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Abstract

A weakly nonlinear and weakly dispersive oceanic internal long wave (ILW)
model, in analogy with the generalized Boussinesq’s (gB) model, is developed to
investigate generation and propagation of internal waves (IWs) in a system of
two-layer fluids. The ILW model can be further derived to give a bidirectional
ILW model for facilitating calculations of head-on collisions of nonlinear internal
solitary waves (ISWs). The important nonlinear features, such as phase shift of
ISWs resulting from nonlinear collision encounters, are presented. The nonlinear
processes of reflection and transmission of waves in channels with a slowly varying
bottom are studied.

The terminal effects of IWs running up submerged sloping seabed are stud-
ied by the ILW model in considerable detail. Explicit solution of the nonlinear
equations are obtained for several classes of wave forms, which are taken as the
inner solutions and matched, when necessary for achieving uniformly valid results,
with the outer solution based on linear theory for the outer region with waves in
deep water. Based on the nonlinear analytic solution, two kinds of initial run-up
problems can be solved analytically, and the breaking criteria and run-up law for
IWs are obtained. The run-up of ISWs along the uniform beach is simulated by
numerial computations using a moving boundary technique. The numerical re-
sults based on the ILW model are found in good agreement with the run-up law
of ISWs when the amplitudes of the ISWs are small.

The ILW model differs from the corresponding KdV model in admitting bidi-
rectional waves simultaneously and conserving mass. This model is applied to
analyze the so-called critical depth problem of ISWs propagating across a critical
station at which the depths of the two fluid layers are about equal so as to give rise
to a critical point of the KdV equation. As the critical point is passed, the KdV
model may predict a new upward facing ISW relative to a local mean interface is
about to emerge from the effects of disintegrating original downward ISW. This
phenomenon has never been observed in our laboratory. Numerical results are pre-
sented based on the present ILW model for ISWs climbing up a curved shelf and
a sloping plane seabed. It is shown that in the transcritical region, the behaviour
of the ISWs predicted by the ILW model depends on the relative importance of
two dimensionless parameters, s,,, the order of ISW wave slope, and s, the beach
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slope. For s >> s, the wave profile of ISWs exhibits a smooth transition across
the transcritical region; for s << s,,, ISWs emerge with an oscillatory tail after
passing across the critical point. Numerical simulations based on the ILW model
are found in good agreement with laboratary observations.

Finally, conclusions are drawn from the results obtained in the present study
based on the ILW model.
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Chapter 1

Introduction

The physical and geophysical processes taking place in coastal waters gen-
erally involve ocean waves, internal waves, currents, vortical eddies, turbulent
diffusion of material and momentum, in varying degree under effects of bottom
topography. These various related phenomena, are of fundamental interest to sci-
ence, engineering and environmental development. The natural forces that gener-
ate internal gravity waves (IW) propagating along pycnoclines in the ocean seems
ubiquitous globally in different parts of the oceans (Ostrovsky and Stepanyants
1989). The internal waves (IWs), a huge but little known subsurface disturbance,
could affect oil exploration and production in the coastal ocean. Various possible
mechanisms underlying generation of internal wave have been proposed to in-
clude tidal forcing, atmospheric pressure and wind stress fluctuations and various
types of hydrodynamic instability of vortical oceanic motions. Since the advent
of the space technology of synthetic aperture radar (SAR), the presence of inter-
nal waves underneath the well-mixed ocean top layer can be detected from their
superficial signature (Fu and Holt 1982). In scale, IWs span a range from the
giant scale of generation, with wave length of order O(10km), cascading down

through a mesoscale band to small scale of order O(10m) and finally evanescing
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at the turbulent dissipation scale of order O(cm) range (Muller, D’Ascaro and
Holloway 1991). Giant internal solitary waves (ISW) have been observed from
space satellites to occur in groups of five to over ten waves, with their height
measuring up to 200m, wavelength reaching about 10km, and with their crests
spanning straight laterally to 150km. These near-surface internal waves of various
scales are thought to be generated mainly through the interaction of tidal currents
and abrupt changes in topographic features (Fu and Holt 1982). However, many
important questions remain to be answered.

Two-layer fluid systems with a discontinuity in density is the simplest model
to provide a qualitative description of the behaviour of IWs in typical thermocline.
The potential water-wave theory is widely used to introduce many kinds of math-
ematical models for IWs. The usual approach for describing long IW evolution
in coastal regions has employed Korteweg-de Vries (KdV) theory. The existence
of a class of nonlinear waves of permanent form for a two-fluid system has been
investigated by Long (1956) for a two-fluid system, by Benjamin (1966) for a
shallow-water system, by Benjamin (1967) and Ono (1975) for deep water, and
by Kubota, Ko & Dobbs (1978) in stratified fluids of finite depth. Joseph (1977)
found the exact stationary wave solution to the Whitham equation (1967) in a two-
layer fluid of finite depth. Segur and Hammack (1982) examined the KdV-type
theories (Joseph 1977, and Kubota, Ko & Dobbs 1978) experimentally by compar-
ing measured and predicted soliton shapes. Koop & Butler (1981) found that the
quantitative differences between the rigid-lid and free-surface boundary analyses
of weakly nonlinear IWs is not large for conditions typical of their experimen-
tal configuration, in which the ratio of typical wave length and the upper-layer
depth is about 10. Zhu (1986) found that the forced KdV equation he devel-
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oped for modeling two-layer flows predicts the existence of upstream-advancing
waves produced under forcing near resonance, with resulting wave characteris-
tics in broad agreement with experiment. In two-layer systems, according to the
KdV-type model equation, the ISW is a wave of elevation (or depression) accord-
ing as p1h?/p2h% > 1 (or < 1), where h; and hy are the depths of the upper
and lower layers with densities p; and p3, respectively. As the incident wave of
depression propagates from a region of deeper lower layer up a slope to a body of
water of increasingly shallower depths, it will encounter a critical point (or sta-
tion) where p;h? = pyh3, past which it enters a region where a wave of elevation
is a natural result if locally generated. Kaup and Newell (1978) suggested that
the ISW of depression could reverse its polarity on passing through the critical
point. Knickerbocker and Newell (1980) have shown numerically that such a re-
versal is possible based on a KdV-type model equation with variable coefficient
representing the depth change. Helfrich, Melville & Miles (1984) have shown that
after crossing a critical point the incident wave scatters into a packet of oscilla-
tory waves from which one or more ISWs of elevation emerge according to their
numerical solutions of an extended KdV equation which is generalized to admit
variable depths with only one higher-order term to account for this critical-point
geometry. In laboratory experiments, Kao, Pan and Renouard (1985) studied the
propagation of ISWs in a two-layer system over a sloping shelf topography. The
upper layer is everywhere shallower than the lower layer so that solitary waves of
depression can supposedly exist throughout the whole region. They found that as
an ISW moves up the slope, its rear face steepens without change in polarity. In
contrast to Kao et al. (1985), Helfrich and Melville (1986) presented the experi-

mental and theoretical study of propagation and stability of ISWs over a sloping
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shelf topography where a critical point exists. They found that the KdV-type
model equation, including terms representing the effects of nonlinearity, dissipa-
tion and varying bottom topography, gave a very good agreement between theory
and experiment.

One successful mathematical model is the generalized Boussinesq model (gB)
established by Wu (1981) to evaluate oceanographical generation and evolution of
weakly nonlinear and weakly dispersive long waves on coastal waters. Its validity
has been first verified experimentally by Lee, Yates & Wu (1989). Teng (1990)
developed a generalized channel Boussinesq model (geB) to investigate generation
and propagation of nonlinear long waves in water channels with arbitrary cross sec-
tion and with moving disturbances as external forcings. Zhu (1986) extended the
gB model to derive a two-layer model of the Boussinesq type to evaluate internal
solitons generated by moving disturbances. Wang, Wu & Yates (1992) predicted
the scattering and propagation of three-dimensional long waves in shallow water
by using the generalized Boussinesq (gB) two-equation model. Wu (1994) ob-
tained a bidirectional long-wave model using a multiple scale method and found
solutions describing detailed transient evolution of head-on collisions of solitary
waves, leaving permanent phase shifts of waves as the only mark of having en-
dured the nonlinear encounter. The phase shifts are known to never arise in linear
systems. This interesting feature may indeed hold the key to exposing the basic
mechanism underlying such remarkable phenomena of nonlinear wave interaction
as the periodic recurrence of initial states that has been discovered by Zabusky
and Kruskal (1965) for the KdV-class of solitary waves. Recent numerical and
experimental studies on nonlinear water waves in coastal waters have been made

based on the gB model (Lee 1985, Zhu 1986, Teng 1990, Wang 1992, Wu 1994).
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The problem of run-up of oceanic water waves has been studied by several
authors (Dressler 1958, Carrier & Greenspan 1958, Tuck & Hwang 1972, Spielvogel
1975, Zelt 1986, Zelt & Raichlen 1991). Carrier and Greenspan (1958) obtained
the classic solutions to the (coupled) nonlinear shallow-water equations for wave
run-up on plane beach by adopting the method of hodograph transformations.
Tuck and Hwang (1972) used another interesting transformation to render the
nonlinear equations linear. Spielvogel (1975) reexplored the same result after Tuck
and Hwang (1972). Zelt (1986) and Zelt & Raichlen (1991) investigated the run-up
of nonbreaking and breaking solitary waves on plane impermeable beaches with
a Lagrangian finite-element Boussinesq wave model. However, the run-up of IWs
has been little known. The terminal effects of internal waves on coastal waters,
with such possible hazards as the so-called undersea tsunamis (Wu & Lin 1994),
are known to have inflicted upon the Chesapeake Bay in early 1960’s to yield an
abrupt anoxic condition coupled with a marked decline in marine production from
its previous rich level. It took the five-year three-state U.S. Congress Chesapeake
Bay Program (1983) to ascertain the strong activities of the incident internal
waves to be primarily responsible for causing a strong impact on physical mixing
of nutrients in, and biochemical degradation of, the bay water.

The primary interest of the present study carried out in this thesis is to inves-
tigate the following problems with the objectives of (A) establishing a theoretical
model, called the “Internal Long Wave model” (ILW), for evaluating nonlinear
IWs, in analogy with the gB model for oceanic water waves in coastal regions;
(B) examining typical terminal effects of nonlinear internal waves running up
submerged sloping seabed; and (C) predicting the nonlinear propagation and evo-

lution of ISWs across a critical point existing in a typical coastal area.
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In this study, we formulate the generation and propagation of oceanic non-
linear internal long waves (IWs) in a two-layer system consisting of two mutually
immiscible fluids having different specific gravities with a rigid-lid assumption,
based on the gB and the generalized channel Boussinesq (gcB) models introduced
by Wu (1981) and Teng & Wu (1990). The ILW model will be further devel-
oped here to give a bidirectional model for facilitating calculations of head-on
interactions of nonlinear internal solitary waves (ISWs). The important nonlinear
features, such as phase shifts of ISWs resulting from nonlinear collision encounters,
are presented in Chapter 2. In Chapter 3, we apply the model equations to the
case of two-dimensional oceanic internal waves on a submerged seabed of uniform
slope, a case for which accurate solutions are amenable to the nonlinear model
equations. The nonlinear geophysical phenomenon of run-up of IWs is thereby
studied in considerable detail. Explicit solutions of the nonlinear equations are
obtained for several classes of wave forms, which are taken as the inner solutions
and matched, when necessary for achieving uniformly valid results, with the outer
solution based on linear theory for the outer region with waves in deep water.
Based on the nonlinear analytic solution, two kinds of initial run-up problems
can be solved analytically, and the breaking criteria and run-up law for IWs are
obtained. The run-up of ISWs along the uniform beach is simulated by numerial
computations using a moving boundary technique. In Chapter 4, we apply the
ILW model to numerically simulate the evolution of an internal solitary wave ini-
tially downward polarized into a deeper lower layer as it passes across a critical
point from a subcritical layer to a supercritical layer. A predictor-corrector two-
step numerical procedure with the moving boundary conditions at the interfacial

waterline is developed to solve the ILW model for nonlinear evolution of waves in
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coastal zone. The computational results from the ILW model are also compared

with the lab observation performed by Helfrich & Melville (1986). In Chapter 5,

conclusions are drawn from the results obtained in the present study based on the

ILW model.



Chapter 2

Theory of Generation and Prop-
agation of Oceanic Internal Long
Waves

To describe generation and propagation of oceanic internal waves (IWs) in the
coastal ocean, weakly nonlinear long internal waves in channels of varying depths
are first considered, and an internal long wave model (ILW) for a two-layer fluid
system is derived from the Euler equations. This model is further developed to
give a bidirectional internal long wave model for evaluating waves propagating in
both directions in a channel of rectangular cross-section, which is applied to study

the nonlinear processes of reflection and transmission of waves in the channel.
2.1 The Internal Long Wave Model

To facilitate evaluation of the general properties of internal waves propagating
in coastal waters and their interaction with each other and with a fixed sloping
sea floor, we introduce the following model for describing typical baroclinic wave
modes. We consider the motion of three-dimensional internal waves in a channel
of gradually varying cross-sectional shape in two horizontal dimensions z,y with

the vertical dimension z (see Fig. 2.1). The density stratification of the sea water
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is represented by a piecewise homogeneous two-layer distribution, of density p,
in the top layer of depth h; = const. and density p in the lower layer of depth
ha(z,y), with variations in |Vhy|/hs taken to be small. The fluid is assumed
inviscid and incompressible, with dp;/dt = 0 and dpz/dt = 0, where d/dt
signifies the material differentiation. To simplify the analysis involved, the top
water surface is assumed to have negligible elevations for the internal wave (IW)
mode so that the top free surface may be regarded as remaining undisturbed or
being replaced by a “rigid lid” at which the vertical fluid velocity vanishes. Thus
for this IW model, the only free boundary is the interface between the two layers
of fluid, with its vertical displacement denoted by 2 = ((z,y,t), taken positive
above the unperturbed interface at 2 = 0. For simplicity, the channel is taken to
be symmetric about the mid-channel z — z plane. The interface extends to the
channel banks at y = +b(z,t). The rigid lid assumption has been found quite
accurate for modeling the IW-mode provided the top layer is sufficiently thick
compared with typical wave amplitude; it has been shown by Koop & Butler (1981)
and Zhu (1986) to remain valid with a high degree of accuracy in comparison with
laboratory experiment. For numerical modeling, the fast barotropic modes may
appear as a “computational noise” which has to be filtered out by employing a
“rigid-lid” condition at the top surface (Glazman 1995).

For an inviscid and incompressible flow, the velocity vector U;(= (u;, v;, w;))
and the pressure field p; in the top (i = 1) and lower (i = 2) layers satisfy the

Euler equation and the continuity equation, respectively, for each layer,

V.-U; =0, (i=1,2) (2.1a)

oU; 1 .
ot +U;-VU; = —sze,, (i=1,2) (2.1b)
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where the excess pressures p.; = p; + pigz, g being the gravitational acceleration
constant. The boundary conditions, with the surface tension effects neglected,
are (i) the kinematic boundary condition at the interface invoking that the fluid

particles, once situation on the interface, will remain on it:

wi = % = (¢ + uile + viCy, z = C(CB, y’t)a !yl < b(.’l!,t), (7' = 1’2); (2-2)

(i) the dynamic boundary condition at the interface:
p=p2, z2=((z,y1t), [y <bz1); (2.3)
(iil) the rigid-lid boundary condition at the top surface:
wy =0, z = hy; (2.4)
(iv) the kinematic condition at the bottom:
dha

Wy = ——('i-{' = —(Uzhzz + ’Uzhzy), z = _h'2($ay); and (25)

(v) the kinematic condition at the side walls:

vi = (b +uiby),  y=+b(z,t), (i=1,2). (2.6)

Irrotational motion is assumed so that the velocity vector U; = V¢;(i = 1,2),

where the velocity potential ¢; satisfies the Laplace and the Bernoulli equations

Vig, =0, (i=1,2), (2.7a)

1 i i )
bie + 5(Vei)? + % +gz=T2 (i=1,2), (2.7b)

i f
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where p;oo(f = 1,2) are the constant reference pressures. We define a section-

mean quantity as

Filz,t) = / / filmy, 2, t)dydz, (i =1,2), (2.8)

where A;(7 = 1,2) is the wetted cross-sectional area in the top and lower layers,
respectively. To evaluate the section mean value of the material rate of change of
any flow quantity f; = fi(z,y,2,t)(i = 1,2), the transport theorem (Wu 1981,
Teng 1990) is used; that is

df;

Adt

(A fz) m(Aiu_fi)’ (Z = 1’ 2)' (29)

By taking f; = 1, we obtain the following continuity equations for channel section

as

9 4,
Bt
where A;(z,t) = Ao1 — Ac(:c,t) and Aj(z,t) = Ag2(z) + A¢(z,t), Ao is the

(A W) =0, (i=12), (2.10)

unperturbed wetted area in the top (¢ = 1) and lower (i = 2) layers, respectively,
and A¢ is the area variation due to wave elevation at the interface. In terms of

the sectional interface mean of (, we have
t=timt [ oa (211)
Therefore, equation (2.10) becomes
—(26¢)s + [(Ao1 — 2b¢)TT], = O, (2.12)

(26C)¢ + [(Aoz + 2b0)73], = 0. (2.13)

Equations (2.12) and (2.13) are exact equations which represent the mass conser-

vation in two different non-mixing layers, respectively. In regard to the derivations
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of the Bousinesq-class equations, there are several versions. If the section-mean
velocities in Egs. (2.12) and (2.13) are replaced by the axial velocity at the bottom
(see Goring 1979) or at the interface (see Whitham 1976) or at an arbitray depth
(see Madsen & Sorensen 1991), Eqgs. (2.12) and (2.13) will include appropriate
dispersive terms (of third order in x-derivative of the velocity) on the right sides
so that the mass conservation law appears in different forms of expansions.

For systematically describing irrotational long waves, we introduce the fol-

lowing nondimensional variables

« _ T, Xk sk LK, Ik _(yﬂz’z’hi’b), *_Ai, *_cot,
z ‘_/\a (y ,zaC7hi7b)— ho ’ Ai—AO, = A’
* ok kY (uﬂ’aw). * __ ¢ . * k) (pi,pa)
(u sV, W )““ Co 3 ¢ - Co/\’ (pi’pa) - pigho 3 (214)

where * indicates a dimensionless variable, X is a characteristic wavelength at the
interface, h, is a constant representative total depth, and ¢, = +/gh, a typical
wave speed. Long waves are characterized by two important parameters:

a h,

- 2.15
ho A’ (2.15)
where a is a representative internal wave amplitude. We are interested in weakly
nonlinear, weakly dispersive wave motions. For the Boussinesq family of wave
motion, the Ursell number, i.e., Ur = a/€?, is the order O(1), i.e.,, a = O(€?).

Immediately omitting *, we obtain from Eq. (2.7) the following dimensionless

equations:

1 1 .
¢imz + 6_2¢iyy + 6_2¢izz =0, (7' =1, 2)’ (216)

1 1 1 .
D + ¢it + §(¢iz2 + 6_2¢iy2 + E‘2”¢iz2) +z= Oa (7' = 1’ 2)7 (217)
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and the boundary conditions from Eqs. (2.2)-(2.6) become

p1P1 = p2p2, at z = ((x,y,t),

¢$1: =0, at z=h,

¢1z = -62[¢2zh22 + ¢2yh2y], at zZ = _'hZ,
biy = €2 (by + Pizbs), at  y==b(x,t), (i=1,2),
¢iz = GZ[Ct + ¢zz<m + ¢iny]a at z= C7 (1 = 13 2)

We assume that A;,(z) = O(1),b; = O(e), and hag, b, = O(1), then u;

(2.18)

(2.19)
(2.20)
(2.21)
(2.22)

O(a),

vi, w; = O(ae). Hence, ¢ip = O(a), ¢iy, iz = O(ae?). According to the

above equations and boundary conditions, we obtain perturbation expansions in

the form

¢: = offi(z,t) + 8P (z,y,2,8) + O(Y)], (i =1,2),

¢ = afCo(z,t) + E41(z, y,t) + O(e)].

Upon substituting Eq. (2.23) in Eq. (2.16), we have, to the order O(e?),

83 + 802 = —fioe, (i=1,2),

Yy 12z

and from Egs. (2.19)-(2.22) the boundary conditions
®® =0, at z=h;,

@52:) = _f2:1:h'2:1:a at z= _hz’
By = £(be+ fizbs), at y=1b(x,t),

®2) = £(b; + facbs), at y=Eb(x,t).

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
(2.28)

(2.29)
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In order to determine ®5(z,y, 2,t), we need to solve a Neumann problem with
a unique solution since the solvability condition is fulfilled when the condition on
the normal derivative 0¢/0n along the boundary is altogether considered (Teng &
Wu 1992). Along this approach, we may first solve the problem for a rectangular
channel with a slowly varying cross-sectional shape. For other geometrical shapes,
the model equations may be treated later by adopting a shape factor similarity
technique just as Teng and Wu did (1992). For the first case of varying rectangular

channel, we assume
1
o2 = —5% fiza + Ki(@,)(y* — 2°) + Gi(z, )2 + Fi(z,t), (i=1,2), (2.30)

where K;(z,t), Gi(z,t)and F;(z,t) are arbitrary functions of z and ¢, which

can be determined from Egs. (2.26)—(2.29), yielding

G1(z,t) = 2h1 K1(z,t) + hi fize, (2.31)
Ki(z,t) = 'él})‘(bt + f1zbz), (2.32)
Ga(z,t) = —(2h2 K2 + fazhaz + ha f2zz), (2.33)
Ka(z,t) = ‘é%(bt + fazbs)- (2.34)

Similarly, upon applying the recursion relation, which simply follows from Eq.
(2.16) to the expansion (2.23), we can obtain higher-order terms in the expansion
of ¢; in Eq. (2.23), all of which can be expressed in terms of the two unknown
functions f;(z,t) and fa(z,t), for each layer respectively.

In the following, in consistency with Eqgs. (2.12) and (2.13), we apply the
section-mean operation to the Bernoulli equations (2.17). To the order O(ce?),

we find the following differences between the correponding quantities,

—_— 1 1 1
b1t — (f1)e = aez[gflmzth% — =K;(b*): + 3

1
3 Ky4h3 — 5Guhl] + O(ce*), (2.35)
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For—(F2)e = 0[5 (fasahB)e— 5 Ko (P)ert 3 (Koot 5 (Gaha )1+ 0(ct), (2:36)
(V¢i)2 - (‘7E)2 = 0(064), (1' =1, 2) (237)

After substituting the section-mean value of Eq. (2.17) into Eq. (2.18), in physical

coordinates, we get
0, — —, 1o —\2 ~ x
gt‘(P¢1 — ¢2) + E[P(V%) — (Vo) ]+ (p—1) =
oo 1 s 1 o 1. o, 1
1673 p[-'éflzzthl + §K1(b )t — §K1th1 + 'Z‘Glth1]+

1 1 1 1
afz[g(fzmhg)t - §K2(bz)t + §(K2h§)t + §(G2h2)t] + O(ae?), (2.38)

where p = p;/p2. For uniform rectangular channels, b = const and all quantities

are independent of y, then Eq. (2.38) reduces to
O o o 1 g T\2 ~ x
= (581 — F2) + SV~ (VE) ]+ (5~ 1) =

1 5 — 1 — 1 —
[2B25P100e — =(R3P200) — 5 (h2od2gha)e] + O(ae?). (2.39)
3 3 2

Finally, for the case of rectangular channels with b, hs, = O(a), and b; = 0, the

ILW model for slowing varying channels may be written as (omitting the overbars)
[b(h1 = Ol + [b(h1 = () ¢12]e = O, (2.40)

[b(h2 + Q)¢ + [b(h2 + () 2z)e = 0, (2.41)
ﬁ¢1t - ¢2t + %(ﬁ‘tb%m - d’%m) + (ﬁ - 1)C = %K'lh%ﬁqslxzt - %52h5¢2mzta (242)

where ki, kg are the channel-shape factors determined solely by the geometrical
shape of channel section, with «;(i = 1,2) = 1 for rectangular channels as a

standard reference. For other channel shapes, the value of x5 can be determined
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in a manner similar to the single layer calculation by Teng & Wu (1992). In
general, we may take k; = 1. Different from the gcB model (Teng & Wu 1992),
we do not yet have general transformation (Wu 1994) to transform the model
equations (2.40)-(2.42) for waves on a two-layer fluid in a uniform channel of

arbitrary shape into the basic case of rectangular channels.

2.2 The Bidirectional Channel Model
— for nonlinear IWs in two-layer fluids

2.2.1 Derivation

In this section, we shall first investigate the special case of a rectangular
channel of uniform width and slowly varying depth of the lower layer of water, in
which &; = 1(: = 1,2) is taken. Letting hy = ¢%, ha(z) =C2, r=p—1,
and eliminating ( between Eqs. (2.40)-(2.42) by substituting Eq. (2.42) for ¢
into Egs. (2.40) and (2.41), and neglecting the terms of order higher than the two

leading orders, we have two coupled equations for ¢; and ¢, as follows:
- 1,5, 1
p¢1tt - ¢2tt + rc%(blmm = —rchﬁlz(log bcl)a: + ['?:h?qulzztt - §h§¢2xmtt+

%(qsgm)t - ﬁ(d’%z)t + ¢lz¢22t + ¢1zz¢2t - ﬁ¢1xz¢1t] + h-"'»t-, (243&)

. 1 1 5.
b2t — PP12t + 7C2(Capaz)e = —TCr 2 (log bCa)s + =hidoszte — =h2pd1zaet+
3 3

1. ~ .
§p(¢?z)t — (#30)¢ + Pb2cProt + Pbrtd2ee — Bazatbae + hort. (2.43b)

In order to derive the bidirectional model, we adopt the multiple scale expan-

sion in terms of the new variables,

dx

7'--——0!3/2 444
C’(:c)]’ t (2.44a)

ne =o't
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with corresponding expansions

¢i = oM (. no; ) + 0 (g, mos )+, (2.44b)
(=a(lo+aly+-), (2.44c)

b(z) = b, + aby + - -, (2.44d)

Ca(z) = c2 + aca(z) +- -, (2.44€)

C(z) = c+ acor(z) + - - -, (2.44f)

where c is the phase speed of the baroclinic slow-mode IWs motion satisfying the

equation

ﬁ(£)2+(_c-)2+'r=0, r =ﬁ—1. (2449)
(4] C2

The corresponding differential operators are

Oy = a0y +0_)+ ad;], By = (8- —8y), (2.45a)
d d d
8+ = 5?—7:', B_ = %:, 31- = E (245b)

Hence, to the first order, Egs. (2.43a,b) and (2.42) yield the following equations:
0(@*?): (84 +0-Y (50" — #") +7(S)H(0- = 8, )°¢{) =0,  (2.46a)

O@@?): (04 +0-P (8 = p#”) +r(2)(0- ~ 0, PP =0, (2.460)
O(a): (84 +8_)(F\ — ¢{) +r¢, = 0. (2.46¢)

Combining Egs. (2.46a,b,c), we find for (, the equation

8,0_(, =0, (2.47a)
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and the general solution of the form

Co = C+ (77+; T) + C— (77—; T), (2'47b)

which composes a right-going and a left-going wave independently. Their interac-

tion can be sought by solving the next order equations. To the second order, Eqgs.

(2.43a,b)(2.42) give
O(@/?): (04 +0-)(pt{" - #7) + r(Z)2(0- - 0,)%{" =

—r()[(0- — 0:)6{”1(0- ~ 04 )(ogber) + 55(0% — D22 (ph3GL — W)+
52 (04 + (0=~ 00)¢7P — L0, +0.)[(0- — 2,)8 P+
10~ 3,862 — 0] + (0= — 242424 + 0_)6)-

%{(6 — 042N + 04)(7] — 2(04 +0-)8-(5{” — #%?),  (2.480)

0(a¥?): (04 +0-)(¢" — ") + r(Z2)2(0- — 04)%{" =

(Y [(0- — 04)9)(0- — 1) log bes) + 7z (8% — 822 (3447 — ph3p()+
L0y + [0 — 0)¢7F — (04 +0)[(0- — 8,9 P+
Ll0- ~ 0,052 — 83)67) + ;’é[(a_ ~ 0,704 + 0)6)-
S0 = 0,260 +8,)8) — 204 + )0 (47 — 04?),  (2.480)

0@?): (04 +0 )" ~40) 47t = 0, (97~ 98~ Lrl(6- — 0, )¢ P+
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1 o, L 2 (o o
(0= = 04)60 + =5 (04 + 0_)(0- — 8,2 (h34(” — h2e{Y).  (2.480)

Assuming the flow at z = oo to be regular, i.e.,
U, Ug, Uz, (,(z — 0, sufficiently fast as |z| — oo, (2.49)

and using Eq. (2.47b), we obtain from Egs. (2.46a,b) the following relations:

(04 + 0-) (AL — #57) = —r(C_ + ¢4), (2.50a)
(0- = 21)8{” = () (-~ ¢, (2.500)
(0- = 00)8” = ~(2)(¢- ~ ), (2:500)
(0 + 0417 = () (G4 +¢-), (2.50d)
(0 +0)45” = () (G + ). (2.50¢)

By taking (£)25 x (2.47a) — (£)? x (2.47b), we obtain for (5¢{" — ¢{") the

equation
—48,0_(pp{" — ¢) = —2rd-(C_ + ¢4) + (= — (4)(0= — D4) log be—

D3¢ +33C4) + 504(2) + 5O-(C2) + BOCul— +0:0:(-),  (251a)

where

0 1 1 -
A= 3c2(cﬁ4 -%), B=—z4, D=(it+d). (2.51b)
1

2

The solvability condition that prevents (ﬁqﬁgl) - ¢>§1)) from growing linearly with
(4 or (_ requires that the secular terms on the right-hand side of (2.51a) must
vanish separately with respect to (4 and (_. In other words, the solvability

condition must obey the conservation laws and be consistant with uni-directional
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KdV equation when a right-going or a left-going wave is the only traveling wave.
Following the general principles enunciated by Wu (1994), we obtain a set of

equations as follows:
1 A 9
—2r0:Cy — (¢4 — (-)(0- — 04)log bc — §D3.3|.C+ +50+(C) =0, (2529)

—2r8, (- — ({4 — (_)(O- — B4) log bc — %—D@i -+ ga_(ci) =0, (2.52b)

—40,0_(p9{" — ) = —r (¢ — ¢4)(0- — B3) logbe + B(O_(4(— + 044 ).
(2.52¢)

Under the same principle as that established for the case of single layer of fluid
(Wu 1994), the separation (2.52a,b,c) is unique. Therefore, Eq. (2.47c) provides

for (; the equation

PG = —(0-+0,) (3"~ =0, (36 ~4P)~ B (¢ ~C4) +3 D( -+ 83C4).
(2.53)

From Eq. (2.50), we find for (4 the relation

Cx = —019u, (2.54a)

where r(¢4 +¢_) = ﬁ¢§°’ - g") , and we assume that for varying channels with

negligible convexity of the channel admittance (bc) (Wu 1994), namely
(be)ew << (b0)s,  Pu(logbe)s|73 = 0. (2.540)
Egs. (2.52a,b,c) yield the relation

—2r0;py = —2r(x /(log bc)gdx — %D@i{i + —g—(i, (2.55a,b)
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() =) = F WGt o)+ 57 +9) [(logbo).dat @4 (G)+-(C).
(2.55¢)

In general, we may choose the integration constant function ®4 as
142 L, 2
0+ = EDB:}:C:l: + ‘1"2‘A<:t7 (2.56)
then Eq. (2.53) reduces to the form of
B B 1
G = “'2—;C~C+ - E(¢+3zf— —$_0:(4) — 5((—- +(y) [ (logbc)odx.  (2.57¢)
In the physical coordinates, the Egs. (2.52a,b) for (4 are
1 1 1 5.3 1 9
(50 + 0:)Ce & 5(C — (- )(logbe) — = D03 + - A0,(¢2) = 0. (2.57a,b)

In the case of uniform channel admittance, bc = const, Egs. (2.57a,b) coincide
with that of Mei’s (1987). If § = 0, the result is the same as Wu’s (1994).

Therefore, the modelling equations in the physical coordinates (e = 1) are

(=C+(-+G

= [Crlat bst) 4 (o= ol — 5 [Gogbo)ada] — ¢ v, (258)

which says that a head-on collision between a right-going ISW and a left-going
ISW results in a phase shift in = by By_/4r for (4 and B, /4r for (_. The
phase shifts of two waves are both backward in space, i.e., both retarded in time
(as shown in Figure 2.2). These phase shifts are noted to never arise in the linear
theory. The final shifts vary with the wave amplitudes. The terminal phase shifts

appear to play an important role in processes of nonlinear wave interaction and
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evolution. For the uniform channels with flat bottoms, the phase shifts of head-on

collisions of two ISWs can be expressed in terms of the time (for fixed z) as
B B B
0y = Aty = :1—7—_[1/);(:12:*: = 0,t = 00) — Yx(z £ e 0,t = —00)]

B
= —azlz >0, (2.59)

where a, are nondimensional amplitudes of right-going and left-going waves,

respectively, and Ay = 1/8c2D/Aay. When j=0,h; = hy =1, we have

by = 1/-‘3§F-, (2.60)

which is the same as that of Wu’s theory (1995). The relations between phase
shifts and the depth ratio for head-on collision of two ISWs in the density ratio
are shown in Figure 2.3(a,b). For the head-on collision of two ISWs of elevation,
the phase shift increases as the depth ratio increases with a fixed density ratio; for
the head-on collision of two ISWs of depression, the phase shift has a maximum

value at a given depth ratio.

2.2.2 Validation and Discussion
The model equations (2.57a,b,c) are found to ensure invariance of excess mass

to second order; that is

+o00
o= me =2 [ da)(@tide = [b@)C- + ¢
= [lbelc- = ¢4 = D@20 - 026) + 22 = Do +0(), (2610)

which vanishes, leaving an error of O(c3). In addtion, we have for the energy

conservation the relation

B=g [+ s
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1

=2 (el = (3 + 15 (¢ = )+ DAL — B)leda +0(a¥), (261)

which also vanishes with an error of O(a3). For the momentum variation AL
when b = const, which is equal to the sum of the products of the excess mass
of the ISW (m4 = Atayx for (i) with their respective phase shift in z (for
fixed t) whichis Azy = FAty = +(B/2r)Azaz, we have

AL =miAzy + m_Az_ =0, (2.62)

where Ay = ?;‘—(D /axB), and a4 and a_ are the amplitudes for the right-going

‘—! waves, respectively.

‘+' and left-going

The ultimate definitive measure of accuracy of the bidirectional wave model
(2.57a,b,c) can be made by comparison with the numerical results based on the
ILW model (2.40)-(2.42). The agreement between the two models for constant
channel width, as shown in Figure 2.4, appears very good in terms of wave profiles
and phase shifts throughout the head-on collision. The head-on collision of two
ISWs of depression are solved numerically with the predictor-corrector two-step
procedure which will be discussed in Chapter 4. The depths of two layers are
hiy = 1.0 and hs = 2.0. The density ratio p =0.9.

In the model equations (2.57a,b), the linear terms :i:-;—((.,. —({-)(logbc), may
represent the forcing term to generate reflected waves in (2.57b) (or (2.57a)) when
there exists only right-going (or left-going) waves as incident waves. This model
tells us that there exist reflected waves as long as ¢, 7# 0. Besides, we found that
this kind of splitting form is unique under the conservation laws, and that Egs.

(2.40)-(2.42) are equivalent to the model equations exactly in the linear system.

If we take (4 and (_ as new variables, namely

=+, (2.63a)
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M = b — oo = L2 (64— C0), (2.630)

the linear system of Eqs. (2.40)-(2.42) without dispersion is found to agree with
the linearized model equations (2.57a,b) directly. These two kinds of linear sys-
tems provide the same numerical solution, shown in Figure 2.5, for a specific
initial wave climbing a cosine-shape shelf, which is shown in Figure 4.1. The re-
flected wave, which is about 1% of the transmitted wave, is exactly predicted by
Eq. (2.57b). The numerical computations are done by the Lax-Wendroff scheme.
The computational parameters for the results shown in Figure 4.1 are taken with

hi =1.0,hy = 1.5,a = —0.1, X, = 150, X; = 200,L = 20,d = 1.2, 5 = 0.85.
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Figures for Chaper 2
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(a) main view

Figure 2.1(a,b,c) The coordinate system of a channel with an arbitrary cross
section. The z coordinate varies along the channel. The undisturbed interface
is z = 0. The sides of the channel are specified by y = b(z). The depths of two
layers are h; and ho with densities p; and pa, respectively. A,; and A, are
unperturbed wetted areas in the top and lower regions, respectively. A is the

area variation due to wave motion at the interface.
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Figure 2.2 The space-time contour plot shows two ISWs of depression experience
backward phase shifts in space after their head-on collision. The parameters are

taken with h; = 1.0,y = 2.0,a; = —0.2,a5 = —0.5, 5 = 0.9.
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Figure 2.3 The relation between phase shifts § and depth ratio (h; /hz) for head-
on collisions of: (A) two ISWs of elevation (a = 0.1); (B) two ISWs of depression
(a = —0.1). The density ratios for each line are: 0 in line 1; 0.3 in line 2; 0.5 in

line 3; 0.99 in line 4; 0.5 in line 6; 0.9 in line 7.
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Figure 2.4 The comparison between Eq. (2.58) and the numerical result from

the ILW model for head-on collision of two ISWs of depression. The parameters

are taken with hy = 1.0, hy = 2.0,a; = —0.2,a2 = —0.5, 5 = 0.9. The phase shifts

are shown in Fig. 2.3. — from Eq. (2.58); ---- from the ILW model.
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Figure 2.5 The numerical solutions of two linear systems from Eqgs. (2.40)—(2.42)
with dispersive terms neglected and Eqgs. (2.57a,b) provide same transmitted
and reflected ISWs when an incident ISW of depression propagates on a cosine-
shaped bottom topography. The parameters shown in Fig. 4.1 are taken with
ay = —0.1,h; = 1.0,hy = 1.5,d = 1.2,z, = 150,z; = 200,L = 20,5 = 0.85. i:

incident wave; r: reflected wave; p: transmitted wave.



-32.-

Chapter 3

The Run-up of Oceanic Internal
Waves on the Sloping Seabeds

In this chapter, devoted in particular to the 2D case, we apply the ILW model
to study the nonlinear geophysical phenomenon of run-up of two-dimensional
oceanic internal waves on a submerged seabed of uniform slope. An internal-wave
run-up model is developed for nonlinear and nondispersive long waves propagating
along the interface of a two-layered inviscid fluid and incident upon the sloping

seabed.

3.1 The Theoretical Model

In the 2D case, the ILW model with the dispersive terms neglected may be

written as
(h1 = {)¢ + [(h1 — Qui]z = 0, (3.1)
(h2 + Q)¢ + [(h2 + QJua]s = 0, (3.2)
Uzt + Ugting + gelo = (urs + Urt1s), (3.3)

where the subscripts z and ¢ denote partial differentiation with respect to the

seaward z-axis and the time ¢, 5 = p1/p2, ge = (1—p)g, g being the gravitational
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acceleration, u; = uj(z,t) and wup = uy(z,t) are the depth-mean values of the
horizontal fluid velocities u;(z,y,t) and ua(z,y,t) in the upper and lower layers,
here with the overhead bar omitted. For the general case of two-dimensional non-
uniform sloping seabed (with slope varying with z), the above set of nonlinear
equations for the unknowns u;, ug, ( is very difficult to solve by analytical means,
even with the rigid-lid approximation. To help make resolution of this nonlinear

system more amenable, we shall assume the seabed to have a uniform slope,
hy = sz, h; =const, (0<x< 0) (3.4a)

ha = sz, h;=const+sx, (—h;/s<x<0), (3.4b)

where s is the slope of the seabed which intersects the undisturbed interface at
the origin and the upper (fixed) ocean surface at (—h;/s,h1) (see Figure 3.1). In

addition, we assume that the motion vanishes at infinity,

Ui, uz,{ >0 as x — +oo. (3.5)

3.2 Linear Theory

The system of equations (3.1)-(3.3) can be linearized by retaining only the

first order terms to give the following equations:
Gt — (hu1)z =0, (3.6a)

¢t + (hauz): =0, (3.7a)

Ugt + geCz = puit. (38a)
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Under condition (3.5), Egs. (3.6a) and (3.7a) can be integrated on z to give

h
hiuy + haug =0, Uy = —-}—LEUQ. (3.9)
1
Substituting (3.9) into (3.8a), we have
~h2
(1 + pE)UZt + geCx = 0. (310)

Eliminating u, between Eqgs. (3.7a) and (3.10), we get for ( the equation

G+ (202 ge’“ izl =0 (3.11)

which is the basic equation for the outer region of nonlinear equations (3.1)-(3.3)
for waves in deep water and also for the inner region of linear waves. The amplitude
of waves is assumed to be finite at z = 0. A periodic internal wave on a gradually

varying slope will have the form of
¢ = AJ,(2K /) sin wt, (3.12)

where A is a constant, K. = w/\/ge8, J, is the first kind Bessel function of
order zero, and w represents frequency. In the asymptotic limit of 2K./z >> 1,
Eq. (3.12) becomes

¢~ A;sin(wt + 2K/ — %) + A, sin(wt — 2K, /T + %), (3.13)
where
a4 _A L e i
A=A = 2(7rKe) e, (3.14)

We find that reflected wave has the same amplitude as the incident wave but

differs in phase.
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In the following, the linear WKB theory is applied to solve the linear equations
(3.6a)—(3.8a) for the outer region of linear equations (3.6a)—(3.8a). First, we

introduce for very small s the slow coordinates
T =sz, t=st, (3.15)

then Egs. (3.6a)-(3.8a) are changed to the form of

¢z — (mu1)z =0, (3.6b)
C; + (hz'dz)'j‘ = 0, (3.7b)
Uz + gelz = PUqz (3.8b)

After eliminating uy and ug, we obtain for ( the equation

71(Z) gz — P1(T)Gazz — 272(T)Caz + 262(T) (7 = O, (3.16)
where
1@ =1+52, p@ =97 n@=L, Hp@=g0 @I
The required form of expansion is assumed to take for small s the form
¢ =e®fs f: s" An(Z, 1), (3.18)
n=0
where wave number k = O3, and wave frequency w = —0j;, which provide
kz +wz = 0. (3.19)

For the waves are steady, i.e., 8/t = 0, Eq. (3.19) implies that w = constant
in both time and space. Substituting (3.18) into (3.16) by straightforward differ-
entiation, we obtain the equations by successive orders. The first order equation

gives the dispersion relation between w and k, namely

nw? = pik. (3.20)



- 36 -

The second order equation gives for A, the equation

wA?): + (wA2Y)- = 0. 3.21
o/t Ok

It is easy to find that the relevant solution of (3.20) and (3.21) is

A, = Aoo(—l—)l/2:c_1/4, (3.22a)
K.
along the characteristic line
dz
prie Cy, (3.220)

where A is a constant, the group velocity Cy = Ow/0k, which is same as the
phase velocity from Eq. (3.20). This is the outer limit of the solution based on the
linear equations. Hence, we may match the inner solution (3.13) with the outer

solution (3.22a); we find the phase shift

A

o
01 == A = W

(3.23)

The phase shift may be observed in the experiment, which will be discussed in

Chapter 4.
3.3 Nonlinear Theory

3.3.1 Analysis

For fixed seabed, the sum of Eq. (3.1) and Eq. (3.2) can be integrated on z
to give
(h1 = Qu1 + (h2 + Q)uz = 0, (3.24a)
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in which an additive integration constant function of t is set to zero according to
the condition (3.5). While the internal waves need not be small compared to the
depth hy(z) of the lower layer, especially near the interfacial waterline at which
¢(z,t) + ha(z) = 0, we shall however assume that the wave amplitude is small

compared to the depth h; of the upper layer,
I{| < k1, (3.24b)

implying that the upper layer is sufficiently deep as supposed. Under this condi-

tion, Eq. (3.24a) reduces to
up = —(hg + Quz/h1 = —(c2/e1)?ug, (3.25a)

where

G =ge(ha+¢), G =geh, (3.25b)

¢ and c¢; being two critical wave velocities for this nonlinear system. In terms

of uz and c; as two unknowns, Eq. (3.2) and Eq. (3.3) can be converted to read:

2¢ot + 2ugcCoy + Ccouzy =0, (3.26a)
a1 Uzt + aaUzUzs + 2a3C2C25 = Gehoz = ges = m, (3.260)
where
a=14+p7 a=1-p>(1+1%), as=1-p(1+7°), (3.26¢)
7V = (b2 + Q) /h1 = (c2fer)?, p=wuz/ey, (3.26d)

in which m = g.s is a constant. The above equations (3.26a,b) are our basic sys-

tem for analysis and calculation of internal waves interacting with sloping seabed.
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The effects of change in depth of the seabed are reflected through a specific varia-
tion in the variable c; and in combination with the effect of stratification to yield
variable coefficients aj,a9, and as in Egs. (3.26b) as slowly varying functions of
position and flow states. In the absence of the top layer, i.e., with p = 0, this
system reduces to the case of single layer of a homogeneous fluid considered by
Stoker (1948), Carrier & Greenspan (1958), Tuck & Hwang (1972) and others. We
shall, however, consider the case of practical interest with (1 — 5) =~ 0.02 — 0.03
as for typical thermoclines in the ocean.

By conventional methods of considering the linear combination of Eqs. (3.26a,
b), adding Eq. (3.26a) and /1 Eq. (3.26b), respectively, we find that (3.26a,b) have

two mathematical characteristics, Ci, along which

%‘t'i =n4(uz,c2) on Cp, (14 ;372)‘1“2 +21, ‘Z"tz =m, (3.27a)
z—j =1n_(ug,c2) on C_, (14 pvy 2)512+2l_.cllct2 =m, (3.27b)
where
ly =pyp£[1+ %ﬁ('yz - u?)], (3.27¢)
and 74 are the roots of
ar® — (a1 + az)*ugn + (aguj — aze3) =0,
or
Ny = El; - -2+a2 up & [a10scd + (Z"2 )2l ¥, (3.27d)

If we set p =0, we have 74 = ug * ¢, which is the known result (Stoker 1948)
for the single layer case. For the two-layer case, 74 is real, inferring that Egs.

(3.26a,b) are hyperbolic in type provided

1
ajazcs + Z(al —ag)%u2 >0, (3.28)
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which is generally satisfied in cases of practical interest.

However, a critical point of considerable importance is to observe that (i)
the coefficient ay of the nonlinear term wugug; in Eq. (3.26b) has a zero at the
critical point where the depths of the two layers are approximately equal (called
the critical depth), and (ii) the coefficient a3 of the nonlinear term czc, in Eq.
(3.26b) vanishes at another critical point which is motion dependent (on us).

Here, the first turning point is seen to be at a = 0, with
%~ hyfhy ~ (V5 —-1)/2~0.62, with 0<(1-5) <1, (3.29)

and the second critical point being further out since wuy/c; is, in general, small.
These singular properties are peculiar to stratified fluids, for they do not arise
for the simple case of one-layer flows. The critical point at the critical depth has
been noted also to exist in the KdV equation modeling uni-directional internal
waves propagating on the thermocline of a two-layered fluid. Its effects on the
transmission of an incoming solitary wave (facing down in the outer ocean with
a deeper lower layer) has been investigated by Knickerbocker & Newell (1980),
and Helfrich, Melville & Miles (1984). The critical point problem will be studied
based on our ILW model in the next chapter; here we will focus on the nonlinear

analysis for applications to an inner region of 2 = (hy + ¢)/h; with
0< /<1, (3.30)

so that the terms comparable with or higher in order than O(pv*, pu?v?) may be
neglected compared with unity. This parametric range is nevertheless very useful
since it will afford solutions in closed form to provide detailed simulations and

predictions of the inner flow field over a moderate fetch containing the moving
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waterline of the interface intersecting the seabed. The extreme to-and-fro reaches
of the interfacial waterline then gives the range of the run-up of the internal wave.

With the approximation (3.30), the characteristic equations are still Egs.
(3.27a,b), but with

" 1,
e = (1= peg)us £ [1 = 25(cG + v3)lez, (3.31a)

where

p=p/cl = p1/(pd}). (3.31b)

With the same degree of approximation, the original system (3.26a,b) is found,
after Egs. (3.27a,b) are integrated by some straightforward algebra, to possess

the Riemann invariants:

Ry =const=a4 on Cy: Xa_ =n4(uz,c2)ta_, (3.32a)
R_=const=a_ on C.: Xq, =n-(uz,c2)ta,, (3.32b)
where
oo 1o 1.,

Ry = ua[l + p(c5 + guz)] + 2¢o(1 + Epcz) —m(t +t.), (3.32¢)

t
', = %p* / (), ), (3.32)

0

in which z(t') assumes the value of z along the characteristics C4, as specified
by (3.27a,b) and (3.31), respectively, both passing through (z,t) as understood.
(a4, @) are the characteristic variables.

Since the value of ay or a_ are different along C; or C.. characteristics, the

z,t plane may be covered with a new set of coordinate curves a4 = const and
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a_ = const. This suggests that the independent coordinates can be transformed
from z,t to o4,a_. Let us further adopt the new independent variables (7,0),

similar to Carrier & Greenspan (1958) for the single-layer case, defined by

T o4 +oa- . 1

5= "i2— = ug[l + p(cg + gug)] —m(t +1c), (3.33a)
o oy —o_ 1.
7= _+_4___ =co(1+ gpcg). (3.33b)

In terms of the new independent variables (7, ), the equations for the character-

istic curves, that is za, = 7+ (u2,c2)ta,, become
Ty — (1 = pc)ugt, + [1 — =p(c2 + u2)]cats =0, (3.34a)

Ty — (1 — pc2ugty + [1 — =p(c2 + u2)]eat, = 0. (3.34b)

l\D!o—a l\?lr—l

From Egs. (3.33a,b), the partial derivatives are also related by

n 1 1,
mt, = (1 + pca)ug, — 5(1 - Epuz), (3.35a)
.2 1,
mte = (1 + pec3)uge + gheaua. (3.350)

Substituting (3.35a,b) into Egs. (3.34a,b) to eliminate %, we obtain

2 -~
¥ 7 -1 oug P 2_Poov _
= 2m 16m( + ) lo + [ ( 187 6“2)]1 0, (3.36a)
o 2] l[azu2 1+ 202 - 2a2)], = pu2 B2 (o2 4 8a)) (3.360)
om'™ " o' 4m 48 6 2 2 .

These two equations are accurate up to the order specified in Eq. (3.30) and its

sequel. The divergence form of Eq. (3.36a) prompts the use of the new variable

1 such that
2 2 A 2
_ Y 9 pot 1 _1
T o T Tem Lt ) =¥ (3.37a)
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i+ (——8 2)] = — 4o (3.37b)

Then (3.36b) yields the equation

*(-lf-(mﬁa)a — ey = _._/1"_{_2_(0 + 8u2). (3.38)

In the absence of the top layer, with p = 0, the above equations (3.37) and
(3.38) reduce to those of Carrier & Greenspan (1958) for the case of a single
homogeneous layer of fluid. For the present two-layer problem, however, these
equations are more complicated.

In view of the inhomogeneous term on the right-hand side of (3.38) being of
higher order relative to the terms on the left-hand side, an expedient algorithm is
to adopt an iterative approach based on taking the following expansion of ¥ in
p«, which is a small reference quantity of order O(py3, pu®) near the shoreline

and independent of ¢ and T,

?P(U, T3 p*) = "/’0(0" T) + p*"/)I (0" T) +-e (3390')
%(a'wo,)a - %o,, =0, (3'39b)
%(G%,)a — Py, = 12pm° - (0% + 8u?), (3.39¢)

where wu, corresponds to ,.

This method will be applied to evaluate the following classes of internal waves
running up the submerged seabed. After the solution is obtained for (o, 7),
the mean fluid velocity wu2(o,7) of the lower ocean layer is then given by (3.37b),
the coordinate position z(o,7) by (3.37a), the time %(o,7) by (3.33a), and the

internal wave elevation ((o,7) from (3.25b), c2/g. = ho + ¢ = ( + sz, or

2

1
16g. (

1
¢= + Zgﬁoz)-l. (3.40a)
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The interfacial waterline, always fixed at ¢ = 0 in virtue of (3.25b) and (3.33b)

with hg + ¢ = 0, moves in the physical (z,t)-plane according to

1 1
33(0, T) = %ug(oﬂ') + Zw‘r(o’ T), (340b)
11 >
¢(0,7) = —5Tt ;n-uz(O,T)[l + 5 (0,7)] —t:(0,7), (3.40¢)
1 T
1(0,7) = 25 / W2(0, )20, 7' dr’. (3.40d)

The corrected solution of Eq. (3.38) is presented in Appendix A. The difference
between Eq. (3.40) and Eq. (A.14) is very small.

Numerical results have been obtained for several specific cases which will be

given below. In these numerical results, we shall set, without loss of generality,
hy =1, and g=1 (3.41)
for the scale of length and time.

3.3.2 Run-up of Internal Standing Waves

We shall first consider the problem of a train of incoming internal waves, of
sufficiently small amplitude compared with the depth h; of the top layer, running
up on a submerged flat seabed which is sufficiently inclined so that the waves are
not breaking but totally reflected. For this problem a particular simple solution

of Eq. (3.39) is for standing waves given by

8ge _ wo _ wT
— AJ,(€) cosd, &= . ¥ = 5y (3.42q)

Y(o,7) =

where J, is the Bassel function of the first kind and for z large, 7 ~ —2m¢t so

that cos? = coswt. This solution is expected to hold valid in an inner region as
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specified by (3.30) so that it can be matched to another solution that will behave
appropriately in an outer region and they can be combined by matching to provide
a uniformly valid solution.

The solution of this nonlinear flow problem can now be given parametrically

as
wn(0,7) = 27“’14"16(5) o1~ 22 4 224 HE) Jl ©) 29, (3.420)
((o,7) = AJ,(£)sin® — 2; ug, (3.42¢)

z(o,7) = —%AJo(g) sin 9 + 5—2— + %(1 + %)“1, (3.42d)

Ho,r) = —5—+ -71;[1 + ;3(—1-5 + gug)]u2 —to(0,7), (3.42¢)

where J; is the first kind Bessel function of order 1. Here, u; is deduced from
(3.37b), ¢ from 2 = ge(ha +() = ge(¢ + sz) and using z of (3.37b) which comes
from (3.37a), t is derived by using (3.33a) and t.(o,7) is calculated numerically.
At the interfacial waterline, uy = u2(0,7),¢ = ¢(0,7),z = z(0,7) and ¢(0,7) are
obtained by setting ¢ = 0 in the above equations.

The maximum run-up of the interfacial waterline ( ¢ = 0) occurs when the

depth-mean velocity comes to a stop, i.e., at ¥ = /2, giving, by (3.42¢,d),
Cru. = A, at Xru. = '_A/S' (343)

The above results are based on the assumption that the waves do not break.

3.3.3 Wave Breaking Criterion

The standing wave solution (3.42a), which is clearly single-valued in (o, 7),

will also be single-valued in (z,t) provided the Jacobian

Oz, t)

7= o)

= Tot; — Tyty # 0. (3.44)
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Substituting z, and z, from Egs. (3.34a,b) into this equation gives
1,
J = 1= 35S +ud)lea(t; — £7)- (3.45)

By making use of (3.35a,b) and (3.42b), we find, after some algebra, that near the

interfacial waterline, for 0 < po? <« 1, J will not vanish if
49, A(—)? < 1 (3.46a)
[ 2m b

A < ges?Jw? = (2m) 29,1242, (3.46b)

where T is the wave period. This upper bound for wave amplitude, which is
supposedly serving only as a guiding estimate, assumes the same form as for
the single-layer case (Mei 1983) except with its g replaced by g. in (3.46). In
physical context, the smallness of g./g is well offset by larger values of period T
for internal waves than those of surface long waves.

Some typical numerical results of the instantaneous interface profile predicted
by the present nonlinear theory are shown in Figure 3.2. Since the theory is limited
in offshore range, by the presence of the critical-depth singularity, to small values
of pck ~ phy/hy according to (3.30), these results will be used as the inner solution
which is to be matched with a linear standing wave solution in the outer region

with a deeper lower layer of the ocean.

3.3.4 Matching With the Outer Solution

As the nonlinear effects are expected to become negligible for sufficiently large
o, we shall assume the corresponding linear model to be applicable to this outer
region which will include the section where jhy/h; is no longer so small as assumed

(see Eq. (3.30)) to maintain the validity of the approximations introduced for the
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inner solutions of the nonlinear theory for the inner region spanning across the
interfacial waterline. The solution of the linearized equation (3.11) will be used as
the outer solution to be matched with the inner solution of the nonlinear theory.

To match the linear theory for the outer region with the nonlinear theory for
the inner region, the latter of which has time-dependent terms with sin,cos,
and their products to the third power, we take the solution of (3.11) in the form
of Fourier series in ¢,

(=) masin(wat+6,), (z>zm) (3.47)

n=0

where w,, are constants to be determined by matching and the phase angle 4,
are taken as slowly-varying functions of ¢, so varied as to accommodate minor
departures of 7 from the physical time ¢. Substituting Eq. (3.47) in Eq. (3.11)

yields for 7,(z) the equation

T + P(T) 1 + (€)1 = 0, (3.48q)
xr U)Z xTr
plz) =27 (1 - x—o)'l, g(z) = —=(1- w—o)m‘l, (zo = —h1/(ps)). (3.48b)

The only singularities of this equation, for z finite, are two regular singularities at
z = 0, which is the undisturbed interfacial waterline, and at = = z, which is very
close to the shoreline of the top free surface (for 0 < 1—p <« 1), and is beyond the
reach of the internal wave run-up. Both singularities are thus outside the range
in which the solution is sought on the linear theory. It is to be noted that the
turning point singularity arising in Eq. (3.26b) is entirely owing its presence to
the nonlinear effects, for it disappears with the nonlinear terms neglected.

Let z = zj denote the position where the inner and outer solutions are to be

matched. A choice of zj is, in general, based on numerical tests. However, there
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is not much difference in the structures of the matched solution as long as z is
less than z., which is the position of the critical depth. Thus, the turning-point
singularity is avoided for the inner solution while Eq. (3.48) to be solved for the
outer solution has no singularity in the range of interest with z > ;. At any
point z; within this range, the required solution of (3.48) can be expressed in a
Taylor series
)
n(z) = Z bi(z — 1), (3.49)
k=0

where the subindex of 7, is omitted as understood. By substituting this expansion
and those for p(z) and ¢(z) about z = z; in Eq. (3.48) and setting the coefficients
of various order to zero, we obtain a set of recursion formulas relating all the by
(k > 2) to b, and by, which can be determined for each fixed time ¢ by matching
this solution with the known inner solution under two conditions that both ¢ and
¢z be continuous at z;. This process can be repeated over the time period during
which the circular frequency w, and the slowly-varying phase function 4§, will
have been determined for all the relevant Fourier modes. And the outer solution
can be extended analytically from the starting position z = z; seaward to a new
x; position for repeating the process as may be dictated by the desired accuracy.
The result of such a sequence of matching calculations is shown in Figure 3.2
together with the inner solution for the case with A =0.1,5 = 0.8,h; = 1,9 =

1,w = 2m, and the seabed slope s = 1.

3.3.5 Run-ups of an Initial Hump and an Initial Elevation

Initial value problems with a prescribed internal wave shape ((z,0) released
with wug(z,0) = 0 everywhere can be solved by integral transform techniques

when the necessary boundary conditions are also specified. The general solution
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bounded at o = 0 and ¢ = oo may assume the Hankel integral form
ES / H(k)k™1J,(ko) sin krdk, (3.50)
0

where H(k) is an unknown function of k (e.g., see Carrier & Greenspan (1958)).
The solution (3.50) can be conveniently used to treat initial-value problems. A
typical example is to let 9(0,0) = 0 at 7 = 0 and %,(0,0) be prescribed for
o > 0. These initial conditions imply that the initial velocity wux(z,0) is zero

everywhere and the initial amplitude of the wave ((z,0) at t = 0 satisfies

1., 2\
877 (3.51)

¢(z,0) + sz = —qz—(l +
16ge
which follows from ¢ = g.(¢ + hz), here with (0,7 = 0) given parametrically by
Eq. (3.37a).
For 7 =0,uy =0, we have, by Eq. (3.33) ¢t =0,t. =0, and

g = %(1 - %6,602) - —(1 _ —pa %)z, = f1(0). (3.52)

And from Eq. (3.34b),

tr = ——(1 + ﬂpa Hz,, (3.53)

where z, can be obtained from Eq. (3.51). Alternatively, from Eq. (3.37b), we

find that at 7 = 0,

Ugr = f2 (U)wra, (3540,)
where
_ m. . 1.4
fa(0) = ——(1 = 7=po”). (3.54b)

Hence, from Eq. (3.52) and Eq. (3.54),we have at 7 =0,

beo(0,0) = 249 = F0), (3.59
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which gives, with Eq. (3.50), the relation
F(o) = / H(k)kJy (ko) dk. (3.56)
0
From the Hankel transform of order 1 of F, the inverse transform gives
H(k) = — / oy (ko) F(c)do, (3.57)
0
and therefore
o0 o0
P = ——/ k~1J,(ko)sin dek/ oJy(ko)F(o)do, (3.58)
0 0

which satisties Eq. (3.39b) and the specified boundary conditions and initial
conditons.

CASE I: Now we consider the motion of an initial hump of water released at the
interface at ¢ = 0, which is similar to that considered by Carrier & Greenspan

(1958), and given by

¢ = acte™, (3.59q)
4,-bo? 2 1.
7=~ 4 (14 5po?) 7, (3.59b)

where a and b are constants. This initial wave is shown in Figure 3.3 for specified

a and b. With this initial profile, (3.52) and (3.55) give

4m acteb 1.,
fi(o) = 7[__3—]0(1 - ZgPU ), (3.60)
F(o) = —43—61(4036”’"’2 — 2boBeb%), (3.61)

Substituting Eq. (3.61) in Eq. (3.58) yields

4a [ _ k2 .
Y= ———/ Z(k,b)e” 1 J,(ko) sin kTdk, (3.62a)
s o
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where
1 k2 k*
Z(k,b) = = + o5 T 305 (3.62d)
From this solution of ¢ we readily deduce from Eq. (3.37b) that
4age 1 50?)-1 o0 k2 )
Up = 1+ = 15? ) Z(k,b)ke™® Jy (ko) sin kTdk
1 Lo+ o) 1[zmge / Z(k, b)ke™ ¥ Jy (ko) sin krdk]?, (3.63)
and from the relation ¢ = cZ/g. — sz and Eq. (3.37a), we have
e 2 u%
¢= —-a/ Z(k,b)ke™ % J,(ko) cos krdk — 59" (3.64a)
a [ k2
z = ;/ Z(k,b)ke™® J,(ko) coskTdk
u} o2
+§—— + —(1 + 8p02)— (3.64b)
From Eq. (3.33), t and 7 are related by
T U 1, 4
t(0,7) = o + m(1 + 6,oU ) —t:(0,7), (3.64¢)
1 T
t.(0,7) = -z—ﬁ/ u(0,7")z,(0,7")d7’, (3.64d)

where U(7) = (0, 7). The solution of run-up of the internal hump is shown in Fig.
3.3 and Fig. 3.4. For small o and a, the Jacobian is not zero if |a/b| < (8g.)~?.
CASE II: Specializing further, we may consider an initial elevation which decays
2 away from the shore at t = 0, which is similar to that

exponentially in o

considered by Tuck & Hwang (1972), and is given by

¢ =ae™", (3.65a)
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--b0'2 o2 1
T=— (1 +1 paz)— (3.65b)

where a is the elevation at the shoreline ¢ = 0, and b is a constant. Following

the same calculation of Case I, we find

2age

Ug = (1+ 48'002)_1/ ke_%Jl(ka)sindek
+= p(1+ P 2)_1[2a9e/ ke’%Jl(ka)sink'rdk]"’, (3.66a)
~a/wk‘%J(k) rdk — 22 (3.66b)
=%/ e o(ko) cos kT 50, .
9 [ b T, (ko) cos krdk
= —— - b
z s |, e o(ka) cos kT
uj 1
+—+———(1+ paz)’ (3.66¢)

2m

and the relation of t and 7 is the same as Eqs. (3.64c,d). The solution of run-up
of the initial elevation is shown in Fig. 3.5 and Fig. 3.6. For small ¢ and a, the

Jacobian is not zero if |ab| < (16g.)~!

3.4 The Run-up of ISWs

3.4.1 The Run-up Law

Now we consider the run-up of ISWs over the bathymetry consisted of a
plane beach of slope s adjacent to a region of constant depth (shown in Figure
3.7), which is similar to that considered by Synolakis (1986). The topography is
described as follows:

hi = hio, for x>0, (3.67a)
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hs = sz, when x<x, (3.67b)
he =d, when x> x;. (3.67¢)

For the run-up of ISWs of elevation (i.e., with d < hj, for this type of polarity,
there is no critical point; for the run-up of ISWs of depression (i.e., with hj, < d),
there is a critical point at a certain station on the beach where p1h? = pyh2;
however, we may discuss the case without wave breaking and with incident waves
of small amplitudes. First, considering the linear theory (3.6a)-(3.8a), we find
that in the region of constant depth, i.e., x > z;, this linear system can be

reduced to the classical wave equation with a steady state solution, namely
((z,t) = Aje*(@tet) | 4 giklz—ct) (3.68)

where ¢? = geho, ho = h1od/(h1o + pd), and A; is the amplitude of the incident
wave of wave number k, A, the amplitude of the reflected wave, and that in the

region of sloping beach, i.e., 0 < = < z;, this linear system has a solution, namely
((z,t) = A(k)Jo(2Ko/T)e e, (3.69)

where K, = kc/\/ge8 = kv/ho[s, and A(k) is the coefficient related to the
wave number. A combined solution of equations (3.68)(3.69) can be derived by
matching the two solutions at z = z; under the conditions that the amplitude
and its derivative are continuous. The relation between A(k) and A; is

2Aie‘k‘”1
Jo(2Ke\/-'i—1-) - Z,BJl(zKe\/—a'Tl-),

where B = \/h,/d. If the incident wave is an ISW, i.e.,

A(k) = (3.70)

— 1 +o0 2 k . .
T=% _ G0 cosech( %—A)e’kw" e~ *edr,

(3.71)

C(zo,t = 0) = a,sech? = —
(2 ) ° 2 J_ o
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where z, is the initial peak position, and a, is the initial amplitude of the ISW.
By linear superposition of the solution (3.69), the wave transmitted onward over
the seabed is given by

400 -—tk(zl+ct)

(ty=2] T GR. e —Bhek. 7

(3.72a)

where
a, 2k
¢(k) =

cosech(zr—gi)eik"’Jo(2Ke\/§). (3.72b)

Secondly, we consider the nonlinear systems (3.1)-(3.3) for z near the interfacial
waterline where the nonlinear solution (3.40) is valid. For large o, the nonlinear
effects may be assumed small, and the nonlinear solution (3.40) may be approxi-
mately written with the asympotic representations:

o2

= ﬁ’ (3.73)

s 1
(= —Z¢r, t(0,7) = 5T

where 1 is considered to be solved from Eq. (3.39b) by the Fourier transformation

as
+oo J (kO’) zl';:'r 1.
¥(o,7) = — / ek (3.74a)
where
+oo -
F(k) = ¥(00,7)e"*7dr, (3.74b)

and o, is a point related to 7 which will be chosen. Matching the two solutions

(3.72a) and (3.74a) at o = 0,, i.e., at z = x5, we obtain

16mi [T ¢(k) J,(ko)e=tkartiznT
sc [_oo k Jo(2K.\/z1) — iBJ1 (2K, \/—)

From Eq. (3.73), Eq. (3.75) provides an amplitude at ¢ = 0, which is the same

W(o,7) = (3.75)

as the amplitude given by Eq. (3.72a) at = = 0. This result tells us that in this
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kind of analysis, the linear theory (3.72a) and the nonlinear theory (3.74a) provide
same value for run-up of ISWs of elevation and run-down of ISWs of depression
for very small amplitudes of ISWs (Synolakis 1986). Therefore, the amplitude at

the interfacial waterline is

+00 aokAchSBChWkk —zk(—ma-{-m;—{-ct) .
=0,t) = 3.76
o =0.1) L,o T.CK/z7) —iBL K, o) © (3.76)
After integration of Eq. (3.76), we obtain the run-up law as
. h2, — pd*)a,
(i)mam = 5,062 [ 3 ( Lo ~p )a p ]1/4 (3.77)
Qo (1 + ﬁ) hios (hlo + Pd)(d + Phlo)

which states that the maximum run-up of ISWs is proportional to the initial
amplitude of ISWs with a %—power law in amplitude a,, other parameters being

equal. The solution (3.77) is valid only if the Jacobian is not zero, i.e.,
1
ur =2 #0, (3.78)

which should impose a limit to the amplitude of incident ISWs so that the waves
would progress without breaking. More specially, we have

(i)for the ISWs of elevation,

a, < 0.273978/7(

14897, (Mo + pd)*3(d + h1op) 377,827,
IB ) { h%o . ﬁd2 ] (d) ) (3790‘)

(ii)for the ISWs of depression,

(—a,) < 0.6597%/7(

1+ﬂ hio + pd)2/3(d + hiop s
)2/7[( 1 gdg — ;ﬁ 1 p)]3/7(__d__)2/7. (379b)

When p =0,h;, =1, the run-up i—’—power law (3.77) of ISWs reduces to that of

Synolakis’ (1986). The numerical solution with the dispersive terms included will
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be given in the following section and the run-up law (3.77) will be compared with

the numerical results.

3.4.2 Direct Numerical Simulation

Direct numerical simulations are performed to evaluate the run-up of ISWs
over the same topography as described in the last section. The predictor-corrector
two-step procedure, which will be discussed in the next chapter, is used to solve
the nonlinear system of equations (4.2)-(4.4) numerically. The moving boundary
satisfying the dynamical, kinematical and geometrical conditions (which will be
given in Chapter 4) are incorporated into our investigation of the behaviour of
ISWs at the interfacial waterline. In the present numerial calculations, we take
the time step At = 0.05 and the space interval Az = 0.1. The stability and
accuracy of our calculations are checked by comparision with the corresponding
numerical result of a free soliton on a flat bottom of which the exact solution is
known. The relative change in maximum wave amplitude of the ISW is about
—0.5% after the wave has traveled 100 water depth. All computations are done
in the Cray Y-MP. Because the topography here has a critical point, the slopes of
all computed waves (see definition in Chapter 4) are smaller than the beach slope
in order that according to the criterion Eq. (3.79b), waves would be propagating
without breaking. Figure 3.8 shows the wave profiles of ISWs of depression near
the interfacial waterline evolving with the parameters chosen to be z, = 100,5 =
0.85,z; = 200,h; = 1.0,hy = 1.5, = 0.01,a; = —0.01. When the toe of the
ISWs of depression reaches the interfacial waterline on the beach, this toe starts

to move down the beach until its velocity is zero with its maximum run-up. After
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this moment, it goes up across the interfacial waterline and arrives at another
maximum amplitude, then it comes back to the interfacial waterline. Due to
the reflection of the beach, this kind of motion becomes weaker and weaker after
each period. Figure 3.9(a,b) shows the history of the run-up position and the
lower-layer fluid velocity.

The run-up law (3.77) is compared with the numerical results with differ-
ent amplitudes of incident ISWs to a beach with a fixed slope. The parameters
adopted are p = 0.85,h; = 1.0,hy = 1.5, = 0.01,8 = 0.663. With a small initial
amplitude for the ISWs, the two values from Eq. (3.77) and the numerical results
with dispersive terms are quite close. The run-up law (3.77) is expected to give a

good estimate for waves of very small amplitudes and non-breaking IWs.
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Figures for Chapter 3
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Figure 3.1 A sketch delineating run-up of an internal wave propagating in a two-
layered fluid and incident on a sloping seabed, the top free surface being assumed

to remain undisturbed.
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Figure 3.2 A typical internal standing wave profile obtained by matching the
nonlinear solution with the linear solution for A = 0.1,s = 1.0,z = 1.0,5 =
0.8,h; = 1,9 = 1,w = 2m matched at z,, = 0.75; in which: A, point of maximum
run-up, ¥ = 7/2; B, minimum run-down, ¥ = 37/2; C & D, intermediate phases

with ¥ = 37/4,57 /4, respectively.
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Figure 3.3 Wave profiles of the motion given by (3.63) and (3.64) subsequent to
the initial internal water elevation (3.59) for a = 0.001,6 = 0.1, =0.8,9=1,5 =
1,h1 = 1; — A, initial profile at 7 = 0; — B, Maximum run-up at 7 = —3.85;

— C, minimum run-down at 7 = —7.85.
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Figure 3.4 A plot of time history of the run-up, y = yg(t) = —szg(t), and fluid
velocity, ua(zRg,t), given by (3.63) and (3.64) for a = 0.001,b = 0.1,5 = 0.8,g9 =
1,s=1,h = 1.
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Figure 3.5 Wave profiles of the motion given by (3.66) subsequent to the initial
internal water elevation (3.65) for a = 0.2,b = 0.5, = 0.8,9g = 1,s = 1,h; = 1;
— A, initial profile at 7 = 0; — B, at 1 = —2.0; — C, at 1 = —4.0; — D, at
T=—6.0; — E, at 7 = —0.9.
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Figure 3.6 A plot of time history of the run-up, y = yr(t) = —szg(t), and fluid
velocity, uz(zg,t), given by (3.65) and (3.66) for a = 0.2,b = 0.5,5 = 0.8,9 =
1,3 = 1,h1 = 1.
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Figure 3.7 Sketch of a slope bottom topography in a two-layer system. z, is the

peak position of an initial incident ISW; z; is a slope-start point.
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Figure 3.8 Run-up of an ISW near the interfacial waterline with the parameters
z, = 100,5 = 0.85,z1 = 200,h; = 1.5,5s = 0.01,a, = —0.01, Az = 0.1, At = 0.05.
At point A: t = 900; at point B: t = 1150; at point C: ¢t = 1300; at point D:
t = 1400; at point E: t = 1425.
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Figure 3.9(a) A plot of time history of the run-up position, z/s = zg(t)/s in

case of Fig. 3.8.
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Figure 3.9(b) A plot of time history of the fluid velocity, u(z g, t), in the case of
Fig. 3.8.
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Figure 3.10 The comparison of the theory (3.77) and numerical results based
on the ILW model for ISWs incident on the slope seabed with the parameters

p=0.85h; =1.0,hy =1.5,5s=0.01,3 = 0.663.
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Chapter 4

Nonlinear Wave Propagation
Across Critical Point

In this chapter, the weakly nonlinear and weakly dispersive oceanic internal
long wave (ILW) model is applied to study the nonlinear behaviour of internal
solitary waves (ISWs) progressing in a system of two-layer fluids with variable
depth. It differs from the corresponding KdV-type model in admitting bidirec-
tional waves simultaneously while still observing the laws of mass and energy
conservation. This ILW model is applied especially to analyze the so-called crit-
ical depth problem of ISWs propagatiné across a critical station at which the
depths of the two fluid layers are about equal so as to give rise to a critical point
of the KdV equation. Numerical results are presented based on the present ILW
model for ISWs climbing up a curved shelf and a sloping plane seabed. It is shown
that in the transcritical region, the behaviour of the ISWs predicted by the ILW
model depends on the relative importance of two dimensionless ﬁarameters, Sw
the magnitude of ISW wave slope, and s, the beach slope. For s >> s, the
wave profile of ISWs exhibits a smooth transition across the transcritical region;
for s << sy, ISWs emerge with an oscillatory tail after passing across the crit-
ical point. Numerical simulations are found in good agreement with laboratary

observations.
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4.1 Theoretical Description

We begin with the weakly nonlinear and weakly dispersive oceanic internal
long wave (ILW) model which admits both right- and left-going waves in de-
scribing generation, propagation and evolution of long oceanic internal waves in
nonuniform medium with possible reflection and transmission of waves by varying

boundaries. This model is based on the assumption, i.e.,
a=a/h<<1, e = (h/))? = O(a), (4.1)

for weakly nonlinear and weakly dispersive internal long waves of typical amplitude
a and length A, propagating at the interface between two layers of fluid. The fluid
has a piecewise homogeneous two-layer density distribution, of density p;(=const)
in the top layer of depth h; = const, and density p2(=const) in the lower layer
of depth ha(z,t) slowly varying with a specific rate of variation no greater than
O(a?) (see Figure 4.1). The typical height h is equal to A + hg,. The fluids are
assumed inviscid and incompressible. To simplify the analysis involved, we adopt
the “rigid-lid” top surface assumption, which is found to be very satisfactory (see
Wu & Lin 1994) provided the top layer is sufficiently thick compared to internal
wave amplitude, in the absence of barotropic forcing disturbances. The ILW model

may be written as, to order O(aet),
Gt — [(h1 = Qua]e = 0, (4.2)

e + [(h2 + Quz]e = 0, (4.3)
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1

1
ouye — Ut + (OULU1y — U2Uaz) + (0 — 1)z = '?;h%aulmzt - §h§mm, (4.4)

where the subscripts z and ¢ denote differentiation, and wu;(z,t)(: = 1,2) is the
depth-mean value of the longitudinal flow velocity along the channel axis z for
the upper (i = 1) and lower (i = 2) layers respectively. u(z,t) is the axial
velocity averaged from the interface elevation at y = {(z,t) at time ¢ to the top
water surface at y = hy, ug(z,t) is the axial velocity averaged from the channel
bottom at y = —ha(z) to the interface elevation at y = ((z,t) at time ¢, and o
is the density ratio p;/ps of two layers. We assume for u; and ( the following

expansions:

ui = oful® (n,7) + M (m,7) 4+, (i=1,2), (4.5)
C = a[é-l ("77 T) + a2 (Th T) +-- ']> (4°6)
in terms of multiple-scale variables,

n=0az, 1= al/z(/ gz _ t), (4.7)

where ¢(z) is the local wave speed. Substituting those relations into Eqs. (4.2)-

(4.4), and keeping terms up to O(ae*), we may obtain for ¢ an equation of KAV

type as
Cn + A1l + Alrrr =0, (4.8)
where
A = ‘—353‘”(‘/‘32‘ - lz)’ Az = —”'l'"'l“(ﬁhl + h2), (4.9q)
2(p—1)"hf R 6co(1 — p)

and c, is the phase speed of the baroclinic slow-mode IWs motion satisfying

-~

1
2L+ ) +(p-1)=0. (4.95)
e ha
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The internal solitary waves (ISWs) can be waves of either elevation or depression
depending on the sign of the cofficient A; of the nonlinear term in Eq. (4.8).
When the upper layer is shallow (or deep) enough, compared to the lower layer,
so as to make A; positive (or negative), stationary ISWs are found to have a
polarity of depression (or elevation). Accordingly, as an incident solitary wave
of depression propagates from a subcritical region of deeper lower layer, with
p1h2 > pah?, up a slope to a supercritical region of shallower lower layer where
p1h2 < pah?, it will encounter a point where A is zero, i.e., p1h3 = pah2, which
is called a critical point. The whole region of wave propagation may be divided
into subcritical and supercritical parts which hold ISWs of depression and eleva-
tion respectively. Oceanic internal solitary waves (ISW) near the critical point
has been studied by Knickerbocker & Newell (1980) based on direct numerical
calculation of the KdV-type equation for ISWs with variable depth in which the
quadratic term of the coefficient A; varies linearly over a sloping region (i.e., the
L section in Figure 4.1). Their results indicate that after passing the critical point,
the original downward facing solitary wave disintegrates to form a new upward
facing solitary wave in the supercritical region. Djordjevic & Redekopp (1978)
have argued that this reversal is impossible by application of the eigendepth re-
lation (Tappert & Zabusky 1971, Johnson 1972), which predicts that the finite
number of solitons is related to a shelf depth, independent of the shape of the shelf
formation. Helfrich, Melville & Miles (1984) extend the previous works by direct
numerical computation of a modified KdV-type equation which includes a certain
new cubic nonlinear term (while leaving out the terms of the same next higher
order). Their results based on this new equation show that an incident ISW of

depression scatters into a train of oscillatory wave from which one or more ISWs
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of elevation emerge asymptotically. It has been known that a KdV-type equation
with variable coefficients may be transformed into a nonhomogeneous KdV equa-
tion but with constant coefficients. However, both types of equations do not hold
the conservation of mass. In another word, the variable-coefficient KdV equation
is a unidirectional wave equation, so it does not hold wave propagations in both
directions. In this connection, we note that the continuous stratification model
in a variable depth developed by Djordjevic & Redekopp (1978) does not have a

critical point where the cofficient of the nonlinear term vanishes.

4.2 Numerical Solution of the KdV Equa-
tion

For seeking numerical solutions, it is convenient to take the following trans-

formation, i.e.,

(=AM, 1= AT P (4.10)

then Eq. (4.8) becomes (after omitting ')

Cn + BCCT + C’r‘r'r = O, (411&)
where
B =(-a +9—2—) a—ch a—-L~ (4.11b)
TR T BBk, + k)’ T agh?’ '

A finite difference equation that approximates the variable-coefficient KdV equa-

tion (4.11a) is

G =¢ 7 - B ~ G+ G+ ) — Gla)—

_An_

(AT)a( ;’n+2 -2 ;"-Lf-l +2 in—l - ?—2 3 (412)
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where (I = ((iA7,nAn) and An and AT are the appropriate grid sizes. The
Von Neuman stability analysis provides that error associated with the solution of

Eq. (4.12) will grow indefinitely unless

s <t (419)

%—Z—[g—B |Col +
The truncation error involved in Eq. (4.12) is seen to be proportional to (A7)3
and An(A7)2. Since the scheme is centered in 7 and in 7, the initial step in 7
can be found by using a standard forward-integration procedure. It is also worth
noting that the present computational scheme conserves both mass and energy.
The initial condition can be provided by Eq. (4.11a) with a specified amplitude
a,. The geometric configuration of water depth variation above the seabed is
described in Figure 4.2 to lie within the L section. The stability and accuracy
of the numerical scheme are investigated by applying it to compute a free ISW
in water of uniform depth (s = 0). The relative change in the maximum wave
amplitude of the ISW is about 0.1% after the wave has traveled 100 water depth.
The grid sizes are taken to be A7 = 0.1 and An = 0.0001 in computation, for
which the CPU time took about 2 minutes for Cray. The computational result of
Eq. (4.12) is shown in Figure 4.2, in which the related coefficients are taken with
a; = 1.63,a2 = 1.26,s = 0.01,h; = 0.8, hs, = 1.26,p = 0.99. As the down-facing
ISW approaches the critical point (n = 50), it emerges to have an oscillatory tail.
After passing through the critical point, it starts to break up into a dispersive
wave train. Because the excess mass is conserved, the local mean level of the
interface appears to subside a little lower than the original interfacial zero level.

Gradually the leading pulse appears to rise as an upward-facing ISW relative to

the local interfacial mean level. The polarity of the ISW of depression has thus
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been changed related to the local mean level after it has passed the critical point

based on the KdV-type equation.

4.3 Numerical Analysis of the ILW Model

The numerical procedure desribed in this section has been applied to perform
computation of head-on collisions in Chapter 2, to investigate the run-up of ISWs
on submerged seabeds in Chapter 3 and will be used throughout the rest of this
study to solve the ILW model equation for two kinds of bottom topographies.
We consider propagation of ISWs of depression from a constant depth, up a mild
cosine-shaped transition or a straight beach with a critical point, into a shallower
flat region. Two significant dimensionless parameters, i.e., a beach slope s and
a represntative IW slope s, defined by the ratio of a typical wave height to a
typical wave length, are considered. Based on the computational results from the
ILW model, we find that when s is much greater than s,,, it seems that there is
no discernible influence from the presence of critical point. However, when s is
much less than s,,, the ISW is seen first to gain its amplitude, to reduce its speed
as it passes through the trans-critical region and to develop an oscillatory tail in

the neighbourhood of the critical point.
4.3.1 Computational Scheme
Integrating the sum of Eqgs. (4.2) and (4.3) under condition (3.5), we find
uiHy +uaHy =0, (4.14)

where Hy = hy—({, Hz = hy+ (. In order to solve Eqgs. (4.2)-(4.4) numerically,

new variables are introduced as M = ou; —uz and u = u;. In terms of the new
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variables, Eq. (4.14) becomes

H;
- M= 4.15
ug = ou — M. (4.16)

For evaluating waves of very small amplitude (|¢| << h1), keeping the same order

of the model equation up to O(o3) as with Eq. (4.15), we may write Eq. (4.4) as

Ay M, + Az Moy + AsMypy = As, (4.17a)
where
Ay =1- g-h‘("(fff;z‘%)‘; m) _ %a%(hlﬂm — hoHygz), (4.17b)
Ay = —galih% + (b + ha)Cal, (4.17¢)
Az = —éhlhz%:ll;%%, (4.17d)
(Hiu)y

1
Ag = Zo(h} - R3)

3 Mg, + (0 — Dovu, + MM, — o(uM), — (0 — 1)(g,

(4.17¢)

hi + chg

where (-); = 8(-)/0z, (-)zz = 0?%(-)/0x2. Thus, the model equations for compu-
tations are Eqgs. (4.2) and (4.17).

Besides the model equations, appropriate boundary conditions are required.
For computing run-up of ISWs, the moving boundary condition is adopted from
the physical and geometrical conditions at the interfacial waterline at which Hs =
ha + ¢ = 0. At the interfacial waterline, where Eq. (4.14) remains valid, it follows
that u; = 0 and Ou;/8t = 0, hence by Eq. (4.16), us = —M, and Eq. (4.4)
gives

1

U9 + UgUoy — (CT — I)Cz = 3H22'u,2$zt + O(ae4). (4.18)
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Admittedly, this result is a consequence to the rigid-lid approximation. Because
the dispersive effect is zero at the waterline to order O(ae* a®), the moving

boundary conditions at the interfacial waterline are the dynamical condition

d’ll,2
with the kinematic condition
dx
and the geometry condition

After the central differencing in space and forward differencing in time are
taken in Eqgs. (4.2) and (4.17), their corresponding difference equations for h; =
const and hy = ha(z) may be written as

G =G+ 3Az (Hijen)uien — (Hij_1)uj_ql, (4.20)

n 1 n n n n n
[A3; + §Azj(A$)]Mjf1l + [A;(Az)? — 2A3;1M; i

n 1 n n n n n
[A3; — 5 2j(A$)]ij11 = A1;M; (Az)? + A4j(A$)2(At)+
1 n n n n n n n

where ()7 = (-)(t = tn,z = z;). The standard predictor-corrector two-step
numerical procedure is used to solve these difference equations (4.20) and (4.21).
More specifically,

(i) the first step — the provisional values at the provisional time-level n + 1 are

calculated by using the known values at the time-level n;

ntl n At n n n n
G =G+ 2_A_£[(H1j+l)uj+l — (Hij-1)uj-1l; (4.22)
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[A3‘7 + 1A (A )]M;’:ll -+ [A (A:L')2 2A%, ]Mn+1

Az, - ; n (AD)MITT = AT (A) MY + (Ao)P (A AL+

1

3 i (M1 — M 1)(Az) + A3; (M} — 2M} + M7 1) (4.23)
? (H1 +oH2)? + (H1 +oHy) ! 2
(ii) the second step — the unknown values at the time-level n + 1 are obtained
from the known values at time-levels n and n + 1;
G =+ Z‘&;[(Hlj-{-l)uj+1 — (Hij—_1)uj_1]+
At n+1 n+1 n+1 n+1
Az [(H13+1 J+1 (H 1)“ 115 (4.25)
n 1 n T n n n
[A3; + §A2j(A$)]Mj-:-ll + [AT;(Az)? - 2A3;1M; iy
[A3; — '2'A2j(Am)]ijll = 1j(A33)2Mj + §(A$)2(At)A4j+
1 n n n
AZ]( 1 — M) (Az) + A (MG, —2M7 + M)+
—<Aac)2(At>A"+1 "“( - ME)(Az)+
§A§f1(Mﬁ’11 2M7 !+ M, (4.26)
ntl _ Hy; + H’ZH (M7 + M;H) (4.27)
u; . .
T (Hy -l-UH2)"+(Hrf-dflrz)"'*'1 2

(4.23)(4.26) are implicit tridiagonal systems which can be solved by the

traditional methods. The stability and accuracy of the numerical scheme are
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investigated by applying it to compute a free soliton solution (with s = 0). The
initial data are provided by the standard IW KdV equation with the space interval
Az = 0.1 and the time step At = 0.05, and the computational trunction error is
of O(Az2At). If we continue to reduce the value of At < 0.05, the same results
are obtained but with greater CPU times. An adjusted grid is taken for each
time step in computations with moving boundary conditions. All computations

are done with a Cray Y-MP at UCSD.
4.3.2 Wave Propagation in a Cosine-Shaped Seabed

In this section, a majority of numerical computations are performed to inves-
tigate the propagation of ISWs of depression from a subcritical region of constant
depth through a gradual cosine-shaped transition to a supercritical region. A
sketch of the bottom topography is shown in Figure 4.1. The bottom topography
is defined by

ho=d, z<z, (4.28&)

d—d —
hy = d+ > 1)[cos7r(mLm1) ~1, m<z<z+L, (4.28b)
ho =diy, >+ L, (4.286)

where the subcritical depth d is greater than the supercritical depth d;. As for
the initial condition, we take an ISW moving to the right with its peak located
at = = z,, and with its initial amplitude a,. The Green’s law, which states that
the amplitude of every wave is proportional to the —1/4-power of the lower-layer
depth is well reflected in computations. At least 99% of the initial excess mass
moves with waves transmitted, the remainder being reflected back at z = z;.
Figure 4.3(a,b) illustrates an ISW moving from a deep region into the shallow

water in the case when s >> s, with L = 80, = 20. The critical point =z,
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is at 73.26. The ISW passes over the whole cosine-shaped shelf with a smooth
single-valley profile and starts to oscillate at the tail only when it is close to the
flat region of the shallow lower layer. The amplitude and peak location of the ISW
of depression during the whole evolution period are shown in Figure 4.4(a,b). The
parameters are taken with a, = —0.03,z; = 40,z, = 20,5 = 0.85,h; = 04,d =
0.6,d; = 0.15.

Figure 4.5 shows the computational results when s << s,, with L =
600, A\ = 20. The critical point x; is at 289.45. The ISW of depression has an
oscillatory tail when it approaches the critical point. There is no reflection as the
ISW passes through the trans-critical region. The amplitude and peak location of
the ISW of depression are shown in Figure 4.6(a,b). The parameters adopted are
a, =—0.03,2; =40,z, = 20,p = 0.85,h; =0.4,d = 0.6,d; = 0.15.

Figure 4.7 shows the overtaking interaction of two ISWs with their peaks at
T1o and zg,, respectively; it does not exhibit much influence from the presence
of the critical point. The parameters adopted in the computation are z;, =
15,29, = 45,a; = —0.04,a9 = —0.03,d1 = 0.15,d = 0.6,hl = 0.4,24 = 70,p =
0.85,L = 80,5 >> 8y.

Figure 4.8 shows the head-on collision of one ISW of elevation moving to the
left with another ISW of depression moving to the right. Figure 4.9(a,b) shows
the amplitude and peak position of the ISW of depression changing with time. Its
phase shift resulting from the collision is backward, which is about 0.1 in space
for time fixed. In parallel, the computation shows the phase shift of the ISW of
elevation is about —0.04 (forward) in space for time fixed. The parameters used
in the compuation have the following values z;, = 75,23, = 190,2; = 100,L =

80,5 = 0.85,h1 = 0.4,h2 = 0.6,d1 = 0.15,a; = —0.03,a; = 0.01,5 >> s,,.
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4.3.3 Results for Evolution of ISWs on a Straight Slope Beach

In this section, the numerical computations performed are similar to that in
section 4.3.2 except that the bottom topography adopted here is a uniform sloping
seabed in the L section as shown in Figure 4.1. Because the lower-layer depth in
the subcritical region is greater than the upper-layer depth, the ISW is supposed
to encounter a critical point within the L section. We consider two different
slopes and find the numerical results to be similar to those presented in section
4.3.2 before the ISW breaks or reaches the interfacial waterline. The parameters
adopted in computations for Figure 4.1 are z, = 35,21 = 70,p = 0.85,h; =
1.0, hy = 1.5,a, = —0.1, 38, = 0.002. At least 99% of the initial excess mass moves
with the wave transmitted, the remainder being reflected back at z = z;.

Figure 4.10(a,b) shows a single ISW of depression moving to the right and
climbing the seabed with slope s = 0.01 >> s,,. The critical point z.is at 111.53.
The ISW wave grows in amplitude with its speed decreasing as it propagates up
the slope. The ISW of depression can exist during the time when it passes through
the critical point. This case is quite similar to what we observed in our laboratory
experiment.

Figure 4.11 shows the propagation of an ISW of depression up a beach of slope
s = 0.001 << s,,. The ISW developes an oscillatiory tail in the neighbourhood of
the critical point z; at 485.35. The amplitude and peak location of the ISW are

shown in Fig. 4.12(a,b).
4.3.4 Comparison with Experiment

Helfrich & Melville (1986) presented an experimental study of propagation of

long nonlinear internal waves over a sloping-shelf topography with slope s = 0.036



- 77 -

in the L section and an ISW of maximum slope s,, = 0.024 (see Fig. 4.1). The
density ratio and depth ratio of two layers are 5 = 0.966 and h;/hy = 0.59. The
ratio of d; to dis 0.27. The initial amplitude a,/h; is -0.159. In Figure 4.1, we
take & = z/L, and &, = z;/L. The critical point is at £; = 0.74. The comparison
between their experimental measurement and the computational result based on
the ILW model provides a good agreement (see Fig. 4.13). The prediction from
the KdV-type equation (4.11) is that the profiles of an ISW in the L section do

not change too much relative to the initial condition.
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Figures for Chapter 4
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Figure 4.1 The sketch of a cosine-shaped bottom topography in a two-layer
system. z, is the peak position of an initial incident ISW; z; is the cosine-shaped
transition point; L is the length of the slope.

C/ial

0 0.2
. N
-0.4 6.2
-0.6 U
-0.8 -0.4

-1 -0.6

(a) (b)
-1.2 -0.8
-1.4
40 €0 80 100 120 140 BT 60 80 100 120 140
Cliaf | .

0.75

6.5 0.5

0.25 /\A A

0 0 v"V ——
-0.25 \/ \/ VUUV

-0.5 -0.5
-o.75} (©) (d)

10 60 80 100 120 140 -1 40 60 80 100 120 140

T

Figure 4.2 Numerical computation of Eq. (4.11) with the initial amplitude of

one ISW q,
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—0.6. The critical point is at n = 50. (a)np = 0; (b)n = 50;(c)n =
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Figure 4.3(a) The wave profiles of an ISW of depression moving on the cosine-
shaped bottom as shown in Fig. 4.1 with s = 0.0056, s,, = 0.0015, a, = —0.03,

To = 20,21 = 40,5 = 0.85,h; = 0.4,d = 0.6,d; = 0.15, L = 80.
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Figure 4.3(b) The wave profile of the ISW of depression in case of Fig. 4.3(a)
at ¢ = 700.



- 81-

-0.01

-0.02}
-0.03
-0.04} \_______

-0.05¢

amplitude

100 200 300 400 500 600 700
time t

Figure 4.4(a) The time history of the amplitude of the ISW of depression in case
of Fig. 4.3(a).
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Figure 4.4(b) The time history of the peak position of the ISW of depression in
case of Fig. 4.3(a).
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Figure 4.5 The oscillatory tails appear when an ISW of depression moving on the

cosine-shaped bottom as shown in Fig. 4.1 with s = 0.00075, s,, = 0.0015,a, =

-0.03,z, = 20,27 = 40,p = 0.85,h; = 0.4,d = 0.6,d; = 0.15, L = 600.
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Figure 4.6(a) The time history of the amplitude of the ISW of depression in case

of Fig. 4.5.
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Figure 4.6(b) The time history of peak position of the ISW of depression in case

of Fig. 4.5.
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Figure 4.7 The overtaking interaction of two ISWs of depression with their initial
peaks at z;, = 15,23, = 45 on the bottom topography as shown in Fig. 4.1 with
the parameters s > s,,a; = —0.04,a2 = —0.03,z; = 70,5 = 0.85,h; = 04,d =
0.6,d; = 0.15, L = 80.
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Figure 4.8 The head-on collision of one ISW of depression to the right with
another ISW of elevation to the left. Their initial peaks are at 1, = 75, 25, = 190,
respectively. The parameters adopted in Fig. 4.1 are s > 8,041 = —0.03,a2 =
0.01,z; =100,p = 0.85,h; = 0.4,d = 0.6,d; = 0.15, L = 80.
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Figure 4.9(a) The comparison of the time histories of the amplitude of the ISW
of depression for cases of the collision not involved and involved as shown in Fig.
4.8. — collision case; —— no collision case
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Figure 4.9(b) The comparison of the time histories of the peak position of ISW
of depression for cases of the collision not involved and involved as shown in Fig.
4.8. The phase shift is forward in time. —- collision case; —— no collision case
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Figure 4.10(a) Wave profiles of an ISW of depression moving on the sloping-
shelf bottom as shown in Fig. 3.7 with s = 0.01, s,, = 0.002,z, = 35,z; = 70,p =
0.85,h; = 1.0,hy = 1.5,a, = —0.1.
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Figure 4.10(b) The wave profile of the ISW of depression near the interfacial
waterline in case of Fig. 4.10(a). At point a: t = 900; at point b: ¢ = 1000; at
point c: t = 1100.
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Figure 4.11 The oscillatory tails appear when an ISW moves on the bottom
topography as shown in Fig. 3.7 with the parameters s = 0.001, s, = 0.002,z, =
35,21 = 70,p = 0.85,h; =1.0,hy = 1.5,a, = —0.1.
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Figure 4.12(a) The time history of the amplitude of the ISW of depression in
case of Fig. 4.11.
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Figure 4.12(b) The time history of the peak position of the ISW of depression
in case of Fig. 4.11.
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Figure 4.13 The comparison between the experimental measurement and the
computational result by the ILW model. Define § = %(t — i) N Z%%)? & =

o

&l €=2/L (a)¢ = 0,6 = 0; (b)§ = 0.39,& = 0.4; (c)¢ = 0.59,¢, =
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ILW model; — — —— the experiment.
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Chapter 5

Conclusions

In this chapter, conclusions are presented based on the results obtained in
our study. In a system of two-layer fluids with a discontinuity in density, we have
developed the ILW model to formulate generation and propagation of oceanic
nonlinear internal long waves. For unidirectional waves, the ILW model reduces
to the KAV model. For modeling right- and left-going IWs simultaneously, we have
derived the bidirectional model systematically from the ILW model. According to
this bidirectional model, phase shifts in head-on collision of two ISWs are found
for both waves to retard in time, a result which is the same as for head-on collision
between two solitons in a single layer of water; this holds whether the two ISWs are
both elevated or both depressed in polarity. This kind of phase shift, of course,
would never arise in linear theory. With the dispersive effects neglected in the
ILW model, we have obtained analytic solutions of the nonlinear equations for
run-up of IWs. With such analytic solutions, the matched solution, the solutions
of two initial run-up problems and the run-up law for ISWs of small amplitude
have been obtained. With the dispersive effects included, we have applied the

ILW model with the standard predictor-corrector two-step numerical scheme to
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solve the run-up problem of ISWs and find the moving boundary technique very
satisfactory. The nonlinear propagation of ISWs of depression across a critical
point is investigated numerically and experimentally. Based on the numerical
results obtained from the ILW model, we find that when the beach slope is much
greater than the ISW wave slope, there is no discernible influence from the presence
of critical point. However, when the beach slope is much less than the ISW
wave slope, the ISW is seen first to gain its amplitude, to reduce its speed as it
passes through the trans-critical region and to develope an oscillatory tail in the
neighbourhood of the critical point. In our laboratory experiments, we have not
seen any change of ISWs of depression in polarity. We find that the ILW model
can give numerical simulations in good agreement with the experiment of Helfrich
& Melville (1986). The difference between the numerical results based on the
KdV equation and the ILW model shows that the reflected waves play a role in

the computations.

KdV ILW

Waves Predicted Unidirectional Bidirectional

Mass Conserved No Yes
Energy Conserved Yes Yes
Run-up Problem Cannot Can
Polarity Changed Can Cannot
Experiment Compared Not Good Good

Table 5.1 The comparison between the KdV model and the ILW model

The present study shows that the ILW model is a good theory in predicting

generation and propagation of IWs in coastal waters compared to the KdV-type
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equation. The comparison between the KdV equation with variable coefficients
and the ILW model is presented in Table 5.1.

The KdV-type equation with variable coefficients is a model for only unidi-
rectional waves and does not conserve mass. However, the ILW model is applica-
ble to both unidirectional and bidirectional waves and holds mass conserved. In
contrast, both these models conserve energy. The KdV-type equation, being for
unidirectional waves, cannot predict interactions between waves and solid walls,
but the ILW model can be used to predict wave run-up on sloping seabeds with
appropriate boundary conditions and head-on collisions of two ISWs.

So far, we have found the ILW model very satisfatory. Our work high-
lights some problems to be further studied. More detailed experimental studies
of IWs require more work than has been done. Analytical methods for solving
the variable-coefficient KdV-type equation are required for further development.
More experimental observations are needed to be performed to further study the
ILW channel model in 3D cases. Breaking-wave theory and the turbulent mixing

in a system of two-layer fluids are still challenging problems.
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Appendix A

The Corrected Solution of Eq. (3.38)

The first order solution 9, of Eq. (3.38) is

by = 8ge AJ(£) cos . (A1)

Then, Eq. (3.38) provides for 9; the following equation:

1 1 3
;(01/)10)0 — P1rr = K[ZAQ cos 39 + (A + ZAz) cos ), (A.2)
where
_ Aw 5 J1(§) 2wA Jl(f) 3 _ p
=5° g o A= =(— . —==), K= T (A.3)

The boundary conditions are

¥y is bounded at £=0; ) =¢1,=0 at J= :’2[ (A.4)
Assume a general solution 1, satisfied by
Yy = F(0) cos?d + G(o) cos 39. (A.5)
Then, Eq. (A.2) gives the following equation
L(0F )+ (~2)PF = K(4 + > 4y) (A.6)
o' "7 T lom) T T 1Tyt )

For a small o, we find for ; the solution

= [B1J,(¢) + F, + F10?] cos 9+
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[B2J,(3¢) + G, + G10?] cos 39,

where

1 7,2mA .,
B, = -3-K[1 -+ "2"('""'3—) ],

1, 2m ., wA 4
Bz— 36K(w)(3),

Fo= KPSy - 2y,
Fi = KRR - SEEP G2,

_ 5 2m ., wA 4
GO_SK(&U) ( s )’
1 wA 4
G = —geK(=-)".

Finally, the solution of Eq. (3.38) to the second order is

(=—-sz+ o’ (1+—l—‘02)"1
= 169, ' 4877/ >
2 _ (MWoyzg L0

z = zo(0,9) + puz1(0, ) + puz2(0,?),

where

_1 Mo 2 1, a1 a? 1, o1
Lo = 4¢or+(a) (d’oa) (1+24P‘7 ) + 16m(1+48pa ) ,
W 2m ., 2m o, .
r = 2m[(B1 4Fl( w ) )Jo(§)+Fo+4F1( w0 ) ]Slnﬁ

3w 2m 4 2m o, .
o [(Bg — 4G ( 3w) )Jo(3€) + G + 4G ( 3w) ] sin 39,

2@ +er (2 - 28

= Pie = —B
T2 = P10 = | 15

2m 16,1  Jy(3¢)

37)35(5_ 3¢

W
+[“3Bz-2—n-;J1(3?9) + 2G4 (

)] cos ¥

)] cos 39.

(A.7)

(A8)
(A.9)
(A.10)
(A.11)
(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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