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Abstract

Does the nervous system “tune” itself to perform at peak efficiency? Optimal trans-
mission of information in a single nerve cell occurs when the response is matched to
the statistics of naturally occurring stimuli, such that all firing rates are used with
equal probability and that redundant temporal correlations in the input are removed.
Non-Hebbian, local learning rules are developed to adapt the voltage-dependent ionic
conductances in Hodgkin-Huxley models of neurons with the goal of matching the
neuron’s response to the statistics of natural stimuli. These learning rules allow a
nerve cell to maximize the amount of information transmitted about arriving stimuli.
At a more detailed level, information transmission in neurons is limited by the noise
in the input, defined as the root mean square of the fluctuations in the input. Three
different performance measures are shown to scale identically as a function of the
noise in simple models of neurons that have both a voltage and current threshold.
These performance measures are: the probability of correctly detecting a constant
input in a limited time, the signal-to-noise ratio in response to sinusoidal input, and
the mutual information between an arbitrarily varying input and the output spike
train of the model neuron. Of these, detecting a constant signal is the simplest and
most fundamental quantity. For subthreshold signals, the model exhibits stochastic
resonance, a non-zero noise amplitude that optimally enhances signal detection. In

this case, noise paradoxically does not limit, but instead improves performance. Even



iii
though the noise amplitude can dwarf the signal, detection of a weak constant sig-
nal using stochastic resonance is still possible when the signal elicits on average only
one additional spike. Stochastic resonance could thus play a role in neurobiological

sensory systems, where speed is of the utmost importance and averaging over many

individual spikes is not possible.
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Chapter 1 Prologue

What can optimality principles teach us about the functioning of the nervous system?
We will investigate from a purely theoretical perspective how single neurons could
adjust the number of ion channels in the membrane or even the level of noise to be
more efficient and transmit more information. But before even assuming that the
nervous system is in any sense optimal, it is instructive to begin with a cautionary
tale.

The nervous system is sometimes far from optimal, as can be seen from a careful
consideration of the mathematical approach taken by two physicists, Seung and Som-
polinsky (1993), that tackles the problem of encoding visual information in networks
of neurons. We set the stage of this tale as follows:

A characteristic feature of neurons in primate primary visual cortex (V1) is that
they respond to oriented stimuli within restricted regions of the visual field. So-called
simple cells in V1 have a distinct preference for one particular orientation over others.
One can measure an orientation tuning curve for such cells, plotting the neuronal firing
rate response as a function of stimulus orientation.

Seung and Sompolinsky (1993) used the following function to characterize the
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orientation tuning curve of simple cells in V1

fmin + (fmax - fmin) COSz(gf;) |0t <w,

f(0) = (1.1)

fmin Iei Z w,

where the parameter w measures the width of the tuning curve. This parameteri-
zation, displayed in fig. 1.1, yields a fair representation of actual orientation tuning

curves for neurons in visual cortex.

Response

-90 0 90

Orientation [degrees]

Figure 1.1: Neurons in primary visual cortex respond preferentially to particular
orientations of an input stimulus. Displayed here in the graph is a parameterization
of an orientation tuning curve given by eqn. 1.1.

The optimal tuning curve depends on the “noise” present in the representation of
information. Typically, the variance of the firing rate af, will behave as some power

law of the firing rate itself:

of ~ f%

where a = 1 if the timing of spikes is completely random. The technical term for such



3

a random spike train is a Poisson point process. Suppose now that the orientation ¢
of the stimulus is uniformly distributed over all possible angles. As shall be discussed
in chapters 2 and 3, the information about the stimulus orientation contained in
the orientation tuning curve of firing rates f(¢) can be quantified by the following

expression:

1012
information % / ln{ [[_f“_(%)]];} d¢ + constant

The ideal orientation tuning curve that maximizes the information has the shape

displayed in fig. 1.2.

Response

-90 0 90

Orientation [degrees]

Figure 1.2: Optimal firing rate tuning curve for orientation in a Poisson neuron. In
the Poisson case, the discrimination between two nearby angles 6 and 6 + df does not
depend on @ if the tuning curve is optimal.

Such a cusp-like shape to the orientation curve is never observed in experimen-
tal recordings. Whether “maximum likelihood estimation ... possesses a plausible
biological implementation” that can make use of the “optimized” information is an

ancillary question. Primary visual cortex is and remains suboptimal in the encoding



of stimulus orientation information.

Given that the primary visual cortex is not optimal, Seung and Sompolinsky
(1993) pose the following question: If the orientation tuning curve is given by eqn 1.1
and orientation is encoded as the vector sum of the preferred orientations of all
neurons weighted by their respective firing rates, is there an optimal width w to the
orientation tuning curve? Seung and Sompolinsky derive the conclusion that the

optimal width depends on the ratio of the peak firing rate fna.x to the spontaneous

1

3
Wept X f min
f max

However, the crucial point to note is that this ratio is on the order of 1072 and that

firing rate fuyin:

it varies from cell to cell over a wide range. Raised to the one-third power, this ratio
can easily lead to optimal orientation tuning curve widths at half~-maximum that are
10°, 30°, or even 60°. From the converse perspective, the simple method of encoding
orientation in the vector sum of preferred orientations is robust: discrimination per-
formance changes little as the orientation tuning width changes, since the maxima in
any performance criterion are extremely broad as a function of tuning width w.

In short,

The width of the orientation tuning curve doesn’t matter.

Thus the theory of optimality does not allow one to predict the response of cells
to oriented stimuli. (However, similar theoretical considerations do lead to valuable
insights into stereo vision (Lehky and Sejnowski, 1990): how does the visual sys-

tem decide whether an object is in front of or behind the plane of focus? Tuning
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curves for the depth of an object in three dimensions are much closer to optimal for
discrimination purposes than orientation tuning curves. )

So, instead of asking the wrong question, we ask:

How does a single neuron represent any information in the first place?

Note that there is no such thing as a prototypical cortical neuron, at least not
in mammalian neocortex. Given the wide variation in the properties of neurons
that belong to the same class, neurons should have some capability of regulating
themselves, adapting their overall structure and constituent membrane properties,
even adjusting the level of fluctuations in the transmembrane voltage. By considering
what would be optimal, we will gain some insight into how such variable neurons learn

to represent stimulus information.



Chapter 2 Information and Entropy

Maximization

2.1 Overview

For the brain to compute, cortex must first find a neuronal representation of the en-
vironment, converting the sights, sounds, and smells that arrive into neuronal events,
such as spikes traveling down axons to carry information from one location to the
next in the brain. The encoding and decoding of neuronal information about the
outside world will depend on the representation used: information can be represented
in the timing of individual spikes of neurons, the timing of spike burst patterns, the
rate with which packets of neurotransmitter are released, or the time-averaged firing
rate. A further distinction can be made between information encoded in the output of
individual cells or in the distributed patterns of activity over many different neurons.

Possibly the simplest representation of information is the time-averaged firing rate
of a single cell, i.e., the number of action potentials generated by a cell in response to
a stimulus over a set time window. Given such a representation, how could a neuron
adapt itself to best encode the stimulus amplitude, such as visual contrast, sound
pressure, or odor intensity?

Stimuli that arrive through the senses are neither completely predictable nor com-
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pletely random. If a stimulus were completely predictable, then the explicit or implicit
representation of that stimulus is not required for computation. On the other hand,
if the stimulus amplitude were allowed to take on any real-numbered value at any
instant in time, then this form of complete randomness would overwhelm the lim-
ited dynamic range with which neurons can respond—the firing rate of a cell cannot

exceed some maximal value, whereas a negative number of spikes is not possible.

1100

08} 08 o 180

06 | 06} 1 60

0.4 04t i 1 a0

Stimulus Probability Density
Firing Rate of Cell [Hz]
Stimulus Probability Density
Firing Rate of Cell [Hz)

02} 02} | 20

Stimulus Amplitude Stimulus Amplitude
(a) (b)
Figure 2.1: Suppose that stimuli are drawn from a hypothetical bell-shaped prob-
ability distribution of amplitudes (dotted lines). On the left, the neuron responds
differentially to varying stimulus amplitudes by changing its firing rate (solid line).
On the right, the neuron does not respond at all to most of the input range. In this
latter case, the neuron clearly does not accurately represent the input.

By histogramming the frequency with which particular visual contrasts, spatial
orientations, or spectral reflectances (colors) are encountered in a natural environ-
ment (Baddeley and Hancock, 1991; Atick, 1992; Ruderman, 1995), a model for the
probability distribution of stimulus amplitudes reaching a photoreceptor in the retina

can be developed. An efficient encoding of information would match the limited dy-

namic range of a neuron to the probability distribution of stimulus amplitudes, as
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illustrated in fig. 2.1. Naturally occurring stimuli will exhibit spatiotemporal cor-
relations, so an efficient and compact encoding of information would also eliminate
superfluous correlations. Using concepts borrowed from statistical mechanics, it is
possible to define the ‘best’ encoding of a continuous, time-varying input variable in
the firing rate of a neuron. But even before insisting that a neuron be optimal, the
central and real question is: does the firing rate encode the stimulus at all? Suppose
that one had the ability to change the subcellular parameters that govern a neuron’s
behavior: even minor random tampering with these parameters could well result in a
neuron whose firing rate no longer represents any stimulus information whatsoever.
The mathematical framework we will be working with is a generalization of the
Hodgkin-Huxley equations that describe the generation of action potentials in the
squid giant axon (Hodgkin and Huxley, 1952). The voltage V of the neuron evolves

as

)

where C is the membrane capacitance, g; is the peak value of the i-th conductance,
p; and g¢; are integers, and F; are the ion-specific reversal potentials. The variables
m; and h; describe the activation or inactivation of voltage-dependent conductances,
which change the current flowing across the membrane. These variables obey first
order kinetics of the type

T(V)—d—t— = M (V) —m, (2.2)
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where 7(V') is a voltage-dependent time constant and m.. (V') denotes the steady state
activation when the voltage is clamped to V. Most often, the steady state activation
functions ms (V) and he (V) are S-shaped or reverse S-shaped functions of voltage.
Together, the equations for V', m;, and h; form coupled set of nonlinear differential
equations.

The challenge is to let the neuron ‘develop’ through experience, adapting its pa-
rameters so that it actually forms a representation of incoming stimuli in its response.
Adaptation in highly nonlinear systems is, of course, a nontrivial matter.

This chapter is organized into two separate, but interdigitating tracks for readers
with different interests in the subject. Each ‘track’ is fairly self-contained. Starred
sections contain technical material that can be omitted on a first reading.

Track 1 is intended for readers who are familiar with the subject of ‘Hebbian’
learning and want more of an intuitive understanding of the non-Hebbian adapta-
tion mechanisms proposed in this chapter. The possible biophysical substrates for
adapting to the statistics of natural stimuli form one recurring theme. This track

also proposes some simple experimental tests of the theory.

Track 1
22 —225—=27—529 212

2.2. At the microscopic level, the stochastic behavior of ion channels opening and
closing in the cell membrane of the neuron gives rise to the macroscopic behav-
ior of the Hodgkin-Huxley equations. The potential substrates for ion-channel

specific modification of conductance properties are explored.
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2.5. Investigation of possible supervised and unsupervised learning rules that change
the parameters of voltage-dependent conductances. These learning or adap-
tation rules are based on functions that the membrane biophysics computes

naturally, as explored in section 2.2.

2.7. Specific adaptation rules that match a neuron’s range of firing rates to the range

of inputs it receives are developed.

2.9. Numerical simulations using a simplified model neuron are used to demonstrate
some of the properties of the adaptation. The learning rule of section 2.7 is
shown to lead to a uniform distribution of firing rates, so that each firing rate
is used equally often. The dynamical evolution of the neuron subject to infor-

mation maximization learning rules is studied.

2.12 To test the learning rules on a true spiking model, the Hodgkin-Huxley model
of Connor et al. (1977) with an additional adaptation current is implemented

in a two-compartment model. Some experimental predictions are made.

Track 2 covers the more formal approach to information maximization and is
intended for readers with an interest in nonlinear dynamical systems, or adaptation
and learning algorithms in general.

Track 2
23224 —26—>27-210— 2.13

2.3. The concepts of mutual information and entropy are used to provide a theoret-

ical foundation for optimizing a neuron’s firing rate response to input.



2.4.

2.6.

2.7.

2.10.

2.13.

11

Derivation of a stochastic learning rule to maximize the mutual information or
entropy by changing the parameters of the Hodgkin-Huxley equations (egs. 2.1

and 2.2).

We map the information maximization problem onto an equivalent problem
in the standard artificial neural network literature by ignoring the the nonlin-
ear feedback implicit in the Hodgkin-Huxley equations. This corresponds to
a zeroth-order model of a neuron. The resulting learning rules for changing
the parameters of the Hodgkin-Huxley equations are shown to be horrendously

complicated and biophysically implausible.

We show how nonlinear feedback and the physical constraint of charge conserva-
tion lead to much simpler learning rules. In this first-order model, we consider
the mean firing rate of a neuron in response to a steady state input, ignoring

any transient dynamics.

The mean firing rate model is replaced by a a periodically spiking Hodgkin-
Huxley neuron. Learning rules are extended to cover periodic inputs to the

adaptation mechanism for the model parameters.

Not only will information maximization match the amplitude of the neuron’s
response to the underlying statistics of the input, it will also remove statistical
correlations in the input as a function of time. We here treat fully time-varying

input stimuli.
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2.9 The Kinetics of Ion Channels as a Substrate

for Adaptation

At the microscopic level, sensation, perception, action, and thought are mediated by
the flicker of ion channels switching between open and closed states in the cell mem-
brane of nerve cells. The mammalian central nervous system possesses a panoply of
diverse ion channel types that allow selected species of ions to cross the membrane.
One major class of channel proteins carries a characteristic sequence of positively
charged amino-acid residues along one of six transmembrane segments in each do-
main of the ion channel protein: called voltage-gated channels, these proteins change
their conformation under the application of a voltage across the membrane, changing
between open states that allow current to flow and closed states. These voltage-gated
channels are the basis for the nerve impulse and also help shape the subthreshold
response to stimuli.

The properties of voltage-gated channels will change if the channel protein is
phosphorylated, the intracellular calcium concentration is raised, or the cell expresses
additional ‘subunits’ that associate themselves with the main channel protein, or
the channel protein interacts with a neuromodulatory enzyme. Molecular biology
techniques have revealed more than ten different genes coding for various subunits
of calcium channels, allowing for a combinatorial number of functionally different
channels (Hofmann et al., 1994). These channel types can be differentially expressed

in development. Since all of the changes in ion channel properties can occur naturally
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in vivo, without artificial intervention by experiment, the tools required to adaptively
compress information from the senses are thus available to single neurons at the
subcellular level.

To explore how a nerve cell might change the properties or membrane density of
voltage-dependent ion channels in response to input, we must first establish how the
occupancy of channel states and the transitions between states relate to the voltage
across the cell membrane. These relationships will indicate how ion channels could
initiate a process of self-modification. We begin with a description of a simple model
of a voltage-dependent ion channel based on equilibrium physics:

The simplest and most generally applicable model of a voltage-gated ion channel
has a single open and closed state. A dipole moment or gating charge on the S4
transmembrane segment in each domain of the ion channel protein biases the protein
to flip between states at different voltages. Under the influence of a transmembrane
voltage, the charged protein residues move across the membrane, changing the tertiary
structure of the ion channel protein to allow selected species of ions to pass through
the pore region linking the four protein domains (Yang and Horn, 1995; French et al.,
1996; Seoh et al., 1996; Yang et al., 1996; Aggarwal and MacKinnon, 1996; Larsson
et al., 1996).

The probability of an ion channel being in any given state at physical equilibrium is
given by its Gibbs free energy, which is a function of the internal electrostatic and van
der Waals interactions between protein residues, the entropy of protein folding, and

the external electric field, if present. For state ¢ with free energy Ej;, this probability
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is given by the ratio of exponential terms:

exp(—E;/kT)
> exp(—E;/kT)’

p(E;) = (2.3)
where T is the absolute temperature (in Kelvin), k is Boltzmann’s constant, and the
sum in the denominator is over all accessible states.

Following the nomenclature of Almers (1978) and Hille (1992), the energy differ-
ence between two states can be divided into a conformational energy change W of
the protein and an energy change —z,V due to the movement of an effective gating
charge z, across the membrane potential V. The effective charge depends on the
position of positive charges in the S4 segment, the distance these move through the
membrane, and the structure of the electric field within the membrane.

In some instances, a literal interpretation of the gating charge as the true charge is
possible. Evidence from cysteine substitution experiments in Na™ and K ion chan-
nels suggests that the S4 segment traverses a narrowing of the membrane (reviewed
in Goldstein, 1996), such that most of the translocated charge moves entirely across
the membrane. In such a case, the effective gating charge is nearly equal to the true
gating charge. In corroboration, there are relatively few negative residues available
elsewhere to counteract the positively charged residues on the S4 segment within the
membrane, pointing once again to a membrane narrowing. The transition between
open and closed state could also correspond to a conformational change in the sec-
ondary structure of the S4 segment (such as a transition from a-helix to §-sheet);

while such a change still implies the movement of charges, the dipole moment will
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change, leading to higher order corrections in the membrane voltage V' to the electro-
static energy. Whether such a conformational change underlies the gating of channels
or whether the S4 a-helix translates rigidly under an applied voltage is still subject
to debate. For simplicity, we will pretend that the latter scenario holds true.

We plot the two energy states of the simple ion channel model in a one-dimensional

‘reaction-coordinate’ system (fig. 2.2). The reaction coordinate is simply a measure

Channel energy states

Figure 2.2: The simplest model of an voltage-dependent ion channel has two states,
open and closed. Since such channels carry a charge, changing the voltage shifts the

relative energies of the two states, biasing the probability for the channel to dwell in
the open versus the closed state.

of the protein’s folded shape as it changes from closed to open state or vice versa.
When the two states are populated with equal probability (dashed-dotted line), the

equilibrium rate r of transitions from the closed to open state is simply the Kramer’s

escape rate across the activation energy barrier

T X \/E”(:z:min)lE”(zmaxﬂ exp(—Ey/kT),
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where z is the reaction coordinate and E”(Zmin) and |E"(zmax)| are the curvatures of
the solid curve in fig. 2.2 at the minimum and maximum.

Suppose that the conformational energy difference W between the two states is
constant and independent of voltage and that the electric field is linear across the
membrane. As in a see-saw, changing the transmembrane potential V' shifts the
Gibbs free energies of the open and closed states by opposite but equal amounts.
Note that we will assume the energy barrier to be symmetric. The total energy
change is AE = W — 2,V. The forward transition rate a(V') from closed to open

state will be:

_ (W = z,V)
a(V) =r exp[ ( STT , (2.4)
and the complementary backward transition rate (V') will be
B(V) =r exp|+ W =zV) (2.5)
2kT '

Here the rate 7 denotes the Kramer’s escape rate when the two states are equally
balanced.

At the macroscopic scale of ion flow across thousands of channels, (V') represents
the fraction of channels of one type that are open at a given time. The quantity m(V)

obeys the first-order differential equation

(ii_? =a(V)(1=m) - B(V)m. (2.6)
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In the Hodgkin-Huxley equations (Hodgkin and Huxley, 1952), this is the equation

for a single gating particle.

For each steady state transmembrane voltage V', the channel will be in the open
state with a probability m« (V) as a function of voltage and in the closed state with
probability (1 — m(V)). As long as the ion channel possesses only two states that
are in energetic equilibrium, my, (V) must be an S-shaped function of voltage given

by the Boltzmann equation:

mea(V) = 1/{1 + expl-s(V = Vy)l},

where s = z,/(kT) and V1 = W/z,. This is simply the solution of eq. 2.6 when
dm/dt = 0. V% is the midpoint voltage of half-activation, and s is the slope of the
S-shaped function at its maximum inflection.

We can, of course, rewrite eq. 2.6 in terms of mq (V) as

dm

= M (V) — m, (2.7)

with 7(V) = [a(V) + 8(V)] .

While the steady state activation curve mqy (V) must obey eq. 2.3, the forward
rate a(V) and backward rate 3(V) are by no means unique. As a consequence, ionic
channels can have the same steady-state properties, but differ in their fluctuation
properties and time constants of activation. To remove this degeneracy, we must

specify both functions, (V) and §(V'), precisely.
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Even at steady state, individual channels will make frequent transitions between
open and closed states at a rate proportional to [;—I;moo(V)]’y, where the exponent vy
is typically 1/2 or 1, depending on the model for the kinetics, as we shall show below.
The frequency of transitions follows a bell-shaped curve of voltage, with the highest
frequency of transitions typically occurring when the channel is balanced between
open and closed states at mq (V) = 1/2.

The number of channel openings fo (closings fc) per unit time at equilibrium is
simply the product of the opening (closing) rate with the number of closed (open)

channels given by m (V). This can be shown to be

fo,fc = r{exp[s/? (V= Vi)l +exp[—s/2(V - V%)]}_l

[N

- [13'2' divmoo(v)] s

which peaks at V = V_;_ (centered at the inflection point of the S-shaped function
M (V)), falling off to either side in the fashion of a bell-shaped curve as in fig. 2.3.
We point out several other quantities which scale as powers of the first derivative

of mo (V). From eq. 2.7, the voltage-dependent time constant is

1 1 d

)= gy = [ a0

Suppose the voltage fluctuates by a small amount AV. The fluctuation-dissipation
theorem predicts that this voltage fluctuation will decay with the time constant 7(V').

The additional charge AQ(V') that flows through the channel in that time will scale
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The bell-shaped curve represents the number of channel openings (closings) at equi-
librium, while the sigmoid represents the steady-state activation curve of the con-
ductance, corresponding to the average fraction of channels in the open state. The
bell-shaped curve is proportional to the square root of the sigmoid’s derivative.

Figure 2.3:

AQWV) [a%mw<V>]Av V)= {E“%mmm] g

If N channels are present, each with a probability ms (V) of being open and
1 — me (V) of being closed, then the number of open channels will be binomially
distributed with variance Nmy(V)(1 — me(V)) (Johnston and Wu, 1995). Thus the

current noise through N summed channels of a particular type will be

a(V)B(V
(@(V)+ B(V))>

02 = Ny (V = Ery)?
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where the constant of proportionality N4 is the product of the number of channels
and the squared single-channel peak conductance. The current noise, therefore, obeys

the scaling

d

07 X (Brey = V)* [Wmoo(\/)] |

Thus, we have the general scaling:
9 d
f07 fC’7 T(V)7 AQ(V)a O (V) X [Wmoo(v)] s

where + is some power (v =1/2,1,3/2) .
To obtain a scaling of fo and f¢ with an exponent of v = 1 and without changing

the steady state activation function, it is straightforward to show that we need

a(V) =r {1 + exp - ((_W_;gﬁ) }_1 =71 mw(V),

B(V) =r {1+exp- ((ﬂ%%ixi))} =7 (1 —me(V)).

L

(Just solve meo(V) = a(V)/[a(V) + B(V)] and fe = me(V)B(V) = rme(V)[1 —
Mo (V)] using the assumption of Boltzmann statistics. The second equation is simply
the statement that the forward rate should be some multiple of the derivative of
Meo(V).) In this case, the forward rate is proportional to the steady-state fraction of

open channels. Physically, this corresponds to rate saturation in eq. 2.6. The time
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constant 7(V/) is constant!

(V) = — ={r[moo(V) + (1= meo(V))] }_lz

1
(V) +B(V) r

Also, the current noise remains

d

SHV) [;V—mwm]l.

Hence, the steady state properties of this model are indistinguishable from the pre-
vious model.

In practice, many ad hoc empirical models are used to describe channel kinetics.
For instance, one standard parametrization of the forward and backward rates of ion

channel opening is:

V) =T(V~V9{1-8,(1,[_5(‘/_@]}”

BV)=—r(V -V3) {1 - exp[—i—s V- v%)] }_1

as used by Mainen et al., 1995. The steady-state fraction my (V) of open channels is
still given by the Boltzmann equation; only the kinetics change. Hodgkin and Huxley,
1952 originally proposed this phenomenological function to describe the saturation in
the forward rates of potassium and sodium gating particles at higher transmembrane
voltages, as illustrated in fig. 2.4a. Rate saturation arises when multiple states of

the ion channel exist (as in eq. 2.3), each one of which must be traversed for the ion
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channel to move into the open configuration. The phenomenological kinetic model
proposed by Hodgkin and Huxley leads to a steady-state frequency of channel open-
ings and closings that is more closely proportional to d/dV’ [moo(V)] in the tails than

the original kinetic scheme:

d 1
fo, fc ~ ’V“‘VL [Wmoo(V)] as ‘V—‘Vl — 00
d 3
[‘Cﬁ}'moo(V)] as 'V —Vi| =0

100
< T3
s Q
3 0.01

-100 -50 0 50 100

Voltage (V — V1) [mV] -40 -20 0 20 40
Voltage (V — V1 ) [mV]

(a) (b)

Figure 2.4: Comparison of forward rates and steady-state transition frequencies for
three models of ion channel kinetics. Solid line: voltage-independent time constant;
dashed line: two-state energy-barrier model; dot-dashed line: Hodgkin-Huxley phe-
nomenological model.

Now that several possible functional relationships between the voltage and the
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transition rate between different states of voltage-dependent ion channels have been
enumerated, we turn to the question of how the density of channels or the channel
characteristics could be regulated in a “voltage-dependent” manner.

Arrayed against the backdrop of ion channels is an armada of second messenger
enzymes involved in regulating ion channel activity. These enzymes can catalyze suc-
cessive enzymes in multiple-step reactions known as cascades. A common element to
most second-messenger cascades is a class of heterotrimeric GTP-binding proteins,
also called G-proteins, known to modulate ion channel function both directly (Ma et
al., 1994; Herlitze et al., 1996) and indirectly by activating protein kinases that phos-
phorylate channel proteins or initiating gene transcription of new channel proteins.

In general, channel proteins will go through several intermediate, meta-stable
states en route from the more stable open and closed states. We propose that the
channel is subject to modification (e.g., by being phosphorylated) as it passes through
these intermediate states, as illustrated in the cartoon schematic of fig. 2.5. Alter-
natively, these intermediate states can interact with second messengers, such as a
G-protein, to elicit a cascade leading eventually to gene expression of the channel
protein and a change in the channel density.

For the sake of argument, suppose the metastable state O* is subject to modifica-

tion. If the dwell time in the state O* is 7., the “concentration” of channels in this
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TN
(closed state) C O (open state)
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Figure 2.5: The channel passes through several short-lived meta-stable states in switching
between closed open states. These intermediate meta-stable states are indicated by an
asterisk on the diagram above. Assume that no modification occurs while the channel rests
in the stable open or closed state. If there is only a finite probability per unit time that
these transient meta-stable states are phosphorylated, then the degree of phosphorylation
depends on the frequency of channel state transitions. As illustrated in fig. 2.3, the transition
frequency is a bell-shaped curve centered along the voltage axis at the inflection point of
the conductance activation curve.

state at equilibrium is:

[0*] = fo To-

r2 d 2
= [% Wmoo(V)jl To*-

The rate of modification will thus depend on the frequency of channel openings/closings.
Most second-messenger systems that have been explored to date are initiated by
ligands binding to receptors, such as an odorant binding to a S-adrenergic receptor
in a chemosensor or a photon “binding” to and isomerizing a rhodopsin molecule in
the photoreceptor (Lamb and Pugh Jr., 1992a, 1992b). Here, the rate of G-protein

activation will be directly proportional to the amount of bound ligand.
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By proposing that voltage-gated ion channels initiate second-messenger cascades
as a form of self-regulation. we assume that the voltage, rather than a ligand con-
centration, sets the rate of G-protein activation. The second-messenger system can
inherit its voltage-dependency from that of the ion channels in one of two ways: if
the G-protein acts as a state sensor, the activation rate will be an S-shaped function
of voltage; if instead it acts as a transition sensor, the rate will be a bell-shaped
function of voltage. A state sensor corresponds to a single-step G-protein activation
process in which the G-protein complex associates with only one of the two states
of the channel. A transition sensor requires an additional, intermediate step, which

could consist of either of the following:

1. A short-lived, metastable state O* that lies between the stable open and closed
states. If the G-protein binds only to the metastable state, then activation of
the second-messenger cascade will be proportional to the “concentration” of

channels in that state, as given by the equation above.

2. Since both the o subunit and Sy complex of the G-protein can act as catalyzers
for second-messenger, the unbinding of the 8y complex could function as a

transition sensor, as illustrated in fig. 2.6).

Figure 2.6 is a purely hypothetical ‘Rube-Goldberg’-type mechanism that involves
a second-messenger cascade initiated by a GTP-binding protein. Four homologous
domains form the a-subunit of an ion channel protein, at the center of which is the
pore or P-region which allows selected species of ions to cross the membrane. The

B~ complex of certain heterotrimeric GTP-binding protein binds to the calcium ion
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channel protein (see, for example, De Waard et al., 1997). One direct, known effect
of this binding is to shift the voltage-dependency of the calcium channel being in the
open state.

By postulating that indirect effects of G-protein binding are also possible, we
now show how the G-protein could conceivably act as both a state and a transition
sensor. Figure 2.6 shows the (v complex associating with the S4 transmembrane
segment of one of the ion channel domains. Only when the G-protein is bound to the
ion channel protein can GTP bind to the o subunit of the G-protein, activating the
catalytic properties of the o subunit. The activated o subunit acts as a state sensor,
since it is produced at a rate proportional to the occupancy of the open state.

Under application of a transmembrane voltage, the S4 segment is visualized as
moving down across the membrane, carrying with it the gating charge. This con-
formational change closes the pore. If this event also causes the G-protein’s 37y
components to simultaneously dissociate from the channel protein, then the rate at
which this occurs is proportional to the rate of ion channel state transitions. If the Gy
has catalytic properties when it is independent of the o subunit, then this component
acts as a transition sensor.

Note that the products of second-messenger cascades depend on the law of mass
action, so that the rate of production or concentration of the effector, or end product

d
of the cascade, can be proportional to me (V) or [d—vmw(V)r raised to some power.
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For instance, a G-protein mediated second messenger cascade can take

3=

[de/_m“(v)] = %mw(V), where n is integer.
In particular, we are interested in the case n = 2, since this corresponds to the
equilibrium model of a voltage-dependent ion channel with two states. Suppose the
activated form of the G-protein, which is produced at a rate proportional to [O%],
or the ion channel transition frequency, gives rise to two products, A and B. Sup-
pose that the effector E, which could be a protein kinase, transcriptional regulatory

protein, depends on A and B as follows:
A+ B+ E — E*.

In this case, the rate of E* production is proportional to the product [A][B] of the
concentrations of [A] and [B]. Assuming that [A] and [B] quickly reach equilibrium

values, the rate of effector activation will be

E*(t) ~ [A][B] ~ f5

(Here we assume that E*(¢) is not inactivated, recycled, or degraded quickly and that
E'is present in abundant quantity.)

If each voltage-gated channel is associated with its own G-protein-mediated mech-



G-protein
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Figure 2.6: Schematic sketch of an ion channel in the open configuration. Four
homologous domains form the a-subunit of an ion channel protein, at the center
of which is the pore or P-region which allows selected species of ions to cross the
membrane. The A7 complex of the heterotrimeric GTP-binding protein typically
binds to the ion channel protein. Here, the 3y complex is shown associated with the
S4 transmembrane segment of one of the domains of the ion channel. Only when the
G-protein is bound to the ion channel protein can GTP bind to the o subunit of the
G-protein, activating the catalytic properties of the a subunit. Under application of
a transmembrane voltage, the S4 segment is visualized as moving down across the
membrane, carrying with it the gating charge. This conformational change closes the
pore. If the G-protein’s B complex simultaneously dissociates, then the G-protein
can act as a both a state and a transition sensor through its two different components:
the a subunit and the 87 subunit complex (see text).

anism for self-regulation, then the functions me (V') and [-d—moo(V)]7 for different

dVv
voltage-gated ion channel types form a set of computational primitives. Using these
primitives, we will show that biophysically plausible ‘learning rules’ exist by which
a neuron could maximize the information about stimuli in its firing rate. The next

section lays the theoretical foundation for information maximization. The reader who

prefers a somewhat more heuristic approach can skip to section 2.5.

2.3 Information Maximization

Information from the senses must be compressed into the limited range of firing rates
in spiking nerve cells. An efficient representation of information in neurons should take
advantage of the regularity and scale invariances of stimulus features in the natural
world. In the case of vision, this regularity is reflected in the typical probabilities of
encountering particular visual contrasts, spatial orientations, or wavelengths (colors),

all of which have been catalogued (Atick, 1992; Ruderman, 1995). Given these
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probabilities, an optimized neural code would eliminate redundant features whilst
devoting increased representation to commonly encountered features.

Using concepts from statistical mechanics, we can quantitatively define what it
means for neural firing rate code to be ‘optimal’: Optimal noiseless transmission
of information in a single nerve cell occurs when the response is matched to the
statistics of naturally occurring stimuli, such that all firing rates are used with equal
probability. If noise is present, the probability of firing rates should be weighted
inversely proportionally to the standard deviation of the output noise.

Hodgkin-Huxley models of real neurons can exhibit complex behaviors on several
timescales, such as firing patterns consisting of “bursts”—sequences of multiple spikes
interspersed with periods of silence. We will, however, focus on models of regularly
spiking cells, which adapt to a sustained stimulus by spiking periodically. To quantify
how much information the time-averaged firing rate f of a regularly spiking neuron
carries about a stimulus variable z, we use the definition of the mutual information
Z(f; r) between the stimulus z and the firing rate f in terms of entropy functions of

the (continuous) probability distributions of f and z:

I(f;2) = S(f) — (S(Fl2)e (2.8)

such that the mutual information is the difference between two entropies: the first
is the unconditional firing rate entropy S(f) of the probability distribution p(f); the
second is the average conditional firing rate entropy (S(f|z)).

We define these entropy functions and motivate their relationship to the mutual
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information below:

If p(f) is the probability, given the set of all stimuli, of a firing rate f, then the

entropy S(f) of the firing rates is defined as

S(f) == [mlp(N] () o, (2.9

where the integral is taken over all firing rates. In rough terms, the entropy mea-
sures how broad a single-peaked probability distribution of firing rates is. A broad
distribution of firing rates is, of course, more suitable for representing many different
stimulus amplitudes.

On the other hand, to optimize information transfer through the neuron, a stim-
ulus z should reliably produce a firing rate f with little variation in f; therefore,
the conditional probability distribution p(f|z) given a stimulus z should be highly
peaked. For a particular stimulus z, the distribution of firing rates in response to

that stimulus will lead to a conditional entropy S(f|z):
S(fl2) = = [ lp(flz)]p(fl2) df

Following Stein (1967), we can write down a simple approximate expression for the
conditional entropy. As a consequence of the Central Limit Theorem, the distribution

of firing rates for a particular stimulus x approaches a Gaussian distribution over long
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times. Thus S(f|z) will tend to

S(f|z) N%log[%reo?(:c)} (2.10)

ZS(fGa.ussia.nlx)a

where 0‘%(1‘) is the variance in the firing rate in response to a stimulus z as estimated
over a set time interval T.. This expression is an upper bound to the true conditional
entropy because of the inequality S(f|z) < S(fGaussian|Z), true for any continuous
probability distribution with the same fixed variance o%(z) as the Gaussian. The
deviation from equality introduced by considering even heavily skewed distributions
of firing rates is typically minor (Stemmler, 1996).

Of course, the conditional entropy for a particular stimulus is less relevant than
the average conditional entropy. The average conditional entropy is a measure of
overall reliability: how well, on average, can the stimulus z be determined simply by
observing the response f7 As will be explored in the chapter on stochastic resonance,
the dynamic range of responses in neurons with thresholds can be expanded by in-
jecting uncorrelated fluctuations or noise in the input current to the neuron. But the
drawback of adding input noise is that it also increases the noise in the output. The
mutual information Z(f;z) is a quantitative measure of the trade-off between these
two effects.

We will assume that the probability distribution of inputs p(z) is fixed and con-
tinuous, and that f and z are related by a differentiable and invertible function.

This invertible function maps the probability distribution p(z) into the probability
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distribution p(f), such that the infinitesimal probability measures are equal:
p(f) df = p(z) dz. (2.11)

The assumptions that p(z) exists and that f(x) is invertible are sufficient to guarantee
the existence of eq. 2.8. Even as f(z) changes (by adapting some of the internal
parameters of the neuron, for instance), we will assume that the one-to-one function
f(z) always exists.

Noise, as measured by the variance crf:(a:) of the response or firing rate of the
neuron, will always be treated as being additive. In other words, the deterministic
function f(z) exists; corruption by noise is modeled by adding a term A f to the value
of f(z), where Af can be a function of f, and hence a function of z. Multiplicative
noise, a much more difficult subject, will not be considered here.

Substituting egs. 2.9 and 2.10 into eq. 2.8 yields the following lower bound on the

mutual information:
Tus(f;z) = / ln( )] os(z )) p(z) dz — In(v/27e). (2.12)

Using eq. 2.11, we can also go one step further and rewrite the mutual information
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in terms of p(z) = p(f)df/dz:

I(f;2) = S(f) = (S(flz),

oo

Iis(fiz) = /_oop(if) In {;fl(—x)(dj;(;)ﬂ dr — /p(x) Inp(z) dz,

(2.13)

where we have dropped the constant term — In(v/27e). Note that this expression is
explicitly invariant with respect to linear rescaling of f — af. If f(z) is any nonlinear
function, then the mutual information is always less than the original entropy of the
inputs: Z(f;z) < S(z).

Now that the mutual information Z(f; z) has been defined, we examine what the
consequences are of optimizing the information transfer through a neuron. First, we
determine which probability distribution of output firing rates maximizes the mutual
information; second, we will find the function f(z) that achieves this probability
distribution of p(f).

To find the optimal probability distribution of output firing rates, we resort to the
calculus of variations. Note that any probability distribution p(f) is subject to the

constraint

[p(f)df=1.

Introducing a Lagrangian multiplier A to enforce this constraint, we augment the mu-

tual information Zy g(f; z)) in eq. 2.12 by a Lagrangian term and take the variational
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derivative

0Iup(f;z)) _ 6
RN (" [p}p s atersto df)

= —(A+ 1+ In[o; p(f))]). (2.14)

To extremize the functional, set the variational to zero, resulting in

constant

p(f)=—— (2.15)

of

Since the second variational derivative is negative, this solution for p(f) maximizes
Z18(f; ) The optimal probability distribution of firing rates is inversely proportional
at each point to the standard deviation of the firing rate. If low firing rates are
more reliable than high firing rates, in that low firing rates are subject to less noise
or variation, then the optimal strategy is to bias the output firing rate probability
distribution away from high firing rates. If, instead, the variation in the measured
firing rate is independent of the stimulus x, then the optimal firing rate probability
distribution is flat over the entire range of possible rates: each firing rate is used with
equal probability; among engineers, this is known as response histogram equalization.

Stein (1967) considered two specific cases of spiking neurons:

(1) Completely regular neurons that spike perfectly periodically. If the time window
T over which spikes are counted is not synchronized with the spike train, then
the measurement of the firing rate will be subject to some error, or variability,

which is reflected in a constant variance a?:
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O'f:—

If we drop terms that do not depend on the function f(z), the mutual informa-

tion from eq. 2.13 scales as

Tia(fia) ~ [ 1(%) p(a) da.

This leads to an optimal probability distribution

poptimal(f ) = constant fe [fmz'n’ f maa:]

that is flat. Equivalently, additive and independent noise can be superimposed
on the fundamental periodic firing behavior of the neuron at the output stage.
If the noise is additive, it is not a function of the stimulus z, and thus all firing
rates are equally “noisy,” implying that o; = constant. The prediction of a flat
output probability distribution has been tested experimentally in the blowfly
by Laughlin (Laughlin, 1981), who matched the statistics of naturally occur-
ring visual contrasts to the response amplitudes of the fly’s (non-spiking) large
monopolar cell (LMC). The response amplitude in the fly LMC is the amount
of neurotransmitter released in response to a stimulus—this is the functional

equivalent of the firing rate in a spiking neuron. Laughlin’s implicit assumption
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was that all response amplitudes were equally reliable.

(2) Randomly spiking neurons, in which the spike timing is described by a Poisson

process with a mean firing rate. The variance of the firing rate behaves as
af2 =f
As a consequence, the mutual information scales as
Zia(f52) ~ [ (%) o) o,

where, once again, we have dropped the term that does not depend on f(z).

constant

poptimal(f) = _—ﬁ—_ f € [fmim fmaz]

Low firing rate responses are more typical than high firing rates. Since much
of the neurophysiological evidence supports the Poisson hypothesis of neuronal
spike timing, we mention one of the implications of an optimal rate code if
the spike timing is Poisson: most often, a typical stimulus (particularly one
from the natural environment or one drawn by random chance) will drive a
particular cortical nerve cell only weakly. In general, only a few neurons in
a population of cells will respond vigorously to any particular stimulus, such

as the orientation of a bar in the visual field. However, this consequence of

maximizing the information in single cells is not evidence for the sparse coding
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hypothesis (Olshausen and Field, 1996), which predicts that the information
in a population code is typically contained in the firing of a restricted and
small subset of cells of the entire population. Sparse coding and information
maximization in single neurons are, of course, not inconsistent with each other,

since they make a similar prediction about the distribution of firing rates.

If the output probability distribution of firing rates is uniform over a fixed interval,
what is the corresponding functional relationship between the stimulus z and the
firing rate? To answer this, we show that for any fixed, differentiable probability
distribution function p(z), the entropy of the monotonically increasing and bounded

function f(z) will be maximal when f(z)  f%_ p(z') dz’. Rewriting
Sl (@)] = — [ plf(@)] n{plf (=)} df (2)

in terms of p(x), we get

=~ [ (=) mp(@) dz + [ p(z)In

df (z)
= I dz.
Note that

© d
/—oo Ef(x) dr = fmaa: - fmina

since f(z) increases monotonically and is bounded above and below. This will be our

constraint. Taking the variational derivative with respect to the derivative of f(z),
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we solve for

gj—%{— o) mip(e) - 600 i @)+ 2 dm} —o

The variational solution is simply

which leads to

z

f(.’L‘) = (fma.a: - fmin)/ p(l") dz’ + fmin-

—00

In other words, the firing rate that maximizes the entropy matches the cumulative
distribution function of the inputs (i.e., the definite integral of the probability distri-
bution). If the noise is constant and independent of the stimulus, then maximizing the
entropy of the firing rates is equivalent maximizing the mutual information between
the firing rate and the stimulus ensemble.

More generally, the firing rate response that optimizes the mutual information is:

flx)=¢a /x os(z')p(z") dz’ + co. (2.16)

—00

Eq. 2.3 is simply the special case of eq. 2.16 when o¢(z) = constant.
The mutual information will be the objective or “energy” function that a learning

rule will seek to maximize. However, the mutual information is by no means the only
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function that we could use for a learning rule. For instance, the function

R(f;2) = - [ (plf @] os())" plf ) o

where n > 1, possesses the same variational optimum as the mutual information

I(f;z) ~ — [ n (plf(2)] 04(2)) plf ()] df , namely

constant
p(f) = 22T (2.15)
of
Of course,
n
-1
Iny = lim Y ,
n—0 n

so the fact that R(f;z) and Z(f;z) have the same optimal probability distribution
comes as no surprise. The logarithm function, however, has an attractive additive
property that polynomials in p[f(z)]os(z) do not share. This additive property is
useful in optimization, since gradient-based learning rules will result in products of
terms derived from the chain rule of calculus, products which turn into sums by taking
the logarithm. For example, the entropy function of any composition of functions
f(h(g(V))) can be written as follows, as long as each function f, h, g is invertible as

a function of its argument:

S[F{hlg()}] = - <1n[p<v>]> + <1n I%‘Q >
(V) 2(V)
(] (el

(V) p(V)
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where {---) indicates an integral over the probability distribution p(V).

We are now armed with all the tools we need to investigate how a cell could “learn”
to maximize the information in its firing rate about a stimulus distribution. Starting
with the determination of a lower bound on the mutual information Zy5(f; ) between
the stimulus = and the firing rate f, we have established what the optimal firing rate
distribution and the optimal mapping from stimulus amplitude to firing rate should
be. In the next section, we will derive stochastic learning algorithms that change
the parameters of the Hodgkin-Huxley model to achieve this desired input-output
mapping. If a biological neuron could implement these algorithms (and we will argue
that it can), it will be able to maximize the mutual information Z(f;z) in response

to arbitrary statistics of the input and to an (almost) arbitrary set of constraints.

2.4 The Adaptation or Learning Rule

Many learning or adaptation algorithms are based on “objective” functions that quan-
tify how close a system is to an optimum; the minimum (or maximum) of said objec-
tive function defines the optimum. In our case, the objective function is the mutual
information Zy p(f; z) between the set of stimulus amplitudes z and the set of firing
rates f(z). Let us assume that the peak conductances and activation functions of
eq. 2.1 can be adjusted through a learning mechanism, so that the function f(z) is
also a function of the Hodgkin-Huxley parameters.

The simplest parameter optimization scheme consists of computing the objective

function and its gradient, or direction of steepest descent, with respect to the pa-
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rameters, and then changing the values of the parameters in the direction of steepest
descent or ascent, depending on whether the objective function is to be minimized
or maximized. But this simple approach will not work in a biological system: first,
a neuron will, in all likelihood, have no representation of the quantity Zpg(f;z), i.e.,
neurons do not explicitly compute the amount of information present in the firing
rate; secondly, the neuronal mechanisms for adaptation in cells have no direct “ac-
cess” to the stimulus amplitudes; instead, these mechanisms will depend on some
potentially unknown functions of the stimulus amplitude, such as the voltage across
the cell membrane or the Ca?* concentration inside the cell.

But to maximize the information transfer, does a neuron need to “know” the
arrival rates of photons impinging on the retina or the frequencies of sound waves
hitting the ear’s tympanic membrane? Since ion channels only sense a voltage and
not the stimulus directly, the answer to this question fortunately is no: maximizing
the information between the firing rate f and any intermediate variable y, such as the
average voltage (V'), is equivalent to maximizing the information about the stimuli,
as long as we can guarantee that the transformation from stimuli to firing rates is
always one-to-one. If the only source of noise is additive noise in the output firing
rate, this fact is an immediate consequence of a fundamental property of mutual in-
formation (Pinsker, 1964): the information between the firing rate and any invertible
function of the stimulus is equal to the information between the firing rate and the
stimulus itself. In a more detailed model, a learning mechanism that increases the

channel density of active conductances would, of course, also increase the current
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noise. In this case, the information between the firing rate and the average voltage,
for instance, would be an upper bound on the information on the stimuli.

Thus a closed-form, analytic expression for the relationship f(z) between firing
rate and stimulus amplitude is not required. The function that relates to the stimulus
x to the intermediate variable V' can be completely unknown and never play a role
in the learning algorithm, as long as we can assume that the mapping from z to
V is one-to-one. So the answer to the question of whether a neuron needs to have
‘direct knowledge’ of the stimuli to maximize the mutual information about these
same stimuli is, rather surprisingly, no. Note that, while the distribution of stimuli
z is fixed, that of the intermediate variable V is not; as a consequence, a learning
algorithm that relies solely on the voltage V will actually itself change the environment
that the neuron “experiences” during learning.

Since a neuron must be able to adapt to a changing environment and shifting
intra- and extracellular conditions (LeMasson et al., 1993), the cell should possess
learning and relearning mechanisms that can alter the synaptic and voltage-dependent
conductances to reflect the environment and computational needs of the whole system.
Such learning mechanisms we will assume operate on a continual basis, starting with
the development of an animal and continuing throughout the adult life, thus providing
a basis for nervous system plasticity.

Naturally, we will suppose that a learning mechanism exists that maximizes the
information the neuron’s firing rate contains about the stimuli the neuron receives.

The mutual information depends on the entire stimulus set, whereas, at any one
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time, only a single example of a pairing (f; V) is available to a learning mechanism.
As a consequence, the mutual information Zyg[f; V] itself is usually unknown, and
so the learning rule must construct an estimate of it. The standard approach to
learning with an objective function that consists of an integral is known as stochastic
approximation (Tsypkin, 1971). This approach, in fact, invokes a stochastic sampling
of inputs, much like the Monte Carlo technique of integrating functions in high-
dimensional spaces. For recent applications of this algorithm to entropy or mutual
information maximization, see Linsker (1992), Schuster (1992), or Bell and Sejnowski
(1995).

Suppose that ¢ is a parameter for one of the conductances that the cell could
adjust. For instance, ¢ could be the number of voltage-dependent high-threshold
calcium channels in the cell membrane of the neuron. The cell can change this
number by inserting new channels into the membrane or recycling already present
ones. Just by how much the cell should change the number of channels to maximize
the mutual information is given by the stochastic approximation algorithm:

Each time a stimulus z occurs, the parameter g of the conductance is slightly mod-

ified in the direction that most increases a suitable estimate of the mutual information

Iis[f; V]

0 0Iislf;V
Aqlx _ LB[f ]

~"8g GV ()] (210

where 7 is a small, positive, real number known as the learning rate. In other words,

the change in the parameter ¢ is proportional to the gradient with respect to ¢ of



45

the variational derivative of the mutual information. The variational derivative in
eq. 2.17 is an instantaneous, but “noisy” estimate of the mutual information, since
the expected change Ag averaged over all possible realizations of z is equal to the

true gradient:

(Adla)e = n§q<1n{afp[f<v>]}> . (2.18)

(V)

Equation 2.18 is the functional integral of the right-hand side in eq. 2.17, integrated
over the probability distribution p(V).

Recall that the variable V is some unknown, but numerically computable function
of the stimulus z, which has a fixed probability distribution p(z). After each successive
update of the parameter g, the function relating V' and x changes slightly. However,
if the learning rate 7 is very small, Zy (f; V] remains fairly constant over the short
term. If the stimuli are sampled randomly from the distribution p(z), then averaging
Agq, over several steps of the learning mechanism is nearly equivalent to averaging
over the stimulus ensemble.

To improve the estimate of the gradient, we can introduce a memory term that
involves the previous history of the parameter q. For discrete update schemes, in
which the parameter ¢ is updated at unit time intervals, the change in ¢ at time ¢

depends on the change in ¢ at time ¢ — 1 as follows:

8 6ILB [f, V]

Aq(t) = aAg(t—1) + na—qm :
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where 0 < a < 1. Alternatively, we can write down the differential update rule for
continuous time learning:

Aq(t) - _ﬂearning aq 6p[ (l‘)] ’

where Tiearning Sets the time scale of the “memory” for past inputs.
Most learning rules in neural networks are, in fact, stochastic algorithms. In a
stochastic algorithm, the evolution of parameters, such as the weights in an artificial
neural network, can be described by a probability density function for the weight
having the value w at time ¢.
If only one parameter is varied, the Fokker-Planck equation associated with eq. 2.17 (Radons,

1993) predicts that the probability distribution of the parameter g will evolve as:

5 i 2
B0 2 [(80)to 0. 8] + g [5((0) e Pla, )]

(2.19)

In general, even when (Ag),() is zero, such that a deterministic algorithm will have
converged, ((Aq)2)p(z) will be nonzero. Since this latter term is proportional to 72,
stochastic algorithms usually use an annealing schedule: the learning rate 7 is slowly
decremented in a power-law or exponential fashion, until the parameters being learned
are “frozen” into their optimal settings.

If the noise in the signal transduction from a stimulus z to a firing rate f is
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additive, then eq. 2.13 predicts that the learning rule should be:

Agqly = n—a% In (di{;) (2.20)

Note how the logarithm in the definition of the mutual information has simplified the
functional derivative.

Now suppose that f[I(V)] depends on a set of parameters g;. The appropriate

learning rule then consists of simultaneously perturbing all parameters as determined

by the estimate of the gradient of S{f[I(V)]} with respect to ¢;. By applying the

chain rule of calculus to eq. 2.20. we get

8 SS{AIWVIY _ [df ()™ adf (V)] | [dI(V)]™ 0dI(V)
o op(V) [ aI(V) } Sg:dI(V) [ dv ] gV
We defer deriving explicit representations of this learning rule until the next sections;
the explicit form will differ for different neuronal models.

Maximizing the mutual information Zy g using eq. 2.20 is similar to a procedure
known as simulated annealing, a technique often used for global optimization of high-
dimensional problems. In simulated annealing, a ‘free energy’ is minimized by allow-
ing the system to perform a biased random walk in parameter space. One should
visualize the free energy as a landscape in parameter space with hills and valleys
(fig. 2.7: as the system performs the random walk, it prefers states of lower energy

(valleys) to those of higher energy (hills). A temperature, corresponding to the learn-
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Figure 2.7: Simulated annealing is a stochastic method that seeks out the global
minimum of the free energy by varying the parameters of a model system. The free
energy landscape is fixed.

parameter space

ing rate 7 in eq. 2.20, controls how likely the system is to move into a state of higher
energy. If the temperature were zero, the system would never be allowed to escape
from local minima in the free energy landscape. As time progresses, the temperature
is cooled, freezing the system into a particular low-energy state; with luck, this state
corresponds to the global minimum in the free energy.

We first point out the similarities of simulated annealing to information maxi-
mization, before discussing the one essential difference. Like simulated annealing,
information maximization using eq. 2.20 also corresponds to a random walk in pa-
rameter space. In fact, the random walk is described by the Fokker-Planck equation
2.19; the stochastic nature of information maximization stems from the random na-
ture of arriving stimuli . The simulated annealing temperature corresponds to the
learning rate 7 in eq. 2.20: both the temperature and the learning rate are decre-
mented with time. Moreover, maximizing the mutual information Z(f;z) can, in

some instances, be interpreted quite literally as minimizing a free energy. Suppose
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that the function relating the firing rate to the current is

FI) = fraz erf( §I>

In analogy to statistical mechanics, define the free energy F of the current I as follows:
1
F=E(I) - BS(I), (2.21)
where 3 = 1/T, the inverse of the temperature, and

ED) = (12/2) =% /0°°12p(1)d1

S = (alpD) =~ [ Wwp@p)dl

are the energy and entropy of the somatic current distribution p(I), respectively. The

energy E(I) = (I?/2) corresponds to the power dissipated by the physical system.
For this particular f(I) function, maximizing the entropy of the firing rate dis-

tribution is identical to minimizing the free energy of the currents. The optimal

distribution of somatic currents I is

p(I) = \/?exp(—glz),

which corresponds to the optimal probability distribution of firing rates p(f) =

constant if f € (0, fimaz)-
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For arbitrary fixed current-discharge relationships f(I), we can define a general-

ized energy

such that the optimal probability distribution p(I) is
df
p(I) = al

= Aexp[—BE(I)], (2.22)

where A is the normalization constant. As long as the generalized energy F([) can
be bounded from below (i.e., as long as infinite negative energies are not possible),
we can always interpret the maximization of the mutual information as a free energy
minimization problem.

Recall that the goal of information maximization is not to increase the “random-
ness” or entropy of the firing rates at all costs. In the definition of mutual information,
the unconditional entropy is balanced by a conditional entropy that represents the
noise in the system. Noise represents but one type of constraint on the unconditional
entropy; additional constraints arise through the nonlinearity of the f(I) curve. These
constraints enter as additional terms in the learning rule. In the free energy, entropy
and energy are balanced relative to each other through the inverse temperature 3,
which acts as a Lagrangian parameter. (Note that the temperature § is not related

to the temperature used in simulated annealing.) The same balancing act must occur
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in information maximization.

Unlike simulated annealing or most artificial neural network learning algorithms,
however, the free energy landscape in parameter space is not fixed for the informa-
tion maximization procedure outlined here. Eqn. 2.20 does not correspond to true
stochastic gradient ascent on the mutual information Zyg(f;z). Such a procedure
would require the computation-of all derivatives, including dV/dz. Instead, each
probability distribution of voltage p(V) corresponds to a different free energy land-
scape. Since the algorithm changes the probability distribution p(V') continually, it
not only performs a drunken walk, but also deforms the energy landscape as it does
so; one should, therefore, imagine the free energy landscape as made of jello, free to
wobble. The minimum of Z;g(f; ) must, however, always coincide with the minimum

of Zrg(f; V). It is for this reason that the learning algorithm will work.

2.5 The Set of Basis Functions

An alphabet zoo of different calcium (Ca?*) conductances, denoted ‘L’, ‘N’, ‘P’, ‘R,
and ‘I”, is present in pyramidal neurons of the central nervous system (Helmchen
et al., 1996; Avery and Johnston, 1996). These conductances activate rapidly as a
function of voltage (with a mean slope of about 10 mV~! ), and have been traditionally
divided into two classes: low-voltage activated (LVA) channels such as the ‘T’ type,
and high-voltage activated (HVA) channels such as the ‘L’( L = long-lasting) type. In
reality, a spectrum of Ca%* ion channel types exists, which differ from each other in

the midpoint of voltage activation or their pharmacological properties. For instance,
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the activation function for the ‘N’ type channel lies midway between that of the “I”
and ‘L’ types.

A similar myriad number of potassium K+ conductances exists, including the de-
layed rectifier current, various types of A-currents, delay currents, muscarine-sensitive
currents, and Q-currents. In addition, there are fast, calcium-gated potassium con-
ductances, whose activation functions rapidly shift to lower potentials in the presence
of increasing internal Ca?* currents.

In the spike initiation zone in the axon hillock region of a neuron, a set of power-
ful sodium and potassium conductances gives rise to the nerve impulse—the action
potential. A set of weaker voltage-dependent conductances in the dendrites of pyra-
midal neurons in neocortex and hippocampus modulates both the subthreshold and
suprathreshold response to stimuli (for a recent review, see Yuste and Tank, 1996).
The learning mechanism we will develop will adjust this latter set of conductances.

We will assume a Hodgkin-Huxley formalism for all conductances, eschewing more
detailed models, such as the Goldman-Hodgkin-Katz equations, that account for cur-
rent rectification. For each electrotonic compartment of a neuron, the Hodgkin-
Huxley model corresponds to a coupled set of nonlinear differential equations for the
membrane potential V' and the gating variables m (for activation) and h (for inacti-

vation) for each conductance. In each electrotonic compartment of the neuron, the
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voltage V evolves as

Cdd— Z passnve E V + Zga,ctlve th(V) (Ez — V),

(2.23)

passive

where C is the membrane capacitance, g; are the voltage-independent synaptic
and leak conductances, g% are the peak values of the voltage-dependent conduc-
tances, p; and ¢; are integers, and E; are fixed, ion-specific reversal potentials. The
index i = 1,2,--- , N runs over all N independent conductances within the compart-
ment that have different voltage dependencies.

If we only consider conductances that activate, but do not inactivate (¢ = 0), then
such Ca?+, K+, Na* or Cl~ conductances are analogous to the “neurons” of artificial
neural networks, which are characterized by sigmoidal relationships between input
and output. (The Boltzmann function is typically called the logistic function in the
neural network literature.)

For Hodgkin-Huxley conductances with a single gating particle and only two states
of the underlying ion channel, open and closed, the steady-state value of the conduc-
tance g; corfesponding to channel type i is given by the sigmoidal Boltzmann function:

9i
1+ exp[—s;(V — V)]’

gi =0imei(V) =

where g; is the peak conductance, s; is the slope at maximal inflection of the activation

function, and V; is the midpoint voltage. The peak conductance for any one type is
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Figure 2.8: An activation curve in the Hodgkin-Huxley model corresponds to a time-
dependent basis function in an artificial neural network. Illustrated as solid lines are
the steady-state activation functions for calcium Ca?* ‘L’, ‘N’, and ‘I’ conductances
and the Hodgkin-Huxley Na® conductance taken from Lytton and Sejnowski, 1991.
The dotted lines illustrate various potassium conductances, such as ‘M’, ‘A’, ‘Kp’,'K¢’
at 10 mM [Ca®*]. Parameters for K™ conductances taken from ibid. and Johnston
and Wu, 1995.

the product of the density of channels in the membrane and the peak single channel
conductance.
A learning mechanism that adjusts the steady-state activation functions of con-

ductances will change any one of three different types of parameters, singly or in
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combination:

peak conductance/channel * channel density Ji
midpoint (half-activation) voltage Vi
conductance slope S;

If the conductance model is more complicated than the one given by the Boltzmann
function, there will be more than three parameters that could be adjusted during
“learning.” In addition, learning mechanisms could, in principle, change the time
constants of activation and inactivation. However, we will defer consideration of
learning rules that change the time constants until section 2.13.

Conceptually, we may think of the voltage activation curves of different types of
Ca?* and K™ channels as providing a set of sigmoidal basis functions. During learning,
we will change the parameters of these “sigmoidal basis functions,” so that the firing
rate response matches the target function that maximizes information transmission.
But the analogy to feedforward perceptrons only goes so far: voltage and conductances
interact in a nonlinear manner, complicating the analysis. The voltage sets the state
of the conductance, but the voltage-dependent conductance in turn resets the voltage,
establishing a nonlinear feedback loop.

A standard result from the theory of universal approximation states that one
can approximate any sufficiently smooth (L3) function to arbitrary accuracy by the

superposition of a sufficient number of basis functions (Ripley, 1996), as illustrated
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in fig. 2.9. This result lies at the heart of most of learning theory for artificial neural

networks.

- - - - -

conductance [nS]

o
L

Voltage [mV]

Figure 2.9: If we take the limit of infinite slopes in the steady-state activation curves
of conductances, then the smooth curves of fig. 2.8 become step functions. In this
schematic, the smooth, voltage-dependent activation function of the overall conduc-
tance is approximated by three step functions as a function of the dendritic voltage
V. If the true conductance is a sum of N conductances, each based on a channel type
with a steplike activation curve, then a learning rule should change the density of
these channel types to achieve the best approximation to the smooth curve as shown.

If the target conductance is a known function of voltage, then the following su-
pervised learning rule suggests itself for adapting the peak conductances associated

with each activation curve for the voltage-dependent conductances:
d Y
Ag; = n - (Error) - [a—v-mwz(V)] , (2.24)

where 7) is a learning rate, the error is a measure of how close the model’s performance
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is to the target performance for that input, and v is some positive, real number. (The
error can be any metric or pseudo-metric, such as the Kullback-Leibler distance used
by Bayesian statisticians.) This error is provided by a so-called ‘teacher’; hence
the learning rule is called a supervised learning rule. If v = 1, this learning rule
reduces to gradient descent on the derivative of 1/2 (Error)? with respect to the
intermediate variable V. In situations involving nonlinear feedback, such a learning
rule is preferable to straightforward gradient descent on the error: in effect, the bell-
shaped curve of f‘;mw(V) selects a subset of weights for updating each time an input
is drawn from the input space, instead of updating all weights. Nonlinear feedback
can make a system sensitive to small changes in parameters; straightforward gradient
descent thus has a greater potential for instability.

Using the schematic of fig. 2.9, we can decoct the essence of the supervised learn-
ing rule 2.24. For simplicity, suppose the voltage is quantized in units of AV. In
fig. 2.9, the actual smooth voltage-dependent activation curves have been replaced by
a discrete number of step functions spaced AV apart. Consider, for instance, an input
that leads to a voltage KAV, where k is an integer. In response to such an input,
the learning rule of Eq. 2.24 adjusts only the peak conductance associated with the
activation curve centered at k AV, leaving all other conductances unaffected. Even in
the presence of the nonlinear feedback loop between voltages and voltage-dependent
conductances, the effect of this isolated adjustment is fairly specific.

Learning rules to change a set of basis functions are typically derived from an

objective function that measures how close a system’s performance is to ideal or
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perfect performance. These objective functions will naturally lead to learning rules
that involve the activation functions mes(V) and their derivatives frmeos(V). It
is hence not surprising that the the unsupervised learning rule that maximizes the
information transfer of the neuron bears a striking similarity to the supervised learning

rule for mapping a range of inputs onto an arbitrary set of outputs:

Agi = h[divm“»i(v)]' (2.25)

This learning rule will be derived in section 2.7 from first principles. The only differ-
ence to the previous learning rule is that no error measure multiplies the term on the
right-hand side of the equation: the teacher that provided feedback on how close the
system was to the ‘right’ answer has quite literally disappeared. Why such a simple
maneuver should yield the appropriate unsupervised learning rule is the nontrivial
subject of the fxext sections.

Note that the learning rule of eq. 2.25 bears no relationship to correlation-based or
Hebbian learning, which is the approach that has dominated thinking about learning
in biological systems for the past fifty years. In the classic postulate of Hebb (Hebb,
1949), learning is a consequence of correlated activity between pre- and postsynaptic
neurons, generally thought to be subserved by long-term potentiation (LTP) and
long-term depression (LTD). If two neurons ¢ and j are connected by a synapse Wi,

then the strength of that synapse is changed in (anti-)Hebbian learning according to

AW, = in< fifs - 9), (2.26)
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where f;, f; represent the activity of the two neurons, respectively, 6 is a threshold,
and the sign determines whether learning is anti-Hebbian or Hebbian. To be precise,
we have omitted from both eqgs. 2.25 and 2.26 a term to control the peak growth of
the parameter being changed.

The difference in the two learning rules arises because the equivalent of a synapse
between neurons does not, in general, exist at the subcellular level: different voltage-
dependent conductance types are typically not coupled to each other except through
the transmembrane voltage. (An exception to this rule is the calcium-dependent
potassium conductance.) Since the states of conductances are only indirectly linked
to the input-output relationship of the neuron, the learning rule 2.25 makes no direct

use of correlations.

2.6 Feedforward Learning

To explore what the learning rule of eq. 2.20 on page 47 actually means, we begin
with a zeroth order model: Suppose that a fixed function, independent of any of the
subcellular parameters of the neuron, relates each possible synaptic input to a steady
state voltage, which, in turn, is related by some variable function to the response,
or firing rate, of the neuron. We thus imagine that each input stimulus “clamps”
the voltage to a particular known value, but that the response of the neuron can be
changed as a function of that voltage.

The assertion that a steady state voltage exists is already an assumption, which

will be treated in detail in section 2.8. For the full dynamical system of a spiking
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Hodgkin-Huxley model, we will generalize the notion of steady state to include pe-
riodic functions of voltage—the quasi-steady state—before taking the last step and
examining fully time-varying, non-periodic functions of voltage.

Clamping the voltage leads to a steady state current I across the neuronal mem-
brane composed of three components, namely synaptic, passive (leak), and active

currents:

I(V) = Isynaptic + Ileak + Iactive

= goyn(Esyn — V) + Gieak(Bleax — V) + Zgz‘ mb. ;(V)hE, ;(V)(E: = V),

where we have simply given names to some of the components of eq. 2.1. (The synaptic
and leak components are simply terms with p; = ¢; = in eq. 2.1.) To simplify matters
even further, we introduce the shorthand notation ¢, ;(V') to denote the product of

the steady-state conductance fraction and the driving potential:
I(V) = Iynaptic + Tieak + Y, Gi®ooi(V)-
i

Together with the peak conductance g;, ¢ (V') yields the so-called “window”-current
for the i-th voltage-dependent conductance.

Since the relationship between synaptic input and steady-state voltage is fixed,
the probability distribution of voltage inputs is also fixed and unchanging. Changing
the active conductance parameters in the equation above will affect the relationship

between the steady-state current I and the steady-state voltage V', but, by assump-
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tion, not change the probability distribution of voltages. If we let the neuron’s firing
rate response to the steady-state current be some saturating, nonlinear function f(7),
then learning can occur by changing I(V'). Note that we will assume that the function
f(I) to be given, deus er machina, until we derive the f(I) relationship directly from
the full, spiking Hodgkin-Huxley equations in section 2.10.

In summary, a stimulus z is converted to a firing rate f in three stages:
z—»V->1->f

i.e., the stimulus maps onto a voltage, the voltage onto a current, and finally the
current onto a firing rate. In the zeroth order model, only the mapping from V — I
is variable.

Learning rules for artificial neural networks are typically based on a fixed prob-
ability distribution of voltage inputs, so a close analogy to neural network learning
exists for this zeroth order model. Even though this approach might be expected to
make the problem more tractable, we will show that the resulting adaptation rules
for the conductances turn out to be horrendously complicated. Only by using the
feedback inherent in the full nonlinear dynamical system will the adaptation rules
simplify considerably.

To obtain an explicit representation for the learning rules, we start with the
innocuous-looking equation from section 2.4:

Agl, = n(‘% In (%) (2.20)
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For the sake of simplicity, we will typically make the assumption that the noise in
the model is additive and independent of the firing rate, so maximizing the mutual
information between stimuli and firing rates is equivalent to maximizing the entropy
of the firing rate distribution. This assumption is inherent in the choice of eq. 2.20
as the learning rule.

The first complication arises because of the logarithm in eq. 2.20. Computing the
rules for adapting the peak conductances, midpoint voltages, and voltage slopes of
various voltage-dependent conductance types requires taking the partial derivative of
In(dI/dV’), the logarithm of the derivative of the steady state current with respect to

the steady state voltage. This leads to a term

-1

() - {Sombm) e

in the learning rule. All update rules, whether for the peak conductance, the midpoint
voltage, or the conductance slope of a particular ion channel type, are thus coupled
to all other ion channel types through the sum 3-; §j3dv[¢oo,j(v)]- This coupling
reflects the fact that the mutual information is a global property of the stimulus set.

However, this coupling between the learning rules for different ion channel types
is inherently biophysically implausible—how would a neuron compute the sum over
derivatives of different activation functions required in the learning rule? A learning
rule for changing the parameters of conductance should be completely local: it should

depend only on the voltage and the properties of the ion channel itself. In addition,

dI(V)

o can tend to zero, rendering the learning rule unstable.



63

Similar problems plague attempts to maximize the information in networks of
nonlinear neurons by changing the synaptic strengths of connections. Straightforward
stochastic gradient ascent on the mutual information or entropy of firing rates is
another form of feedforward learning, and leads to nonlocal learning rules. This can
easily be seen by generalizing from the simplest case of one presynaptic neuron and
one postsynaptic neuron; note that only in this simplest case is the resulting learning
rule still local, since only one parameter is present.

In applying the information maximizatioﬁ approach to changing the synaptic
strengths in a simple network, we treat the active, voltage-dependent conductances
inside single cells as fixed, incorporating their effect into the nonlinear neuronal re-
sponse function f(I). Suppose that the current I driving the postsynaptic neuron is

linearly proportional to the firing rate of the presynaptic neuron:

Foost(I) = flafpre), (2.28)

where « is the measure of synaptic strength, and fyre and fpos are the firing rates of
the presynaptic neuron and the postsynaptic neuron, respectively. If the presynaptic
firing rate fyr. is a random variable with a fixed distribution, then the stochastic

approximation learning rule for « is

Aa

0
- 5ln [a fla fpre)}
1 (o)

o Flafm) (229
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where the prime denotes a derivative with respect to the argument. The extension
to multiple input neurons and multiple output neurons is immediate (see, for exam-
ple Schuster, 1992; Bell and Sejnowski, 1995) and involves the computation of the
inverse synaptic weight matrix that describes the couplings between neurons. This
inverse matrix replaces o~! in the equation above and requires an inherently global
computation. The next section will explore a more powerful and clever approach to
information maximization that will avoid such global computations.

This is not to say that all global computations are biologically implausible. For
instance, a spiking neuron’s intracellular calcium concentration is thought to track
the average firing rate; LeMasson et al. (1993) propose conductance adaptation rules
designed to maintain a constant firing rate by keeping the calcium concentration
steady. Here, the calcium concentration plays the role of a global variable. However,
information maximization is a comparatively much harder task. Even though the
calcium ion is the journeyman of neurobiology, involved in many neuronal processes,
from the release of neurotransmitter at presynaptic terminals to the activation of
protein kinases in the phosphorylation cascades, it is but one molecule. As such,
it can represent one variable, e.g., the average firing rate, but not all the different
moments of the firing rate distribution required for information maximization. We
do not intend to imply that calcium does not play a major role in changing the
information transfer properties of a neuron, only that adaptation mechanisms should
have a component directly tied to or initiated by the ion channels that underlie the

individual conductances (see section 2.2). Appendix A.1 shows how calcium-based
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information maximization can, in fact, be an instantiation of feedforward learning,

with all its attendant complications.
The second complication in deriving explicit learning rules from eq. 2.20 arises
from the nonlinearity f(I) relating the current to the firing rate. This nonlinearity

df 1t d2f

leads to a multiplicative term h(l) = [—] Fiek which can take on a bewildering

dI
variety of forms, reflecting the sensitivity of the f”(I) term to changes in the sat-
urating nonlinearity. Technically speaking, h(I) is the radial curvature of the f(I)

function. The function A([) is plotted on a logarithmic scale versus current in fig. 2.11

for different f(I) functions. We write out h([) for several choices of f(I) in table 2.1.

Table 2.1
f(I) = fmax erf( §I> h(I)=-81 Error Function
FU) = Fax tanh<§1> h(I) = —fm% (1) Tanh
f) = ¢ -c h(I)=é{a—2(f(I)+c)} Boltzmann
1+ exp[—B(1 — Io)] a
f(I) = al® h(I) = —};—ﬂ Power-Law
f(I) = aexp(BI) h(I) =g Exponential
flI) = fma"%@; h(I) =— 7 f o Michaelis-Menten
f)=al h(I)=0 Linear

For the first three choices of f(I), maximizing the entropy on f can be interpreted

as minimizing a free energy of the currents I, because we can, in principle, write the
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Figure 2.10:
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function h(I) as the functional derivative of a scalar quantity that is bounded from
below. In fig. 2.10, we see that the h([) term in the learning rule for these firing rate
nonlinearities penalizes high currents:

In principle, hard thresholds in the f(I) function present a problem, since the
multiplicative factor A(I) diverges near the threshold. Any realistic model of a neuron
will not contain such hard thresholds, since the presence of noise will “smear out”
any discontinuity in the derivative of the f(I) relationship. As a general rule, the
firing rate for both the Hodgkin-Huxley and leaky integrate-and-fire model behaves

as

2
f =" e [—("—a—”—}
if I is well below the threshold 6 and noise is present (see Chapter 3). In this regime,
a constant noise model for the firing rate is absolutely invalid. Since the timing
of spikes is nearly Poisson for spiking models with subthreshold currents, a more

appropriate noise model is a}  f. In this case, maximizing the mutual information

(or constrained entropy) causes the multiplicative factor h(I) to tend to

hPoisson(I ) = - =

in the subthreshold regime.

Hence the asymptotic limit of A(I) is

as I — —o0.
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In general, if a neuron is to adapt its firing rate probability range to be uniform over

all possible firing rates, then the twice differentiable, bounded function f(I) must be

quickly saturating. By quickly saturating, we mean simply

- f'{U)
L Tg

£0

Neither leaky integrate-and-fire models with a fixed refractory period nor Hodgkin-
Huxley models will have quickly saturating current-discharge relationships, such as
would be given by a tanh function, for instance. This poses somewhat of a quandary:
while the nonlinearity near the threshold current for firing is well understood, what
the appropriate nonlinearity for firing rate saturation should be is less clear. This
issue will be explored in detail in section 2.8.

While writing down the learning rules in their fullest form is not particularly
edifying, we can gain some appreciation for the complexity of the feedforward learning
by considering the case where conductances only activate, but do not inactivate.
Calculating the learning rules from eq. 2.20 on page 47 explicitly for the changes in
peak conductance g;, midpoint voltage V;, and slope s; of the various conductance

types yields:
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Agi=n (d ) —1{[ d mw,z(v)] (Bi—V) - mw,,-(v)}

ool ( 2.30a)
© h(IV)) mans(V) (B - v>)
AVi=r (d{;;f) 3 [Homes)] B =)+ [ i) |
~h{I") g [;mmﬁ)kﬂ—va ( 2.30b)
As;=n (Ei%(f/@—lgi{ v ; %) [dc‘i; mw,i(v)] (B;=V)
N (Ei + Z— QV) [%mw (V)} } ( 2.30c)
- h(I(V)) Gi -(-V;—S_:—V—) [d_(f/‘moo,i(v)] (Bi — V));

is the function that reflects the

af ]~ d&’f .
dI| dr?

nonlinearity of f(I) in the learning rule, and we have used the Boltzmann function

where 7 is the learning rate, and h(l) = [

for the activation curves: me;(V) = 1/{1 + exp[—s;(V — V})]}, where s; is the slope
of the activation function and V; is the midpoint voltage of half-activation.

The first term in each of the learning rules maximizes the entropy of the currents.
Note that these adaptation rules per se do not rule out negative conductances, which
would make the Hodgkin-Huxley system biophysically unrealistic and numerically un-
stable. Therefore, the adaptation rule for the peak conductance is made conditional:
if the peak conductance g; were to become negative, then the peak conductance is

simply set to zero instead. Increasing the entropy of the currents alone without any
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safeguards can lead to rampant and unchecked growth of peak conductances and
slopes. The multiplicative factor A(I) in the second term of the learning rules keeps

this behavior in check.

2.7 Computing with the Steady State—The Role of

Feedback

In a Hodgkin-Huxley model of a neuron, voltages and conductances are nonlin-
early coupled: the conductances affect the voltage, which, in turn, sets the voltage-
dependent conductances. At the level of the single cell, the true input is not a
voltage, but a synaptic conductance. While the function relating synaptic conduc-
tance to voltage is highly nonlinear and unknown, the system must satisfy the strict
physical constraint of charge conservation: when the neuron is firing periodically, the
average current injected by the synaptic and voltage-dependent conductances must
equal the average current discharged by the neuron; when the neuron is in a steady
state, the same constraint holds true. This constraint will be the key to obtaining
a local learning rule that completely uncouples conductances from each other, as we
shall see below.

We illustrate the steady state case with a simplified model of a single neuron
containing one electrotonic compartment, displayed in fig. 2.12. Current is injected
through a synaptic conductance gsy,, whose value is drawn randomly from a fixed

probability distribution. A set of Ca®* and K* voltage-dependent conductances acts
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to amplify or deamplify the synaptic current—these conductances are subject to the
learning mechanism. The current discharged across the leak conductance gsoma is

converted into a response by a fixed function f(I).

Single Compartment Model

l syn g "
i o (i+1) ® " S i+
0} A ., o
G GCa ‘_w'ﬂ'GCa GK Lef GK
syn e -f.'.;'_
" -." " ..-s
et ént
'. .‘. "l .‘l
: H
vsoma
g l
soma Soma

Figure 2.12: Single compartment model with multiple conductances. The dashed
lines are meant to suggest a variable number of different channel types.

Whether adaptation of the voltage-dependent conductances will be successful de-
pends on whether a stable steady state voltage exists for each input to the neuron
at each stage in learning. In the case of periodically spiking neurons, is the simple
periodic state stable for all possible inputs? These are nontrivial issues, particularly
for spiking neurons. In the next section, the existence of the true steady state be ex-

amined, which will motivate the use of an auxiliary function that is used to simplify
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the learning rules for changing conductance parameters.

We will, however, postpone some of the details of the full derivation of the adap-
tation rules, instead emphasizing how charge conservation leads to learning rules that
are local, so that the mechanism for changing one conductance does not depend on the
values of any other conductances. For the reader less interested in formal derivations,
a more intuitive explanation of the learning rule is given below eq. 2.31.

As in the feedforward learning case in the previous section, the learning rule re-
quires the computation of (dI(V)/dV)™", which arises from eq. 2.20 on page 47.
However, now the probability distribution of the voltages is no longer fixed, but that
of the synaptic conductances is. Recall that in the noiseless case, the mutual infor-
mation between response and steady state voltage I(f; V*) is identical to the mutual
information between response and input I(f; gsyn). Since the steady state voltage V*
and the synaptic conductance gy, are related by an invertible transformation, we can
write gsyn as a function of V*. By virtue of charge conservation, we can write the

steady-state current across the leak conductance either as

Isoma(V*) = gsomaV*a

reflecting the current discharged, or as the the current injected

N
Tioma(V") = Gegn (V") (Bsgn = V) + 3 8 me (V) e (V) (Bi = V7).

=1

Note that gsyn(V*) does not explicitly depend on the parameters of the voltage-
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dependent conductances, and thus plays no role in the partial derivatives in the

learning rule 2.20 on page 47. We conclude, therefore, that

(%)_1 - {; 9i % [mgo,j(V)hio,j(V) (Ej — V)] }—1 (2.27)

in feedforward learning is replaced by

(%) - gsolr,ﬂaL (2.30)

thanks to the nonlinear coupling between voltage-dependent conductances and volt-
age. Since the term (dI(V)/dV) need no longer be written as a sum over terms
containing different conductance types, a local learning rule results.

If we contract all constant factors in eq. 2.20, we obtain the beautifully simple

formula for changing the peak conductances of the model:

03 = 1] e-s0i(V) + (V) B0s(V)], 2:3)

where 7 is a positive, real number called the learning rate, ¢o:(V) = mb, ;(V)hd, ;(V)(Ei—
V') is the product of the steady-state conductance fraction and the driving potential,
and c¢(V) is a function that depends on the nonlinearity in the current-discharge (f-I)
relationship, the constraints on the firing rate distribution, and the noise model. In
the simplest case, c(V') is a function that is zero for most average voltages, equal to a

positive constant if the firing rate is below a minimum target, and equal to a negative
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constant if the firing rate is above a maximum target voltage. Thus,

v ifV <V,
(V) = J 0 fV, <V <V, (2.32)
—y ifV >V,

\

when f(V) can be approximated by a linear function over the range [f(V), f(V4)]-

The dominant term in the learning rule is %d)w,i(V), which acts to increase the
entropy of the outputs. If the ion channels activate, but do not inactivate, then this
term is simply bell-shaped function of voltage %mw,i(V) that reflects the transi-
tions of ion channels between open and closed states at the microscopic scale (see
section 2.2). By assumption, the stimulus z and the voltage V are related to the
firing rate response f by monotonically increasing functions. The first term in the
learning rule changes primarily those conductances that increase the slope of the firing
rate response to z. A higher slope means that more of the neuron’s limited range of
firing rates is devoted to representing the stimulus z and its immediate neighborhood.
Since the learning rule is democratic yet competitive, only the most frequent inputs
“win” and thereby gain the largest representation in the output firing rate.

The second term c¢(V) ¢oo;(V) limits the steady-state voltages into which the
neuron is allowed to settle. Without this term, the conductances would grow without
bound. Examples of the uniform (flat) probability distribution of firing rates resulting

from applying this learning rule in numerical simulations are shown in fig. 2.16 on

page 88 and fig. 2.27 on page 123.
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Using the Boltzmann equation for the (in)activation functions, we can also write
down update rules for the other conductance parameters, namely the midpoint volt-
ages and slopes of the (in)activation functions. The equation for the midpoint voltages
Vi is

AV, = —n gz-{g; [l (V) (B = V)] + [e(V) (B = V) = 1] 2 (V) }hz;,i(V).

For the slopes s;, we have

As; = Qi{w V)L [ (B - V)]

+ V)V = V(B = V) + (B = V)] Fom2 (V) }hgg,m.

Even though more complicated than eq. 2.31, the equations for changing the midpoint
voltages and slopes are still local: the change in the conductance parameter depends
only on the state of that conductance and the voltage across the membrane. To set
these last two equations into the context of eq. 2.31, we rewrite the dominant term
in the update rules for AV, and As; as a function of Ag;. For the purpose of making

the resulting equations compact, we consider only the case when p; = 0 or ¢; = 0:

_(d
AV, =—g (WAgz)

gi _ d . _

Even though the learning rate 7 is a common factor multiplying all the learning
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rules for all conductance types, n by itself does not represent a global coupling of
different adaptation mechanisms to each other. If we rescale all parameters ¢; by a
random, nonzero vector «, such that ¢; = o;g;, then all the learning rules for the new
parameters ¢; are rescaled accordingly. Equivalently, we can rescale the learning rate
for each parameter arbitrarily, without respect to the other parameters. In fact, there
exists a natural scale for changing the peak values of the voltage-dependent Ca?* and
K* conductances, which is set by the one conductance that does not change in the
model of fig. 2.12: the fixed conductance gsoma. On this scale, the peak conductances

evolve as

dg; d
n—% = n(t)[ soma 777 Poo,i (V) + 92 mac(V) ¢m,,.(V)], (2.33)

where we have taken the liberty to convert the discrete update rule in eq. 2.31 into a
differential equation and introduced a time scale 7;. When we consider time-varying
signals in section 2.13, we will show that this time scale 7; is related to the time
constants in the equations dm;/dt = (mi(V) — m;) /7:(V') governing the activation
of voltage-dependent conductances. The learning rate 7(¢) is dimensionless and the
function ¢(V') has the dimensions of an inverse current (see sections 2.6 and 2.8).
Given these facts, a quick check reveals that both sides of equation 2.33 are dimen-

sionally consistent.
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2.8 Stability of the Steady State*

The steady state voltage V* is given by setting CdV/dt to zero in the Hodgkin-Huxley
equations. To ease the notational burden, define G as the vector of conductances in
eq. 2.23, which includes the synaptic conductance and the voltage-dependent conduc-
tances. Let E be the associated vector of reversal potentials. We thus rewrite the

Hodgkin-Huxley set of differential equations as

C’EZZ =GE-VG1
dt
T,,,(V)%T% = moo’,;(V) — m,;.

The steady state voltage V* is the solution to

V= —g%% (2.34)
in which all activation variables m; have been replaced by their steady-state val-
ues Moo ;(V*). Since gsoma is one of the components of G(V*), we have of course
G(V*)'1 > gsoma > 0, s0 eq. 2.34 is well-defined. For any fixed choice of peak con-
ductances, |G(V*)|| is bounded; hence at least one fixed point (steady state voltage)
of the differential equation must exist. The steady state voltage V* will be bounded
by the lowest and highest ionic reversal potentials, which are typically the ones for

potassium Fy and calcium E,.

If the fixed point is stable, the Hodgkin-Huxley system will return to the fixed
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point under a perturbation V* = V*+ 4V and m; = Me;(V*) + 0m;. To determine

the conditions that need to be satisfied for the fixed point to be stable, we linearize

the Hodgkin-Huxley equations around the fixed point:

c%v—) =—-G(V*)16V + 3 g5i(E; — V*) om,
n(v*)d(‘;’tni) = m, ;(V*) 8V — dm,

where we have used the fact that me;(V*) = m; at the fixed point to eliminate the
derivative of 7;(V*), and we have ignored the inactivation variable h;, since including
it will not change the stability criterion in eq. 2.35 below. This set of equations can
be written as a matrix differential equation with entries in the first row and column
and along the diagonal, zeroes everywhere else.

By applying the definition of the determinant in terms of the Levi-Civita ten-
sor and noting that only the diagonal term and combinations of gx(Fx — V*) with

My, x(V*) remain, it can be shown that the determinant of the stability matrix is

2

(—1)N . ] = (—1)N‘1 I .
CHk 17 V* [ZG V Z Ek" oo,k(V) an A Tk(V*) W(V )7

where N is the rank of the matrix, i.e., the number of variables in the Hodgkin-Huxley

differential equations, and the total derivative dI/dV is

gé(v*) — W) (E-V" 1) -G L (2.35)
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Since the determinant is equal to the product of eigenvalues, and the eigenvalues
must all be negative for the system to be stable, a necessary condition for stability is

that S(V*) <0, or in other words,

N-1 N-1
Z Gk moo,k(v*) ~+ 9soma + GJsyn > Z 9k mgo,k(V*)‘ (Elc - V*)
k=1 k=1

To establish that the mapping gsyn — V* is absolutely monotonic and increasing,
we compute dV*/dgs,n explicitly. Writing the steady state as the solution to an

equation with two variables V* and gsyn,

F(V*, gyn) = G(V*)-E-V*G(V*)-1 =0,

we have

dV* _ OF/0gsyn
dgsyn  OF/OV*

_ Esyn -V
G(V*)1-G'(V*)-(E-V*-1)
_ Egn—V?
- Tdr
_W(V )

Thus as long as Esy, > V* and the fixed point is stable, i.e., —4L(V*) > 0, then
dV'* /dgsyn will be positive. By the implicit function theorem, this implies that, within
the local neighborhood of gy, the mapping Gsyn — V* = Ioma — f is a composition

of absolutely monotonic, increasing functions. A mapping of gsyn ONtO a compact set
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of unstable fixed points is inconsistent with an increasing function.

Note that the mapping of gs;n — V* may only be piecewise continuous and differ-
entiable, because it can be punctuated by discontinuous jumps due to the presence
of unstable .ﬁxed points. Unstable fixed points can cause some ambiguity, since the
steady state reached will depend on the initial conditions. In devising a learning rule,
we obviate such ambiguity by choosing a constant initial voltage V. If no unstable
fixed points exist, the mapping gsyn — V* will be continuous and differentiable.

Before learning begins, we will assume initial conditions such that V*(gsys) is an
increasing function of gsy,. Since the optimal response of the neuron is proportional
to the cumulative distribution function of the inputs, the target V*(gsyn) is also an
increasing function. To maintain a monotonic mapping from input to response output,
the learning rule must enforce the constraint E,y,, > V*. This constraint sets a limit
to the maximal current across the leak conductance gsoma, even when the synaptic

conductance gsn becomes very large:

Gsyn gsomaEsyn _

Imgz = lim = gsomaEsyn-

9syn™0  gsyn -+ Gsoma

While the current delivered can be increased by inserting channels with reversal po-
tentials Erey > Fgyy, this would lead to the undesirable situation in which the synaptic
current decreases as the voltage increases.

If the current is limited, the neuron is not allowed to reach the absolute maximum
Jmaz Of its response. We thus seek a systematic method to map the inputs onto a

range [fi, fn] € [0, fmaz] With uniform probability, where f; > 0 and f, < fmax. The
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most natural approach to this problem is to define an auxiliary function a(f):

0 f < fh)
f)=3f R<F<tn (2.36)
L0 f> fr-

When noise is added to the output, but not the input, maximizing the mutual in-
formation is equivalent to entropy maximization. Ideally, we would like to use the

entropy function

Sla(f)) = = [ pla(f)] I {pla(£)]} dh

0

in a stochastic approximation learning rule. However, a(f) is discontinuous and has
derivative zero for f > f, and f < f;. Hence a(f) is not invertible and, therefore,

utterly useless. Instead, define

(

frexp [+52] f< f,

a(f) = : f i < F < fhs (2.37)

| fwexp -SR] f >

This is a fair approximation to the previous definition of a(f), particular if A; and Ay,
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are large. The extremal solution to S[a(f)] with a(f) given by eq. 2.37 is
da
p(f) = constant x 7
a exp[-f—gi)_rfll] f<r

C2 fi < F < fa

cwxp[—%ﬁ] > fa

\

With the constraint that p(f) be continuous at f = f; and f = f, and that
I p(f)df = 1, these constants are ¢; = ¢, = ¢z = {(f;1 — i)+ A+ N1 -

eXp(“fl//\l)]}—l'

Variational Maximum

= 0.01
a

20 40 60 80 100 120
Firing Rate f [Hz]

Figure 2.13: The auxiliary function a(f) from eq. 2.37 allows one to define a target
probability distribution for the firing rates even in the absence of saturating nonlin-
earities in the output firing rate. This optimal probability distribution is uniform
over a range of firing rates between [f}, f1], and exponentially decaying outside this
region.

More rigorously, S{a(f)] = S~[a(f)]+S[a(f)]+ST[a(f)] where S~[a(f)] is defined
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on the support f < fi, S[a(f)] on the support f; < f < fi, and S*{a(f)] on the

support f > f,. The goal of stochastic approximation will be to simultaneously
maximize S~[a(f)], S[a(f)] and S~[a(f)].

The auxiliary function a(f) leads to an additional term in the learning rule if

f & [fi, fn]- For ¢; = §;, Vi, s;, we have

whenever f > f;, or

1 df oI
/\l dl aqi

AQI = (AQi)orig + 77 {+— 31 2.

whenever f < f).

Since the function f(I) is fixed and current conservation relates the voltage V' to
the current I, we can replace the condition f < fiby V< Viand f > fo by V > V,,
above. When f(I) o I, the factor £A7'df /dI multiplying the second term in the
learning rule of eq. 2.31 is absolutely required to ensure convergence of learning. In
this case, it replaces the factor A(I) = [df /dI]™" d*f/dI? arising from the nonlinearity

of the f-I curve, which becomes zero if the f-I curve is linear.

2.9 Simulations Gallery

In simulations of the simple model shown in fig. 2.12 on page 72, the steady state is
reached by solving a time-discretized iterative map of the Hodgkin-Huxley dynamics,

as illustrated in fig. 2.14. The conductance is computed for a particular voltage,
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then either the voltage or conductance is clamped, yielding the next voltage in an
iterative map. For instance, when voltages are successively clamped in this iterative

map procedure, the voltage at iteration or time ¢ + 1 is

LS gl V)AL, V()] B - V().

soma ;

Vit+1) =

The limit of this map, lim; , V(¢), is the steady state voltage.

For simplicity and without loss of generality, numerical simulations were done with
simple activation functions for each conductance and no inactivation functions. The
number of conductance types was varied between six and twenty for both Ca?* and
K* conductances. At the beginning of learning, the midpoints of the Ca®* activa-
tion functions were equally spaced between the resting potential and some maximum
voltage. K* conductances also started out equally spaced, but the range of midpoint
voltages was offset relative to the Ca?* conductances to below the resting potential.
All peak conductances are initially set to zero.

Since the simple model does not explicitly model the spiking mechanism, current
across the leak resistor gsoma is transduced into a “firing rate” or response by a fixed
function, such as the function f(I) = 418/(1 + exp[1.22(I — 0.38)]) — 161.78 shown
in fig. 2.15. In section 2.10, the challenges to this simple model are addressed by
considering a true spiking model.

We take the input variable to be the input current to a presynaptic neuron with
the same f(I) function (illustrated in fig. 2.15). The firing rate of the presynaptic

neuron is taken to be linearly proportional to the synaptic conductance driving the
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Figure 2.14: Two equivalent numerical methods can be used to compute the steady state.
In both cases, the value of all conductances is computed for an initial membrane potential,
usually the resting potential. On the left in panel (a), the conductances are clamped, giving
rise to a current through the somatic conductance gsom, to ground; this current leads to a
new membrane potential, as indicated by the straight line. This process is iterated until
the value of the current no longer changes; the dynamical system’s evolution traces out the
zig-zag line. On the right in panel (b), the voltage instead of the conductance is clamped,
and the resulting current is recorded; as before, the current determines the next voltage.
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Figure 2.15: Transduction of current across the somatic leak resistor gsoms into a firing
rate is given by a fixed function in the simple model. An analytical approximation to the
“f-I” relationship that can be directly derived from the Hodgkin-Huxley equations is one of
the subjects of section 2.10.
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Figure 2.16: 500,000 iterations of the update rules were used to adjust the peak conduc-
tances, midpoint voltages, and slopes of 20 Ca®?* conductances. The midpoint voltages of
the calcium conductances were originally spaced 2 mV apart; the maximal slope at the in-
flection point of each conductance activation curve was initially 2.72 mV. The input-output
mapping the system learns approximates the integral f(z) = C [ p(z) dz, which is none
other than the cumulative distribution function of the inputs. The learning rate decayed
exponentially: 1 = ng exp(—t/Tearning), With mg = 1075 and Tlearning = 90,000 iterations.
After 500,000 iterations, the system settles into a state in which all firing rates are used
with nearly equal probability, except at the edges of the firing rate range. To show the
variation in the learning algorithm from run to run, the results of two identical runs are
superimposed in panel (b).

postsynaptic neuron to fire.

Hlustrated in fig. 2.16 is a Gaussian distribution of input currents to the presy-
naptic cell with a mean of 0.7 nA and a standard deviation of 0.25 nA. Whether the
input variable is the synaptic conductance, the firing rate of a presynaptic cell, the
current injected into a presynaptic cell, or the arrival rate of photons at the retinal
photoreceptors is irrelevant as long as the noiseless transformation of the input to
output is one-to-one and any noise present in the system is additive. Note that noise
was not added to the input in these simulations. Below, we will consider the effect

of external feedback loops adding to the synaptic input of the postsynaptic neuron;

120
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this consideration motivates the the choice of input we use here.
Fig. 2.16 shows the result of training the neuron model of fig. 2.12 on the Gaussian

distribution of input currents described above, using the learning rule
_ d
Agi = 1| 6:(V) + (V) (V) (2:31)

for the peak conductances and the corresponding learning rules for AV; and As;
for the midpoint voltages and slopes, respectively. The postsynaptic cell “learns” the
structure of the input, matching its firing rate to the cumulative distribution function
of the input currents. In so doing, the neuron adapts itself so that all firing rates
within the neuron’s dynamic range are used roughly equally often.

Limiting the maximal dynamic range of firing rates or alternatively limiting the
average firing rate imposes a constraint on the entropy of the firing rate distribution.
The function ¢(V') incorporates this constraint. When the postulated somatic f-I
relationship is linear or nearly linear, then the function ¢(V) is extremely simple,
as shown in eq. 2.32 on page 75. In the linear case, we can essentially ignore the
conversion from current into firing rate completely, and simply maximize the entropy
of the currents. Changing the f-I relationship adds the term h(I) = [df /dI]”'d%f/dI?
to the function ¢(V'). The optimal distribution of currents or voltages after learning
remains proportional to df /dI, but df /dI is no longer constant. The non-uniform
voltage probability distributions that result from applying the learning rule eq. 2.31
to nonlinear f-I relationships are shown in fig. 2.17.

By choosing the input variable to be the current to a presynaptic neuron, we can
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Figure 2.17: Different current-discharge (f-I) relationships lead to different target
voltage probability distributions, as given by eq. 2.22 on page 50. The target firing
rate probability distribution remains uniform in all cases. The same input current
distribution was used as in fig. 2.16(a). Graphs show the resulting probability distri-
butions after 200,000 iterations of the learning rule, with an initial learning rate of
n=25x107% (For f(I) = I1°™452 5 = 10~8).

explore the effect of synaptic feedback in the model. Most of the synapses made onto a
neocortical neuron originate from other neurons within cortex (McGuire et al., 1984;
Kisvarday et al., 1986; White, 1989). Anatomical studies reveal that not more than
10% or the synapses onto excitatory stellate cells in visual cortex arise directly from
the lateral geniculate nucleus (Ahmed et al., 1994), which is the intermediate stage

between the retina and the cortex in the visual processing stream. These anatomical

studies led to the ‘canonical microcircuit’ hypothesis of Douglas and Martin (1991),
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which implies that exeitatory feedback dominates cortical processing. A number
of studies (Douglas et al., 1995; Somers et al., 1995) have explored the possible
functional roles for such massive, excitatory recurrent connections. Of course, it
should be noted that the mere presence of predominantly excitatory synapses in the
anatomy does not necessarily dictate that the functional effect is excitatory; for an
alternative view, see Stemmler et al. (1995).

The simplest abstraction of the many network feedback loops present in mam-

malian cortex is an autapse, i.e., a neuron making a synapse onto itself. With such

input presynaptic firing @ synaptic postsynaptic firing

current neuron rate k/conductanceneuron rate
|
|

Figure 2.18: Model of synaptic feedback.

feedback, the synaptic conductance of the postsynaptic cell is

Gsyn = afpre + /prosta

where fye and foost are the firing rate of the presynaptic and postsynaptic cells,
respectively, and a and 3 are synaptic weights.

From a theoretical point of view, synaptic feedback is a trivial extension to the
previous model: even though the probability distribution of synaptic conductances
is no longer fixed, we know that no amount of processing can change the maximum

mutual information between the original input and the firing rate of the postsynaptic
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neuron—this is known as the ‘data processing inequality’ (Cover and Thomas, 1991).

If the sign of the synaptic feedback is constant as a function of firing rate, then
feedback will preserve the one-to-one nature of the mapping from input to firing
rate. In such a case, we can apply the learning rule 2.31 without any additional
modification. Fig. 2.19 shows the response of the model with six Ca?* and six K*
conductances trained on a Gaussian input current distribution to a presynaptic cell
of mean 0.75 nA/cm? and standard deviation 0.25 nA/cm?. The firing rates of the
presynaptic and the postsynaptic neurons add together in equal proportion to drive
the postsynaptic cell; the synaptic weight converting the summed firing rate into a
synaptic conductance has the numerical value of 8 x 10~* nS/(cm?Hz).

To measure the progress of the learning algorithm to maximize the mutual infor-
mation or entropy, we plot the entropy of the firing rate distribution as a function
of time in fig. 2.20. Typically, two phases in the learning process emerge: a fast
phase, characterized by rapid increase in the entropy of the firing rate distribution as
measured in bits, followed by a slow phase, during which the firing rate distribution
slowly creeps towards the target distribution. Since the actual goal of learning is to
maximize the mutual information between firing rates and stimuli subject to certain
constraints, the entropy of the firing rates, which is only one component of the mu-
tual information, need not always increase. In addition, the algorithm is based on a
stochastic estimate of the mutual information gradient with respect to an intermedi-
ate variable; hence, departures from true gradient ascent on the mutual information

are to be expected.
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Figure 2.19: The model of fig. 2.18 was trained for 2 x 107 iterations on a Gaussian
distribution of input currents to a presynaptic neuron (see text). The initial learning
rate was 1o = 2.5 X 107, and the firing rate function f(I) was chosen to be concave:
f(I) = I*™. Without any active conductances, firing rates cluster near zero, even
in the presence of synaptic feedback. Since the model was trained in the presence of
synaptic feedback, the model achieves a nearly uniform probability distribution only
while the synaptic feedback remains on; removing the feedback without changing the
parameter settings for the active conductances results in a peaked distribution of

firing rates.

To get a better understanding of the dynamics of the learning rule, we perform
the following Gedankenezperiment: let the activation curve slope of all conductances
remain fixed at a constant value and examine a “point” conductance centered at V%.
Here, V% can take on any arbitrary value. We ask how this fictitious conductance
would evolve under the learning rule 2.31 in the presence of a fixed number of real,
simultaneously evolving voltage-dependent conductances. One can imagine that the
changing probability distribution of voltages exerts a dissipative, average “force” on

the point conductance, causing the peak conductance at V% to grow or decay as a
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Figure 2.20: Progress of the information maximization algorithm as a function of time
for one run of the learning algorithm with six Ca®* and six K* conductances. For
simplicity, only the peak conductances were allowed to change. The learning rate was
kept constant and small at 7 = 2 x 1078. The learning algorithm was iterated 524,288
times; time is plotted on a logarithmic scale. The fact that the algorithm exhibits a
fast and a slow learning phase leads to the sigmoidal shape of the learning curve in

the semilogarithmic graph. On the right, the final shape of the output probability
distribution of firing rates is plotted.

function of time. This average “force” corresponds to the true gradient of the free
energy function of the firing rates with respect to the voltage across the cell membrane,
as given by eq. 2.18. (Recall that the learning algorithm, by design, seeks out the

minimum of the free energy function, albeit in a highly stochastic fashion.)

20(6) = ( [58.) + V) 607)] ) 239)

p[V(1)]

Fig. 2.21 displays the gradient of the free energy with respect to voltage in eq. 2.38
as a function of the midpoint voltage of the point conductance. During learning, the

Ca?* peak conductances centered near the resting potential are increased first, am-
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(a) Evolution of Ca?* peak conductances

plifying the overall response of the neuron. As learning progresses, the Ca?* conduc-
tances that activate at high voltages are strengthened, whereas those conductances
that were strengthened earlier are made weaker again. The gradient for the Ca?*
conductances thus sweeps out a traveling wave moving to the right in time. Not rep-
resented in fig. 2.21 is the half-wave rectification needed in the learning rule to keep
the conductances positive (since a negative conductance would be unphysical). Since
the peak conductances all start out at zero, the K+ conductances, therefore, only
start changing later in the learning process. As amplification by Ca?* conductances
becomes dominant, K* conductances begin to counteract the amplification, allowing
for a fine-tuning of the neuron’s response to input. Convergence of the stochastic
learning algorithm in the mean implies that the gradient in eq. 2.38 vanishes for all

nonzero conductances; for all zero-valued conductances, the gradient should be either
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Figure 2.21: “Force” exerted on a point peak conductance by the learning rule 2.31 as
a function of time and the midpoint voltage V% of the point conductance. The real con-

ductances evolving are six Ca?t and six KT conductances, exactly as in fig. 2.20 all other
parameters remain fixed. The learning rate in this case is kept constant at n = 2 x 1078,
Since the evolution of the voltage probability distribution depends on the exact sequence
of randomly drawn inputs, the figure shows the result of eq. 2.38 averaged over 20 runs,
starting with identical initial conditions. The curves correspond to a geometric progression
in time, each successive curve representing twice as many iterations of the learning rule as
the one before. The initial curve (solid line) represents ¢ = 4, or the fourth iteration of the
learning rule. The arrows indicate the general trend in time: the Ca2* curves, for instance,
form snapshots of a “wave” traveling to the right along the voltage axis.
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zero, or negative, because of the half-wave rectification in the adaptation mechanism
for peak conductances. The last curve in fig. 2.21a, for instance, shows a persistent
negative gradient for conductance midpoint voltages near or below the resting po-
tential (at 0 mV); however, no real nonzero conductances remain within that voltage

range in the learning process.

2.10 The Hodgkin-Huxley Spiking Model

Are learning rules for information maximization compatible with realistic models of
spiking neurons, such as the Hodgkin-Huxley model? One theoretical approach is to
let the cell change the Ca?* and KT conductance parameters to modulate the current
delivered to a set of fixed spiking conductances, as given, for instance, by the Hodgkin-
Huxley equations. The other approach is to make all conductance parameters subject
to adaptation, without reserving a predetermined set of conductances dedicated to
the spike mechanism: can a non-spiking cell learn to spike? The answer to this last
question is yes, but we shall defer consideration of the abiogenesis of spiking to the
next section. For the moment, we simply wish to point out that the two approaches
are fundamentally different, each fraught with its own set of difficulties.

We consider the following scenario: Human beings and other primates make rapid
eye movements known as saccades about three times a second. A saccade typically
lasts from 30 to 70 milliseconds (Becker, 1989), which leaves an average of 230-300
milliseconds during which the gaze is fixed. Therefore, in the time between saccades,

the mean luminance across the visual receptive field of a neuron in visual cortex
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remains constant. Since the visual response (at least in the magnocellular stream) is
suppressed during the saccade, viewing a static natural scene is tantamount to visual
neurons receiving a train of quasi-static stimuli, each stimulus lasting several hundred
milliseconds, followed by another stimulus, then by another.

Within the time scale of the stimulus, we will presume that, after an initial tran-
sient response to the stimulus onset, the cell will adapt to the stimulus and settle
into a periodically spiking state. Such a cell would belong to the class of “regularly”
spiking cells, whose response can be characterized by the rate of action potentials. In
mathematical terms, what does it mean for a neuron to be in the firing rate regime?
In essence, the duration Tguragion Of the stimulus must be much greater than the period

T between spikes, i.e., each stimulus must elicit many spikes:
Tduration > T.

After an initial transient in response to each stimulus, we assume that the voltage
waveform V(¢) settles into a simple periodic limit cycle as dictated by the somatic
spiking conductances. This steady-state period of V(t), or firing frequency, is then
the relevant function of the stimulus. As mentioned in the overview, the firing rate of
a neuron is but one representation of information, as opposed to spike time encoding,
for instance. If the condition Tayration > T is not met, then the question of whether
information is encoded in the timing of individual spikes is more appropriate. We
will not, however, treat this question here.

The method of averaging assumes that the firing rate f can be written as a func-
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tion of the mean current U > rea,ching the somatic compartment averaged over the
period T between successive spikes. Averaging allows one to make direct use of the
strict physical constraint of charge conservation: if the dynamical system is in a
periodic state, the average current injected by the synaptic and voltage-dependent
conductances over one period of the firing cycle must be equal to the average current
discharged by the neuron. In averaging, we assume that the firing rate f(I) only

depends on the mean current averaged over the firing period:
1 [T
(I) = T / 1(t) dt, where I(t) is periodic with period T.
0

We thus write f as f({(I)).

We assume that the time-dependence of the stimuli can be described as a series

of square pulses of width At in time:
gsyn(t) = ngyn(n)@[t - nAt]@[(n +1)At — t)},

where each gsn(n) is an input conductance drawn randomly from a fixed probability
distribution. A particular input conductance gey, € (a, b) gets mapped onto a unique
function V (¢) of unique period T that describes the membrane voltage. The averaged
current (I) is a functional of V(t) and T, whereas the firing rate f is a bijective
function from the variable (I) on the real line to the positive real line. Note that

throughout we require f to be a bounded function. We thus have a composition of
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mappings that transforms a particular gs,, into a firing rate:
(a,b) C (RLU{0}) = T x £*[0,T] — R — (R} U {0}),

where R. is the space of positive real numbers, and £2[0,T] the space of square
integrable real functions of period T'.

Note that (I[V(t)]) is a functional, i.e., a mapping from the space of functions (that
describe V(¢)) onto the real line. In the previous sections, we dealt only with functions
relating voltage to current, without considering any implicit time-dependence. The

term in the learning rule (eq. 2.31) that read

0 dl
Aglz = T]a—q In (a‘;)

now reads
dg 0 6(I)
—_— = —_— 1 — .
at "o ((W(t))’ (2.39)
oIy . ) ..
where %0 is a functional derivative.

If the cell adjusts the parameters of its conductances to modulate the current
delivered to the spike initiation zone, two questions must first be addressed before

delving into the issue of learning:

1) What is the functional form of the firing rate f(I) as a function of the current

reaching the nerve cell’s spike initiation zone?
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Q) The learning rule exploits the linearity of a fictitious conductance gsoma In
fig. 2.12. If we replace this conductance by a set of spiking conductances for

sodium and potassium, will the effective conductance still be linear?

The answers to these questions turn out to be quite simple, even if highly non-
trivial. In section 2.11, we show, by using the theory of dynamical systems, that the
adapted firing rate for most generic Hodgkin-Huxley spiking models will be linear.
Also in section 2.11, we will argue that the relationship between the mean current (I)
and the average voltage (V') is generally quadratic. By extending the neuron to two
compartments separated by a coupling conductance G, one compartment representing
the dendrites, the other the soma, an approximately linear relationship between (I)
and (V) is recovered. For our purposes, the two-compartment model, rather than the
single compartment model, constitutes the minimal model for studying the learning
of modulatory voltage-dependent conductance paramet;ars.

When a linear relationship between (I) and (V') results because of charge conser-

6(I)
3V t)

To compute the partial derivatives in eq. 2.39, we need to examine the average

becomes a constant.

vation, the functional derivative

contribution of the time-dependent active conductances for Ca?t and K* to the mean

current (I[V'(¢)]). This depends on the average activation

1

/Orduration m[V(t)] &t : /tt+T m[V(t)] dt = (m[V(t)D’

1

Tduration

where the RHS is the integral over one period of the quasi-steady-state of the system.

Any transient behavior of the conductance, including adaptation over short time
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scales, is averaged out by taking Tguration > 7. In the previous formulation of the
learning rule, the steady-state mq;(V') activation functions formed a basis set. Here,
the averaged activation functions (m;(V')) serve this role.

The functional derivatives simplify significantly if the time constants 7;(V) are,
in reality, voltage-independent. In this case, integrating both sides of the differential

equation for m(t) results in

T/T d’? T/ MoV (2) t——/ m(2) dt.

Since the LHS is zero, it follows that

The average (m[V'(t)]) is thus independent of the value of 7, the conductance time
constant. We are free to choose any reasonable 7.
In passing, we point out that the set of “basis functions” (m;) is not equivalent

to the basis set used in the previous model, since

(Moo[V(1)]) # mao[{V (2))]-
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Instead,

(Moo [V ()]) < moo[(V(1))] in regions where my,[(V'(2))] is convex

(Meo[V(2)]) > meo[{V (2))] in regions where my,[(V (t))] is concave,

leading to the overall behavior that (me [V (¢)]) is a shallower function of (V' (¢)) than
meo[(V(?))]. As a general rule of thumb, steeper activation functions are better at
shaping the neuron’s firing rate response to match the optimal response curve. (This
statement can be made more quantitative—see, for example Barron (1993).)

We assume throughout that me, (V') is described by a Boltzmann function of the
type meo(V) = 1/{1 + exp[—s(V — Vi )}, where V is the transmembrane voltage, s
is the inverse slope, and V; is the midpoint voltage of half-activation. If 7(V) =

constant, then applying the definition of the functional derivative to (m;[V (¢)]) is

straightforward:
) L1 fOT Moo [V (8) +€d(s — t)] ds — fT Moo [V (8)] ds
W(mi(v» —ll_{%'f{ ~ : }

% (moo,i[V(t)] - moo,i[V(t)]2) if0<t<T

0 ift<Qort>T

—
e (MenalVO)] = e, [VO)F) i =0
28_:1’ (moo,i[V(T)] - mw,i[V(T)]z) itt=T

where the last two cases follow by integrating with the Dirichlet kernel §,(t) =
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1/2n sin[(n + 1/2)t]/sin[1/2 ¢] or the kernel 6,(¢) = n/7 (1+ n2¢2)™", and letting
n — oo. For 7(V) # constant, we still need to take the functional derivative, even
though it will no longer take such a simple form as above.

If we now integrate the functional derivative over the duration of the stimulus,

asSsUMIng Tduration > 1,

[ V() d = 1 (e (V) — (e (V)

Tduration SV (t)
(i)

In the previous time-independent description, we implicitly assumed that each ran-
domly selected stimulus is presented for the same length of time. We can relax this
assumption to some degree, so that the weight a stimulus given is equal to the product
of duration and frequency with which the stimulus is presented. The condition, of
course, is that the timescale of the longest-duration stimulus be much smaller than
the timescale of learning.

Integrating over a standard stimulus duration, we recover a learning rule similar

to eq. 2.31, at least if we restrict ourselves to conductances that simply activate:

8g: = n(6) [ oma(Be = V) ) + (V) {mu(B 1) )] (2.40)

Fig. 2.27 on page 123 shows the result of applying this learning rule to a probability
distribution of conductance inputs in a Hodgkin-Huxley model with two compart-

ments.
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2.11 Effective Conduetance and Current-Discharge

Relationships for Hodgkin-Huxley Spiking Mod-

els with Adaptation®

The goal of this section is to relate three quantities to each other by appealing to
the theory of dynamical systems: the firing rate, the mean voltage, and the average
current in a spiking Hodgkin-Huxley model. These relationships will be needed to
estimate d(I)/d{V') required in the stochastic approximation learning rule. Initially,
we consider a neuron that consists of a single electrotonic compartment.

The typical behavior of a Hodgkin-Huxley relaxation oscillator consists of charge
building up followed by a sudden and stereotypical voltage discharge that is the
action potential. To capture the basic behavior of the voltage as a function of time,
we can choose a simplified model in which the voltage ramps linearly in time up
to a threshold; when the threshold voltage is reached, the voltage is constrained to
undergo a stereotypical spike, which resets the voltage to zero. This simplified model’s
sole purpose, as illustrated in fig. 2.22, is to make imminently clear the qualitative
relationship between the firing rate and the mean voltage averaged over the firing
period:

In most spiking models, the duration of the spike, tpixe, remains fairly constant

as the firing frequency f = 1/T changes. Thus (Vipike), the average voltage during
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voltage

Figure 2.22: Schematic simplification of a spiking cell’s voltage trace

the time tgpike, is constant. Qualitatively, then,

(Vﬁ:%ATV@dt

1
=T [(T — tspike) 1/2 Vin + tspike(‘/spike>]

= 1/2 Vin + ftspike(<vspike> - 1/2 Vth),

Therefore, (V) is linear in f.
We can thus write, to a good approximation, a relationship valid for most models

of spiking cells:
(Vy=af+V (2.41)

To relate the spike-averaged voltage to the spike-averaged current, we cannot use
an integrate-and-fire model: in such a model, the mean voltage decreases as the mean
current increases, which is quite the opposite behavior to that of a Hodgkin-Huxley

model. In fact, one of the requirements for learning to be feasible is that the current
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Increases with increasing voltage, such that periodic ixed points of the dynamics exist.
Therefore, an integrate-and-fire model is not a valid simplification of the dynamical
system of Hodgkin-Huxley equations for our purposes.

To determine the current-discharge relationship that describes the transduction
from the current reaching the spike initiation zone into a firing rate f, we borrow a
deep result from the theory of dynamical systems (Guckenheimer and Holmes, 1983;
Strogatz, 1991):

For non-degenerate saddle-node bifurcations of dynamical systems, the set of dif-
ferential equations for the Hodgkin-Huxley model can be reduced to a one-dimensional
equation near the transition from a steady-state voltage to periodic firing. This tran-

v~ of eq. 2.35 on page 79 becomes

sition to sustained oscillations occurs when dI/dV

zero as the injected current increases to Iinresholg- FOr currents near the threshold, the

dynamics on the ‘center manifold’ are given by

& = —(I — Lreshoid) — &7

This equation is also known as the canonical form of the saddle-node bifurcation.
For currents above threshold, the period of the voltage oscillation scales as (Strogatz,

1991):

1 /°° 1 4
o~ T
f —0o0 (I - Ithreshold) + ZL'2

(ML

~ (I — Iihreshold)
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where we write the period of the oscillation as the inverse of the firing frequency f.

Applying the method of averaging to the current, we can write:

[ =0 {I) — Linreshoia  for (I) > ILihreshold (2.42)

In the language of physics, this is a second-order transition. Note that this is a

500 ' : - :
Hodgkin-Huxley model with A-current
— 400 t
N
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[0} 300 i
©
o 200 |
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= 100 t
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Figure 2.23: Firing frequency as a function of synaptic input conductance for the
Hodgkin-Huxley model of Connor et al. (1977), shown with a square root nonlinear
fit. A square-root f([I) relationship is a consequence of a saddle-node bifurcation (see
text).

universal result, and is not restricted to any particular Hodgkin-Huxley model with a
particular set of conductances. The only requirement is that the bifurcation must be
of the type that allows arbitrarily low firing rates. A plot of the reciprocal of the first
ISI versus current injected into neurons in the central nervous system will typically

have a square root functional shape. Adaptation currents will, of course, modify this

fundamental form of the f(I) curve, as we will show below. Combining eqgs. 2.41 and
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2.4, we have

cy <I> — Lihreshold = <V> -W

or

+ Ithreshold <V> > % (243)

In other words, (I} is a quadratic polynomial in (V).

To show that (I) remains a quadratic polynomial even when adaptation is added,
we need to first look at the effect of adaptation on the f(I) curve. It is simple to
show that adaptation linearizes the f(I) curve by making the following Ansatz:

Assume that the adaptation current is purely subtractive, and that we can replace

it by its mean value:

Tdapt = 9x(Ca) f TK(Ca) ((V) — EK)

=kf+hf?,
where, using the relationship between f and (V') from eq. 2.41,

k = gk(ca) Tk(Ca) (VO - EK)

h = a gx(ca) Tk(Ca)-
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In other words, the adaptation current is the product of the K(Ca) or AHP conduc-
tance opened during or after each spike, the frequency of spiking, the time constant 7
of this conductance, and the average driving potential, which is the difference between
the reversal potential for potassium and the average voltage (V) — Ex. The typical
time constant of adaptation in neocortical pyramidal cells is roughly 7 = 50 msec,
as estimated by Ahmed et al. (1995). It is essential here that the time constant be
greater than the average interspike interval 7 > Tig;.

Solve for the steady state of

FUI) = Lgapt) = b\/(D - (Ia.dapt + Ithreshold) = b\/((-’) — Linreshola) — (K f + hf?)

n2 Ry
g= -, \/ OV o 00 = L) (2.44)
where
n2 __ b2
OV =

In the limit as ((I) - Ithreshold) — 0,

f ~ <I> - I};hreshold (2.45)
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Wi{';l’l local curvafure arouncl the threshold O{‘

2 2(1
(v)%ks k3 \p2

=0 ((gK(Ca) TK(Ca))‘z)-

f”:— +h)

Thus the stronger the adaptation factor, the greater the linearization, since the cur-
vature measures the deviation from linearity. As long as b is large, eq. 2.45 will be a
valid approximation. Thus, even though b is a quantity which can be directly (and
laboriously) calculated via analysis of the local bifurcation, the value of  does not
play an important role in the description of the adapted firing rate.

In the opposite limit of high currents, as ((I) — Linreshold) — 00

b’ k k2
f = ) \/ Ithreshold +
\/ <I ) I threshold

Combining equations 2.44 and 2.41, we have

0= Gy (7 -vo) + ;zl‘gKma)TK(cw (V) = Bx) (V) = VA) + e

(2.46)
where gx(ca) is the adaptation conductance opened during each spike, and TK(Ca) 1S
the exponential decay time of the adaptation conductance. We thus still have the
result that (I) is a quadratic polynomial in (V). Note that even though the current-

discharge is linear, the neuron is by no means a linear device!
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Figure 2.24: Current-discharge relationships of n vitro cells from cat area 17, plotting
the inverse of successive interspike intervals (first through sixth ISI) at different values
of current injection in nA. As adaptation effects accumulate, the firing rate changes
from a “square-root”-like function to a linear function. Data courtesy of N. Berman,
graph by G. Holt.

The derivative of the average current with respect to the average voltage is

dﬁ% = %(;—2 +h)((V) = Vo) + S (2.47)

Increasing the adaptation current increases both the DC level and the slope of the

effective conductance from the somatic compartment to ground.

By

redefining Iihreshoia and (Vp) as follows, we can rewrite eq. 2.44 in the form of
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Figure 2.25: A mean-field approach casts the adapted current-discharge (f-I) rela-
tionship into an analytical and tractable form. The same linear relationship holds if
we plot the adapted firing rate versus the synaptic conductance gsyn, as shown in fig.
(a). The constant conductance gsoma Of fig. 2.12 is replaced by an (approximately)
affine linear function of the mean voltage (V), as illustrated in fig. (b) and given by
eq. 2.47.

eq. 2.42:

b)’k?
Iéhreshold = Ithreshold - ( ?4
a(v)’k
2

Vi =to-

Using this linear approximation to the derivative presumes that the biological
learning mechanism has access to the values of the slope and offset of this function.
The primary disadvantage, however, is that the dynamic range of possible mean volt-
ages (V') is limited, as compared to the average slope of typical activation functions,
which are in the range of 10 mV~!. Another, relatively minor, disadvantage is that
the linear approximation to d(I)/d(V) breaks down near the threshold voltage.

Suppose now that we add a dendritic compartment separated by a resistance R
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from the somatic compartment. Then the current injected into the somatic compart-

ment will be:

1 / )
== ((W) Vo —e{) - Ithreshold)

V) -Vy | & AR (V) - Ve -,
=< d>R 0+2R2{1—\ﬂ+ 2 << d>R S threshold)}a

where ¢ = ab'. In the limit R — 0 and ¢ > R,

<I> (<‘/d>c ) + Itlhreshold + O(R E)

7C2

If R>» cand (1) > I echnoias

A=V e [)-W_,
< >~ R R R threshold

all)

775 =5~ g (Ve = Vi = Rllnsad) . (2.48)

By separating the modulatory Ca?* and K conductances from the spiking con-
ductances, i.e., by placing the two sets of conductances into different electrotonic

compartments, we recover an approximation to the simple model in fig. 2.12. In

essence, we will write m—,—% & constant.
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2.12 Hodgkin-Huxley Spiking Model Simulations

To implement information maximization learning rules in spiking neurons, a simplified
model of a neuron consisting of two electrotonic compartments, illustrated in fig. 2.26,
was constructed. The soma (or cell body) contains the classic Hodgkin-Huxley sodium
and delayed rectifier conductances with the addition of a transient potassium “A”-
current and an adaptation current. The equations for the two compartments, the

soma and the dendrite, are:

dV
C_%Tﬁ =G (V;iendrite - V;oma)
= 3
+ gna ™ h(ENa - V;oma.)
+ JK.DR n? (EK - Vsorna)
(2.49)
+ gK,A a3b(EK - V;oma)
+ gada.pt (EK - V;oma)
+ Imemb (ECI - ‘/soma)
AViendri
C—d_;r;ﬁnﬁ =0syn, LGN (Esyn, LGN — V&endrite)
+ Z gCa,i mi(V;lendrite) (ECa - ‘/dendrite)
’ (2.50)
+ Z gK,j n; (Vdendrite) (EK - Vdendrite)
J
+ gmemb(ECl - V;iendrite)
dz
T (V)= = 2 (V) — z(V) T = a,b, h,m,n,m;,n, (2.51)
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All parameters for the somatic compartment, with the exception of the adaptation
conductance, are given by the standard model of (Connor et al., 1977). This choice of
somatic spiking conductances allows spiking to occur at arbitrarily low firing rates, as
is typically observed in cortical cells. As discussed in the previous section, the voltage
dynamics undergo a saddle-node bifurcation from a steady state voltage to a periodic
limit cycle as the synaptic conductance is increased. Saddle-node bifurcations are a
universal class of dynamical bifurcations typified by the following current-discharge
(“f(I)”) relationship in the absence of adaptation: f({I)) = by/(I) — Iy, where b is a
constant, and Iy is a threshold current.

Firing frequency adaptation is modeled as a steeply voltage-dependent process
with a long time constant:

dga.dapt — 1 (_g + Gadapt, max )
dt Tadapt \ 0P T T exp[(Vy - V)/k]/)’

With Gadapt, max = 50 mS/cm?, Tadaps = 50 msec, Vy = -10 mV, and k = 0.5 mV.
The time constant of 50 milliseconds is based on the work of Ahmed et al. (1997) in
cat visual cortex. Because of the extremely steep voltage dependence, the adaptation
conductance g,q4ap¢ only increases during an actual action potential. This behavior
models a calcium-dependent potassium conductance without explicitly representing
the calcium concentration inside the somatic compartment; in a real cell, calcium
ions enter the cell during action potential through high-voltage activated channels,
thereby activating Ca(K) channels. Because of the long time constant in the decay

of the adaptation conductance, adaptation will be roughly proportional to the firing
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frequency of the Hodgkin-Huxley model: Togapt = V' f, where o' is the constant of
proportionality. As we showed in section 2.11, the effect of an adaptation current
with a long time constant is to linearize the firing frequency as a function of input
current: f((I)) = ({(I) — I5)/b'. Note that b’ here is unrelated to the constant b in the
unadapted firing rate (f({I)) = b\/Z.D_—I-g).

A coupling conductance G = 1.0 mS/cm? connects the somatic and dendritic
compartment. Each compartment also contains a fixed chloride conductance gmemp =
0.3 mS/cm?, as in the original Hodgkin-Huxley model. The reversal potential for
Ca?* is 130 mV above resting potential, similar to that of Nat. To drive current
from the dendritic compartment into the somatic one, the synaptic reversal potential
was set to 50 mV above the leak (chloride) reversal potential.

For simplicity, we model the adjustable calcium and potassium conductances in the
dendritic compartment as having a single activation function (with exponent p; = 1)
and no inactivation function. In addition, the time constant for these conductances is
taken to be voltage-independent and equal to 10 milliseconds. Further, we insist that
the steady state of these conductances is consistent with physical equilibrium, such
that the steady state activation function mq ;(V') for the i-th conductance is given by
a Boltzmann function: me;(V) = 1/{1+exp[—(V —V;)/s;]}, where s; is the slope of
the activation function and V; is the midpoint voltage of half-activation. The initial
conditions were such that the peak values of all modulatory conductances were set to
zero. The midpoint voltages for the Ca?* conductances were spaced evenly between

35 and 75 mV above resting potential; for the K* conductances, the midpoints were
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spaced between 5 and 40 mV above the resting potential. The slope for all modulatory

voltage-dependent conductances was initially set to 6.7 mV.
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Figure 2.26: The Hodgkin-Huxley model neuron contains two compartments to rep-
resent the cell’s soma and dendrites. For the sake of simplicity, both compartments
are of equal size and are connected by a coupling conductance G = 1.0 mS/cm?. To
maximize the information transfer, the parameters for six calcium and six potassium
voltage-dependent, conductances in the dendritic compartment are varied, while the
somatic conductances responsible for the cell’s spiking behavior are held fixed.

The learning rules for changing the conductances in periodically spiking systems

can be written down as a simple generalization of those in section 2.7 for steady state

voltages:

g = n(0)[( 57 {ms (B = VOI}) + () (e [B: = V0] )],
(2.40)
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where the angular brackets indicate an average of the quantities inside the brackets
over one interspike interval of the periodically spiking Hodgkin-Huxley model. The
term dm;/dV is a shorthand notation for the functional derivative 6/8V (¢)(m;(t)); if
the time constant is voltage-independent, then (dm;/dV) = (dmu;(V)/dV’), so the
notational abuse of interchanging a functional derivative with an ordinary derivative
is not too grave a crime.

Since the firing rate is nearly linear in the average current reaching the soma, we

use the simple constraint function of eq. 2.32 to limit the dendritic voltages:

4

v if (V) <25 mV above rest

c((V)=90 if25mV<V <60mV

L—’y ifV>mV

with v = 2.5.

Purely numerical considerations motivate the restriction of the spiking Hodgkin-
Huxley model to simple activation functions and voltage-independent time constants.
In the most general case, the numerical computation of the functional derivatives
requires the solution of an auxiliary differential equation for each parameter being
changed. To show that we do rush in where angels fear to tread, we will bite the bullet
in the last section, not to mention mix metaphors, and actually simulate a coupled
set of 109 differential equations to change the parameters of twelve conductances.

With the restrictions mentioned above, we need make only one approximation to

numerically implement the adaptation mechanism using only the original system of
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differential equations. In this approximation,

(mi E; = V(1)) = (ma)(E; = V(1))

for the purpose of taking the functional derivative with respect to V(¢). If the time
constant 7 of the conductance is long compared to the fast timescales in the Hodgkin-
Huxley spiking mechanism, then m; is fairly constant over the spiking period, and
the approximation is justified. When |E;| > |V (t)|, any approximation will do.

In fig. 2.27, the learning rule of eq. 2.40—generalized to also change the midpoint
voltage and steepeness of the activation functions—is applied to a Gaussian distri-
bution of synaptic conductance inputs to the model. A synaptic input is drawn at
random from the probability distribution every 400 milliseconds, such that the stim-
ulus train is a step-like sequence of pulses. The adapted firing rate is measured by
taking the inverse of the last interspike interval within each 400 millisecond period.
With this training regimen, the cell “learns” the statistical structure of the input,
matching its adapted firing rate to the cumulative distribution function of the con-
ductance inputs (fig. 2.27a). The distribution of firing rates shifts from an initially
peaked distribution to a much flatter one, so that all firing rates are used nearly
equally often (fig. 2.27b). To emphasize the fact that learning has occurred even in
the absence of steady state voltages, we display the time course of the voltage in the
dendrites as insets to fig. 2.27a—note the spikes.

The adapted peak conductances, midpoint voltages, and activation slopes for the

Ca®* and K* conductances are listed in tables 2.2 and 2.3, respectively.
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Table 2.2 Adapted parameters of the voltage-dependent Ca?* conductances for
fig. 2.27

peak conductance §;/gieax | midpoint voltage Vi, [mV] | slope s [mV]
0.099 254 4.29
0.284 30.4 4.31
0.447 30.9 5.11
0.657 39.8 11.5
2.02 54.4 8.27
2.46 54.3 7.80

Table 2.3 Adapted parameters of the voltage-dependent K* conductances for fig. 2.27

peak conductance §;/giax | midpoint voltage Vi, [mV] | slope s [mV]

2.06 23.5 2.69
1.94 23.5 2.68
0.350 32.1 3.96
0.036 42.5 3.97

0 91.3 4.02

0 58.9 3.96
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Quantifying the entropy of the distribution of firing rates before and after adap-

tation in fig. 2.27 yields an information gain of 0.47 bits. If each stimulus lasts 400

msec, then the bit rate increases by roughly 1.2 bits/second.

For different statistics of the stimulus distribution, the neuron will learn the ap-

propriate response function to match. In fig. 2.28, the response becomes steeper as

the stimulus amplitude distribution becomes narrower, or the entire response shifts

as the underlying input distribution shifts.

Since the coupling conductance G between the dendritic and somatic compartment

Firing Rate of Cell [HZ]
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Figure 2.27: The inputs to the model are synaptic conductances, drawn randomly from a
Gaussian distribution of mean 1.0 mS/cm? and standard deviation of 0.4 mS/cm? with
the restriction that the conductance be non-negative. 120,000 iterations of the learn-
ing rule of eq. 2.31 were used to adjust the peak conductances, midpoint voltages, and
slopes of six Ca?* and six K* dendritic conductances to maximize the information in
the firing rate. As is standard in most stochastic learning schemes, the learning rate de-
cayed with time: 1 = 7o exp(—t/Ticarning), With 1o = 0.025 and Tiearning = 40,000 iter-
ations. The optimal firing rate response curve (dotted line in fig. 2.27a on the previous
page) is asymptotically proportional to the cumulative probability distribution of inputs:
fopt(gsyn) ~ fo+C Ogsy“ p(g) dg. Figure (b) shows the probability distribution of firing rates
before and after learning. Learning shifts the distribution from a peaked distribution to a
flat one, so that the neuron uses each firing rate within the range [15 , 55] Hz equally often in
response to randomly selected synaptic inputs. Superimposed on the graph of the “learned”
probability distribution of firing rates is a normalized frequency histogram, counting how
often each firing rate occurred in 50,000 iterations of the adapted model.
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plays an important role in the assumptions needed to derive the learning rule 2.40,
we repeat the entire simulation for fig. 2.27 using two other values of the coupling
conductance and compare the results in fig. 2.29. Each curve represents 120,000
iterations of the learning rule, with the same initial conditions for the modulatory
voltage-dependent conductances in the dendritic compartment. The learning rule
constrains the voltage in the dendritic compartment to remain within the same range
in each case; the current delivered to the soma when the dendritic compartment is at a
particular voltage, however, changes as a function of the coupling conductance. (The
function ¢({V')) in eq. 2.40 remains the same.) For this reason, the input conductances
are mapped onto a different range of firing rates for different values of the coupling
conductance.

Changing how tightly the stimulus amplitudes are clustered around the mean will
increase or decrease the slope of the firing rate response to input, without necessarily
changing the average firing rate. This gives rise to a specific experimental prediction
that can be evaluated using standard in vitro current clamp methods. Suppose that
a neuron is subjected to electrical stimulation during its developmental period, such
that the stimulation consists of current injections of random amplitudes. Information
maximization learning rules then predict that the neuron will change the slope (gain)
of its response as the variance of the input changes.

In fig. 2.30, we model a similar experiment: after the neuron has adjusted to
one probability distribution of stimuli, the same distribution is made narrower. The

neuron responds to this “artificial” manipulation of the input statistics by increasing
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Figure 2.28: By adapting the voltage-dependent conductances in the dendritic com-
partment, the model neuron attempts to match its response function to the underlying
cumulative distribution function of input conductances. The top panel replots the
firing rate response as a function of synaptic conductance input from fig. 2.27. The
middle panel shows the response of the neuron after 120,000 iterations of training
on a narrower Gaussian input probability distribution with width ¢ = 0.2 nS/cm?.
Initial conditions at the start of training were kept the same as before. In the lower
panel, the variance of the Gaussian changes, but the midpoint is shifted to the right by
0.6 nS/cm? to 1.6 nS/cm?. For comparison purposes, we superimpose the input prob-
ability distribution and firing rate response from the top panel as light dashed-dotted
curves. The mean and variance of the stimulus probability distributions (dotted lines)
set the midpoints and slopes of the firing rate curves (solid lines). Same parameters
and initial conditions as in fig. 2.27.
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Figure 2.29: The learning rule 2.40 is strictly only valid when the coupling conduc-
tance G is not much larger than the mean conductance across the somatic membrane.
By varying G but not the constraints imposed by the learning rule on the voltages
in the dendritic compartment, the model learns to map the range of synaptic con-
ductances onto different ranges of firing rates. All initial conditions and parameters,
except for the coupling conductance, are identical to those used in fig. 2.27.
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itS ﬁring rafe response gain.

The learning rule of eqn. 2.31 depends on the membrane voltage and the states
of the ion channels underlying the voltage-dependent conductances. If neurons adapt
their voltage-dependent conductances in such a manner as to maximize the informa-
tion transmitted, then in vitro current-clamp and voltage-clamp experiments should
both reveal changes in these conductances. Clamping the voltage, however, will initi-
ate the neuron’s learning mechanism to change the conductances, but will not allow
these conductances to achieve the intended effect of changing the neuron’s response.
Therefore, in vitro voltage-clamp experiments over long durations (hours) should
induce neurons to behave in a variety of “pathological” ways in subsequent current-
clamp experiments: previously regularly spiking neurons will produce tonic firing
patterns, bursting behavior, plateau potentials, or become completely quiescent.

While the detailed substrate for learning information maximization at both the
single cell and network level awaits experimental elucidation, the terms in the learn-
ing rule of eqn. 2.40 have simple biophysical correlates, as outlined in section 2.2:
the derivative term, for instance, is reflected in the stochastic flicker of ion channels
switching between open and closed states. In that section, we showed that the transi-
tions between simple open and closed states at a steady state voltage will occur at a
rate proportional to [d—dvmoo(V)]v ~ [moo(V) — moo(V)z]7, where the exponent 7 is
1/2 or 1, depending on the kinetic model used for the ion channels. The average rate

of ion channel transitions during one period of a regularly spiking Hodgkin-Huxley

model will be (approximately) proportional to [(m) - (m)z] (y =1), as discussed in
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Figure 2.30: Response of the model after readaptation to a new stimulus distribution.
Every 200 milliseconds, a synaptic conductance is chosen from a Gaussian distribution
of mean 1.0 mS/cm? and standard deviation of 0.2 mS/cm?, which is twice as narrow
as the previous distribution of inputs in fig. 2.27. On the left, the voltage-dependent
conductances were set by training on the original stimulus distribution; on the right,
the values of the conductances were relearned by training for 200,000 iterations on
the new, narrower stimulus distribution. The instantaneous firing rate is plotted
as a function of time in response to the identical stimulus train before and after
readaptation. Note that the firing rate response curve becomes steeper as a function

of input conductance after readaptation.
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appemlix AS. I we replace

in the learning rule of eq. 2.40 by
((mz‘> - (mz'2>)a

then we will overestimate the derivative, unless V'(¢) is constant or 7 is zero. This
overestimate, however, is not serious, and has no discernible, systematic effect in the
learning rule simulations.

To change the information transfer properties of the cell, a neuron could use state-
dependent phosphorylation of ion channels or gene expression of particular ion chan-
nel subunits, possibly mediated by a G-protein initiated second messenger cascade,
to modify the properties of voltage-dependent conductances. The tools required to
adaptively compress information from the senses are thus available to single neurons
at the subcellular level.

In the next section, we turn to another aspect of the stimulus statistics, namely
the structure of correlations in the input, and ask how an optimally tuned neuron

responds to correlated input.
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2.13 Time-Varying Input Signals

A full description of the statistics of the stimuli reaching an individual neuron will
not only specify stimulus amplitude distribution, but also describe the correlations
between successive stimuli in time. Until now, we have assumed that each stimulus is
independently drawn from the amplitude distribution and that the neuron is allowed
to reach a steady state of firing. In this section, we examine what happens when we
drop this assumption.

Following Atick and Redlich (1992) and Bell and Sejnowski (1995), we show that
maximizing the entropy or mutual information of a time series X (nAt) implies that
the mutual information between any two distinct samples of the time series X (kAt)
and X (IAt) is minimized. Of course, this only holds when each element in the time
series is bounded in magnitude from above and below, i.e., subject to the constraint
that 0 < X (kAt) < Xpax for any k.

Given a collection of random variables {X (¢1), X (¢2) - -- , X (¢a)}, the entropy
S{X(t1), X (t2), -+, X(tn)}) can be expanded using a chain rule (Cover and Thomas,

1991):

S(X (1), X(t2), -+, X (ta)) = S(X (1)) + S(X (82)| X (81)) + S(X (85)| X (82), X (t2)) + - --

- Sn_: S(X ()| X (te-1y, -+, X (t1))

k=1

<Y S(X(t)).

k=1



131

In other words, the entropy of the set is less or equal to the sum of the individual
entropies, since any conditional entropy S(X|Y) is less than the original entropy
S(X). The same expansion and inequality holds true if we replace the entropy S by

the mutual information with respect to a set of variables {V4,---,V,,}.

Figure 2.31: The entropy measures the volume or number of accessible states of a system. If
the variable X (t1) depends on the variable X (¢2), then the joint entropy of both is reduced;
the shared entropy between two variables is indicated by the overlap regions above. A nec-
essary condition for maximizing the overall entropy is that the variables X (¢1), X (¢2), X (t3)
become statistically uncorrelated and independent of each other.

Bounding the values of X (kAt) bounds the entropy of X (kAt). Thus,

S S(X () < nSma

k=1

In the Venn diagram of fig. 2.31, S[X (¢2)] — S[X(¢2)| X (¢1)] is represented by the
overlap of two circular discs. Since the area (i.e., the entropy) of any disc is bounded,
maximizing the entropy of the set implies eliminating these overlaps. But the over-

lap between any two such discs is exactly the mutual information between the two
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elements of the time series:

I[X (t2), X (t1)] = S[X (t2)] — S[X (¢2)| X (t1)]

Hence, maximizing the entropy of a time series also decorrelates successive ele-
ments of the series, such that the value of the element X (nAt) cannot be predicted
by the value of X ((n — 1)At) in the previous time interval. A time-varying signal
that is strongly correlated in time changes slowly; if a device decorrelates the signal,
these slow changes are subtracted from the output.

We need to recast the Hodgkin-Huxley equations into a new form to apply the
ideas behind information maximization. Start with the full expression for the time-
dependent active conductances for Ca?* and K*:

dm  me(V)—m
dat (V)

of-i8)
m(o) = [ toomoo[V(t’)] T[VT(%]“ N/ gy

or alternatively, with an initial condition for m at ¢t = 0:

exp{ _ t;t}
m(t) = /(; moo[V(t')] T[V”'([:I/)'](t )] dt' + m(0) eXp[—’r[Vf(t)]]
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We can rewrite the Hodgkin-Huxley equations,

av

C'a? = Gieak (Eleak — V) + goyu (t) (Bsyn — V) + Zgzml O)(E: - V)
dmi
(V) pra Moo,i(V) — mi,

in terms of an integro-differential equation (with Eje, = 0):

d
[gleak + Ca] V= Gsyn (t) (ES - V)

exp{—t’/n [Vit-1)] } o }

. z_{gi(Ei V) [ e[V (= )] —— [Vt —1)]

(2.52)
If the time constants 7;(V) are voltage-independent, then

d
I(t) = [gleak + cd—t] v

= gsyn(t) (Esyn - V) + Z{g, (Ez - V) /0'00 Meo,i [V(t _ t’)] e_xlzi_i)dt/}.

T3

Discretize time into units At and examine the mapping

{V(0), V(AL), V(2AL),... , V((n—1)A8)} — {I(0), I(At), I(2AD), ..., I((n— 1)At)}
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The entropy of the set of currents at times ¢t = 0, A¢,- -+, (n — 1)At is

sty = [ n[aed IR (v ne ] anity ne))

In the time-discretized approximation,

: (220
k=0 i
( exp[— gm—n)At]
S, Gl [V (nAL)] — <Ei - V(mAt)) At ifm>n
At
dI(mAt) Zgz V(nAt)] (EZ - V(nAt)) Pl m; [nAt]} _ '
oA = ifm=n
dV (nAt) d
+ m [gsyn(nAt) (Esyn — V(nAt))]
0 ifm<n

Of course, seeking to maximize the entropy of the currents is not a well-posed
optimization problem, since the entropy function can grow without bound. Instead,
we seek to maximize the entropy of the time-averaged firing rate or response r(t),

sampled at time intervals of A¢. Here, the response r(t) is

r(t) = /_ °:o Bt - ) [1(r)] dr (2.53)

where h(t) is any causal function such that A(t) = 0 for ¢ < 0 and f is the instanta-

neous firing rate, defined as some nonlinear, saturating function of the current. The
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exact form of the causal function A(t) will play no role in the derivation of the learning
rules. The stochastic approximation algorithm leads to the following update rule for

changing the parameter ¢

Ag = 9 In [det

"

dr d
dI dvV

0 dr 0 dl
= ngiln[det Eﬁ] -+ nggln[det v J

() 2@ @) 2@

where we have used the fact that

In[det(M + 6M)| — In[det(M)] = In[det(M~*M + M~*6M)]
= In[det(1 + M1 M)]

=Tr(M~16M),

valid for a nonsingular square matrix M.
We first examine the second term involving dI/dV in isolation. The change in the

parameter g due to this term alone is

so=nte s o2] 2 (et}

dt! 8g\dV(nAt)
B d171 8 [ dI(mAt)
- "; [g‘”“ + Cd—t] dq (dV(mAt))

In the limit as At — 0, the trace is replaced by an integral, and the derivatives by
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functional derivatives. For the specific example of the peak conductance g;, we have

t—t¢
Ti

da=0 [ o+ O2] H{mto VO [ = V)] - mnlV (el =220

which, by Taylor expansion of the operator, becomes

-1 L. L:k {mie VEN[E: = V(E)] = [meedlV ()] = ma(t)]}
¢ mi(t') — moo,i[V(t')]>

2 .
gleale

Ti

({medven [~ vee)] - 2mievien} [vee) +

+---}dt’

The validity of this expansion, of course, depends on the relative magnitudes of
Jleak and C %. Taking the Fourier transform, L= [Greax + iwC’]“l, so we see that an
expansion is valid at low temporal frequencies. We can obviate this approximation
by multiplying the right hand side by the operator £. In fact, we can multiply the
right hand side by any matrix or linear operator as long as long-as the real part(s)
of the operator are positive. This condition ensures that the minima of the objective
function (in this case, the entropy) remain unchanged.

If only a single peak conductance is varied, then the integral formulation of the

learning rule is equivalent to the following differential formulation:

7l it VN [E = VO] - [meoiV O] - mi)] ] (259)

This is simply the result of taking the time derivative on both sides of the previous
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equation and multiplying the right hand side by L.

When more than one parameter is varied simultaneously, then the two formula-
tions are no longer exactly equivalent. Suppose that the stimulus has an intrinsic time
scale 75. A difference proportional to n%7, evolves between the integral and differential
formulation of the learning rule over that time scale, which reflects the coupling of
the change in one parameter to the changes in other parameters. Both formulations
are stochastic approximations to the entropy integral.

To first order, the learning rule in eq. 2.55 has the same form as the previously
described learning rule for quasi-static stimuli. Note, however, that the rate of learn-
ing explicitly incorporates the time constant 7; for each (in)activation variable, such
that the time scale for parameter adaptation matches the intrinsic time scale. It is
important to note that the parameters for ‘slow’ (in)activation variables adapt slowly
compared to those for ‘fast’ variables.

The similarity to the quasi-static case really ends when we consider voltage-
dependent conductances. In this case, the update rule for the peak conductances

is to first order

[V (2)] Adgl =7 ({m;oz[v(t)] - mm,i[v(t)]%} [Ez - V(t)] — (Mooa[V(8)] — mz(t)))

If n[V(#)] x {mgo,i[V(t)]}a, where a > 0 is some exponent and m ;[V] is given by a

Boltzmann equation, then
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V)22 = [((1 ~ )l V() + asi{macilV O]} ) [Bi= V(B)] = (mes V(0] ~ mult)

Si

n {moo,i{V(t)] 5 (B = V(®)] = (Mooi V()] — M (t))} if o =1/2.

Recall that 7;{V ()] x {m{x,’,-[V(t)]}l/2 when ion channel opening and closing is gov-
erned by a symmetric energy barrier separating the two states of the channel. When
a = 1/2 and the input is varying slowly, the learning rule will change primar-
ily the peak conductances for those channel types that are fully in the open state
(Meo,i(V) & 1), rather than giving preference to ion channels that are balanced be-
tween the open and closed states.

Returning to the first term of eq. 2.54 on page 135, we compute the variational

derivative of the response r(t) with respect to the current I at time 7 from eq. 2.53:

sr(ty | SHDIAE=T) ifr <t

0 fr>t

The discrete-time matrix corresponding to ér(t)/6I(r) is triangular. The set of lower
(or upper) triangular n X n matrices form a closed group under multiplication, from

which it follows that the inverse matrix [67(t)/6I(7)]”"

is also triangular. Note that
f(I) needs to be an invertible function for this inverse to be guaranteed to exist. For

any two lower (upper) triangular matrices A and B of the same size, the trace of the

product (A.B) is Tr(A.B) = ¥_; A;; B;;. This allows the the trace in the learning rule
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to be evaluated immediately:

o[(5)" 56 L4 5 20

Here we have assumed that the function h(t) does not depend on any of the conduc-
tance parameters.
After taking a time derivative, the second term for the peak conductance change

reads

dAg; df171d?
—% = 77[’6%} d_IJ; m;(t) [Ei - V(t)]-

We can multiply the right-hand side of this expression by the operator £ from above
to match the first term in the learning rule.

To complete the expression for the learning rules for time-varying stimuli, one
more constraint is needed. Signals passing through neurons are always corrupted by
noise, from synaptic noise due to the stochastic release of neurotransmitter-containing
vesicles to the shot-noise of ion transport through ion channels. The noise sets the
minimum time scale over which any system must average, lest it amplify the noise
instead of the signal. The inverse of this minimum time scale corresponds to the cut-
off frequency of the optimal power spectrum of the output, as defined by the mutual
information: the spectrum should be flat (decorrelated) up to a frequency f., then
drop to zero as the signal-to-noise ratio dips below unity.

Since we will not simulate a detailed noise model, we take a simpler, more phe-

nomenological approach: we add a “regularizer” to the objective function we are
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seeking to maximize. The objective function in this case is still the entropy of the
time series. In the continuous limit and for Gaussian noise, the entropy can be written

in terms of the power spectrum P(w) as (Papoulis, 1984)
S = Inv27e + 1/N / In P(w)dw, (2.56)

where N is a normalization factor. To limit how fast the voltage changes in time,
a term —\(dV/dt)’ is added to the entropy as the objective function. Here X is a
Lagrangian (free) parameter, which will set the effective cut-off frequency. The most
important effect of the regularizer —\(dV/dt)? is that it constrains the variance of

V= dV/dt to remain finite, such that

0% = /sz(w)dw

< 0.

This constraint ensures that the power spectrum will remain band-limited. By com-
puting the variational derivative of the new objective function with respect to the

power spectrum P(w), the optimal power spectrum can be shown to scale as

a

P~

where a and b are constants

Incorporating the regularization term into the learning rule for the peak conduc-
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tance leads to one more additional term that reads

dAg;
dt

av
dt

= —n (2)) mi(D)[E; — V()] (2.57)

To test the learning rules for time-varying stimuli, we take a one-compartment
model of a neuron as in fig. 2.12. We impose an auxiliary condition on the dynamic
range of steady-state voltages, as described in section 2.8, in lieu of some arbitrary
nonlinear f(I) relationship and simply examine the current or voltage as the neuron’s
output. The “whitening” of the power spectrum of the voltage time-course is displayed
in fig. 2.32:

As in the simulations of section 2.12, six Ca?* and six K* conductances were used.
If the model neuron is to decorrelate inputs, it should respond more strongly to the
transients in the incoming signal rather than the sustained background input. So that
the neuron can learn to “adapt” to longer-lasting stimuli by reducing the firing rate,
each conductance was associated with both an activation m; and an inactivation
variable h;. The steady-state (in)activation functions are described by Boltzmann
functions in the usual way: heo (V) = 1/{1+exp[(V —V;)/s:]} and m (V) = 1/{1+
exp[—(V — V;)/s;]}. Initial conditions were such that the activation and inactivation
functions for each conductance type overlap. The initial slopes of h; and m; were both
10 mV. Time constants were chosen to be voltage-independent, for simplicity. The

time constant for all activation variables was initially 10 milliseconds, for inactivation

100 milliseconds.
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Figure 2.32: A flat output power spectrum indicates decorrelation of statistical de-

pendencies in the input time series.

The synaptic conductance given as input to

a one-compartment model was Gaussian in amplitude with exponentially decaying
correlation in time. The time constant of these input conductance correlations was
250 milliseconds. After adaptation of the time constants, peak conductances, mid-
point voltages and slopes of the activation and inactivation curves, the voltage power
spectrum is flat up to a cut-off frequency. Three separate runs are shown, each cor-
responding to 14.6 hours of real time. The initial learning rate was 7o = 1 X 1073;
the learning rate decayed exponentially in time with a time constant of 1.9 hours.
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Figure 2.33: Set of voltage traces in response to a time-varying synaptic conductance
input before and after information-maximization-based learning of voltage-dependent
conductances. Note that the neuron has “learned” to produce spikes, albeit on a
longer timescale than standard sodium spikes. The corresponding power spectra for
this figure and the next two are shown in fig. 2.32.
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At the start of training the model with random, time-varying synaptic conduc-
tance input, all peak values of the voltage-dependent conductances are set to zero.
The model thus begins life as a completely passive neuron, a simple RC electrical
circuit that low-pass filters and smooths the synaptic conductance input signal. By
training the model on time-varying stimuli and applying the learning rules for entropy
maximization above, the model starts responding to input by producing spike-like os-
cillations in the voltage, as shown in fig. 2.33.

To discover why such oscillations occur, we refer back to the stability analysis of
the steady state voltage in section 2.8. There, we showed that a fixed point V* of the

voltage dynamics is stable only if

drl

— <0,
dvi,.

i.e., the total derivative of the current is less than zero. If all sustained inputs elicit
stable voltage responses, then the dynamics in response to time-varying inputs will
be relaxational, i.e., the voltage always changes in the direction of the stable voltage
given by the input at that instant.

For the sake of argument, suppose that a single, voltage-independent time constant
governs all voltage-dependent conductances. Eq. 2.55 of the learning rule is then
simply stochastic gradient ascent on dI/dV[V (t)]; the learning rule, therefore, pushes
the system away from stable, relaxational dynamics. When this derivative becomes
zero, the voltage dynamics begin to exhibit oscillations in response to steady input. In

the Hodgkin-Huxley model described in section 2.12, a transition of this type occurs
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at the soma as the current injected is increased—dI/dV = 0 at the soma corresponds
to the firing threshold.

The destabilizing character of the entropy maximization learning rules remains un-
changed if the time constants of different voltage-dependent conductances are allowed
to vary. Since the learning rules for changing the peak conductances are weighted
by the time constant, oscillations will arise through the conductances that respond
quickly to changing input, rather than the slow conductances. Hence, the oscillations

themselves will be fast and “spike”-like.
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Chapter 3 Stochastic Resonance

3.1 Noise and the Speed of Information Processing

Maximizing speed is a central objective in the ecological design of a sensory sys-
tem. Given that the typical time constant of a single neuron is on the order of
fifteen milliseconds, it is remarkable that the nervous system can accomplish complex
sensory processing tasks within several multiples of this time constant. Perceptual
experiments using rapid-fire sequences of visual displays, for instance, reveal that the
human visual system can identify complex objects within 70 msec (Subramaniam et
al., 1995; Fiser et al., 1996). The vestibulo-ocular reflex (VOR) is even faster, with a
response time of about 10 msec. In the hierarchy of cortical processing, each stage is
accorded only a limited time in which to process information; the information in the
neuronal response, therefore, must be contained in the earliest time segments (Cele-
brini et al., 1993). Information-theoretic analysis reveals that most of the information
can be recovered from the first 50 msec of a visual neuron’s response in inferotemporal
cortex (Tovée et al., 1993; Tovée, 1994), underlining the speed with which neurons
process information. Moreover, the response of a single neuron within these first 50
msec typically correlates well with the behavioral decision an awake behaving monkey
makes on a perceptual task, based on studies in the motion area MT (Britten et al.,

1996). Earlier experiments over longer time windows (two seconds) by Newsome et
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al. (1989) revealed that a single neuron acting as a putative detector of visual signals
typically matches or outperforms the animal in detection accuracy.

Taken together, these results highlight the role of single neurons in the fast and
efficient processing of information. While many instances exist in which the cortex
does integrate over long times or over many neurons, we will suppose that the sensory
system has been optimized so that a single short segment of one neuron’s spike train
encodes a significant fraction of the total information about the external stimulus.
There is a potential downside to such an efficient encoding. If the computational
system is not afforded the luxury of averaging over many individual processing units or
over long times, any effect of internal noise is magnified. Noise is commonly assumed
to be detrimental to computation. However, since neurons typically have thresholds
below which they do not respond, a paradoxical effect particular to threshold systems
causes this common assumption to be violated: through the phenomenon of stochastic
resonance (SR) (Wiesenfeld and Moss, 1995), increasing the input noise can maximize
performance in systems with fixed thresholds.

Benzi et al. (1981) first coined the term stochastic resonance in the context of
a model to describe the periodic recurrence of the Earth’s ice ages. In this theory,
climate changes are the consequence of noise-assisted transitions in a double-well
potential system subject to very weak periodic modulation. Noise increases the fre-
quency of hopping across the barrier between potential wells; with too much noise,
however, the transitions become independent of the frequency of the periodic modu-

lation. The coherence of the transitions with the driving frequency passes through a
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maximum— “the stochastic resonance”—as a function of the noise amplitude.

SR has since been extended to include other physical systems with simpler thresh-
olds responding to subthreshold periodic or aperiodic signals (Bulsara et al., 1994;
Stemmler et al., 1995; Collins et al., 1995a). Since spiking nerve cells can be de-
scribed as threshold devices, the subject of stochastic resonance has recently evoked
excitement in the field of computational neuroscience and opened up the possibility
that noise could be used in the nervous system to enhance signal detection. SR has
been studied experimentally in sensory neurons of the crayfish (Douglass et al., 1993)
and cricket (Levin and Miller, 1996) and has found application in models of the audi-
tory nerve fiber (Longtin et al., 1991), visual processing (Stemmler et al., 1995), and
cognition (Riani and Simonotto, 1994).

The standard measure of SR has been the signal-to-noise ratio (SNR) of the power
spectrum. All spectral quantities, including the SNR, are based on averages over long
times. A feature present on average, however, is not necessarily present in a limited
sample, such as the single record of a neuron’s spike train over the first few hundred
milliseconds of its response. Thus the SNR does not at all address whether the system
can reliably-perform signal detection based on the spike output of a single neuron over
a short duration.

More appropriate measures that explicitly depend on the sampling time are ones
based on information theory: the mutual information between input and output,
or, alternatively, the probability of correctly detecting the signal. In this paper,

we will examine the existence of stochastic resonance in these information theoretic



150

quantities using the leaky integrate-and-fire model (Knight, 1972). This model is,
without a doubt, the simplest spiking model of a nerve cell that still captures the
essential dynamics of real cells (Koch et al,, 1995; Mainen et al, 1995). At its
heart, the integrate-and-fire model is a simple threshold crossing detector: whenever
the membrane voltage crosses the threshold, the cell “fires” and is reset. The leak
allows the voltage to decay in the absence of continuous input; as a consequence, a
minimum input current is needed for the cell to spike in the absence of noise. The
leaky integrate-and-fire model has two thresholds: the first, a fixed voltage threshold;
the second, an input threshold that depends on the leak resistance.

For all its simplicity and generality, the integrate-and-fire model cannot be easily
reduced to a bistable potential system. If one can define a potential, then all quan-
tities of interest can be elegantly derived from the Kramers’ rate for escaping over a
potential barrier. The Kramers’ rate approach underlies the theory for “stochastic
resonance on a circle” (Wiesenfeld et al., 1994; Moss et al., 1994), an abstraction of
general excitable systems with deterministic resets. Collins et al. (1995b) were able
to explicitly reduce the more complicated Fitzhugh-Nagumo model to a bistable po-
tential system, which justified the use of the Kramers’ rate formalism. Here we will
use a different approach. For the leaky integrate-and-fire model, we will first discuss
the fundamental quantity of interest in signal estimation and then outline a set of
approximations that will allow us to calculate the information-theoretic quantities

directly.
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3.2 Fisher Information and Signal Detection

Standard practice in neurophysiology consists of quantifying the neuronal response
by summing up the number of spikes fired by a neuron over a fixed time period.
The spike count constitutes an estimate of the firing rate of the neuron. Thalamic
and cortical neurons typically sum over anywhere from one to several hundred input
spikes before emitting a spike (Softky and Koch, 1993); once the threshold of such a
neuron is fixed and set to a detection criterion, it can act as a detector of the spike
signal from a presynaptic sensory or relay neuron. Consequently, the spike count
is the natural measure for a signal detection system made out of neuronal building
blocks.

Lord Adrian (1946) first proposed that information in the neuronal code is repre-
sented in the gradations of the firing rate, but this is by no means the only assumption
one can make: information can, of course, be encoded in the precise timing of indi-
vidual spikes. From a theoretical perspective, the primary motivation to choose the
spike count as the measure of neuronal response is that such a choice allows us to
take an analytical approach to the problem of signal detection.

We seek the simplest possible formulation of a signal detection problem; therefore,
we will assume that the signal is not varying in time, but is instead constant, and
that the noise fluctuations are temporally uncorrelated. More precisely, we consider
the detection of a weak, constant signal s = Ay riding on top of a background input
¢ in the presence of varying amounts of uncorrelated noise.

By relaxing some of these assumptions, we will be able to extend the arguments
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presented below to the case where the signal is slowly varying compared to the time
scale of the average interval between spikes (as in Collins et al., 1995a). Periodic
inputs will be considered in section 3.5, while the discussion of arbitrarily time-varying
inputs will be deferred to sections 3.6 and 3.8.

The noise will lead to a probability distribution for the number of spikes recorded
within a fixed time period. As illustrated in fig. 3.1, a weak signal will slightly
shift the spike count distribution to higher spike counts. Maximizing the mutual
information between the signal and the spike count corresponds roughly to minimizing
the overlap between the signal and background spike count distributions. The overlap
is a function of how far the means of the two distributions are separated and of how
wide the distributions are; changing the input noise will change both the width and
the mean of these distributions.

The model of signal detection considered here depends on the ability to estimate
with precision the input u that gave rise to the observed spike count output N. The
Cramér-Rao bound sets the theoretical limit on how accurate an unbiased estimate
of u based on sampling the spike count distribution can be. This bound states that
the variance between the estimate and the true input u is always greater than the

reciprocal of the Fisher information J(u):

1
Vi estimate 2 —. .
ar(/i t t ) = J(u) (3 1)

Here the Fisher information J(u) is defined as follows (Cover and Thomas, 1991):
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Figure 3.1: The goal in signal detection is to distinguish between a sample response
drawn from the background spike count distribution, illustrated in gray, and a re-
sponse drawn from the signal plus noise distribution, illustrated in black. Possi-
ble strategies to improve signal detection include changing the distance between the
means of the two distributions and changing the width (variance) of the distributions.

2

T = [ (5 (Vs ) /p(0Vs ) d,

where p(N; 1) is the probability of observing N spikes, given an input p. The lower
the variance of the estimate of u, the finer an input difference s = Ay an ideal
observer of the output can detect.

The Fisher information is closely related to the entropy, or inherent uncertainty, in
the distribution p(V; ). Maximizing the entropy subject to a fixed set of constraints
is equivalent to minimizing the Fisher information (Barron, 1986). In our case, if the
input noise amplitude is fixed, then y is the only free parameter of the spike count

distribution. Using these facts, it is possible to write down a simple lower bound for
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the Fisher information:

8 2
Ju(p) = a}"vl(u) (‘gf‘) ; (3:2)

where oy and uy are the standard deviation and mean of the spike count probability
distribution, respectively.

As we shall show below, the mutual information between input and output and
the probability of correct detection in the discrimination between two alternatives
can both be expanded in powers of Jig(x), underlining the fundamental nature of
this quantity.

Neural modelers have previously applied the Fisher information to address the
coding of stimulus information across many neurons (Paradiso, 1988; Seung and
Sompolinsky, 1993). We proceed in the next section to calculate the mean uy and
standard deviation oy of the spike count distribution as a function of the mean and
variance of the input, which we will subsequently use to show that Jyp(u) passes

through a SR peak as a function of the noise amplitude.



155
3.3 The Spike Count Distribution and the First

Passage Time

The behavior of the subthreshold membrane voltage V' of the leaky integrate-and-fire

model is given by

av V
C—E——E-’r[, (33)

where C is the membrane capacitance, R the membrane resistance, and I the input
current. If the input current is composed of a deterministic part 1 and a white noise

component &, we can rewrite eq. 3.3 as a Langevin equation:
. V
V=——+u+E) (3.4)

where 7 = RC is a time constant, and we have set C to unity.

By definition, white noise is uncorrelated in time and obeys a relation of the type
(£(#)E(T)) = 2D 6(t — 7), where D is a constant known as the noise amplitude.

The threshold (spiking) voltage 6 is an absorbing boundary of the process: once
the threshold @ is crossed, the voltage V is immediately reset to some set voltage V4.
A threshold crossing in this model is equivalent to one output spike of the unit.

The reset implies that the leaky integrate-and-fire unit “forgets” about its past
history as soon as it crosses its threshold. Since the noise is uncorrelated, any corre-

lations between successive threshold crossings will be due to the deterministic part of
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the input alone. If y is constant, then spike intervals are statistically uncorrelated. In
this case, the mean uy and variance o% of the spike count distribution are completely
determined by the moments of the probability distribution of individual intervals be-
tween spikes. Suppose that we observe the train of spikes from an integrate-and-fire
unit over a period of T milliseconds. In all the examples to follow, we will take this
time period to be T = 200 milliseconds, which corresponds roughly to the time scale
of visual perception. A standard result from statistical renewal theory (Cox, 1962)

states that, in the asymptotic limit, the mean and variance of the spike count become

UN = L T (3.5a)
HppT

2 0}27PT

oy =-—=5—T, (3.5b)
HEpT

where pppr is the mean interspike interval (first passage time) and ogpr is the stan-
dard deviation of the interspike interval (equivalent to the width of the interspike
interval distribution). Serial correlations between spike intervals caused by a time-
varying input g will typically increase ¢% by a multiplicative factor.

The first equation (eq. 3.5a) is strictly true under the “equilibrium” assump-
tion, in which the start of the statistical process occurred long before the period of
observation. In other words, we imagine that the model neuron had been spiking
continuously at the background rate before spikes were being counted. If the signal is
a small perturbation of the continuous background process, we are justified in using
the statistical equilibrium result. Both expressions are exact if the interspike interval

probability distribution is exponential, which will be approximately true if the mean
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interspike interval pppr is much longer than the characteristic time scale 7. Correc-
tion terms to 0% become important only if orpr tends to zero; these corrections will
be of order unity.

We have thus reduced the problem to calculating yrpr and J%PT. Given that the
voltage of the integrate-and-fire unit is V' at time ¢, determining the time until the
next threshold crossing (or spike) is classically known as the first passage time (FPT)
problem. The FPT distribution for the stochastic differential equation 3.4 was first
solved in integral equation form by Siegert (1951). The problem and its solution in
integral transform or integral equation form have been rediscovered many times in
the context of neuronal models (for an overview, see Ricciardi, 1977).

The random noise fluctuations will lead to a probability distribution of voltages
at time ¢ for an integrate-and-fire unit that was initially at voltage V;. This proba-
bility distribution is given by a Fokker-Planck equation associated with the Langevin

equation 3.4:

w_i{ _Y 10 [,20P
ot oV ( r+“>P}+2_{U ’

which describes the evolution of the probability that the voltage is V at time ¢, given
that the voltage was V; at time ¢t = 0.

The Fokker-Planck equation separates the input into two components: a mean
current u and variance of the current o2, both of which have units of inverse time.

For future use, we note that we can define the dimensionless quantities i = p7/60 and

6 =o0+/7/8.
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The probability of first passage of the voltage across the threshold 6 in the time
[t,t + At), starting from voltage V;, is
d o
F(Vi,t>=—{1—/ P(V, Vi 0)dV |,

dt -

which satisfies the adjoint to the Fokker-Planck equation:

(3.5)

OF (Vi 1) _{_E+ }QF_+1 2 O°F
ot - ;T H vV 57 V2

An integral transform and a change of variables transforms this equation into the
confluent hypergeometric equation. In terms of the Laplace transform, F Viy8) =

Js° exp(—st) F(V;,t) dt, the solution is:
(3.6)

where U(a, b, z) are confluent hypergeometric functions of the second kind and the

solution has been constrained to satisfy the boundary conditions

~

F(8,s)=1

lim F(V,s)=0.

Vi——o0

Ricciardi (1977) writes eq. 3.6 in terms of parabolic cylinder functions.

Unfortunately, inverting the Laplace transform of eq. 3.6 analytically is generally
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intractable. However, we can derive the mean and variance of the first passage time

directly from the Laplace transform:

dF (V;,
MFPT = _4F (Vs ) (3.7a)
ds s=0
2F(V;, s) dFV,s)| \°
2 — ) _ (3] 7
OFPT T ds? o <—d 3 o (3.7b)

Computing second or higher moments, although straightforward, is not for the
faint of heart. The results for the mean uppr and variance oZpy of the first passage

time distribution are given in the appendix Al.

3.4 The Stochastic Resonance

Written in terms of o2pr and uppr, the lower bound Ji (1) of the Fisher information

is:
-1 6 2
Jus(p) = (012va NFPT) (%) T. (3.7)

We compute Jpp(p) from eq. 3.7 for u7/0 = 0.7 and T = 200 msec and display the
result as a function of the noise standard deviation in fig. 3.2a. An optimal noise level
exists that maximizes Jpg(u); the peak in Jpg(u) is termed the stochastic resonance.

More realistic models of spiking membranes also lead to similar “resonant” be-
havior in Jyg(u), so this effect is by no means peculiar to the leaky integrate-and-

fire model. The result for the original Hodgkin-Huxley model of the squid giant



160
axon (Hodgkin and Huxley, 1952) is displayed in fig. 3.2c; in this graph, the input

current was set to 70% of the threshold current for sustained firing of spikes. Nu-
merous differences exist between the leaky integrate-and-fire model and the Hodgkin-
Huxley model, from the difference in the firing rate as a function of the input current
(displayed in the right half of fig. 3.2), to the fact that the Hodgkin-Huxley model
does not have a fixed voltage threshold for spiking. Nonetheless, both models display
this form of stochastic resonance.

Since the expressions (A1) and (A2) for uppr and oZpy are rather unwieldy, more
insight can be gained by examining the asymptotic behavior of these quantities for
subthreshold input currents p in the weak and strong noise limits. As the noise
variance o2 increases, Jyg(u) makes a smooth transition from the asymptotic behavior
in the weak noise limit to the strong noise limit.

To simplify the notation, we switch to dimensionless quantities 4 = u7/6 and
6 = 0/7/0. In these units, the threshold input at which the leaky integrate-and-fire
unit will just barely cross the voltage threshold in the absence of noise is g = 1. If
it < 1, then ji is simply the normalized voltage that the integrate-and-fire unit reaches
in the absence of noise. Define A =1 — it as the effective dimensionless distance to
the threshold.

We will study the behavior of the leaky integrate-and-fire unit in the range 0 <
A < 1. In effect, changing [ in this range is equivalent to changing the threshold A.
The Fisher information thus depends only on the threshold and the noise amplitude;

no reference is made either explicitly or implicitly to the size of the signal to be
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detected. We shall see in section 3.6 how J.g couples to the signal strength in the
small-signal expansion of various signal detection quantities.

To investigate the limit of weak noise, we assume that A2 > 2. Using Stirling’s
approximation for n! in the hypergeometric series of eqs. Al and A2, the method of

steepest descents yields the asymptotic expansions in powers of A?/52:

o A? 142 ot
UFPT = T\/A— eXp(g;) [1 + 3A2 + O(‘&Z)] (380)
Ay 376" &
Ogpr = Uppr — 2T [’Y +1n(2) + ln(—&—) - Z(z‘;) - (2&_4)] KrpT

(3.80)

where v is the Euler-Mascheroni constant. Alternatively, we can use the integral
representation of the confluent hypergeometric function (Abramowitz and Stegun,
1970) to derive the same expressions.

In the limit of A2 > &2, the Fisher information lower bound becomes

ATA? 1

~4
TO® HUppT

Jea() = {1-% o+ 2me2 +1(3)] %p(‘%)}

Restoring the dimensional units, we have, to first order:

aT A3 A?
Zen(-5),

JLB(#’) = \/:/:37—_‘_ o5 €X _;2'7__ (38)

in which A has units of voltage. As o increases, eq. 3.8 rises quickly to a peak in Ji5
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and then subsequently falls off slowly in a power-law fashion.

Note that eq. 3.8 is of the same form as the standard SR expression for the
SNR in the adiabatic approximation of the periodically modulated bistable potential
(McNamara and Wiesenfeld, 1989; Jung, 1995; Gingl et al., 1995):

A2
SR x 07% exp <—-ﬂ—2), (3.9)
o
where @ = 4 and § = 1/2 for standard stochastic resonance. The noise-induced

“resonance” or maximum in Jpg occurs when

A2

o 5
= 3.10
52 28 2 ( )

Caution should be exercised in interpreting results based on asymptotic expan-
sions. A very incorrect use of the asymptotic expansions would predict that the firing
rate f(u) o< 1/puppr has a stochastic resonance! With that in mind, we should remark
that the value of A2/52 in eq. 3.10 is only marginally larger than unity, whereas the
asymptotic expansion is valid in the regime Az/ﬁ2 > 1. However, the method of
converging factors (Miller, 1952) can be used to improve and extend the range of
validity of the asymptotic expansions. These converging factors can be used to com-
pute the corrections to Jpp in eq. 3.8 to high accuracy in the vicinity of the optimal
noise level om,y; as an example, we give the converging factor for uppr in appendix
Al. A similar, but rather unwieldy, expression exists for the converging factor in the

asymptotic expansion of o2pr.
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Alternatively, we can compare the prediction of eq. 3.10 to the numerical solu-
tion of the full nonasymptotic equations. The optimal noise level o,y for the leaky
integrate-and-fire unit is plotted in fig. 3.3a as a function of the steady state voltage
distance to the threshold. The position of the maximum was computed numerically
from the full equations for uy and o%. Since the stochastic resonance expression
is based on an asymptotic expansion, we plot in fig. 3.3b the “error” resulting from
using eq. 3.10 instead of the full numerical solution to predict the optimal noise level.
We note from the scale of the y-axis in fig. 3.3b that the quality of the approximation
is quite good.

Now that the behavior of Jyg(x) in the limit of weak noise (A > &) has been
established, let us consider the case where the noise is strong. In the limit in which

62> 1> A, we have

i 20—1
peer =7 [\f 5 - ]

OFpT =(27' ln(Q))NFPT ~vr? [@ﬂ—ill}

52
where v = 7 — 21In(2) = 1.7553. ...

In this limit, Jpg tends to

2 T
T () o (3:11)

Jip(p) =

which is independent of 7,6, and .

We remark that the o2 tail of the resonance peak in Jig is much shallower than
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the predicted o~% tail from eq. 3.8. The same o0~2 scaling (Jung, 1995) is commonly
observed in systems showing stoéhastic resonance in response to periodic signals.

Since eq. 3.11 is independent of all parameters other than o and T, we can con-
clude immediately that the relationship Jyg(p) o< T'/o? will hold also when we take
the limits 4 — oo or 7 — oo. For instance, it is easy to show that the Fisher informa-
tion lower bound for a perfect integrate-and-fire unit with zero leak is Jip(u) = T'/0?,
which holds true for all possible noise amplitudes. Zero leak implies that no input
threshold exists; the leaky integrate-and-fire unit will approximate the perfect inte-
grator as long as the input is above the threshold (u7 > ). Not surprisingly, if the
input is above the threshold, Jig(i) is a monotonically decreasing function of the
noise amplitude—the optimal noise value is zero. In this case, noise will hurt any
signal discrimination task.

We have assumed that no limit exists on the number of threshold crossings within
the time period 7. Appendix A.4 explores the asymptotic behavior of Jyg(x) when

this assumption no longer holds.

3.5 Resonance versus Linearization

In their seminal work, McCullough and Pitts (1943) proposed a model of a neuron
as a binary quantization device in which the neuron was either firing or not firing.
Like all models for neurons, the McCullough-Pitts neuron has a threshold; adding
noise to an input below threshold pushes the neuron above threshold, raising the

average firing rate. Since the nature of the current threshold differs in the bistable
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McCullough-Pitts neuron and the leaky integrate-and-fire unit, it is illustrative to
compare the two models.
A McCullough-Pitts neuron is defined as having the following response f(u) to

an input u and a noise value &:

0 ifu+é&<,
flu) =

1 ifpu+&€>6.

Adding noise to the input of a quantization device is known in engineering as “dither-
ing,” or stochastic linearization. If we take the average of N presentations for each
input 4 to the McCullough-Pitts neuron, the graph of the mean (f(u)) will be a
smoothed (dithered) version of the quantization step, as illustrated in fig. 3.4a. In-
creasing the noise amplitude in the leaky integrate-and-fire model also progressively
linearizes the firing rate curve, smearing out the threshold nonlinearity, as illustrated
in fig. 3.4b.

Since the spike count py over a fixed time window is an estimate of the firing rate

f(u), we can rewrite the Fisher information (lower bound) for both models as

1 [0o 2
o) = - [5;< (u»] . (3.12)

A strikingly similar formula holds for the spike output signal-to-noise ratio (SNR) in

response to a sinusoidal input signal p(t) = ¢ + Apsin(wet). Using an elegant and
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simple argument by Gammaitoni (1995), we will show that

0

SNR(wn) o« — [-a—ﬁf(u)] . (3.13)

f(w)

We will justify this last expression in more detail, but note first that the two equa-
tions 3.12 and 3.13 become identical in the limit of low firing rates! Stochastic res-
onance is usually defined in terms of the SNR, but we will argue that the more
fundamental definition of SR in neuronal models is in terms of the Fisher informa-
tion.

Why does the slope of {f(x)) play such a prominent role in these formulae? In
short, because the ability to detect signal differences will depend primarily on the
expected difference in spike counts, as long as we can neglect the variability in the

output:

(n(p2) = () =(f(p2) = F(u)) T

[%f (u)] ApT,

Q

where Au = ps — py is the input difference and the brackets indicate the statistical
average. A similar reasoning holds for the response to sinusoidal input: Imagine that
we replace the sinusoid by a square wave switching between input levels u + B and
@ — B. The periodic component of the leaky integrate-and-fire unit’s spike train is
determined by the average number of spikes fired during the ‘up’ phase of the square

wave after subtracting the number of spikes fired during the ‘down’ phase. The power
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S(wo) in the spike train at the driving frequency of the sinusoidal input is thus
a 2
San) o | Y]

as long as both the amplitude and frequency of the sinusoidal modulation are small (Gam-
maitoni, 1995).

For the McCullough-Pitts neuron, (f(x)) is simply the convolution of the proba-
bility density function p, of the noise with a step function. Evaluated at a distance A
from the threshold, the slope of (f(x)) is identical to the probability density function
D¢ at that point. Note that if the noise is Gaussian, the probability density func-
tion pe(A) o o~ texp(—A2%/0?) is already of the SR type (eq. 3.9) as a function of
o! In other words, the value of the slope (probability density function) first increases
and then decreases as the noise amplitude grows. Sandwiched between the threshold
nonlinearity and the saturating nonlinearity, no other behavior is possible for the
slope.

We can thus immediately write down the power S(wy) in the output of a McCullough-

Pitts neuron in response to a periodic input at a frequency wy:

St o | 27| = oz esn( - 55):

The slope dictates and guarantees the existence of stochastic resonance in the
McCullough-Pitts neuron. This has led Gammaitoni (1995) to categorize SR in such

systems as a special case of stochastic linearization.
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However, the slope of the firing rate in the leaky integrate-and-fire model typically
does not display “resonant” behavior. If the effective distance to the threshold Ais
greater than 1/2, the slope f/(u) never reaches a maximum. Even for A < 1/2,
the maximum is typically not pronounced. Of course, one can always introduce a
saturating nonlinearity into the firing rate to force a maximum in the slope f'(u), but
firing rates at the SR optimum are typically nowhere near firing rate saturation (see
section 3.8). Thus, while stochastic linearization and firing rate saturation together
are sufficient conditions for SR, saturation is not a necessary condition.

For the integrate-and-fire model, SR in the Fisher information Jus(p) arises
through the conjunction of two effects: stochastic linearization—the increase in the
slope of the firing rate curve—and the noise-induced increase in the spike count vari-
ance. Adding noise to the input comes with a price: the noise in the output increases
as well. Thus an increase in the separation in mean firing rates does not imply an in-
crease in the discriminability or Fisher information. Returning once again to eq. 3.2,
we note that the numerator is affected by stochastic linearization, whereas the de-
nominator measures the “noise” in the output. For the leaky integrate-and-fire model
with A > 1/2, both numerator and denominator always increase as a function of the
input noise o; eventually, though, the denominator will dominate. As a consequence,
Jus(w) will first rise and then fall as a function of the input noise variance ¢?; this is
the origin of the SR peak.

For sinusoidal inputs, it is no longer sufficient just to consider the power S(wp)

in the output signal. To observe stochastic resonance, we need to divide S(wp) by
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the background (noise) spectrum N(wo)—this is, by definition, the SNR. If we can

approximate the integrate-and-fire unit’s spike train as a Poisson point process with
okpp = pipr, the background spectrum N(w) is given by a very simple expres-
sion (Lukes, 1961):

N(w) = f(p) + 27 f (1)*6(w).

For subthreshold background inputs, the leaky integrate-and-fire unit’s unmod-
ulated spike train is very nearly Poisson, as indicated by eq. 3.8b. Systematic cor-
rections to N(w) can be computed from eq. 3.6, although we will not pursue these
corrections here. Armed with the expressions for signal and noise spectra, we can
write SNR = S(wo)/N(wo) o< [F(1)]™" [f'(w)]?, which is eq. 3.13. Once again, the
increase in the signal power due to stochastic linearization is counteracted by the
increase in the noise power.

In the Poisson approximation, the variance a}(,u) of the firing rate is equal to
the firing r#te, so SNR o Jyg(u). Whether the question is to determine the Fisher
information for a constant input p or the SNR for a sinusoidal input p(t), the answers
to both are equivalent, at least to first order. (A second-order approximation for
the SNR will introduce a weak dependence of the SNR on the driving frequency wy
of the sinusoidal signal; the first-order approximation is called non-dynamical SR
(Gammaitoni et al., 1995; Gingl et al., 1995).) Certainly the simpler and arguably
the more fundamental question in SR of threshold crossing models is the Fisher
information.

To describe SR using the McCullough-Pitts model, we need to postulate how the
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output noise behaves; a common assumption is that the output spike train is Poisson.
In contrast, a spiking model neuron represents an implicit model for the variance in
the firing rate and the background power spectrum. Note also that the effect of input
noise on the firing rate function in a spiking model is generally more complicated than
the simple picture given by the McCullough-Pitts description: adding uncorrelated
noise to the leaky integrate-and-fire model is not equivalent to convolving the firing
rate function with the probability density function for the noise.

Nonetheless, the McCullough-Pitts description is a valid abstraction of several
important models of neuronal spiking, including the original Hodgkin-Huxley model
for spikes in the squid giant axon. Unlike in the leaky integrate-and-fire model,
the firing rate in the Hodgkin-Huxley model undergoes a first-order transition to a
non-zero firing frequency as a function of the input current. The essence of a first-
order transition, also known as a Hopf bifurcation, is captured in the step function
of the McCullough-Pitts description. For the Hodgkin-Huxley model, the first-order
transition in the firing rate is shown in fig. 3.2d. Note the large jump in the firing
rate and the subsequent shallow slope of the curve and compare the graph to the
corresponding one for the McCullough-Pitts neuron without noise in fig. 3.4a.

However, the McCullough-Pitts model is seriously flawed for other models of neu-
ronal spiking, including the leaky integrate-and-fire model. These models do not have

the bistable character of the original Hodgkin-Huxley model; instead, they commonly
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undergo a second-order transition, as typified by a piecewise linear firing rate function:

clp— ifpu>p
Fu) = (,U #0) ]

0 lfﬂﬁﬂe,

where ¢ is a constant and pg is the input current threshold. Here, the firing rate
function is continuous at the threshold pg, but its derivative is not. For real cortical
cells in slice, a piecewise linear model tends to be more appropriate than a bistable
model for describing the adapted firing rate discharge in response to current injec-
tion (Mason and Larkman, 1990). The same behavior has been found in recordings
from the intact network (Ahmed et al., 1995): cortical neurons in vivo also respond
linearly to increasing the current.

A linear firing rate function can arise in the absence of noise through the confluence
of two effects: First, adding a fast transient potassium current (“A-current”) (Connor
and Stevens, 1971; Hille, 1992) can transform the bistable Hodgkin-Huxley model into
a model with a second-order transition.

The theory of local bifurcations, when applied to sets of stiff differential equa-
tions that describe the evolution of the membrane potential during spikes, predicts
that the firing rate behaves as ¢/u — ug near the threshold pg for all non-hysteretic
second-order transitions, except at degenerate points (Strogatz, 1991). When neuro-
physiologists plot the inverse of the first interspike interval, the instantaneous firing
rate can oftentimes be fitted by a square-root-like function. The sustained firing

rate, however, is subject to adaptation, the second effect mentioned above. Firing
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rate adaptation, a complex, nonlinear, Ca?*-dependent mechanism that opposes high
sustained firing rates, progressively linearizes the square root behavior of the firing
rate.

For a piecewise linear firing rate model, the slope f'(u) will increase indefinitely
under stochastic linearization. To determine whether Jyg(u) has a stochastic reso-
nance, we need to have a model for the output noise; the firing rate f(u, o) alone is

not sufficient information. It is reasonable, though, to assume the scaling

UL%PT(M o) ;—_‘;0’ /"’%‘PT(#: o)

ogpr(, 0) S X pepr(, o)

for the variance of the FPT distribution, where p < 2 and x is a positive real number
( x = 1 for p = 2). For the leaky integrate-and-fire unit, p = 1 and x = 27In(2).

In the limit ¢ — 0, as oZpy approaches pipy from below, the FPT distribution
tends to the exponential distribution P(FPT = t) o exp (—t/urpr). In this case,
the spike count distribution is necessarily Poisson, for which we can write the Fisher

information as:

0v/ flx, 0))2 (3.14)

JPoisson (,u/) = <2T a,u

Equation 3.14 can be used as a straightforward estimate of Jig(p) in its own right,

but, more importantly, if Jpoisson (1) passes through a maximum, then so will Jig(p).
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(A sketch of the argument is given in appendix A3)

Under the assumptions of appendix A3, the piecewise linear model will exhibit
SR, but a quadratic model f(u,0 = 0) o (u— pg)” will not. A power-law firing
rate of this type is not entirely unreasonable and has been proposed in at least one
serious model for the behavior of cortical cells in primary visual cortex (Carandini

and Heeger, 1994; Carandini et al., 1995).

3.6 Discriminability, Mutual Information, Detec-
tion Probability, Information Capacity, and Co-

herence

In section 3.5, the signal-to-noise ratio in response to periodic inputs was shown to
be equivalent to the Fisher information lower bound Jrg(u). We will now show how
other signal detection quantities can be approximated by power series in the Fisher
information lower bound Jyg(x). In the first three cases, we assume a background
current input p, against which a fixed signal s = Ay is to be observed.

The discriminability, or Mahalonobis distance, d’ is a normalized measure of how
far apart two probability distributions are. If we consider the leaky integrate-and-fire
unit’s spike count distribution with mean py (1) and variance 0% (1), the relationship

between d' and Jpg(p) can be expressed as

gm0 — )] ~ Dpy/Tea (),

(oN(u+Au +on(u) )
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which is valid as long as the difference between uy(u+ Au) and py(p) is small.

We now compute the mutual information between the spike count N and the
presence or absence of the (weak) signal against a background input x. For simplicity,
suppose that the signal s = Ap is likely to be present with probability p = 1/2. The

mutual information is

I(s;N) = H(N) — H(N|s), (3.15)
where
H(N) = = 3= p(¥) logp(N), p(N) = 5p(Nlu+ 5 + 59N
and

H(N|s) = JH(N|u+ A+ sH(N|W)

= =5 3 (Nl + 2 logy p(V s+ M) + p(N|1) g, p(NI) ).
N=0

For two Gaussians of a given variance and different means u ) and uN, the
mutual information between the two distributions will be tightly approximated by
the following upper bound

@ _ (@2
I>1 —logz{l—i-exp[ (_,u___,u_ﬁ_)_]}
40%
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The spike count distributions will tend to Gaussians as T — 00. Aslongas T > pepr,

we can use a Gaussian approximation for the spike count distribution to obtain

I~1-— log2{1 + exp [— (Af)zJLB(,u,)]} (3.16)

If Ap is small compared to all other quantities, the mutual information is approxi-

mately

Jus(u)- (3.17)

An approximation using continuous Gaussians is often hard to justify rigorously,
because the underlying spike count distributions are discrete and typically highly
skewed. Nonetheless, the error in the approximation turns out not to be severe.
The quality of the approximation can be assessed in fig. 3.5, where we compare it
to the mutual information computed by simulating the original stochastic differential
equation 3.4 for the leaky integrate-and-fire unit. Note that, since detection, in this
case, is a “yes-no” decision, we have at most log,(2) = 1 bits of information.

A measure closely related to the mutual information between the presence or
absence of a signal and the spike count is the probability of correct detection in the
discrimination between two alternatives. In a two-alternative forced-choice (2AFC)
test, the subject or animal is presented with two stimuli in random order, in which one

stimulus contains the signal, the other does not. The probability of correct detection
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based on the spike count output of a neuron is

(e}

P(d) = g__:op(N |Wp(N' > Nip+ Ap) +

l\Dll—l

i P(N|@p(N|p+ Ap),
N=0

(3.18)

where p(N|u) is the probability of observing N spike counts in the distribution with-
out the signal and p(N’ > N|u + Au) is the probability of observing more than N
spike counts in the presence of the signal.

Once again, we can use the Gaussian approximation to derive an approximate

expression for P(d):

(3.19)

P(d) ~ erfc( \/K )
(%

- 220= 2S5/ ) exp (- n()

The leading order term is

P(d) = 1 B —\/

If, instead, one stimulus, rather than two, is presented, the leading order term in the

probability of correct detection is
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The results for the probability of detection in a two-alternative forced-choice test
are presented in fig. 3.6, where we once again compare simulation results to our
asymptotic theory. We compare the behavior of P(d) and the mutual information I
as a function of both u and ¢ in fig. 3.7, which plots the results of egs. 3.16 and 3.19.

The relationships between Jyg(u) and the quantities described in section 3.6 are

summarized in table 3.1.

Table 3.1 Small Signal Relationships

Discriminability d’ | Information I | 2AFC Detection P(d)

Ap/Jie(k) ((8A1§)2) Jus(1) % + 23% Jus(w)

One can generalize the expression for the mutual information to the case of multi-
ple stimuli. Suppose that inputs p are drawn randomly from some probability density
function p(u), where p is no longer restricted to a discrete set of values, but can vary
continuously. Then Shannon’s mutual information between x and the spike count N

1S

I(p,N) = / 10g2{ J;Ijr(f)} p(p)dp —~ / log, [p(1)] p(1)dp, (3-20)

provided that the Gaussian approximation is valid.

By taking the functional derivative of eq. 3.20 and taking into account the La-
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grangean constraint that / p(n) du = 1, it is easy to show that the probability distri-

bution p(u) that maximizes I(u, N) is

Jus ()

( )= 7= .
e /_oo v Jie(k) du

The maximum in the information is known as the capacity and was first derived in

terms of the mean and variance of a given FPT distribution by Stein (1967). Since
the capacity should be a finite number, the range of possible firing rates must be
bounded; to achieve this constraint, we consider the case where each spike of the
leaky integrate-and-fire unit is followed by a strict refractory peribd tref-
Substituting the optimal probability distribution into eq. 3.20, we can write the

capacity C as:

C = log, [ /_ Z \/%——fr(e@du] (3.21)

To compute the capacity, the distribution of inputs is changed for each fixed noise
amplitude so that the information transfer through the leaky integrate-and-fire unit
is maximal: a pure translation of the input distribution is equivalent to changing the
input threshold or adding a bias input; changing the synaptic weights for different
inputs can effect the required multiplicative changes. As fig. 3.8 illustrates, increasing
the noise amplitude will always decrease the capacity. Not shown is this surprising
fact: Suppose we fix the probability distribution to be optimal for some noise level o.

If o is now varied, but p(u) remains fixed, then I(u, N) is still a decreasing function
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of 0. Therefore, tuning the thresholds or the input distribution so that the leaky

integrate-and-fire unit reaches capacity does not imply that the system is tuned to
a stochastic resonance. Only when the input probability distribution and thresholds
are constrained to remain non-optimal will SR occur.

Lastly, we point out that a signal-to-noise ratio can be defined for continuously
varying, non-periodic input signals by using the measure of coherence. How to define
the SNR is not as clear-cut as in the periodic signal case and depends on the nature
of the signal processing problem (Carter, 1985). The coherence v?(w) between the
input signal ;1 and the spike count N, however, is well defined as the power spectral
measure quantifying the degree of linearity in the system. The coherence simply
reduces to a number between zero and one. The ratio of the linear to the nonlinear
component .in neuronal signal transduction, v*(w)/(1 — ¥*(w)), is then one possible
definition of SNR (Carter, 1985). Collins et al. (1995a) computed the coherence 72
for the Fitzhugh-Nagumo model of neural activity as the frequency of the input u’s

temporal variation tends to zero:

lim +2(w) {1 ) (709 = )] o}
m yw) = . |
- [ (=) pldi [ (70) — (£ ()

(3.22)

where (- --) indicates the average over u, f(u) is the firing rate in response to u, and

the input u varies extremely slowly in time. Suppose that the variance in y over time
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is very small. Then a Taylor expansion around (u) yields

lim 72 () ~ (1= (1)) Jia(()

w—0

as a first order approximation. To be precise, we have implicitly assumed a time
scale T for the variations in y here, where T is large; otherwise, one needs to employ
an empirical formula to compute the denominator of eq. 3.22, as did Collins et al.
(1995b).

Computing «(w) for arbitrary frequency w would allow one to compute the total
information in the spike train from Shannon’s formula I ~ flog,[l1 + SNR(w)] dw.
Compared to the information in the firing rate over a fixed time scale T, the infor-
mation in the spike train over all possible time scales can potentially be significantly
larger. However, the information in the timing of spikes is much more difficult to

compute analytically. We will return to this point in section 3.8.

3.7 Reducing the Threshold

Adding noise is certainly not the only way to improve signal detection. One of the
obstacles to signal detection, the input (current) threshold, can be removed quite sim-
ply: turn subthreshold signals into suprathreshold signals by adding a constant bias
term that raises the background level of input. In other words, instead of changing
the input noise variance o2, we change the background u, which we here call the bias.

(The input signal s = Ay that is to be detected remains fixed throughout.) From
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another perspective, raising 4 is equivalent to reducing the input current threshold.

From eqs. 3.8 and 3.10, we deduce that the maximum of Jig scales as

1

JLB. max —
LB, (N) &8 (0 — #7_)2

In other words, as the bias input y approaches the current threshold, the Fisher
information increases rapidly. Note, though, that we do not mean to imply that
JuB, max(p) diverges as the threshold is approached: since the (optimal) input noise
amplitude tends to zero, we must take into account correction factors to eq. 3.5b for
the spike count variance o%; 0% will approach a constant, preventing JLB, max(p) from
diverging.

Above the input threshold, stochastic resonance is no longer an effect: the noise
amplitude can no longer be tuned to some nonzero value to improve signal detection
performance. In fact, given the choice to either set the noise amplitude or the bias,
the optimal strategy for signal detection is always to change the bias.

If we apply a bias to effectively reduce the threshold to zero, we will be interested in
a different question than stochastic resonance, but one that is similar: does an optimal
bias exist for the detection of weak, constant signal differences in the presence of a
fixed, non-zero amplitude of the noisé? The answer is, in general, no. As illustrated
in fig. 3.9a for the leaky integrate-and-fire model, the information in the firing rate is
typically a monotonically increasing and saturating function of the bias p.

For very weak signals, the mutual information between signal and spike count,

as defined in section 3.6, is linearly proportional to the lower bound of the Fisher
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information Jig(p). In section 3.5, we explored the relationship between the firing
rate slope f'(u) and the Fisher information Jig(u). (The slope is proportional to the
average spike output AN in response to an input signal s = Au.) Recall that Jyg(u)

2 in cases where f'(u) is

can possess a maximum as a function of the noise variance o
a strictly increasing function of the noise variance. As a function of the bias y, the
converse can exist: Jpp(u) can be a monotonically increasing and saturating function,
whereas f'(u) possesses a maximum. We illustrate this last point by comparing the
two panels of fig. 3.9. With the noise amplitude set as in fig. 3.9, Jpp(¢) and, hence,
the information I(x) do not pass through a maximum as a function of the bias y;
instead, these quantities increase and then saturate at some level. In contrast, the
average difference in spike counts AN = f'(u)AupT in fig. 3.9b does show a peak as
a function of u for the same fixed noise amplitude as in fig. 3.9a.

There are, however, instances in which an optimal bias does exist. If the fir-
ing rate jumps suddenly as a function of the input, signal differences that straddle
the firing rate discontinuity are most easily detected. Neural models with a first-
order (“hard”) input threshold, such as the McCullough-Pitts, Fitzhugh-Nagumo,
and Hodgkin-Huxley models, thus possess optimal bias levels. Also, increasing the
bias too much can push a neuron to its maximal saturating firing rate, leading to a
decrease in Jig(u); from an information transmission perspective, such extremes are
best avoided. We consider firing rate saturation in appendix A.4.

In eq. 3.11 we showed that Jpp(u) is bounded asymptotically by T//c?. As a con-

sequence, the amount of information transmitted during a fixed time period 7" and in
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the presence of a fixed noise amplitude can still be quite low, regardless of the bias, as
shown in fig. 3.9a. Note from the same figure that it is not absolutely necessary for the
leaky integrate-and-fire unit to be operating above the threshold for the information
or Fisher information to be close to its asymptotic maximum. The information I (u)
already approaches saturation for bias levels u below the input current threshold. We
conclude that the only effective way of improving signal detection for a fixed noise
amplitude is to average over longer times 7.

Reducing the input threshold to zero is, of course, a trivial approach to the problem
of signal detection. Other biological or computational constraints may exist that force
the bias or background input to remain constant. One computational model (Stemm-
ler et al., 1995) uses SR to enhance the detection of weak signals when the bias, in
fact, becomes negative. Many computations are not possible in the absence of input
thresholds or other nonlinearities in signal transduction (Hopfield, 1994). In addition,
adding a bias will change the firing rate encoding of previously suprathreshold inputs
more strongly than uncorrelated noise. Inspection of fig. 3.4b confirms that white
noise will only weakly change the firing rate for inputs u7/6 > 1 that are far above

threshold, while changing the firing rate for inputs below threshold more strongly.

3.8 Spike Times or Firing Rate?

In computing a spike count or firing rate, we average over individual spikes, thereby
discarding any information contained in the spike times. The longer the time period

T over which the spike train is observed, the more dramatic is the loss of information



184

by ignoring spike times: the information in a spike interval code grows ezponentially
faster than the information in a firing rate code as a function of T' (Stein, 1967). For
this reason alone, recent attention has focused on the role of noise in changing the
information carried in the interspike intervals (Zador and Bulsara, 1996; Levin and
Miller, 1996).

What are the merits of using the individual spike times instead of the mean firing
rate in the detection of very weak signals? Here we need to distinguish between
periodic and aperiodic inputs.

Weak signals that are periodic are most naturally encoded in the intervals between
spikes, not in the firing rate. Experimental evidence that noise improves the period-
icity of spike timing in such an interval code has been found for crayfish mechanore-
ceptors (Douglass et al., 1993), sensory cells in the shark (Braun et al., 1994), and
the cricket cercal system (Levin and Miller, 1996).

Suppose, however, that the input is not periodic. We note first that, unlike in
a digital computer or (possibly) olfactory cortex, no “clock” is known to exist in
neocortex. Without a clock, only the time of a spike relative to the last spike can
matter. Therefore, any spike time code in neocortex will, in fact, be a spike interval
code. Information theory predicts that the optimal spike interval code will be Poisson,
i.e., that the intervals (or first passage times) will be exponentially distributed. Recall
that additive noise and a constant, subthreshold input current x to the leaky integrate-
and-fire unit will also lead to (nearly) exponentially distributed intervals. Note that

the spike train in a Poisson firing rate code is statistically indistinguishable from the



185

spike train in an optimal spike interval code.

Computing the information in the spike times for an arbitrary signal distribution
can be a daunting task. Zador and Bulsara (1996), for instance, use Monte Carlo
methods to numerically compute the (conditional) entropy of the first passage time
distribution, thereby directly calculating the mutual information between a random
Gaussian input signal and the output spike train of a leaky integrate-and-fire unit.
Such a purely numerical approach is not hampered by restrictive assumptions about
the nature of correlations in the spike train.

There is one simpler model of spike train encoding for which the information in
the spike times has been calculated analytically in a perturbation expansion by Bialek
et al. (1993): take the superposition of a random Gaussian signal u(t) and random
Gaussian noise £(t), choose a threshold level A, and assign a spike to each time
the wave-form of signal plus noise crosses A. Note that the hallmarks of the leaky
integrate-and-fire unit, namely the exponential decay of the membrane potential and
the reset to zero potential after each threshold crossing, are absent. For the simpler
model, DeWeese (1995) computed the maximal information rate R in the threshold
crossings (spike times) of a random Gaussian signal p(t) in the presence of random
Gaussian noise with variance o as:

r= LW ), (323)

2In2 ot
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where f({y)) is the mean frequency of threshold crossings when the signal p is not
changing. The same threshold crossing model was the basis for Gingl et al.’s (1995)
theory of nondynamical SR—the expression they derived for the SNR is the same as
DeWeese’s information rate up to a constant of proportionality. We point out that the
firing rate f(u) is described by a different function than in the leaky integrate-and-fire
model; in fact, the firing rate of the simple threshold crossing model is infinite when
the Gaussian noise is uncorrelated in time. Nevertheless, let us compare eq. 3.23 for
the threshold crossing model to eq. 3.17 for the leaky integrate-and-fire unit after

dividing by T
SWE (a2, (3.24)

The concordance between the two expressions for the information rate may be
surprising at first: should not the information rate in the spike times be much higher?
But remember that eq. 3.17 is based on a weak signal expansion. A signal is weak
when either the amplitude Ay or the observation period T is so small that only a
few spikes are fired within 7" in response to the stimulus. When the number of spikes
is low, firing rates and spike times are nearly equivalent: both the information in a
firing rate code and the information in a spike interval code start out linear in 7. A
spike interval code, however, will remain linear in T as the number of spikes increases.
Note that the natural extension of eq. 3.24 to time-varying inputs consists of replacing
(Ap)® by <(,u - (u))2>, which will hold for all time intervals 7.

To show that the stimulus information in the firing rate is nearly equal to the



187

information in the spike intervals in the signal detection limit, assume that our opti-
mal mean firing rate code and an unspecified spike interval code are indistinguishable
in terms of the firing rate. Further, suppose that we insist that the model neuron
achieve a certain level of accuracy in the detection of a weak signal in a two-alternative
forced-choice (2AFC) test. A system that correctly chooses the signal over the back-
ground with probability P(d) = 0.75 is said to be at the signal detection threshold;
in contrast, a system that guesses randomly has a probability P(d) = 0.5 of being
correct. The signal detection threshold is the criterion at which the system (here, the
model neuron) begins to detect the signal “reliably.”

How many spikes does an optimally noise-tuned integrate-and-fire unit fire in
response to a signal s = Ay that is correctly detected 75% of the time? If detection
is based on the spike count in a 7" = 200 msec time window, the average number of
spikes can be estimated from eqs. 3.19 and Al. The result is displayed in fig. 3.10 as
a function of the background input g. The figure shows that the decision is based on
an average difference in the number of spikes that is no greater than one single spike.

Signal detection is thus not the result of averaging over many spikes, even though
spikes are produced by a predominantly stochastic mechanism. As such, SR stands in
contrast to other applications of noise in which the addition of input noise is followed
by an averaging over time or space.

Since a firing rate code at the signal detection threshold differs little in information
content from an equivalent interval code, other considerations, such as how decodable

and reliable the code is, will play a role in deciding which representation of information
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is preferable. We point out that encoding information in an interval code has one
potential disadvantage:

A sophisticated interval code is more prone to noise distortion than a simple-
minded firing rate code. Distortion here quantifies the “distance,” or error, between
the original input signal and the signal reconstructed by decoding the output (see
chapterl3, Cover and Thomas, 1991). Shifting a single spike by a few milliseconds
can change dramatically the meaning of an encoded message in a spike interval code,
much more so than in a firing rate code. Thus, while the information content is higher
in an interval code, the minimum information needed to successfully transmit signals
within a prescribed error bound is also higher. In the limit of low firing rates, the
problem of distortion is compounded by a lack of error correction, since any type of
correction would require the transmission of additional intervals.

We thus conjecture that the encoding of very weak signals in single neurons will
involve the firing rate, since the timing of spikes is less likely to matter than whether

a spike occurred at all.

3.9 Conclusion

The input signal to a simple neuron model such as the leaky integrate-and-fire unit
can be constant, periodic, or arbitrarily varying in time. Regardless of the nature
of the signal, the relevant information quantities have the same asymptotic scaling
properties as a function of the noise amplitude. Whether we wish to determine the

mutual information between input and spike output, the signal-to-noise ratio for
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sinusoidal input, or the probability of correctly detecting a constant signal within
a limited time—for subthreshold inputs, these quantities are given by the class of

equations for SR:

SNR,d', I, P(d) x o™ ® exp(—ﬁﬁ—;),
where o is the standard deviation of the input noise, and A is an effective input
current threshold. The exponents o and 3 depend on the quantity on the left-hand
side and may differ for different models of neuronal spiking.

A model for neuronal spiking need not possess a true voltage threshold to exhibit
SR; an input current threshold for sustained spiking is sufficient. The Hodgkin-Huxley
model is one example of a model without a true voltage threshold. SR can still exist
for periodic signals that lie completely above the input current threshold, as shown
by Bulsara et al. (1994) for the non-leaky integrate-and-fire model. SR in the mutual
information for non-periodic inputs, however, seems to occur only for signals with
a component below the input current threshold (as was also observed by Zador and
Bulsara, 1996).

With the SR expression and other results stated or derived in sections 3 and 3.6,
we can summarize the results for the mutual information, for instance, in these scaling

relationships:

(1) Doubling the signal difference quadruples the mutual information.
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(2) Averaging over twice as long a time leads to a two-fold increase in the mutual

information.

(3) For subthreshold inputs, the maximum information is inversely proportional to

the squared distance of the steady-state voltage from the threshold voltage.

(4) Above threshold, doubling the noise variance o2 halves the information.

Whether the nervous system can utilize any stochastic effect to its advantage is
primarily constrained by the limited time available for processing. In the case of
“classical” stochastic resonance in response to periodic signals, the nervous system
must be able to estimate whether a periodic signal is present without resorting to
power spectral measures and averaging over long times. The question of whether
efficient estimation methods for such signals exist is an open question.

Experimental studies, most of which have focused on sinusoidal input signals, have
shown that artificial manipulation of the noise level can lead to stochastic resonance in
neuronal systems. As yet, no experimental proof exists as to whether any part of the
nervous system in any animal actually uses noise to enhance information transmission.

Noise will always be present, of course, in any fully functioning nervous system.
Can organisms use SR by adapting neuronal thresholds and other parameters to
match the pre-existing and inescapable noise present in the biological hardware and
the stimulus? We have argued to the contrary: fully optimizing the threshold of a
leaky integrate-and-fire unit in the presence of a fixed noise amplitude implies adapt-
ing the threshold past the SR optimum for that noise amplitude. For instance, the

retinae of both vertebrates and invertebrates possess elaborate adaptation mecha-
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nisms to optimize information transfer under different light levels. At very low light
levels, the noise o2 is dominated by quantum fluctuations (photon noise), which is
simply proportional to the mean luminance and can hence be manipulated experimen-
tally. But because of retinal adaptation, no SR effect is observed in the detection of
weak, constant stimulus contrasts based on the output of retinal ganglion cells (Barlow
and Levick, 1969). Thus we expect biology to use SR when there are computational
or biophysical constraints on the neuronal thresholds and the distribution of inputs.

The true test of SR in biological systems lies in whether the system can “learn” to
generate the proper internal noise when the threshold and the distribution of input
signals are fixed. Regulating the noise could be achieved by changing the probability
of transmitter release at synapses within the neuronal network. It is well-known that
synapses in the hippocampus (archicortex) operate in an all-or-none fashion (Bekkers
and Stevens, 1990; Hessler et al., 1993); the probability of failure typically lies between
70-95% each time the synapse is activated. Long term potentiatim} (LTP) is known
to change this synaptic transmission probability (Bolshakov and Siegelbaum, 1995).
Even without synaptic failure, the recruitment of associative fibers from other cortical
neurons can lead to a change in the noise level, because the firing of cortical cells,
even at high rates, is known to be notoriously variable (Softky and Koch, 1993).
When large or extended stimuli in visual or auditory frequency space are present, the
associative ﬁbers will convert the irregular firing of cells in other cortical regions into
noise in the input current to the cell.

Temperature-related noise sources, on the other hand, are unlikely to be subject
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to direct control by a biological system. These noise sources originate from within the
neuronal membrane itself and include thermal current noise, conductance fluctuations,
and the activity of electrogenic ion pumps (for a recent review, see Longtin and Hinzer,
1996). We therefore hypothesize that learning the appropriate noise amplitude to
achieve SR will occur at the network level.

Furthermore, the biological system must be able to adapt the noise level to chang-
ing conditions. Any real world system will be faced with a range of input signals, not
Jjust one single constant signal whose presence the system needs to detect. One crucial
test of whether the nervous system actively uses stochastic resonance occurs when
the statistics of the inputs change. Does the noise level change as the input proba-
bility distribution changes? For instance, additional information about the context
of the input can bias the input statistics. A computational system using stochastic
resonance will encode this additional information by changing the noise amplitude.
In this case, the traditional line between noise and information is blurred: the noise

becomes the information.
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The right-hand column displays the sustained firing rate as a function of the input
in the absence of noise for the leaky integrate-and-fire model (fig. 3.2b) and the stan-
dard Hodgkin-Huxley model for a patch of squid giant axon at 7" = 6.7° Celsius
(fig. 3.2d). The left-hand column displays the Fisher information lower bound Ji g (u)
as a function of the root-mean-square noise amplitude for an input u that is equal
to 70% of the threshold input. For the integrate-and-fire model (fig. 3.2a), Jip(u)
is based on the analytical expressions of eqs. Al and A2 for the variance and mean
of the first passage time (interspike interval) distribution. For the Hodgkin-Huxley
model (fig. 3.2c), a spike count histogram (N = 10,000 trials of 200 ms) was derived
from simulations of the Hodgkin-Huxley equations using the simulation package NEU-
RON (Hines, 1993). These histograms were subsequently used to estimate Jpg(u). In
both cases, Jyp(u) was renormalized by the square of the threshold input to facilitate
the comparison between integrate-and-fire and Hodgkin-Huxley models. Both mod-
els display stochastic resonance: tuning the noise amplitude maximizes Jig(u). Note
the quick rise to the peak and slow subsequent decay, the characteristic hallmarks of
stochastic resonance. Of the differences between the integrate-and-fire model and the
Hodgkin-Huxley model, these are the most important in this context:

(1) The firing rate undergoes a first-order transition to nonzero firing in the
Hodgkin-Huxley model. In addition, the firing rate curve is hysteretic (not
shown).

(2) The threshold in the Hodgkin-Huxley model is not constant, but a function of
the voltage history of the neuronal membrane.

The variable threshold characteristics are captured in the following model for the
threshold:

0 = 6, + AB(t)
d M)
ZA0(t) =~ -+ MV =),

where ) is a positive constant and the term )\(V — Vo) increases the threshold during
prolonged membrane voltage excursions away from the reset voltage V; that do not
lead to a spike (threshold crossing).

Figure 3.2:
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Figure 3.3: Figure (a) displays the optimal noise level for the Fisher information lower
bound Jig (solid line) as a function of the normalized distance A from the background
voltage to the threshold voltage. omaez+/7/0 plotted on the y-axis represents a root-mean
square voltage, where the normalization /7/6 stems from the Fokker-Planck eq. 3.5 (see
text for details). Equation 3.10 predicts that the optimal root-mean square voltage of
the noise is Viys & 0.6A, or roughly 60% of the additional voltage input needed to reach
threshold in the absence of noise. Figure (b) displays the absolute difference between the
true optimal noise level for J; p(1) and the noise level predicted by the stochastic resonance
equation 3.10, which is based on an asymptotic expansion. Note that the scale on the y-axis
is two orders of magnitude smaller than in fig. (a), indicating that the deviation of opax
from perfect linearity is minimal.
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Figure 3.4: In fig. (a),the output of a McCullough-Pitts neuron, represented by a step
function between zero and one, is dithered by varying amounts of Gaussian noise, which
progressively smoothes out the threshold nonlinearity as the noise variance o2 increases.
Black represents 0 = 0. Successive gray levels indicate increasing noise variances: 2 = 0.1,
0? = 0.3, and 02 = 0.6. In fig. (b), the firing rate (“f-I” curve) of a leaky integrate-and-fire
unit is displayed for different noise variances 027 = 0, 027 = 8 107262, 627 = 5 107262, and
ol =210"162
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Figure 3.5: The mutual information between the signal and spike count of a leaky integrate-
and-fire unit for a background stimulus set at 0.7 6 and a signal stimulus at 0.77 8, as mea-
sured over T' = 200 msec. The optimal noise level is termed the “stochastic resonance.” For
each point of the dotted graph, the stochastic differential equation of eq. 3.4 was simulated
100,000 times for a duration of 200 ms. An O(At?) algorithm was used with a time step of
At = 0.1 ms.
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Figure 3.6: The probability of correct detection in the discrimination between the noisy
background and the signal also has a stochastic resonance as a function of the standard
deviation of the noise. Detection is based on a two-alternative forced choice test, in which
the observer decides between a spike count arising from the background input and another
spike count from the signal input. We remark that the two-alternative forced choice test
implies two “looks” at the information, instead of a single “look,” as in the case of the
mutual information shown in fig. 3.5. The dashed graph (simulation) plots the result of
eq. 3.18, the solid line (theory) the result of eq. 3.19. All parameters are the same as for
fig. 3.5. Since the mutual information and detection probability are closely related measures,
the optimal noise levels are similar for both. (The peak of the theoretical curves must occur
at the identical noise level.)
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Figure 3.7: For the graphs above, the difference between the signal and background was

Ap = 0.1 8/7. (T = 200 msec). The surfaces were calculated from eq. 3.16 for the
mutual information between input and spike count for fig. (a) and from eq. 3.19 for the
probability of correct detection in a two-alternative forced-choice test for fig (b). The
mutual information is much more sharply peaked than the detection probability because I
is directly proportional to the Fisher information lower bound, while P(d) is proportional
to its square root.
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Figure 3.8: The capacity shown here is the maximum amount of information a leaky
integrate-and-fire unit with a refractory period of t.f = 5 milliseconds can transmit in
T = 200 milliseconds. To compute the integral in eq. 3.21 numerically, Wan and Tuckwell’s
(1982) perturbation results for the mean and standard deviation of the FPT distribution
were used for inputs far above threshold u7 > 86. For the neuron to transmit at capacity,
the input stimulus ensemble (i.e., the possible mean input currents 1) must be optimized for

each noise level o. In the limit of zero noise, the capacity is simply C = log, [T/ (tref\/E)].
Note that the capacity is a steadily decreasing function of the rms noise amplitude.
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Figure 3.9: Panel (a) displays the mutual information between the input signal and spike
count as a function of the bias (or background) input y for a fixed input noise amplitude.
The input signal is s = Ap7/6 = 0.07 and the duration T over which the spike train is
observed is 200 msec, the same as in figs. 3.5 and 3.6. The standard deviation of the noise
is set to o4/7/0 = 0.16, an arbitrary choice. For reference, this noise level is optimal for a
background input p7/€ = 0.75. The mutual information measure was computed from the
results of simulating the stochastic differential equation 3.4 (N = 2,000,000 trials for each
data point). At this fixed noise level, the mutual information is a monotonically increasing
and saturating function of the bias level. Panel (b) displays the expected difference between
the number of spikes in response to the signal and the response to the background. This
difference is proportional to the slope f/(u) of the firing rate curve. In contrast to the
mutual information, the slope is a non-monotonic function of the bias level.
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Figure 3.10: For each value of u, the signal difference Ay was calculated that would lead
to a detection probability P(d) = 0.75 provided that the noise is tuned to its optimal value
o2, =2/5(6 — ur)?/7 (eq. 3.10). The expected spike counts T /prpt for T = 200 msec are
computed from eq. Al for both the signal and the background input. The average difference
between the two is displayed as the solid line.
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Appendix A Appendix

A.1 Simple Model for Ca?"-dependent Learning

Many nerve cells do not spike, but instead release neurotransmitter in a graded-
response fashion to stimulation. Such cells include many sensory receptors, such as
the hair cells of the auditory-vestibular system and the photoreceptors of the retina,
and several classes of inhibitory interneurons in insects (Laurent et al., 1993). Sup-
pose that for these non-spiking cells the amount of neurotransmitter release depends
nonlinearly on the concentration of free Ca®" within the cell body. Calcium enters
the cell through a set of voltage-dependent Ca®' conductances; for simplicity we as-
sume that these conductances are noninactivating. Furthermore, we will ignore the
transient behavior of the Ca?* ion channels, and focus on the steady state.

The inward Ca?* current Ig, at steady state is the sum of currents through the

different Ca?* channel types:

lon = S aymnsV) (B V) = ¥ bt )

J

where g;, V;, and s; are the peak conductance, voltage at half-activation, and slope

of the activation curve, respectively, for Ca?* channel type j.
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Calt entering the cell is either removed through lon pumps or bound to buffer
molecules such as calmodulin. As a consequence, the free Ca?* concentration within

the cell will depend on the Ca?* inward current as follows:

ot =—k [Ca2+] + vlca, (A2)

where v converts current into a concentration, and & is a constant that summarizes
the action of ion pumps and buffer molecules. (To be specific, v = 1/(zFV), with
z the charge on a Ca®" ion, V the volume of the cell, and F Faraday’s constant
converting charge into moles.) The rate of neurotransmitter release will be some
nonlinear, saturating function of the concentration of free calcium. For instance,
if we treat the neurotransmitter or the vesicles containing the neurotransmitter as
simply another buffering mechanism for Ca?*, then one possible description of the

rate R of neurotransmitter release is

R([Ca2+]> - Ry [—é;[%

Here, Ry is the maximal rate of neurotransmitter release. and Ky measures how well
the neurotransmitter binds to calcium. The release rate R is the analogue of the firing

rate f for a spiking neuron.

Now, suppose that a range of different stimuli drive the cell, leading to a range of
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voltages and a range of responses. What happens in this case if the cell tries to
maximize the entropy of the responses R by changing solely the calcium conductance
parameters? If the calcium current constitutes only a very small fraction of the current
entering the cell, then the distribution of voltages can remain fairly constant, even if
the response R changes dramatically as a function of input. This case corresponds
to the model of feedforward learning in section 2.6. The resulting learning rules
for adapting the various calcium conductances are non-local, i.e., changing one Ca®*
conductance requires knowledge of the states of all other Ca®* conductances.

The situation becomes no simpler even when the calcium current constitutes a more
sizeable fraction of the total current. Because of the presence of voltage-dependent
Na*t and K* conductances, calcium conductances will typically not be the only con-

ductances contributing to the nonlinear voltage dependence of the current:
Liot (V) = Ica2+(V) + Inat x+,c1- other (V)

Information maximization will require the derivative dI/dV. In section 2.7, we use the
trick of grouping all voltage-dependent conductances together. With this approach,
we use the physical constraint of charge conservation to our advantage: the current
flowing through the set of all voltage-dependent conductances must equal the current
discharged through a remaining linear (Ohmic) conductance, simplifying the total
derivative dI/dV. If the adaptation mechanism only changes a subset of the voltage-
dependent conductances, such as the Ca?* conductances, then the derivative dI/dV

remains nontrivial and the resulting learning rules are still non-local.
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A plausible adaptation mechanism must, therefore, be able to affect all voltage-
dependent conductances. Unlike the learning rule for homeostasis (i.e., maintaining a
constant firing rate) by LeMasson et al. (1993), a purely Ca?*-dependent mechanism

is not feasible for information maximization.

A.2 Notes on the Hodgkin-Huxley Spiking Model

The first-order differential equations for the gating variables m; and h; in Hodgkin-
Huxley models contain a dependent time constant 7;(V):

dm,;

Ti(v)_di—

=Moo i (V) —m;

If ;(V)) = constant, then a Fourier series analysis of the periodically spiking Hodgkin-
Huxley system becomes tractable. Another motivation to consider voltage-independent
time constants is that, in this case, the transitions between simple ion channel states
follows the function [d/dVme;(V)]]” with exponent y = 1, as described in section 2.2.
This is the functional form required for information maximization learning.

Assume that the time constants are voltage-independent. If V'(¢) is a periodic func-
tion, then, after an initial transient, m(¢) will also be periodic with the same period,
but generally with a phase delay, as can be shown by Fourier decomposition. Suppose
that m(t) is slaved to V'(¢): in other words, changing m(t) will have a small effect on
V (t), whereas changing V() will have a huge effect on m(¢). In other words, assume

V(t) is some fixed periodic function. Defining w = 27/T, we can write down the
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Fourier series for moo[V (t)]:

MooV (t)] = i Cn €xp(iwnt)

n=-oo

where

Cn = T/OT Moo|V ()] exp(—iwnt) dt

We can substitute this expression into the integral equation for m(t) (with m(0) = 0)

to get:
t t t' dt
t) = exp| —— / ¢, exp(iwnt’) e (—)—
m(t) XP( T)O; p(iwnt’) exp|— ) —
Interchanging summation and integration (assuming uniform convergence)

. 1 t
exp(iwnt) — — exp (——;)

= Triow

1 —Hwn*r

As t — oo, the only terms that remain are

I

> ———exp(iwnt)

1+zwn

exp|iwnt — i arctan(wnr)
L ol |

By taking the limit of ¢ — oo, we can drop the assumption of slaving. Once w is

I

(A.3)
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known, this 1s the only self-consistent solution. Equation A.3 shows that the Fourier

components of m(t) lag behind those of mu(t) with the frequency-dependent phase

delay of arctan(wnr), and are dampened by an amplitude factor [1 + (wn'r)2]

We can use this result to compute other averages, such as (m;(V)?):

(V) = 3

wio 1+ (wn)®

Using the fact that

we get the following relationships in the limit

lim(ms(V)?) = (meos(V)?)

7—0

Iim (m(V)?) = (Moo s(V))”
Since (Moo (V)?) > (mees(V))?, if we replace

5 ({(meos (V) = (meai(V)?))

s ({ma(v)) = (ma(v))).
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then we will overestimate the derivative, unless V'(¢) is constant or 7 is zero.

Since any biophysical implementation of such a learning mechanism must be based on
i:he fluctuations of individual ion channels, we will compare the results above to the
net rate of forward/backward transitions of ion channels. Averaged over one cycle,
the rate of backward transitions must be equal to the rate of forward transitions, else

the system is not in quasi-steady-state. The rate of backward transitions is:

fo=17 [ BIV@mlv () d

dm

= ';:/()T ﬂz[v(t)] moO,i[V(t)] dt — %AT ,Bz[V(t)] T[V(t)] — dt,

whereas the forward rate of transitions is:

fo= %[)T ai[V(t)]{l - mi[V(t)]} dt

1 /T 1 /7 dm
=7 | VOl - medv@lhde+ 2 [ aalv @) Vo) S d,
Of course,
1 /T T
7 BV @I meilV@]dt =2 [ alVOI1 - meo v (0)]} d
by definition of m ;. Thus, to show that the average rates are equal, we subtract

fo-fo=x eV + BV OV % dt.
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Using o;[V (8)] + B[V (t)] = 7V ()]

1 Tdm
—dt
-T dtd
=O,

and, thus, fo = fc. For 7 = constant, we can rewrite the average rate as

dm

For for = (mas(V)) =~ (maos(VIP) 4 7 [ sV (0] 75 dt

In terms of the Fourier series for m ;[V ()], and the corresponding Fourier series we

found for m;[V'(t)], we have

wnt
T/ Meoi[V (1)) T—dt Z_ iCop Cp————

1+iwnt
(wm’ wnt
=) CopCp————3 c—
Z nén + (wn Z " T (o) 1+ (wn)®

If we take the limit 7 — co, we have

1 T
3;/ moo,,[V( 7’-—— dt z C_nCp
0 n#£0

From eqs. A.4 and A.5, we can write

= [ iV TS dt = (e lV (OF) — (e lV ()
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Thus, in this limit,

fo, fo = (Mei(V)) — (Moo i(V))?

In the opposite limit 7 — 0, the integral fJ meo [V (2)] T4 dt tends to zero, so

anfC = (moo,z(v» - <moo,i(v)2>'

In either limit, in fact,
fo. fo = (mi(V)) — (ms(V)?).
A.3 Mean and Variance of the First Passage Time

Distribution

The first moment and variance of the first passage time distribution are given by:

S - S pr = e
UFPT = 5 —— — 2V 2.n } (A1)
2 n=1" (E)n n=0 (ﬁ)nn’ (/.LT _ V'O)/\/‘(;z—,;
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1
—W[zv;—-——-@.?;nm (42

-[Ee - )

The formulae use the Pochhammer symbol notation:

(@),=a(a+1)(a+2)...(a+n~-1) n>1

The asymptotic expansion with converging factor for pgpr as ¢ — 0 is

2 (ur —0)/Vo?r
exp(z?) [ (1/2), (1/2) 52
MFPT =T{ﬁ px ) [r;) @) + Cp “(;2)_[5{2“11} }
(ur — 0)/Vo?r
5{_111 oS e }( ) (A32)
m=o ( ur — Vy)/Vo?r

where |z| is the closest integer smaller or equal to z and [z] is the closest integer

larger or equal to x. .C[;27, the converging factor, is a series in 1 /x2. Defining
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y = z? — [1?], the converging factor is

, 1 13 1
Y-y +—)+ O(F)' (A3b)

112, 1
3 6 240

Crz21 = (g +y) — ;5(33/ -

A similar expression, albeit more complicated, holds for the asymptotic expansion of

2
OFpT-

A.4 Note on the Effect of Firing Rate Saturation

Eq. 3.4 governing the behavior of the leaky integrate-and-fire unit allows the firing
rate to grow without bound as either ¢ — 0o or u — co. Since signal detection
occurs in the regime of low firing rates far removed from saturation, we are justified
in neglecting the physical limits on very high firing rates.

If the firing rate saturates very strongly and quickly as a function of the input,
however, the leaky integrate-and-fire unit effectively converts into a bistable device.
For bistable devices, a “resonance” in the transmitted information occurs because all
inputs are mapped onto the same output in both the low and high noise limits. The
SR peak in the lower bound to the Fisher information Jig, however, exists already
in the absence of saturation.

It is a simple matter to explore the effect of firing rate saturation on the SR peak by
introducing a “hard refractory period” after each spike. In this model, the voltage V
is held at the reset voltage V; for a refractory period ¢, after each spike. The variance

ogpr of the first passage time remains unchanged, but the average interspike interval
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pppr is effectively lengthened by t.;. In terms of the original Fisher information Jig,

the effect of saturation leads to

_ UFPT 0
Tia() = (EE— ) Ry ).

As a consequence, as ¢ — 00,

1

Jip X —,
o

which implies that the asymptotic tail of the SR peak decays faster than the 1/0?

behavior expected in the absence of saturation.

A.5 The Poisson Estimate of the Fisher Informa-
tion

If the spike train of a neuron is Poisson, the Fisher information is predicted by eq. 3.14.
Even if the spike train is not Poisson, a SR peak in the Fisher information for the
rate-equivalent Poisson process will be mirrored by a peak in the original process. We
sketch a rough argument why.

Assume that both pppr(u, o) and o2pr(u, o) for o > 0 are twice differentiable positive
definite functions that are concave in both p and o. The concavity requirement

ensures that the p2pr(u,0) and odpr(u, o) intersect at most twice as a function of
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o for given p. The firing rate f(u,o) describes a threshold system if there exists a
threshold input such that, for u < g, f(1) = 0 in the absence of noise (¢ = 0).

For p < ug, insist that

U%PT(#, o) m .U%PT(M, o)

oppr(i,0) S X pepr (K, 0)

where p < 2, and x is a positive real number.

Now if f(u,0) can be bounded by M |,u+a[2_e, where M and ¢ are real, positive
numbers (¢ < 2), then Jpoisson(1) has a maximum as a function of o for p < pg. In
particular, a piecewise linear f(u,o) can be bounded in such a fashion.

There exists a oy for each u, such that o2pr(u,00) = péprp(i,00). We can further
guarantee that o2p(u, o) < pépr(u, o) for o < oy by invoking the concavity of these

functions and the asymptotic limit of ¢ — 0. We conclude then that

JLB(N) < JPoisson(l"‘) for o > 0o,

JLB(N) > JPoisson(:u) for o < gy.

Since Jpp(u) approaches Jpgisson(1) as ¢ — 0, Jpp(p) will possess a maximum if

JPoisson (,U) does.



