameters of the plant differ slightly from their nominal values, 

the system will not be stable unless frequent measurements from the plant are taken 

into consideration in the control computations. 

The performance objective in this example is to obtain specific cell mass and substrate 

concentrations without large control efforts. 

According to our notation, we have: 

xP(t) A [:z;-i(t) ~(t)jI' with :z;-i(t) A x(t) - X 88 and ~(t) A s(t) - S88 

u(t) A D(t) - Dss 

d(t) A s1(t) - SJ,ss 

p(t) A [P1(t) P2(t) p3(t) p4(t)]T with P1(t) - µmax(t) - µmax,ss, P2(t) A km(t) - km,ss, 

p3(t) A k1(i) - k1,ss, p4(t) A y(t) - Yss 

where µmax,ss, km,ss, k1,88 , Yss are the nominal values of the parameters, s f,ss is the 

nominal value of the input variable and X 88 , Sm U 88 represent the desired steady 

state values of the two states and manipulated variables, respectively. 

Naturally, since cell and substrate concentrations and the dilution rate are all positive 

quantities, the physical constraints on the state space and control variables are: 

x'{(t) 2". -Xm x~(t) 2". -Sss' u(t) 2". -Dss, \ft E [O, oo) 
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5.5.2 Computation of steady states 

With U88 , dss and Pss representing the steady state values of the manipulated variable, 

input variable and parameters, respectively, we have: 

1. if ( Uss - PI,ss )2 > 4u;sP2,ssP3,ss the system presents three distinct steady states 

given by (0, dss), (P4,ss(dss - X2,ss), x2,ss) and (P4,ss(dss - xt.ss), xt.ss), where: 

PI,ss - Uss - [ ( Uss - PI,ss )2 - 4u;sP2,ssP3,ss] ~ 
2p3,ssUss 

PI,ss - Uss + [(uss - Pl,ss)2 - 4u;sP2,ssP3,ss]~ 
2p3,ssUss 

(5.140) 

(5.141) 

2. if ( U88 - P1,ss )2 = 4u;sP2,ssP3,ss the system presents two distinct steady states 

given by (0, dss), (P4,ss(dss - X2,88 ), X2,ss), where: 

_ (P2,ss )l X2ss - -- 2 

' P3,ss 
(5.142) 

3. if ( U88 - P1,ss) 2 < 4u;sP2,ssP3,ss the system presents only one steady state given 

by (0, d88 ). 

The stability properties of these equilibrium points are: 

First Equilibrium Point: (0, dss) 

1. if U
88 

= Piss 1 then: 
1 +2(P2,ssP3,ss) '2" 

(1.1) if d88 ::/- (P2 ,ss)~ the equilibrium point is a sink. 
P3,ss 

( 1.2) if dss = e2
'
88

) ~ the equilibrium point is a center (here we denote by 
P3,ss 

center stationary points at which the linearization has one or more eigenvalues 

on the imaginary axis; the stability characteristics of these points cannot be 

determined by this first order analysis). 
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2. if P2,ssP3,ss 2: ~ and U88 > Pl,ss ! the equilibrium point is a sink. 
1 +2(pz,ssP3,ss) 

3. if U88 E [O, Pl ss ) then: 
1+2(pz,ssP3,ss)2 

(3.1) if Uss = 0 the equilibrium point is a center. 

(3.2) if U
88 

E (0, Pl,ss ) we have: 
1+2(pz,ssP3,ss)2 

(3.2.1) if dss = d-;s or dss = dt,, where 

Pl,ss - Uss - [(uss - Pl,ss)2 - 4u;sP2,ssP3,ss]~ 
2p3,ssUss 

Pl,ss - Uss + [(uss - Pl,ss)2 - 4u;sP2,ssP3,ss]~ 
2p3,ssUss 

the equilibrium point is a center. 

(3.2.2) if dss E (d-;8 , dt,) the equilibrium point is a saddle. 

(3.2.3) if dss E [O, d-;8 ) or dss > dts the equilibrium point is a sink. 

(5.143) 

(5.144) 

4. if P2,ssP3,ss < ~ and Uss E ( Pl ss , Pl ss 1 ) the equilibrium point is 
1+2(P2,ssP3.ss)2 l-2(pz,ssP3,ss) 2 

a sink. 

5. if P2,ssP3,ss < ~ and Uss > Pl,ss we have: 
l-2(pz,ssP3,ss) 2 

(5.1) if d 88 = d-;8 or d 88 = dt, the equilibrium point is a center. 

(5.2) if dss E [O, d-;8 ) or dss > dt, the equilibrium point is a sink. 

(5.3) if dss E (d~, dt,) the equilibrium point is a saddle. 

Second Equilibrium Point: (P4,ss(dss - x2,ss), x2,ss) 

1. if Uss = 0 and dss 2: x2,ss the equilibrium point is a center. 

2. if Uss E (0, Pl,ss ) and dss > x2 ss the equilibrium point is a sink. 
1+2(P2,ssP3,ss)2 ' 

3. if Uss E (0, Pl,ss ) and dss = x2 ss the equilibrium point is a center. 
1 +2(P2,ssP3,ss )2 ' 
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Third Equilibrium Point: (P4,ss(dss - xt,88 ), xt,88 ) 

1. if U 88 = 0 and dss 2: xts = 0 the equilibrium point is a center. 

2. if Uss E (0, Pi•• 1 ) and dss > xt ss the equilibrium point is a saddle. 
1+2(P2,ssP3,ss)2 ' 

3. if Uss E (0, Pi,ss ) and d88 = xtss the equilibrium point is a center. 
1+2(P2,ssP3,ss)2 ' 

In the case where U 88 = Pi,ss the two last equilibrium points coincide into 
1+2(P2,ssP3,ss)2 

one and this point is a center. 

This local stability analysis allows us to better interpret the results obtained from 

simulations of the closed-loop system. 

5.5.3 Simulation results 

The nominal values of the parameters, disturbance and input variable used in the 

simulations performed here are: 

Nominal parameter and disturbance 

values for the bioreactor 

µmax= 0.53 km= 0.12 

ki = 0.4545 y = 0.4 

d :=SJ= 4.0 

The steady state coordinates for these parameter and disturbance steady state values 

for both the open-loop stable and unstable equilibria are: 

Steady state values for the biochemical reactor 

Variables Unstable (1) Stable (2) 

u:=D 0.3 0.3 

x 0.9951 1.5302 

s 1.5122 0.1746 
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We will use the biochemical CSTR to demonstrate how contractive MPC handles 

both time-variant and time-invariant parameter uncertainty in the model used for 

prediction, in both state and output feedback case. 

A variety of situations for two main cases will be considered here: 

Transition 1: Step change from steady state (1) to steady state (2), 

Transition 2: Step change from steady state (2) to steady state (1). 

Naturally, the step change proposed in Transition 2 is more challenging than the 

one in Transition 1 due to the unstable characteristics of the steady state around 

which we wish to operate the plant. For each of these transitions we will consider six 

different scenarios in our simulations: 

Case 1: State Feedback 

Case 1.1 Nominal casej no disturbances. 

Case 1.2 Constant parameter deviation between model and plant. 

Case 1.3 Non-additive, bounded, exponentially decaying disturbance which 

converges to a non-zero value. 

Case 1.4 Non-additive, bounded, exponentially decaying disturbance which 

converges to zero. 

Case 2: Output Feedback under constant parameter deviation between 

plant and model 

Case 2.1 Using the state estimator (the extended Kalman filter) m 

chapter 4. 

Case 2.2 Using a least-squares moving horizon-based estimation (LSE) algo

rithm as proposed in this chapter. 
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In all of these cases we will examine the unconstrained and constrained responses 

obtained with our contractive MPC algorithm (which is modified to deal with Case 

2.2 and assumes the form of Control Algorithm 4). 

The input and state variables which will be plotted for the bioreactor example are 

the deviation variables with respect to the desired steady state values. 

Transition 1 

Case 1.1 

This is a very simple case since there is no model/plant mismatch and the 

targeted steady state is open-loop stable. The simulations for the unconstrained 

and constrained cases are shown in figure 5.2. 

The controller parameters used in Case 1.1 are given by: 

Controller Parameters (figure 5.2) 

Q = diag([l 0.1]) R=O S=O 

P=4 M=2 a= 0.6 

Umin= -1 Umax = 0 

Unless otherwise indicated, the hard control constraints for the simulations of 

Transition 1 will be the same as the ones used here in the nominal case. 

As we can see from figure 5.2, the response in the unconstrained case occurs in 

approximately two sampling times. The effect of tight input constraints (more 

than four times smaller than the maximum control effort in the unconstrained 

case) is to delay the response by a few samples. 
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Figure 5.2: Bioreactor: State and control responses in Case 1.1 (Transition 1). 

Case 1.2 

In this case, the parameters of the model and the plant are constant and dif

ferent. As discussed earlier in this chapter, asymptotic stability cannot be 

guaranteed in this case any longer. Due to the stabilizing effects of the con

tractive constraint, we can assure that the states will converge asymptotically 

to a control invariant set whose size depends on the constant parameter devi

ation. Moreover, if integral action is introduced, we can eliminate offset in as 

many states as there are inputs (in this case, one) at the expense of perhaps 

introducing larger offsets in the responses of the other states. 

The simulation results for the unconstrained and constrained cases are depicted 

in figure 5.3. 
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Figure 5.3: Bioreactor: State and control responses in Case 1.2 (Transition 1). 

The controller and model/plant parameters used in Case 1.2 are: 

Controller Parameters (figure 5.3) 

Q = diag([l 0.1]) R=O S=O 

P=4 M=2 Cl'= 0.9 

Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.108 

/ 0.4545 I ki 0.409 

I y I 0.4 0.32 
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As we can see from figure 5.3, CA shows a small offset, i.e., due to the parameter 

uncertainty, exponential (or even asymptotic) stability to the origin cannot be 

achieved for both states since we have only one manipulated variable. We call 

this convergence to a small control invariant set containing the origin "practical 

stability". Once again, the effect of the input constraints is to delay the state 

response by a few samples. 

Case 1.3 

In this case, the variable s 1 (the substrate concentration in the feed), which is 

commonly seen as a non-manipulated input variable, will work as a disturbance 

acting on the system. We will simulate s 1 as an exponentially decaying distur

bance which starts at t = 0 at its nominal value s f,ss = 4.0 and converges to a 

value 5% smaller. Thus, s1(t) is given by: 

In the beginning, since the disturbance is near its nominal value, we expect that 

the response will not be very different from the one obtained in the nominal 

case. Thus, the important consideration in this simulation is the asymptotic 

behavior of the closed-loop, when the disturbance settles to a value different 

from the value it should have at steady state. 

The expected results are that the states can be taken to a control invariant 

set containing the origin and be kept there. Asymptotic stability cannot be 

expected since this is a persistent disturbance. 

The unconstrained and constrained simulations taking into account this dis

turbance in s 1 are illustrated in figure 5.4. The disturbance behavior is also 

depicted in figure 5.4. 

The controller parameters used in Case 1.3 are the following: 
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Figure 5.4: Bioreactor: State and control responses in Case 1.3 (Transition 1). 

Controller Parameters (figure 5.4) 

Q = diag([l 0.1]) R=O S=O 

P=6 M=4 a= 0.9 

As we notice from figure 5.4, this level of asymptotic disturbance deviation from 

its nominal value and the persistence of such disturbance do not allow the states 

to be brought to the origin. 

Some of the oscillation obtained in the response as t increases is due to numerical 

instabilities which we could not eliminate completely with our adjustments of 

tolerance parameters in both the optimization and integration routines. 

In spite of the numerical problems which we were not able to avoid, we can see 

that our theoretical prediction of the closed-loop response was correct and the 
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states can indeed be brought to the interior of a control invariant set and be 

kept there as t -+ oo. In order to keep the states inside this neighborhood of 

the origin, the control variable does not settle to the origin either but stays in 

a close vicinity of it. 

The effect of the input constraints is to reduce the controller's power of action 

in the beginning and, therefore, delay the response. The constraints do not 

have any effect on the asymptotic response since they are no longer active at 

that stage. 

Case 1.4 

Here we want to study the transient effect of a disturbance which converges 

exponentially to its nominal value. Once again, the disturbance is introduced 

in the substrate concentration in the feed, s1. Contrary to what we experienced 

in Case 1.3, we expect that the initial response will be largely perturbed but 

the states should still be able to reach the origin asymptotically. 

The time-varying behavior of s1(t) is modeled in the following manner: 

s1(t) 4.0 + 2.0 e-fr 

The responses for the unconstrained and constrained simulations can be found 

in figure 5.5. The disturbance behavior is also illustrated in this figure. 

The controller parameters used in Case 1.4 are as follows: 

Controller Parameters (figure 5.5) 

Q = diag([l 0.1]) R=O S=O 

P=6 M=4 a= 0.9 

The obtained results are as expected from our theoretical investigations for 

this class of disturbances and they also show that the influence of the input 

constraints is not strongly felt in this case. 
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Figure 5.5: Bioreactor: State and control responses in Case 1.4 (Transition 1). 

Case 2.1 

In this case, the parameters of the plant and the model used in the prediction 

step of the contractive MPC algorithm are different and constant and only one of 

the states (the cell concentration in the reactor, x) is available for measurement. 

The measurement is corrupted by noise and the plant is also simulated with the 

influence of additive dynamic random noise. 

The state estimator used here is the discrete version of the asymptotically stable 

continuous-time filter introduced in chapter 4. 

Our objective is to compare the closed-loop responses obtained with state es

timation to the ones previously presented for the state feedback case (Case 

1.2). 
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The simulation results for the constrained case are depicted in figure 5.6. The 

behavior of the dynamic and output noises is also shown in this figure. 
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Figure 5.6: Bioreactor: State and control responses in the constrained Case 2.1 
(Transition 1). 

The control and estimation parameters and initial conditions for the plant and 

estimator/model used in Case 2.1 are given by: 

Controller and Estimator Parameters (figure 5.6) 

Q = diag([l 0.1]) R=O S=O 

P= 5 M=3 O'. = 0.9 

Umin= -1 Umax = 0 Po= In 
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Initial Conditions 

Plant: Xo = -0.5351 So= 1.3376 

Model/Observer: .To= -0.4351 so= 1.4376 

Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.108 

ki 0.4545 0.409 

y 0.4 0.32 

As we can see from figure 5.6, the extended Kalman filter provides estimates 

which converge asymptotically to the states of the model with nominal param

eter values (thus, showing offset with respect to the states of the plant) and the 

contractive MPC controller is able to drive the states of the plant to a control 

invariant set containing the origin and keep them there. 

Because of the imposed input constraints, the control action cannot change its 

sign (umax = 0) and the system is left open-loop after a few initial samples. 

Since the target steady state is open-loop stable, the system evolves towards it 

in spite of the constraints. 

Case 2.2 

Here we applied the combined control/state estimation procedure proposed in 

this chapter (Control Algorithm 4) to the biochemical reactor, under the 

same constant parameter deviation used in the state feedback case (Case 1.2) 

and when an extended Kalman filter is the state estimator (Case 2.1). 

The unconstrained and constrained responses are illustrated in figure 5. 7. 

The dynamic and output noises used in the present simulations are of much 

higher magnitude than the noises used in the case of state estimation with the 



Figure 5.7: Bioreactor: State and control responses in the constrained Case 2.2 
(Transition 1). 

EKF but they are not persistent (the scaling factors for the noises, i.e., the 

matrices Nw and Rv are of asymptotically decaying magnitude). This was done 

here so that we could examine the effect of larger noises in the transient behavior 

of the closed-loop system. The behavior of the simulated random noises is also 

illustrated in figure 5.7. 

The control and estimation parameters and initial conditions for the plant and 

estimator/model used in Case 2.2 are given by: 
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Controller and Estimator Parameters (figure 5.7) 

Q = diag([l 0.1]) R=O S=O 

P=5 M=3 a= 0.9 

Umin= -1 Umax = 1 

m=6 P1 = 0.01 In R,- 1 =10 Iv 

Initial Conditions 

Plant: Xo = -0.5351 So= 1.3376 

Model/Observer: .To= -0.4351 so= 1.4376 

Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.108 

k1 0.4545 0.409 

y 0.4 0.32 

As we notice from figure 5.7, the states of the plant still converge to a small 

control invariant set around the origin. ::"Jotice also the offset in u = D. 

The transient behavior of the closed-loop for the implementation with the LSE 

scheme is worse than in Case 2.1 (estimation with EKF) due to the noise being 

of initial magnitude 20 times higher than the noise used there. 

Transition 2 

Case 1.1 

The unconstrained and constrained simulations with the plant being the same 

as the model and in the absence of disturbances are shown in figure 5.8. 

The controller parameters used in Case 1.1 are given by: 
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Figure 5.8: Bioreactor: State and control responses in Case 1.1 (Transition 2). 

Controller Parameters (figure 5.8) 

Q = diag([l 0.1)) R=O S=O 

P=4 M=2 0: = 0.6 

Umin= 0 Umax = 0.5 

Unless otherwise indicated, the hard control constraints used in the simulations 

of the step change from steady state (2) to (1) will be the same as the ones 

used here in the nominal case. 

As we can see from figure 5.8, the response in the unconstrained case occurs in 

only one sampling time. The effect of tight input constraints (approximately 

nine times smaller than the maximum control effort in the unconstrained case) 

is to delay the response which now occurs only after thirteen samples. 
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Case 1.2 

The simulation results for the unconstrained and constrained cases are depicted 

in figure 5.9. 
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Figure 5.9: Bioreactor: State and control responses in Case 1.2 (Transition 2). 

The controller and model/plant parameters used in Case 1.2 are: 

Controller Parameters (figure 5.9) 

Q = diag([l 0.1]) R=O S=O 
I 

P=4 M=2 a= 0.9 
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Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.12 

kl 0.4545 0.4545 

y 0.4 0.32 

As we can see from figure 5.9, the states show a small offset, i.e., due to the 

parameter uncertainty, exponential (or even asymptotic) stability to the origin 

cannot be achieved. Once again, the effect of the input constraints is to delay 

the state response by a few samples (approximately nine, in this case). 

Case 1.3 

The disturbance in s 1 considered here has the behavior shown in figure 5.4, i.e., 

it decays exponentially to a value 5% below its value at steady state. 

The same observations which we made regarding the stability properties of the 

closed-loop under this kind of disturbance for Transition 1 hold for Transition 

2. 

The unconstrained and constrained simulations taking into account this distur

bance in s1 are illustrated in figure 5.10. 

The controller parameters used in Case 1.3 are the following: 

Controller Parameters (figure 5.10) 

Q = diag([l 0.1)) R=O S=O 

P=8 M=4 0: = 0.9 

As we notice from figure 5.10, this level of asymptotic disturbance deviation 

from its nominal value and the persistence of such disturbance do not allow the 

states to be brought to the origin. 
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Figure 5.10: Bioreactor: State and control responses in Case 1.3 (Transition 2). 

As in the simulations for the previous step change, some of the oscillation ob

tained in the response as t increases is due to numerical instabilities which we 

were not able to eliminate completely with our adjustments of tolerance param

eters in both the optimization and integration routines. 

Even in the unstable operating region and in spite of the numerical problems 

which we could not avoid through change of tolerance parameters for both the 

optimization and integration routines, we can see that our theoretical prediction 

of the closed-loop response was correct and the states can indeed be brought to 

the interior of a control invariant set and be kept there as t -+ oo. 

As in most cases, the effect of the input constraints is to delay the response. 

The constraints do not have any effect on the asymptotic response since they 

are no longer active at that stage. 
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Case 1.4 

The responses for the unconstrained and constrained simulations can be found 

in figure 5.11. The disturbance behavior is also shown in this figure. 
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Figure 5.11: Bioreactor: State and control responses in Case 1.4 (Transition 2). 

The controller parameters used in Case 1.4 are as follows: 

Controller Parameters (figure 5.11) 

Q = diag([l 0.1]) R=O S=O 

P=8 M=5 a= 0.9 

Umin= -0.05 Umax = 1 j 
i 

The obtained results are as expected from our theoretical investigations of this 

class of disturbances and they also show that the influences of the input con-
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straints and of the open-loop instability of the final steady state are not felt 

strongly in this case. 

Case 2.1 

As we have noticed from the previous simulations, controlling the operation 

around the unstable point with contractive MPC in the state feedback case, 

has not presented much more of a challenge than in the case of operation in the 

stable region. 

The following simulation results will tell a different story for the output feed

back case. The introduction of an initial estimation error and of measurement 

and dynamic noises in the simulations near the unstable operating point causes 

many more difficulties for the EKF to provide asymptotically convergent esti

mates than in the step change to the stable steady state (especially if there are 

active input constraints). The fact that the linearization of the system near the 

operating point is open-loop unstable has made the filter (which utilizes this 

linearization for update of the state estimates and covariance matrices) more 

sensitive to the effects of noise and initial estimation error. 

Since the introduction of parameter uncertainty represents an additional dif

ficulty, we have simulated the output feedback response for reasonably small 

initial state deviations but in the presence of a considerable amount of noise 

and the closed-loop is shown to be asymptotically stable in figure 5.12. The 

output and dynamic random noises are also plotted in this figure. 

The control/ estimator parameters and initial conditions for these simulations 

are: 

Controller and Estimator Parameters (figure 5.12) 

Q = diag([l 0.1]) R=O S=O 

P=8 M=5 o; = 0.9 

Po= In 
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Figure 5.12: Bioreactor: State and control responses in the unconstrained output 
feedback nominal case using EKF (Transition 2). 

Initial Conditions 

Plant: Xo = -0.5351 So= 1.3376 

Model/ Observer: io = -0.52 so= 1.31 

Contrary to what happens in the stable operating regime, the EKF provides 

estimates which completely diverge from the states of the plant in the presence 

of parameter uncertainty and, since the contractive constraint is imposed on the 

states of the model (which are obtained by integration of the model equations 

with the estimated states as initial condition at each sampling time), the closed

loop response is unstable as we can see in figure 5.13. 

The level of noise used here is the same as in the output feedback simulation of 

the nominal case (figure 5.12). 
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Figure 5.13: Bioreactor: State and control responses in the unconstrained output 
feedback robust case using EKF (Transition 2). 

The model/plant, controller and estimator parameters in Case 2.1 are given 

by: 

Controller and Estimator Parameters {figure 5.13) 

Q = diag([l 0.1]) R=O S=O 

P=8 M=5 0: = 0.9 

Po= In 
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Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.108 

ki 0.4545 0.409 

y 0.4 0.32 

The initial conditions are: 

Initial Conditions 

Plant: Xo = 0.5351 So = -1.3376 

Model/Observer: xo = 0.5 so= -1.2 

As we can see from figure 5.13, due to the relatively small level of noise, and 

because the measured output is the concentration of cells in the reactor, x, the 

estimates of x provided by the EKF converge to the true cell concentration (as 

they should). However, since the estimates of s (the substrate concentration in 

the reactor) diverge completely, the closed-loop becomes unstable even in the 

absence of input constraints. 

Case 2.2 

We will see here that the LSE procedure does not suffer from the same draw

backs that we pointed out for the EKF in Transition 2 (Case 2.1). LSE 

is able to provide better estimates in this case because it uses the nonlinear 

system model (as explained earlier in this chapter) in the optimal estimation 

procedure and not the unstable linear approximation. Moreover, the estimates 

are computed using m = P + 1 previous measurements and not only the most 

recent one as with the Kalman filter. 

The results show that the LSE provides as good estimates as it did in Transi

tion I. 
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Figure 5.14: Bioreactor: State and control responses in the output feedback robust 
case using LSE (Transition 2). 

The unconstrained and constrained responses are illustrated in figure 5.14. 

Also here, the dynamic and output noises used in the present simulations are of 

much higher magnitude than the noises used in the case of state estimation with 

the EKF but they are not persistent. The behavior of the simulated random 

noises is also illustrated in figure 5.14. 

The controller/ estimator parameters and initial conditions for the plant and 

model/observer used in Case 2.2 are given by: 
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Controller and Estimator Parameters (figure 5.14) 

Q = diag([l OJ) R=O S=O 

P=5 M=3 (); = 0.9 

Umin= -2 Umax = 2 Po= In 

m=6 P1-1 =In R=O 

Model/Plant Parameters 

Parameters Plant Model 

µmax 0.53 0.424 

km 0.12 0.108 

ki 0.4545 0.409 

y 0.4 0.32 

Initial Conditions 

Plant: Xo = -Q.5351 So= 1.3376 

Model/Observer: Xo = 0.5 so= -1.3 

The transient behavior of the closed-loop is poor due to the high levels of process 

noise up to time t = 5. 
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Chapter 6 Contractive NLMPC reformulated as 

a Quadratic Programming (QP) Problem 

In this chapter we will be dealing with the following problem: 

Problem 6 : Stability and computational properties of contractive MPG when the 

model used for prediction is a linearization of the nonlinear plant about the predicted 

trajectory 

6 .1 Introduction 

In the previous chapters we have shown how the contractive constraint exponen

tially stabilizes the closed-loop system when no model uncertainty or disturbances 

are present. Then, we demonstrated that the closed-loop becomes uniformly asymp

totically stable if asymptotically decaying disturbances affect the system. We have 

also shown that this kind of disturbance could be caused by introduction of an asymp

totically convergent observer into the closed-loop for state estimation. We derived 

sufficient conditions under which the association of an exponentially stable controller 

(such as contractive MPC) with an asymptotically convergent observer generates an 

asymptotically stable closed-loop system. Furthermore, we have designed such an 

observer for a continuous-time system with discrete observations. 
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In the last chapter, we have first looked into the state feedback control problem when 

persistent, bounded and non-additive disturbances affect the nonlinear dynamics of 

the system. In the nonlinear context, the problem posed by disturbances of this kind 

is equivalent to having parameter uncertainty only (i.e., model and plant are matched 

in the nonlinear structure, only some - or all - parameters are unknown). We have 

demonstrated that the most which can be guaranteed under non-additive bounded 

disturbances or parameter mismatch, is that the states are driven to a control in

variant set whose size is proportional to the "size" of the disturbances or parameter 

deviation. Then, we examined how these results change when the states are also 

unknown (output feedback case) if the parameters are unknown but constant. We 

have used a moving horizon-based estimator as proposed in [111] for state estima

tion. Finally, we studied how the results are modified if both states and parameters 

are unknown, the parameters are time-varying, the system is subject to additive dis

turbances and the estimation procedure seeks to estimate states, disturbances and 

parameters. 

All the previously proposed MPC schemes involve the solution of a nonlinear pro

gramming problem at each time step to find the optimal (or, at least, feasible) con

trol sequence. Nonlinear programming is the general case in which both the objective 

and constraint functions may be nonlinear, and is the most difficult of the smooth 

optimization problems. Indeed there is no general agreement on the best approach 

to be used for its solution and much research is still to be done. Penalty and barrier 

functions constitute a global approach to nonlinear programming but they suffer from 

well-known computational deficiencies and are not entirely efficient. An alternative 

way to proceed is to consider local methods which perform well in a neighborhood 

of the solution as described, e.g., in [45, 46, 72]. Some well-known local methods 

are Newton's method (applied to the first-order conditions that arise in the method 

of Lagrange multipliers). It can be shown that this method generalizes to give the 

sequential quadratic programming (SQP) method. This method converges locally at 

second order and has the same standing for nonlinear programming as Newton's 
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method does for unconstrained minimization. Another idea which has attracted a lot 

of attention is that of a feasible direction method which generalizes the active set type 

of method for linear constraints and aims to avoid the use of a penalty function. Al

though software is available for this type of method, there are nonetheless difficulties 

in determining a fully reliable algorithm. 

Due to the difficulties inherent to solving nonlinear programming problems and since 

MPC requires the optimal (feasible) solution to be computed on-line, it is important 

that an alternative implementation be found which guarantees that the problem can 

be solved in a finite number of steps. It is well-known that both linear and quadratic 

programming (QP) problems satisfy this requirement. A QP problem is an optimiza

tion problem in which the objective function is quadratic and the constraint functions 

are linear. Thus the problem is to find a solution z* to 

mm1m1ze J(z) := ~z
1

Hz+h
1

z 

subject to a~ z = bi, i E E, 

a~z ?: bi, i E I (6.1) 

where z are the decision variables, J(z) is the performance criterion, His a symmet

ric positive (semi-)definite matrix, E and I are the sets of equality and inequality 

constraints, respectively, and the matrix A and vector b define the linear equality 

and inequality constraints on the optimization variable z. As in linear programming, 

the problem may be infeasible or the solution may be unbounded; however, these 

possibilities are readily detected in the standard algorithms, so for the most part it is 

assumed that a solution z* exists. If the Hessian matrix H is positive semi-definite, 

z* is a global solution, and if H is positive definite, z* is also unique. These results 

follow from the (strict) convexity of J(z), so that (6.1) is a convex programming 

problem. Thus, results which apply to convex optimization automatically apply for 

QPs. When the Hessian His indefinite then local solutions which are not global can 

occur, and the computation of any such local solution is of interest. 
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In [48] one can find for the first time an implementation of MPC to nonlinear systems 

where the model used for prediction is a linearization of the original nonlinear dy

namics around the states at the current time step. Combining that with a quadratic 

objective function and linear constraints on the control variables, the MPC problem 

is formulated as a QP to be solved at each time step. The resulting MPC strategy 

is known as quadratic dynamic matrix control (QDMC). This is a very simple and 

effective alternative implementation of MPC from a computational point of view but 

the resulting closed-loop may be unstable. In the present chapter, we will look into 

how to combine the attractive computational features of Garcia's method in [48], and 

subsequently used by Ricker and Lee in [74, 110] (by linearizing the nonlinear sys

tem about the predicted trajectory) with the stability guarantees which we obtained 

through the use of the contractive constraint. We will see that even though the con

tractive constraint is a quadratic constraint (and not a linear one as required for the 

problem to be posed as a QP), there are ways to incorporate this constraint into the 

optimization in combination with a quadratic objective function, a linear prediction 

model and other additional linear constraints, and still obtain a QP. 

Since the model used for prediction is a linear approximation of the original nonlin

ear dynamics, this linearization procedure which makes the algorithm much simpler 

from a computational point of view, makes the stability analysis much more com

plex because of the model/plant mismatch caused by the linear approximation. It 

is no longer possible to guarantee exponential or even asymptotic stability of the 

closed-loop system to the origin. We will show that the states can be steered to a 

neighborhood of the origin whose size is proportional to the mismatch between the 

nonlinear system and its linear approximation. We know that the dynamics of a non

linear model and that of its linearization about an equilibrium point converge locally, 

i.e., in a small neighborhood of the considered equilibrium point (see [121]). Indeed, 

even though we are performing linearization at transient points (and not equilibrium 

points), the state trajectories of the nonlinear plant and that of the linear model are 

very close to one another if the sampling time is small. 
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6.2 Contractive MPC posed as a QP 

6.2.1 Description of the system 

The nonlinear systems considered in this chapter are described by the following equa

tions: 

x(t) = f(x(t), u(t),p(t), J(t)) (6.2) 

where x(t) E Rn is the vector of state variables, u(t) E Rm are the manipulated 

variables, p(t) E R8 is the vector of unknown time-varying parameters, d(t) E Rd are 

the unknown time-varying disturbances which affect the system and J: Rn x Rm x 

R8 x Rd --+ Rn represents the function that models the uncertainties and nonlinearities 

in the plant. J is assumed to be a continuously differentiable function. 

Now, let (x, u, p, d) = (x*, u*, p*, d*) be the equilibrium point at which one desires 

to operate the system. p* and d* denote the nominal values of the parameters and 

disturbance variables, respectively. 

So let the following deviation variables be defined: 

xP(t) ·- x(t) - x* 

u(t) ·- u(t) - u* 

p(t) ·- p(t) - p* 

d(t) ·- d(t) - d* 

Under this change of variables, the original system (6.2) is expressed as: 

i;P( t) = f (xP( t), u( t), p( t), d( t)) (6.3) 
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where the definition of the continuously differentiable function f follows straightfor

wardly from equation (6.2). 

It is assumed that d(t) E 'D and p(t) E P, Vt E [O, oo ), where the sets 'D and P are 

defined by: 

'D ·- { d(t) E Rd I II d(t) ll:S: Ed, Vt E [O, oo)} (6.4) 

P ·- { p(t) E Rs I II p(t) ll:S: Ep, Vt E [O, 00)} (6.5) 

where Ed, Ep E [O, oo) are known constant values. 

Besides, the hard constraints on the manipulated variables, u(t), will be expressed in 

the usual manner: 

u(t) Eu:= {u E Rm: Umin::; u::; Umax}, Vt E [O, oo) (6.6) 

where Umin, Umax E Rm are known constant vectors. 

Linear constraints on the rates of change of the manipulated variables are also com

monly present, as we have pointed out in chapter 2 (see equations 2.26 and 2.27). 

6.2.2 State feedback contractive MPC algorithm with 

linear approximation 

Control Algorithm 5 

Data: Initial Conditions: t0 and xg := xP(t0 ); Controller Parameters: horizons 

P, M, weights Q, R, S, P > 0, contractive parameter a E [O, 1), sampling time 

T and control constraints Umin, Umax, llumax· 
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Step 0: Set k = 0, j = 0. 

Step 1: Assuming that the optimal control problem P(t{, x~'j) is feasible for the cho

sen set of parameters, then at t = t{ solve P(t{, x~'j) which is specified by: 

minu(kP+jlkP+j), ... ,u(kP+j+M-llkP+j) Jk := Lf:1 II x(kP + j + ilkP + j) II~ 

+ L~o 1 [ II u(kP + j + ilkP + j) II~+ II tiu(kP + j + ilkP + j) 11~ l (6.7) 

subject to: 

x{(t) =ct+ A{x{(t) + B~u{(t), x{ := measured states at t{ (x~'j) 

Umin :::::; u(kP + j + ilkP + j) :::::; Umax, i E [O, M - 1] 

l!:iu(kP + j + ilkP + j)I:::::; !:iumax, i E [O, M - 1] 

!:iu(kP+j+iJkP+j)=O, iE[M,P-1] 

II x{ ( tf) II p:::::; a 11 x~ 11 p, a E [ 0, 1) 

(6.8) 

where x(kP + j + iJkP + j) are the predicted states at time t{+i computed with 

information up to time t{, i.e., x(kP + j + iJkP + j) := x{(t{+i) and 

~j(t) c 0 + A 0 -j(t) · B 0 j(t) ·th - 0 P P(t) d -j -j-1(tj) xk = k kxk + kuk , wi xk := xk := x k an xk = xk k , 

(6.9) 

for j ~ 1, is the trajectory of the linearized model which is not updated with the 

states of the plant at t{ for j E [1, P-1]. The states xi( t) are only updated with 

the states of the plant at t = tk + PT =: tf, i.e., at intervals of one prediction 

horizon. Moreover, the nonlinear system is not re-linearized at every sampling 

time for computation of the states x(t) as it is for computation of the predicted 

states x(t). In other words, while the matrices A, B, C are re-calculated at every 

t{, j = 0, ... , P- 1, for computation of the predicted trajectories, they are only 

re-calculated at the beginning of prediction horizons for purpose of computation 

of the contractive constraint. 

The result of this step is an optimal sequence of control moves 

{u(kP + jJkP + j), ... , u(kP + j + M - lJkP + j)}. 
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Step 2: Apply the first control move, u(kP + jlkP + j), to the plant (6.3} fort E 

[t{, t{+l] and measure the states at t{+1
. Set x{+l equal to the measured states, 

x~'J+ 1 := xP(t{+1
), and x{+l = x{(t{+1

), j 2: 0. 

Step 3: If j < P - 1, set j = j + 1 and go back to Step 1. If j = P - 1 set 

x~+l =: xk+l = x~+ 1 , t~+l = tk+l = tf, k = k + 1, j = 0, and go back to 

Step 1. 

Remark 6.1 Notice that in Problem 6 the states x(t) and x(t) are computed using 

linear approximations of the original nonlinear system ( 6. 3). The matrices A{, B~, Cl 
are given by: 

Aj ·-k 

Bj ·-k 

cj ·-k 

£1 . . 
&x (x~, u{, 0, 0) 
£1 . . 
8Jx~, u~, 0, 0) 

f(x~, u{, 0, 0) - A~x~ - B~u{ 

(6.10) 

(6.11) 

(6.12) 

i.e., these matrices are computed at nominal values of disturbances and parameters, 

d*, p*, respectively. Thus, the linear approximation of the nonlinear system ( 6. 3) is 

simply obtained by expanding the nonlinear dynamics in a Taylor series expansion 

and neglecting second and higher order terms. 

Remark 6.2 The optimization step formulated as in Control Algorithm 5 is a 

convex programming problem in the control variables (and no longer a general non

linear programming problem, as we had in the previous chapters}. The convexity of 

the optimization is due to the fact that the objective function is quadratic in the deci

sion variables !:rn, the trajectory and input constraints are linear and the contractive 

constraint is quadratic and convex (since the matrix fI in the term (~u)' fI ~u, which 

results from writing the contractive constraint as a function of the decision variables, 

is positive definite - this is easy to verify since the contractive constraint is derived in 

the same way as the objective function which is convex, the only difference being the 

independent terms in the former). 
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The problem of minimizing a convex function on a convex set K is what we call a 

convex programming problem. These problems have the following structure: 

minimize J(z) 

subject to ci(z) 2 0, i = 1, ... , nc (6.13) 

where nc is the number of constraints, J(z) is a convex function on K and the func

tions ci(z), i = 1, ... , nc, are concave on ~n. 

It is a well-known result that every local solution z* to a convex programming problem 

( 6.13) is a global solution, and the set of global solutions is convex. Furthermore, if 

J(z) is strictly convex on K then any global solution is unique. 

Thus, just by using linear models for prediction and computation of constraints, 

we have reduced a potentially complex nonlinear programming problem into a very 

tractable convex problem. Well-established constrained optimization algorithms such 

as the sequential quadratic programming (SQP) method (also known as Lagrange

Newton method), feasible direction method, etc., are known to perform quite well with 

convex problems. 

Even though, posed as it is, Control Algorithm 5 is much simpler than Control 

Algorithm 1 from a computational point of view, further improvement can still be 

achieved. In fact, since the prediction model is linear and the constraints on the 

control variable are also linear, the optimization would be a quadratic programming 

(QP) problem in the absence of the state constraints (which are quadratic in the 

control variables). There are, however, alternative ways to implement these quadratic 

state constraints into the optimization step such that the optimization can still be 

posed as a QP. We will examine these alternatives in the next section. 
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6.2.3 Transforming the optimization into a QP 

We have identified three different ways to incorporate the contractive constraint into 

the optimization step of our contractive MPC scheme in order to pose it as a QP: 

Procedure 1: Approximate it by a set of 2n + 1 (where n is the dimension of the 

state vector) linear constraints. 

Procedure 2: Add it to the objective function, pre-multiplied by a chosen scalar 

weight I 2: 0, and remove it from the list of constraints. This leads to an 

iterative procedure on the weight / which is carried out until the contractive 

constraint is satisfied (this is known as a penalty function approach). 

Procedure 3: Re-write it as: 

(6.14) 

where Ji := ii':f gf ?ii> with xHt) being the trajectory used in the computation 

of the contractive constraint at j = 0, ... , P - 1 for a given k. 

The modified contractive constraint (6.14), can then be written as a set of 2n+ 1 

linear constraints in the control variables (this will be shown when we explain 

procedure 1 in more details). 

The purpose is then to find, at time t1, 8k > 0 such that Jk = 
1

1i':£ gg11 1~ for 

the chosen control parameters. Thus, we have an optimization problem (a QP) 

whose solution depends now on the parameter Jk. The computation of this 

parameter value is done through a uni-directional search resulting from a first

order sensitivity analysis of the optimality conditions of the QP with respect to 

this parameter. 

Unlike the penalty function approach, the QP needs to be solved only once at 

each time step. Then, a linear system is solved and a uni-directional search 
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is performed on the parameter [/k. until the desired equality, cYk. = llx~(tf)lli · 
llx{(tf)ll?' lS 

obtained [21]. 

Now we will go into a more detailed description of the three previous approaches to 

transforming the optimization problem into a QP: 

Procedure 1 (approximate or conservative approach) 

Since II . 111 > II . 112 > ; 1 
. JI . Jlp, we have that if 

Amax(P) 

11 x{(tf) Iii ::; 
a 

l A JI x~ IJp 
Afuax(P) 

(6.15) 

then the original contractive constraint is automatically satisfied. In other words, 

equation (6.15) is a sufficient condition for satisfaction of the contractive constraint. 

It is well-known that 1-norm constraints can be re-written as a set of linear con-

straints adding new decision variables to the optimization problem. 

To illustrate the procedure, let us consider the constraint: 

11 b Iii < a (6.16) 

with b E ~n and a> 0 a scalar. Then, we can re-write constraint (6.16) component-

wise, i.e., 

bi < Ci, i = 1, ... ,n 

-bi < Ci, i = 1, ... ,n 
n 

L::Ci < a (6.17) 
i=l 

where the vector c (vector whose components are ci, i = 1, ... , n) constitutes a 

set of n new optimization variables. Thus, this procedure increases the size of the 
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optimization by n and the number of constraints by 2n. 

The new objective function at step k, j for the problem with modified constraints is 

given by: 

(6.18) 

i.e., the objective function is now minimized with respect to the newly introduced 

variables, d,., as well. 

Since the contractive constraint is here approximated by conservative linear con

straints, if an optimal solution is found under the new constraints, it means that we 

may be "over-satisfying" the contractive constraint. 

Procedure 2 (penalty function approach) 

In this approach, the objective function is modified to: 

(6.19) 

i.e., the contractive constraint is added as a penalty to the original objective function. 

Simultaneously, the contractive constraint is removed from the list of constraints 

to which the minimization is subjected. Thus, we still have a quadratic objective 

function on the control variables and all the constraints are linear. 

It is easy to see that by solving this new optimization problem (a QP) for an arbitrary 

value of the weight 'Y 2: 0 does not necessarily imply satisfaction of the contractive 

constraint. Thus, the QP problem has to be solved iteratively on 'Y until it is large 

enough so that the contractive constraint is satisfied. Naturally, we do not want to 

start by choosing a large value of 'Y because we are then giving less importance to 

the minimization of the chosen performance criterion Ji. This means that although 

stability will be assured, the resulting performance can become rather poor. Further

more, we do not want to "over-satisfy" the contractive constraint by choosing a larger 



237 

/ than necessary. 

If the optimization problem is well-posed and feasible for an a E [O, 1), then the 

existence of a finite / for which the corresponding optimal solution satisfies the con

tractive constraint is guaranteed. 

A major disadvantage of this procedure is that several QPs (for different values of 1) 

may have to be solved at the beginning of prediction horizons. Because the P - 1 

subsequent control problems are feasible if the optimization at the beginning of the 

horizon is feasible, these optimizations are solved with the same / computed then. 

Still, this procedure can become very expensive computationally. 

Procedure 3 (sensitivity analysis approach) 

Here we will show a procedure for a very simple first-order sensitivity analysis of 

QPs . For an important reference on sensitivity and stability analysis in nonlinear 

programming the reader is referred to [44]. 

As previously described, this procedure consists in trying to find, at time t{, a pa

rameter oi = llxi(tf)lli or, alternatively, to satisfy the constraint: 
k llx{(tf)ll_p 

(6.20) 

As we saw in procedure 1, this constraint can be re-written as 2n+l linear constraints 

with the introduction of n additional optimization variables. Notice that only the last 

constraint in (6.17) is directly dependent on the parameter o{ 

The quadratic programming problem to be solved at time t~, has the following format: 

minimize J( ) l IH h' z ·- 2 z z + z 
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subject to (6.21) 

where a := -ln (with ln being a row vector of n ones) and c := a II x~ llp, as it 

should be clear from ( 6.17). For simplicity of notation, we have written (and will 

write from this point on) 8 in (6.21) instead of 8L but it should not be forgotten that 

this parameter will be re-computed at sampling times. 

In our problem, the decision variable z has dimension mM + n (number of control 

moves multiplied by the size of the control vector plus a number of "dummy" variables 

introduced to re-define the contractive constraint as 2n + 1 linear constraints). 

The computation of the Hessian matrix H, the gradient vector h, the constraint 

matrix G and the lower bound vector b will be demonstrated in the following section. 

The dimensions of these matrices and vectors are HE R(mM+n)x(mM+n), h E RmM+n, 

GE R(4mM+2n)xmM and b E R4mM+2n. 

Thus, at time step k (i.e., at the beginning of horizons) we need an initial guess for 

the parameter value 8 so as to solve our QP with. Let us make 5(o) := 1 
• to 

Amax(P)'J 

be our initial guess. This choice of 8 makes us solve the same QP as if we were using 

procedure 1, i.e., we are solving the QP to satisfy a constraint which is a sufficient 

condition for satisfaction of the original contractive constraint. Therefore, if the 

contractive constraint is feasible so will be our modified constraint with 5(o). 

Assuming that the contractive constraint is feasible, we then solve our QP for 5(o) 

and find the optimal solution zC0l. 

This optimal solution obviously satisfies the optimality conditions for the QP prob

lem which are given, for a general nonlinear programming (NLP) problem, by the 

Kuhn-Tucker (KT) conditions [67]. It is worth just mentioning these Kuhn-Tucker 

conditions which are first-order necessary conditions for optimality of an NLP. 
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Given a general NLP problem represented by 

minimize J(z) 

subject to ci(z) = 0, i EE 

i EI, (6.22) 

the following theorem holds: 

Theorem 6.1 (First-order necessary conditions or KT conditions) If z* is a 

local minimizer of problem (6.22) and if certain regularity assumptions (see {46} for 

these assumptions) hold at z*, then there exist Lagrange multipliers A* such that z*, A* 

satisfy the following system of equations: 

V7 z £(z, A) 0 

ci(z) 0, i EE 

ci(z) > 0, iEI 

Ai > 0 

Ai Ci ( z) 0, Vi (6.23) 

with 

£(z, A) := J(z) - L .Aici(z) (6.24) 
z 

The point z* which satisfies equations (6.24) is often known as a KT point. £(z, A) 

is called a Lagrangian function. 

The final condition .Aici = 0 is referred to as the complementarity condition and states 

that both .Ai and ci cannot be non-zero, or equivalently that inactive constraints have 

a zero multiplier. If there is no i such that Ai = ci = 0, then strict complementarity 

is said to hold. The case .Ai = ci = 0 is an intermediate state between a constraint 

being strongly active and being inactive. 
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Returning to our QP problem, there are two distinct possibilities when it comes to 

our modified contractive constraint (6.20): 

• For the chosen J(O) the constraint (6.20) is active (which means that the con

tractive constraint is active). 

• For the chosen JC0l the constraint (6.20) is inactive (which means that the 

contractive constraint may or may not be active). 

If J(O) = ll~f::Ct£)111 where x~0l(t) is the optimal linear trajectory obtained by solving 
llxk (tk )11.P 

the QP with c5 = J(o), then we are done and the sensitivity analysis is not necessary. 

If not, we should proceed as explained below. 

Let us examine the KT conditions which originate when constraint (6.20) is active 

and inactive. 

(1) KT conditions for constraint (6.20) active: 

The Lagrangian function in this case is represented by: 

1, , '{[(; 0] [b ]} £ := 2zHz+hz-A. 
0 

a z cc5 

Thus, according to (6.23), the KT conditions are: 

{)£, 
{)z =Hz+h- [ Go- oa] A.=0 

(6.25) 

(6.26) 

where G and b represent the set of active constraints. The dimension of the 

Lagrange multiplier vector is A. E R4mM+2n+ 1. 
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(2) KT conditions for constraint (6.20) inactive: 

The Lagrangian function in this case is represented by: 

£ ·- ~z'Hz+h1 z->..1 
{[G O]z - b} 

Therefore, according to (6.23), the KT conditions are: 

Thus, ).. E R4mM+2n. 

=Hz+ h - [G o]' >.. = o 

[G OJ z = b 

).. > 0 

(6.27) 

(6.28) 

In order to perform our first-order sensitivity analysis of these optimality conditions, 

we need to compute the gradients of z and).. with respect to the parameter b. Let us 

denote these gradients \7 8z and \7 8 )., respectively. 

Using our KT conditions (6.26) and (6.28), let us then examine how these gradient 

computations are performed in the case of (6.20) being active and inactive. 

(1) Gradient computations when constraint (6.20) is active: 

These gradients are computed by differentiating the equality KT conditions in 

(6.26) with respect to b. The resulting linear system in \7 8z and \7 8). is given 

by: 

[ ~ : l v,z 

[ ~ : l V,A 

[ : l (6.29) 

(6.30) 
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Notice that \i'8z can be computed from (6.29) first and then substituted in 

( 6.30) for computation of V' 0 A. 

(2) Gradient computations when constraint (6.20) is inactive: 

These gradients are computed by differentiating the equality KT conditions in 

(6.28) with respect to 8. The resulting linear system in \i'0z and \i'0,\ is given 

by: 

[G O]V'oz 

(G*)' V' 0 ,\ 

0 ===} \i'8z E Ker(G*), with G* := [G OJ (6.31) 

(6.32) 

It is easy to show that as a consequence of equations (6.31), (6.32) and the fact 

that H is positive definite and, therefore, invertible, it follows that V' 8,\ = 0. If 

(6.32) is pre-multiplied by H-1 and then by G* we obtain: 

(6.33) 

Since G* H-1 (G*)' is a positive definite matrix, it follows that V'8 ,\ = 0. 

Once a new value for 8 is chosen, the exact optimal solution of the QP for this 6 can 

be computed from the previous one through the following equations: 

zCi+l) = zCi) + (V'az)(i) ~5(i+l) 

,A(i+1) = ,A(i) + (V'a,A)(i) ~<5(i+l) (6.34) 

where ~8(i+l) := 8(i+l) - 8(i), Vi 2: 0, and (V' 8z)(i), (V' 8,A)(i) are the gradients com

puted through equations (6.29), (6.30) (if constraint (6.20) is active) or (6.31), (6.32) 

(if constraint (6.20) is inactive) with G(i)' b(i) being the active constraint sets used in 

these gradient computations. 

Thus, once the QP is solved for 8 = 5(o) (i.e., the optimal solution z(o) is obtained) 

and if 5(o) =f 11 ~t::(t£llli, the exact optimal solutions for different values of 8 can be 
llxk (tk )ll_p 
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(.) llx(i)(tP)Jl1 
obtained from (6.34) until 6 z = -~l ; for some i E (0, oo). 

llxk (tk lll? 

. 11-Ci\tP)IJ 
The methodology used to update 6 is a separate issue. If we choose 5(z+i) = ~bl ; 

1 

Jlxk (tk )II? 
in order to compute z(i+l) we will be off again unless (\7 8z)(i) = 0, i.e., o(i+l) f 

11 -Ci+ll( p)IJ 
xk_ tk i for (\7 z)(i) --'- 0. 

llx~i+l)(tf)ll? 8 I 

Since F(62) := oZ - 1 1i:~~fli1i~ is a monotonic function in 6 (if we increase 6 it becomes 

easier to satisfy constraint (6.20) and if we decrease it we make this constraint tighter 

or even infeasible) and we want to find 6 so that F(b) = 0, a good strategy is to use 

a bisection algorithm to find this value of 6. Suppose that we start with a large 6 so 

that F(b) > 0, then we can decrease it until F(b) < 0. Since we know that the 6 we 

search for lies in the interval between the last 6 for which F(b) > 0 and the first 6 for 

which F(b) < 0 (F(b) is monotonic) we can then perform a bisection in this interval 

to find our solution. An analogous procedure applies if we start with a value of 6 for 

which F(b) < 0. 

However, we cannot change the values of 6 and recompute the optimal solutions (6.34) 

without checking if the configuration of the active and inactive sets of constraints has 

changed. If it has, we must re-compute the gradients using (6.29) and (6.30) (or (6.31) 

and (6.32), depending on constraint (6.20) being active or inactive) and update our 

optimal solutions accordingly. 

The equations used to check if our choice of o(i), i > 0, preserves the inactive con

straint set (which, if the problem is feasible, means that the active set has also 

remained unchanged) are: 

b(i-1)) + G(i-1) (\715z)Ci-l) ~o(i) > o 
>.(i) + (\715,\)(i-l) ~5(i) > 0 

(6.35) 

(6.36) 

where G(i-l), b(i-l) represent the inactive constraint sets computed at iteration i, 

with i > 0, in the iterative procedure of computing 6. z(i), ).(i) is the optimal solution 
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computed via (6.34) once tS(i) is selected. 

In order to check if the contractive constraint has become inactive, we must check if: 

(6.37) 

where a* :=[a OJ and (a*)' E RmM+n. 

Once this checking has been done for the chosen value of tS(i), if the constraint sets 

have changed (i.e., if some of the inactive constraints have now become active due 

to the choice of '5), new constraint sets need to be computed. This is a straightfor

ward procedure given the optimal solution z(i). All we need to do is to check which 

inequality constraints have now become equalities (active constraints) and shift this 

once inactive constraints into the set G(i), b(i) of active constraints. 

With these newly computed active constraint sets we can re-compute the gradients, 

i.e., obtain (\7 6z)(i), (\7 6,\)(i); update the optimal solution with these gradients and 

the new value of t5 tS(i+I). check if tS(i+l) = ilx~'+ii(tf)lli. If the equality is not satisfied 
' ' llx~'+ 1 l (tf)llp ' 

check if the constraint sets have been preserved and repeat the whole procedure; if 

the equality is indeed satisfied, we are done and the optimal solution of the QP is 

given by z(i+l), ,\(i+l). 

We have explained so far how to compute 62, i.e., the parameter t5 at the beginning 

of prediction horizons. However, at each j = 1, ... , P - 1, for a fixed k 2: 0, we 

need to calculate a new parameter t5l which satisfies t5l = ii:[ gf iii~ using the same 

technique discussed for computation of '5~. However, to repeat the sensitivity analysis 

at each sampling time can become computationally expensive. Once we have found 

i-o - llxict;)lli k th t th · t t 1 h · - 1 P 1 uk - llx~(t;)llp, we now a ere ex1s s a con ro sequence at eac J - , ... , -

such that the constraints 

(6.38) 

are feasible. Thus, at time t{, \:/j E [1, P - 1], we should solve the QP with 
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6 = 62. Then, with the obtained trajectory x{(t), t E [t{, t{+P], we can check if 

the contractive constraint at t{ is satisfied, i.e., if 

II x{(tf) llP :S a II x~ llP (6.39) 

If yes, we accept the computed control sequence u(kP + jlkP + j), ... , u(kP + j + 
M - llkP + j). If not, rigorously, we should have to solve for 6{ = 1 11 1 ~}?f;i'11 ~ using 

,xk tk P 

sensitivity analysis of the QP problem at time t~. However, since we only need to 

have the contractive constraint satisfied at j = P - 1 for stability purposes, we can 

solve the optimization problems at j = 1, ... , P - 2 with 6 = 62 (which are feasible if 

the problem at tk with 62 is feasible), and only check for satisfaction of the contractive 

constraint at tf-1
. In case it is not satisfied by using the control sequence computed 

"th -' .\0 ( h' h . l' h t .\P-1 llxf-1(tf)ll1 .\0) h h ld h w1 u = uk w ic imp ies t a uk := llxf-i(tf)llp < uk , t en we s ou use t e 

search procedure, described previously for computation of 62, in order to calculate 

6f-1
. In this case, the computation of 6 using sensitivity analysis of the QP would 

be repeated only twice for a whole prediction horizon and stability would still be 

assured. 

All along we have been saying that the updated solutions given by equations (6.34) 

are exact optimal solutions of the QP for the new parameter value even if the active 

constraint set changes. We must emphasize that this is the case because our optimiza

tion is a QP. For a general nonlinear programming problem this does not hold true, 

i.e., an update given by (6.34) is only a first-order approximation of the exact solution 

and does not have much significance. The only reason why this first-order update is 

optimal is due to the fact that the Kuhn-Tucker conditions for a QP are linear. It 

is very straightforward to prove that the solutions are indeed optimal, all we need to 

do is to replace the updated solution into the optimality conditions for the previous 

solution (with an updated active constraint set, if it has changed) and we will verify 

that they satisfy these conditions as a result of the way in which the gradients are 

computed. Thus, if the optimality conditions are satisfied by the first-order update, 

this is indeed an optimal solution. 
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6.2.4 QP format 

Here we will illustrate how the optimization problem in Control Algorithm 5 can 

be re-written in QP format (as in (6.1)) for each of the three procedures proposed for 

implementation of the contractive constraint. 

The Hessian matrix Hand the gradient vector h
1 

are basically the same (with minor 

modifications, which we will point out) for the three methods. The main change 

occurs in the definition of the constraint matrices because of the different ways of 

implementing the contractive constraint. 

In the optimization step in Control Algorithm 5, the objective function is defined in 

terms of states x, control moves u and rates of change of the control variables flu. Let 

us then adopt flu to be our decision variables and in order to write the problem at time 

step k, j in QP format, we need to express x and u as functions of the M optimization 

variables flu(kP + jlkP + j), ... , flu(kP + j + M - llkP + j), j E [O, P-1], k 2 0. 

Our continuous-time linear approximation of the nonlinear dynamics of the model 

used in the prediction step can be put into discrete form with discretization time 

equal to the sampling time T. The discrete state trajectory is then given by: 

i 

x(kP+ j+i+ l lkP+j) = ( <I>{)Ci+i)x(kP+ jlkP+j)+ L( <I>{)1[f{u(kP+j+llkP+ j)+TJl] 
l=O 

(6.40) 

for i = 0,. . ., P - 1, Vj = 0,. . ., P - 1, for each k 2 0 and x(kP + jlkP + j) set 

1 h f h l d . j p,j Th t . <I>j rj J equa to t e states o t e pant measure at time tk, xk . e ma nces k' k' 7Jk 

are defined by: 

<I>j ·- eA{ T 
k 

1T . rj ·- eA{(T-t) Bj dt 
k 0 k 

1T . 
7Jk ·- eA{(T-t)Cj dt 

0 k (6.41) 
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<I>Jc is known as the state transition matrix computed at time t{. 

Moreover, from the definition of ~u(kP + j + ilkP + j) it is easy to see that: 

i+l 
u(kP+j+i+llkP+j) = u(kP+j-llkP+j-1)+ L /j.u(kP+j+llkP+j) (6.42) 

l=O 

for i = 0, ... , M - 1, Vj = 1, ... , P - 1, and 

i 

u(kP+ilkP) = u((k-l)P+P-ll(k-l)P+P-1)+ L/j.u(kP+llkP), i = 0, ... , P-1 
l=O 

(6.43) 

By substituting (6.43) and (6.42) into (6.40) we have: 

x(kP + j + i + llkP + j) (<I>{)(i+I) x(kP + jlkP + j) + 
i 

+ L (<I>0 1 [r{ u(kP + j - llkP + j - 1) + 77iJ + 
l=O 

i i-l 

+ 2:(<I>1)1 f1~[L /j.u(kP + j + nlkP + j)) (6.44) 
l=O n=j 

for i = 0, ... , P - 1, Vj = 1, ... , P - 1, and 

x(kP + i + llkP) (<I>2)(i+i) x(kPlkP) + 
i 

+ :L (<I>2) 1 [r2u((k - l)P + P - ll(k - l)P + P - 1) + 772] + 
l=O 

i i-l 

+ 2:(<I>2)1 rg [L ~u(kP + nlkP)], i = 0, ... , P - 1 (6.45) 
l=O n=O 

By substituting equations (6.42), (6.43), (6.44), (6.45) into the expression for the 

objective function (6. 7) and through a rather cumbersome process of collecting all 

the linear and quadratic terms in /j.u(kP+ jlkP+ j), ... , /j.u(kP+ j +M - llkP+ j) 

(a process which we will omit here because it has been described in detail for models 
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in step response format in [99]), we obtain: 

(6.46) 

where 6.uJ(k) := [t:.u(kP + jlkP + j)' ... t:.u(kP + j + M - ljkP + j)']' and the 

matrix Hf and vector h{ are defined by: 

Hessian matrix 

"Block" diagonal elements Hu, l = 1, ... , M: 

P-l i i 

Hu := r' {2: [l:(<I>')q]Q[l: <I>q]}r + s + [M - (l - l)]R (6.47) 
i=O q=O q=O 

Lower "block" diagonal elements H 1p, l = p, ... , M, Vp = 1, ... , M - 1: 

P-l i-(l-1) i-(p-1) 

H1p := r' { :L [ :L (<I>')q]Q[ :L <I>q]}r + [M - (t - 1)]R (6.48) 
i=l-1 q=O q=O 

For simplicity of notation, we have here omitted the subscripts and superscripts on 

the matrices H, <I>, r, but it should be clear that in order to compute H~ we should 

use <I>{, r{. 

Since H is symmetric, the upper diagonal elements are given by Hzp = H;1, Vl < p. 

Each "block" element H1p; l,p = 1, ... , M; is an m x m matrix. 

Elements of the gradient vector h;, l 1, ... , M 

h; P-l i i-(l-1) 

2 
·- [M - (l - l))(u*)' R + [(u*)'r' + r/] L {[l:(<I>')q)Q[ L <I>q]}r + 

i=l-1 q=O q=O 

P-1 i-(l-1) 

+ (x*)' { L (<I>(i+ll)' Q[ L <I>q]}r (6.49) 
i=l-1 q=O 
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Each "element" h;, l = 1, ... , M, is a row vector of dimension m. u* is equal to 

u(kP + j - llkP + j - 1), Vj = 1, ... , P - 1, for the problem at iteration j, being k 

fixed. u* is equal to u((k - l)P + P - ll(k - l)P + P - 1) for j = 0. x* is equal to 

x(kP + jlkP + j) = x~,j for the problem at time step k, j. 

The constraints on the control moves and rate of change of these control moves, 

keeping in mind that f:luJ(k) are our decision variables, can be expressed as: 

G 

f:lu(kP + jlkP + j) 
f:lu(kP + j + llkP + j) 

> ~ 

f:lu(kP + j + M - llkP + j) 

with G and b given by: 

Im Om Om Om 

Om Im Om Om 

Om Om Om Im 

-Im Om Om Om 

Om -Im Om Om 

G ·-
Im Om Om Om 

Im Im Om Om 

Im Im Im Im 

-Im Om Om Om 

-Im -Im Om Om 

(6.50) 

(6.51) 
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where Im, Om are the identity and zero matrices of dimension m, respectively, 

and 

!rt. ·-k 

with u* as previously defined. 

-6.Umax(O) 

-6.Umax(l) 

-6.Umax(M - 1) 

-6.Umax(O) 

-6.Umax(l) 

-6.Umax(M - 1) 

Umin(O) - u* 

Umin(l) - u* 

Umin(M - 1) - u* 

-Umax(O) + u* 

-Umax(l) + u* 

-Umax(Af - 1) + u* 

(6.52) 

Notice that we are allowing for different lower and upper bounds on the control moves 

and rate of change of the control moves predicted at different time steps. 

Now we will examine how the matrices Hk, G and vectors (h{)' and &{. are aug

mented in each of the three different procedures proposed for implementation of the 

contractive constraint. 
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Procedure 1 (approximate or conservative approach) 

In this case, the number of decision variables is increased by n as previously discussed 

and the objective function at time step k, j is re-defined as: 

[ 
!:l uj ( k) l [ ~k-uj ( k) l J1 =: [!:luj(k)

1 

(c{)'] (H*){ c{ + [(h{)' OJ c; (6.53) 

where c{ are the new optimization variables introduced in the implementation of the 

contractive constraint and (H*){ is defined by: 

· [ Hi OmMxn] (H*){ ·-
OnxmM In 

(6.54) 

where OmMxn is a zero matrix with mM rows and n columns. 

So, all we did was to augment Hk in order to include the new decision variables in 

the objective function. 

The constraint matrix G and vector b must also be augmented in order to include the 

2n + 1 state constraints. Thus, our constraints are now defined as: 

(G*){ 

!:lu(kP + jlkP + j) 
!:lu(kP + j + ljkP + j) 

!:lu(kP + j + M - ljkP + j) 

(c1H 

> (b*){ (6.55) 

with G*, b* (notice that we have dropped the subscripts and superscripts to simplify 



the notation) are given by: 

where: 

with 

y ·-

and 

b* ·-
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G 04mMxn 

-Y* In 
G* ·-

Y* In 

01xmM -ln 

Y* ·- [ Y Onx(M-p)m ] 

Ep-1 </>i r 
i=O 1 

Ep-1 </>i r 
i=O 2 

Ep-1 </>i r 
z=O n 

""p-1 ,+.i 
L..i=O 'f'l 

Ep-1 </>i r 
i=l 1 

Ep-1 </>i r 
i=l 2 

Ep-1 </>i r 
i=l n 

b 

<l>fi-1r 

(fu* + 77) + <I>Px* 

""p-1 ,+.i 
L..i=O 'f'n 

""p-1 ,+.i 
L..i=O 'f'l 

""p-1 ,1..i 
L..i=O 'f'n 

(fu* + 77) - <I>Px* 

- ~ 1 
A a II x~ II? 

Amax(P) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

where <PL l = 1, ... , n, represents the zth row of the matrix <I>i and p := P - J, J = 

0, ... , P - 1, represents the number of steps the initial condition for the prediction 

at time t{, namely x(kP + jlkP + j), lies behind the point where the contractive 

constraint is imposed, i.e., tf. Here, the matrices <I>, r, 77 are actually <I>~, r~, 77z, since 

the linearization of the plant used in the computation of the contractive constraint is 

only updated at the beginning of horizons. 
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Procedure 2 (penalty function approach) 

In this case, the objective function Jk has to be modified to have the term I II 
xk(tf) II? added to it as previously explained. 

The new objective function at time t{ is specified by the following Hessian matrix 

(H*)L and gradient vector (h*){: 

Hessian matrix 

"Block" diagonal elements Ht;,, l = 1, ... , M: 

P-j-1 P-j-1 

Hz~ :=Hu+ Ir' [ L ((J)')q]Q[ L (J)Q]f (6.60) 
q=O q=O 

Lower "block" diagonal elements H1~, l = p, ... , M, 'lip= 1, ... , M - 1: 

P-j-l P-j-p 

Hz~:= Hzp +Ir' [ L ((J)'FJQ[ L (J)Q]f (6.61) 
q=O q=O 

For simplicity of notation, we have here omitted the subscripts and superscripts on 

the matrices H*, H, (J), r. 

Elements of the gradient vector h;, l = 1, ... , M 

P-j-1 P-j-Z P-j-Z 

(h;)' := h;+21 {[(u*)'r' +r/] [( 2:.: ((J)'F)Q( L (J)Q)]r+(x*)' ((J)(P-il)' Q[ L (J)Q]f} 
q=O q=O q=O 

(6.62) 

The constraint matrix G and vector b are not changed since in this formulation there 

are no explicit state constraints but only control constraints. 
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Procedure 3 (sensitivity analysis approach) 

Here H, h
1 

and Gare augmented in the same way as in procedure 1. The vector bis 

the only one to be changed to depict the modified contractive constraint (6.20), i.e., 

b 

I::p-1 ipi 
i=O 1 

(fu* + TJ) + <I>Px* 

I::p-1 ipi 
b* 

i=O n 
(6.63) ·-

I::p-1 ipi 
i=O 1 

(fu* + TJ) - <I>Px* 

I::p-1 ipi 
i=O n 

-6~ a II x{ llP 

The only difference with respect to procedure 1 is that the factor J 1 
• in the last 

Amax(P) 

element of b* is now replaced by the parameter <5~ which is iterated upon until the 

original quadratic contractive constraint is satisfied. 

6.2.5 Basic philosophy of the controller design 

Figures 6.1 and 6.2 illustrate the behavior of the contractive MPC controller in Con

trol Algorithm 5 when there is structural/parameter mismatch between the model 

used in the computation of the contractive constraint (which is linear in Problem 

6) and the nonlinear plant. 

In these figures we have: 

• x(kPlkP) := x{ := xP(tk), Vk 2': 0 in the state feedback case 

• x(kPlkP) := xk := x(tk), Vk 2': 0 in the output feedback case 



II x(kPlkP) II? 

j=O 

tk 

II x(kPlkP) llp 

j = 1 

tk 

II x(kPlkP) llp 

j=2 

tk 

II x(kPlkP) II? 

j = P-1 
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x(kP + ilkP) = x(kP + ilkP) 

a II x(kPlkP) llp 

tP 

x(kP + 1+ilkP+1) k 

x(kP + 1 + ilkP + 1) 

x(kP + ilkP) 

a II x(kPlkP) II? 

tl 
k tP 

k 
tP+l 

k 

x(kP + 2 + ilkP + 2) 

x(kP + 2 + ilkP + 2) 

a II x(kPlkP) llp 

I 
I 
I 

tl 
k 

t2 
k tP 

k 
tP+2 

k 

1 x(kP + P - 1 + ilkP + P - 1) 

x(kP + P -1 + ilkP + P -1) 

------ ---- • x((k + l)Pl(k + l)P) 
a II x(kPlkP) llp 

tP-I t ·- tP k k+l .- k t2P 
k 

Figure 6.1: P control problems for a fixed k. Predicted trajectories generated by 
the robust contractive MPC scheme for a fixed k and j varying in the interval j = 
0, ... , P- 1. 



II x((k + l)P/(k + l)P) lip 

j=O 

II x((k + l)P/(k + l)P) lip 
j = 1 

II x((k + l)Pl(k + l)P) lip 

j=2 

II x((k + l)Pl(k + l)P) lip 

j =P-l 
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x((k + l)P + il(k + l)P) = x((k + l)P + il(k + l)P) 

a II x((k + l)Pl(k + l)P) lip 

tk+l = tk 

x((k + l)P + 1 + il(k + l)P + 1) 
x((k + l)P + 1 + i/(k + l)P + 1) 

_,____ x((k + l)P + i/(k + l)P) 

.. ,. I -, .. a II x((k + l)P/(k + l)P) /Ip 
I .... 

I '-..._. 
I ,.,. 

I 

x((k + l)P + 2 + i/(k + l)P + 2) 

------

x(( +l)P+2+il(k+l)P+2) 

a II x((k + l)Pl(k + l)P) lip 

I 

I x((k + l)P + P - 1 + i/(k + l)P + P - 1) 
I 

x((k + l)P + P - l + i/(k + l)P + P - 1) 

• x((k + 2)Pj(k + 2)P) 

a II x((k + l)Pl(k + I)P) llp 

t2P 
k+l 

Figure 6.2: Next P control problems at k + 1. Predicted trajectories generated by the 
robust contractive MPC scheme at k + 1 and j varying in the interval j = 0, ... , P-1. 
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Thus, while the optimization problem remains solved over P time steps for different 

values of j and for a constant k, the number of steps between the beginning of the 

prediction and the location of the contractive constraint is equal to P- j and therefore 

decreases as j increases, as we can clearly see in figures 6.1 and 6.2. 

Let us consider, for generalization purposes, the output feedback problem. Let X be 

the reachable set and BP the set of initial conditions for which the optimization prob

lem at time step k, k 2: 0, is feasible. Then the trajectories of the linear model used 

for computation of the contractive constraint, the nonlinear plant and the observer 

are illustrated in figure 6.3. 

a II x 

Trajectories of: 

lant: xk(t) 

xk(t) 

xk(t) 

Mismatch (linear/ nonlinear) 

Disturbance+ Measurement error 

X reachable set 

Figure 6.3: State trajectories generated by the contractive MPC scheme. 
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6.3 Stability analysis of Control Algorithm 5 

In this section we will examine how the results obtained in chapter 3, when the 

models used in the prediction and in the computation of the contractive constraint 

exactly match the nonlinear dynamics of the plant, are modified by use of a linear 

approximation of the nonlinear system in the control computations. As previously 

pointed out, this procedure, which simplifies the controller from a computational 

point of view, introduces a model/plant mismatch which needs to be quantified and 

dealt with by the controller. 

Finding appropriate uncertainty descriptions for nonlinear systems is an area only 

quite recently explored and much remains to be done. In [15, 34, 47, 77], e.g., in 

order to achieve either stabilization or tracking, some assumptions were introduced 

regarding the structure of the uncertainties and are often referred to as matching 

condition, a rather restrictive assumption. Recently, [18] brings up the so-called 

generalized matching condition for a class of nonlinear systems and [16, 30, 119, 115, 

126] conduct the robustness analysis of uncertain dynamical systems for mismatched 

uncertainties. 

Here we will express our linear/nonlinear mismatch through a conic sector bound. 

This description of the mismatch is appropriate in this set up because it is well

known that a nonlinear model and its linearization behave very similarly in a close 

neighborhood of the point where the linearization is performed. Thus, as long as our 

sampling time is reasonably small, the difference between the dynamics of the linear 

model and that of the nonlinear plant should lie within a conic sector bound. In other 

words, this bound assumes that in a close vicinity of the point of linearization, the 

second and higher order terms of the dynamics of the nonlinear system are "small" 

in magnitude when compared to the linear ones. 

Through this description of the linear/nonlinear mismatch and other assumptions 

which we will soon consider, our stability analysis will reveal that the states of the 
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closed-loop system can be driven to a control invariant set as long as the contractive 

parameter a stays within certain lower and upper bounds in the interval [O, 1). 

6.3.1 Basic assumptions for the state feedback controller 

Assumption 6.1 It is assumed that there exists a constant p E (0, oo) such that for 

all x~, Xk E BP, the QP problem to be solved in the prediction step of our contractive 

MPG controller at time step k, k 2: 0, is feasible. Since the contractive constraint does 

not change for the subsequent P- l time steps, if P(tk, xD is feasible then P(t{, x~'j) 

is also feasible for all j = 1, ... , P - 1. Moreover, the properly restricted optimal 

solution of P( tk, xD is a feasible solution of the following P - 1 control problems. 

The basic assumptions on the nonlinear system are: 

Assumption 6.2 We assume that if x~, xk E BP, Vk 2: 0 (with p E (0, oo) defined 

in assumption 6.1), then there exists a constant /3 E ( 0, oo) so that the transient states 

of the model used in the computation of the contractive constraint remain inside the 

set Bf311xkllt" i.e., II x{(t) lip:::; /3 II Xk !Ip:::; /3p, Vj = 0, ... , P - 1, k 2: 0. 

Assumption 6.3 The linearization of the plant characterized by the pair (A, B) := 

(~(x*, u*, 0, 0), ~(x*, u*), 0, 0) is stabilizable for all points (x*, u*) E ~n x ~m around 

which the linearization is perf armed. 

It is assumed that there exists a Lipschitz constant L E [O, oo) and a so-called mod

eling bound I E [O, oo) such that for all xP, x E ~n; u EU; d E V and p E P, the 

following bounds hold: 

Assumption 6.4 

II C + Ax + Bu I IP :::;; L [ II x llP + 11 u 11 l (6.64) 
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where A:= U(x*,u*,0,0), B := %t;(x*,u*,O,O), C := f(x*,u*,0,0) - Ax* - Bu* 

with (x*, u*, 0, 0) being the point around which the linearization is performed. 

Assumption 6.5 

II f(xP, u,p, d) - f(x, u, 0, 0) llp=:ll f(xP, u,p, d) - C - Ax -

Bu - F(x, u, 0, 0) llp:S L[IJ xP - x llP + II p II + JI d Ill (6.65) 

F(x, u, 0, 0) represents the second and higher order terms of the Taylor series expan

sion of f(x,u,0,0) around the point (x*,u*,0,0). 

Assumption 6.6 Growth condition on F: 

11 F(x, u, o, o) llP :::; r [ II x llP + 11 u 11 l (6.66) 

Remark 6.3 Let the reachable set of states X be defined by: 

. . . . . . . . ·-1 . . 
x1(t) := x1(t, t1, x~'J, uHt), 0, 0) and x1(t) := x1(t, t1, x1 (t1), uHt), 0, 0), 

t E [t{, t{+1
], x~, xk E Bp, u{(t) EU, p{(t) E P, d{(t) E D; 

j = 0, ... , P - 1, Vk 2: O} (6.67) 

Then, it is only necessary to satisfy assumptions 6.4, 6. 5 and 6. 6 along the trajectories 

generated by the contractive MPG algorithm, i.e., x~,j ( t) and x{ ( t) E X for all j = 

0, ... , P - 1 and V k 2: 0. Because this is difficult to check beforehand (since we 
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do not know a priori which control moves will be computed by the contractive MPG 

controller and, consequently, which trajectories will be generated), we have posed the 

assumptions in a more conservative way, as valid for all xP, x E Rn. 

6.3.2 Stability results for the state feedback MPC controller 

Theorem 6.2 (Bound on the difference between model and plant states at 

tk, Vk ~ 1) Let p E (O,oo) and L,/ E [O,oo) satisfy assumptions 6.1, 6.4 and 6.5, 

6.6, respectively. Then ifx~, xk E BP,\fk ~ 0, there exist Ai, .A2 E [O,oo) so that 

(6.68) 

with .A1 -+ 0 as/-+ 0 and .A2 -+ 0 as/, Ep, Ed-+ 0. 

Proof: First note that the optimal control problem P(tk, xD has a solution for all k ~ 

0 since we assume that x~, Xk E BP. As a result, the state trajectory xP(t, t 0 , Xb, u(t)) 

is well-defined. 

Given x~, xk E BP and uk(t) E U, for t E [tk, tk+l := tf], obtained by solving 

P(tklxD, let x~(t) and xk(t) be the state trajectories of the plant and of its linear 

approximation computed fort E [tk, tk+iJ, \fk ~ 0, respectively. 

Then since the states x(t) are set to x~ at t = tk and using the assumptions in the 

previous section, we have that for all t E [tk, tk+iL the following inequality holds: 

II x~(t) - xk(t) llp::S: ft: II J(x1(T), uk(T),Pk(T), dk(T)) - ck - Akxk(T) -

-Bkuk(T) llP dT:::; f/k II J(x~(T), uk(T),Pk(T), dk(T)) - ck - Akxk(T) -

-Bkuk(T) - F(xk(T), uk(T), 0, 0) llP dT +ft: II F(xk(T), uk(T), 0, 0) llP dT:::; 

:::; LEPT + L fttk II x1(T) - xk(T) llP dT + 1uPT + 1 fttk II xk(T) llP dT (6.69) 
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where E :=Ed+ Ep and u := max{ll Umin II, II Umax II}. 

Besides, for all t E [tk, tk+l], we have: 

< II x1 llP + lt II ck+ Akxk(T) + Bkuk(T) llP dT < 
tk 

< II x1 llP +LuPT + Llt II xk(T) llP dT 
tk 

(6.70) 

Now, using the Bellman-Grownwall (BG) inequality, we get: 

(6.71) 

By integrating both sides of inequality (6. 71), we obtain: 

(6.72) 

By substituting (6. 72) into (6.69), it results that: 

II x1(t) - xk(t) llP < LEPT + 1PTueLPT + l (eLPT - 1) II x1 llP + 

+ L lt II x~(T) - xk(T) llP dT (6.73) 
tk 

Finally, using the BG inequality once more and setting t = tk+li we get: 

II x~+l - xk+1 llP < Z eLPT(eLPT - 1) II x~ llP +LEPTeLPT + 1PTue2LPT -· 

-· A1 II x~ llP +-\2 (6.74) 
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Thus, .\1 , ,\2 are given by: 

,\
1 

·- I eLPT (eLPT _ l) 
L 

.\2 ·- [ ryueLPT + LE J PTeLPT 

(6.75) 

(6.76) 

From these definitions we clearly see that ,\1 -+ 0 as ry -+ 0 and .\2 -+ 0 as ry, Ed, Ep -+ 

0. Moreover, both ,\1 and ,\2 increase as L and/ increase, which is natural since these 

constants "quantify" the strength of the nonlinearities in the system. 
D 

Since we have established in assumption 6.1 that there exists a non-empty set of 

initial conditions BP for which feasibility of the successive optimal control problems is 

guaranteed, we must now establish conditions on the controller and plant parameters 

under which the state trajectory { xU~0 , { x}~0 remains inside this set. In the next 

theorem we will compute bounds on the contractive parameter a so that stability and 

feasibility are guaranteed within these bounds. 

Theorem 6.3 (Feasibility condition) Let the constants a, L, /, Ep, Ed and p be 

as previously postulated. Then, there exists a E [O, oo) such that if a < a the closed

loop system is stable and the states of the plant can be steered to a control invariant 

set Bfl where p is a function of a, ry, L, p, Ep, Ed and p-+ 0 as/, Ep, Ed-+ 0. 

Proof: The proof is constructive, i.e., we calculate a so that the statement of the 

theorem holds. 

From the triangle inequality it fallows that: 

(6. 77) 
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Now, using the contractive constraint, i.e., II xk+l llp::S o: II x~ llp, Vk 2: 0, we get: 

(6.78) 

Then by substituting (6. 74) into (6. 78), we obtain: 

Using the Contraction Mapping Principle we conclude that stability will hold if o:* = 

o: + ,\1 < 1, which implies that: 

'Y eLPT (eLPT - 1) 
o: < 1- -· a:Ul 

L 
(6.80) 

Naturally, since o: 2: 0 a necessary condition on the nonlinearities of the system so 

that 0:(1) exists is that: 

L 
(6.81) 'Y < eLPT(eLPT - 1) 

Now, applying the results of lemma 4.1, we get: 

1. 

(6.82) 

for all initial conditions xf; E B Po. 

2. 
A2 

lim II x~ llP ::S -· p 
k--+oo 1 - o:* 

(6.83) 

Thus, p is given by: 
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p ·-
L(l - a)+ reLPT(eLPT - 1) (6.84) 

Using equations (6.84) and (6.83), we conclude that: 

(6.85) 

Therefore, the states are driven by Control Algorithm 5 to the interior of the 

control invariant set B;, asymptotically and the size of this set decreases the less 

disturbances and parameter uncertainty there exist and the weaker the nonlinearities 

of the system are. Also, notice that p decreases for smaller values of a. This makes 

sense since we should be able to drive the states of the plant to a smaller control 

invariant set by requiring a stronger contraction of the model states. p increases as 

/ increases for a < 1 - ~ (eLPT - 1) (we can see that by examining ~). Thus, if 

E = 0, p increases as/ increases for any chosen a. Moreover, p always increases as 

E increases. 

Our next step is to establish conditions which guarantee that x1, xk E BP, Vk 2: 0. 

Using inequality (6. 82), a sufficient condition on the control and plant parameters so 

that x~ remains inside BP for all k 2: 0 is given by: 

O<po+p<p (6.86) 

Since 11 xk+l ljp::; a 11 x1 lip, if inequality (6.86) is satisfied then the states Xk also 

remain inside Bp for all k 2: 0 (since x0 is set to x{; E Bp0 ). 

A necessary condition on the nonlinearities, disturbances and parameter mismatch, 

given the chosen controller parameters a, P, T, for Bp0 C Bp with p0 satisfying 

inequality ( 6. 86) not to be an empty set is obviously that: 
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LPTeLPT[!ueLPT +Le] 
L(l _a)+ /eLPT(eLPT _ l) < p 

Or, expressed in terms of the contractive parameter a, we have: 

I LPT( LPT ) [1u,eLPT + Lc]PTeLPT 
a < 1 - -e e - 1 - -· 

L P 

(6.87) 

(6.88) 

Since 0/2) < 0;(1) for all p E [O, oo) and 0;C2) --+ 0;(1) if p --+ oo (i.e., if the optimization 

problems P( tk, xfJ are feasible for all initial conditions xf E Rn, then the bound on 

the contractive parameter a is dictated only by the stability requirement as in (6.80)) 

then we have that a is defined by: 

(6.89) 

Naturally, since a > 0, a necessary condition on the combined effect of disturbances, 

parameter uncertainty and linear /nonlinear mismatch so that a is meaningful is given 

by: 

[ - LPT L l PT LPT / LPT ( LPT ) /Ue + E e 1 -e e -1 + < 
L P 

(6.90) 

Then, for a < a both feasibility and asymptotic stability to the control invariant set 

BP are guaranteed. 
D 

Theorem 6.4 (Well-posedness of the controller) Let a and p0 be as defined in 

theorem 6. 3 and f3 E ( 0, oo) be as in assumption 6. 2. Then, 

1. there exists a ~1 E (0, oo) such that for any xg E Bµ 0 , it follows that 

II xf (t, tk, xf, uk(t),pk(t), dk(t)) lip::; ~1, t E [tk, tk+1J, 'Ilk 2: 0, and 
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2. there exists a ~2 E ( 0, oo), depending on 'Y and E, such that ~2 -t 0 as 'Y, E -t 0 

and for any xg E Bp0 , the trajectory xP(t, t0 , xg, u(t),p(t), d(t)), t E [t0 , oo), 

satisfies the inequality limHoo II xP(t, to, xo, u(t),p(t), d(t)) lip::; ~2· 

Proof: We want to prove that for any xg E Bp0 , we have II x~(t) lip:= 
II x~(t,tk,x~,uk(t),pk(t),dk(t)) llP bounded for all t E [tk,tk+1] and k 2 0. We 

know that: 

11 xP(t) llP :::; II xP(t) - x(t) llP + II x(t) llp, (6.91) 

Besides, the transient states xk(t) satisfy the inequality: 

We also know from theorem 6. 2 that: 

(6.93) 

Thus, by substituting (6.92) and (6.93) into equation (6.91}, we obtain: 

The ref ore, we conclude that: 

(6.95) 
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Next, it follows from the proof of theorem 6.3 that limk--+oo 11 x~ lip< p. Hence, from 

(6.94) we have: 

(6.96) 

So, we have proven that: 

(6.97) 

Since p, ,\2 --+ 0 as/, Ep, Ea--+ 0 it follows from (6.96} that ~2 --+ 0 as/, Ep, Ea--+ 0. 
D 

The results derived in theorems 6.2, 6.3, 6.4 were based on the assumption that there 

exists a non-empty set BP of initial conditions for which feasibility of the optimization 

step in Control Algorithm 5 is guaranteed. This is the same assumption which 

we have used in previous chapters when the optimization problem in our contractive 

MPC scheme was a general NLP. 

Here, we will take advantage of the fact that the model used in the computation of 

the contractive constraint is linear to derive a lower bound q on a E [O, 1) which 

establishes a sufficient condition for feasibility. This lower bound can only be derived 

under a more restrictive assumption than assumption 6.3, namely that: 

Assumption 6.7 A:= ~(x*,u*,0,0) is stable (i.e., it has all eigenvalues located in 

the left half plane) for all points (x*, u*) E Rn x Rm around which the linearization is 

performed. 

Theorem 6.5 (Feasibility conditions for systems satisfying assumption 6. 7) 

If assumption 6. 7 is satisfied, then there exists q > 0 such that if a 2: q then the 
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optimization at time step k in the prediction step of Control Algorithm 5 is feasible 

for all k 2 0. 

Proof: From (6.40) it is clear that: 

x(kP + j + i + lJkP + j) 
i 

+ L ( <P2) 1 [r2u(kP + j + llkP + j) + 17Zl (6.98) 
l=O 

foralli=O, ... ,P-l andj =0, ... ,P-l. x(kP+jlkP+j) =x(kP+jlkP+j-l) 

for j = 1, ... , P - 1 and x(kPjkP) = x~. 

Because the local linearization is assumed stable, the worst case scenario in terms of 

trying to satisfy the contractive constraint is if the applied control action is such that 

Bku{(t) = -Ck for all t E [t:L t{+PJ and j = 0, ... , P - 1 (i.e., there are no driving 

terms in the system). Obviously, we are not considering the case when one may be 

trying to drive the states of the system away from the origin. 

In this case, we have: 

x(kP + j + i + llkP + j) = (<P2)(i+l) x(kP + jlkP + j) (6.99) 

Since the trajectories xk(t) do not differ for different values of j if Bkui(t) lies in 

the range of Cb then we can drop the superscript j and by applying the P-norm we 

have: 

II x(kP+i+ llkP) llP :::; VAmax(Pt <P1i+l) p-~) II x~ lip, i = 0, ... 'P- l (6.100) 
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where <I> k represents <I>2 := eAZPT, i.e., the state transition matrix computed at time 

For i = P - 1, we have: 

II x((k + l)PlkP) llp:S VAmax(Pt <I>f p-t) II xf llP := 

:= VAmax(Pt eAkPT p-!) II xf llP =: Qk II xf llP 

with Ak representing A2. 

Since our contractive constraint is given by: 

II x((k + l)PlkP) llP s a II xf llP 

Then, if 

f, (PAl APTpA-1) - • v Amax 2 e 2 ' 

(6.101) 

(6.102) 

(6.103) 

the QP is feasible at time step k, 'Ilk ~ 0. Thus, since we have assumed that Ak 

is stable for all k ~ 0, there always exists a finite prediction horizon P long enough 

(since eAPT decreases the larger P is for A stable) such that Q E [O, 1). 
0 

Remark 6.4 Thus, according to the results in Theorems 6.3 and 6.5 and in the 

absence of disturbances, if Assumption 6. 7 is satisfied and if a is such that Q ::;; 

eLPT (eLPT l) J A i A 1 
a < Qi with Qi:= 1 - 1 L - and a:= y Amax(P-2 eAPT p-2), then feasibility 

and asymptotic stability to the control invariant set B;h with p given by 
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p ·-
LPT /U e2LPT 

(6.104) 
L(l _a)+ ieLPT(eLPT _ 1) 

are guaranteed. 

Notice that the inequality Q < a < a only has meaning if the nonlinearity 

"strength" (expressed in the magnitude of/) is such that 0 :::; Q < a < 1, i.e., 

L (l - VAmax(P~ eAPT p-~)) 
I < eLPT (eLPT _ 1) (6.105) 

6.3.3 Output feedback contractive MPC algorithm with 

linear approximation 

We have seen in chapter 4 that, in the nominal case, the exponentially stabilizing 

contractive MPC, when associated with an asymptotically convergent state estima

tor, originates a uniformly asymptotically stable closed-loop. In the previous section 

of this chapter, we have derived stability results for the contractive MPC controller in 

the case where the models used for prediction and computation of the contractive con

straint are linear. We have seen that this mismatch between the real nonlinear plant 

and its linear approximation used in the optimization step of Control Algorithm 5 

(quantified in assumption 6.6 through a linear growth condition on the nonlinearities) 

weakens the stability results. The exponential stability properties of the nominal case 

are now lost and, instead, we can only guarantee to steer the states to the interior of 

a control invariant set whose size is proportional to this linear/nonlinear mismatch. 

Now we want to combine these results in chapter 4 with the results in the previous 

section of this chapter to analyze the closed-loop response in the output feedback case 

when the model used by the contractive MPC controller is a linear approximation 

of the nonlinear plant and the nonlinear state estimator produces asymptotically 
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convergent estimates in the absence of disturbances and parameter uncertainty (as, 

e.g., the nonlinear Estimation Procedure 1 derived in chapter 4). 

In the state feedback case, the states of the model used in the computation of the 

contractive constraint at step k after one sampling time are given by: 

(6.106) 

where the matrices <I> ki '1! k are defined as: 

and (6.107) 

In the output feedback case, these model states are given by: 

(6.108) 

The difference between the two model dynamics can be represented by an additive 

disturbance, i.e., the state evolution of the model in the output feedback case is 

equivalent to the state feedback case modified to: 

(6.109) 

constant fort E [tk, tk + T], integration of (6.109) results in: 

(6.110) 

Thus, we want to compute dk so that it represents the difference in the dynamic 

behavior of the model caused by the estimation, i.e., the states in equation (6.110) 
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have to be equal to the states in (6.108). Thus, by subtracting equation (6.108) from 

(6.110), we have: 

d- ,T,-1 ;i:.. [ -A0 T I i-1 Ao k = '¥ k '!'k ek = - e k - n k ek (6.111) 

where In is the identity matrix of dimension n and ek is the estimation error defined 

as ek := xk - x~. 

Applying the P-norm to equation (6.111), we get: 

(6.112) 

Thus, the additive disturbance is proportional to the estimation error. In [37) the 

author proposes a nonlinear observer for continuous-time systems with discrete obser

vations which produces asymptotically convergent estimates if the initial estimation 

error is not very large and the nonlinearities are reasonably weak (the exact sufficient 

conditions can be found in that reference). In this case, there exists K E [O, oo) such 

that the estimation error at any sampling time tk satisfies the following inequality: 

(6.113) 

From equations (6.112) and (6.113) we obviously have: 

(6.114) 

where </> := maxk2:0 <Pk· 

Thus, if an asymptotically stable nonlinear observer is used (such as the one proposed 
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in [37)) then its effect is to introduce an additive asymptotically decaying disturbance 

into the dynamics of the models used in the prediction and in the computation of the 

contractive constraint. 

Assumption 6.8 Let the asymptotically decaying properties of the discrete distur

bance sequence { dk}k::::o introduced by the observer be expressed as: 

For any E > 0, :3 a finite k := k(E) EN so that P%::;: E, \:fk E [k, oo), 

and k(E) --+ oo if E--+ 0 

Our stability results in the output feedback case will reveal that we can still drive the 

states of the plant to the same control invariant set BP to which they could be driven 

in the state feedback case. This result is proven in the following theorem. 

Theorem 6.6 (Stability and feasibility properties of the output feedback 

scheme) Let p, L, [, pd E (0, oo) be as defined in Assumptions 6.1, 6.4 and 

6.5, 6.6 and equation (6.114), respectively, and let the state estimator be asymptot

ically stable (such that Assumption 6.8 holds). Then, if the norm of the additive 

disturbance caused by introduction of the observer into the closed-loop is bounded by, 

II dk llP :S: Pd< [L(l - a) ~pr;L;:~LPT - l)] [p - K II eo lip] - 1ueLPT, \:fk 2 0 

(6.115) 

the output feedback control problem is well-posed (since x~, xk, Xk E BP, \:f k 2 0, and 

xg E Bp0 which is a non-empty set) and the states of the resulting closed-loop system 

converge asymptotically to BP with p given by: 
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p ·-
[flLPTe2LPT 

(6.116) 
L(l - a)+ reLPT(eLPT - 1) 

which means that the states converge to the same control invariant set BP as in the 

state feedback case (compare with equation ( 6. 84)). 

Proof: Following the same procedure used to prove Theorem 6.2, if the model used 

in the computation of the contractive constraint is now given by ( 6.109) due to the 

state estimation error, we obtain: 

II xf+1-ik+1 ll?:S: l eLPT (eLPT -1) II xf II? +[rueLPT +p%JPTeLPT =: >11 II xf II? +>.2,k 

(6.117) 

where (6.117) follows directly from (6. 74) by making Ed= 0 and by adding the term 
- -

resulting from integration of the additive discrete disturbance sequence dk, ... dk+P-l 

(which satisfies equation (6.112)). 

Using the contractive constraint and the triangle inequality in equation ( 6.117), we 

have: 

(6.118) 

Since the state estimation error is such that for any € > 0, :3 k := k(€) E N large 

enough so that P% ::; E fork E [k, oo), then from (6.118} it follows that: 

(6.119) 

Then, if a+ >.1 =:a* E [O, 1), we can use the results of Lemma 4.1 to obtain: 
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l-l 

II x~(£)+l llP < (00*)1 II x~(£) /Ip +[l:(a*)iffyueLPT + 1-]PTeLPT < 
i=O 

( *)1 II r II· [TueLPT + 1-]PTeLPT 
< a xk(£) P + 1 - a* ' Vl > 0 (6.120) 

Thus, by taking the limit as € -1- 0, we have: 

1. - II P II. ( *)l [. - II P II ·J yuPT e2LPT -imE-+0 xk(i')+l p< a hmE-+O xk(i') p + l-a* -

- ( *)1[1' II P II ·J yuLPTe2LPT -· - a lffi£-t0 xk(i') p + L(l-a)+f'eLPT(eLPT _1) -. 

(6.121) 

and if now we take the limit as l -1- oo knowing that k(€) -1- oo for € -1- 0 and that 

a 1 -1- 0 exponentially fast as l -1- oo, we finally obtain: 

lim [ !im II ~(-)+l llp] < ( lim a 1
)[1im 11 ~(-) llp] + p = p 

l-+oo E-+0 E l-+oo E-+0 E 
(6.122) 

or 

lim II xf llP < P 
k-+oo 

(6.123) 

which means asymptotic convergence of the plant states to the control invariant set 

B;,. 

Now, it remains to be shown that xf, Xk, xk E BP, Vk 2: 0. From equation (6.117} 

and the definition of pa, we have: 

I/ xf+1-Xk+i l/p:S: Z eLPT(eLPT -1) II xf /Ip +[rueLPT +lJPTeLPT =: A1 /I xf //p +-X2 

(6.124) 

Thus, using the contractive constraint and the results of Lemma 4.1, we obtain: 
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< A2 - [rueLPT + pd]LPT eLPT 
- Po + 1 * - Po + L(l ) LPT( LPT l)' - a - a - 1e e -

(6.125) 

We have then found an upper bound on the states of the plant at the end of horizons. 

Since the estimated states are given by Xk = x~ + ek and the estimation error satisfies 

equation ( 6.113), we have the following bound on the estimated states: 

~ [1ueLPT + pd]LPT eLPT 
II Xk llp< Po+ L(l _a)_ ieLPT(eLPT _ l) + K II eo !Ip, Vk > 0 and Xb E Bp0 

(6.126) 

Th f ·- K II II. ['YueLPT +pd]LPTeLPT d h d. b {d- } . us, z Po .- p- eo p - L(l-a)-"feLPT(eLPr _1) an t e zstur ance k k?.O satis-

fies {6.115), it follows that Po> 0, {x~}l.:0=0 , {xk}k°=o E BP and, due to the contractive 

constraint, we also have {xd~o E BP, which means that the control problem P(tk, xk) 

is feasible and well-defined for all k ;::: 0. 
0 

6.4 Examples 

The examples examined here have been previously introduced in chapters 3 and 4, 

where closed-loop simulations of the systems using contractive MPC and standard 

nonlinear finite horizon MPC were performed using the exact nonlinear model of the 

system as the prediction model and in the computation of the contractive constraint. 

In some cases, we addressed the effect of parameter uncertainty, bounded, additive 

and non-additive, persistent and non-persistent disturbances and state estimation 

with different nonlinear observers, using different levels of noise and initial state 

estimation error. 
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Here we will perform simulations of the same examples but by applying the compu

tationally simpler and more efficient implementation of contractive MPC proposed 

in the present chapter. The optimization problem to be solved at each time step 

is now a QP and, therefore, the simulations run at a much faster speed, allowing, 

e.g., the exploration of longer prediction and control horizons without making the 

computation time unacceptable. 

The contractive constraint is implemented as suggested in procedure 3, i.e., by solving 

the QP using a linear version of the constraint, while iterating on the parameter 5, 

until the original quadratic contractive constraint is satisfied. The QP is solved only 

once at each sampling time. 

Exponential stability can no longer be guaranteed for all controller parameter choices 

which render the optimization feasible at every sample (i.e., feasibility does not imply 

exponential stability even in the absence of disturbances and parameter mismatch). 

The reason for this weakening of the closed-loop stability properties is that the model 

used in the prediction is a local linearization of the original nonlinear system and 

this linear/nonlinear mismatch makes it necessary for the controller to be robust. In 

mathematical terms, this robustness condition translates into an upper bound on a 

above which stability cannot be assured and below which, convergence of the states 

to a control invariant set containing the origin is guaranteed. The size of this control 

invariant set depends on the chosen controller parameters and on the linear /nonlinear 

mismatch (i.e., on the "strength" of the nonlinearities neglected in the prediction step 

of the MPC controller). 

In the simulations which follow, we will plot the state responses for the original 

nonlinear system and for the linear approximation used in the computation of the 

contractive constraint (which is only updated with the states of the plant at the end 

of prediction horizons). 
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6.4.1 Example 1: A Nonholonomic System (Car) 

Computation of upper bound on the contractive parameter 

Due to the simplicity of the model dynamics for this example, it is possible to calculate 

an upper bound on the contractive parameter a, a :S 1, such that the optimization 

problem is feasible for a E [O, a) and, therefore, the closed-loop response is stable. 

As we saw in chapter 3, for this example, we have: 

State Vector X: 

x 

x ·- y 

f} 

Input Vector u: 

u ·- [ : l 
Nonlinear Dynamics J(X, u): 

cos(fJ) v 

J(X,u) ·- sin(fJ) v 

w 

Linearization at an arbitrary point (X*, u*): 

A*X +B*u+C* ·-

-sin(fJ*)v*(fJ - fJ*) + cos(fJ*)( v - v*) + cos(fJ*)v* 

cos(fJ*)v*(fJ - fJ*) + sin(fJ*)(v - v*) + sin(fJ*)v* 

w 
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Thus, for any X, X E Rn and u E Rm, it follows that: 

11 f(X, u) - f(X, u) II < 2 lvl (6.127) 

which shows that f (X, u) does not satisfy Lipschitz condition (6.65). Moreover, 

II F(X, u) 11:=11 f(X, u) - A*X - B*u - C* II :S 'Y (IB- B*I + lvl) (6.128) 

with/:= max{2, lv*I, ~}. 

If the control constraints are such that lvl :S Vmax for a chosen Vmax > 0, inequality 

(6.128) is satisfied for any point (X*, u*) around which the linearization is performed 

if/:= max{2, lvmaxl, Jlvmaxl}. 

Therefore, using equation (6.69), we get the following bound on the difference between 

the states of the nonlinear system and the linearization performed at (Xk, uk) at time 

tk, fort E [tk, tk+l], Vk .:;:::: 0: 

(6.129) 

lvl is bounded given the input constraint Iv! :S Vmax and from the dynamic equation 

one we get: 

(6.130) 

Therefore, given the constraint on w, lwl :S Wmax, it results that: 

(6.131) 



281 

Using these bounds in equation (6.129), we obtain: 

II p - II [ ( ) /WmaxPTJ 
Xk+l - xk+l :::; PT Vmax 2 +I + 2 (6.132) 

Since the contractive constraint imposes that II xk+l II :::; a II Xf: II (where we have 

adopted P =In, for simplicity), we have: 

(6.133) 

Given that a E [O, 1) by definition, we can apply lemma 4.1 to show that: 

(6.134) 

and 

(6.135) 

From equation (6.134), a sufficient condition for XJ: E BP (which translates into 

feasibility of the control problem, as stated in assumption 6.1) is given by: 

(6.136) 

This inequality re-written as a condition on a, gives us the upper bound a which we 

wanted to derive: 

_ PT [ ( ) /WmaxPT] a < a := 1 - Vmax 2 +I + ----
p - Po 2 

(6.137) 
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Naturally, this bound only has significance only if PP_~0 [vmax(2+1) + ywm~xPTJ < 1. 

Notice that p increases as 0: increases, i.e., the larger we allow a to be, the larger 

the set of initial conditions for which the optimization problem is feasible. Thus, if 

we re-write equation (6.137) to express pas a function of 0: we can easily verify that 

lima_,1 p --+ oo. However, as we have previously discussed, determining p is not a 

trivial task and that is the main obstacle in actually computing numerical values of 

0: so that stability and feasibility are guaranteed for a E [O, 0:). 

It is also interesting to notice that even though f (X, u) does not satisfy a Lipschitz 

condition in ~n x ~m, it was possible to derive an upper bound on a in the same 

fashion used in theorems 6.2 and 6.3. However, because f is not Lipschitz continuous, 

this bound does not possess the same properties of that derived in theorem 6.3, namely 

that 0: = 1 if I= 0 (this bound meaning that in the absence of model/plant mismatch 

we are allowed to choose a as near to one as desired; see equation (6.89)). 

Thus, in the simulations which follow, we will not test if this bound is satisfied. Since 

the bound is derived from a sufficient condition to guarantee feasibility and stability, 

if the control problems in our simulations are feasible at successive time steps, then 

a may or may not satisfy the bound. All that matters for simulation purposes is that 

we choose the control parameters P and a in a way that feasibility is obtained at all 

time steps. If the result is an unstable closed-loop, we know that for the given P, we 

must reduce a or, if feasibility can no longer be guaranteed for this smaller value of 

a, we should increase the horizon and search for a new a small enough to provide 

stability and large enough to ensure feasibility. 
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6.4.2 Comparison between contractive MPC with local 

linearization and Astolfi 's discontinuous controller 

(unconstrained case) 

Contractive MPC with local linearization 

Figure 6.4 shows the resulting paths in the xy-plane of the controlled car using 

our contractive MPC scheme with local linearization in the absence of input 

constraints. 
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Figure 6.4: Resulting paths in the xy-plane using contractive MPC with local lin
earization when the car is initially on the unit circle and parallel to the x-axis. 
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The controller parameters used in these simulations are given by: 

Controller Parameters (figure 6.4) 

Q = diag([50 1 OJ) R=O S=O 

P=3 M=l a= 0.8 

Better trajectories are obtained in figure 6.5 where the controller is finely re

tuned for each initial condition. 
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Figure 6.5: Resulting paths in the xy-plane using contractive MPC with local lin
earization when the car is initially on the unit circle and parallel to the x-axis. 

The controller parameters used for simulations with the different initial condi

tions in figure 6.5 are given by: 
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1. Initial conditions: [x0 , y 0 , 00 ] = [±1, 0, OJ 

Controller Parameters (figure 6.5) 

Q = diag([lO 1 OJ) R=O S=O 

P=4 M=2 a= 0.8 

2. Initial conditions: [x0 , y 0 , Oo] [O, ±1, OJ 

Controller Parameters (figure 6.5) 

Q = diag([5.9 1 OJ) R=O S=O 

P=3 M=l a= 0.79 

3. Initial conditions: [xo, y 0 , Oo] {[J2, J2, OJ, [-J2, -J2, O]} 

Controller Parameters (figure 6.5) 

Q = diag([7 1 OJ) R=O S=O 

P=3 M= 1 a= 0.8 I 

4. Initial conditions: [x0 , y 0 , Oo] {[J2, -J2, OJ, [-J2, J2, O]} 

Controller Parameters (figure 6.5) 

Q = diag([7.5 1 OJ) R=O S=O 

P=3 M=l a= 0.85 

The sampling time used is equal to T = 0.1. 

Astolfi 's discontinuous controller 

The same kind of plot in the xy-plane for the controlled car using Astolfi's 

discontinuous controller has been presented in figure 3. 7 and we reproduce it 

here in figure 6.6 for comparison with the results obtained using our contractive 

MPC scheme with local linearization. 
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Figure 6.6: Resulting paths in the xy-plane using the analytical discontinuous con
troller when the car is initially on the unit circle and parallel to the x-axis. 

Comparison of results in figures 6.4 and 6.6 

The fact that contractive MPC with local linearization has been implemented 

here as a QP has reduced the time to compute the state trajectories dramatically 

and each simulation took on average between 3 and 5 seconds (compared to 

an average between 9 and 12 minutes for contractive MPC with a nonlinear 

prediction model). 

We can see from figures 6.4 and 6.6 that, for both controllers, the car performs 

its maneuver towards the origin of the coordinate system in a very natural way. 
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We also observe that while the contractive MPC scheme with a nonlinear predic

tion model generates trajectories which approach the origin in a very optimized 

manner (as shown in figure 3.6 in chapter 3), the contractive MPC scheme with 

local linearization leads to a worse performance. The reason for this degra

dation in performance is that we are now optimizing a performance criterion 

which takes into consideration the state evolution of the local linearization of 

the system at each time step and not the states of the real nonlinear system. 

Besides, contraction after each set of P steps is now imposed on the states of the 

linear model computed at the beginning of the P steps and not on the nonlinear 

model states. 

Comparing figures 6.4 and 6.6, we cannot really say that one performance is 

clearly superior to the other and it is obvious that we can improve (degrade) 

the performance of each controller by choosing different controller parameters 

(as shown for the contractive MPC controller in figure 6.5). 

The fact that the linearization of this system around the origin is not control

lable generates the same problem for contractive MPC which we discussed in 

detail in chapter 3. In order to prevent it, we set tolerances for the deviation 

of the final states with respect to the origin and stopped the control once these 

were satisfied. 

Comparison between contractive and standard MPC controllers with 

local linearization (unconstrained and constrained cases) 

Standard MPC with local linearization 

In chapter 3, nominal stability and performance properties of contractive MPC 

(CNTMPC) were compared to those of a standard nonlinear finite horizon MPC 

(SNLMPC) scheme. There we noticed that certain controller parameter choices 

could destabilize SNLMPC while CNTMPC preserved its stability characteris-
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tics as long as the optimization problem at the beginning of each horizon was 

feasible. 

Now the existing model/plant mismatch makes it even easier to find controller 

parameters for which standard MPC with local linearization generates an un

stable closed-loop response as we can see in figure 6. 7. 

The same experimental initial condition used in chapter 3 will be adopted in 

the simulations performed here. The sampling time for this example is equal to 

T = 0.1. 
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Figure 6.7: Car: State and control responses and xy-plot generated by standard 
MPC with local linearization in the constrained case. 

The controller parameters used in these simulations are: 
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Controller Parameters (figure 6.7) 

Q = diag([l 1 OJ) R=O S=O 

P=8 M=5 

Umin= [-0.2 - 1.0] Umax = [1.0 1.0] 

From figure 6. 7 we notice that the angle () decreases linearly in time and goes 

unstable due to the fact that w is equal to -1 for all t ~ 0.1 and, from the 

equations of the model, () = w. Thus, for this control parameter choice, the 

standard MPC controller with local linearization is unable to stabilize the angle 

of the car with respect to the x-axis. 

Contractive MPC with local linearization 

The unconstrained and constrained responses obtained with contractive MPC 

are shown in figure 6.8. 

The controller parameters used in these simulations are given by: 

Unconstrained case 

Controller Parameters (figure 6.8) 

Q = diag([l 10 1]) R = 0.1 Im S=O 

P=30 M= 18 a= 0.8 

Constrained case 

Controller Parameters (figure 6.8) 

Q = diag([l 10 OJ) R = 0.2 Im S=O 

p = 32 M=20 a= 0.8 

Umin= [-0.2 - 1.0] Umax = [0.2 1.0] 

The control and prediction horizons have been increased in the constrained case 

in order to guarantee feasibility of the QPs. We notice that the input constraints 
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Figure 6.8: Car: State and control responses and xy-plot generated by contractive 
MPC in the unconstrained and constrained cases. 

delay the closed-loop response but bring the responses of the linear model and 

of the original nonlinear system closer together. 

In both cases, we notice that at time t = 3 (t = 3.2 in the constrained case), 

the states of the linear model are set to be equal to the states of the plant 

and the trajectory of the model (the "linear" trajectory) begins tangent to the 

"nonlinear" trajectory at this point (i.e., at the points where the contractive 

constraint is satisfied by the "linear" states). We also notice that the B-response 

is matched exactly by the linear approximation. Naturally, this comes from the 

fact that the equation which governs the dynamics of this variable is linear and 

uncoupled with the other two equations of the system. 
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6.4.3 Example 2: Continuous Stirred Tank Reactor (CSTR) 

+Flash Unit 

Here we will examine the same control problem of chapter 3 (Case 1), i.e., beginning 

at a steady state where the conversion of product in the distillate of the flash drum, 

C3 , is low and equal to the concentration of B in the reactor, C2 , we want to reach 

the point of maximum conversion. The parameters of the model and the sampling 

time are the same as the ones used in chapter 3. 

The initial condition is a steady state of low conversion with the following coordinates: 

Initial condition 

T30 - 4.278166 Vo - 8.3056 x 10-2 -, 

C20 - 0.428721 T2,o - 4.43389 -, 

C30 - 0.428721 -, 

Case 1: No disturbances or uncertainty 

The simulation results in the constrained case are depicted in figure 6.9. 

The controller parameters used in Case 1 are the following: 

Controller parameters (figure 6.9) 

Q = diag((l 100 l]) R=O S=O 

P= 1 M=l a= 0.4 

Umin= -0.1 I Umax = 0 

From figures 6.9 and 3.26 we can see that the mismatch between the linear system 

used in the and computation of the contractive constraint and the real nonlinear 

system does not compromise the responses of the states which still settle in two 

samples. However, this linear/nonlinear mismatch causes the input variable to have 
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Figure 6.9: CSTR + Flash: State and control responses in the constrained Case 1. 

opposite sign to what it has in the simulations where the nonlinear system is used for 

prediction (see figure 3.26). 

Here we did not plot the states of the model used in the computation of the contractive 

constraint because the horizon is equal to P = 1 and since we set the states of the 

model equal to the states of the plant at every step, then the plots of the "linear" 

and "nonlinear" states coincide in this case. 

Case 2: Parameter uncertainty 

Here the linear model used in the prediction is computed at nominal parameter values 

while the plant is simulated with the real parameters. The set of uncertain parame-
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ters is composed by the pre-exponential kinetic factors A1 , A2 which are commonly 

unknown. In the simulations performed, the true parameters are 10% smaller than 

their nominal values. Simulation results in the constrained case are shown in figure 

6.10. 
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Figure 6.10: CSTR + Flash: State and control responses in the constrained Case 2. 

The controller and model/plant parameters used in Case 2 are as follows: 

Controller parameters (figure 6.10) 

Q = diag([l 100 l]) R=O S=O 

P=5 M=5 a= 0.5 

Umin= -0.l Umax = 0 
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Model/Plant Parameters 

Parameters Plant Model 

Ai 4.5 x 103 5.0 x 103 

A2 9.0 x 105 1.0 x 106 

As we can see from figure 6.10, the parameter mismatch causes the state response to 

show offset. The states of the linear model show a tendency to converge to the origin, 

which is natural since they are computed using the nominal parameter values but 

they are brought to the states of the plant at every five time steps (P = 5). Thus, in 

this case, the closed-loop system is still stable but the states converge asymptotically 

to a small neighborhood of the origin and not to the origin itself. 

The offset displayed by the output C3 could not be reduced with various choices 

of controller parameters. The 10% deviation of the parameters with respect to their 

nominal values causes the plant to settle to another steady state, where the conversion 

of B in stream 3 is lower and equal to 98.14%, in only two samples. 

Case 3: Exponentially decaying disturbances 

Finally, we will study the effect of exponentially decaying disturbances on some of 

the non-manipulated input variables. The variables we have chosen to perturb are 

F1 (input flow rate to the reactor) and T1 (temperature of the input stream). These 

exponentially decaying disturbances are of the form: 

d(t) dss [1 +a e-bt], t > 0 b > 0 - ' a, ( 6.138) 

where d(t) := [F1 (t) T1 (t)] and d88 is the vector of nominal values of these input 

variables. The chosen values of a and b in the next simulations are a = 0.5 and 

b = 0.01, i.e., at t = 0 these variables are perturbed and assume values 50% larger 

than their nominal, steady state values. Then, they decay exponentially to these 
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steady state values. The theoretical prediction is that, if the sequence of successive 

local linear approximations mimic well the behavior of the original nonlinear system, 

then the states should converge to the desired steady state. 

Simulation results in the constrained case are shown in figure 6.11. The disturbance 

behavior is depicted in figure 6.12. 
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Figure 6.11: CSTR + Flash: State and control responses in the constrained Case 3. 

The controller parameters used in Case 3 are as follows: 

Controller parameters (figure 6.12) 

Q = diag([l 100 1]) R=O S=O 

P=l M=l 01 = 0.4 

Umin= -0.l Umax = 0.1 
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Figure 6.12: Exponentially decaying disturbances used in the simulations shown in 
figure 6.11. 

From figures 6.11 and 6.12 we see that the controller is able to stabilize the system 

to the origin (in spite of the linear/nonlinear mismatch) as soon as the disturbances 

vanish. Comparison with figure 6.9 shows that the state response is considerably 

delayed by the disturbances. 

6.4.4 Example 3: 2-Degree of Freedom Robot 

For this example we will address the same setpoint tracking problem presented in 

chapter 3. The sampling time, the nominal parameter values and the initial and final 

states are the same as in that chapter. 
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Case 1: No disturbances or uncertainty 

Unconstrained and constrained simulations for this system are depicted in figure 6.13. 
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Figure 6.13: Robot: State and control responses in Case 1. 

The controller parameters used in Case 1 are the following: 

Controller Parameters (figure 6.13) 

Q = diag([lO 10 1 1]) R=O S=O 

<>=081 P=5 lvf = 5 

Umin= [-10 -5] Umax = [10 5] I 

As we can see from figure 6.13, the state response of the local linearizations with 

the implemented control moves (one-step ahead response) represents very well the 
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response of the original nonlinear system. The presence of tight input constraints 

delays the response ever so slightly. 

Case 2: Parameter uncertainty 

Next we will examine the effect of computing the local linearizations at nominal 

parameter values and have the dynamics of the system evolve with true parameter 

values. Thus, besides the linear/nonlinear mismatch, we will introduce parameter 

uncertainty. 

In the constrained simulations shown in figure 6.14, the linear model is computed using 

nominal parameter values (the same that we used in chapter 3) but the equations of 

the nonlinear system are integrated with J = 3.2157 (i.e., the true value of the 

moment of inertia is half the nominal value) 0 

The controller parameters used in Case 2 are given by: 

Controller Parameters (figure 6.14) 

Q = diag([lO 10 1 1]) R=O S=O 

P=5 M=5 a= 0.9 

Umin= [-10 - 5] , Umax = [10 
i 

5] 

Figure 6.14 shows that even with this considerable parameter mismatch the linear 

model is a good approximation of the nonlinear dynamics especially for the output 

variables, </> and r. In this case, even with the sizeable constant parameter mismatch, 

and for our choice of controller parameters, it is still possible to drive the outputs to 

the setpoint exactly. 
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Figure 6.14: Robot: State and control responses in the constrained Case 2. 

6.4.5 Example 4: Fluid Catalytic Cracking Unit (FCCU) 

Transition 1: Step change from the OL unstable steady state to the OL 

stable steady state 

Case 1.1: No disturbances or uncertainty 

The parameters of the plant and the coordinates of the OL stable and unstable 

steady states are the same as used in chapter 3. 

The simulation results in the unconstrained case are shown in figure 6.15. 

The controller parameters used in Case 1.1 are: 
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Figure 6.15: FCCU: State and control responses in the unconstrained Case 1.1. 

Controller Parameters (figure 6.15) 

Q = diag([O 10-3 1 OJ) R = 0.1 Im S=O 

P=3 M=3 a= 0.9 

The sampling time is equal to T = 0.5 h. 

As we can see from figure 6.15, the use of local linear approximations of the 

original highly nonlinear FCC model for prediction and computation of the 

contractive constraint, does not at all compromise the performance obtained 

when there is no model/plant mismatch and the system operates in the stable 

regime (compare figures 6.15 and 3.15). 

The reason why we will not examine the influence of input constraints on the 

closed-loop response comes from the fact that the control effort is very small 
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because the weight on u in the objective function is non-zero (this is the same 

behavior which we observed in chapter 3). 

Case 1.2: Exponentially decaying disturbances 

Next we will examine what happens when the three other input (non-manipulated) 

variables, namely, Ta (air temperature), T1 (feed temperature) and Ft (feed 

rate), are subjected to exponentially decaying perturbations. These variables 

behave as in equation (6.138) and, for the present example, we have: d(t) := 

[Ta T1 Ft] and d88 is the vector of nominal values of these input variables. 

Here we will use a= [1 1 0.5] and b = 0.1. 

The simulations in the presence of these exponentially decaying disturbances in 

the operational variables are represented in figure 6.16. The disturbances are 

plotted against time in figure 6.17. 

The controller parameters used in Case 1.2 are: 

Controller Parameters (figure 6.16) 

Q = diag([O 10-3 1 OJ) R = 0.1 Im S=O 

P=5 M=3 o; = 0.9 

We notice that the contractive MPC controller is able to stabilize the system to 

the desired OL stable steady state as soon as the disturbances start to vanish. 

It is also clear that the linear model used in the prediction is a rather good 

approximation of the dynamics of the original system in this stable operating 

reg10n, especially once the perturbed input variables approach their nominal 

values. 

Case 1.3: Persistent disturbances 

If the perturbed variables do not settle to their nominal values, but rather, 

to values 5% larger, then we should expect to see offset in at least two of 
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Figure 6.16: FCCU: State and control responses in the unconstrained Case 1.2. 

the state variables. For the FCC, it turns out that the model equations are 

extremely sensitive to variations in these non-manipulated input variables and 

the resulting offset can be quite large, for a small deviation of these input 

variables with respect to their nominal values. 

Here we have chosen exponentially decaying disturbances on Ta, T1, Ft given 

by: 

d(t) = c + a e-bt 

where d(t) := [Ta(t) Ft(t)], c = 1.05 d88 (with d88 := [T;s 

(6.139) 

yss 
f 

being the steady state coordinates), b = 0.1 and a= [T;s TJ8 0.5F/8]. Thus, 

this disturbance behavior is very similar to what we illustrated in figure 6.17 
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Figure 6.17: Exponentially decaying disturbances used in the simulations shown in 
figure 6.16. 

except that a 5% error remains and the initial perturbation is slightly larger. 

The simulation results are shown in figure 6.18. 

The controller parameters used in Case 1.3 are the following: 

Controller Parameters (figure 6.18) 

Q = diag([O 10-3 1 OJ) R = 0.1 Im S=O 

0: = 0.91 p = 12 M=8 

Figure 6.18 reveals that the temperatures Trg and Trx (which are highly corre

lated to one another, as observed in [36]) are very sensitive to this persistent 

constant disturbance in the input non-manipulated variables and show consid

erable deviations from their steady state coordinates. The concentrations Csc 
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Figure 6.18: FCCU: State and control responses in the unconstrained Case 1.3. 

and Crg are much less sensitive and can in fact be brought to their steady state 

values in spite of the disturbance. 

We have tried to eliminate or just reduce the offset on Trx and Trg with different 

controller parameter choices. One of the possibilities was obviously to increase 

their corresponding weights in the objective function, but if this is done, the 

other two states (the concentrations Csc and Cr9 ) start showing offset and the 

improvement in the responses of the temperatures is very small. We have also 

tried using a weight P in the computation of the contractive constraint different 

from In, i.e., we weighted the temperatures with much smaller weights than the 

concentrations. This attempt did not award us much success either. 
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Transition 2: Step change from the OL stable steady state to the OL 

unstable steady state 

Case 2.1 

This is a much more challenging control problem, as we discussed in chapter 3. 

The simulation results are shown in figure 6.19. 

x 10-3 

0 I r 

11 Plant States (solid) 200 I 

11 Model States (dashed) / 

-0.5 I 

" 
t I ~ 

"' I ... u E--< 100 
-1 

-1.5 0 
0 -3 1 ? 3 4 0 1 
x10 Time (t) 

0 300 

2 3 4 
t 

'1 

--1 
/I 200 
'1 bll 

.... 
I I 

... 
u E--< 

I I 100 
-2 I 

J.__ ( 

0 
0 2 3 4 0 
x 10

5 t x 10
6 

2 3 4 
t 

5 

2 

" 0 C<I 
~ ~ 

0 

-5 
-2 

0 2 3 4 0 
t 

2 3 4 
t 

Figure 6.19: FCCU: State and control responses in the unconstrained Case 2.1. 

The controller parameters used in Case 2.1 are: 

Controller Parameters (figure 6.19) 

Q = diag([O 1 1 OJ) R = 10-3 Im S=O 

p = 15 M=lO a= 0.9 
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The sampling time used here is equal to T = 0.02 h. The reason why we needed 

to reduce the sampling time by a factor of 25 was due to the fact that local 

linear approximations do not represent very well the behavior of the highly 

ill-conditioned nonlinear model in the unstable operating regime. Therefore, 

we cannot afford to leave the linear model used in the computation of the 

contractive constraint open-loop for a very long period of time. In other words, 

we made the sampling time and the prediction horizon as small as possible 

within the region where feasibility can be guaranteed. Besides, we left a at a 

large value so as to be able to use as short an interval as possible for contraction 

of the "linear" states to occur and still retain feasibility. 

Once again, when the exact nonlinear model was used in the prediction (see 

chapter 3), the algorithm breaks down once the states are very near their 01 

unstable steady state coordinates. This means that a feasible solution cannot 

be found with the chosen control parameters in a close-neighborhood of the 01 

unstable steady state. 

We are able to drive both the temperatures in the reactor and in the regenerator 

to their steady state values (as one can see from figure 6.19) but the algorithm 

breaks (i.e., we cannot find a set of controller parameters which makes the 

optimization problem feasible from that point on) once the concentrations start 

approaching their coordinates at equilibrium. The control variables settle to 

the origin and show no offset. 

Case 2.2 

Simulations with a new set of control parameters are shown in figure 6.20. 

The sampling time used in this case is equal to T = 0.05 h. 

The controller parameters used in Case 2.2 are: 
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Figure 6.20: FCCU: State and control responses in the unconstrained Case 2.2. 

Controller Parameters (figure 6.20) 

Q = diag([O 10-3 1 OJ) R = 0.1 Im S=O 

P=3 M=3 a= 0.9 

Here, the code does not break down and, as we can see from figure 6.20, both 

the temperatures in the reactor and in the regenerator are brought to the origin. 

However, the concentrations Csc and Crg cannot be stabilized. This is mostly 

due to the fact that the state variables are of very different order of magnitude, 

so appropriate weighting in the contractive constraint (especially) and in the 

objective function has to be observed. Besides, since the system has only two 

manipulated variables and four states and the temperatures are so highly cor

related, it is natural that, without appropriate weighting of the state variables, 
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the controller is only able to stabilize as many controlled variables as there are 

manipulated variables. Therefore, the contractive constraint is ineffective for 

the states Csc and Crg because of the difficulty in finding a proper weight P. 
Trying to scale the problem through weights in the objective function and in 

the contractive constraint was proven to be very challenging and we could not 

obtain a set of weights for which the results were completely satisfactory. 

6.4.6 Example 5: van der Vusse Reactor 

Here we will investigate the same control problem as in chapter 4, i.e., beginning 

at certain arbitrary initial conditions, we want to be able to control the system to 

the point of maximum conversion of product B. The initial condition used here is 

x0 = [-2 20 - 200] for the deviation of the states with respect to the coordinates of 

the steady state of maximum conversion, unless otherwise indicated. The sampling 

time is T = 0.1 h. 

Case 1: State feedback 

Case 1.1: No disturbances or uncertainty 

The results of the simulation in the constrained case are shown in figure 6.21. 

The controller parameters used in Case 1.1 are given by: 

Controller Parameters {figure 6.21) 

Q = diag([0.5 1 0.1]) R=O S=O 

P=2 M=2 a= 0.7 

Umin= 0 Umax = 0.5 I 
i 

Figure 6.21 reveals that the states settle to the origin very quickly (in ap

proximately two samples) even in the presence of tight input constraints. The 
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Figure 6.21: van der Vusse CSTR: State and control responses in the constrained 
Case 1.1. 

temperature in the reactor () has very fast dynamics and it settles to its steady 

state value in only one sampling time. 

Case 1.2: Parameter uncertainty 

The set of uncertain parameters is composed of k 10 , k20 , k30 (kinetic constants 

or collision factors), AR (surface of the cooling jacket) and kw (heat transfer 

coefficient for the cooling jacket). These parameters are commonly unknown 

in true experimental set-ups of reactor systems. In the present simulations, 

we consider that the true parameter values are 10% larger than their nominal 

counterparts. 

The simulation for the unconstrained case can be found in figure 6.22. 
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Figure 6.22: van der Vusse CSTR: State and control responses in the unconstrained 
Case 1.2. 

The controller parameters used in Case 1.2 are: 

Controller Parameters (figure 6.22) 

Q = diag([0.5 1 0.1]) R=O S=O 

P=2 M=2 a= 0.9 

We notice from figure 6.22 that the first state variable, CA, shows an offset with 

respect to its value at the steady state of maximum yield due to the parameter 

mismatch. The other variables, however, are not sensitive to this parameter 

uncertainty. 
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Case 1.3: Exponentially decaying disturbances 

The perturbed variables are C Ao (concentration of reactant A in the feed) and 

00 (inflow temperature) which are non-manipulated input variables. The dis

turbance behavior is as described by equation 6.138 but now d(t) := [C Ao 00] 

and d88 represents the vector of nominal values of these input variables. Now 

a = [1 1] and b = 0.1. Thus, initially, due to some perturbation in the feed 

stream, C Ao and 00 increase to twice their values at the desired steady state 

and then they decrease exponentially to their nominal values. The constrained 

response under these disturbances is shown in figure 6.23. The disturbance 

behavior is also illustrated in figure 6.23. 
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Figure 6.23: van der Vusse CSTR: State and control responses in the constrained 
Case 1.3. 
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The controller parameters used in Case 1.3 are: 

Controller Parameters (figure 6.23) 

Q = diag([0.5 1 0.1]) R=O S=O 

p = 12 M=8 a= 0.9 

Umin= 0 Umax = 1 

Figure 6.23 shows that, since the states of the linear model are not affected by 

the disturbances, except every twelve steps when they are updated with the 

states of the plant, the model shows this behavior of "pushing" the nonlinear 

system towards the origin. This effect is felt more strongly in the first state, 

CA. Once again, the temperature, e, approaches the origin in only one time 

step. 

The presence of these long lasting disturbances delay the response quite signifi

cantly compared to the response under no disturbances (look at the time scales 

in figure 6.23 and compare them with the ones in 6.21). 

Case 1.4: Exponentially decaying disturbances (reactor operating initially 

at the desired steady state) 

If the system is initially operating at the steady state of maximum conversion 

and the feed stream is perturbed as previously described (i.e., C Ao and 00 have 

their values doubled at t = 0 and decay exponentially to their nominal values 

in the fashion shown in figure 6.23), the constrained closed-loop response is 

illustrated in figure 6.24" 

The controller parameters used in Case 1.4 are the same as in Case 1.3. 

As we notice from figure 6.24, the contractive MPC controller is able to re

stabilize the system back to the desired steady state as soon as the disturbances 

start to subside. The three states have approximately the same response time 

(opposite to what happens in the step change from a different initial condition, 
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Figure 6.24: van der Vusse CSTR: State and control responses in the constrained 
Case 1.4. 

where the dynamics of the temperature are always much faster than those of 

the concentrations of A and B in the reactor). 

Case 2: Output feedback 

Finally, we will analyze the closed-loop response to the step change in the states from 

x0 = [-2 20 - 200) to the origin. The least-squares moving horizon-based state 

estimator proposed in chapter 5 is used to provide state estimates, in the presence of 

asymptotically decaying random noise. CB is the only (noisy) output variable. 

The closed-loop response in the presence of input constraints is illustrated in figure 

6.25. The dynamic and output noises are also plotted in figure 6.25. 



Figure 6.25: van der Vusse CSTR: State and control responses in the constrained 
Case 2. 

The controller/ estimator parameters and initial conditions used in Case 2 are: 

Controller and Estimator Parameters (figure 6.25) 

Q = diag([0.5 1 0.1]) R = 0.01 S=O 

P= 20 lvl = 14 a= 0.9 

Umin= 0 Umax = 1 

m= 21 P1 = 10-3 In R- 1 =10 Ip 

Initial Conditions 

Plant: CAo = -2 CBo = 20 Bo= -200 

Model/Observer: CAo = -1.5 CBo = 15 tJo = -150 
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As we see from figures 6.25 the closed-loop system is stabilized to the origin and 

the estimator provides asymptotically convergent estimates. Notice that CA is more 

sensitive to the dynamic noise than CB and () (which is not at all sensitive to the 

noise or initial state estimation error). 
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