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Abstract 
 

 Fucα(1-2)Gal carbohydrates have been implicated in cognitive processes such as 

learning and memory.  However, a molecular level understanding of their functions has 

been lacking.  This thesis describes multiple chemical and biological approaches that we 

have undertaken to elucidate the molecular mechanisms by which fucosyl sugars mediate 

neuronal communication.  We demonstrate that Fucα(1-2)Gal carbohydrates play an 

important role in the regulation of synaptic proteins and neuronal morphology.  We 

identify synapsins Ia and Ib as prominent Fucα(1-2)Gal glycoproteins in rat 

hippocampus, and fucosylation protects synapsin I from proteolytic degradation by the 

calcium-activated protease calpain.  Synapsin fucosylation has important consequences 

on neuronal growth and morphology, with defucosylation leading to stunted neurites and 

delayed synapse formation.  In addition, we identify the Fucα(1-2)Gal proteome from 

mouse olfactory bulb using lectin affinity chromatography.  We discover four major 

classes of Fucα(1-2)Gal glycoproteins, including the immunoglobulin superfamily of cell 

adhesion molecules, ion channels and solute carriers/transporters, ATP-binding proteins, 

and synaptic vesicle-associated proteins.  Protein fucosylation is regulated by FUT1 in 

mouse olfactory bulb, and olfactory bulb development is impaired in FUT1-deficient 

mice.  In particular, FUT1 KO animals exhibit defects in the olfactory nerve and 

glomerular layers of olfactory sensory neurons expressing the fucosylated cell adhesion 

molecules NCAM and OCAM.  Lastly, we explore the molecular mechanisms of protein 

fucosylation by metabolic labeling with alkynyl- and azido-fucose derivatives.  We 

demonstrate that fucosylated glycoconjugates are present along both axons and dendrites 
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of developing neuronal cultures, as well as in the Golgi body.  We identify the 

fucosylated proteome from cultured cortical neurons, and demonstrate that proteins such 

as NCAM, the MARCKS family of proteins, and the inositol 1,4,5 triphosphate receptor 

are fucosylated.  In addition, we can label fucosylated glycans in vivo, which will have 

important consequences for studies on the dynamics of protein fucosylation in living 

animals.  Cumulatively, our studies suggest important functional roles for fucosyl-

carbohydrates in the nervous system, and implicate an extended role for fucose in the 

molecular mechanisms that may underlie synaptic plasticity and neuronal development. 
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