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ABSTRACT

In recent years attempts have been made to develop numerical
models for unsteady flows in channels with sediment transport. This
work was conducted to analyze two essential ingredients of any
numerical model: the relationship between the hydraulic variables
(slope, depth, and velocity), and the predictor of sediment concen-
tration.

A data base containing 7027 records (5263 laboratory records and
1764 field records) in 77 data files was assembled and is provided
(Appéndix B). The data base was used to examine existing relationships
and to develop new ones. Six existing hydraulic relationships are
reworked and examined. Detailed statistical analyses are provided
for 13 existing techniques for predicting sediment concentration.

Relying heavily on statistical analysis of dimensionless groups,
new relationships have been developed. The new hydraulic relation-
ship solves for flow depth for upper and lower regime flow separately
and then provides a method for determining which flow regime one
might expect. The new method for predicting sediment transport,
which is easy to use, appears to be more accurate than the 13 existing
methods, and suggests that complex procedures for calculating
concentration are not warranted.

A four-point implicit finite difference scheme has been presented
to demonstrate the feasibility of applying the new hydraulic and
sediment rela;ionships to a numerical solution of the differential

equations.
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CHAPTER 1

INTRODUCTION

In the design and analysis of channels, one is often faced with the
problem of determining the depth of flow and sediment concentration
which occur in a channel with given bed slope, water discharge, and
bed-material properties. The most fundamental problem can be stated as:
given steady uniform flow, what depth and concentration can be expected?
A more complex question is: given a nonsteady inflow discharge and
concentration, what will be the time history of depth and concentration
along the channel? This latter question requires solution of a set of
differential equations which will include the possibility of scour and
deposition along the channel. This report primarily focuses on the
former question, but with a view toward ultimate solution of the latter.

Only sand-bed channels are considered.

1.1 Differential Equations

The problem of modeling scour and deposition in unsteady nonuriform
flows in a wide straight channel with a sand bed can be reduced to
solving three partial differential equations with two constitutive
relations, for a total of five unknowns. The equations can be written
in different forms with different sets of unknowns. One possible set of

unknown quantities consists of the mean flow velocity (u), the flow



depth (h), the mean sediment concentration (C), the friction slope (S),
and the bed elevation (z) relative to some horizontal datum, which are
all functions of the distance x along the channel and time t. The width
is presently assumed to be constant and the flow and bed conditions
uniform across the width. There are of course many field situations
where this is not true, but this additional complexity will be set aside
in this report.

The three conservation equations to be solved are (see Fig. 1.1),

the momentum equation (Ponce et al., 1979)

u du au

3z ., dh , u du , 1
_— 4 —= 4+ _——_— = -
3x © ox | g 8% © g ot S (1.1)

the continuity equation for water

a(hu) , b _ (1.2)

X ot
and, the continuity equation for sediment

p N .
_ s 8z , 3(Cuh) , a(ch) _
(1 A) p ot + ox * 3t 0 (1‘3)

where ) = the porosity of bed sediment and py = mass density of sediment
particles. Because there are five dependent variables, but only three
equations so far, two more relations are needed for closure. These are
the equation for the friction slope as a function of flow and sediment
characteristics

S = function of (u,h,t,...) (1.4)
and the sediment concentration relationship

C = function of (u,h,t,...) (1.5)
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Figure 1.1 Definition sketch for equations of motion.



1.2 Previous Research

Probably the most widely used model for solving these equations is
the Hydrologic Engineering Center (1976), HEC-6 model. The ingredients
of the HEC-6 are generally considered the current state-of-the-art,
although more recent work, such as that of Ponce et al. (1979) and Soni
(1980) has brought about improvements which are not yet widely used in
general engineering practice. The model of Chang (1976), for example,
is founded on basically the same principles zs the EEC-6 and shares some
of the problems, although more recently improvements have been made on
this model (Chang and Hill, 1981).

Since the HEC-6 represents a state-of-the-art model, it is
worthwhile to discuss some problems that one might encounter for
situations involving rapidly changing flows:

(1) The "standard step method"™ (see e.g. Henderson, 1966) is used
to solve for the hydraulic parameters. This technique is,
strictly speaking, applicable only to steady nonuniform flow.
The technique assumes that the ju/5t and 3h/3t terms in
Eqs. 1.1 and 1.2, respectively, are small and can be
eliminated.

(2) The hydraulic equations and the sediment equations are not
coupled. For each step, first the hydraulic variables are
solved, and then the sediment discharge and bed changes are
calculated. Thus 3z/5x in Eq. 1.1 is taken as the initial

value at the beginning of the time step.

(3) The slope is defined by a Manning equation, and values of
Manning n must be known or estimated at each cross-section.

(4) The user is offered a choice of three sediment relationships
(i.e. Eq. 1.5), but it is not clear what accuracy each
provides, or why one should be selected over ancther.

(5) Time is not included in any of the sediment transport
relationships. Therefore, disregarding armoring, every flow



is assumed to be carrying the equilibriur concentration for a
comparable steady, uniform flow, without any time lag for
particle settling or resuspension or adjustment during
transients or non-uniformities.

Despite its flaws, the HEC-6 model is very general in its
capability of accepting complicated geometry and flow obstructions such
as bridges. As such, it is tempting to apply it to a wide variety of
channels and flow situations. It is the writer's belief that
engineering models such as HEC-6 should be applied with great care to

nodeling applications involving rapidly varying flows, and that the

results should be viewed with considerable skepticism.

1.3 Scope of Study

Having considered the problems involved in formulating a numerical
model, we return tc the problem of the formulation of the hydraulic and
sediment concentration relationships. Solutions to the differential
equations are meaningless without adequate formulations of these
relationships. Rather than formulate these relationships as represented
by Egs.1.4 and 1.5, a different approach will be taken, which will be
more useful for steady uniform flow, and can be applied as an
approximetion for the unsteady case. For the uniform case, the
assumption will be made that slope and unit discharge, q = uh, are known
and one wishes to find depth and concentration.

In order to examine previous definitions of these relationshkips a
large data base of both field and laboratory data was needed. The

establishment of such a data base is discussed in Chapter 2. In Chapter



3 six existing formulations of the hydraulic relationship are analyzed
to answer the question: can they be used to determine depth, given
slope and unit discharge? The data base was then used to develop a new
formulation of the hydraulic relationship, which is presented in Chapter
4. The data base was also used to examine existing definitions of

Eq. 1.5 (Chapter 5) and to develop a new definition of this relationship
(Chapter 6)., Chapter T discusses solutions to the set of differential
equations which utilize the new formulations, and presents
recommendations for future work. A summary of the study and conclusions

are presented in Chapter 8.



CHAPTER 2

DEVELOPMENT OF A DATA BASE

memﬂn%pm&mwinmnr@wtmmytheawnwmmof
the large data base of both laboratory and field data which is presented
in Appendix B. The initial thought was that the data compendium of
Peterson and Howells (1973) could be used to supply the required data.
Unfortunately, in working with this data compendium, the writer
discovered a significant number of errors. Furthermore, additional data
were needed, particularly good field data.

Peterson and Howells (1973) are to be commended for taking the
first step toward the development of a computerized data base. The task
of locating data and reducing it to a common set of variables and units
requires long hours of tedious work. The data collection of Peterson
and Howells is essentially an update of the data collection of Johnson
(1943). However, before any data set can be used with total
satisfaction, all of the errors must be eliminated.

A careful, item-by-item check suggests that four types of errors

were made in the preparation of the Peterson and Howells (1973)

compendium:

(1) Incorrect individual entries -- these entries usually have
incorrectly ordered digits or misplaced decimal points.

(2) Conversion errors -- errors made in converting the data to a

standard format, typically involving conversion of transport
rates to sediment concentrations.



(3) Misinterpretation of data -- this error usually involved whole
columns of data, and probably occurred as a result of
confusing notation in the data source.

(4) Source errors -- errors originating from incorrect original
publication of data, discovered by checks on internal
consistency.

Also encountered were omissions of entries such as bed form and the
gradation parameter (geometric standard deviation of bed particle size),
which could be determined from the original data sources, even though
they were not explicitly stated.

The following is a description of some of the apparent errors that
were encountered. In the data of Sato, Kikkawa, and Ashida (1958) the
grain size given in centimeters was read as millimeters. Therefore the
values of the median sediment size given by Peterson and Howeils must
all be multiplied by 10 to obtain the correct values for this data set.
The Straub (1954,1958) data set contains 3 concentration values which
are a factor of 10 too high. For the data sets of Abdel-Aal and of
Kalkanis (Abdel-Aal, 1969), and Vanoni and Hwang (1967), the values
given for discharge are really flow velocity, and the slope and depth
entries are interchanged. An incorrect interpretation of the transport
rate of the Williams (1970) data as being given in dry unit weight per
time instead of submerged weight resulted in an error of about 60
percent in the sediment concentration readings. The transport rate for
the Indian Canal data (Chaudhry, Smith, and Vigil, 1970), given in

metric tons, was read as English short tons, causing a 12 percent error

in sediment concentration.



In the development of a new data base from the Peterson and Howells
(1973) compendium, a few sets of data where omitted, while many others
were added. The sets were omitted either because the data were not
applicable (one set of data was for transport of sludge), or because
important variables were unavailable (one set contained no slope
measurements). The sets that were added included newer data
(e.g. Willis, 1979) and a large quantity of field data, such as the
Colorado River data (U.S. Bureau of Reclamation, 1958) and the Rio
Grande (Nordin and Beverage, 1965) data.

At this point it is worthwhile to define a few terms related to
sediment transport, as used in this report.

Sediment concentration is the ratio of the sediment discharge to

the discharge of the water-sediment mixture, both expressed in terms of
mass per unit time, usually given as parts per million (ppm). For
practical reasons, the density of the water-sediment mixture is taken to
be approximately equivalent to the density of the water. This
approximation will cause errors of less than one percent for
concentrations less than 16,000 ppm. In this thesis, the concentration
is used as a depth- and time-averaged (i.e. mean) value, unless
specified otherwise.

Sediment load or total sediment load is the material being

transported. The sediment load can be divided into wash load and
bed-material load. The wash load is the fine material of sizes which
are not found in appreciable quantities on the bed, and is not

considered to be dependent on the local hydraulics of the flow. As a
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practical definition, the wash load is considered to be the fraction of

the sediment load finer than 0.062 mm. The bed-material load is the

material of sizes which are found in appreciable quantities on the bed.
The bed-material locad can be conceptually divided into the bed load
(that portion of the load that moves near the bed) and the suspended
load (that portion of the load that moves in suspension), although the

division is not precise.

Sediment transport rate is equivalent to the sediment discharge,

which is expressed as mass per unit time.
The concentrations given in the data set and predicted by the
transport formulas are for the bed-material load, including both bed

load and suspended load. From this point onward the term concentration

Wwill refer to the bed-material-load concentration. Under field

conditions this quantity is very difficult to measure; often the bed
load portion is left unmeasured and must be estimated. In some cases,
such as for some of the data of Mahmood et al. (1979), the estimated
portion of the load may represent 80 percent of the concentration. In
the case of the NEDECO (1973) data, the sampling procedure included
material as fine as 0.05 mm, instead of the usual cutoff of 0.062 mm.
Neither of these data sets was used in the analyses of sediment
transport formulas.

Ten variables, including bed form codes, are given for each
observation. Bed form classifications are as given by Vanoni (1975,
p. 160). Actual flume measurements, without adjustment for sidewall

roughness, are given in the tables. (Sidewall corrections for
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laboratory data have been used in the analyses that follow.)

While great care has been taken to reduce all cata sets to common
variables, in some cases it was not possible to achieve complete
consistency between data sets. Space limitations do not permit a
detailed account of all of the procedures and assumptions that were used
to reduce each data set to common terms. Potential users of the data
base are urged to consult the original sources of the data.

The data tabulations and description of the entries are given in

Appendix B. The references for the data have been compiled separately

from the literature references.
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CHAPTER 3

REVIEW OF METHODS FOR CALCULATING FLOW DEPTH IN SAND-BED CHANNELS

The problem of determining the velocity and depth of flow for a
given discharge of a river has long been a subject of interest to
hydraulic engineers, and more recently to numerical ﬁodelers. A
numerical model requires a logical scheme, whereby stage and velocity
can be<predicted for a channel of given dimensions, bed material, bed
slope, discharge, and water temperature. For certain ranges of these
parameters, multiple values of sediment discharge and flow depth may be
possible, as discussed by Kennedy and Brooks (1965). However, the
engineer is often faced with the problem of designing a channel to
accommodate a given discharge with a given bed slope and an unknown
sediment discharge. Therefore, this chapter considers the problem where
sediment discharge is assumed to be unknown, and explores possible
solutions for uniform flow depth as a function of discharge, bed slope,
and bed-sediment and fluid properties. Later, the development of a

model will require adaptation of such a relationship for unsteady,

nonuniform flows.

3.1 Statement of Purpose

A technique is sought, whereby an engineer can directly calculate

the uniform or normal flow depth of a channel with a given unit
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discharge, and which can also be used in a numerical model for unsteady,

nonuniform flows. Such a technique should:

1. Agree with experiences gained in both the laboratory and the
field;

2. Include confidence limits or some statistical analysis of the
input data to indicate expected errors;

3. Be easily adaptable to computer modeling applications which may
require thousands or millions of depth of flow calculations;

4, Provide solutions for a wide range of independent variables.

Six techniques for predicting friction factor (which relates
velocity to shear velocity) are examined for their usefulness as stage
predictors in a moveable-bed river model. Each technique has been
rearranged so that given unit discharge and slope, along with other
independent variables, one can directly determine flow depth. The six
schemes are those of Alam, Cheyer and Kennedy (1966); Chu and Mostafa
(1979); Einstein and Barbarossa‘(1952); Engelund (1967); Garde and
Ranga Raju (1977); and White, Paris and Bettess (1979). Although each
technique has provided an important contribution to the field, none
satisfies all of the criteria listed above. Therefore, a new technique
is presented which does satisfy the four criteria.

The reader is referred to the report of the ASCE Task Force (1963)
for an excellent historical review of the problem of predicting friction
factors in open channels. Reviews of many friction factor predictors
can be found in Vanoni (1975), Garde and Ranga Raju (1977), and Jansen,
et al. (1979). It will be assumed that the the reader has some

familiarity with these techniques.
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3.2 General Form of Velocity Equations

Strickler (1923) listed 22 velocity formulas fo; open channels,
whereby, as of 1914, stage could be predicted. Most of these equations
are power laws relating mean flow velocity to different powers of
hydraulic radius and hydraulic slope. Two formulas remain in wide

2/%lﬁ7n (metric units),

useage today, the one attributed to Manning, v=r
and the Chezy equation, v=CVF§T where v is mean velocity, r is hydraulic
radius, S is the slope of the hydraulic grade liné, and n and C are
known as the "Manning™ and "Chezy" coefficients, respectively. Both of
these empirical equations have dimensional coefficieﬁts which must be
estimated for a given application.

A more modern formulation is based on dimensional analysis and the
concept that the mean shear stress, T = pgrs, in which ¢ is the density

of the fluid, and g is gravitational acceleration, is proportional

1 .
to EDV% This gives the Darcy-Weisbach equation:

' 8 ]/8

where u, is known as the shear velocity. This equation is conceptually

sound, and f is dimensionless.
A dimensionally consistent Manning-type equation can be created by

defining friction factor in the following manner:

1/6
v o_ _2_= a(f::) (3.2)

where a is a coefficient of proportionality and kg is a measure of bed
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roughness. If Eq. 3.2 holds, then Manning's n (metric units) can be
defined by
kl/G
s

(3.3)
arg

n=

After comparing the Manning and Darcy-Weisbach equations, the ASCE
Task Force (1963) concluded that:
"At the present (1961) state of knowledge, if applied with
Judgement, both n and f are probably equally effective in
the solution of practical problems."
This comment suggests that Eq. 3.2 may form a reasonable definition of

friction factor, in many practical situations.

3.3 Fixed-Bed Friction Factors

Friction factors for turbulent flow in fixed-bed channels have
their roots in the classic sand-roughened pipe experiments conducted by
Nikuradse (1933). The fixed-bed concept may be generalized to include
some rivers with gravel beds, which,‘although not strietly fixed, do not
form dunes or bars in the manner of sand bed streams. The ASCE Task
Force (1963) has reviewed this topic in some detail, and only a brief
discussion, pertinent to the later derivations, is given here.

For high bed Reynolds numbers (u*ké/v), the data of Nikuradse,

based on experiments with sand-roughened pipes give

14.8
L -2 1og35+ 1.74 = 2 log—-k—£ (3.4

E ke, s
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Here, pipe flow is analagous to channel flow with diameter replaced by 4
times the hydraulic radius. As discussed by the writer (1981), these
data are the basis for the fully rough region of the Moody pipe friction
diagram. The transitional region between smooth and fully rough

conditions is defined by the magnitude of the bed Reynolds number:

u*kS
Y10 < —= < 100 (3.5)

As illustrated in Fig. 3.1, rough conditions include most flow depths
one might encounter in gravel-bed channels.

Friction factors for bed Reynolds numbers less than 100 can be
obtained from thé diagram or equations given by the writer (1981), based
on Nikuradse data; or from the Moody diagram (Streeter, 1971) or the
Colgbrook-White transition function, upon which it is based. The
Nikurédse data show that friction factor decreases and then increases as
Reynolds number decreases, while the Colebrook-White data show a
corresponding steady increase in f, through the transition region.
Therefore, the value of friction factor for a channel with a
transitional Reynolds number cannot be determined with certainty.

An earlier equation, proposed by Strickler (1923), is based on data
from gravel-bed rivers and fixed-bed channels. The equation, now known
as the Manning-Strickler equation, is equivalent to Eg. 3.2 with a =
7.66 and with kS defined as the mean gravel-particle size. The
Manning-Strickler equation and the Nikuradse Eq. 3.4 are plotted in
Fig. 3.2, along with the mean values of the fully rough Nikuradse data.

Figure 3.2 shows that for the range of relative roughness used by
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Nikuradse, the semilogarithmic Eq. 3.4 is almost identical to the power
law, Eq. 3.2, with a = 8.32,

Field data for very low values of relative roughness, r/kS (e.g. flow
over boulders) of Limerinos (1970) suggest that the semi-logarithmic
form may be more appropriate than a simple power law, when one considers
such extreme values of relative roughness. However, for low values of
relative roughness, experiments of Bayazit (1976) of flow over
hemispheres, suggest that the semi-logarithmic Eq. 3.4 is correct only
when kg is replaced by 2.5 times .the diameter of the hemispheres.
Therefore, whether due to the uncertainty in determining ks, or to the
differences between pipe and open channel resistance, it seems that a
power law, such as Eq. 3.2, will give results of accuracy equivalent to

Eq. 3.4, in many cases.

3.4 Existing Stage-Discharge Predictors

The six techniques discussed here have been reworked to directly
answer the question: given unit discharge, slope, bed-material
properties, and temperature, what will be the depth of flow, or
hydraulic radius? The techniques have been selected on the basis of the
following criteria: (1) they seem reasonable to the writer or have
achieved some degree of acceptance, (2) they are dimensionally
consistent, and (3) they are self-contained. The third criterion
eliminates those techniques which require a knowledge ofvbed form, but

do not specify how one would determine the bed form for a particular
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flow condition.

Garde and Ranga Raju (1977) have considered stage-discharge, or
friction factor prédictors in two categories, those that divide
resistance into grain resistance and form resistance, and those that do
not. The divided approach assumes that friction factor, f = £ + fm,
where f' is for flat-bed grain resistance and f" is for the added
resistance of bed forms. The quantity f' is usually determined from one
of the fixed-bed relations previously discussed, by assuming either S =
S'" + S" or r = r' + r", and then replacing f by f' and S by S' or r by
r' in the appropriate diagram or equations. While the divided and
non-divided approaches represent different conceptualizations of the
problem, the writer does not feel that either technique is clearly
superior or more valid than the other. Therefore, here both the divided
resistance approach and the singular approach are considered together.

At this point a few words about notation are worthwhile. Since
none of the techniques discussed deal with channel width, it has been
assumed that they apply to wide channels, for which hydraulic radius and
mean flow depth are equivalent. For consistency, hydraulic radius has
been substituted for flow depth in those cases where flow depth was used
in the original analysis, Unit discharge is therefore defined as q =
vr. For laboratory flume data, the sidewall correction of Vanoni and
Brooks (1957) has been used to define a bed hydraulic radius which is
equivalent to the mean depth of an infinitely wide channel with the same
slope, velocity, and bed friction factor as the flume. Therefore, the

subscript b, sometimes used on r and f to indicate that a sidewall
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correction has been performed, has been omitted. Finally, with the
exception of a few definitions, unique to individual authors, all

notation has been converted to a common convention.

3.4.1 Alam, Cheyer and Kennedy Analysis (1965)

This technique is a divided-resistance approach, which assumes S =
S' + S". The technique is similar to the more recent Alam and Kennedy
(1969) version, except for the manner in which the grain friction factof
is determined. The earlier technique is discussed here because the
grain resistance is determined from a standard Moody diagram, and can
easily be expressed in equation form, by the Colebrook-White equation.
The diagrams for determining f" for the two versions are nearly
identical, therefore the discussion of the earlier analysis could be
adapted to apply to the later version.

Using dimensional analysis, Alam, Cheyer and Kennedy (1966) created

a diagram based on the following relations:

£" = funct (—— , —— (3.6)
(Dso V8Ds5q )

and the Colebrook-White equation,

D
1 50 2.51> (3.7)

T T 7% lee (14.8r TR
where R = lUq/v is Reynolds number.

A diagram (Fig. 3.3) can be constructed whereby, given q, S, R, g,
and D., one can determine r'/D5

50 0

the independent dimensionless groups in Eq. 3.6, and defining q, =

and f" directly. Taking the product of
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Replot of Alam, Cheyer and Kennedy (1966)
diagram for determining f'. Solid lines
were determined from Eqs. 3.7 and 3.9.
Dashed lines are from the original diagram-
in the form of Eq. 3.8.
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q/ /gD5(3) , yields

£ = funct<q*, L> (3.8)
D
‘ 50
while the derinition of friction factor yields
8S r
f" =22 [(_L \3 _ f'

Figure 3.3 was created from Eqs. 3.8 and 3.9, where tne relation
described by Eq. 3.8 was taken from the Alam, Cheyer and Kennedy ( 1v66,
Fig. 3.12) diagram.

For the purposes at hand, there are several problems with the
application of Fig. 3.3. 1) Computer coding would be difficult, and tne
resulting algorithm would undoubtedly be computationally slow. 2) For
large and small values or q, on the diagram, the curves or constant
q, and constant q§/88 are nearly parallel, suggesting tnat there are
virtually no solutions in these regions.* 3) For large rivers, such as
the Mississippi, q, may be larger than any values found on Fig. 3.3,
which has exactly the same range or applicabiiity as the original

diagram ot Alam, Cheyer and Kennedy.

3.4.2 Chu and Mostafa Analysis (1979)

The technique presented by Chu and Mostafa (1979) is essentially a
mathematical expression of the graphical technique presented by Mostafa
and McDermid (1971). The newer analysis allows a straightforward
adaptation ot the technique to numerical modeling applications. The

analysis is based on the detinition of a dimensionless Manning
*As f'" approaches 0, q, and qi/SS are no longer independent.
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coefficient, C , which is equivalent to the inverse of the

Mi

Manning=-Strickler a in Eq. 3.2, with kS = DSO'

Using nonlinear curve fitting techniques, Chu and Mostafa (19Y79)

developed tne following equations

D
D 50
¢y = 0.037(_%2)0,583 . F-[0.228( 3 ) + 0.785] + 0.122 (3.10a)
D5
.oofor — < 5
)
and
- D5
Cy = 0.077 F 1.02 .. for == > 5 (3.10b)
where F = v//gr = Froude number and ¢ = 11.6v/u, = thickness of the

laminar sublayer. A detailed description of the data used to derive tne
equations is not available. However, from Mostafa and McDermid (1971,
Figs. 2=-F.12 and 2-F.13), the diagram corresponding to Eq. 3.10a snows
about 100 measurements from 4 rivers and 44 runs from one set of
laboratory data, while tne diagram corresponding to Eq. 3.10b snows 28
measurements on gravel-bea canals from Lane and Carlson (1953). The
range ot applicabiiity of Egqs. 3.10 is apparently 0.122 < CM < 0.45 and
0.15 < F < 1.0. |

The following equations can be determined from the derinitions o1

= 3 .
cM and §, with Rg = /gDSO/\).
CMFIO/S = q1/951/2 =4 (3.11a)
and
5 1/3R S1/2
50 9% Rg
30 /3 - 3.11b
5 11.6 B ¢ )
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where o and B are dimensionless groupings ot q, S, DSO’\) and g, as
derined here. By combining Eqs. 3.10a and 3.11b, one can obtain an
equation for CM in terms of F and B , and, along with Eq. 3.11a, one has
a set of equations which define F and CM in terms of o and B. Figure
3.4 was developed in this manner, and can be used to determine F and %ﬂ’
when D50/§ is less than five.

An expression for F, for values of D50/6 > 5, can be determined by

combining Egs. 3.10b and 3.11a. In principle, the resulting equation,

F=1.666 q*l.220 g5.488 x 1012 (3.12)

in conjunction with Fig. 3.4, should complete the theory.

In reality, a simple example shows that this is not the case. To
illustrate the point, we can consider the example where S = 0.0005.
D50 = 0.24 mm, T = 200 C and q=1 mz/s. The calculated values of the
right sides of Eqs. 3.11a and 3.11b are 0.08 and 1.00, respectively, and
from Fig. 3.4, F = 0.31 and CM = 0.30, and from Eq. 3.11b, D50/6 = 1.5.
Now, if we assume that we are considering a uniform river-flow problemn,
we may wish to increase the unit discharge, while holding all other
independent variables constant. If q is increased to 8 mz/s, then the
valdes of Egs. 3.11a and 3.11b are increased to 0.10 and 2.00,
respectively. An inspection of Fig. 3.l indicates that no solution is
available. We may suspect that Eq. 3.12 will now be applicable.
However, substitution into this equation gives Froude number, F = 16.7,

an unreasonable value, and calculation of DSO/G indicates that this

equation is not applicable either. This example illustrates a typical
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Problem one might encounter for Froude numbers less than 0.5, since, in
this region of Fig. 3.4, the solid and dashed curves are nearly parallel

(this point was mentioned briefly in Vanoni, 1975, p.145).

3.4.3 Einstein and Barbarossa Analysis (1952)

The concept of a form-resistance diagram was developed by Einstein
and Barbarossa (1952). Although the technique is now nearly 30 years
old, it is still probably the most widely quoted of any existing
techniques. The technique uses the divided hydraulic radius approach,
i.e. r=r' +r" u, =4gr's.

When the grain roughness produces fully rough conditions, r' can be

determined from the Manning-Strickler equation, in the form

— = alg— =\/=r (3.13)

where a = T.66. For those cases where grain roughness does not produce
fully rough conditions, Einstein and Barbarossa presented a
semilogarithmic equation with a terﬁ which must be determined
graphically. This equation is in agreement with the Nikuradse (1933)
data and may be replaced by the equations given by the writer (1981)
which do not rely on any graphically determined terms. The simple form
of Eq. 3.2 allows a clean analysis of the technique, while the
semilogarithmic equation does not. Therefore, further discussion of the
technique is restricted to fully rough conditions. This restriction is
nbt too serious, since both equations yield similar values of r', for

most field conditions, even when the flow is not striectly fully rough.
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The Einstein-Barbarossa (1952) diagram, is of the form

= 65 '
f" = funct E——-(——p:—)s . r—] (3.14a)

and from Eq. 3.13 and the fact that r" =z r = r', one can derive

D
" 8 [ 50 3/2 94 ' =2 1 =1/3
o= S 22 A r
2 M e B N () (3.14b)
ac | Dgs av’s D Do ]

Figure 3.5 was created from Eqs. 3.14a and 3.14b.

As discharge varies, for a given channel with uniform flow
(constant slope), the solution will move along the solid lines on
Fig. 3.5. The diagram indicates that as discharge decreases, f"
increases monotonically. When f" is about 0.17, regardless of any other
variables, the dimensionless grain-shear stress T, = Pr'S/(p-0)D . =
0.062, which is sometimes taken as the critical value for initiation of
motion. Below this value f" continues to increase as discharge is
decreased, indicating high resistance, apparently from residual
bedforms. Beyond the critical shear stress, about a twenty=-fold
increase in unit discharge causes the form resistance to steadily
decrease to almost nothing, suggesting f = f'. A later comparison shows

that for some channels this variation in f" is too exaggerated.

3.4.4 Engelund Analysis (1967)

In principle, this technique is based on the divided slope
approach, but in actualization, the divided hydraulic radius is used.
The analysis is based on the assumption that S"™ is the direct result of

expansion losses that occur as a fluid flows over dunes. Furthermore,
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it is assumed that rS' = r'S, thereby converting to a divided hydraulic
radius approach. Definition of S' in such a manner is not in agreement
with the concept of S' as defined in the introduction to the discussion
of the various techniques. Verification of the analysis is based on
laboratory data from runs using four different sands, published by Guy
et al. (1966). In all, 148 runs are published (for these 4 sands), but
it appears that about half this number were actually used by Engelund
(1967).

The quantity r' is defined by

v r' 5.51r"
— =6+ 2.51 = 5, LAA4 L
u, n 2D65 5.76 log D65 (3.15)

which agrees with the fully rough Nikuradse data and gives nearly the
same results as Eq. 3.4. Once r' is determined, it is possible to
determine T, by the empirical formulas for the lower flow regime

(ripples and dunes):

T, = 1.581v7,'-0.06 (3.16a)
and for the upper flow regime (plane bed, standing waves and antidunes):

’ Ty for t,'<1 (3.16b)

*
-1. - 8
}(1.4251*' ¥ 042571 ...for 1,'>1  (3.16c)

Ty
Equations 3.16a and 3.16b are given by the author, while Eq. 3.16c was
developed from the author's diagram (Engelund, 1967, p. 289). The

equations for upper and lower flow regimes plot as discontinuous line

segments with the transition occuring at about T, = 0.55.
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Equations 3.16a-c can be represented in the general form

D

65 o . r'

Ty = f[ ( —)S ] (3.17a)
D5y PgmP D¢ s

Also, rearrangement of Eq. 3.15 yields

D
P 50
G =) o5 s
T, = S 65 (3.17b)
p— [6 +2.51n(% ]_311.)]
65 2 Dgs

As for previous techniques, the desired graphical representation
(Fig. 3.6) of the technique is now possible. Using Fig. 3.6, it is
possible to directly determine 1, and r'/D65.

Equations 3.16a-c are easy to program and have been compared with
three sets of data in Figs. 3.7a-c. Data of Guy et al. (1966) are shown
in Fig. 3.Ta, which includes almost all of the data used in the original
analysis, plus additional data. Here, sands with fall diameter (not

sieve diameter) D values of 0.19, 0.27, 0.28, 0.45 and 0.93 mm are

50
plotted. Field data frdm the Mississippi River at Tarbert Landing, LA

(Toffaletti, 1968), D_ . about 0.25 mm, and laboratory data of Williams

50

(1970), D5 = 1.35 mm, are plotted in Figs. 3.7b and 3.Tc, respectively.

0
(Note - Although Williams used many channel widths in his experiments,
only data from the two widest channels are shown in Fig. 3.T7c.)

The diagrams which comprise Fig. 3.7 suggest that more refinement
of this technique would be necessary before general application could be
recommended. Figure 3.7a shows that a few measurements in the chute-and-

pool bed clas have strongly influenced the vertical asymptote on the

upper curve., Figure 3.7b suggests that more work is necessary in
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DATA OF GUY ET AL. (19686)
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Figure 3.7a Comparison of Engelund technique with data of
Guy et al. (1966).
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Figure 3.7b Comparison of Engelund technique with data for
the Mississippi River, Tarbert Landing, Louisiana.
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DATA OF WILLIAMS (1970)
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Figure 3.7c Comparison of Engelund technique with data of
Williams (1970).
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defining the transition region. The coarse sand data of Williams
(1970), plotted in Fig. 3.7c¢, imply that the inclusion of some other

variable may be necessary for certain ranges of data.

3.4.5 Garde and Ranga Raju Analysis (1970)

The original analysis for this technique was given by Garde and
Ranga Raju (1966), later fevised by Ranga Raju (1970), and summarized by
Garde and Ranga Raju (1977). It is the revised version which is
considered here. The technique does nbt employ the concept of divided
resistance. In fact, the technique does not even require the
calculation of a friction factor, per se.

Ranga Raju (1970) graphically presented a function of the form

= p _ r /3
K Fp = Klqv/;s-—_Tgﬁ = f[Kz(Dso) S("s'p)] (3.18)

where K1 and K2 are functions of mean particle size and FR, as defined

here, is a modified Froude mumber. By multiplying the independent
variable in Eq. 3.18 by the dependent variable raised to the 2/9 power,

a relation represented by

R Fp = £[(K,S) (Klq*)2/9<§%5)1°/9] (3.19)

can be determined, which is plotted in Fig. 3.8.
Like the Engelund (1967) analysis, Fig. 3.8 suggests that an upper
and a lower regime exist, separated by a transition zone. However, in

contrast to the Engelund technique, in Fig. 3.8, the transition occurs

as a continuous function. For a given bed material and slope, Froude
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number is a weak function of unit discharge, i.e. going to about the
0.10 power of unit discharge for both the upper and lower regimes.
Therefore, for either of these regimes, a ten-fold increase in unit
discharge causes only a 26 percent rise in Froude number.

Although Garde and Ranga Raju (1977) have not provided a rigorous
statistical analysis of the data they used, they have given some
indication of the expected accuracy of their technique. For 90 perceﬁt
of the plotted data, they have stated that mean velocity was predicted
to within 30 percent aécuracy. Although a large body of data was used
in the analysis, this is not an independent check of the technique, but
merely a statement of the‘observed errors.

If the technique is to be adapted to numerical modelling
applications, a specific function must be fitted to the curve in
Fig. 3.8. The curve can be very closely approximated by three straight

lines which, after rearranging, are represented by

o
1/6
veb =2 & s (3.20)
1 “s50
3.46 co..for KjFp £ 0.33 (3.20a)
where b = { 3.46 + 6.73 log(3K;Fp) ....for 1 > K Fp > 0.33 (3.20b)
6.67 «...for KiFp 21 (3.20¢)

Equation 3.20 is similar to the Manning=-Strickler Eq. 3.2, with the
constant, a, replaced by a function of DSO' For D50 > 1.5 mm, Eq. 3.20c
(upper flow regime) gives a =13.2 (in Eq. 3.2), which is not too close to

the value of a = T.66 given by Strickler (1923).
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If we consider only the lower regime, for a given channel, i.e. bed
material and slope fixed (assuming uniform flow), two facts about
Eq. 3.20a are evident. First, Manning's n is constant, and not a
function of discharge. Second, transition begins when a certain Froude
number is reached. This Froude mumber is not a function of slope, and
depends only on Kl, a function of DSO' The analysis presented in the
next chapter suggests that Froude number varies slightly within a flow
regime and that the transition is somewhat different than indicated
here. Nevertheless, the work of Garde and Ranga Raju have provided

important clues for the development of the new technique.

3.4.6 White, Paris and Bettess Analysis (1979)

As originally presented, this technique does not utilize the
divided resistance concept, however, like the Engelund (1967) analysis,
the dimensionless shear stress can be related to a dimensionless grain
shear-stress. White, Paris and Bettess (1979) have provided both
graphical and equational representations of their technique, as well as
a statistical analysis of the errors.

The authors have given two versions of their technique; one using
D35 of the parent bed material and one using D65 of the surface
material. The former has greater accuracy and is more compatible with

the other techniques discussed in this ‘paper, and is therefore discussed

here. For this version, a dimensionless grain size is defined by

D =D .8_03_5-211/3 (3.21)

gr 35 pv2



40

which, in turn, is used to define the quantities

0 ... for D > 60
n = gr - (3.22a)
1.0 - 0.56 log D .., for 1 <D < 60
gr -="gr -
0.17 «o. for D . > 60
and A = 172 & (3.22b)
0.23D__"*/% 4+ 0.14 ... for 1 <D __ < 60
gr - Tgr

Utilizing a divided slope approach, it is possible to define a

grain shear-velocity by

u' = v (3.23)
Y32 log (10r/Dy5)

and the corresponding dimensionless grain shear-stress as

2
pu,’ '
T = - 853 (3.24)
* — — .
gD35(oS p) D35(os p)
The dimensionless mean shear-stress is then T, = (u*/u*'ft;. Using

this definition, the White, Paris and Bettess (1979) method can be

represented by

: 2
B(V1, - A) + A] I
T 7 | (3.25)

where

e-(logD

1.7
B=1.0 - 0.76[1.0 - er) ] (3.25a)

whereby, for a given value of Dgr'T*' is a continuous funection of T, .
It is possible to present an analysis similar to the one given for

the Engelund technique, relating hydraulic radius to unit discharge and

slope. However the resulting diagram (analagous to Fig. 3.6), due to

the added variable Dgr, would be too confusing to be of much use. It is



41

more appropriate to examine a specific example, as in Fig. 3.9. The
data in Fig. 3.9, Igo = 0.45 mm and rér = 10.1, represent a portion of
the data plotted in Fig. 3.Ta. While the Engelund (1967) technique (see
Fig. 3.7a) predicts reasonably well over the whole range of data, the
White, Paris and Bettess (1979) technique (Fig. 3.9) does a better job
in the dune range, but is otherwise a poor predictor. Comparisons with
other sets of field and laboratory data verify the hypothesis that the
present technique gives reasonable results only for flow over dunes.
Under no circumstances does the technique describe upper and lower flow
regimes.

The behavior displayed in Fig. 3.9 is partially explained by an
examination of the way in which the technique was originally derived.
The key lies in the empirical expression Eq. 3.25a, which was derived
from a plot of average values of B, defined by a rearrangement of
Eq. 3.25, against 47 values of Iér’ The average values of B were
determined from 837 labdratory experiments with sand, collected from 16
investigators. Only Froude numbers less than or equal to 0.8 were used.
The fact that average values were used would tend to reduce the scatter,
while the fact that only low Froude numbers were used explains why only
the lower flow regime is described. In testing the technique with an
extended data set (also Froude numbers less than or equal to 0.8), the
authors have stated that 89 percent of the total calculated friction
factors were within a factor of two, while 44 percent were within 0.80

and 1.25 of the observed vélue.
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5 TEST OF WHITE ET AL. TECHNIQUE
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Figure 3.9 Comparison of White et al. (1979) technique with

laboratory data of Guy et al. (1966).
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3.5 Summary

In this chapter, six stage-discharge predictors have been
discussed. Each technique provides some insight into the processes
involved, and yet, no technique appears to provide a totally
satisfactory analytical tool for the numerical modeller. The relation
between shear stress and grain shear stress as defined by Engelund
(1967) is perhaps the most satisfactory.

In Chapter 4, a new technique is proposed, which the writer
believes does provide such a tool. Near the end of the chapter, a
comparison is given for the proposed method and the techniques that have
Jjust been discussed.

The assumption was made in the analysis of the six techniques that
they apply to wide channels, or that sidewall effects have been removed.
Under this assumption the hydraulic radius, r, and mean flow depth, d,
are equivalent. Alam, Cheyer, and Kennedy (1965); Einstein and
Barbarossa (1952); and Garde and Ranga Raju (1970) actually used r in

‘their analyses, while the others used mean flow depth, d, which was

called r in the analysis.
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CHAPTER &4

A PROPOSED METHOD FOR CALCULATING FLOW DEPTH IN SAND-BED CHANNELS

The foregoing analysis of available techniques indicates that none
of those that are described satisfy the four desired attributes
established in Chapter 3. Nevertheless, each of the analyses is, useful
and has provided inspiration for the derivation that follows. The
proposed technique is easy to use and requires no iteration or
graphical interpolation for wide channels. For laboratory channels q =
vr rather than q = vd, therefore, for some applications iteration may be

required.

4.1 Dimensional Analysis

The particle sizes of most river sands are approximately
log-normally distributed, by weight, therefore the sand can be described
by two measures of grain size, D50 and Og, and its specific gravity,ps .

Adding the flow variables and the fluid variables gives
r=1£f(q, S, g, P, V, Pgs DSO’ og) (4.1)

Using the m=theorem, the 9 variables in Eq. 4.1 can be arranged into 6

dimensionless groups in the form

) (p_-p) PP
= . _s = S 4.2)
D50 5 1, = £(q4, S, Oy R, 5 ) (
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where q, = q//Eﬁgg and R = Uq/v .

Since we are primarily interested in fully rough flow, R is
expected to be of secondary importance. Preliminary tests on large
bodies of data have verified this conclusion. Furthermore, since only
sand is under consideration, (ps-p )/p will be constant, and can be put

aside. Therefore, Eq. 4.2 can be reduced to
(pg=p)
P Te = £(q,, s, Ug) (4.3)

4.2 Formulation of a Pair of Equations

We are now ready to develop a specific relationship which can be
generally described by Eq. 4.3. It is assumed that, to a first
approximation, the flow resistance in a channel will be determined by
the largest scale of bed roughness. Then, for flow over a dune bed, we
might expect friction factor to be defined by a semilogarithmic equation
similar to Eq. 3.4, but with ks'replaced by a measure of equivalent dune
roughness, kd. As shown in Fig. 3.2, this equation can be approximated
by the power law, Eq. 3.2. Replacement of ks in Eq. 3.2 by kd, after

considerable rearrangement, yields

p_.—p - k.S 0.1
)ty = a0t T (q,8)0-6 (4.4)
50

If the particle sizes of a bed material are log-normally

distributed, by weight, then any given size fraction can be related to

the mean size, D50 s DY

D =g %p (4.5)
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where z is the number of standard deviations from the mean and the
subseript "s" refers the percent by weight of particles which are
smaller than the given size. For example, if z=1, since the
distribution is log-normal, DS =D 47 and 84 percent of the particles in

8

a sample, by weight, are finer than DSA' We can now define a
dimensionless shear stress based on this particle size
by Tag = T*/cgz « For non-uniform bed materials, we can replace T, in
Eq. 4.4 by Txg s thereby normalizing the bed shear-stress by some
particle diameter other than D5q ¢

One variable appears in Eq. 4.4, kd’ the measure of dune roughness,
which is not included in the independent variables listed in Eq. 4.1,
Therefore, kd should, in fact, be a dependent variable. Since this
variable appears in the equation raised to the 0.1 power, only large
changes in kd will be important, and an exact definition is not a critical
factor in obtaining sufficient accuracy in the prediction of Tao
Assuming that kﬁ/DBO is proportional to the product of undetermined
powers of q, and S, upon substituion into Eq. 4.4 (also recalling the
definition of T*S), yields

p_—p

)T, = w(g, )" 87 oy (4.6)

where w, x, y and z are constants to be fitted empirically. If the

dependence of kd/D50 on q, and S is fairly weak, x is expected to be

approximately equal to 0.6 and y is expected to be approximately equal

to 0.1,
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It is possible to represent Eq. 4.6 in a reasonably simple diagram

. ‘v _ z
by rearranging it as (with Tag = T*/Gs)

p_—p
)Ty x,z(cl*s“:xc)x (4.7)

which can be represented by a straight line on a log-log plotting scale.
Lower regime (ripple and dune) data, from laboratory flumes, rivers and
canals, gathered from 22 sources, were used to fit the coefficients. By
taking the logarithms of both sides of Eq. 4.6, the coefficients Wy, X, ¥
and z were determined by multiple regression. The data and the best fit
line are shown in Fig. 4.1. Because nearly 900 runs were used in the
analysis, only every third point is plotted. The values of W, X, ¥ and
z are 0.3724, 0.6539, 0.09188 and 0.1050, respectively, with a multiple
correlation coefficient, R = 0.992, indicting excellent agreement.

A similar analysis can be performed for the flat bed regime. In
this case, the largest roughness scale of the bed should be some measure
of the bed material. Thérefore, kd in Eq. 4.4 will be replaced by some
Ds, and we can again derive an equation with the form of Eq. 4.6. The
coefficients will take on new values, and this time the values of x and
Y should be almost identical to 0.6 and 0.1, respectively. Furthermore,
if the Strickler equation is approximately correct with the value a=8.32
(see Fig. 3.2), then w should be about 0.28.

A regression analysis identical to the one performed for dune and
ripple data was performed for flat bed or upper regime data. This data
includes flat beds, before and after initiation of motion, standing

waves and antidunes. The same 22 data sources have again been used,
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although not all contain data for these bed classes. The values of w,
X, y and z are now 0.2836, 0.6248, 0.08750 and 0.08013, respectively,
with a cross=correlation coefficient, R = 0.999. Note that, indeed, w,
X, and y are close in value to 0.28, 0.6, and 0.1, respectively. The
data and best fit line are plotted in Fig. 4.2.

An error analysis of the regression procedure is given, by data
source, in Table 4.1. The errors are quite small, especially when one
considers the accuracy of the data. For example, Guy et al. (1966) have
indicated that errors in slope measurements may be as high as 15-20
percent, while errors in depth measurements may be on the order of 5
percent. This range of errors is probably typical of many of the data
sets.

The data used in this analysis were selected from a pool of data
collected from over 70 sources which was assembled in connection with
this study. The 22 sources that were finally used in the analysis were
selected because they covered a wide range of the desired variables, and
because the data seemed to be carefully collected and documented. Only
laboratory data with bed form observations have been included. For
field data, this restriction would have been too limiting, and where bed
form was not given, only observed flows which could logically be assumed
to have dune beds were selected. The ranges of important variables are
given in Table 4.2. Since only sand beds are being considered, median
particle-sizes were generally limited to values between 0.062 mm to 2.0
mm, although a few runs at 2.8 mm were included. To avoid samples with

large amounts of gravel or fine material, geometric standard deviations
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