CARBONATE CLUMPED ISOTOPE THERMOMETRY:

APPLICATION TO CARBONAECOUS CHONDRITES & & EFFECTS OF KINETIC ISOTOPE FRACTIONATION

Thesis by

Weifu Guo

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended September 30, 2008)

© 2009

Weifu Guo

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who made it possible for me to complete this thesis. First of all, I am deeply indebted to my thesis advisor, John M. Eiler, whose encouragement, patience and stimulating suggestions helped me throughout my graduate study, shaping my training and interests, and helping to form my appreciation of scientific problems. I want to thank Geoffrey Blake, who kindly acted as my academic advisor and co-advisor for one of my oral projects. It was through that oral project I was first exposed to clumped isotope geochemistry, which now becomes the main theme of this thesis. I thank Edwin Schauble, Jess Adkins and Alex Session, who have been extraordinary generous with their time and thoughts, and are always willing to offer insightful advice. I want to thank Donald Burnett, whose insights on cosmochemistry enlightened me on the meteoritics research. I thank William Goddard, who kindly provided the opportunity for me to use the computation facility at the Material and Process Simulation Center and thus made all my theoretical work possible.

I sincerely appreciate the help and friendships from all the members of the "47" group: Hagit Affek, Magali Bonifacie, Rosemarie Came, Mathieu Daeron, Prosenjit Ghosh, Katharine Huntington, Anna Meckler, Ben Passey, Nithya Thiagarajan, Aradhna Tripati and Laurence Yeung, Their talents and enthusiasm have made the exploration of clumped isotope geochemistry even more interesting and enjoying. I would particularly like to thank Hagit Affek and Prosenjit Ghosh for helping me get started on the clumped isotope lab work and for their generosity with time and expertise.

I would also like to thank the help and friendships of Zhengrong Wang, Charles Verdel, Alexander Gagnon, Robert Kopp, Julie O'Leary, Ying Wang, Jiafang Xiao, Chao Li, Mao-Chang Liang, Junjun Liu, Yuanbin Guan, Laurent Remusat, Rinat Gabitov, Alon Amrani, Lindsey Hedges, Chi Ma, David Fike, Amy Hoffman, Kaveh PahLevan, Sally Newman, John Beckett, Risheng Chu, Xin Guo, Daoyuan Sun, Zhonghua Yang, Huiyu Li, Yu Huang, Alan Kwan, Seth John. They have made my life at Caltech more fun and colorful.

This thesis greatly benefits from my collaboration with Jed Mosenfelder, Paul Niles, Sang-Tae Kim, Rinat Gabitov, Mike Zolensky, Jan Veizer. I thank John Ferry for sharing unpublished data, Jonathan Erez for kind encouragement and for sharing his insights on biomineralization mechanism.

Lastly, I would like to thank my wife, Wei Zhang, and my parents, Guanlian Zhang & Bixue Guo, who have been always supportive in all aspects of my life. I would not have been able to finish this thesis without them.

To my wife, Wei Zhang

and my parents, Guanlian Zhang & Bixue Guo

for all the support and happiness

ABSTRACT

'Clumped isotope' thermometry of carbonates in the carbonaceous chondrites (CM, CI, CR and Tagish Lake) demonstrates that aqueous alteration of their parent bodies occurred from -31 to 71°C and involved reaction with fluids having $\delta^{18}O_{VSMOW}$ values of -29.7‰ to 11.8‰ and $\delta^{17}O_{VSMOW}$ of -14.9‰ to 7.6‰. Estimated carbonate formation temperatures decrease in the order: calcite > dolomite > breunnerite. Based on independent constraints on the ages of these carbonates and models of the evolution of the oxygen isotope compositions of parent body waters, I estimate that carbonate precipitation during aqueous alteration of the carbonaceous chondrite parent bodies started within 1-2 million years after the accretion of those parent bodies, and that the alteration temperatures decreased from 34°C to 18°C in the first ~4 million years and further to -20°C after a total of ~6.5 million years. Our results provide the first direct measurements of the low-temperature cooling histories of C1 and C2 carbonaceous chondrite parent bodies. Within the CM chondrite group itself, I observe a negative correlation between the δ^{13} C values of CM carbonates and the δ^{18} O of their formation waters, suggesting formation and escape of ¹³C-depleted CH₄ during aqueous alteration on the CM chondrite parent bodies.

I apply ab initio transition state and statistical thermodynamics theory to study the kinetic isotope fractionations of clumped isotopologues (i.e., multiply-substituted isotopologues; I also consider singly-substituted isotopologues) associated with phosphoric acid digestion of carbonate minerals and with the degassing of CO_2 from aqueous solutions. Assuming that H_2CO_3 is the reaction intermediate during phosphoric acid digestion of carbonate minerals, I predict at 25°C that CO_2 derived from acid

digestion of carbonate minerals will be 10.72‰ and 0.220‰ higher, respectively, in ¹⁸O/¹⁶O ratios and ¹³C-¹⁸O clumped isotope anomaly than the reactant carbonate. These predicted kinetic isotope fractionations associated with phosphoric acid digestion and their temperature dependences (for both oxygen isotope and clumped isotopologues) compare favorably with independent experimental constraints for phosphoric acid digestion of calcite. I evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H₂CO₃ interacts with adjacent cations. These cluster models underestimate the magnitude of isotope fractionations, but do successfully reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals (suggesting I have correctly identified the basic mechanism responsible for a dependence on cation chemistry, but not the exact structural model for cation—H₂CO₃ clusters). I further integrate our acid digestion fractionation model with previous theoretical evaluations of abundances of ¹³C-¹⁸O bonds in carbonate minerals, and predict the relationship between Δ_{47} values for CO₂ extracted from carbonate minerals and the growth temperatures of those carbonates, including witherite, calcite, aragonite, dolomite and magnesite. I observe reasonable agreement between these predictions and available experimental determinations (e.g., difference of less than 0.05‰ over 0-50°C, for calcite).

Kinetic isotope fractionation associated with HCO_3^- dehydration and HCO_3^- dehydroxylation reactions (the two pathways of CO_2 degassing from aqueous solutions) are estimated with ab initio transition state theory calculations. Coupled with models of isotopic fractionations accompanying carbonate precipitation, I predict that kinetic

isotope fractionation associated with CO₂ degassing reactions will increase the δ^{13} C and δ^{18} O but decrease the relative proportion of 13 C- 18 O bonds in carbonate minerals that precipitate from degassing solutions. Furthermore, these kinetic isotope effects are correlated with each other. For example, I predict the 13 C/ 12 C ratio of carbonate increases by 1.1-3.2‰ and its Δ_{47} value decreases by 0.017-0.026‰ for every 1‰ kinetic enrichment in its 18 O/ 16 O at 25°C, with the exact values depending on the pathway for CO₂ degassing (i.e., HCO₃⁻ dehydration vs. HCO₃⁻ dehydroxylation) and on the amount of carbonate formation that accompanies CO₂ degassing. These predictions compare favorably with the experimental constraints from laboratory synthesized cryogenic carbonates and speleothem-like carbonates and with the isotopic compositions of natural modern speleothems.

TABLE OF CONTENTS

ACKNOWL	EDGEMENTS	iii
Abstract	`	vi
LIST OF FIC	GURES	xiii
LISIT OF TA	ABLES	xvii
Introduc	TION	1
Part i: Aq	UEOUS ALTERTION OF CARBONACEOUS CHONDRIT	E PARENT
BO	DIES — INSIGHTS FROM CARBOANTE CLUMPED ISO	ГОРЕ
TH	ERMOMETRY	9
CHPATER 1	. TEMPERTURES OF AQUEOUS ALTERATION AND EV	/IDENCE
FOI	R METHANE GENRATION ON THE PARENT BODIES O	
СМ	CHONDRITE	10
Abstra	act	11
1.1 Introd	luction	11
1.2 Samp	les and method	13
1.2.1	Samples	13
1.2.2	Carbonate clumped isotope thermometry	13
1.2.3	Analytical method	14
1.3 Resul	ts and discussion	22
1.3.1	Temperatures of aqueous alteration and isotopic compositio	ns of the
	alteration fluid	

1.4 Implications	
Acknowledgements	
References	

CHAPTER 2: TMPERATURES OF AQUEOUS ALTERATION ON

CA	ARBONACEOUS CHONDRITE PARENT	
BC	DDIES	46
Abstract		47
2.1 Introd	action	47
2.2 Sampl	es and method	49
2.2.1	Samples	49
2.2.2	Phosphoric acid digestion	51
2.2.3	Purification of sample CO ₂ and mass spectrometric analysis	54
2.2.4	Estimation of carbonate formation temperatures	60
2.3 Result	s and discussion	63
2.3.1	Test of stepped phosphoric acid digestion procedure	63
2.3.2	Temperatures of carbonate growth in the carbonaceous	
	chondrite parent bodies	65
2.3.3	Isotopic compositions of the alteration fluid	71
2.3.4	Implications for the chemical and thermal evolution	
	of the carbonaceous chondrite parent body	75
2.4 Summ	ary	86
Acknowle	dgements	87
Reference	s	

PART II: KINETIC ISOTOPE FRACTIONATIONS OF CLUMPED	
ISOTOPOLOGUES ASSOCICATED WITH CHEMICAL REACTIONS	
—IMPLICATIONS FOR CARBONATE CLUMPED ISOTOPE	
THERMOMETRY	93

Х

CHAI IER J	. ISOTOTIC FRACTIONATIONS ASSOCIATED WITH	
PHOSPHOR	IC ACID DIGESTION OF CARBONATE MINREALS	94
Abstract.		95
3.1 Introd	uction	96
3.2 Theor	etical and computational methods	100
3.2.1	Transition state theory of reaction rates	100
3.2.2	Application of transition state theory to phosphoric	
	acid digestion of carbonate minerals	103
3.2.3	Computational methods	112
3.3 Exper	imental methods	114
3.4 Result	ts and discussion	114
3.4.1	Experimentally determined acid-digestion fractionation of Δ_{47}	114
3.4.2	Model results for the oxygen-isotope and clumped-isotope	
	fractionations associated with carbonic acid dissociation	116
3.4.3	Dependence of acid digestion fractionations on the isotopic	
	compositions of reactant carbonate minerals?	124
3.4.4	Cation effects on acid digestion fractionations	131
3.5 Summ	nary	146
Acknowle	edgements	147
Reference	25	147
Appendix		151
CHAPTER 4	: ISOTOPIC FRACTIONATIONS ASSOCIATED WITH	
	DEGASSING OF CO2 FROM AQUEOUS SOLUTIONS AND	
	IMPLICATIONS FOR CARBONATE CLUMPED ISOTOPE	

CHAPTER 3: ISOTOPIC FRACTIONATIONS ASSOCIATED WITH

DEGASSING OF CO2 FROM AQUEOUS SOLUTIONS AND	
IMPLICATIONS FOR CARBONATE CLUMPED ISOTOPE	
THERMOMETRY	.157
Abstract	158
4.1 Introduction	.159
4.2 Theoretical and computational methods	165
4.2.1 Kinetics of HCO ₃ ⁻ dehydration and dehydroxylation reactions	.165
4.2.2 Transition state theory and the reaction mechanisms of HCO_3^-	

	dehydration and HCO ₃ ⁻ dehydroxylation168
4.2.3	A model of isotopic fractionations associated with carbonate
	precipitation induced from CO ₂ degassing172
4.2.4	Computational methods
4.3 Exper	imental methods
4.3.1	Synthesis of cryogenic carbonates
4.3.2	Mass spectrometric analysis
4.4 Result	s and discussion
4.4.1	Model results for the kinetic isotope fractionations associated with
	HCO ₃ ⁻ dehydration and HCO ₃ ⁻ dehydroxylation reactions
4.4.2	Predicted influence of kinetic isotope fractionations on carbonate
	minerals grown from degassing aqueous solutions
4.4.3	Isotopic compositions of cryogenic carbonates
4.4.4	Comparison between model predictions and isotopic
	compositions of natural and synthetic carbonates
4.4.5	Implications for isotopic studies in other natural systems
4.5 Summ	
Acknowle	edgements
Reference	-s
Appendix	

LIST OF FIGURES

Figure 1-1: Comparison of oxygen isotope compositions of water in equilibrium
with CM chondrite carbonates at their known growth temperatures and
water calculated by the forward model of aqueous alteration25
Figure 1-2: Comparison of $\delta^{13}C_{VPDB}$ values of carbonates in the CM chondrites
to the $\delta^{18}O_{VSMOW}$ values of the waters from which they grew
Figure 1-3: Predicted inverse correlation between $\Delta^{17}O_{VSMOW}$ of the formation
water and $\delta^{13}C_{VPDB}$ of the carbonate during aqueous alteration of
the CM chondrite parent body at 28°C
Figure 2-1: Negative correlations between raw Δ_{47} of analyte CO ₂ and their mass 44
voltages during the mass spectrometric analyses
Figure 2-2: Absence of correlations between Δ_{47} and Δ_{48}
of meteoritic sample CO ₂ 60
Figure 2-3: Comparison between the experimentally determined Δ_{47} -T calibration
line for calcite and the theoretically predicted Δ_{47} -T calibration lines for
calcite, dolomite and magnesite
Figure 2-4: Oxygen isotope compositions of water in equilibrium with
carbonaceous chondrite carbonates at their known growth temperatures72
Figure 2-5: Comparison between the experimentally estimated oxygen isotope
compositions of alteration water with those calculated by the forward
model of aqueous alteration
Figure 2-6: Negative correlation between the carbonate formation temperatures
and the oxygen isotope compositions of alteration fluid from which the
carbonates grew
Figure 2-7: Estimated thermal evolution of carbonaceous chondrite parent bodies,
based on the formation temperatures of carbonates in different carbonaceous
chondrite and the corresponding formation ages of these carbonates

Figure 2-8: Comparison of our estimated thermal evolution of carbonaceous chondrite
parent bodies with the predictions from available thermal models
Figure 2-9: Agreement of our estimated thermal evolution of carbonaceous chondrite
parent bodies with the modeled thermal evolution for a layer 10km
from the surface of a 50km radius parent body, when constraints on
carbonate formation ages are relaxed85
Figure 3-1: Transition state structures during phosphoric acid digestion
of carbonate minerals (H ₂ CO ₃ model)105
Figure 3-2: Representative transition state structures during phosphoric acid
digestion of carbonate minerals, as in our 'cluster models'112
Figure 3-3: Comparison of vibration frequencies of gas-phase carbonic acid (H ₂ CO ₃)
obtained in this study using B3LYP/6-31G* ab initio models with
a scaling factor of 0.9614 vs. those obtained through more sophisticated
higher level calculations and anharmonicity corrections113
Figure 3-4: Comparion of our H ₂ CO ₃ dissociation model predicted acid digestion
oxygen isotope fractionations with experimentally determined
acid digestion oxygen isotope fractionations for different
carbonate minerals120
Figure 3-5: Fractionations of multiply-substituted species $(\Delta_{47}^*, \Delta_{48}^*, \Delta_{49}^*)$ during
phosphoric acid digestion predicted by our H_2CO_3 dissociation model122
Figure 3-6: Empirically observed correlations between the oxygen isotope
fractionations associated with phosphoric acid digestion and the
oxygen isotopic composition of reactant carbonates126
Figure 3-7: Comparison of the isotope fractionations associated with phosphoric acid
digestion predicted by our 'cluster models' with experimentally observed
fractionations for various metal carbonates134
Figure 3-8: Correlations between fractionations of oxygen isotopes associated
with acid digestion and the ionic radius of the cation in the reactant
carbonate

Figure 3-9: Inverse correlation between the oxygen isotope fractionation and Δ_{47}^*
fractionation during phosphoric acid digestion of different carbonate
minerals, predicted from our cluster model141
Figure 3-10: Predicted temperature calibration lines for different carbonate clumped
isotope thermometers, by combining predicted equilibrium ¹³ C- ¹⁸ O
and ¹⁸ O- ¹⁷ O clumping effects inside the carbonate minerals and
predicted Δ_{47}^{*} kinetic fractionations during phosphoric acid digestion
of carbonate minerals144
Figure 3-11: Comparison between predicted temperature calibration lines for
CaCO ₃ (calcite and aragonite) clumped isotope thermometer and the
experimental temperature calibration data145
Figure 4-1: Dependence of relative importance of bicarbonate dehydration and
dehydroxylation on the solution pH, temperature and salinity167
Figure 4-2: Optimized reactant and transition state structures for HCO ₃ ⁻
dehydration and HCO ₃ ⁻ dehydroxylation reactions
in aqueous solution171
Figure 4-3: Comparison of our calculated vibration frequencies for dissolved
HCO_3^- with the experimentally determined vibration frequencies
Figure 4-4: Model predicted kinetic isotope fractionation factors associated
with HCO_3^- dehydration reaction (0-100°C)
Figure 4-5: Model predicted kinetic isotope fractionation factors associated
with HCO ₃ ⁻ dehydroxylation reaction (0-100°C)192
Figure 4-6: Position specificity of kinetic isotope fractionations of oxygen
isotope and ¹³ C- ¹⁸ O clumped isotopologues associated with HCO ₃ ⁻
dehydration; of oxygen isotope and ¹³ C- ¹⁸ O clumped
isotopologues associated with HCO ₃ ⁻ dehydroxylation195
Figure 4-7: Model predicted fractionations of carbon isotope, oxygen isotope,
¹³ C- ¹⁸ O clumped isotopic anomaly and ¹⁸ C- ¹⁷ O clumped isotopic
anomaly between degassed CO ₂ and reactant HCO ₃ ⁻ during HCO ₃ ⁻
dehydration and HCO ₃ ⁻ dehydroxylation198
Figure 4-8: The kinetic fractionations of carbon isotope, oxygen isotope, $\Delta_{{}_{13}C^{18}O^{16}O_2}$

and $\Delta_{{}_{12}C^{18}O^{17}O^{16}O}$ in the carbonate mineral as a function of the fraction of
remaining HCO ₃ ⁻ (F), predicted by our model201
Figure 4-9: Correlations between kinetic carbon isotope, oxygen isotope and Δ_{47}
clumped isotope fractionations expected in the carbonate mineral,
based on our predictions of the kinetic isotope fractionation
associated with HCO3 ⁻ dehydration and dehydroxylation reactions
and our carbonate precipitation model
Figure 4-10: Comparison of our model predicted correlation between kinetic
Δ_{47} clumped isotope fractionation and kinetic oxygen isotope
fractionation, with the observed isotopic compositions of cryogenic
carbonates, and with natural modern speleothems and speleothem-like
carbonates synthesized in the laboratory
Figure 4-11: Comparison of our model predicted correlation between kinetic carbon
isotope fractionation and kinetic oxygen isotope fractionation, with the
observed isotopic compositions of cryogenic carbonates and with the
observed isotopic variations among different pieces of speleothem
Vil-Gal
Figure 4-12: Depletion of Δ_{47} and ${}^{18}\text{O}/{}^{18}\text{O}$ in aragonite during its
fast precipitation

LIST OF TABLES

Table 1-1: Isotopic analyses of carbonates in CM chondrites.	16
Table 1-2: GEM (Gibbs Energy Minimization) simulations of aqueous alteration	
on CM chondrite parent body	36
Table 2-1: Isotopic analyses of carbonates in carbonaceous chondrites	50
Table 2-2: Tests and establishment of stepped extraction procedures on synthetic	
mixtures of calcite and dolomite, and of dolomite and magnesite	53
Table 2-3: Effects of voltage correction on the estimations of carbonate formation	
temperatures and of the oxygen isotope	
compositions of alteration fluid	70
Table 2-4: Forward evolution models for the oxygen isotope compositions of the	
alteration fluid on CM, CR and CI	
carbonaceous chondrite parent bodies	79
Table 3-1: Evolution of different CO_3^{2-} isotopologues during phosphoric acid	
digestion of carbonate minerals	107
Table 3-2: Fractionation of multiply-substituted isotopologues, Δ_{47}^{*} , during	
phosphoric acid digestion of CaCO3 at 25°C determined through	
phosphoric acid digestion of high temperature and pressure equilibrated	
CaCO ₃ (calcite) samples	116
Table 3-3: Scaled vibration frequencies (unit: cm ⁻¹) for different transition	
state (TS) isotopologues during phosphoric acid digestion	
of carbonate minerals	117
Table 3-4: Comparison of model predicted and experimentally observed	
phosphoric acid digestion fractionations	121
Table 3-5: Dependences of phosphoric acid digestion fractionations	
on the isotopic compositions and the distributions of	
multiply-substituted isotopologues in reactant carbonates at 25°C	127
Table 3-6: Variations of acid digestion isotope fractionations and their	
temperature dependencies among different carbonate minerals,	

predicted from our cluster model
Table 3-A1: Scaled vibration frequencies for different CO ₃ ²⁻ isotopologues (isolated
CO_3^{2-} in the gas phase)
Table 3-A2: Estimated abundances of all CO_3^{2-} isotopologues (isolated CO_3^{2-}
in the gas phase) at different equilibration temperatures and with different
bulk isotopic compositions156
Table 4-1: Isotopic compositions of natural modern speleothem and lab synthesized
speleothem-like carbonates163
Table 4-2: Preparation conditions of cryogenic carbonates
synthesized in this study183
Table 4-3: Predicted kinetic isotope fractionations associated with HCO ₃ ⁻ dehydration
and HCO ₃ ⁻ dehydroxylation reactions at 25°C
Table 4-4: The co-variations of carbon isotope, $\Delta_{{}^{13}C^{18}O^{16}O_2}$, $\Delta_{{}^{12}C^{18}O^{17}O^{16}O}$ and Δ_{63}
fractionations, predicted from our model202
Table 4-5: Isotopic compositions of cryogenic carbonates
synthesized in this study207
Table 4-A1: Scaled vibration frequencies for all 54 isotopologues of our modeled
reactant during HCO ₃ ⁻ dehydration reaction in aqueous solution
Table 4-A2: Scaled vibration frequencies for all 54 isotopologues of our modeled
transition state during HCO ₃ ⁻ dehydration reaction in aqueous solution233
Table 4-A3: Scaled vibration frequencies for all 54 isotopologues of our modeled
reactant during HCO ₃ ⁻ dehydroxylation reaction in aqueous solution237
Table 4-A4: Scaled vibration frequencies for all 54 isotopologues of our modeled
transition state during HCO ₃ ⁻ dehydroxylation reaction in aqueous
solution238
Table 4-A5: Model predicted kinetic isotope fractionations for all isotopologues
during HCO ₃ ⁻ dehydration reaction in aqueous solution 25°C240
Table 4-A6: Model predicted kinetic isotope fractionations for all isotopologues
during HCO_3^- dehydroxylation reaction in aqueous solution, at 25°C242