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Abstract

Sensor based motion planning incorporates sensor information reflecting the
state of a robot’s environment into its planning process, whereas traditional ap-
proaches assume complete prior knowledge of the robot’s environment. Recent
research has focused on the development and incremental construction of the hi-
erarchical generalized Voronoi graph (HGVG), which is a concise representation of
a robot’s environment. The HGVG is advantageous in that it lends itself to sensor
based construction in a rigorous and provably correct manner. With this approach,
a robot can enter an unknown environment, incrementally construct the HGVG,
and then use the HGVG for future excursions in the environment. Simulations and

experiments validate this approach.



iv

Acknowledgments

Many people have touched my life and influenced my work at Caltech and to
each of them, I owe a great debt. My long list of thank you’s starts with my advisor,
Dr. Joel Burdick, for without whom, my wonderful experiences at Caltech never
would have occurred. Although I still do not understand why there is no machine
named after Wanky, I am thankful for his guidance (in most things!!), his willingness
to talk to me about anything, and his wisdom (see my web page). I wish the best
for Joel and his family.

Next, I would like to thank the members of my PhD committee, starting with
Dr. Andrew Lewis. He perhaps has had the greatest positive affect on my work and
me throughout my years at Caltech; he has been with me for so many things, some
of which includes helping me prepare for my candidacy exam, getting me started
with nonsmooth analysis, constantly reviewing my work, sharing a day with me in
the hospital when I had salmonella, going to Penny’s and just being an all around
good friend to me.

Some of my fondest memories of Caltech include talking about my research with
Dr. Richard Murray in his office. Many times he made time for me and always
spoke to me as a colleague. As far as I am concerned, he is my back-up advisor.
I would like to thank Dr. Erik Antonsson for being a last minute member of my
committee and his kind words towards my work. Also, I would like to thank him for
making me so popular with the ladies. Finally, T would like to thank Dr. Perona for
showing me during my thesis defense that 1 have built up a type of intuition that is
well suited to the problems I want to solve.

Many other friends at Caltech have influenced my work and me. First, I would
like to thank my dear friend Dr. Jim Ostrowski for all the help and birthday
surprises he has provided for me over the years; he is a true buddy who always
has been gentle and kind. Next is Luis Goncalves for his research discussions,
especially the infamous one at Malibu. Also, a thank you should be sent to Dr.
Dave Kriegman who ruined by research three years ago (I know where you live,

Dave). I am also grateful to Dr. Greg Chirikjian who (1) started snake research, (2)



helped me get through my turbulent first year of Caltech, and (3) took me to B.E.
so many times. I would also like to thank Will Law for helping me write better and
talking science; as long as women walk the face of this Earth, we will have something
to talk about. I have also enjoyed my research discussions with Captain Richard
Mason. In addition to research help, I would like to thank my fellow New Yorker,
Scott Kelley, for exposing me to a culture of many things that are all round. Thank
you to Jim Radford and Jonah Harley for their help with the experiments. And
last, but not smallest, I would like to thank Bill Goodwine (hereinafter “Franz”)
for his friendship, his partnership in the weight room, and the many discussions on
everything at work (in the weight room, Franz and I just lifted weights).

There have been many people outside of work whose valued friendships kept me
going through the trials and tribulations of Caltech. My first new California friend
is Carlos Jorquera, who from the very first moment I met him, I knew would be my
life-long friend. And there is my Jewish friend Richard Tsuyuki who convinced me
I was a good guy; if I had been woman, he would have been mine. Richard is just
about the only one I would call Dick and mean it. I would like to thank Fred Farina
for forcing me to learn French curses; I am sure it will be useful one day. Finally, I
would like to thank Gilead Grossman for being my loyal servant at Venice beach.

I appreciate members of my Tae Kwon Do club for the frequent workouts and
keeping me honest. In particular, I am thankful to Dr. Eric Paljug, Bill Williamson,
Bobby Johnson, Tim Doyle, Dr. Anthony D’Amico, Jodi Forlizzi and especially
Susan Downey. I would also like to thank Eric for following me from Penn, to
Caltech and then to Pittsburgh. Also, I am thankful to the boss and fellow New
Yorker, Charmaign Boyd, for keeping things smooth; if I ever turn to a life of crime,
I want her on my side. Then there is the best officemate I ever had, Brett Slatkin; he
gives the best birthday presents I ever received. Also, there is my dear friend Steller
Kaoru Oota whom I met just recently, but seem to think is pretty neat. Finally, I
would like to thank the constant support I received from my Penn roommates Ron
“Wanky” Levinson, Barry “Shlanky” Friedson, Mark “Snooter” Monack, and Jodie

“Monack” Lane; I am really sorry that wanky.caltech.edu never came alive (blame



vi

Joel).

I would like to thank the Office of Naval Research for sponsoring this research.
Finally, I would like to thank my parents, Malcolm and Tobe, for endowing me with
a strong work ethic, without which, I never would have accomplished anything. I
would also like to thank my mother for getting stains of all kinds out of my clothing.

To my parents, this thesis is dedicated.



vii

Contents

1 Introduction
1.1 Motivation and Problem Statement . . . . . ... ... ... .....
1.2 Relation to Previous Work . . . . . . . ... ... ... . .......
1.2.1 Classical Motion Planning . . . . . . .. ... ... ......
1.2.2  Prior Work in Sensor Based Planning . . . . ... ... ...
1.2.3 How the HGVG Relates to Previous Work . . . . . . ... ..
1.3 Contributions of Thesis . . . . .. . .. .. ... .. .........
1.4 Overviewof Thesis . . . . . . . .. . . ... . ... .. .. ...,

2 The Generalized Voronoi Graph
2.1 Distance Functions . . . . . .. .. .. ... ... .

2.1.1 X-Distance Function . . . . . . . . . . . . ... ... .....

2.2 The Generalized Voronoi Graph . . . . . .. .. ... ... ......
2.2.1 Equidistant Faces. . . . . . . . .. ... ... ... ... ...
2.2.2  Generalized Voronoi Region . . . . . .. ... ... ......
2.2.3 Boundary Face and Floating Boundary Face. . . . . .. ...

2.3 Basic Properties of the GVG . . . . . .. ... ... ...
2.3.1 GVG Boundary Elements . . . .. ... .. ..........
2.3.2 Dimension of GVG Components . . ... ... ........
2.3.3 Complexity of the GVG . . . . ... .. ... ... ......

10
11
12
13



3 The
3.1

3.2

3.3

3.4

viii

2.3.4 The Multi-object Distance Function is Smooth on a k-Equidistant

Face . . . . . . . e 39
235 Accessibility. . . . ... o Lo o o 42
2.3.6 Departibility . . . ... ... ... e 43
2.3.7 Connectivity of the GVG . . . . .. .. ... 43
Hierarchichal Generalized Voronoi Graph 45
The Second Order GVG . . . . . . .. ... . ... .. 45
3.1.1 Second Order Generalized Voronoi Region . . . . . . .. ... 46
3.1.2 Second Order Equidistant Face . . . . .. ... ... .. ... 49
3.1.3 Occluding Face . . . . . .. .. .. .. 50
3.1.4 Second Order Generalized Voronoi Set . . . . . ... .. ... 54
3.1.5 Connectivity of the GVG and Second Order GVG . . . . .. 57
Cyclesand Periods . . . . . . . . . .. ... ... . 60
321 GVGCycle . . .. o o s 60
3.2.2 Second Order Cycles and Periods . . . . .. .. ... .. ... 62
3.2.3 Inner and Outer Cycles and Periods . . . . .. .. ... ... 63
3.2.4  Proofs of Lemmas Presented in Section 3.2 .. ... .. ... 67
Extended Boundedness Assumption . ... ... ... .. ...... 71
3.3.1 Definition . . . .. ... Lo o 72
3.3.2 Second Order Generalized Voronoi Regions . . . . ... ... 73
3.3.3 Cycle-free Environment . . . . ... .. ... ... ... ... 74

3.3.4 The Extended Boundedness Assumption and Planar Environ-

ments . . . . . ... e e e 77
Connectivity . . . . . . . . . e e e e e 78
3.41 The HGVG and the Generalized Voronoi Complex . . . . . . 78
342 Links . . . ... 79
3.4.3 Connected Boundary with Links . . ... ... ... .. ... 85
3.4.4 The L®HGVG is Connected . . . . . .. ... ......... 86

3.4.5 Proofs of Lemmas in Section 3.4.2 . . . . . .. .. ... ... 87



ix

4 Incremental Construction of the GVG 91
4.1 Traceability of the GVG . . . . . . .. ... o oL 92
4.1.1 Properties for Tracing . . . . . . . .. ... ... 92
4.1.2 Terminating Conditions . . . . ... .. .. ... .. ..... 100

4.2 Incremental Accessibility . . . . . . . . ... .. ... ... ... ... 102
4.3 Constructing the Second Order GVG . . . . . . ... ... ... ... 105
4.3.1 Second Order Generalized Voronoi Edg;es ........... 105
432 Boundary Edges . ... ... .. ... . 106
4.3.3 Floating Boundary Edges . . . . . . ... ... ... 106
434 Occluding Edges . . . . .. .. ... o0 oL 107‘
4.3.5 Terminating Conditions . . . . . . . .. .. ... .. ..... 107

4.4 Incremental Linking . . . . .. ... ... . L L. 107
4.41 Inner GVG2 Period Link . . . . . . . .. ... ... ...... 108
4.4.2 Inner Boundary Edge Period . ... ... ... ... ..... 108
4.4.3 Occluding Period . . . . . .. . ... 0oL 110
444 LinkstoCycles . . . . . . . . . . . ..o 110

4.5 Incremental Departability . . . . ... ... ... ... ..., 110
4.6 Simulations . . . . . ... L. Lo e 111
4.6.1 Planar Simulations . . . . . ... ... o000 111
4.6.2 Three-Dimensional Simulator . . . . . . . ... ... .. ... 114

4.7 Incremental Construction of the OPP . . . . . . . . ... ... ... 114
471 OPPisa Subsetof GVG . . . ... ... ... . ... ... 115
4.7.2 Traceability . . . . . . . ... .. 116

4.8 Conclusion . .. .. . .. e 117
5 Implementation and Experiments 118
51 The Robot . . . . .. . . e 118
5.2 Sensor Model . . . . . . .. Lo 118
5.3 Distance Function . . .. ... ... ... ... L .. 119
5.3.1 Raw Distance Function . . .. ... .. .. .......... 119

5.3.2 Compute Distance with Raw Distance Function . . . . . . . . 120



5.3.3 Distance Function . . . .. .. .. ... ... ..., 122
5.4 Implementation on a Mobile Robot . . . . . . . .. ... .. ... .. 123
5.5 Experimental Results. . . . . . .. .. ... ... ... ........ 125
5.6 Conclusion . . . . . . . e e e e 127
Conclusion and Future Work 128
6.1 Conclusion . . . . . . . . e e e e e e 128
6.2 Future Work . . . . . . . e 128
6.2.1 Sensor Based Motion Planning for Set Robots . . . . . .. .. 129
6.2.2 Sensor Issues and Mobile Robots . . . . ... ... ...... 130
6.2.3 Robot Vision and Sensor Placement . . .. .. .. ... ... 130
6.2.4 Injection Molding . . . . . . .. ... ... L. 131
Relevant Mathematical Material 132
A.1 Useful Topology Definitions and Relationships. . . . . .. ... ... 132
A.1.1 Topology Notation and Definitions . . . . . .. .. ... ... 132
A.1.2 Useful Topology Results in Sensor Based Planning . . . . . . 133
A2 Convex Functions. . . . . . . . .. . .. ... .. ... ... . 134
A.3 Convex Hulls and Positively Spanning Vectors . . . . . . . ... ... 135
Nonsmooth Analysis 138
B.1 Introduction to the Distance Function and Nonsmooth Analysis . . . 138
B.2 Review of Nonsmooth Analysis . . . ... .. ... .......... 138
B.3 Distance Function . . . . .. ... ... oL oL 140
B.3.1 Properties of the Distance Function . ... .. ... ..... 141

B.3.2 Generalized Gradient of the Multi-Object Distance Function 142

B.3.3 Distance Functionona Slice . . . . .. . ... ... ..... 143
B.4 Extrema of Distance Function . . . . . . . . . . . .. ... ... ... 144
Generalized Voronoi Complex 151
C.1 Basic Notation . . . . . . . . . v v v v i i i 151

C.2 Basic Definitions . . . . . . . . . . . e e e e e 151



xi

C.3 Connectivity of the Generalized Voronoi Complex

C.4 Generalized Voronoi Diagram . . . . ... .. ..



xii

List of Symbols

The symbols are grouped into five categories: Voronoi structures, types of spaces,

mathematical notation, distance functions, and miscellaneous structures.

Symbol | Meaning Definition
VD Voronoi diagram | Set of points in the plane equidistant to two
or more points called site points.

GVD generalized Set of points in the plane equidistant to two
Voronoi diagram | or more convex sets.

VG Voronoi graph Set of points in an m-dimensional Euclidean

(RVG) | (regular Voronoi | space equidistant to m or more point sites.
graph)

GVG generalized Set of points in an m-dimensional Euclidean
Voronoi graph space equidistant to m or more convex sets.

GVG? | second order gen- | Set of points equidistant to a pair of closest
eralized Voronoi | obstacles and m — 1 second closest obstacles.
graph

HGVG | hierarchical gen- | The GVG with additional structures termed
eralized Voronoi | higher order GVG’s.
graph

L2HGV{ linked hierarchi- | The HGVG with additional links.
cal generalized
Voronoi graph

Symbol [ Meaning

R™ m-dimensional Euclidean Space
w Work space

C; Obstacle ¢ (assumed to be convex)
FS Free space




xiii

Symbol | Meaning
dim Dimension
codim | Co-dimension
nbhd Neighborhood (of a point)
int Interior (of a set)
cl Closure (of a set)
0 Boundary (of a set)
or generalized gradient (of a function)
N Intersection
U Union
\ Subtraction
Co Convex hull
Sym. | Meaning Definition
d; single object distance | Distance between a point and a convex obsta-
function cle (which may or may not be occluded).
D multi-object distance | Distance between a point and the nearest
function obstacle.
Vd; | gradient of single object | A unit vector pointing away from the nearest
distance function point on the obstacle.
oD generalized gradient of | The convex hull of the single object gradi-
the multi-object distance | ent vectors whose distance is the same as the
function multi-object distance function.
dX X-distance function or Distance between a point and a convex obsta-
X-ray distance function cle (which may be occluded from the point).
d? S-distance function or Distance between a point and the nearest line
slanted distance function | of sight point in the obstacle.
dy V-distance function or Distance between a point and the nearest line

visible distance function

of sight point in the interior of the obstacle

line of sight points.




xiv

Symbol Meaning Distance relationships
88i; two-equidistant surjective | d;(z) = d;(z)
surfac.e
8S8i,.ix k-equidistant  surjective | d;, () = --- = d;, ()
surface
F; generalized Voronoi region | d;(z) < dp(z) Vh
Fij two-equidistant face or di(z) = dj(z) < dp(z) Yh
generalized Voronoi face
F? two-Voronoi set
or GVD
Fir i k-equidistant face di(z) =---=d; (z) < dp(x) Vh
F* k-Voronoi set
Fioi, m-equidistant face di(z)=---=4d;, (2)
or GVG edge
Fir i m + l-equidistant face dij(z)=---= iy ()
or GVG vertex
T second order generalized | d;(z) = d;(z) < dj(z) < dp,(z) Vh
T Voronoi region
Firoimn GVG? equidistant edge di(z) = dj(z) < diy(z) = -+ =
i1 (%) < di2) Yh
Cir .ip k-boundary face diy(z)=---=d;(¢)=0
Ciy.i, boundary edge or di(z)=---=d; (2)=0
m-boundary face
FC;, 4, floating k-boundary face di,(z) = =d; () < dp(z) Vh
Vi . occluding two-face di(z) = dj(z) < di(x) < di(z) <
i

dp(z) Yh or di(z) = dj(x) <
dl(m) < dk(x) < dh(l‘) Yh




Chapter 1

Introduction

The sensor based motion planning problem is to find a collision-free path for a
robot only using environmental information provided by sensors. This problem
is an extension to classical motion planning, where environmental information is
already available to the robot prior to the planning event. There already exists
many provably correct algorithms for classical motion planning, but although many
algorithms exist for sensor based motion planning, very few of them are provably
correct. Existing provably correct algorithms for sensor based motion planning are
limited to planar problems. This thesis presents a provably correct sensor based

motion planning algorithm that is applicable to dimensions greater than two.

1.1 Motivation and Problem Statement

Sensor based motion planning is important for realistic deployment of robots be-
cause: (1) the robot may have no a priori knowledge of the world; (2) the robot may
have only a coarse knowledge of the world; (3) the robot’s knowledge of its environ-
ment may be inaccurate; and (4) the robot’s world may be subject to unexpected
occurrences or rapidly changing situations. The robot must rely on its sensors in
order to effectively function in these situations.

Two canonical problems in sensor based motion planning are addressed in this
thesis: finding a collision-free path to a goal location and mapping a bounded en-

vironment with a systematic exploration procedure. In both problems, the robot
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Figure 1.1 Traffic Map of Los Angeles on October 5, 1995.

has no a priori knowledge of the environment, but always knows its current loca-
tion (e.g., it may have an on-board dead reckoning system) and its sensor range is
sufficient.

The solution to the mapping problem automatically supplies a solution to the
collision-free path planning problem in a bounded environment, and so we will fo-
cus our attention on the mapping problem. To this end, we construct a roadmap:
a network of one-dimensional curves that concisely represents the geometry of a
robot’s environment. A roadmap is analogous to a system of freeways (See Fig-
ure 1.1). Using a freeway system, travel between two points is accomplished by
driving directly to the freeway, traversing a sequence of freeways to an exit near
the destination, and then proceeding directly to the destination. The hierarchical
generalized Voronoi graph (HGVG), defined in this thesis, is a roadmap that can be
incrementally constructed using line of sight sensor data.

A sensor based planner should have three important qualities: (1) it can create
a concise representation of the environment, (2) it constructs a map or motion plan
in an incremental manner, and (3) it is amenable to realistic sensors. Since the
HGVG is a roadmap, it already is a concise representation of an environment. The
HGVG is defined in terms of line of sight distance information which gives rise to an

incremental construction procedure that is described in this work. The incremental



construction procedure relies on line of sight range information which can be readily

obtained from realistic sensors.

1.2 Relation to Previous Work

Any practical robot motion planning algorithm must be complete, i.e., find the goal
if it is reachable or map the entire environment in finite time. More sophisticated
algorithms allow for moving obstacles, and various “soft” optimization criteria, such
as maximizing the clearance between the robot and obstacles, and minimizing the

distance traveled by the robot during the quest for the goal.

1.2.1 Classical Motion Planning

In the classical robot motion planning problem, the robot has complete knowledge of
the world’s geometry is available prior to the start of the planning event. Through-
out this work, we assume the robot is modeled as a point operating in a subset
W of an m-dimensional Euclidean space. When m is two or three, W could be
either a configuration space or a workspace, but when m > 3, W is a configuration
space which is diffeomorphic to R™. The work space W is populated by obstacles
C1,...,C,. In later sections, we assume that obstacles are closed convex sets and
that non-convex obstacles are modeled as the union of the convex sets. The W is
populated with a set of convex obstacle, {C1,...,C,}. The set of points where the
robot is free to move is called the free space, and is defined as FS = W\ ULZT C;.

See Figure 1.2.

Assumption 1.1 (Boundedness Assumption) Therobot operates in a bounded

connected subset of the free space FS. This subset is bounded by obstacles.

When Assumption 1.1 is upheld, n > m + 1. For example, when m = 3, the
minimum number of convex obstacles to bound a subset of the FS§ is four. Also
note that when Assumption 1.1 is upheld, although the robot is operating in a

bounded connected subset of FS, the freespace 7S may be unbounded.
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Figure 1.2 The robot operates in a bounded subset of the free space. Concave
obstacles are modeled as the union of convex obstacles.

Three classes of complete classical motion planning schemes have been devel-
oped: potential field approaches, roadmap methods, and cellular decomposition

(Latombe, [28]).

Potential Fields

In the potential field approach (Khatib, [25]; Latombe, [28]), the robot is modeled as
a particle acting under the influence of a potential function U': R™ — R that encodes
information about the environment such as the goal and obstacle location. Typically,
these potential functions have two parts: an attractive potential, Uyy: R™ — R,
and a repulsive potential, Uy.,: R™ — R. The attractive potential is normally a
quadratic function with its global minima (only local minima) at the goal, thereby
guiding the robot towards the goal. The repulsive potential is inversely proportional
to distance to obstacles, thereby steering robots away from obstacles. The potential
function is the sum of the attractive and repulsive potential functions, i.e., U =
Uatt + Upep, and motion planning is effected by gradient descent of U.

The advantage that this approach has over others is that it extends nicely into
higher dimensions, and can produce some very efficient solutions. Another advan-

tage of the potential field approach is that a robot can compute simple potential



functions using local information; it is this feature which makes potential fields
amenable to sensor based planning. Nevertheless, a major disadvantage of this
approach is that the robot may get trapped in a local minima different from the
local minima associated with the goal. There are methods for dealing with this
problem, but either they are restrictive or require too much information about the

environment (Rimon and Koditschek, [39]).

Roadmap Methods

Definition 1.2 (Roadmap) A roadmap R is the union one-dimensional curves
such that for all gsart and ggoq in FS, there exists a path between ggqr+ and Qgoal

if and only if
1. there exists a path from gsiarr € FS to some gly,,+ € R (accessibility),
2. there exists a path from ggoa € 7S to some g, € R (departibility), and
3. there exists a path in R between ¢.,,,, and q’goal (connectivity).

Using a roadmap (Canny, [6]; Latombe, [28]), the planner can construct a path
between any two points in a connected component of the robot’s free space by first
finding a collision free path onto the roadmap (accessibility), traversing the roadmap
to the vicinity of the goal (connectivity), and then constructing a collision free path
from a point on the roadmap to the goal (departability). Three primary types of
roadmaps have been developed: wistbility graph, retraction, and silhouette.
Visibility Graph. The nodes of the wvisibility graph (Latombe, [28]; Lozano-
Perez and Wesley, [30]) include the start location, the goal location, and all the
vertices of the obstacles (or configuration space obstacles). The edges of the visibility
graph are straight line segments that connect two nodes without penetrating the
intertor of the obstacles (or configuration space obstacles). An edge of a polygon
obstacle also serves as an edge on the visibility graph because it does not intersect
the interior of the obstacle. Using the standard two-norm, the visibility graph can
be searched for the shortest path in R? (Figure 1.3), but is not guaranteed to find

the shortest path in dimensions greater than two.
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Figure 1.3 Thin solid lines delineate the edges of the visibility graph for the three
obstacles represented as filled in polygons. The thick dotted line represents the
shortest path between the start and goal.

Retraction. A retraction (O’Diinlaing and Yap, [34]) is a continuous mapping
of the free space F& onto a one-dimensional subset of FS. The image of the
retraction is the roadmap. A popular retraction in motion planning is termed the
Voronoi diagram. This structure is a graph whose edges are the set of points whose
minimal distance to the boundary of FS occurs at two distinct points, and whose
nodes are the points where edges meet (and terminate). Typically, the nodes are
the set of points whose minimal distance to the boundary of F§ set occurs at least
three distinct points. Traditionally, this structure was developed for planar motion
planning.

Accessibility (resp. departability) is achieved by drawing through the start (resp.
goal) a line that is perpendicular to the closest obstacle to the start (resp. goal). This
line is guaranteed to intersect the diagram. Let this be point be labeled ¢.,,,; (resp.
q;()al). If a path exists between the start and goal locations, then the connectivity
property guarantees a path exists in the Voronoi diagram between ¢’,,,, and q’gaal.
Hence, remainder of the motion planning process is reduced to a graph search which
connects gql,,,, and q'goal in the graph. See Figure 1.4. This algorithm only works in
the planar case.

Originally, the Voronoi diagram applied to various computational geometry
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Figure 1.4 The dotted line delineates the generalized Voronoi diagram for a planar
environment surrounded by a rectangular enclosure and a triangle and square
in its interior. The start (little man) and goal (cup of water) are connected by
the thick dotted line.

problems limited to a planar environment populated with a set of isolated points,
termed sites. The original Voronoi diagram is the set of points with minimal dis-
tance to two or more sites. Although named for the Russian mathematician, Georgii
Feodosevich Voronoi who lived from 1868 until 1908, the Voronoi diagram was first
studied by DesCartes in 1644. The Voronoi diagram was first applied to robotics in
Rowat’s work on computer vision [40]. In this and other works, the sites were sets,
instead of points. In such cases, in keeping with the Voronoi diagram literature, we
term this structure the generalized Voronot diagram in order to distinguish it from
the original definition of the Voronoi diagram.

The advantage of the generalized Voronoi diagram is that it prescribes a path
of maximal clearance from the obstacles, thereby allowing for safer pathways. The
disadvantage of this approach is that it does not directly extend to work spaces
whose dimension is greater than two. A major contribution of this work is the
development of analogous methods that are applicable to these higher dimensional

work spaces.

Silhouette Method. A drawback of the generalized Voronoi diagram is that



it is limited to planar motion planning problems. Canny [6] introduced a roadmap
approach that is applicable to work space and configuration spaces whose dimension
is greater than two. A hyperplane, termed a slice, is swept through the work space or
a parameterization of configuration space, populated with obstacles. Typically, the
slice is perpendicular to a coordinate axis. On each slice, extremal points of some
function (e.g., the distance to the closest obstacle) are determined. As the slice is
swept, these extremal points trace out curves termed silhouette curves. In general,
these curves are not guaranteed to be connected; in fact, at points, termed critical
points, new silhouette curves appear or disappear. At these points, the algorithm is
recursively invoked on the slice that passes through the critical points. The recursion
terminates when the slice is one-dimensional. The union of the silhouette curves is
a connected roadmap.

The Opportunistic Path Planner (OPP) of Canny and Lin [8], [9] is an example
of a silhouette method in which local maxima of a continuous and differentiable
potential function, restricted to a slice, are traced out as a slice sweeps through the
work space or a parameterization of configuration space. Canny and Lin suggest
that the Euclidean distance function between a given point (which represents the
robot’s configuration) on the slice and the nearest obstacle be used as the potential
function. The traces of the local maxima of the potential function, as the slice is
swept through the work space or configuration space, are termed freeways.

The algorithm begins by tracing a path from the start and tracing a path from
the goal onto the nearest freeways by gradient ascent on the potential function in
the slices which intersect the start and goal positions. This corresponds to the ac-
cessibility and departability algorithms described in Section 2.3.5 and Section 2.3.6.

If the start and goal freeways are connected, then the algorithm terminates. In
general, the set of freeways will not be connected, and paths between neighboring
freeways must be found. The OPP freeways are connected via bridge curves. The
bridge curves are constructed in the vicinity of interesting critical points. Interesting
critical points occur when channels (Figure 1.5) join or split. Bridge curves are also

built when freeways terminate in the free space at bifurcation points (where traces of
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Figure 1.5 Schematic of the OPP planning scheme.

local maxima and local minima meet). A bridge curve is built leading away from a
bifurcation point to another skeleton. This procedure is repeated until the start and
goal freeway curves are connected, or all interesting critical points and bifurcation
points have been explored in which case there does not exist a path between the
start and the goal. The union of bridge and freeway curves, sometimes termed a
skeleton, forms the one-dimensional roadmap.

Regarding sensor based planning, the OPP cannot be directly implemented in
a sensor-based way because it assumes (1) prior knowledge of the location of all
the interesting critical points; and (2) that freeway curves can be traced backward
from the vantage point of the goal. One undesirable feature of this approach is that
the freeways and location of interesting critical points are dependent upon sweep
direction. In Section 4.7.1, it is shown that the freeway curves are a subset of the

HGVG.
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Cell Decomposition

In cellular decomposition (Chazelle, [10]; Latombe, [28]), robot’s free space is de-
composed into regions called cells. There are two types of cellular decomposition
methods: exact and approximate. Exact cellular decomposition decomposes the free
space into cells whose union is the free space. In this approach the shared bound-
ary of adjacent cells typically has some sort of physical meaning such as a sudden
change in the closest obstacle. In approximate cellular decomposition methods, the
free space is decomposed into cells having pre-defined shapes like ike pixels in an
image; typically, the union of all of the cells in approximate cellular decomposition
is a subset of the entire free space. Motion planning is effected by searching a con-
nectwity graph, a graph whose nodes are the cells, and whose edges correspond to
adjacent cells.

Trapezoid Decomposition. An example of an exact cellular decomposition
can be found in Figure 1.6. Each cell is either a triangle or a trapezoid and is formed
by drawing a vertical line segment through each polygonal vertex. The end point
of each segment is the boundary of the free space. Two cells are adjacent if they
share a common boundary. The connectivity graph of the cellular decomposition of
Figure 1.6 can be found in Figure 1.7. The connectivity graph can then be searched
to find a path between the start and goal.

Generalized Voronoi Decomposition. This decomposition approach is re-
lated to the generalized Voronoi diagram discussed above. Figure Figure 1.8 contains
an exact cellular decomposition in which each cell is the set of points closest to a
particular object. The connectivity graph (Figure 1.9) of this environment is the
“dual” of the generalized Voronoi diagram of the same environment (Figure 1.4). In
this case, the connectivity graph is termed the generalized Delaunay triangulation.
The generalized Voronoi diagram and the generalized Delaunay triangulation are
duals in that one is connected if and only if the other is connected. This relation-
ship will prove to be quite useful in demonstrating connectivity of roadmaps, such

as the HGVG.



11

Figure 1.6 Bounded environment with three internal obstacles is decomposed into
sixteen cells where the start location is in cell 2 and the goal location is in cell
14.

Figure 1.7 The connectivity graph of the cellular decomposition in Figure 1.6.
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Figure 1.8 Exact cell decomposition where each cell is the set of points closest to

a particular object.

Figure 1.9 Connectivity graph for the cellular decomposition in Figure 1.8.
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1.2.2 Prior Work in Sensor Based Planning

In contrast with classical robot motion planning, sensor based robot motion plan-
ning incorporates sensor information, reflecting the current state of the environment,
into a robot’s planning process. Sensor based planning has received increased at-
tention lately, as it is requirement for realistic deployment of autonomous robots in
unstructured environments. For a review of many sensor-based planning techniques,
see Rao et al. [35].

Most current sensor based planning methods are heuristic algorithms which work
very well under a variety of conditions, but there are no proofs of correctness that
guarantee a path can be found. Moreover, there do not exist well established thresh-
olds for when heuristic algorithms fail. Typically, these heuristic algorithms are
limited to two-dimensional environments, where the geometry and topology of the
problem is simple. One class of heuristic algorithms is a behavioral based approach
in which the robot is armed with a simple set of behaviors such as following a wall
[5]. A hierarchy of cooperating behaviors forms more complicated behaviors such as
exploration. An extension of this type of approach is called sequencing [20, 21, 22].
Since there are strong experimental results indicating the utility of these approaches
(such as [22]), some of these algorithms may provide a future basis for provably cor-
rect sensor based planners.

Another type of heuristic approach involves the discretization of a planar world
into pixels (Borenstein and Koren [4]). In this approach, each pixel is assigned
a value indicating the likelihood that it overlaps an obstacle. This method lends
itself very nicely to implementation with real sensors, but discretizing the world
may require a large amount of computer memory and may lead to an inaccurate
representation of the world.

There are many non-heuristic algorithms for which provably correct solutions
exist in the plane (see [35] for an overview). For example, Lumelsky’s “bug” algo-
rithm [31] is one of the first provably correct sensor based schemes to work in the
plane. In this method, the robot travels along a straight line segment that connects

the start and goal. If the robot encounters an obstacle, it turns left and begins to
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circumnavigate the obstacle. If the robot encounters the start-goal line segment at
a point different from which it departed, the robot continues along the line segment
towards the goal. Otherwise, the algorithm terminates, indicating that the robot
cannot reach the goal.

Although the bug algorithm may seem simple, its contribution is that it provides
a path to the goal or determines that it is ¢mpossible to ever reach the goal. However,
this algorithm (like many described in [35]) requires knowledge of the goal’s location
during the planning process. Furthermore, this algorithm simply returns a path from
the start to the goal. The resulting path does not reflect the topology of the free
space (the region of the environment not occupied by obstacles) and thus, it cannot
be used to guide future robot excursions.

Taylor and Kriegman’s method [43] has a provably correct solution, uses realistic
sensor assumptions, and need not require prior knowledge of the goal’s location. In
this method, the robot forms a graph of a bounded free space by circumnavigating
each of the obstacles, and then creating an adjacency relationship between obstacles
within line of sight of each other. However, this method requires landmarks in
constructing its map and is limited to the planar case.

Another example of robotic exploration with realistic sensor assumptions can be
found in Kortenkamp and Weymouth [27]. In this work, a map called a “topological
map” of the world is formed. However, the algorithm in [27] assumes that the
environment is populated with rectangular obstacles that meet at nearly ninety
degree angles. Its application is therefore highly restricted.

One approach to sensor based motion planning is to adapt the structure of a
provably correct classical motion planning scheme to a sensor based implementation.
Roadmaps are one of the complete classical planning methods. An example of a
complete roadmap scheme is Canny and Lin’s Opportunistic Path Planner (OPP)
[9]. Rimon adapted this motion planning scheme for sensor based use [38]. To our
knowledge, this is the first sensor based motion planning scheme for workspaces
whose dimension is greater than two. However, connectivity of the roadmap in [38]

cannot be guaranteed without active perception. Furthermore, from a practical
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point of view, there are two limitations to Rimon’s method. First, to construct the
roadmap, the robot posseses an interesting critical point sensor and a minimum
passage sensor, both of whose implementations are not well described. Second, a
robust and detailed procedure for constructing the roadmap fragments from sensor

data is not presented.

1.2.3 How the HGVG Relates to Previous Work

The HGVG is a roadmap that is an extension of the generalized Voronoi diagram
(GVD) into higher dimensions. The GVD is the locus of points equidistant to two
or more obstacles which are convex sets in the plane. (The Voronoi diagram (VD) is
the set of points equidistant to two or more isolated points (sometimes termed sites)
in the plane. See Aurenhammer [2] for survey on Voronoi diagrams.) The GVD was
first used for motion planning in [40]. Active research in applying the GVD to motion
planning began with ()’Dﬁnlaing and Yap [34], who considered motion planning for
a disk in the plane. However, the method in [34] requires full knowledge of the
world’s geometry prior to the planning event, and its retract methodology may not
extend to non-planar problems. In [36], an incremental approach to create a Voronoi
diagram-like structure, which is limited to the case of a plane, was introduced.

Prior work (e.g., Avis and Bhattacharya [3]) describes the Voronoi graph, an
extension of the Voronoi diagram extended into higher dimensions. The Voronoi
graph is the locus of points in m dimensions equidistant to m point sites. The
generalized Voronoi graph (GVG), defined in Chapter 2, extends the Voronoi graph
to the case of convex obstacles; that is, it is the set of points in m dimensions
equidistant to m convex obstacles. Though the GVG introduced in this work appears
to be new, a disconnected GVG-like structure for SE(3) is described in [7].

The GVG@G, described in Chapter 2, can be thought of as the natural extension of
the GVD into higher dimensions. However, unlike the GVD, the GVG is in general
not a roadmap because it is not necessarily connected in dimensions greater than
two. Therefore, in Chapter 3, we introduce additional structures, termed higher

order generalized Voronoi graphs which are guaranteed to link the disconnected
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GVG components into a connected network. The resulting connected structure is
the hierarchical generalized Voronoi graph (HGVG).
The following diagram summarizes the evolution of the HGVG. The GVG and

HGVG appear in bold because they are new structures introduced in this work.

Point Convex

Sites - Sets

Double Equidistance VD — GVD

\
m-~wise Equidistance VG — GVG

i
m-wise Equidistance HGVG

and Other Structures

A key feature of the HGVG approach is that it is a roadmap which can be fully
constructed using line of sight information, as described in Chapter 4. In fact, the
original motivation of this work was to develop such techniques for Rimon’s sensor
based extension to the OPP method. However, in doing so, we developed the GVG,
and then the HGVG representation which we believe is more amenable to sensor
based implementation than the OPP-motivated approach. However, it should be
noted that the HGVG incremental construction procedures in Chapter 4 are also

applicable to the OPP method as well.

1.3 Contributions of Thesis

A major contribution of this thesis is the definition of the hierarchical generalized
Voronoi graph (HGVG), a roadmap structure that is sufficient for motion planning
in dimensions greater than or equal to two. The backbone of the HGVG is the gener-
alized Voronoi graph (GVG) which is a natural extension of the generalized Voronoi

diagram [34] into higher dimensions. Whereas the generalized Voronoi diagram is
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always one less dimension than the space in which it is defined, the GVG is always
one-dimensional. The GVG, however, is not guaranteed to be connected, and is
thus not directly applicable to motion planning. In order to guarantee connectivity,
the GVG is augmented with additional structures, termed higher order generalized
Voronoi graphs. The combined structure is the HGVG. The HGVG is a powerful
motion planning tool because once the HGVG is constructed, it reduces motion
planning in higher dimensional work or configuration spaces to a one-dimensional
search problem.

We make no claim that the HGVG has any clear advantage over other meth-
ods for classical motion planning. Nevertheless, we demonstrate that it is sufficient
for motion planning. In doing this, we introduce a structure, termed the general-
ized Voronoi complex, which can be used to show connectivity for a broad class of
structures that includes the HGVG.

The second major contribution of this thesis is a well defined technique to in-
crementally construct the HGVG using only line of sight information. In general,
there will not be a single vantage point from which the robot can “see” the entire
world and therefore it must incrementally construct a roadmap as it explores its
environment. The incremental construction procedure described in this thesis can
also be used when full geometry of the world is available. Unlike other sensor based
construction procedures, this procedure is proven to be complete (it is guaranteed
to find the goal if it is reachable or to map the entire environment in finite time) and
need not require any artificial landmarks nor abstract sensors. Additionally, this
incremental construction technique in this thesis can be applied to other methods
such as Canny and Lin’s Opportunistic Path Planner, Rimon’s extension, and wall
following algorithms.

A key property of the GVG and the HGVG is that they are defined in terms of a
distance function, d;(z), that is readily estimated by realistic sensors. The distance
functions introduced in this thesis measure the distance to obstacles that are within
line of sight of the robot.

Another contribution of this work is a method for determining extrema of the
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Euclidean distance function which is nonsmooth at its local maxima and saddle
points. This method makes use of only first order information without making use
any type of nonsmooth second derivative.

Finally, we experimentally verify this approach for a mobile robot with a ring
of sonar sensors. In doing this, we introduce a new approach to programming
mobile robots. Instead of evaluating matrix and other arithmetic operations, the
incremental construction technique is encoded in look-up tables. Thus an order
one complexity operation replaces a complicated arithmetic operation. We also
developed a simulator which generates the GVG in a three-dimensional Euclidean

space.

1.4 Overview of Thesis

This thesis is organized into six chapters and three appendices, where the first six
chapters are labeled Chapters 1, 2, 3, 4, 5, and 6, and four appendices are labeled
Chapters A, B, and C. Chapter 1 introduces the reader to motion planning and
sensor based motion planning in general, and motivates the goals of this work.

Chapter 2 defines the GVG and introduces some of its properties. In this chapter,
some basic definitions and results of convex analysis, set theory, and topology are
used. These definitions and results, with derivations, appear in Chapter A. Also
in this chapter, the distance function is first defined and some of its properties are
explored. More properties of the distance function are derived in Chapter B.

The GVG, in general, is not sufficient for motion planning, so it is augmented
by additional structures. The GVG and the additional structures is the HGVG,
which is defined in Chapter 3. Using results from Chapter C, the HGVG, with
some additional links, is shown to be connected. This chapter also draws from the
results in the appendices.

Chapter 4 describes the incremental construction technique for the HGVG. It
also explicitly demonstrates how this technique can be applied to the freeways of

the OPP method.
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Finally, Chapter 5 describes the experimental implementation of this approach

on an actual mobile robot, and Chapter 6 is the conclusion.
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Chapter 2

The Generalized Voronoi Graph

2.1 Distance Functions

A function which encodes the distance between a robot and a nearby obstacle is
key to our subsequent definitions and results. This section defines three types of
distance function: the X-distance function, the S-distance function, and the V-
distance function, each of which provides a rigorous geometric foundation for our
definition of the roadmap. Since many realistic sensors readily measure distance
between nearby obstacles and a robot, our roadmap structure lends itself nicely to
sensor based implementation. A more complete discussion of these functions and

their properties can be found in Section B.1.

2.1.1 X-Distance Function

Definition 2.1 (Single Object Distance Function) The distance between a point,

z and a convex set () is

d;(z) = min ||z — coll, .
(z) imelgvllfc col| (2.1)

<o 7
where || - || is the two-norm in R™.
In Clarke [19] it is shown that the gradient of d;(z) is

Vdi(z) = —— (2.2)

llz — coll”
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Figure 2.1 Distance between = and C; is the distance to the closest point on C;.
The gradient is a unit vector pointing away from the nearest point.

where ¢ is the point closest to « in C;. That is, ¢y is the point where ||z — ¢g|| =
mingcc, ||z—cl|. In later sections, we write ¢y = argmin d;(z). The gradient, Vd;(z),
is a unit vector, based at z, pointing away from ¢y along a line defined by ¢y and z.
For convex sets, the closest point is always unique. See Figure 2.1.

An important characteristic of d;(z) and Vd;(z) is that they can be computed
from sensor data. For example, consider a mobile robot with a ring of sonar sensors
(Figure 2.2). The sonar sensor measurement provides an approximate value of the
distance function, and the direction opposite to which the sensor is facing approxi-
mates the distance gradient. That is, a sensor on the robot in Figure 2.2 points in
the direction of the negated distance gradient.

Typically, the environment is populated with multiple obstacles, and thus we

define

Definition 2.2 (Multi-Object Distance Function) The distance between a point

z and the set of all obstacles, C1,...,C,, in the environment is defined as
D(z) = mind;(z). (2.3)
K3

Accordingly, the distance between a point and the boundary of the free space

is considered to be the distance to the nearest obstacle. This information can be
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Figure 2.2 Mobile robot with sonar ring.

readily computed from sensor information. Note that the free space can be defined
as FS={z € W: D(z) > 0}.

It is shown in Chapter B that the multi-object distance function is nonsmooth,
and hence its gradient cannot be trivially defined. However, using nonsmooth anal-
ysis (which is reviewed in Section B.1), it can be shown that the generalized gradient

of D(z) is
OD(z) = Co{Vd;(z) : i € I(z)}, (2.4)

where: (1) Co is the convex hull operation, (2) 9 is the generalized gradient operator,
and (3) I(z) is defined as the set of indices such that Vi € I(z), each C; is the
closest object to  (x may be equidistant to two or more obstacles). See Figure
2.3. Notationally, if O appears in front of a set, as opposed to a function, then it
means the boundary of the set. Since dD(z) is comprised of single object distance

gradients, it can be readily computed from sensor data.
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X

Figure 2.3 The generalized gradient of the multi-object distance function at a
point is the convex hull of the gradients of the single object distance functions
which correspond to the closest equidistant obstacles at that point. The solid
arrows are single object distance gradients and the shaded region corresponds
to the heads of all of the vectors which are in the convex hull of the two single
object gradients.

In later sections, we will need distance measurements to the second closest ob-
stacle, as well as the closest obstacle. Unfortunately, in some instances, the second
closest obstacle may not be “within line of sight” at a given vantage point. There-
fore, we must define another distance function which deals with occluded obstacles.
For the sake of terminology, we will term the distance function defined in this sec-
tion to be the X-distance function because its implementation assumes a robot can

see through obstacles, as if the robot has X-ray vision.

2.1.2 The S-Distance Function

We want to develop a distance function that solely relies on line of sight measure-
ments. With the X-distance function, the second closest obstacle may not be within
line of sight of a point from which distance is being measured. In this section, we
define a distance function that measures distance to an obstacle by computing the
distance between a point, z, and the obstacle’s nearest point that is within line of

sight of x. If there are no points on the obstacle that are within line of sight of «,
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then the object is considered to be occluded and located at a distance of infinity.
Since this distance function is based only upon line of sight information, it is more
conducive to implementation with realistic sensors than the X-distance function.

A point c is within line of sight of x if there exists a straight line segment which
connects ¢ and ¢ without penetrating any obstacle. That is, ¢ is within line of sight
of z if for all t € [0,1], (z(1 —t) + ct) lies in FS.

Let C;(z) be the set of points on an object C; that are within line of sight of z,
ie.,

Ci(z) ={c€C;i: ¢(1—1t)+ct € FS,Vt €[0,1]}.

If é’z(m) # (), then the obstacle, C;, is within slanted-line of sight of . Otherwise,
if C;(x) = 0, then C; is occluded or fully occluded at x. Note the difference between
line of sight and slanted-line of sight: a point can be within line of sight and an

obstacle can be within slanted-line of sight.

Definition 2.3 (Single Object S-Distance Function) The S-distance function
measures the distance between a point « and the nearest point on an obstacle that
is within slanted-line of sight of . If no such line of sight point exists, then the
distance is infinite, i.e.,
df (z) = (2.5)
In order to delineate the difference between the two distance functions, we define
df( to be the X-distance function. The superscript is omitted when the distance
function being considered is obvious. Figure 2.4 contrasts the two distance functions.
In Figure 2.4(a), the shortest line of sight path from z to C; is orthogonal to an edge
of C;, and thus d¥ (z) = d¥ (z). However, in Figure 2.4(b), the shortest line of sight
path from z to Ci(z) is not orthogonal to an edge of C;, and thus df (z) # d (z).
When the nearest feature on an obstacle is a co-dimension one face (e.g., an edge of

a polygonal obstacle), as in this case, the shortest line of sight path is slanted and

hence the S-distance function is also known as the slanted distance function.
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Figure 2.4 Comparison between S-distance and X-distance functions. In (a) the
S-distance and X-distance functions are the same for both obstacles, but in (b)
the S-distance and X-distance functions are the same only for object C;.

Naturally, the multi-object slanted distance function D® can be defined as the
minimum over the single object slanted distance functions. It can be shown that
D%(z) = D* () for all points & in the free space.

Unfortunately, the gradient of d;g is not easily defined, as demonstrated in Figure
2.5. In this figure, the dashed lines represent the slanted distance from z to C;.
Recall that the gradient of a real valued function is the direction in which the
function locally increases the most rapidly. The direction of the largest increase
of distance is not necessarily in the direction away from the “closest” point, as it
was with the X-distance function. The dotted lines represent the increased slanted
distance to C; by moving towards C;. This distance is significantly greater than the
distance obtained by moving in a direction away from the closest point. In this case,
the slanted distance to C; increases the most by approaching object C;. Thus, the

question of how best to define the S-distance function gradient is open at present.

2.1.3 The V-Distance Function

The S-distance function has the advantage of using solely line of sight information,
but its ambiguous gradient definition makes it undesirable. In this section, we
define a distance function, termed the wisible distance function, which uses line of

sight information and has a reasonable gradient definition.
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The definition of the V-distance function requires a different notion of line of
sight. Let ¢ be the nearest point in C; to z, as defined by the X-distance function
(i.e., ¢ = argmin d¥ (z)). The obstacle C; is within visible-line of sight of a point z,
if the line segment which connects ¢ and = does not penetrate any other obstacle.
In other words, C; is within visible-line of sight of z if ¢ € C’Z(m), where we are using
the same definition of C;(z) from Section 2.1.2. If ¢ ¢ C;(z), the obstacle is visible-
occluded. The definition of fully occluded remains the same (if C;(z) = @, then the
obstacle is considered to be fully occluded from z). If ¢ g C;(z) and C;(z) # 0, then

C; is partially occluded.

Definition 2.4 (Single Object V-Distance Function) The V-distance function
measures the distance between a point x, and the nearest point that is within visible-
line of sight of an obstacle. If the nearest point is not within visible-line of sight of

z, then the distance is infinity, i.e.,

mineec, ||z —¢||, ifecé€ int(éi(:c)),

. (2.6)
00, if ¢ & int(Cj(x)).

& (a) =

It is important to emphasize the difference between this definition and Defini-

tion 2.3. In Definition 2.3, the distance is finite if there exists a straight line path
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Figure 2.6 The corresponding values of X-distance function and V-distance func-
tion for each obstacle are the same.

between the point z and any point on the obstacle such that this path does not pen-
etrate any other obstacle (i.e., C;(z) # 0). In Definition 2.4, the distance is finite
if there exists a straight line path between  and the closest point on the obstacle,
such that this path does not penetrate any other obstacle. (i.e., ¢ € C;(z)). The
V-distance function is referred to as the visible distance function.

In Figure 2.6, all of the obstacles are within visible-line (and slanted-line) of
sight of z, but in Figure 2.7 with the new definition of line of sight to an obstacle,
C; is not within visible-line of sight of #. Thus, it is occluded, from =, making Cj, the
second closest obstacle. It should be noted that using the new definition of line of
sight to an obstacle, although C; is occluded, there do exist points on the boundary
of C; which are within line of sight of z. (Recall that points can be within line of
sight and that obstacles can be within visible-line of sight.) That is, C; is not fully
occluded from z because C;(z) # §.

Using visible-line of sight, the definition of occlusion is undesirable for sensor
based implementation because there may exist scenarios for which sensor noise
makes it difficult for the robot to infer whether the closest point to an object is
within line of sight of the robot. In Figure 2.8(a), the closest point on obstacle
C; is within line of sight of the robot, and thus the distance is finite. However, in

Figure 2.8(b), the closest point on obstacle C; is occluded and thus the distance to



28

L 4w

Cﬁ )

---TT-e
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Figure 2.8 (a) The distance to obstacle C; is finite because the dashed line does
not touch (but is close) C;. (b) The distance to obstacle C; is infinite.

C; is infinite. In both cases, the robot “sees” almost the same thing.

The advantage of the V-distance function is that its gradient is easy to define.

Let ¢ = argmind;(z). If ¢ € Cj(x),
T—c
vdY (z) = ———.
llz —cfl
Naturally, there exists a multi-object visible distance function DV which is de-
fined as the minimum of the single object visible distance functions. It can be shown
that DY (z) = D5(z) = DX () for all points « in the free space. In later sections,

we omit the superscript on the distance function when it is either obvious or when
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Figure 2.9 The solid line represents 8;;, the set of points equidistant to obsta-
cles C; and C;. Note that §;; is unbounded and contains two components:
the left component contains two linear sub-components and one parabolic sub-
component, and the right component is linear. For all points z in the right
component, Vd;(z) = Vd;(x). The dotted lines emphasize that at a point on

8ij, di(z) = d;(z).

it does not matter which distance function is being considered.

2.2 The Generalized Voronoi Graph

Using the previously defined distance functions, we can now define the generalized
Voronoi diagram (GVD) and the generalized Voronoi graph (GVG). The GVD and
GVG are explicitly defined in Section 2.2.1. Sections 2.2.2 and 2.2.3 contain the
definitions of related structures which are useful in demonstrating some of the GVG’s

properties.

2.2.1 Equidistant Faces

The basic building block of the GVD and GVG is the set of points equidistant

to two sets C; and C;, which we term the two-equidistant surface,
SZ']' = {l‘ € W\(C; UC]') 2di(z) — d; (z) = 0}. (2.7)

See Figure 2.9. The superscripts are omitted because this surface can be defined in
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Figure 2.10 The solid line represents 8S;;, the set of points equidistant to ob-
stacles C; and C; such that the two closest points are distinct. Note, it is
also unbounded and only has one component. Again, the dotted lines empha-
size that for all points on 88;;, d;(z) = d;(z) and the two vectors emphasize
Vdi(z) # Vd;j(z).

terms of any of the distance functions defined in Section 2.1. Of particular interest

is the subset of §;; termed the two-equidistant surjective surface,
88;; = cl{z € 8;; : Vd;(z) # Vd;(x)}. (2.8)

Note that In the interior of the free space, the single object distance function is
smooth [19] because we are assuming our obstacles are convex.

The two-equidistant surjective surface, 88;;, is the set of points which are equidis-
tant to two objects such that Vd; # Vdj, i.e., the function V(d;—d;)(z) is surjective
for all x € 88;;. This definition is required to deal with non-convex sets that are
defined as the finite union of convex sets. See Figure 2.10. If W is solely populated
with disjoint convex obstacles, then 88;; = §;; for all ¢ and j.

The union of all two-equidistant surfaces is called the two-equidistant set, 8.
Likewise, the union of all the two-equidistant surjective surfaces is called a two-

equidistant surjective set, 882. That is,
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Figure 2.11 The solid line with angled ticks is the set of points equidistant and
closest to obstacles C; and Cj.

n—1l n n—1 n
= U s; 8= U 88 (2.9)
i=1 j=u+1 =1 j=i+1

Definition 2.5 (Two-Equidistant Face) The two-equidistant face,
Fij = {2 € cl(88;;) : di(x) = d;(z) < dpz) Vh #4,j}, (2.10) -

is the set of points equidistant to obstacles C; and C}, such that each point @ in F;;

is closer to C; and C than to any other obstacle.

By definition, F;; C cI(FS).

A two-equidistant face (Figure 2.11) is also termed a generalized Voronoi face
in keeping with the conventions of the Voronoi diagram literature. Since the closest
two obstacles define Fj;, d (z) = d7(z) = dY (z) for all points in F;;. Hence the
definition of two-equidistant faces is independent of choice of distance function.

The two- Voronoi set, F2, is the union of all two-equidistant faces, i.e.,

n—1 n
F=U U 7 (2.11)
i=1 j=it+l

Since F2 is the set of points equidistant to two or more closest points on the bound-

ary of a bounded space, it is the generalized Voronoi diagram (GVD) of that bounded
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Figure 2.12 The ticked solid lines is the set of points equidistant to two obstacles,
such that each edge fragment is closest to the equidistant obstacles.

space. See Figure 2.12.
To define the GVG, we continue to define lower dimensional subsets of WW. The
three-equidistant surface, 8;;1, is the set of points equidistant to three objects, C;,

Cj, and C}. It can be defined in many ways:

Sijk = 8 N8N Sik,
= 8 N 8jk = 8x N S, = 85 N Sy, (2.12)
={z e W\(CiUC;UCh) : di(z) = dj(z) = dp()}.

Similarly, the three-equidistant surjective surface, 88;ji, a subset of 8;jk, is the
set of points equidistant to three objects, C;, C;, and C}, such that for each point
in 88;;1, the gradients of the individual single object distance functions are distinct.

The three-equidistant surjective surface can be defined in many ways:

8Siji. = 88;5 881N 88
= 88, 188;1 = 88,1 88 = 88 88
= {e e W\(C;UC; UC) : di(e) = dj(z) = dy(x) such that
Vdi(z) # Vd;(<),
Vd;(z) # Vdi(z), and
Vdj(z) # Vdi(z)}.

(2.13)
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The union of all three-equidistant surfaces is called the three-equidistant set, 8.
Likewise, the union of all three-equidistant surjective surfaces is called the three-

equidistant surjective set, 883. Consequently,

3 _ =2 mn-1 I .
8 _Ui=1 Uj:z'+1 k=j+1 qua

3 n—2 | m—1 n (214)
88" = U, UjZit1 Uk=it1 88k

The three-equidistant face, F;j1,, a subset of 8851, is the set of points equidistant
to C;, Cj, and C}, such that each point is closer to Cj, C}, and Cj, than to any
other object. That is, a three-equidistant face has the property that for all z € Fijk
and for all h # 4, j,k, d(z) > d;(z) = d;(x) = dp(z). Similarly, the three-Voronoi

set is the union of all the three-equidistant faces. In other words,

Fij = FiiN TN T,
=Fi;NTFie = Fij N Fjr = Fa N T, (2.15)

3 _ | m—2 | n—1 n .
F =US UiSi Uiy T

Continuing in this vein, after taking the appropriate k — 2 intersections, one can
define a k-equidistant surface, 8;, ;. , and a k-equidistant surjective surface, 88i, .ix -
The Boundedness Assumption (Assumption 1.1) guarantees that there exists “enough”
obstacles such that §;, ; and 88;, ,; are not empty. After taking the appropriate
unions, one can form the k-equidistant set, 8%, and the k-equidistant surjective set,
88*. A subset of 88* of particular interest is the k-equidistant face, F;, ;. , which
is the set of points equidistant to objects Cj, ,...,C;, such that each point is closer
to objects Cj,,...,C;, than to any other object. The k- Voronot set, F*, is simply

the union of all k-equidistant faces:

3:2'1...7:]\. - 351'17:2 ngi1i3 n' ”ngjililﬂ
= 3’7512’2...1‘];&1 n :Tlll’i]\q (2'16)

ko _ | m—k+1 | m—k4+2 n L
F = U UiQ:i1+1 U =i +1 372122---% .

71=1

In m dimensions, the generalized Voronoi edge, and a generalized Voronos vertex
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are respectively an m-equidistant face, J, ;. , and m+1-equidistant face, F;, ;. 41
In Section 2.3.2, it is shown that a generalized Voronoi edge is one-dimensional, while
a generalized Voronoi vertex is a point where generalized Voronoi edges meet. A
generalized Voronoi vertex is typically termed a meet point. Using these definitions,

we can define:

Definition 2.6 (Generalized Voronoi Graph) The generalized Voronoi graph

(GVG) is defined as the collection of generalized Voronoi edges and vertices:

GV@ = (F™, Fntl). (2.17)

Each GVG edge is the set of points equidistant to m objects, such that each point is
closer to these m objects than to any other object. An important characteristic of
the GVG is that it is defined in terms of a distance function, which can be computed
readily from sensor dota. It is this feature that makes the GVG useful for sensor

based motion planning.

Example 2.7 Figure 2.13 depicts a GVG in R3 for a rectangular enclosure with
dimensions a, b, and ¢. The GVG edges, delineated by solid lines, constitute the
locus of points equidistant to three obstacles, and the meet points are where the
GVG edges intersect. In this example, there are twelve GVG edges: four of them
outline a rectangle which represents the two-equidistant face defined by the top and
bottom faces of the enclosure, and the remaining eight are spokes which terminate
on the boundary.

Let the lower left corner of the box be the origin of a right handed coordinate
system. Let the floor be the set of points {z € W : 2! € [0,q], % € [0,b], and 2% =
0}, where ' is the ith coordinate of a point z. Similarly, let the ceiling be the set of
points {z € W : 2! € [0,a], % € [0,b], and 2® = ¢}. The set of points equidistant
to these two surfaces is {x € W : 23 = £}. This is the two-equidistant surface and
since for each point in the two-equidistant surface, the gradients are distinct and

thus, this surface is also the two-equidistant surjective surface.



35

Now consider the front face and floor. The front face is the set of points
{z € W:al €[0,a], 2?2 = 0 and 23 € [0,c]}. A two equidistant surface, defined
by these obstacles, is {x € W : ! = 23}. However, only for points, where z! and
x3 are positive, the distance gradients are distinct. Therefore, the two-equidistant

2 = z% and 23 > 0}. This two-equidistant sur-

surjective surface is {x € W :
jective surface intersects the two-equidistant surjective surface defined by the floor
and ceiling, at a line such that this line separates the floor/ceiling two-equidistant
surjective surface into two regions: one where points are closer to the ceiling and
floor than to the front face, and one where points are closer to the front face than
to the ceiling and floor. This line ({o € W : #® = 23 = £}) is the three-equidistant
surjective surface defined by the floor, ceiling, and front face.

Three more lines, {t e W:al =a—§, 2 =§}, {ee W:a?=b-§,23= ¢},
and {z € W:z! = 5 z3 = 5 } respectively exist for the right, back, and left faces of
the rectangular enclosure. On the two-equidistant surjective surface, all four lines
enclose a region where points are closer to the floor and ceiling than to any other
obstacle. This region is the two-equidistant face defined by the floor and ceiling and
are the set of points {x € W:z' € [§,a— §],2% € [§,b— £], 2% = §}.

Since the floor and ceiling’s two-equidistant face “hovers” above the floor at a
height of 5, the four GVG edges that outline this face have a height of £ with respect
to the floor. In fact, each point on these GVG edges must be a distance § from the
corresponding obstacles that define the appropriate edge. The length of front and
back edge is a — ¢, and the length of the left and right edges is b — ¢.

The four meet points associated with the floor and ceiling’s two-equidistant face
have coordinates, (3, §, -%)T, (a— 35,5, %)T, (a—35,6~5, g)T, and (5,b— %, %)T, in
counter clock-wise order starting from the lower left meet point. Out of each meet

point, emanates two edges that terminate on the boundary.

A useful method for visualizing the GVG is to picture a sphere rolling along the
side of the room, touching three obstacles. The center of this sphere traces a GVG
edge. This imaginary sphere touches four obstacles when its center coincides with a

meet point. The corner graph components can be visualized by an expanding sphere



36

Room
Exterior

A
GVG
Edge
GVG Vertex b
(Meet Point)

a

Figure 2.13 The generalized Voronoi graph in a rectangular enclosure. The solid
lines represent the GVG edges, which meet at GVG vertices, sometimes called
meet points.

that maintains contact with three walls.

2.2.2 Generalized Voronoi Region

For subsequent analysis, it is useful to define the following.

Definition 2.8 The Generalized Voronoi Region, J;, is the closure of the set of

points closer to one particular obstacle than to any other obstacle. In other words,
Fi={e € FS: di(z) < dy(z) Vh#1}. (2.18)

It can be shown that the &F; is generalized star shaped; this means that for all z in
Fi, there is a closest point ¢; in C; to z such that the segment Z¢; is fully contained

in &;. If C; were a point, then ¥, would be star shaped.

2.2.3 Boundary Face and Floating Boundary Face

It is shown in the following section that the k + l-equidistant faces are on the
boundaries of the k-equidistant faces. However, the k + 1-equidistant faces are not
the only geometric structures which can exist on the boundaries of the k-equidistant
faces. The k-boundary face and the floating k-boundary face, defined below, are also
on the boundary of k-equidistant faces. It is shown below that k + l-equidistant

faces, k-boundary faces and floating k-boundary faces are the only structures on
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Figure 2.14 An example of a two-equidistant face that contains a boundary face
as a portion of its boundary. The boundary face is represented by light dotted
lines whereas the generalized Voronoi edges are represented by dark solid lines.

the boundaries of the k-equidistant faces. These structures are essential to the

connectivity of our roadmap, and in incremental tracing routines of the GVG.

Definition 2.9 (k-Boundary Face) The set of points on the boundary of the free

space where k obstacles intersect is the k-boundary face and is defined as
Ci iy = {x € Ty, 4, such that D(z) = 0}. (2.19)

In m dimensions, an (m — 1)-boundary face is termed a boundary edge, as illus-
trated in Figure 2.14. Notationally, we represent the intersection of two obstacles C;
and C; as Cj;. Boundary fragments are connected subsets of the boundary edges,
and are denoted ¢;; (c;; C Cjj).

The floating k-boundary surface, F'S;, ., is the set of points on the boundary

of a k-equidistant surjective surface where two gradient vectors become equal.

FS; i ={x €88, 4, : Vdj, (z) = Vdj,(z) where j1,72 € {i1,... ikt
(2.20)
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Wall

Ceiling Half-height

_\/ Floor

Figure 2.15 A room with a hole in its side wall. The dotted line marks the half-
height of the room.

The only other boundary component of a k-equidistant face is called a floating k-
boundary face, FC;, ;. It is the set of points in a floating k-boundary surface where
each point in the set is closest to the k closest obstacles. FC;, i, is the boundary
of a k-equidistant face where two or more gradient vectors become collinear, and it

is denoted

FCil...ik = {m € FS’L]’LL : Vh g {?:la .- 'aik}’ dh(x) z dil (.’ZZ‘) == dl}.(m)}
(2.21)

Analogous to boundary edges, a floating boundary edge is a floating (m — 1)-
boundary face in R™. Furthermore, boundary fragments are connected subsets of

the boundary edges, and are denoted by fc;; where fe¢;; C FC;;.

Example 2.10 (Hole) The room depicted in Figure 2.15 contains a hole or duct
in one of its side walls. The bottom and front faces of the duct are labeled C; and
Cj, respectively. Note also that the duct enters the room at a height higher than

half the distance between the floor and ceiling.
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Figure 2.16 The shaded region is §;;. Figure 2.17 Side view of Figure 2.16.
It is bordered by thick dashed
lines to emphasize that §;; is un-
bounded. The thick dotted lines
correspond to points where 8;; in-
tersects the rectangular enclosures.
The thick solid lines on the rectan-
gular enclosures are drawn to em-
phasize the features on the enclo-
sure that are in front of §;; in this
view.

Consider the two-equidistant face defined by the incoming duct’s front and bot-
tom faces, C; and Cj. The shaded region in Figure 2.16 is a portion of a two-
equidistant surface, 8;;, defined by objects C; and C;. The boundary of the shaded
region is dotted to emphasize that it is unbounded (i.e., a sphere of finite radius
cannot contain the two-equidistant surface). Figure 2.17 illustrates a side view of
Figure 2.16. Here, the two-equidistant surface 8;; is represented as a solid line with
arrows on both sides to emphasize that it is unbounded.

Recall that a two-equidistant surjective surface is the set of points in a two-
equidistant surface such that the gradients to each defining obstacle do not coin-
cide. The shaded region in Figure 2.18 is a portion of the two-equidistant surjective
surface, 388;;, defined by C; and Cj;. Note, this region is unbounded. Figure 2.19
illustrates the side view of Figure 2.18 where the solid line represents the unbounded

88;;. The floating boundary surface (solid line Figure 2.18) is the portion of bound-
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Floating Boundary of SSij

Figure 2.18 The shaded region 8§;;  Figure 2.19 88;; (Side view).
which is also unbounded. The thick
double arrowed line represents the
boundary of 8S;;, which is also un-
bounded. The dotted line simply
represents a path in 88;;.

ary of the two-equidistant surjective surface where the two distance function gradient
vectors coincide (Figure 2.20).

The shaded region in Figure 2.21 depicts the two-equidistant face, F;;, which is
bounded. The boundary of J;; consists of three parts: a GVG edge, a boundary
edge, and a floating boundary edge. The boundary edge runs along the intersection
of the boundaries of obstacles C; and C;. D(z) is zero for all points on this portion
of &;;. The floating boundary edge is the set of points in F;; where D(z) is greater
than zero, but Vd;(z) = Vd,(x). The nearest point to all points on the floating
boundary edge is a corner of the duct entrance. This corner is the lower left corner

of the duct entrance in Figure 2.22, which is a side view of Figure 2.21.

2.3 Basic Properties of the GVG

We now prove two important properties of the GVG: (1) it is one-dimensional, and

(2) it is accessible from any point in FS.
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S Gradient Vectors (negated)

in SS.\ < / \Hole
3

Figure 2.20 The dotted line represents a path in 88;; depicted in Figures 2.18 and
2.19. At each point, there is a pair of arrows which are unit vectors pointing
to the closest points on the closest objects. These unit vectors are the negated
distance function gradients. The thin lines connect a point on the path to the
closest points on the closest obstacles. As points in the path approach z, the
unit vectors become collinear. This point is in the floating boundary edge.

GVG Edge
C. GVG edge
\J /
Boundary Edge 2] ;: -
A C.
Boundary Ed, \\\‘\/ :
oun ge
B F.
Floating Boundary Edge Y

Figure 2.21 F;;. Figure 2.22 F,; (Side view).
g J g ¥
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Figure 2.23 Even though J;; exists, J;;;, does not.

2.3.1 GVG Boundary Elements

The following results are needed to show that the GVG is composed of one-dimensional

pieces. These results are also important in proving accessibility and connectivity of

the GVG.

Proposition 2.11 If the (k + 1)-equidistant face F;,. i, ., is non-empty, then the
k-equidistant face F;, ;. must also be non-empty; however, the converse is not nec-

essarily true. Purthermore,

0F iy iy, = Fiyigingn UCZ'1 i U FC -

Proof: The first part of the proof is a consequence of the definition of the (k + 1)-
equidistant face, gil---ikik+17 which is F;, i, ﬂfﬂlikﬂ. By definition, if &, ; =0
then J;, .., = 0. The contrapositive is also true, if Fiyoiigyr 7 0 then Fyy 4, # 0.
Note that the converse is not necessarily true. In Figure 2.23, there exists an edge,
Fij, but no vertex, J;jx.

The second part of this proof follows from Proposition A.10 and Lemma A.11

(Section A.1).
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Lemma A.11 For two subsets A and B of R™, the closure of the intersection of

A and B is a subset of the intersection of the closures of A and B. In other words,

c(A(B) C cl(4) [ <l(B).

Proposition A.10 For two subsets A and B of R™, the boundary of the inter-

section of the two sets obeys the following inclusion:

8(A(B) C (aA N cl(B)) U (aB N cl(A)) .

Let A, B, and C be the sets with the following definitions:

A= {1‘ EW:Vh, dh(m) > di1 (.’E) == d71\(m)}7
B={aeW:Vpq€{in....ie}, Vdy(e) £ Vdy(e)},

C={zeW:D(z)>0}.

It can easily be seen that F;, ;, = AN cl(B(C). By Proposition A.10, Lemma A.11,
and the relationship dcl (B C) = 8 (BN C), it follows that

0%, =0(ANCd(BNCO))
C [0ANcl(cI (BNC))] Uldc(BNC)Ncl(4)]
=[0AN(BNC)] Ul (BNC)Nel(A)]
C[0AN(B)Ne(C)]  Ul([0BN(C)]UOC Nl (B)]) Ncl(A)]
=[0ANCcl(B)Nel(C)] U[oBNecl(A)Ncl(C)] UBCNcl(A)Necl(B)]
= Fiyipps UFCi .4, Ui .4
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2.3.2 Dimension of GVG Components

To determine the generic dimension of the GVG edges, we will use the pre-image
theorem below to show that the intersection of a k-equidistant face and a two-
equidistant face is (k—1)-dimensional. In order to properly invoke the pre-image the-
orem to obtain a correct dimension count, we first introduce an important transver-

sality assumption and discuss its implications.

Assumption 2.12 (The Equidistant Surface Transversality Assumption)
If equidistant surjective surfaces are manifolds, then they intersect transversally.

That is, SSil...ikjl fii SSil--~ikj2 with respect to 8821“ if §1 # Jo.

In the case that m = 2 and the obstacles are points, this assumption is equivalent
to the “no four points are co-circular” assumption which is often made in the Voronoi
diagram literature. Assumption 2.12 is the generalization of this statement. This
transversality assumption can also be interpreted as an assumption on the stability
of the equidistant surface intersection geometry. In the left diagram of Figure 2.24,
88 = 8811 = 88;14 = 88;j; because there exists a circle which intersects the
four obstacles (a non-generic case). After a slight perturbation of the obstacles,
the equidistant surfaces no longer coincide (Figure 2.24). Since 88;;;, and 88;;; are
points in this example, they intersect transversally only if they do not intersect at
all. As a result of Assumption 2.12, 88;,. ., # S8, 4., if and if only j; # jo.
The condition where two equidistant surjective surfaces are equal is an unstable
non-generic one, and thus we do not consider it because any slight perturbation
of the obstacle locations drastically affects equidistance relationships. In Figure
2.24, 88, = 88 = 88;;y = 88,51, but after a slight perturbation of Cj, all the
equidistant faces are no longer coincidental and 88;;, = 0.

We now show that the GVG is truly one-dimensional. This is done by iteratively
invoking the pre-image theorem. Recall that for two manifolds M and N of dimen-
sion m and n, respectively, the pre-image theorem (also known as the submersion

theorem) [1] is:
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Figure 2.24 Left: non-generic arrangement. Right: small perturbation in obstacle
locations.

Theorem 2.13 (Pre-image Theorem) Let f: M — N be a C* function and
n € N be a regular value of f, then f~Y(n) = {m:m € M, f(m) = n} is a closed
sub-manifold of M with tangent space given by Tp,f~1(n) = ker (T}, f). If N is finite
dimensional, codim(f~1(n)) = dim(N), i.e., dim(f~(n)) = dim(M) — dim(N).

Recall that for a convex obstacle C;, d;: M — R is a smooth function in the free
space. When the regularity conditions are satisfied, the pre-image of the distance
function has one less dimension than M, i.e., suppose d;(z) = r for ¢ € M and
r € R, the dim(d~1(r)) = dim(M) — dim(R) = dim(M) — 1.

To show that the edges are one-dimensional, we invoke the pre-image theorem

m — 1 times on the difference of two distance functions.

Lemma 2.14 A two-equidistant surjective surface, 88;;, is a co-dimension mani-

fold. 88? is the union of co-dimension one manifolds.

Proof: First, note that the function (d; — d;): W\(C;UC;) — R is smooth [19]
because C; and C; are convex. Recall that the two-equidistant surjective surface
88;; is a subset of 8;; such that Vd;(z) # Vd;(z), for all « € 88;;. This implies
that V(d; — d;)(z) is surjective, and thus zero is a regular value of (d; — d;), for all

points € 8§8;;. By the pre-image theorem, 88;; is a manifold having co-dimension
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one in W\(C; U Cj). 882 is not a manifold, but by definion is the finite union of

co-dimension one manifolds. [ ]

Note that at this point, we cannot infer that J;; also has co-dimension one just

because JF;; is a subset of 8§;;.

Lemma 2.15 A three-equidistant surjective surface, 88;;1., has co-dimension two

in R™. 882 is the union of co-dimension two manifolds.

Proof: The three-equidistant surjective surface 88;;; can be defined as 88;;; = {z €
88;; : di(z) — di(x) = 0}. By Assumption 2.12, 88;; # 88;;, if and only if i # k,
and thus, zero is a regular value of (d; — d;)(x) on 8S;; for all € 88;;;. By the
pre-image theorem, 88;;; has co-dimension one in 88;;\C}, and thus co-dimension
two in W\(C; U C; U Cy). By definition 883 is the finite union of co-dimension two

manifolds. [ |

By induction, one can show that the set of points equidistant to k& obstacles has
co-dimension one in the set of points equidistant to & — 1 objects, and therefore
this set has co-dimension & — 1 in R'™. That is, a k-equidistant surjective surface,
88i,..i,, has co-dimension (k — 1) in W\Uf_; C, or is (m — k + 1)-dimensional.
Hence, 88™ comprises one-dimensional components in R™, and 88™%! is a set of
points in R™,

By a similar argument like above, k-boundary faces are (m — k—+ 1)-dimensional.
For the moment, assume the obstacle boundaries are smooth (note that there exists a
small enough € such that for all C}, d;l (¢) forms a set of smooth “bloated” convex ob-
stacles whose resulting equidistant faces have the same topology as the original set of
equidistant faces defined by C;). Now, when the set {x € 9C;, - - - 9C;, Ncl(FS) :
Vd;, (x) # Vd; (z)Yp,q € {1,...,k} where p # ¢} is not empty, the pre-image theo-
rem asserts that the pre-image of zero under the map (d;;,--- ,d; )T : cl(FS) — RF
is (m — k)-dimensional.

The following lemma provides us with the necessary tool to demonstrate that

the GVG edges are one-dimensional manifolds with zero-dimensional boundary. It
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is not sufficient to say that F;, ;, is (m — k + 1)-dimensional because it is a subset

of 88;, . i,-
The following lemma draws upon some basic topology definitions. A topology

([1], p- 2) is a set X together with a collection O of subsets called open sets such

that
1. b€ O,
2. if 01,04 € O, then 01N02 € O, and
3. the union of any collection of open sets is open.

If A is a subset of the topological space X with topology O, the subspace topology
([1], p. 18) on A is defined by O4 = {O; (N A : O; € O}. It should be noted that

open sets of the subspace topology may or may not be open sets in the original

topology.

Lemma 2.16 The interior of the k-equidistant face, int(F;, ;, ), has the same di-

mension as the k-equidistant surjective surface, 88;, i, .

Proof: The interior of the k-equidistant face, int(F,, ;. ), has the property that for
all z € 7S, diy (z) = --- = d;, (z) < dp(z) VA& {i1,...,i}. Let = € int(Fy,.4,).
Therefore, x € 88;,. ;.. At a point & where d; (z) = --- = d; (z) < dp(z),
there exists a nbhd(z) in 88;,..;,. Let Y = nbhd(z)(8S;,. .. In order to show
that int(JF,. 4, ) has the same dimension as 88;,_;,, it suffices to show that Y C
int(F;, i, )-

Since z € int(J%,. 4, ), there exists an h & {41,...,1;} such that d;, (¢) = --- =
d;, (z) < dp(z)}. By continuity of the single object distance function, for € suffi-
ciently small, d;, (z+€) = --- = d;, (x+€) < dp(z+¢€). Therefore, Y is an open subset

of int(JF;, 4, ), and thus the dimension of 88;, ,, and int(F;, ;) are the same. B

Hence, by Lemma 2.16, int(F™) and int(F"*1) are one and zero-dimensional,

respectively.
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Proposition 2.17 The GVG edges are one-dimensional in FS, and the GVG ver-

tices are points.

Proof: Since 88, . j,,,, is a zero-dimensional manifold, it consists of isolated points
in W\URL; Ch,. BEach of these points is an open set in the topology that W\ Uj~; Ch
induces on 88;, ;. +1- Furthermore, non-empty subsets of a collection of points are
points, and thus all non-empty subsets of 88;, , 41 are open sets in the subspace
topology. Since J;, ., is a non-empty subset of 884y imirs Figoimyy 1S z€rO-
dimensional. A similar argument exists for C;, ;  and FC;, ;.

By Proposition 2.11, &F; can be defined as

Lo
int(Fiy i) | Foriones | Cit i |J FCly -
B

Since V3, Fi; ity UCi; i, UFCyy i, is zero-dimensional and int(F,..4,, ) is one-
dimensional, the generalized Voronoi edge, J;, , , is a one-dimensional manifold

with a zero-dimensional boundary. |

The procedure described in the above paragraph can be repeated to show that

any k-equidistant face is (m — k + 1)-dimensional.

2.3.3 Complexity of the GVG

The following is useful in determining the complexity of the GVG.

Proposition 2.18 Given Assumption 2.12 in R™, there exist m + 1 generalized

Voronot edges emanating from a generalized Vorono1 vertex.

Proof: By Proposition 2.11, if Fir.iimys 15 N0t empty, then JF; ; is not empty
where {j1,...jm} are m distinct elements from {%1...%¢m+1}. The number of m

combinations of m + 1 elements is m +1 ( (™)) =m+1). [ |

77

This result has been previously determined for the special case where each object

is a point site [26].
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2.3.4 The Multi-object Distance Function is Smooth on a k-Equidistant

Face

The multi-object distance function is nominally not smooth. However, when con-
strained to a k-equidistant surjective surface (and thus a k-equidistant face), the
multi-object distance function is indeed smooth. This result is based upon the
following two lemmas which are also used in the HGVG incremental construction
procedure in Chapter 4.

Let the regular Voronoi graph (RVG) denote the Voronoi graph for the case
in which the obstacles are points. The regular k-equidistant face, R;, ,, is a k-
equidistant face whose k closest obstacles are points. In m dimensions, a regular
m-equidistant face is an RVG edge and it is equidistant to m closest point objects.
Such a structure has been previously termed a Voronoi graph edge [3], but here,
we will label it a regular Voronoi edge to better distinguish it from a generalized
Voronoi edge.

Let z be a point on a k-equidistant face, and let {¢;} denote the set of closest
points of the k closest obstacles, {C;}, to @. The regular k-equidistant face defined
by the points {¢;} and the k-equidistant face coincide at z. We can compute many

items of interest about the GVG by exploiting this coincidence.

Lemma 2.19 Letcy,...,c; be the k closest obstacle points to a point x. Let Ry, 4,
be the regular Voronoi graph edge defined by these points where k < m. When
Assumption 2.12 is upheld, any vector in the tangent space TpR;, ;, is orthogonal
to the k — 1-dimensional plane containing c1,...,cr. The tangent space TeRiy. iy s
also orthogonal to the (k—1)-dimensional plane containing the heads of the gradient

vectors based af x.

Proof: It can be shown that given Assumption 2.12, the regular k-equidistant faces
(k-equidistant faces of the RVG) are diffeomorphic to R™%+1 and thus a regular k-
equidistant face is isometric to its tangent space. In other words, ToRir o = Rip iy
Assumption 2.12 guarantees that there exists a unique (k — 1)-dimensional plane

which contains {c1,...,ci}, termed the base plane. The base plane is the affine hull
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of {c1,...,cx}. Assumption 2.12 also guarantees that embedded in the base plane,
there is a unique (k — 2)-dimensional sphere, S, defined by {ci,...,c;}. Finally,
there exists a cone whose vertex is  and whose base is S (Figure 2.25). Every point
on the centerline of this cone is always equidistant to {c1,..., ¢}, and therefore is
contained in R;, ;. Since TpR;, i, =~ R . ., this centerline is also contained in
ToRiy iy

Define an m-dimensional coordinate system whose origin is the center of the
sphere S. The line that connects the origin of this coordinate system and z is the cen-
terline. In this coordinate system, z € R;,_;, has coordinates (z!,..., 2™ %+ 0, .., 0)7.
All points on s € S have coordinates (0,...,0,s™ %2 s™)T. Furthermore, the
base plane can be represented by A(0,...,0,s™ 2 5T for all A € R\{0}.
Since

((z,..., 2™ %1 0, 0)7,(0,...,0,s™ 2 . ¢m)T) =,

the base plane is orthogonal to the centerline. Therefore, T,,R;, ;, is perpendicular

to the base of the cone, which is the plane that contains the k closest points.

Figure 2.25 Cone formed by points.

Now, let gradient plane be the (k — 1)-dimensional plane that contains the heads
of the k gradient vectors based at x. This is the affine hull of the heads of k gradient

vectors. Note that d;;(z) is the length of the line that connects z and ¢; where
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cj € {c1,...,ek}. Since, ||z — ¢ || = |le — ¢;)|| for all j, & — ¢;; = |l — ¢;, || Vd;, ().
Therefore, the cone formed by the gradient vectors is “similar” to the one formed
by the k closest points and thus the gradient plane is parallel to the baseplane.

Therefore, the tangent space is perpendicular to the gradient plane. |

Lemma 2.20 Let c1,...,c; be the closest points in the k nearest obstacles to x €
Fir.ip- At a point x in the k-equidistant face, the tangent space T2, 4, 15 the
same as the tangent space T, R;, ;. , where R;, ; 1is the regqular k-equidistant face

defined by ci,...,c.

Proof: A k-equidistant face can be defined by G~1(0) where

(d1 — d2)(=)
G(z) = :

(d1— di) (=)

Let {c;} denote the closest points to z in the k closest obstacles. The regular
k-equidistant face for the set of points {¢;} is defined by VG~1(0) where

F[m—cll— [m—CQI_

V() — |z — c1| — |z — c3]
(z) =

e — 1] ~ |z — e

Since the set of closest points, {c;}, is the same for the k-equidistant face and
the regular k-equidistant face at z, dj(z) = |2 — ¢| for all h = 1,...,k. That
is, V(dp, —dp,)(z) = |z — cp,| — |& — cp,| for all hy,he = 1,...,k. Therefore,
G(z) =VG(z) at z.

The tangent space at a point € G~1(0) is the null space of VG(z), where

V(d1 — dg)(z)
VG(z) = :
V(d1 — di)(z)
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and the tangent space at a point 2 € VG~Y(0) is the null space of VVG(xz), where

z—c1 __ xT—Cp
lz—e1] |lz—ci|
z—c1 _ T—C3

VVG(z) = |lemal  lemel

r—c | TCp
L|z—ci] [r—cy]4

Again, since the set of closest points, {¢;}, is the same for the k-equidistant face

and the regular k-equidistant face at @, Vdy(z) = Ii:gfl for all h =1,...,k. That
is, dp, (¢) — dp, (z) = ;Z:ZZH - ij’;jg’le for all Ay, ke = 1,..., k. Therefore, VG(z) =
1 t2

VVG(x) at z. Hence, the k-equidistant face and the regular k-equidistant face have

the same tangent space at z. n

Proposition 2.21 The restriction of the multi-object distance function D to a k-
equidistant face is smooth. That is, the generalized gradient of D(zx) projected onto
T340, s equal to mp,3; . Vd; for all i € {i1...4ix}, where 7 is the orthogonal
projection operator.

Let E be a plane in T R™. Let v, be the unique minimum length vector in E (i.e.,
v, is based at the origin of TR and its head is in F). Define Pg to be the subspace
of T,R™ parallel to F, i.e. Pg = E — v,. Let Pé- be the orthogonal compliment
of Pg. Therefore, T,R™ = Pp P Pﬁj and thus for all vectors v € T,R™, v can be
writen as the sum 11 + uo where u; € Pg and uq € PEL. The orthogonal projection

mpg(u) is u1. We can now define the orthogonal projection operator mg to be TPy

Proof: Note that OD(x) is the affine hull of the heads of the k gradient vectors
Vd;,,...,Vd;,. So, 8D(z) can be viewed as a plane in T,R™ and by Lemmas 2.19
and 2.20, the plane dD(x) is orthogonal to 7. 298;, i, Transverality considerations
imply that OD(z) and T,88;, ;. intersect at a point, and thus the generalized
gradient of D constrained to T3, 88;,  ;, is always a point, not a vector. This point,
which we denote by v € T,88;, ; N OD(z) is the closest point in 8D(z) to 0 €
T,R™.
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Define P to be a subspace of T, R™ given by P = 8D(z) — v (again, 8D(z) is
viewed as a plane). The orthogonal projection of v € 8D(z) is given by

TT, 88, - OD(@) = Tp88i; iy (2.22)

Since D and 77,85 are continuous, the restriction of the generalized gradient of

iq..ig

D on 88;,. ;, is continuous. Therefore, the restriction of the multi-object distance

function D to a k-equidistant face is smooth. |

2.3.5 Accessibility

Accessibility is the property that a path can be constructed from any point in the
free space to a point on the GVG. In this section, we give an argument that a path

exists from any point in the freespace to a GVG edge.

Proposition 2.22 Given the Boundedness Assumption and the Equidistant Surface

Transversality Assumption, the GVG has the property of accessibility.

Proof: We demonstrate that a robot can access the GVG by following a path that is
constructed using gradient ascent on the multi-object distance function D(z), which
is the distance to the nearest object from x. In Chapter B, it is shown that D is not
smooth, and thus does not have a conventional gradient. However, the multi-object

distance function does exhibit a generalized gradient (Section B.3) which is denoted
OD(z) = Co{Vd;(z) : Vi€ I(z)}, (2.23)

where I(z) is the set of indices where d;(x) = D(z), and where Co denotes convex
hull. That is, it indexes the obstacles that are equidistant to z.

Furthermore, it is shown in Section B.4 that if 0 € int(@D(z)), where 0 is the
origin of the tangent space at z, then z is a local maxima of D. Using this result
and the following two lemmas whose proofs appear in Section A.3, we can conclude

that if  is a local maxima of D, then the point z is equidistant to m + 1 obstacles.
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Lemma A.21 Given a set of n arbitrary vectors in R™, then 0 € int(Co{v; €
R™: ¢=1,...,n}) if and only if {v; € R™: i=1,...,n} positively span R™.

Lemma A.22 [Goldman and Tucker]| It requires a minimum of (m + 1)
vectors to positiely span R™.

The results of Scheimber and Olivera [41] state that the second derivative of D,
termed a generalized hesian, is always positive or contains only positive values. In a
sense, the graph of the function D is always “concave up.” Therefore, the generalized
gradient of D only vanishes at a local minima. Assume the robot does not start
at a local minima; this assumption is reasonable because since we are performing
a gradient ascent operation, the local minima are unstable extrema points. That
is, if the robot were slightly perturbed from a local minima, it will escape. Since
the local minima occur on a set of measure zero, they can be practically ignored.
Therefore, gradient ascent of the multi-object distance function will bring the robot
to a local maxima of D, which is a point equidistant to m + 1 obstacles and thereby
is a point on the GVG. (Note that when 8D is a set, the vector with the smallest

norm in 0D is chosen as the gradient [41].) [ |

2.3.6 Departibility

Departibility is the property of a roadmap that any point in the free space is acces-
sible from some point in the roadmap [38]. In the case where full knowledge of the
world’s geometry is available, departability is simply accessibility, but in reverse.

The “on-line” case is considered later on in Section 2.3.6.

2.3.7 Connectivity of the GVG

For m = 2 (i.e., planar environments), the GVD and the GVG are the same, and
thus the GVG is connected because the GVD is connected (Section C.4). Although
all GVG’s in two-dimensional workspaces and the particular GVG in Figure 2.13
are connected, the GVG is not guaranteed to be connected in all work spaces whose
dimension is greater than two. Figure 2.26 contains an example of a disconnected

GVG with two connected components: (1) an outer GVG network similar to the one
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Room A

Exterior Interior Box

GVG

Va

Figure 2.26 An example of a disconnected GVG.

described in Example 2.7 and (2) an inner GVG network which forms a halo-like
structure around the inner box.

The generalized Voronoi regions and equidistant faces may be viewed as an exact
cellular decomposition (Section 1.2.1) of W into k-dimensional sets, called cells,
where k = 0,...,m. If each k-dimensional cell is homeomorphic to a k-dimensional
disk, then the one-dimensional cells of such a decomposition form a deformation
retract or retract-like structure of VW [42]. One of the appealing properties of a
retract-like structure is its connectivity.

In the example shown in Figure 2.26, the three-dimensional generalized Voronoi
regions are homeomorphic to a three-dimensional disk, but the two-dimensional
faces are not homeomorphic to a two-dimensional disk. Furthermore, the “cycle”-
like GVG edge surrounding the box is also not homeomorphic to a one-dimensional
face.

In some cases, the local connectivity of the GVG may be sufficient or useful for
planning. Nevertheless, the GVG by itself is not useful for developing complete mo-
tion planning schemes due to this lack of connectivity. In the ensuing sections, we
define additional structures, termed the higher order generalized Voronoi graphs,
demonstrate some of their properties, and use these properties to show that the
union of the GVG and higher order GVG’s is connected. We show connectivity in
two major steps. First, we make a weak assumption, called the Extended Bound-
edness Assumption, and show that union of the GVG and higher order GVG’s are
connected. In current work, we relax this assumption and prescribe some linking

strategies which guarantee that the resulting structure is connected.



56

Chapter 3

The Hierarchichal Generalized Voronoi Graph

The complete roadmap will consist of the one-dimensional GVG augmented by addi-
tional one-dimensional structures, termed higher order generalized Voronoi graphs.
The higher order generalized Voronoi graphs are used to link disconnected GVG
components. Essentially, higher order generalized Voronoi graphs are like GVG’s
that are constrained to equidistant faces. For example, a second order generalized
Voronoi graph, denoted GVG?2, is analogous to a GVG that is restricted to a two-
equidistant face. It is defined in a similar way as the GVG; for example, there
are second order equidistant faces whose intersections form second order generalized
Voronoi edges. An ith order generalized Voronoi graph, denoted GVG?, is analogous
to a GVG on an (¢ — 1)st order two-equidistant face. The hierarchical generalized
Voronoi graph (HGVG) is the GVG and all higher order generalized Voronoi graphs.
The underlying philosophy of the HGVG is to exploit the connectivity property of
the GVD.

In Section 3.1, we define the hierarchical generalized Voronoi graph. Then, in
Section 3.2, we show how cycles give rise to disconnected GVG’s. However, in
Section 3.3, we state an assumption under which cycles do not occur, and thus the

HGVG is connected, as described in Section 3.4.
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3.1 The Second Order GVG

Recall from Section 2.2.1 that the GVD is the union of all two-equidistant faces in

W. For the moment consider the case of W C R3, where

1. the only higher order generalized Voronoi graph is the GVG2,
2. a two-equidistant face is two-dimensional, and

3. a GVG edge is a three-equidistant face that is formed by the intersection of

three two-equidistant faces.

By definition, a GVG edge lies on the boundary of a two-equidistant face, and
thus adjacent two-equidistant faces share a common GVG edge. If the GVG edges
associated with each two-equidistant face are connected (i.e., the boundary of each
two-equidistant face is connected), then the entire GVG is connected because the
GVD is connected. A disconnected GVG may arise when a two-equidistant face
contains disconnected boundary components, like the two-equidistant face defined
by the floor and the ceiling depicted in Figure 2.26. The GVG? is used to connect
the boundaries of two-equidistant faces with disconnected boundary components,
and thereby connect all disconnected GVG components.

In the ensuing sections, we show that given a condition, introduced in Section 3.3,
on each two-equidistant face, F;;, the second order GVG, restricted to J;;, connects
the boundaries of J;;, thus linking the GVG. We denote the second order GVG

restricted to F;; as GVG2
Fij

3.1.1 Second Order Generalized Voronoi Region

A GVG? is a network of one-dimensional curves that divides a two-equidistant
face, JF;;, into sub-regions where there exists a common second closest object (C;
and Cj are the closest objects). These regions are called second order generalized

Voronoi regions and are defined as

Fr = cl{m S StU Vh#i,7,k 0< dl(az) = dj(a:) < dk(az) < d;,,(m) and VCIZ(:B) #* Vdj(a:)}
ffij
' (3.1)
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Figure 3.1 Box in a room. Figure 3.2 Two-equidistant face, de-

fined by the floor and ceiling, is
divided up into sub-regions which
have a common second closest ob-
ject.

Example 3.1 Let GVG? be the second order GVG for the two-equidistant

gfloor/ceiling
face, F fioor jceiling: defined by the floor and ceiling of the rectangular enclosure in

Figure 3.1. The solid lines in Figure 3.1 represent the GVG and the dotted lines
The GVG? divides F oo /ceiting into five

?floor/ceili'ng H:floor/cciling
regions whose closest obstacles are the floor and ceiling; however, each region has

represent GVG?2

a unique second closest obstacle: the front face, the right face, the back face, the
left face, and the interior box (Figure 3.2). These regions are the second order

generalized Voronoi regions. ¢

The second order generalized Voronoi regions are defined in terms of a distance
function. We use the following naming convention: the name of the distance func-
tion precedes the name of the GVG? region. For example, the visible second order

generalized Voronoi region is defined as

FY| =cd{zeFy: Vh#igk, 0<d{(e)<df(z)<d)(z)and Vd} (z)# Vd) (z)}.
(3.2)
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In future discussion, the superscripts are omitted when it is obvious which distance
function is being used. Throughout this work, we will use the visible distance
function, so the V-superscript will be omitted.

It will be shown that on each two-equidistant face, F;;, the GVG?2 connects
the boundaries of J;; if and only if the boundaries of the individual sié:jC)nd order
generalized Voronoi regions are connected (or can be readily connected with a link).
Therefore, our goal is to demonstrate that the boundaries of the individual second
order generalized Voronoi regions are connected. The rest of this section is now
devoted to careful consideration of the boundary components of the visible second
order generalized Voronoi regions (and thus we will drop the V superscript). These
boundary structures are defined in terms of line of sight information and can be
incrementally constructed using range sensor data.

Inspection of Equation 3.2 yields the boundary components of a second order
generalized Voronoi region. Starting from the left, consider the first inequality,
0 < di(x) = d;j(x). The boundary associated with this inequality is the set of points
where 0 = d;(z) = d;(x); this corresponds to a boundary edge. Consider the next
inequality, d;(z) = d;(2) < dj(z). The boundary associated with this inequality is
the set of points, d;(z) = d;j(x) = di(z); this corresponds to a GVG edge. The next
inequality, d(z) < dp(z), is associated with a common boundary of two adjacent
second order generalized Voronoi regions. When the distance to the second closest
obstacle continuously changes as a robot crosses from one region to another (i.e.,
di(z) = dj(z) < di(z) = dp(z)), the corresponding structure is a GVG? equidistant
edge. When the distance to the second closest obstacle does not continuously change,
the corresponding structure is an occluding boundary edge. The final boundary
structure is when the two gradients first become collinear (Vd;(x) = Vd;(z)); this
structure is a floating boundary edge.

The following proposition guarantees that in R2, the only structures on the

boundary of a second order generalized Voronoi region F, may be
Fij

e a GVG edge Fji,
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e GVG? equidistant edges U; Fu|

g:{j

e a boundary edge Cj;,
¢ a floating boundary edge F;;, and
e an occluding edge.

Proposition 3.2 The boundary of a second order generalized Voronoi region may
contain the following structures: at most one two-equidistant face, a second order
two-equidistant faces, a two-boundary face, a floating two-boundary face, and a two-

occluding face.

Proof: This proof uses the following lemma and proposition:
Lemma A.11 For two subsets A and B of R™, the closure of the intersection of

A and B s a subset of the intersection of the closures of A and B. In other words,

cl(A[B) C cl(4)[el(B).

Proposition A.10 For two subsets A and B of R™, the boundary of the inter-

section of the two sets obeys the following inclusion:

a(ANB) c (94N ei(B))J (6BNel(4)) .

The definition of a second order generalized Voronoi region is cl{z € W : 0 <
di(z) = dj(z) < dy(x) < dp(2)Vh and Vd;(z) # Vd;(z)}. The second order gener-
alized Voronoi region JFj, - can also be defined as AV BN C D where

A =clHz e W:d(z)=d;(z) < di(x)},
B =cl{z e W :di(z) < dp(z) Vh},

C =c{z e W:D(z)> 0},

D =cl{z €W :Vd;(z) # Vd;(z)}.

(3.3)
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By Proposition A.10,

SANBNCND)C  8ANC(B)N(C)Ncl(D)
UaB N cl(4) Nel(C) Necl(D)
UaC Nel(4) Nel(B) Nel(D)
U8D N el(A) Nel(B) N cl(C).

(3.4)

It can be seen that three of the four components of (AN B C D) can be
identified:

AN (B)Ncl(C)Nel(D) = Fijk,
oC N cl(A) Nel(B)Nel(D) = Cis, (3.5)
8D Nel(A) Nel(B)Nel(C) = FCyj.

The fourth component 8B cl(4) Ncl(C)Ncl(D) corresponds to structures on
the boundary of adjacent second order generalized Voronoi regions. Since we are
considering second order generalized Voronoi regions defined in terms of the visible
distance functions, 8B (cl(A) N cl(C) N cl(D) comprises both second order two-

equidistant faces and occluding two-faces because

OB ={z € W :di(z) = dy(z) for some h}
U{z € W : di(z) # dp(z) and cl(Fy, ) Nc(Fn ) # () for some h},

ij Fij

c(4) ={zeW:di(z) =dj(z) < di(z)},
cd(C) ={xeW:D(z)> 0},
(D) =cl{z € W:Vd;(z) # Vd,(z)}.

(3.6)

In other words, OB cl(4) N cl(C) N cl(D) represents the set of points on the shared
boundary of adjacent second order generalized regions. The GVG? equidistant edges
correspond to those points where di.(z) = d;(x) and the occluding edges correspond

to those points where dy(z) # di(x). |

The next two subsections describe in more detail the GVG? equidistant edges

and the occluding edges.
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3.1.2 Second Order Equidistant Face

The construction of the GVG? parallels that of the GVG. The basic building block
of the GVG? is called the second order two-equidistant surface and is defined as

Skl = {z € F; : (d — di)(z) = 0}. Of particular interest is the subset of

37,']'
termed the two-equidistant surjective surface, which is defined (for convex
T

Sk

obstacles) as 88y = {z € 8y

: Vdi(z) # Vdi(z)}. We define the second

order two-equidistant face to be

Fra = {:13 € Cl(SSkl ) such that
iy Fij
Vh, dp(z) 2 di(z) = di(z) 2 di(z) = d;(z)}. (3.7)
The second order two-equidistant face, | , is the set of points on the face, F;j,

Fij
that are equidistant to two obstacles C}, and Cj such that C), and C) are the second

closest equidistant objects and C; and C; are the closest equidistant obstacles. See
Figure 3.3 for an example of second order two-equidistant faces, which are drawn
as dotted lines.

Analogous to the GVG, we continue our construction with lower dimensional

subsets of J;;. The second order three-equidistant face,

Fup| =Fu

?

Fij ﬂstlp

5. ﬂ Fip

”
is the set of points where Cy, Cj, and C), are second closest equidistant objects and
C; and Cj are the closest equidistant objects.

The second order k-equidistant face is the intersection of the appropriate & — 3
second order two-equidistant faces. In m-dimensions, the second order generalized
Voronoi edge (GVG? equidistant edge) is a second order (m — 1)-equidistant face.
Note, it is defined by m — 3 intersections of second order two-equidistant faces,
whereas the (first order) generalized Voronoi edge is defined by m — 2 intersections

of (first order) two-equidistant faces. It can be easily shown by the pre-image
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Figure 3.3 Second order two-equidistant faces are drawn in dotted lines. These
are the set of points equidistant to their first two and second two closest objects.
Note that this figure is identical to Figure 3.2, except that the two-equidistant
faces are labeled instead of the second order generalized Voronoi regions.

theorem that the GVG? equidistant edges are one-dimensional. Finally, a second
order generalized Voronot vertex is a second order m-equidistant face, and it is zero-
dimensional. Second order generalized Voronoi vertices are also be referred to as
second order meet points.

In R?, the second order two-equidistant faces are the GVG?2 equidistant edges
(second order generalized Voronoi edges), and the second order three-equidistant
faces are the second order generalized Voronoi vertices (or second order meet points).
The dotted lines in Figures 3.2 and 3.3 are second order generalized Voronoi edges.
They intersect at second order meet points.

In Figure 3.3, the second order GVG only has GVG? equidistant edges, but the
second order GVG may contain other structures. These structures are boundary
faces, defined in Section 2.2.3; floating boundary faces, defined in Section 2.2.3; and

occluding faces, defined below.
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Figure 3.4 Room with a box in the middle. The box, outlined with dotted lines,
has an opening on top of it, delineated with solid lines.

3.1.3 Occluding Face

Example 3.3 (Hole on top of a Box) Figure 3.4 depicts a flat room with a box
in the middle of the room. The box in the middle of the room contains an opening
which can either be a through-hole, a dimple, or an entrance to another internal
environment.

The GVG structure associated with the box and the hole (see Figure 3.5) con-
tains two connected components: one associated with the hole and ceiling, and one
associated with the box, the floor, and the ceiling. Unfortunately, the two connected
components are not within line of sight of each other. Hence, depending upon the
robot’s initial conditions, it may “miss” one of these connected components while
incrementally constructing the HGVG. Therefore, there is a need to define an ad-

ditional structure to link the disconnected connected components.

¢

We define the occluding face to connect disconnected GVG components that are

not within line of sight of each other. In order to define the occluding face, we define



Figure 3.5 The GVG edges in the vicinity of the interior box. This halo-shaped
GVG edge is defined by the ceiling, floor and box. The two parallel arrow-like
structures connected by a segment is the GVG structure defined by the four
sides of the hole and the ceiling.

the second closest multi-object distance function, D*(z) = ming; j di(z). This
ij
is the distance to the second closest obstacle to & where z is restricted to be on a

two-equidistant face, F;;. Naturally, there exists a visible, x-ray, and slanted second

2X
y £

Fiy

and
Fij

closest multi-object distance functions respectively denoted by oo

D2?5| . The superscripts will be omitted in situations where it is obvious which
distance function is being used. As stated earlier, in this chapter we are using the

visible distance function, and thus D?(z) corresponds to the visible multi-object

ij
distance function.

Definition 3.4 (Occluding Two-Face) The occluding two-face, Vig| , is the set
of points ¢ on the shared boundary of two adjacent second order generali;ed Voronoi
and F; , limg_y, di(s) #
Fi;

and t € F
Fi;

, where for s € J},
Fij

regions, Jy,

Fij

lim;_, d;(t). That is, it is the set of points where D2 is not continuous.

Fij

The existence of an occluding two-face depends upon the choice of distance
function. When the second order generalized Voronoi regions are defined in terms
of the X-distance function, then there are no occluding two-faces because DR g

always continuous on F;;. Nevertheless, in this work, the second order generalized
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Two-Equidistant Face Defined

Part of Ceiling by the Ceiling and the Box

Occluding Edge

Top
Face

of Inner
Box

Figure 3.6 Two-equidistant face between the box and the ceiling (from Fig-
ure 2.26) is outlined with thin solid lines. All of the enclosure and box from
Figure 2.26 is removed with the exception of the top of the box and the ceiling
of the enclosure. Dashed lines delineate an occluding edge.

Voronoi regions are defined in terms of visible distance function. Therefore, D¥
Fij
may lose continuity on F;j, and thus give rise to an occluding two-face. In R?, an

occluding two-face is called an occluding edge.

Example 3.5 (Occluding Edge) Recall the rectangular enclosure with a box in
its interior in Figure 3.1. Consider the two-equidistant face defined by the box and
the ceiling of Figure 3.1. This two-equidistant face is shaped like an upside down
bowl, as depicted in Figure 3.6. Figure 3.7 contains a side view of Figure 3.6.
Consider a robot in Figure 3.7 that moves from left to right while maintaining
double equidistant between the inner box and ceiling (i.e., while it remains on a
two-equidistant face). Assume the robot starts at a point where the second closest
obstacle is the floor. While moving from left to right on the two-equidistant face,
the inner box begins to occlude the floor as the robot begins to pass over the box.
(Recall that we are using the visible distance function.) When the floor first becomes

occluded, there is a discontinuous jump in the value of the distance to the second
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Ceiling
Two-Equidistant Face
Inner
Box Negated
Gradient
Point on GVG Edge Vector
Floor

Figure 3.7 The thick solid line represents a side view of the equidistant face defined
by the box and the ceiling. The thick arrows that are distributed along the face
point towards the floor which is the second closest obstacle. There are no arrows
on the portion of the face above the box because the box occludes the floor in
that region.

closest obstacle. The point where the floor first becomes occluded is therefore a
point in an occluding edge.

The dashed lines in Figure 3.6 represent the occluding edge in the two-equidistant
face defined by floor and ceiling. The occluding edge encloses a region where points

in its exterior are within line of sight of the floor. (See Figure 3.8.) ¢

Example 3.6 (Hole on top of Box (continued)) Recall the environment from
Example 3.3 which is a rectangular enclosure with a box in its interior. On top
of the box, there is an opening which could be a through-hole, an entrance to a
sub-environment or a dimple. See Figures 3.4 and 3.5.

Since in this example we are only interested in the GVG edges associated with
the box, Figure 3.9 contains only the box, the GVG structures associated with it
(thick solid lines) and an occluding edge (thick dotted lines).

The GVG structure associated with the hole is connected to the occluding edge
using GVG? equidistant edges. Using a linking procedure described later in Section
3.4.2, the outer GVG is linked to the occluding edge. The result is that the GVG
is now connected through a link, an occluding edge and an GVG? equidistant edge.

See Figure 3.10. ¢
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Two-Equidistant Face Defined

Occluding Edge
by Inner Box and Ceiling

GVG Edge
Defined

' by the

! Floor

! Ceiling

! and Box

i

]

]

4

]

/

Floor is Second Closest Floor is not Second Closest

Figure 3.8 Two-equidistant face between the box and the ceiling, as viewed from
above, is drawn with an occluding edge.

<_O/cc?luding Edge

Figure 3.9 The occluding edge, represented by a thick dotted line, is defined by
the visible-distance function. The GVG is represented by the thick solid lines
and the inner box is drawn in thin dashed lines.



Occluding Edge
GVG?

GVG —

Figure 3.10 The GVG surrounding the box is connected to the GVG associated
with the hole through a link from the GVG surrounding the box to the occluding
edge. The box is removed for clarity.

3.1.4 Second Order Generalized Voronoi Set

Analogous to the two-Voronoi set which was used to define the GVG, we now define
the second order two- Voronoi set as the union of second order two-equidistant faces,
two-boundary faces, floating two-boundary faces, and two-occluding faces on a two-
equidistant face. (Note that there exists two-equidistant faces for which some of

these structures do not exist.) When a two-equidistant face, F;;, contains all four

)) . (3.8)
Ty

is composed of three second order two-equidistant face
Fij

and one two-boundary face, the GVG?

structures, we can write the second order two-Voronoi set as

372

~U(y [, Uesuresun

T

For example, if the F2

is Upzi’ F, UCij which is equal to

ii
Fu| UTmn| UFus| UG

i T i

Continuing i the same vein as the GVG, we can define the second order three-

Voronoi set as the union of all the second order three-equidistant faces, three-

occluding faces, three-boundary faces, and floating three-boundary faces. It is writ-
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ten as

?3

~U(U(U(s

Fij E Nl \p

)

The second order k- Voronoi set is the union of the second order k-equidistant faces,

., U Chee U FCijr U Viip
ij

k-boundary faces, floating k-boundary faces, and k-occluding faces. In R™, a second

order GVG is the collection of second order (m—1)-Voronoi sets and m-Voronoi sets,

ie. GVG@2 = (3"l 9™ ). So, whenm =3, GVG?| = (F JF3).
Fij Fij ij Fis Fog i

Definition 3.7 (Hierarchical Generalized Voronoi Graph) The union of the
generalized Voronoi graph and higher order Voronoi graphs is termed the hierarchical

generalized Voronoi graph (HGVG).

In summary, when m = 3, the HGVG is the union of the GVG and GVG? and

contains the following components:
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Symbol | Name of Structure Distance Relationships for  in Structure
F generalized Voronoi region | d;(z) < dp(z) Vh
Fij generalized Voronoi face di(z) =dj(z) < dn(z) Yh
ek generalized Voronoi edge | di(z) = d;(z) = di.(z) < dp(z) VR
Foin meet point di(z) = dj(z) = dj(z) = di(z) < dy(z) Vh
I second order generalized di(z) = dj(z) < dp(z) < dp(z) Vh
Ty
Voronoi region
Fig GVG? equidistant edge di(z) = dj(z) < dy(z) = di(z) < dp(z) YR
Futp second order meet point di(z) = dj(z) < dp(z) = di(z) = di(z) < dp(z) VR
iy boundary edge di(z) =d;(z) =0
P floating boundary edge 0 < di(z) = dj(z) < dp(2)
such that Vd;(z) = Vd;(z)
Vi occluding edge di(z) = dj(z) < d(x) < dy(z) < dp(z) YR
Ty
or di(z) = dj(z) < di(z) < di(z) < dp(z) Vh

3.1.5 Connectivity of the GVG and Second Order GVG

The following lemma asserts that the GVG? intersects the GVG at meet points.

Therefore, when constructing the HGVG, the robot simply constructs a GVG frag-

ment and then from each meet point on that fragment, in constructs a second order

GVG which will be connected to other GVG fragments.

Lemma 3.8 If a second order two-equidstant face Fyy

is not empty, then it is

Fij

the only second order two-equidstant face which emanates from a four-equidistant

face Fjiq in the two-equidisant face Fij.

In R3, this lemma can be restated as follows: if the meet point J;ji; exists, then

there must exist an associated one-dimensional GVG? edge Ty

Fij
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Proof: Since Fjji # 0, there must exist at least one point in Fiy| . Now, it needs

3‘.,'1'
to be shown that Fyy is truly one-dimensional.
Fij
From the above relations, it can be seen that JFy C S8y C S

Fsi Fij Fij

Therefore, Fiju C Fu = Fiji C S8 For any nbhd(F;ju), define Y =
Fij Fij
(nbhd(Fijra) N 88m|  )\TFija-
9’-ij

Since Y is an open subset 8Sy; and the dimension of 88y
Fi;

pre-image theorem), the dimension of Y is also one. For all yeyY, 'l'a])y continuity of

is one (by the

the distance function

d1(y) < dh(y)’ d](y) < dh(y))
di(y) < dn(y), di(y) < dn(y)-

Furthermore, by definition of Y, Vy € Y, d;(y) = d;(y) and dj(y) = di(y). There-
fore, Y C Fyy

Since Y is a one-dimensional subset of ¥yl , Fu is one-
Fij Fij Fij

dimensional. u

In fact, for each meet point JF;;;; on a two-equidistant face Fj, the corresponding

GVG? equidistant edge Fyy

is unique, as shown by the following:

Lemma 3.9 Only one second order two-equidistant face emanates from a four-

equidistant face.

which emanates from
the four-equidistant face J;;1; on the two-equidistant face F;;. Assume there exists

Proof: Consider the second order two-equidistant face Jy,

another second order two-equidistant face Fy,,

that emanates from F;jj; on Fig-
g:,‘j

Therefore, 88,88y N Fij # 0, and thus 88;j1, # 0. However, Assumption 2.12

states that 88;;1, must be empty. Therefore, only one second order two-equidisant

may emanate from a four-equidistant face on a two-equidistant face. g

Using similar arguments as above, it can be shown that (1) a GVG edge may also

terminate at a boundary point, (2) a boundary edge terminates at a boundary point
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GVG N

/ ":,.':': .......... f Ceiling Balf-height

_\/ Floor

Figure 3.11 A room with a hole in its side wall. The thick dotted lines represent
the GVG and the thin dotted line marks the half-height of the room. The
thick solid lines are drawn to emphasize the GVG edges associated with the
two-equidistant face defined by the right wall and ceiling.

shared by a GVG edge or a boundary point shared by a floating boundary edge, (3)
a GVG? equidistant edge may also terminate at a second order meet point, a point
in the interior of a boundary edge, a point in the interior of a floating bounary edge,

or a point in the interior of an occluding edge.

Example 3.10 (A connected HGVG) Figure 3.11 depicts the disconnected GVG
for the environment shown in Figure 2.15, from Example 2.10. The geometry of the
hole with respect to the room causes the boundary of the two-equidistant face, de-
fined by the wall and the ceiling in Figure 3.11, to be disconnected (Figure 3.12);
this results in a disconnected GVG. The second order GVG prescribes a well defined
path on the two-equidistant face that connects the disconnected GVG fragments.

Therefore, in this example the HGVG is connected. See Figure 3.13.
¢

In many cases, the GVG? will link the disconnected components of the GVG.
However, as shown in Figure 3.1 (Example 3.1), the GVG? may not necessarily serve
as a bridge between disconnected GVG components. The HGVG associated with

the environment in Figure 3.1 is disconnected because the GVG possesses a cycle,
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Boundary Edge

—

/ \/
GVG Edge

Figure 3.12 GVG edges, drawn as thick solid lines, are on the boundary of the two-
equidistant face between the wall and the ceiling of Figure 3.11 in Example 2.10.
The GVG structure in the middle of the face is associated with the hole; in
actuality, it “pinches up” out of the face.

2
Boundary Edge GVG“ Edge
/ : : i
l‘ ‘I ," LS l.
! \ o . J
'll “,-.---- oo q:'
'] ¢ S, P4 Y
] ] b o ]
] 1} AN P4 'I
J \, 14 ¢
J See ..L. o
'I e, PRI ] D L

/

GVG Edge

Figure 3.13 The second order GVG edges and boundary edges are drawn in the
two-equidistant face between the wall and the ceiling of Figure 3.11 in Exam-
ple 2.10. The thick solid lines are GVG edges, the dotted lines are GVG? edges
and the thin solid line is a boundary edge. Here, the GVG? links up discon-
nected GVG edge fragments on the two-equidistant face.
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a GVG edge which is always disconnected from other GVG edges.

The next two sections are dedicated to analyzing cycles. Section 3.2 formally
defines cycles and details their properties. Section 3.3 contains an assumption which
precludes the existence of cycles. Under this assumption, we show in Section 3.4
that the HGVG is connected. Future work includes relaxing this assumption and

showing how the HGVG is connected in general (with the inclusion of links).

3.2 Cycles and Periods

The central purpose of this section is to explore one of the reasons why the HGVG
is not necessarily connected — the existence of “cycles” in the HGVG such as the
one in Figure 3.1.

3.2.1 GVG Cycle

Definition 3.11 (GVG Cycle) A GVG cycleis a generalized Voronoi edge which

is diffeomorphic to S1, the unit circle.

Henceforth, the term “cycle” refers to a GVG cycle.

Proposition 3.12 In a bounded three-dimensional Euclidean space, a GVG edge is

a cycle if and only if it is disconnected from the GVG and the GVG2.

Proof: This proof is a consequence of the following lemmas whose proof appears in

Section 3.2.4.

Lemma 3.13 When Assumption 2.12 is true, a GVG cycle cannot contain a meet

point.

Lemma 3.14 A GVG cycle cannot contain any boundary or floating boundary

points.

Lemma 3.15 In R3, a three-equidistant surface, 88;j, is either diffeomorphic to

St (i.e., it is a GVG cycle), or it is unbounded.
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Lemma 3.16 A GVG? equidistant edge can only intersect the GVG at a meet point.

If a GVG edge is a cycle, then it does not contain meet points (Lemma 3.13),
boundary points (Lemma 3.14) or floating boundary points (Lemma 3.14), and thus
other GVG edges and GVG? edges (Lemma 3.16) cannot intersect it. That is, the
GVG cycle is disconnected.

Assume there exists a disconnected GVG edge that is not a cycle. By Lemma 3.15,
the GVG edge must be unbounded. However, this contradicts our Boundedness As-

sumption (Assumption 1.1), and thus the GVG edge is a cycle. &

A necessary step to show that the HGVG is connected is to prove that the bound-
aries of each second order generalized Voronoi region are connected (or are readily
connected with a link). Whereas, Proposition 3.12 states that the existence of GVG
cycle implies that the HGVG is not connected, the next proposition demonstrates
how cycles give rise to second order generalized Voronoi regions whose boundaries

are not connected.

Proposition 3.17 In a bounded three-dimensional Euclidean space, a GVG edge
is a disconnected component of a boundary of a second order generalized Voronoi

region if and only if it is a cycle.

Proof: This proof is based on the following lemmas, whose results are general in R™

and whose proofs appear in Section 3.2.4.

Lemma 3.18 If the three-equidistant face F,j;, is not empty, then the second order

generalized Voronoi region Fj, must not be empty. Furthermore, if F;ji. # 0, then
Fijr € Ty

i
Lemma 3.19 The boundary of a second order generalized Voronot region contains

_ Jorall {p,q,r} # {3,5,k}-

ry

at most one three-equidistant face. That 18, Fper S T,

-

By Lemma 3.18, the GVG edge J;j; must be a subset of the boundary of a

second order generalized Voronoi region, J},

. In fact, by Lemma 3.19 it is the

iJ
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only GVG edge that can be in the boundary of F| . GVG? equidistant edges,
boundary edges, floating boundary edges, and occludinié edges (Proposition 3.2) are
the other structures which may exist on the boundary of a second order generalized
Voronoi region.

If Fyji is a cycle, then by Proposition 3.12 none of the above listed structures can
intersect it, and thus F;;; must lie on a disconnected component of the boundary of
the second order generalized Voronoi region.

If Fiji is a disconnected boundary component of a second order generalized
Voronoi region, it does not intersect any GVG edge, or any GVG? edge. By Propo-
sition 3.12, Fj;, is a cycle. B

Recall Example 3.1 which consists of a room with a box in its interior. Figure 3.2
shows the two-equidistant face defined by the floor and ceiling. Solid lines represent
the GVG and dotted lines represent the GVG2. The inner box defines a second
order generalized Voronoi region, Jpoy . This region contains a cycle on
its boundary and thus has a boundar:;flgﬂgt[”iis"ﬂnot connected. All of the other

second order generalized Voronoi regions do not contain any cycles and thus their

boundaries are connected.

3.2.2 Second Order Cycles and Periods

Just as there are cycles in the GVG, there are also cycles in the GVG2. A second
order cycle is a second order generalized Voronoi edge (GVG? equidistant edge)
that is diffeomorphic to S, the unit circle. However, we are interested in another

structure, termed the second order period, defined below.

Definition 3.20 (GVG? Period) A GVG? period is a connected boundary com-
ponent that does not contain any GVG edges of a second order generalized Voronoi

region.

By definition, a GVG? period is the union of zero or more GVG? equidistant

edges, zero or more boundary fragments, zero or more floating boundary fragments,
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and zero or more occluding fragments. Note that second order periods are homeo-
morphic to S, and GVG?2 cycles are GVG? periods.

A GVG? period which only has GVG? equidistant edges is denoted U, Ty
A GVG? period which has GVG? equidistant edges, boundary fragments, ﬁoatirlljg

boundary fragments, and occluding fragments is denoted by

5—",-)

For example, if a GVG? period is composed of three GVG? equidistant edges and
UFr,| UFns| UG

i :}.l,] 1]

J (ow

l

T__UCijUFC,-,-Usz

one boundary edge, the GVG? period is Fyy,

Example 3.21 Figure 3.14 contains a second order period that arises in Example
3.1, which investigates the environment consisting of a room with a box in its inte-
rior (Figure 3.1). This environment has many two-equidistant faces, one of which
is drawn in Figure 3.2. This is the two-equidistant face defined by the floor and the
ceiling. The dotted lines are the second order generalized Voronoi graph. The sec-
ond order generalized Voronoi region defined by the box (Fpps ) is shown
Figure 3.14. The dotted lines on the outer boundary representg;:c{;g;lé”ggder gener-

alized Voronoi edges, and the solid line which forms the inner boundary represents

a generalized Voronoi edge, which is a cycle. ¢

3.2.3 Inner and Outer Cycles and Periods

Here, we describe the notion of an inner and outer cycle. Recall the corollary to
the Jordan curve lemma which states that any closed curve in the plane divides
the plane into two regions: one termed the bounded section and one termed the
unbounded section.

Let 0;,F;, be a boundary component of the second order generalized Voronoi

Fij

region, JF} The following two definitions define the outer and inner bound-

Fij

ary components of F, by using the Jordan Curve Lemma, where the boundary

Fij
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F
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Figure 3.14 The second order period is drawn with dotted lines. It is the union
of second order generalized voronoi edges which forms a connected boundary
component of a second order generalized Voronoi region.
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component, 3;F| , serves as the Jordan curve.

Definition 3.22 (Outer Boundary Component) Let 0,3 be a boundary

component of the second order generalized Voronoi region, Fi| . When 6,3},
Fij Fij
is a Jordon curve on 88;j, it is an outer boundary component if Fy lies in the
Fi;

“bounded” region associated with the Jordan curve.

Definition 3.23 (Inner Boundary Component) Let ;F;| bea boundary com-

9",'1'
. When 6,7

ij

is a
?,jj

ponent of the second order generalized Voronoi region, JFj,

lies in the “unbounded”
Fij

Jordon curve, it is an inner boundary component if F;,

region associated with the Jordan curve.

From these two definitions, the notion of an inner cycle, outer cycle, inner GVG?

period, and outer GVG? period naturally follow.

Example 3.24 Figure 3.14 contains the second order generalized Voronoi region
that is defined by the box on the two-equidistant face, defined by the floor and ceiling
from Examples 3.1 and 3.21. The dotted lines in Figure 3.14 represent the GVG?
period that furnishes the outer boundary. The solid line represents the GVG cycle
which is an inner boundary component of Fp, . Figures 3.15 and 3.16
illustrate, respectively, how Definitions 3.22 and ;gén;/vo;l;"qln Figure 3.15, when the
GVG cycle is a Jordan curve, its associated second order generalized Voronoi region
lies in the unbounded region (shaded). Similarly, in Figure 3.16, when the GVG?

period is a Jordan curve, its associated second order generalized Voronoi region lies

in the bounded region (shaded). ¢

From Figures 3.1, 3.2, and 3.14, it appears that there exists a duality between
the existence of the GVG cycles and GVG? periods. The following proposition
establishes this duality: in order for one of them to exist, the other must exist.

Hence, the existence of one is a clue to the robot that another cycle or period is
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nearby. This information is needed for a “linking” strategy to connect disconnected
HGVG components, such as those in Figure 3.2.

The next three steps are: (1) via the following proposition, show the duality be-
tween cycles and second order periods, (2) in the next section, state the assumption
under which cycles do not exist (and thus second order periods do not exist), and
(3) in the section following the next, show how under this assumption, the HGVG

is connected.

Proposition 3.25 In R3, if a GVG cycle Fiji is an inner boundary in a two-
equidistant face F;j, then there exists an outer G VG? period in the two-equidistant

face, F3;.

Proof: By Lemma 3.18, if F;j; # 0, then the second order generalized Voronoi re-

gion, I}, # 0. Furthermore, Lemma 3.18 asserts that J;; is in the boundary of

g:lJ

. By Lemma 3.19, JF;j;, is the only GVG edge in F;| . By the Boundedness

T

Ty

Assumption (Assumption 1.1), F must be bounded and thus contain an outer
i

boundary component. According to Proposition 3.17, this outer boundary compo-

nent does not contain J;j;. Such a boundary component is a GVG? period because

it is free of GVG edges. |

Although the converse of the above statement is not necessarily true, the follow-

ing proves to be useful.

Proposition 3.26 If there exists an outer second order period, and there is a gen-
eralized Voronoi edge associated with it, then the generalized Voronot edge is an

mner cycle.

Proof: Recall that a GVG? period cannot intersect with a GVG edge. By hypothe-
sis, the GVG? period is an outer boundary. Also, by hypothesis, there exists a GVG
edge, F;ji, inside the second order period (Figure 3.17).

Assume that the edge F;). is not a cycle. If F,j; # 0, then 88;j. # 0 and by

Lemma 3.15 it is unbounded. Therefore, 88;;; must intersect the outer GVG? period
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Figure 3.17 Assume there exists an outer GVG? period with a GVG edge, which
is not a cycle, in its interior.

(Figure 3.18). In particular, say 88;;; intersects Fy

. For all = € 88;1 N Fu

b
j ij
is is the definition of a meet

point, and thus by Proposition 2.11, a GVG edge intersects

di(z) > di(z) = dj(z) = di(z) = di(z), for all h. TS}rli

. This contradicts
T

our original hypothesis that F;;;, is a GVG? period. Therefore, ;. is a cycle.

J J

The following two implications summarize the previous two propositions.

Inner GVG cycle J ==

Outer GVG?2 period

GVG edge exists and

outer second order| = |GVG cycle

period

3.2.4 Proofs of Lemmas Presented in Section 3.2

In the following proofs, recall that nbhd(z) is shorthand for neighborhood of z.

Also, recall the following definitions and their distance relationships:
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~~~~~~~

e > = dk(x) = d.l(x) ‘K _____
Outer GVG 2Period Outer GVG 2Period

Figure 3.18 If the inner GVG edge is Figure 3.19 The existence of an outer
not a cycle, then it must intersect GVG? period and a GVG edge as-
the outer GVG? period. sociated with it implies there exists

inner GVG cycle.

Symbol | Name of Structure Distance Relationships
Fes two-equidistant face di(z) = dj(z) < dp(z) Vh
gijk GVG edge d,(:c) = dj(a:) = d;,(m) S dh(m) Vh
T second order generalized | di(z) = dj(z) = dj(z) < dp(z)
Fip
Voronoi region

Proof of Lemma 3.13

Lemma 3.13. When Assumption 2.12 is true, a GVG cycle cannot contain a meet
pownt.

Let ;i be the GVG edge equidistant to obstacles C;, C;, and C}. Assume
there is an object C; positioned such that @ € F;j;, is a point where d;(z) = di(z).
By Proposition 2.11, the GVG edge Fij; # 0 and it intersects F;j;, at z. By defini-
tion of the surjective equidistant surfaces, 88;;; and 88;;; also intersect at . The
three-equidistant surjective surface 88;; must tangentially intersect 88;j1 because
Jiji is a cycle. Such an intersection is non-transversal which cannot occur when
Assumption 2.12 is in effect. Therefore, there cannot be an object C; positioned
such that there is an = € F;j;, is a point where d;(z) = dj(z), and thus a GVG cycle

cannot contain any meet points.
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Proof of Lemma 3.14

Lemma 3.14. A GVG cycle cannot contain any boundary or floating boundary

points.

Proof: Let F;;;, be a GVG edge equidistant to objects C;, Cj, and Cy. Since the
GVG edge is a cycle, it is bounded and thus, there exists a point z* such that
D(z*) > D(z) for all z € Fj;. At «*, Vd;(z) is orthogonal to T+ Fiji.

Now the proof follows by contradiction. Assume there is a point where D(z) = 0.
That is, Cj, Cj, and C}, intersect to form a boundary point. By Lemma 3.27,
introduced below, there cannot be a point where Vd,(z) is orthogonal to T;J;; .

This, however, is a contradiction, and thus there cannot be a point on a GVG cycle

where D(z) = 0.

Lemma 3.27 If the objects C;, ..., C;, intersect, then the associated k-equidistant
surjective surface, 88;,. ., s unbounded. In fact, if objects C;,,...,C;, intersect,
then none of the gradients, Vd;, (z),...,Vd; (z), is orthogonal to T;88;, i, for all
x € 88, -

Proof: Assume that there exists an = € 88;,.., for which Vd;, (z) is orthogonal to
T.88;,..i,- By Proposition 2.21, Vdij(m) must be orthogonal to T, 8S;, ; for all
j=2,...,k because Vd;, (z) is orthogonal to T;88;, .,

Let HC;, (z) be the hyperplane which is orthogonal to Vd;, and tangent to the
nearest point, ¢;, in C;, to z. Since Cj, is a convex set, C;, lies entirely on one
side of HC;, (z). Let HCj;(z) be the hyperplanes similarly defined as above for
i=2,...,k.

In R™, let S be an (m — 1)-dimensional sphere centered at = with radius D(z).
By Assumption 2.12, the k closest points on the k closest obstacles form a (k — 1)-
dimensional hyperplane orthogonal to T}.88;,. ,, and passing through z. For k > 2,
these k points define a (k — 2)-dimensional sphere, termed a sub-sphere (Syup) which
is a subset of S and has a radius less than or equal to D(z). When the radius

of S is equal to the radius of S, we say that S, is a major sub-sphere of S.
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Figure 3.20 The circle represents the largest sphere, centered at z, that does
not penetrate any obstacle. Since z is a point on a two-equidistant surjective
surface, 88;,:,, only two obstacles are tangent to S. The separating planes for
these objects are delineated by thick dotted lines.

For j =1,...,k, HC;; is tangent to S and passes through a point on the (k —2)-
dimensional sub-sphere, Sg4-

Next, it needs to be shown that HC;, ,. .., HC;, cannot intersect at a point. We
first show this when k& = 2. The sphere S has co-dimension one. If Vd;, and Vd,,
are orthogonal to T3 88;,i,, then there are only two points (at opposite poles of the
sphere) where the separating planes are tangent to S. In this case, the separating
planes are parallel to each other (Figure 3.20). By definition of a convex set, if
the separating planes never intersect, then the obstacles cannot intersect. This is
a contradiction. Therefore, for k = 2, no gradient vector can be orthogonal to
T:88i, .4, and thus D(z) has no local maxima. Since D(z) has no local maxima,
it has no global maxima and thus 8§, _;, is unbounded.

In general, if the gradients Vd;, (z),...,Vd;, (z) are orthogonal to T,88;, ,,
then Sy and S have the same radius. In other words, S, is a major sub-sphere.

It can be shown that if k hyperplanes are tangent to S at a point in Sy, then they

can never intersect at a point. Since HC;, , ..., HC;, can never intersect at a point,
the obstacles C;,, ..., C;, cannot intersect at a point either. This is a contradiction,
and thus 88;, ;, is unbounded. v

A similar argument can be made for floating boundary points. |
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Proof of Lemma 3.15

Lemma 3.15. In R3, a three-equidistant surface, 88;jk, 15 either diffeomorphic to

St (i.e., it is a GVG@ cycle), or it is unbounded.

Proof: First, we show the case when C;, Cj, and C}, are disjoint convex sets and
then we show the case when they overlap. A two-equidistant surjective surface for

two disjoint convex sets is a separator in W by the following lemma.

Lemma 3.28 A two-equidistant surjective surface for two disjoint convexr sets is

an unbounded separator in W.

Proof: Let 88;; be a two equidistant surface for obstacles C; and C} in the space
W\ (Ui, Cn)- Let 8; be the set of points in W\(Uj,; j Cn) closer to C; than Cj.
Define §; similarly. That is,

8= {z e W\( | Cu) : dil2) < dj(=)}
Wy

Si={z e W\(J Cn) : dj(z) < di(x)}. (3.10)
heti
The two-equidistant surjective surface, 88;;, is on the boundary of both §; and §;.
Let F! be the flow of Vd; and let 8S; = {z € 8; : F! € 88;; for some t}. Define
88; similarly.
The mapping F;: R x 8; — W\C; is a continuous mapping. Let Q; = F~1(88;;).
Q); is closed because it is the pre-image of a closed set under a continuous mapping.
Note that (t,z) € Q; if and only if F/(z) € 88;j. (So, = € 88;; implies that
(0,z) € Q.
Since 88;; is the image of a connected set under a continuous mapping F;, 33;;
is connected. Therefore, 8; and §; share a common connected boundary: 88;;. This
boundary separates VY into two regions: points closer to C; and points closer to C}.

Since §; and §; are both unbounded, so must be 88;;.
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By a similar argument, it can be shown that 8S;; is a separator on 83;;. In
R3 the pre-image theorem asserts that 88;; is one-dimensional. By the Jordan
curve lemma, 88;;1 in R3 can either be (1) a manifold diffeomorphic to S Lor (2) an
unbounded manifold diffeomorphic to R.

Now, we consider the case where the obstacles, C;, C}, and C}, intersect to form
a boundary point, Cj;, out of which 88;;;, emanates. Lemma 3.27 asserts that 88ijk

is unbounded. [ |

Proof of Lemma 3.16

Lemma 3.16. A GVG? equidistant edge can only intersect the GVG at a meet

point.
Proof: Consider the GVG2 equidistant edge Fy| . For all points z € Fy| ,
T Fi
di(z) = d)(z) > di(z) = dj(z). When di(z) = dj(z) = dp(z) for some = € F| ,
Fij

di(z) = d;(z) = di(z) = di(z). However, z cannot be in the interior of a generalized
Voronoi edge ;i because for all y € int(Fyz), di(y) = d;(y) = dr(y) < dp(y) for
all A. B

Proof of Lemma 3.18

Lemma 3.18. If the three-equidistant face F;jj; is not empty, then the second order

generalized Voronoti region F}, must not be empty. Furthermore, if Fiji. # 0, then
Fig

Fiji C Ty,

i
Proof: Pick z € int(F;j;). By definition, di(z) = dj(z) = di(z) < dp(z) for all
h #1,j,k. For a nbhd(z), let Y () = nbhd(z) N(int(F;;)\ int(Fijr)). By definition,
di(y) = d;(y) < dy(y) for all y € Y (z). By continuity of the single object distance
function, for all h # i,7,k, di(y) < du(y) for all y € Y(z). Therefore, for all
y € Y(z), di(y) = dj(y) < di(y) < dn(y) for all h # 1,5, k.
Therefore, there exists a region where C; and C; are the closest obstacles and C;,

is the second closest. That is, F, # 0. Furthermore, F;;, is a subset of 8%,
Fij Fij
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because:

91;1']‘; = {a: : Vhdp(z) > di(2) = dj(a:) = dk(:lt)}
C o{z : Yhd(h) > di(z) > dj(z) = di(z)}

zag—k )
Fiz

where 0 is the boundary operator.
Therefore, by definition, if F;j; # @, then it is a non-empty subset of the bound-

ary of 3| . |
Fij

Proof of Lemma 3.19.

Lemma 3.19. The boundary of a second order generalized Voronoi region contains

for all {p, q,7} # {i,J,k}.

1)

at most one three-equidistant face. That is, Fper S T,

Proof: Assume that Fj;;, and J;j; are on the boundary of Fj| . By definition, for

Fij

, it must be true that dj(z) > d(z) > d;(z) = d;(z) for all I # 1,3, k.

Since 3'1;]'1 C F

all z € Fy,

(by assumption), for all z € F;j, di(z) < di(z). Thus, for
Fi;

all z € F;;\Fiji (which is a subset of | ), di(z) < di(z). However, this is a

j

Fi
contradiction because for all z € Fy)\Fyjx, di(z) < di(z). [ E

3.3 Extended Boundedness Assumption

The Eztended Boundedness Assumption (formally defined in Section 3.3.1) guar-
antees that there are no HGVG cycles and outer periods (Section 3.3.3). This
assumption leads to the basis for deriving important results necessary to prove con-
nectivity of the HGVG. In particular, in Section 3.3.2, we show that all second order
generalized Voronoi regions contain a generalized Voronoi edge when the Extended
Boundedness Assumption is true. The following example motivates the need for

this assumption.

Example 3.29 Recall the environment from Example 3.1 that consists of a room

with a box in its interior. See Figure 3.1. In Figure 3.2, it can be seen the two-
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Figure 3.21 Room with two boxes in its interior. The solid lines are GVG edges
and the dotted lines are GVG? edges.

equidistant face defined by the floor and ceiling has a disconnected boundary and
thus the HGVG is also disconnected.

However, when an additional box is placed in the middle of the room, the HGVG
on two-equidistant face defined by the floor and ceiling becomes connected. See

Figures 3.21 and 3.22. ¢

3.3.1 Definition

Assumption 3.30 (Extended Boundedness) In R™, each p-order k-equidistant

face has at least one p-order (k + 1)-equidistant face on its boundary.

In R? (m = 3) this assumption implies that all generalized Voronoi edges (k = 3,
p = 1) contain at least one meet point. That is, for all 4, j, k, there exists z € F;;;, and
there exists an [, such that dj(z) = dj(z). By the Equidistant Surface Transversality
Assumption (Assumption 2.12), this point is isolated.

In Example 3.29, the environment in Figure 3.1 contains a generalized Voronoi

edge which has no meet points; it is the cycle which surrounds the inner box. Nev-
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Figure 3.22 The HGVG on the two-equidistant face, F f1o0r/ceiting: 1S nOW con-
nected.

ertheless, when an additional box enters the environment (Figure 3.21), additional
meet points, associated with the inner box, appear, thereby forming a connected
HGVG. In this scenario, the Extended Boundedness Assumption holds.

The purpose of this section is to show how Assumption 3.30 leads to cycle-free
environments. First, it is shown in Section 3.3.2 that under the Extended Bound-
edness Assumption, all visible second order generalized Voronoi regions contain a
generalized Voronoi edge. Using this result, it is proven in Section 3.3.3 that envi-
ronments satisfying the Extended Boundedness Assumption are cycle-free.

Note that this assumption requires use of the visible (or slanted) distance func-
tion. That is, the robot is only aware of obstacles that are within line of sight of
it. Recall, that all structures are defined in terms of the visible distance function.
Also note that when this assumption is upheld, all second order generalized Voronoi

edges (k = 2, p = 2) have at least one second order meet point.
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3.3.2 Second Order Generalized Voronoi Regions

In order to guarantee the connectivity of the HGVG, we need to show that the
boundary of each second order generalized Voronoi region is connected. In order
to do this, first we must show that every second order generalized Voronoi region
contains a second order generalized Voronoi edge, as demonstrated by the following

lemma. Recall that in R3, a three-equidistant face is a GVG edge.

Lemma 3.31 Let the Extended Boundedness Assumption (Assumption 3.30) and
the visible distance function be in effect. In this case, all second order generalized

Voronoi regions must contain a three-equidistant face.

Proof: Recall the definition of the second order generalized Voronoi region,
Fu| ={zeF:Vh&{i,j,k}dn(z) > di(z) =di(z)}.
Fiy

Given the Extended Boundedness Assumption (Assumption 3.30), there exists
an h' € {i,7} and an z such that d;i(z) = dj(z) = dw(z). If B’ = k, then Fy;;. # 0,

and by Lemma 3.18 and Lemma 3.19, it is the only three-equidistant face in 0F},

If h' # k, then that implies F;j;» must exist (i.e., there exists an z such that

di(z) = dj(z) = dj(x)). However, since the second order generalized Voronoi region

F.l  # 0, it must be true that di(y) < di(y) for all y € F| . By continuity
T i T

v L&)
of the single object distance function, F;;; must also be a non-empty subset of

Tk

(Lemma 3.18). This is a contradiction of Lemma 3.19, where only one three-
9.,",'

equidistant face may be a subset of Fj| . Therefore, A’ =k, and JF;;, is always a
Fij

subset of Fy, B

Fij

Example 3.32 The Extended Boundedness Assumption is based solely on the use
of line of sight information because it is stated in terms of the visible (or slanted)
distance function. In this example, a second order generalized Voronoi region, de-

fined in terms of the X-distance function, may exist without containing a GVG edge.
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Figure 3.23 A room with four boxes in its interior. Two of the boxes are on
top of the box on the left box. The thick solid lines represent the GVG edges
associated with the floor, ceiling, box A — 1, and box A — 2.

However, such a region would not exist for one defined in terms of the visible (or
slanted) distance function.

Figure 3.23 contains the same room as in Example 3.29, but there are two more
boxes on top of one of the boxes. Figure 3.24 is a view of the environment from
below. From this perspective, obstacle A-1 occludes obstacles B-1 and B-2. The
occluded obstacles are represented as dotted lines. The solid lines signify the GVG
edges.

The dotted lines in Figures 3.25 and 3.26 delineate the GVG? edges, defined in
terms of the X-distance function. These GVG? edges form an inner GVG? period
in the second order generalized Voronoi region in Figure 3.26. It is defined in
terms of obstacles, B-1 and B-2, which are not within line of sight of the GVG
edges. This period contains no GVG edge in its interior, which seemingly contradicts
Lemma 3.31. However, Lemma 3.31 makes use of the visible distance function, which

precludes the existence of this period in this example. ¢
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Figure 3.24 Bottom view of a portion of the environment shown in Figure 3.23.
The dotted lines signify that objects B-1 and B-2 are occluded by object A-1.
The solid lines represent GVG edges. The two strikes on the vertical solid line
signify there are two GVG edges, but one occludes the other. The ceiling is into

the page.

i Fcfa-2’;7
N

- m——————

r
|

[}
5
I

[}

|

'

~

A-2

Fcb-l I
fa-1

B
b-1b-2

\ \

l F

Ffa- 1

cb-2 |F
fa-1

Fca-2

Ffa— 1

Figure 3.25 Same as Figure 3.24, except the GVG? edges are drawn as dashed

lines.



95

Ceiling . Fe1
/\
4 ;
/
pm—————= ~ e TIETE~S l'
,I’ \’ \\ ,I
[} \l 1
| i !
' | i
| | !
| L
"\ Il' “\
hXN P 4 \
L S, - - \
\
\
\_ / B
F F \ Fca—2
cb-1 IF cb-2 IF Fo
fa-1 fa-1
Figure 3.26 Second order generalized Voronoi region, cm-lmg‘ , with inner
floor/a—1

period and no GVG edge.

3.3.3 Cycle-free Environment

In R™ when m > 2, the Extended Boundedness Assumption is true for most “clut-
tered” workspaces. Robots whose configuration spaces are high dimensional tend to
~ be highly articulated and are thus better suited for cluttered environments. Such en-
vironments do not contain cycles and thus may contain a connected HGVG. The fol-
lowing iemma states how the Extended Boundedness Assumption leads to HGVG’s

that are free of cycles and which are therefore connected.

Lemma 3.33 If Assumptions 2.12 and 3.30 hold, then there will be no GVG cycles,
no GVG? cycles, and no outer GVG? periods.

Proof: Let J,j;, be a generalized Voronoi edge in R3. By the Extended Bound-
edness Assumption (Assumption 3.30) there exists a point =z € Fijr such that
there is an obstacle C; that is positioned such that dj(z) = dj(z). Therefore,
Fijr = FijtNFijr. # 0. Since Fyjy is not disconnected from all other GVG edges,
when the Equidistant Surface Transversality Assumption (Assumption 2.12) is in

effect, Proposition 3.12 asserts that J;;;. is not a cycle.
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By Proposition 3.26, if there exists (1) an outer second order period, which is a

component of the boundary of F;| , and (2) a generalized Voronoi edge which is
ij

a subset of Fy, (whose existence is guaranteed by the Lemma 3.33), then there
exists a first oiiiar cycle. The contrapositive of this statement is also true. If a
GVG cycle does not exist, then an outer GVG? period cannot exist or the Extended
Boundedness Assumption is not valid.

The Extended Boundedness Assumption implies that a GVG cycle cannot exist.
This implies that an outer GVG? period cannot exist or the Extended Boundedness

Assumption is not in effect. However, since the Extended Boundedness Assumption

is in effect, there cannot be any outer GVG? periods. v

The following chart illustrates the flow of logic for the last two paragraphs of

the previous proof.
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3.3.4 The Extended Boundedness Assumption and Planar Envi-

ronments

There already exists a large volume of sensor based path planning strategies which
only work in the plane. It is our belief that barring all sensor-related issues (e.g.,
sensor error, sensor fusion, dead-reckoning, etc.), path planning in the plane is
trivial. In this section, we show that the Extended Boundedness Assumption is
always true in the planar case. This could be a reason as to why path planning in

the plane is much easier than in higher dimensions.

Lemma 3.34 In all bounded environments, when k = 2, the Extended Boundedness

Assumption (Assumption 3.30 is always valid.
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Proof: This is a consequence of Proposition C.9 which states that the generalized
Voronoi diagram is connected. Recall that the generalized Voronoi diagram is the
union of all two-equidistant faces (generalized Voronoi faces). The Boundedness
Assumptions (Assumption 1.1) guarantees that there will be more than one two-
equidistant face. If there were only two disjoint obstacles, then there would be only
one (unbounded) two-equidistant face. However, in the planar case the Boundedness
Assumption guarantees that there must be at least three obstacles, which form a
triangle.

By Proposition C.9 the union of the two-equidistant faces is a connected set and
by Proposition 2.11, the faces are connected through a point that is equidistant to
three obstacles (a three-equidistant face). That is, for every pair of obstacles, there
always exists a third obstacle that is positioned so that there is one point which is

equidistant to all three obstacles. [ E
Corollary 3.35 There cannot be any cycles in planar environments.

Proof: Lemma 3.34 implies that the Extended Boundedness Assumption is always
true in the planar case, and when the Extended Boundedness Assumption is made,
by Lemma 3.33 there cannot be any GVG cycles. Therefore, there cannot be any

GVG cycles in planar environments. [}

3.4 Connectivity

Recall the claim from Section 3.1 that the connectivity problem has been reduced
to showing that each boundary of a second order generalized Voronoi region is con-
nected (or can be readily connected with a link). This claim is valid because the
GVG?|  isa generalized Voronoi complex (Section 3.4.1). Guaranteeing connectiv-
ity of tl?ej second order generalized Voronoi regions (and thus the HGVG) with line
of sight information relies on the introduction of some additional links, described

in Section 3.4.2. With these links, the boundary of each of the second order gener-

alized Voronoi regions is connected (Section 3.4.3) and thus the HGVG, with these
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links, (Section 3.4.4) is connected. We term the HGVG with its links the linked
hierarchical generalized Voronoi graph (L3HGVG).

3.4.1 The HGVG and the Generalized Voronoi Complex

Connectivity of the HGVG on a two-equidistant face will be shown by exploiting
properties of the generalized Voronoi complez, defined in Section C.2. Since the
generalized Voronoi complex is a connected roadmap (Section C.2), the issue of
L3HGVG connectivity can be reduced to showing that the L3HGVG on a two-
equidistant face forms a generalized Voronoi complex.

The generalized Voronoi complex is composed of generalized Voronoi cells, which
are defined in Section C.2. In order to show that a L3HGVG is a generalized Voronoi
complex, we must first demonstrate that each second order generalized Voronoi

, is a generalized Voronoi cell. That is, the following properties must

3]

region, JF;,

hold:

1. 3

is a connected set,
Fij

2. 33'1,, # 0,

Fij

3. &9,

is a connected set,

where & is the “sub-boundary” operator defined in Section C.2. The sub-boundary
of a set is the portion of the set boundary that is contained in the set. For closed
sets, the sub-boundary is the same as the set’s boundary.

If 3;

has many connected components, then each connected component is
Fij
treated as a separate set. Thus, the first property is trivially met. The Extended

Boundedness Assumption (Assumption 3.30) insures that the second property is
easily met because Assumption 3.30 guarantees that for each second order gener-
alized Voronoi region, there exists a generalized Voronoi edge on its boundary. By
Lemma 3.18, this edge is a subset of the boundary of the second order generalized
Voronoi region. The third property, which states that F, is a connected set, is

demonstrated in Section 3.4.3.
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Once it can be shown that the boundary of all second order generalized Voronoi
regions are connected, then the second order generalized Voronoi regions form the
basis of a generalized Voronoi complex. Therefore, the L3HGVG on each two-

equidistant face is connected, and thus the L3HGVG is connected.

3.4.2 Links

The L3HGVG’s connectivity hinges on showing that tl;e boundary of each second
order generalized Voronoi region is connected, which in general is not the case.
Even when the Extended Boundedness Assumption is valid, second order gener-
alized Voronoi regions could contain disconnected boundaries, which give rise to
disconnected HGVG’s. Additional structures, termed links, are used to connect dis-
connected boundary components. In this section, we introduce all of the links that
are necessary to guarantee connectivity of the L3HGVG.

The Extended Boundedness Assumption (Assumption 3.30) guarantees that
there will be no GVG and GVG? cycles. As a result of Lemma 3.33, the extended
boundedness assumption also guarantees there cannot be any outer GVG? periods.
However, this does not preclude the possibility of the existence of an inner GVG?2
period. There are three types of inner periods: (1) one formed by two or more
GVG? equidistant edges, zero or more boundary edge fragments, and zero or more
occluding edge fragments, (2) an occluding period, and (3) a boundary period. The
following lemmas show that a link to each of these inner GVG? periods exists by
construction. The proofs of these Lemmas are in Section 3.4.5. The implementation

of such a linking procedure provides the desired connectivity.

Example 3.36 (Inner Period) Figure 3.27 contains an environment similar to
that of Example 3.32, where the existence of an inner period was dependent upon
the choice of distance function. In Example 3.32, the HGVG, defined in terms of the
X-distance function, contains an inner second order period. However, when the V-
distance function is used to define the HGVQG, the inner period disappeared. In this

example, we show that an inner second order period can exist using the V-distance
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function; that is, even when line of sight information is exclusively used, an inner
second order period can exist.

Figure 3.27 contains a room with four boxes floating in its interior. Two of the
boxes, objects B - 1 and B - 2, are above box A - 1. The environment in Figure 3.27
differs from the environment in Example 3.32 in that boxes B - 1 and B - 2 have
the same depth as box A - 1.

Figure 3.28 depicts a cross-section of a three-dimensional world depicted in Fig-
ure 3.27. The cross-sections of the two-equidistant faces are drawn as solid lines and
arc segments. The cross-sections of the GVG edges are points where three edges
intersect and have circles drawn around them. Figures 3.29 and 3.30 display a top
view of Figure 3.27. In these figures, the solid lines are the GVG edges and the
dotted lines are the GVG? edges. In Figure 3.30 it can be seen that the second
order generalized Voronoi region has an outer and inner boundary. Lemma 3.37

allows for a link to be made between the two boundaries. ¢

Lemma 3.37 (Inner Boundary Link) If an inner GVG? period with GVG? edges
exists on the boundary of the second order generalized Voronoi region, then a link

exists from the outer boundary to it.



102

I:cl
3
iy
B E
f=d P C\_ d =
@™
=
Bf
Fﬂ a-1f a-2f
Floor Faf

Figure 3.28 Cross-section of the environment in Figure 3.27. The cross-section is
parallel to the front face of the rectangular enclosure and cuts it through the
three floating boxes. The solid lines are the two-equidistant faces which meet

at generalized Voronoi edges, which are circled.
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Figure 3.29 GVG and GVG? edges (Top View).
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Figure 3.30 Inner Period.
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Figure 3.31 Two boxes in a room.

The proof of this lemma appears in Section 3.4.5.
The two remaining cases deal with an occluding period and a boundary period.
These cases share a common link creation strategy: gradient ascent or descent of

the multi-object distance function constrained to a two-equidistant face.

Example 3.38 (Boundary Period) Figure 3.31 depicts a room with two boxes
in its interior such that the height of the boxes is the same as the height of the room
(the ceiling and floor intersect the top and bottom of the box, respectively).

The existence of a boundary period is dependent upon the relative distance
between the interior boxes. Figures 3.32 and 3.33 depict the two possible top views
of the environment shown in Figure 3.31. In Figure 3.32, the boxes are far enough
apart for a boundary period to exist. The dashed lines which trace out the top of
boxes A - 1 and A - 2 represent the boundary periods. The dotted lines represent the
GVG? edges, and do not interact with the boundary period at all. The solid lines are
the GVG edges. In Figure 3.33, the boxes are close enough to each other to preclude
the existence of the boundary periods. In this figure, the GVG?2 edges intersect
the boundary fragments. For the environment which appears in Figure 3.32, it is
necessary to construct a link to the boundary period in order to ensure connectivity

of the HGVG. Lemma 3.39 ensures the existence of such a link.
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Figure 3.32 Top View of Figure 3.31 Figure 3.33 Top View of Figure 3.31

when the boxes are far apart. when the boxes are not far apart.
The dashed lines delineate the two The dashed lines delineate bound-
boundary periods, one defined by ary fragments.

the ceiling and box A-1, and the
other defined by the ceiling and box
A-2.

‘s

Lemma 3.39 (Boundary Link) In R?, if a boundary period exists on the bound-
ary of the second order generalized Voronoi region, then it must be an “inner bound-

ary” and a link ezxists from the outer boundary to it.

The proof of this lemma appears in Section 3.4.5.

Example 3.40 (Occluding Link) Disconnected boundaries also arise with oc-
cluding periods and, in fact, are quite similar to disconnectivities found with bound-
ary periods, described in the previous example.

The example in Figure 3.34 is quite similar to the one found in Figure 3.31 from
the previous example. In Figure 3.34, the boxes in the center of the room are not
as high as the ceiling. As was the case in the previous example, the existence of
occluding periods depends on the relative distance between the two interior boxes.
Figures 3.35 and 3.36 depict the two possible top views of the environment shown
in Figure 3.34. In Figure 3.35, the boxes are far enough apart for an occluding

period to exist. The dashed lines which trace out the top of boxes A - 1 and A - 2
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Figure 3.34 Two boxes in a room where the height of the boxes is less than the
height of the room.

represent the occluding periods. The dotted lines represent the GVG? edges, and
do not interact with the occluding period at all. The solid lines are the GVG edges.
In Figure 3.36, the boxes are close enough to each other to preclude the existence
of the occluding periods. In this figure, the GVG? edges intersect the occluding
fragments. In Figure 3.35, it is necessary to construct a link to the occluding period
to ensure connectivity of the HGVG. Lemma 3.41 ensures the existence of such a

link. ¢

Ww-1 W-1

Occluding Period /T—__AL’\ Occluding Fragments /’\1 %

Al A2 Al \\‘ A2

2 gH 2 j
GVG Edgj\ P GVG Edge GVG Edge /\ P GVG Edge

W-2 W-2

Figure 3.35 Occluding Period. Figure 3.36 Occluding Fragment.
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Lemma 3.41 (Occluding Link) InR3, if an occluding period exists on the bound-
ary of a second order generalized Voronoi region, then a link can be made to the

pertod.

The proof of this lemma appears in Section 3.4.5.

The structure that was implicitly defined via the linking procedure described
above is called the L3HGVG, which is the linked hierarchical generalized Vorono:
graph. The L is cubed because there are three types of links: one for inner GVG2

periods, one for boundary periods, and one for occluding periods.

3.4.3 Connected Boundary with Links

The final step in showing that second order generalized Voronoi regions are gener-
alized Voronoi cells is to show their boundaries are connected (with the possible use
of links). We term the second order generalized Voronoi regions with links, linked
second order generalized Voronot regions. The following theorem will be useful in

proving the connectivity of the L3HGVG.

Proposition 3.42 Given the Boundedness Assumption (Assumption 1.1), the Equidis-

tant Surface Transversality Assumption (Assumption 2.12), and the Eztended Bound-
edness Assumption (Assumption 3.30), the boundary of a linked second order gen-

eralized Voronoi region is connected.

Proof: The boundary of F;, comprises
Jij
¢ one generalized Voronoi edge (Assumption 3.30, Lemma 3.31),
e zero or more GVG? equidistant edges,

* zero or more boundary edge fragments from the same boundary edge,

e zero or more floating boundary edge fragments from the same floating bound-

ary edge, and

e zero or more occluding edge fragments from the same occluding edge.
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A boundary of a second order generalized Voronoi region can be written as

9T,

U U s U Ui

=F J Fu
Fijlyel, Is€Ls ls€Lyl5€ls

i el

where L; are the sets of indices that catalog the appropriate structure types that

are contained in the boundary of the generalized Voronoi region, F7,

is a closed and connected set (treat each connected component
Fi;

Since

can be expressed as the union of connected
Fiy

separately), the boundary of J;,

components:

03},

3
Fi;

=| 18,7
Fij L1J ‘

where 0,5, is the ¢th connected boundary component.
Fij

By Lemmas 3.18, 3.19, and 3.31, JF;;, can only be the subset of one of the

be the connected component that contains Fjj,
Fis

boundary components. Let &3},

). Furthermore, by the Extended Boundedness Assumption
Fij

(i.e., Fijn C 0T

(Assumption 3.30) and Proposition 3.17, F,;; # 8:Fx| , because Fiji cannot be
Fi;
a cycle. Finally, since J;;;, is not a cycle, Lemma 3.8 gua]rantees that second order

generalized Voronoi edges will emanate from the meet points which are the end
contains a GVG edge and GVG? equidistant

Ti;
edge, and perhaps boundary, ﬂoatilllg boundary, and occluding fragments. That is,

points of F;;;. Therefore, O, F;,

Ty

= Fijn U T,
Fij Lel

, UeiilJ Feii Jvis
ij

where Ly C L and |J; L; = L.

For 7 > 1, the boundary components can have one of the following forms:

Uner, T,

&I =
i k 5., V;J

Ueij U feij Uvi; (GVG? period with GVG? edges),

(occluding period),
Cij (boundary period).
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The Extended Boundedness Assumption (Assumption 2.12) and Lemma 3.33 assert

that for ¢ > 1, ;% may only be an “inner” GVG? period. If no such structure

ij

exists, then 9,F|  is the only connected component of the second order generalized
Fij
Vorononoi region, and the proof is done.

However, if there is an inner GVG? period, Lemmas 3.37, 3.39, and 3.41 guaran-

. There-
Fij

tees a link can be constructed between the inner GVG? period to 8;F;

, or there

fore, 919,

is either the only connected boundary component of J;,

, and
Fij
thus the boundary of the linked second order generalized Voronoi region is con-

exists other connected boundary components which readily link to & F;

nected. [ ]

3.4.4 The L’ HGVG is Connected

Proposition 3.43 Given the Boundedness Assumption (Assumption 1.1), Equidis-
tant Surface Assumption (Assumption 2.12) and Ertended Boundedness Assump-
tions (Assumption 3.30), the L3HGVG is connected.

Proof: The proof of L3HGVG’s connectivity is done in two steps. The first step
shows that each “linked” second order generalized Voronoi region is a generalized
Voronoi cell, and the second step shows that the union of the generalized Voronoi
regions form a generalized Voronoi complex on each two-equidistant face. Since
the union of the two-equidistant faces is connected (Section C.4), the union of the
roadmaps on each of the two-equidistant faces is connected.

The previous sections showed that the second order generalized Voronoi regions
are generalized Voronoi cells (Proposition 3.42). Therefore, the second order gener-
alized Voronoi regions on a two-equidistant face form a generalized Voronoi complex

because the following are immediately true:

1. UL % :§ij,

‘

0

2. int(Jy,

' )ﬂint(i}'l‘ y=0 Vk,l,

Fij Fi



109

3. d(F INA(F] )#£0 = T

Fi; Fi;

# 0.

N o

Fi

3.4.5 Proofs of Lemmas in Section 3.4.2
Proof of Lemma 3.37

Lemma 3.37. If an inner GVG? period with GVG? edges ezists on the boundary
of the second order generalized Voronoi region, then a link exists from the outer

boundary to it.

Proof: By the Extended Boundedness Assumption (Assumption 3.30), if an inner
GVG? period contains a GVG? edge, then it must contain a second order meet
, such that (1) at this point, obstacles C; and C; are the closest

i
obstacles and obstacles C},, Cy,, and C), are the second closest, and (2) there exists

point, 3'],:1112

a point, z, on the outer boundary where dj, () = dj,(z). A link can be formed by

tracing 88y,;,| , a second order two-equidistant surjective surface constrained to a

5]

two-equidistant face, past a second order meet point, Fy;,;,

. By the Bounded-

EF'J

ness Assumption (Assumption 1.1) and Lemma 3.15, 88§),, is guaranteed to be
Fi;

unbounded and therefore must intersect another boundary component of | . N

Proof of Lemma 3.39

Lemma 3.39. In R3, if a boundary period ezists on the boundary of the second
order generalized Voronoi region, then it must be an “inner boundary” and a link

exists from the outer boundary to it.

Proof: This proof relies on the following lemma.
Lemma 3.27 If the objects C;, ..., C;, intersect, then the associated k-equidistant

surjective surface, 88;,. 4, , is unbounded. In fact, if objects C;,,...,C;, intersect,
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then none of the gradients, Vd;, (z),...,Vd;, (), is orthogonal to T,88;,. 4, for all
T € 83,4, -

Lemma 3.27 guarantees that a two-equidistant surjective surface, 88;j, is un-
bounded. By hypothesis, it has only one boundary, Cij. When Cj; is a Jordan
Curve, the bounded portion of 88;; is the empty set, and the unbounded portion
of 88;; is 88;j. Therefore, the generalized Voronoi region, F;| , which has Cij
on its boundary, lies in the unbounded portion of 88;;. Thereforg, C;j is an inner
boundary.

At a point z € Cyj, di(z) = dj(z) = D(x) = 0. Let Y = (nbhd(z) N F;;)\C;; for
a sufficiently small nbhd(x). Therefore, a path from z to any point y € Y increases
the distance to objects C; and Cj. That is, following Vd;(z) or Vd;(z) brings the
robot to a point y € Y. Let the second closest obstacle be Cj, (i.e., y € int(F;| )).

Now a path from y must be traced. By Lemma 3.27, the generalized gragﬂzn‘c
of D never vanishes on 88;; (and thus J;;). In fact, using nonsmooth analysis,
Proposition 2.21 states that 73, ,0D(z) = w5, Vd;(z) for all z € Fij. Therefore,
gradient ascent using the gradient of D on J;, normally a nonsmooth function, is
reduced to gradient ascent using Vd;(x) projected onto F;;. The gradient Vd;(z),
projected onto J;; never vanishes.

Since distance is increasing, a path traced out by following the gradient Vd;(z)
never encounters the boundary period; in fact, such a path will be maximally moving
away from the boundary period. By the boundedness assumption (Assumption 1.1),
the path terminates on one of the following: (1) at a point = where there exists an
object Cj for which di(z) = dy(z) > di(z) = dj(z), or (2) at a point = where
di(x) = dj(z) = di(z). ]

Proof of Lemma 3.41

Lemma 3.41. In R®, if an occluding period ezists on the boundary of a second

order generalized Voronoi region, then a link can be made to the period.

Proof: This proof relies on the following useful property of two-equidistant surjective

surfaces.
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Figure 3.37 The supporting planes for convex obstacles C; and Cj.

Lemma 3.44 Except at a local minima of the multi-object distance function, the
generalized gradient of the multi-object distance function never projects to zero on

any tangent space of a two-equidistant surjective surface.

Proof: Let mr,gs;; be the orthoginal projection operator onto 7,88;;. Let [ be
the shortest distance between two convex obstacles C; and C;. Therefore, for all
x € 88;j, D(x) > I. Assume that there exists a point = where nr,88;,;,0D(z) = 0. By
hypothesis, D(z) = L > . By Proposition 2.21, mr,88;,; Vdi(z) = mp,88,,Vd;(z) = 0.
That is, Vd;(z) and Vd;(z) are each orthogonal to T, 88;;. In fact, by definition of
the two-surjective equidistant surface, Vd;(z) = —Vd,;(z).

Let HC;(z) and HC}(z) be two supporting hyperplanes of C; and C| respectively
such that they are orthogonal to Vd;(z) and Vd;(z), respectively, and pass through
the nearest points in C; and C; to z, respectively. See Figure 3.37.

Since Vd;(z) = —Vd;(z), HCj(z) is orthogonal to Vd;(z) as well. Therefore,
HC;(z) and HC(z) are parallel. Thus, the distance between convex obstacles C;

and C} can never be less than L. This is a contradiction.
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Let z be a point in the occluding fragment vy . Without loss of generality,
ij

assume that € int(vy;| ). Recall that the X-distance function measures distance
to obstacles, even if theijjare occluded. Assume that df* (z) > dif (z) > d¥(z) =
d}X (z). For a neighborhood ¥ = nbhd(z) N F,;, there are two connected subsets:
Y, points y € Y for which dY (y) > d¥ (y) > d¥ (y) = d}/(y), and Y*, pointsy € ¥
for which dY (y) > dY (y) > dY (y) = d;/(y) For points where dY (y) > df (y), dY (y)
is infinite. This occurs when C; or C; occlude Cf. Without loss of generality assume
that C; occludes C;,.

Since we are using convex obstacles, without loss of generality, we can let Z:n
be the unique isolated local minima of D on 88;;. That is, for all # € 88;;\{zmin},
D(z) > D(®min). Furthermore, d;(z) > d;(zymin) for all z € S8 \{&min }-

Recall that Vd;(z,,:n) is orthogonal to T, . 88;;. In other words, there exists a
straight line, L, between @,,;, and the nearest point on C; to 2,,in, such that L is
orthogonal to T, (s, and Cj.

min ?

Without loss of generality, assume that ., & vgg| . So, Zynin is either inside
or outside the occluding period. However, since ‘chere;r iéxists a straight line from
Tmin to C;, C; must occlude Cy at ,n. Therefore, z,,, is inside the occluding
period.

Lemma 3.44 guarantees that the gradient of D does not vanish on a two-
equidistant face (except at the local minima) and Proposition 2.21 states that the
generalized gradient of D, constrained to a two-equidistant face, is a vector, not a
set. Therefore, if the occluding period is an inner boundary component of a second
order generalized Voronoi region, a link from an occluding period to an outer bound-
ary component can be made by following the gradient of the multi-object distance
function, constrained to the two-equidistant face on which the occluding period is

defined. Generating a link to an inner occluding period is accomplished by following

the negated gradient of D.
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When the occluding period is an outer boundary component, a link from (to)
an occluding boundary is made by following the negated gradient (gradient) of the

multi-object distance function, D. |
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Chapter 4

Incremental Construction of the GVG

A key feature of the L3HGVG is that it can be incrementally constructed using
environmental features that are within line of sight of the robot. In the scenario
in which the robot has no a priori information about the environment, the robot
must construct a roadmap in an incremental manner because most environments
do not contain one vantage point from which a robot can “see” the entire world,
and thereby construct a roadmap from a single vantage point. The incremental
construction techniques, described in this chapter, provide a rigorous approach to
constructing the L3HGVG using only line of sight sensory information. Although
the proof of connectivity of the L3HGVG is limited to the three-dimensional case,
the incremental construction techniques described in this chapter are general.

Although there do exist other sensor based schemes (see [35] for a review of
planar sensor based planning), very little analysis of the numerical properties of
these schemes has been done. However, the incremental construction techniques,
described in this section, are numerically well posed, and these techniques can be
adapted to other sensor based planning methods such as the Opportunistic Path
Planner (described in [9, 38]).

Some sensor based planners do not possess a complete incremental construction
strategy. For example, Canny and Lin’s OPP [9] constructs part of its roadmap (the
freeways) for a multi-dimensional workspace using local information, and is therefore
partially incremental. However, the construction of “bridge curves,” which guaran-

tee the roadmap’s connectivity, requires the identification of “interesting critical
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points.” Complete prior knowledge of the world’s geometry is needed to identify
the critical points. This is a major limitation of their algorithm for sensor based
implementation. Rimon and Canny [38] suggested a way to “sensorize” the OPP

” and a “minimum

algorithm. They introduce the notion of a “critical point sensor,’
clearance” sensor, though the implementation of such sensors is not well detailed.
Furthermore, they do not provide a detailed method to construct the freeway seg-
ments from sensor data.

In contrast, this chapter formulates a method for the construction of roadmap
segments from sensor data. (It is worth noting that the incremental construction
procedure can be the basis of a numerical method to construct a roadmap when
full geometry of the world is available.) The HGVG’s properties of accessibility,
departability and connectivity translate to incremental accessibility, incremental
departability, and traceability, respectively, in the incremental construction of the
HGVG.

The incremental construction algorithms, described in this chapter, borrows
techniques from the numerical curve tracing literature. Initially, the initial tech-
niques were developed to generate GVG edges (Section 4.1), but then they were
generalized to trace GVG? edges (Section 4.3) and to effect incremental accessi-
bility (Section 4.2). The accessibility section may seem out of order because the
traceability and accessibility sections use some common results which are easier to
visualize in the traceability context. Next, the incremental linking procedure is de-
scribed in Section 4.4 and the incremental departability procedure is described in
Section 4.5. The entire algorithm is verified by simulations and experiments that

are reviewed in Section 4.6, and Chapter 5, respectively.

4.1 Traceability of the GVG

In an incremental context, the property of connectivity is interpreted as traceabil-
ity. More specifically, traceability implies that using only local data, the robot can

“trace” the GVG (or HGVQG) edges and determine when to terminate the tracing
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procedure. The robot concludes the edge tracing process when it encounters (1) a
meet point, a point where GVG edges intersect (2) a boundary point, a point where
a GVG edge intersects an obstacle, or (3) a floating boundary point, a point where
two gradient vectors converge on each other. At each meet point, the robot begins
tracing new edges. The robot also changes directions and traces boundary edges
when it encounters a boundary point or a floating boundary point. In this section,
we present and analyze a method for tracing a connected component of the GVG,
For the sake of explanation, the following discussion is limited to the GVG and is

generalized to the HGVG in the following section.

4.1.1 Properties for Tracing

Naively, one could trace an edge by repeated application of the accessibility method.
That is, the robot would move a small distance along a given direction—either a
fixed direction, or perhaps the tangent direction to the current edge. Gradient ascent
would then be used to move back onto the local edge. The OPP [9] method and
its sensor based adaptation [38] use this strategy with a fixed stepping direction.
However, gradient ascent can be a computationally expensive procedure because of
its slow convergence. Also, the constant step direction leads to undesirable roadmap
artifacts [15].

Our approach borrows some basic ideas and techniques from numerical con-
tinuation methods [24]. Continuation methods are used to trace the roots of the
expression G1(y,A) = 0 as the parameter ) is varied.

The incremental construction of a GVG edge can be implemented as follows. Let
z be a point on the GVG. Choose local coordinates at  so that the first coordinate,
21, lies in the direction of the tangent to the graph at z (see Figure 4.1). At z, let
the hyperplane spanned by coordinates zg, ..., 2, be termed the “normal plane.”
We can thus decompose the local coordinates into z = (y, A), where A = z; is termed

the “sweep” coordinate and y = (22, ..., 2,,) are the “slice” coordinates. Now define
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Figure 4.1 Continuation Method.

the function Gq: R™™ 1 x R — R™~1 as follows:

[ (d1 — da)(y, \)

(dl - d3)(y7 A)

Gi(y,A) = (4.1)

_(dl — don) (¥, /\)J

The function Gi(y,A) assumes a zero value only on the GVG. Hence, if VG; is
surjective at some point, then the implicit function theorem implies that the roots
of G1(y, ) locally define a generalized Voronoi edge as A is varied. By numerically
tracing the roots of this function, we can locally construct an edge.

While there are a number of curve tracing techniques [24], we use an adaptation
of a common predictor-corrector scheme, as illustrated in Figure 4.1. Assume that
the robot is located at a point z on the GVG. The robot takes a “small” step, A\, in
the z1-direction (i.e., the tangent to the local GVG edge). In general, this prediction
step takes the robot off the GVG. Next, a correction method is used to bring the
robot back onto the GVG. If AX is small, then the graph will intersect a correcting
plane, which is a plane orthogonal to the z;-direction at a distance A\ away from
the origin. The correction step finds the location where the GVG intersects the
correcting plane.

Let V4G4 be the matrix formed by taking the derivative of Equation 4.1 with
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respect to the normal plane’s coordinates (slice coordinates). It takes the form

[(Vydi(y, ) — Vyda(y, A)T

_ T
vyGl (y, A) _ (Vydl (y7 /\) : vyd3(y7 A)) , (42)

_(Vydl (ya /\) - vydm(ya ’\))T_

where V, denotes the gradient with respect to the y-coordinates. We will show that
V4Gi(y, A) is full rank at every (y,A) in a small enough neighborhood of the GVG,
and so it is possible to use an iterative Newton’s Method to implement the corrector
step. If " and A" are the hth estimates of y and A, the h 4 1st iteration is defined

as
y =yt — (V,G1) T G ), (4.3)

where V,Gy is evaluated at (y", A"). After taking the prediction step, the goal
of the correction step is to find where the GVG locally intersects the “correcting
plane.”

There are several things worth noting about this method. First, to evaluate
G1(y,A) and V4Gi(y, ), one only needs to know the distance and direction to
the m objects that are closest to the robot’s current location—information that
is easily obtained from local distance sensor data. Second, Newton methods are
quadratic in their convergence, and thus they would be substantially faster than
the naive gradient ascent techniques. Third, V,Gi(y,\) is an (m — 1) x (m — 1)
matrix, and is thus typically quite small in size (e.g., a scalar for two-dimensional
environments, or a 2X2 matrix for three-dimensional environments), and the method
is not computationally burdensome.

The following two subsections demonstrate that Equation 4.3 is well posed be-
cause (VyG1(y, A)) ! is defined, and that we can always compute (using local sensor
data) a vector which is tangent to the GVG. In proving these assertions, several new

and useful properties of the generalized Voronoi graph are presented.
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Computing the Tangent to the Graph.

We first tackle the question of how to determine the tangent to a GVG edge from
sensor data. Recall that the regular Voronoi graph (RVG) is the Voronoi graph
for the case in which the obstacles are points. Further, recall that the regular k-
equidistant face, R;, . ;, , is a k-equidistant face whose k closest obstacles are points.
In m dimensions, a regular m-equidistant face is an RVG edge and it is equidistant
to m closest point objects. Previously in the literature, such a structure was termed
a Voronoi graph edge, but here, we will label it a regular Voronoi edge to better
distinguish it from a generalized Voronoi edge.

Let z be a point on the GVG edge, and let {¢;} denote the set of closest points
of the m closest obstacles, {C;}, to #. The RVG edge defined by the points {c;}
and the GVG edge coincide at z. We can compute many items of interest about

the GVG by exploiting the coincidence of the RVG with the GVG at .

Proposition 4.1 The tangent to a GVG edge at @ is defined by the vector orthog-
onal to the hyperplane which contains the m closest points, ci,...,cm, of the m

closest objects, C1,...,Chp,.

Proof: This proposition is a simple consequence of the following two lemmas when
k=m.

Lemma 2.19 Let ¢1,...,c, be the k closest obstacle points to a point . Let
Riy .., be the regular Voronoi graph edge defined by these points where k < m. When
Assumption 2.12 is upheld, any vector in the tangent space TyR;, ;. 1is orthogonal
to the k — 1-dimensional plane containing ci,...,c,. The tangent space TaRiy i, 18
also orthogonal to the (k—1)-dimensional plane containing the heads of the gradient
vectors based at x.

Lemma 2.20 Let cy,...,c;, be the closest points in the k nearest obstacles to
x € F;,. 4, - At a point © in the k-equidistant face, the tangent space T,F;,. i, 1s the
same as the tangent space T,R;, ;, , where Ry, i, is the regular k-equidistant face
defined by cq,...,cp.

Let = be a point on a GVG edge defined by the obstacles Cy,...,C,,. The



Figure 4.2 The tangent space is the line orthogonal to the line that connects the
two closest points on the two closest obstacles.

m closest points c1,...,cp, of the m closest obstacles define an RVG edge. When
k = m, Lemma 2.19 asserts that the tangent space of the RVG edge at z is a one-
dimensional vector space whose basis vector is orthogonal to the hyperplane which
contains the m closest points cq, ..., ¢cp,.

Lemma 2.20 contends that the tangent space at z of the RVG edge, defined
by c1,...,¢m, is the same as the tangent space at z of the GVG edge defined by
C1,...,Cy. Thus, by knowing the distance and direction to the m nearest points,

the tangent to a generalized Voronoi graph edge is easily computed. |

Example 4.2 (Tangent in Two-dimensional Workspace) Let C; and Cs be
the two closest obstacles to a point z on F19. Let ¢1 and ¢ be the two closest points
on the two closest obstacles. Pass a line through ¢; and c¢p; parallel shift this line so
it passes through z. The displaced line is the normal plane and the line orthogonal

to the normal plane is the tangent space. See Figure 4.2. ¢

Example 4.3 (Tangent in Three-dimensional Workspace) Let C},C and C;
be the three closest obstacles to a point = on Fya3. Let c1,¢2 and c3 be the three
closest points on the three closest obstacles. The tangent to the GVG at z is a vector
which is normal to the plane defined by c1, co and c3. Let ¢ be the vector formed
by subtracting ¢o from c;. Let €13 be defined in a likewise manner. The normal to

the plane which contains ¢1, ¢z, and c3 is collinear with the vector €19 X C13- ¢
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The Matrix V G is Invertible.

The following proposition illustrates that the numerical procedure defined by Equa-

tion 4.3 is well posed for A\ sufficiently small.

Proposition 4.4 (Equidistant Surface Full Rank Property) V,Gi(y,\) has

full rank (i.e., has rank (m — 1)) on the correcting plane in a neighborhood of the

GVG.

Proof: The following two lemmas are necessary in showing V,G1(z) is full rank.

These lemmas furnish a general result for the function G': R™ — RY which is defined

(dil - djl ) (:C)
G(z) = : : (4.4)

(di, — dj,)(2)

If for all 71,72 € {1,...,n},

{iﬁ’jrl} 7é {7:1’27jr2}7 (45)

then G~1(0) represents the intersection of g distinct two-equidistant surjective sur-

faces, i.e., G~1(0) = 885, M-+ 88;,;,- When the condition in Equation 4.5 is met

and

q :m_17
i =1, forr=1,...,m—1, (4.6)

jr =r+1, forr=1,...,m—1,

G~1(0) is the intersection of m — 1 two-equidistant surjective surfaces which gives
rise to a GVG edge. In other words, G(z) = G1(z). From here, this proof is now a

simple consequence of the following:
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Lemma 4.5 Consider the mapping G: R™ — RY defined as

(diy — dj, )(z)
G(z) = : : (4.7)

(di, — dj,)(x)

The rank of VG(z) is q for all z € 88,5, N+ 88;,5,, when

88ij [ )-()88i,5, # 0

and for allry, 72, {1y, 50 } # {iry,Jr,}. That is, each pair {i,,j,} is unique.

Proof: First, consider the case when ¢ = 2. In this case, the robot is either equidis-
tant to three obstacles (e.g., i1 = 1,7; = 2,41 = 1, and j2 = 3) or two sets of two
obstacles (e.g., i1 = 1,51 = 2,42 = 3, and jp = 4). The respective tangent spaces of

88,5, and 88;,;, are:

Tzsshh = {U € T,R™: <v(d?1 - de(.’E),'U) = O}’

128855, = {v € T,R™ : (V(d;, — dj,)(z),v) = 0}.

By the Equidistant Surface Transversality Assumption from Section 2.3.2, we
know that 88;,j M 88;,j,. Assume at some point z, V(d;, — dj,)(z) = kV(d;, —
dj,)(z). By definition, for all w € T, 88;;, (V(d;, — dj,)(x),w) = 0. Since Vid;, —
dj, )(z) = £V (di, — dj,)(z), for w € T, 88,5, (V(di, — dj,)(x),w) = 0. This implies
that T,88;,j, = T,88,,j, which violates the Equidistant Surface Transversality As-
sumption (Assumption 2.12). Therefore, V(d;, — dj,)(z) # xV(d;, — d;,)(z); that

is they are linearly independent. It therefore follows that

S T T
nk (v(dll d]l)( ))

ra = 2.
(V(di, — dj,) ()"

Now, we consider the case where ¢ = 3. Here, the robot may be equidistant to

four obstacles, three sets of two obstacles, or three obstacles and an additional pair
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of obstacles. Consider the matrix,

(V(dh - dj1)(x))T
VG(z) = [ (V(d;, - dj,)())T
(V(di, — dj;)(2))T

The Equidistant Surface Transversality Assumption (Assumption 2.12) guarantees

each row is pairwise linearly independent:

Vd;, —Vd;, # k12| Vd;, — vd;, |,
Vd,‘l — Vdjl # K13 Vdig — Vdj3 , (4,8)
Vd;, —Vd;, # ka3 (Vdi3 — Vdjs).

It remains to show that no one row is a linear combination of the other two.

Again, we prove this by contradiction. Assume V(d;, — dj,) = a(V(d;, — dj,)) +
B(V(diy — dj,)). By definition, for all w € T3,88;,;,, (V(d;, — dj,)(z),w) = 0. Thus,

V(di, — Zﬁ) = a(V(di)z - JE)) + ﬁ(V(du)—) ;
= ((a(V(di, —dj,) ) +B8(V(di, — w) =
= (V(d,;z - djz)) + §<V(d2 - )) >

Since by Equidistant Surface Transversality Assumption [16], for all w € T,.5;, Jat

< V(d;, —djz)(x)>,w> # 0
(Vs = d)@)sw) #0,

we conclude that V(d;, — d;,) = (V(dz3 d;, )) However, this contradicts one
of the three inequalities in Equation 4.8. Therefore, all the rows of VG are linearly

independent of each other and rank(VG) = 3.
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The lemma follows by induction. Assume the matrix

(V(diy = dj,)(2))"
G(z) = '
(V{di,_y = dj,_,)(2))”

has a rank of ¢ — 1, and let 8S;_;, be a two-equidistant surjective surface defined
by obstacles C;, and Cj,. The remainder of the this proof follows by contradiction.
Assume that V(d;, —d;,) = Z?;} ar(V(d;, —d;.)). At a point z € 88;_ ; , for all
w € 1,88, w is orthogonal to V(d;, — d; )(x). Therefore,

q—1 q—1
D Ar(V(di, —dj, ) (=), w) =0 = > 0, (V(d;, - d;,)(e)) = 0.
r=1 r=1 (49)
It follows that
g—1
Vidy = dyy) (@) = 3 I (V(di, ~ dj,) (@), (4.10)
r=2

which leads to a contradiction because the rank of G is q—1 (i.e., the rows of G are
linearly independent of each other). Therefore, V(d;,—d;,) # Z?;i a,(V(d;,—d;,)),

and thus
Vidi, — Vd;,)(z)

rank(G(z)) = rank : =q.
v(diq - Vqu)(I)

Lemma 4.6 Consider the mapping G: R™ — RY defined as

(di1 - djl ) (J:)
G(z) = : . (4.11)

(di, —d;,)(z)
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On the normal slice plane (and all planes parallel to it) rank(V,G) = rank (VQ)
for @ € 8845, N~ 88,5, when 88;5, N---N88;,;, # 0 and each pair {i,,j,} is

unique. That is, for all r1,72, {ir,Jr } 7 {iry,Jry }-

Proof: As a consequence of the pre-image theorem, each element (i.e., row) of G
defines a two-equidistant surjective surface. Since 88;,;, N---N 88;,5, # 0 and each
pair {iy,j,} is unique (i.e., for all 71,79, {,,,5r, } # {ir,,3r, }), N0 two components
of G are the same. Therefore, when Assumption 2.12 is upheld, the pre-image
theorem asserts that G1(0) is a manifold with co-dimension g whose tangent space
at a point @ € 88;,;, (1---(188;,;, is the null space of VG(z) which is equal to
T: (885, N---N88;,5,). Finally, let the normal slice be the g-dimensional plane
orthogonal to the tangent space of G71(0) at z.

Pick r € {1,...,q}. Let ¢;, and c;, be the two closest points on obstacles C;,
and Cj,, respectively, to . By Lemmas 2.19 and 2.20, T, 88;,j, can be viewed as
co-dimension one plane that is the locus of points equidistant to ¢; and cj, -

Let ny,...,n,1 be an orthonormal basis for T,88;,;, whose origin is the mid-

point of the segment that connects ¢;. and ¢;,. In this coordinate frame,

z = (.. .,2m 107

¢, =(0,...,0,a)T
¢, =1(0,...,0,—a)7,
where o — Miz—cicll
2 -
Let the slice line, sl,, be the line which is orthogonal to T,88;,, and passes
through z. That is,
Sl,r =T + )\/U \v/)\ E R

where v € (T,88;;)". Let the base line, bl,, be the line defined by ¢;, and ¢; , i.e.,

b, =cj, —ci,) VAER
=(0,...,0,0T YA€R.
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By construction, bl, is also orthogonal to T,88;, ;,, i.e., for all w € T,88;;,

(w,bly) = {(wh,...,w™ 1 0)T,(0,...,0,)T) VAeR
=0.

Therefore, the slice line and the base line are parallel, and thus, for all A € R,
bl, = v where v € (T;;88;;)*.

Let 7y, be the orthogonal projection onto bl,. operator. By definition, my, (cj, —
¢i,) = ¢j, — ¢;,. From this, we can conclude that (z —¢;. ) — (z — ¢;,) is equal to the

projection of itself onto bl,.. In other words, (z —¢;,) — (¢ — ¢;,) € bl,, or

mo, (2 —¢i,) — (2 ~¢j.)) =7y, (¢, —ci,)

. (4.12)

i

:Cj

r

=(x—¢,)—(x—cj).

Note that (z — ¢;, ) = —d; (2)Vd; () and (z — ¢;,) = —d;, (z)Vd;,.(z) (recall that
d;, (x) = d; (x)). Substitute these relationships into (4.12).

o, ((x—ci,)—(@—¢c;)) =(x—c,)—(z—¢j)
T, (—di, (2)Vd;, (z) — (=di, (2)Vd;,(z))) = —d; (2)Vd; (z) — (=d;.(2)Vd;,(z))
di, (z)mp, (Vdi, (x) — Vd;, (2)) = d; (2)(Vd;, (2) — Vd;,(2))
™, (Vdi, (x) — Vdj, () = Vd; (z) - Vd;, ().

Since the slice line is parallel to the base line,

7o, (Vd;, (z) — Vdj, (2)) =7y, (Vd,, () — Vdj, (2))
= Vd;, (x) — Vd;, ().

We can conclude that

V(dh - d]l)(w) Vsl;l (dzl - djl)(l')

V(di, — d;,)(z) Va,(di, —d;,)(z)
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and since slice plane Y is the span of sl, ..., sl,,
VG(z) = VyG(z). (4.13)
Therefore, rank(VG(z)) = rank(VyG(z)). v

The matrix VG is an m —1 by m — 1 matrix, and thus by Lemma 4.5, the rank
of VG is m — 1. Lemma 4.6 asserts that rank(V,G4) is m — 1 for all z € F", and
therefore must be invertible at z.

Since the rank operation is a continuous function, V,,G must be invertible in an
open neighborhood around z = (y, A\) € ™. This open neighborhood will intersect
the correcting plane for AX sufficiently small, and thus V,G is invertible on the

correcting plane as well. |

In practice, the neighborhood of invertability is quite large with this method.
Practically speaking, this result states that the numerical procedure defined by
Equation 4.3 will be robust for reasonable errors in robot position, sensor errors,

and numerical round off errors.

4.1.2 Terminating Conditions

So far, we have shown that the robot can trace a generalized Voronoi edge, but when
does a tracing procedure stop? Due to the boundedness of the robot’s environment,

the generalized Voronoi edges must terminate, as stated in the following proposition.

Proposition 4.7 Given the Equidistant Surface Transversality Assumption, in a
bounded environment, if a generalized Voronoi edge is not a cycle (a GVG edge
diffeomorphic to a circle), it must terminate: (1) at a generalized Voronoi vertez (a
meet point), (2) on the boundary of the environment, or (3) at a point where two

gradients of single object distance functions become collinear.

Proof: This proof is a consequence of Proposition 2.11 when k = m. |
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When the GVG edge is cycle, the edge tracing procedure terminates when the
robot circumnavigates the cycle. This procedure requires that the robot possess an
accurate dead reckoning system.

Incremental construction of the GVG is akin to a graph search method where the
generalized Voronoi edges are the “edges” and the meet points and boundary points
are the “nodes.” Once the robot has accessed a point on the GV@, it begins tracing
an edge. If the robot encounters a meet point, it marks the direction from where it
came as explored, and then explores one of the other m edges that emanate from the
meet point. It also marks that direction as being explored. If the robot encounters
another unvisited meet point, the above procedure is recursively repeated. When
the robot reaches a boundary point, it simply turns around and retraces its path
to some previous meet point with unexplored directions. The robot terminates
exploration of the GVG component (i.e., there may be other disconnected GVG
component) when there are no more unexplored directions at any meet point. If the
robot is looking for a particular destination whose coordinates is known, then the
robot can invoke graph searching techniques such as the A-star algorithm, or depth

first search algorithm.

Meet Point Detection

Finding the meet points is essential to proper construction of the graph. While a
meet point occurs when the robot is equidistant to m + 1 objects, it is unreasonable
to expect that a robot can exactly detect such points. For example, while tracing
an edge, it is unlikely that the robot will pass exactly through an m + 1 equidistant
point. Furthermore, sensor error may make such detection difficult. Nevertheless,
as shown in Figure 4.3, meet points can be robustly detected by watching for an
abrupt change in the direction of the (negated) gradients to the m closest obstacles.

Such a change will occur in the vicinity of a meet point.
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Figure 4.3 Meet Point Detection.

Departing a Meet Point

Recall that the robot is equidistant to m+1 objects at a meet point. It must be able
to identify and explore the m +1 generalized Voronoi edges that emanate from each
meet point in order to completely construct the GVG. Note that each emanating
edge corresponds to an m-wise combination of the m + 1 closest objects. Assume
that we wish to explore and trace the edge corresponding to objects C1,...,Cp,,
the distances to which are di(z) = dao(z) = --- = d,,,(z), respectively. Proposition
4.1 yields the one-dimensional tangent space to the generalized Voronoi edge cor-
responding to these m objects. If v is a basis vector of this GVG edge’s tangent
space, the robot must determine if it should depart the meet point in the +v or —v
direction. We want the robot to move away from the m + 1% obstacle, the distance
to which is dy,y1(z). If (Vdpq1,v) > (Vd;,v) where i € {1,...,m}, then the robot
should move in direction +v, otherwise —v. This effects motion away from Crit1-
Now, the procedure for incremental construction of the GVG is complete. Rather
than extending this description to the higher order GVG’s, we consider the numerical
aspects of incremental accessibility in the following section. Some of the results
in the following section are useful for incrementally tracing all of the structures

associated with the GVG2.
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4.2 Incremental Accessibility

Incremental Accessibility is the ability to access some point on the GVG via a
collision-free path from any point in the free space, using only local information. It is
obtained by gradient ascent of the multi-object distance function, D (Section 2.3.5).
Recall from Section B.3 and [15], using nonsmooth analysis it can be shown that

the generalized gradient of D(z) is
OD(z) = Co{Vd;(z) : ¢ € I(z)}, (4.14)

where Co is the convex hull operation, and I(x) is the set of indices such that
Vi € I(z), each Cj is the closest object to z (so there can be more than one “closest”
object). Since 8D(xz) is comprised of single object distance gradients, it can be
readily computed from sensor data.

Naively, one can assume that gradient ascent of D reduces to a sequence of gradi-
ent ascent operations, constrained to equidistant faces where the robot travels via a
collision-free path along a two-equidistant face, then a three-equidistant, and even-
tually to an m-equidistant face. That is, after the robot accesses a two-equidistant
face, it performs gradient ascent of D, but constrained to the two-equidistant face
until it reaches a three-equidistant face. Then, the robot performs gradient ascent of
D but constrained to a three-equidistant face. This procedure is iteratively repeated

until the robot encounters an m-equidistant face, a GVG edge.

Example 4.8 Figure 4.4 is a cross section of a three-dimensional world (imagine the
polygons are coming out of the page) which contains two examples of accessibility
in three dimensions. Starting from (A), the robot follows gradient ascent of d; until
it reaches J;;. From there, it does gradient ascent of D = d; = dj, constrained to

F i until it reaches F;;;, an edge of the GVG. ¢

In actuality, the above “naive” accessibility procedure is not entirely correct in
dimensions greater than three. The above procedure represents the tail end of a

sequence of gradient ascent operations, each constrained to an equidistant face. It
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Figure 4.4 Gradient ascent accessibility in R>.

is possible that gradient ascent of D describes a path of the robot which traverses
a two-equidistant face, then a three-equidistant face, then another two-equidistant
face, then a three-equidistant face, etc. That is, in the course of doing gradient ascent
of D, the robot may drop down to two in “equidistance count” before undergoing
the cascading sequence of constrained gradient ascent operations which bring the
robot to a GVG edge.

The procedure to trace a path on a k-equidistant face, using constrained gra-
dient ascent of the multi-object distance function, borrows some basic ideas and
techniques from numerical continuation methods [24], in a fashion similar to the
approach described in Section 4.1. Here, the roots of the expression G4(y,A) =0
as the “parameter” A is varied describes a path on a k-equidistant face. Note, in
this case A is a vector, i.e., it is not a scalar as it was in the incremental traceability
procedure.

Let = be a point on the k-equidistant face. Choose a local coordinate frame at z
so that the first m — k + 1 coordinates, (z1,..., Z,_x+1), are the coordinates which

span the tangent space of the k-equidistant face at z, and the next k& ~ 1 coordi-

nates, (Zm—g+2, - - -, Zm), span a plane termed the “normal slice plane.” We can thus
decompose the local coordinates into z = (y,A), where A = (z1,..., Zn_p+1), the
“sweep coordinates,” and y = (z,,_g+2,-..,2n) are the “slice” coordinates. Note,

there can be some confusion with this choice of coordinates; when z = (y,A), A is
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the first m — k + 1 coordinates and y is the next &k — 1 coordinates.

Now define the function G4 : RF—1 x Rm—4+1 _ RA=1 a5 follows:

[(dy — do)(y, \)

(d1 — d3)(y, )

Galy,A) = (4.15)

_(dl - dk)(ya /\)_

The procedure for tracing a path on the k-equidistant face is similar to the
approach described in Section 4.1. The robot starts at point on the k-equidistant
face. At this point, and all others on the k-equidistant face, G4 vanishes. The robot
takes a “small” step, AM, in the tangent space of the k-equidistant face such that
D(z) increases the most. Typically, this step takes the robot off of the k-equidistant
face, and on a (k—1)-dimensional plane orthogonal to the k-equidistant face tangent
space, the robot moves back onto the k-equidistant. This (k — 1)-dimensional plane
is called the “correcting plane.” The correction step is the same as the one described
in Section 4.1. If 4" and A" are the h*" estimates of y and X, the A + 1% iteration

is defined as
I -1 h
P =yt = (Vy6a) Galwh N (4.16)

where V,G 4 is evaluated at (y", A\P). After taking the prediction step, the goal
of the correction step is to find where the k-equidistant face locally intersects the
correcting plane.

Again, it is important to note that in order to evaluate G 4(y, A) and V,Ga(y, A),
one only needs to know the distance and direction to the k objects that are closest
to the robot’s current location—information that is easily obtained from local dis-
tance sensor data. The following propositions and lemmas demonstrate that this
procedure is theoretically sound and can be implemented using local information.

Computing the Tangent Vector. The predictor step is a small step the direc-

tion in the tangent space of the k-equidistant face which maximally increases D(z).
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This step is determined in two steps: first the tangent space of the k-equidistant
face at z is computed, and then the generalized gradient of D is projected onto it.
Lemmas 2.19 and 2.20 furnish the tangent space and the following proposition shows
how the generalized gradient is projected onto it. In fact, the following proposition
states that the generalized gradient of D projects to a single vector on the tangent
space.

Proposition 2.21 The restriction of the multi-object distance function D to a
k-equidistant face is smooth. That is, the generalized gradient of D(x) projected onto
ToFir. i 15 equal to LU Vd; for all © € {i1...4;,}, where 7 is the orthogonal
projection operator.

Therefore, the robot takes the following step:

OD(z) =mg, . Vd; (z)

i 1ok

iy..ip
i~ Vdi, (2)—Vd; (2)
= Vd,, (z) - Ejzz [|Vd,¢i (a:)—Vd,-; @)1 IVdi, (2)]].

Computing the Correction Step. The correction procedure is guaranteed

by

Proposition 4.9 The matriz V,Ga(y, A) has full rank (i.e., has rank (k- 1)) in

a neighborhood of a k-equidistant face on the correcting plane.

Proof: This is a simple consequence of Lemmas 4.5 and 4.6. Since V,G4 isa k —1
by k — 1 matrix, by these lemmas, it must have rank (k — 1) for z € F*, and
therefore be invertible at . Since the rank operation is a continuous function,
V4G 4 must be invertible in an open neighborhood around z = (y,A\) € F™. This
open neighborhood will intersect the correcting plane for ||A)|| sufficiently small,

and thus V,G 4 is invertible on the correcting plane as well. |
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4.3 Constructing the Second Order GVG

4.3.1 Second Order Generalized Voronoi Edges

The second (and higher) order GVG can be incrementally constructed in an analo-

gous fashion. The key is to define a function whose roots define GVG? edges. The

roots of the function

[ (d1 — da2)(y,\)

ds — dy) (. A
oy, ) = (d3 jx)(y )

[ (d3 — dm) (y, ) ]

(4.17)

locally trace out a GVG? equidistant edge. The first row of G enforces equidistance
q g

between the closest objects Cq and C3. The remaining rows enforce equidistance

between the second closest objects. Again, a predictor-corrector algorithm is used.

Computing the Tangent

The tangent to the GVG? edge is the null space of

- T
VyGaly,\) = (Vy(ds fi4)(y,A))

In R3, this can be easily computed with local sensor information. In R3,

(Vy(d1 — d2)(y, \)T

VyGQ(ya )‘) =
(Vy(ds — da)(y,\)T

[(V,(d1 — do)(y, \)7 ]

_(Vy(dS - dm)(ya A))T_

(4.18)

(4.19)
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In R3, the null space of V4Ga(y, A) is the set of vectors, v, for which

(Vy(d1 — d2)(y,A\),v) =0 and (V,(dy —d3)(y,A),v) = 0.
(4.20)

That is, the tangent to a GVG? equidistant edge is spanned by the vectors which
are in the intersection of the tangent spaces to 8812 and 8813. The Equidistant
Surface Transversality Assumption guarantees that these tangent spaces transver-
sally intersect and thus their intersection is one-dimensional. A basis vector for
this tangent space is V,(d1 — d2)(y, A) x V,(d; — d3)(y, \). Since the tangent space
is computed from the cross product of gradient vectors, the tangent space can be

readily computed from sensor information.

The matrix V(Gs is invertible.

When
q :m_la
11 =1,
j1 =2, (4.21)
i, =3, forr=2,...,m-—1,

Jr =r+2, forr=2,....,m-1,

Lemmas 4.5 and 4.6 guarantee the matrix V,G2(y, A) has full rank in a neighborhood
of the GVG? on the correcting plane.

4.3.2 Boundary Edges

The incremental tracing of boundary edges requires that the robot moves along the

perimeter of the environment where m obstacles meet in m dimensions. This can
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be done by tracing the roots of the following function, G3, defined as

[ dl (y7 )‘) — €
d3(y,\) — e
Gyly,N) = | W : ) , (4.22)
| di-1(y, A) — €]

where in this case € is a small “safety” distance away from the environment. Conti-
nuity of the single object distance function guarantees there exists a small enough
€ > 0 such that the topology of the traced edges reflects that of the actual boundary
edges. Later, we will see that G will be used in tracing edges of the saturated
generalized Voronoi graph, which is a roadmap used when sensors function over a

finite range, less than e.

4.3.3 Floating Boundary Edges

Floating boundary edges are straight line segments and thus do not require compli-
cated numerical curve tracing techniques. Proposition A.10 asserts that a floating
boundary edge terminates at either a GVG edge end point or a boundary edge (Cij)
end point, which is a point where two convex obstacles (C; and C}) merge into one
convex obstacles (e.g., such as the top of the box in Figure 3.4 in Example 3.3).
When a GVG edge terminates at a floating boundary edge point, the basis vector
of the floating boundary edge must be determined. Let z* be the point where the
two gradient vectors converge and let v be the limiting vector of Vd;(z) (or Vd;(z))
as x approaches z*. The vector v is the basis vector of the floating boundary edge
point, and after encountering the floating boundary edge point, the robot moves in
the —v direction. When a boundary edge terminates at a floating boundary edge,
the robot moves in a direction v, as described above. (Note that when obstacles
are polyhedra, then the floating boundary edge is a straight line extension and a

boundary edge, which is also a straight line.)
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4.3.4 Occluding Edges

The precise formulation of the incremental construction technique for occluding
edges is still a topic of current research. The robot accomplishes occluding edge
tracing by looking for discontinuities in range data while maintaining double equidis-
tance between the two closest obstacles, C; and C}, when C} and C; be the second
closest obstacles such that Cj, occludes C} on the occluding edge. As with the other
procedures, the robot takes a prediction step which typically brings itself off of an
occluding edge. Lemma 3.44 asserts that the robot corrects back onto the occluding
edge by either performing gradient ascent or gradient descent of D: if C}, occlude Cj,
the robot corrects using gradient ascent; otherwise the robot corrects using gradient
descent. This approach only works when obstacles are smooth and the robot takes

small steps in its prediction phase.

4.3.5 Terminating Conditions

In summary, the GVG? has the same terminating conditions as the GVG: a second
order meet point, second order boundary point, second order floating boundary point,
and a second order cycle. The second order meet points are detected in a fashion
analogous to the (first order) meet points—the robot looks for a change in the
gradients to the second nearest object, while maintaining equidistance to the two
nearest objects. At a second order boundary point, the robot does not necessarily
turn around and re-trace its steps to the previous second order meet point with
unexplored directions. Instead, it traces both of the directions of the boundary
edge it intersects (second order equidistant edges intersect boundary edges only in

the interior).

4.4 Incremental Linking

Section 3.4.2 outlines three types of links: one involving an inner GVG? period,
one involving a boundary period, and one involving a floating boundary period.

Additionally, when the Extended Boundedness Assumption is relaxed, there is a



138

need for a linking strategy to and from GVG cycles.

In Section 3.2.3, we introduced the notion of an inner and outer boundary for
a second order generalized Voronoi region. There are situations in which the robot
can infer if it is on an outer or inner boundary component. For example, while
traversing a boundary component of a second order generalized Voronoi region, if the
robot detects a boundary period, Lemma 3.39 implies that the robot is on an outer
boundary component and the boundary period is an inner boundary component.
However, in general, the robot may not know if it is on an outer or inner boundary

component.

4.4.1 Inner GVG? Period Link

While traversing an inner boundary component, 8;F;| , that contains GVG?2

ij

equidistant edges and is disconnected from the outer boundary component, the

robot builds a link outward from a meet point, Fy,,| , which is formed by the
5.,

. The link is the intersection of 88| \Tu

i1 ij Fij is Fis

That is, instead of tracing the GVG? equidistant edge, the robot traces the points,

edges Fyy| , Fip| , and Ty

z, where dj(z) = dp(x) > dj(z) > di(z) = d;(z). Lemma 3.37 guarantees that this
link brings the robot to an outer boundary component.

Unfortunately, the robot may not know initially if it is on an inner boundary
component. Therefore, at all second order meet points, the robot must perform this
procedure, which results in redundant links. The robot terminates the link tracing
procedure when it encounters a GVG edge, a GVG? edge, a boundary edge, or a
floating boundary edge. The terminating point becomes a node in the L3HGVG.

Similarly, if the robot is on an outer boundary component, it must look for an
additional pair of equidistant obstacles. However, the robot need not know if it is
on an outer boundary component, so it must always perform the following linking
strategy, once again resulting in redundant links. On a GVG edge, Fji, the robot
starts constructing a link when it encounters a point where two additional obstacles,
(1 and Cp, are equidistant with the following distance relationship: d;(z) = d,(z) =

di(z) > di(z) = d;j(z). The robot terminates the link tracing process when it
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encounters a structure in the HGVG. If this structure is a second order meet point,
the link is formed. Otherwise, the robot may backtrack to continue tracing the
outer boundary component or save the link as another redundant structure.

A similar procedure is followed when a GVG? equidistant edge is on the outer
boundary component. While tracing Fy;| , the robot’s range sensor must look for
equidistant between two obstacles, C), ang Cy. At this point, the robot traces a
path where d,(z) = dy(z) > di(z) > di(z) = dj(z) on F;; until it encounters an
HGVG structure. Just like before, if this structure is a second order meet point, the
link is formed. Otherwise, the robot may backtrack to continue tracing the outer
boundary component or save the link as another redundant structure. A similar

procedure exists for boundary edges and floating boundary edges.

4.4.2 Inner Boundary Edge Period

The linking procedure to an inner boundary period is a two-step process: detection
of the inner period and then the explicit construction of the link. By Lemma 3.27,
this linking procedure amounts to following a path defined by gradient descent of D
on the second order generalized Voronoi region which contains the boundary period.
Linking from the inner boundary period is accomplished via gradient ascent of D,
constrained to a two-equidistant face (Section 4.4).

In order to describe the detection scheme, we define the raw distance function,
which provides the distance to all the points on the boundary of the environment
that are within line of sight of the robot. For the following definition, recall that
S™=1 is an (m — 1)-dimensional sphere embedded in R™. Sometimes we treat
s € §™ 1 as a point on an (m — 1)-dimensional sphere, and other times we treat it

as a unit vector whose head is in the (m — 1)-dimensional sphere.

Definition 4.10 (Raw Distance Function) The distance between a point, z €
R™, and a point on an object that is within line of sight of z, in a direction s € §™ 1.

This is the length of the line segment = + As and where A\ = An[101n )D(m + As)=0.
€10,00
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\A

Figure 4.5 The solid lines are values of the raw distance function, p(z,s), for a
fixed z € R? and nine samples of s € S. The filled regions are obstacles.

That is,

plx,s) = |l + As|| where A = An[loin )D(m + As) =0, (4.23)
€10,00

where D is the multi-object distance function which measures distance to the nearest

point on the nearest obstacle.

A key feature of the raw distance function (Figure 4.5) is that it can be readily
approximated by many realistic sensor configurations. The sensor measurement
provides an approximate value of the distance function p(z, s), and the direction to
which the sensor is facing corresponds to the direction of measurement (s € S™71).
See Figure 2.2. We term this function the “raw distance function” because raw
sensor readings approximate this function. The raw distance function is a necessary
component for the experimental implementation of the GVG.

To detect a boundary edge from an outer boundary component, we look at
the values of p(z, s) restricted to the normal plane (a hyperplane orthogonal to the
tangent vector at  on a GVG edge) with respect to s. It can be seen from Figure 4.6
that for convex polyhedra, if there exists a local maxima of p(z, s) restricted to the

normal plane, then there exists a point on a boundary edge. If for all points on
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Figure 4.6 A local maxima of p(x, s) with respect to s corresponds to a boundary
point. The dotted lines delineate two values of the raw distance function on
opposite sides of a local maxima. The solid line connects two points from two
different convex sets, C; and C;.

the outer boundary component of a second order generalized Voronoi region, there
exists a local maxima on each normal plane, then the outer boundary component

surrounds an inner boundary period.

4.4.3 Occluding Period

The linking procedure to an occluding period is the same as it is for a boundary
period. The detection scheme is similar; instead of looking for local maxima, the
robot looks for discontinuities in the raw distance function restricted to a normal
slice. If for all points on the outer boundary component of a second order generalized
Voronoi region, there exists a discontinuity on each normal plane, then the outer

boundary component surrounds an inner occluding period.

4.4.4 Links to Cycles

Linking away from outer GVG cycles is straightforward: simply apply one of the
above techniques. Linking away from inner GVG cycles is also straightforward: go
in any radially pointing outward direction. However, linking to inner GVG cycles
is under current investigation. Such a linking procedure will be gradient descent of

the distant of the second closest obstacle while maintaining double equidistantance
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Generalized Voronoi Graph
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¢ Goal X °G
Generalized Voronoi Vertex S~
(Meet Point) Stgz ts haped Virtual Generalized Voronoi Graph
Figure 4.7 Original GVG. Figure 4.8 Virtual GVG.

to the closest obstacle (constrained gradient descent).

4.5 Incremental Departability

In sensor based exploration, the robot may or may not know the coordinates of
its goal location. If the robot does not know the goal coordinates, it is assumed
that the goal is defined by a beacon or other feature which the robot can detect
once it is within line of sight of it. We therefore would like to find a departing
method in which the robot can access the goal in a straight line. Treating the goal
as an object, create a “virtual” Generalized Voronoi Graph (Figure 4.7). A star
shaped set, bounded by the virtual GVG, surrounds the goal, and thus there exists
a straight line path between any point on the boundary of this virtual star shaped
set and the goal. Generally, the virtual GVG is connected to the GVG and thus
there is a point within line of sight of the goal on the GVG. However, as we know
from previous sections, the virtual GVG may be disconnected. In this case, it is
necessary to build a link to the disconnected component that surrounds the goal.
The linking strategy is a special case of the strategy one would use to link GVG

cycles to other second order GVG edges.
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4.6 Simulations

4.6.1 Planar Simulations

A planar simulator, the details and results of which are described in this section,
validated this approach in the plane. The simulator reads in a list of polygons
which serve as obstacles in an environment. The simulator also reads in a start
point from which a point robot accesses the GVG. After accessing the GVG, the
simulator traces a GVG edge using the numerical edge tracing techniques described
in Section 4.1. The tracing procedure terminates when the robot detects a meet
point or a boundary point, as described in Section 4.1.2. The simulator runs until
all meet points are visited and their emanating edges have been explored.

The simulator maintains a list of meet points with unexplored directions. Each
time the point robot encounters a new meet point, two new meet points (one for
each new direction to explore) are added onto the front of the list. Each time the
point robot encounters a boundary point, it terminates the edge tracing technique
and starts tracing the edge associated with the meet point in the front of the list.
This depth first searching procedure continues until the new meet point list is null.

The core of the planar simulator is the distance function which measures distance
between a point and a convex polygon. The distance function used in the simulator
is a modified version of Lin and Canny’s closest feature algorithm described in [29)].
Lin and Canny define a Voronoi region for each feature on the polygon. If a point
is in the Voronoi region of a particular feature, then the distance to the polygon is
the distance to the feature, which is either a point or a line segment.

The Voronoi region of an edge is the region in free space bounded by the edge,
and the perpendiculars to the edge at the end points of the edge. The Voronoi
region of a vertex is the region in free space which is bounded by the perpendiculars
of the edges which meet at the vertex. See Figure 4.9 for an example of each region.

If the closest feature is a vertex, then the nearest point on the polygon is that
vertex. If the closest feature is an edge, then the nearest point is in the interior of

the edge. Let v; and va be the end points of the edge and & be the point from which
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Voronoi region

Voronoi region
for vertex v.

Figure 4.9 The shaded regions are Voronoi regions for their closest feature on
obstacle C;. The rectangular shaded region corresponds to the Voronoi region
of the edge e; note, the Voronoi region is unbounded. The triangular shaded
region corresponds to the Voronoi region of the vertex v, and the Voronoi region,
here, is also unbounded.

distance is being measured. The nearest point is a point whose coordinates are the

components of
V2 — U1

T AC

v + (& — vy,

The distance between a point « and a polygon is the two norm of 2 and the
nearest point on the polygon. The single object distance gradient is the unit vector
pointing away from the nearest point. Let ¢ be the nearest point and thus the
gradient is the vector ﬁ

With the distance and gradient information in place, the simulator invokes the
continuation methods described in Section 4.1. Figure 4.10 contains an environment
populated with obstacles. The concave exterior is represented by the union of four
rectangular polygons.

In Figure 4.11, the robot has accessed the GVG, traced one GVG edge, encoun-
tered a meet point, and continued tracing until a boundary point. The ticked solid
lines represent the GVG in the plane (also the GVD); these are the locus of points
equidistant to the two nearest obstacles. The ticks point to the nearest obstacles.
Figures 4.12 and 4.13 display two more intermediate simulation results. Finally,

Figure 4.14 shows the final simulation result.
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Obstacle
Figure 4.10 Floor plan of bounded environment.

Figure 4.11 Iteration 1. Figure 4.12 Tteration 5.

Figure 4.13 Iteration 10. Figure 4.14 Tteration 14.
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Figure 4.15 Results of applying the simulator to a three-dimensional box with a
long box which is located off-center in the interior. Note that some of the walls
were removed so the GVG lines, depicted as thick solid lines, can be displayed.

4.6.2 Three-Dimensional Simulator

A major advantage that the HGVG has over other methods is that it is applica-
ble in higher dimensional workspaces. To this end, we have implemented a three-
dimensional simulator which traces GVG edges. The algorithm and data structure
of the three-dimensional simulator is similar to that of the planar version. The
distance function code, used in three-dimensional simulator, was written by Brian
Mirtich at Berkeley. Currently, the linking procedures (described in the next sec-

tion) are under development. See Figure 4.15 for final results of GVG tracing.

4.7 Incremental Construction of the OPP

The incremental construction techniques described in this chapter can be readily
extended to other roadmap algorithms such as Canny and Lin’s OPP [9, 38]. Recall
that our approach to edge construction borrows some basic ideas and techniques
from numerical continuation methods [24]. Continuation methods are used to trace
the roots of the expression G(y,\) = 0 as the parameter ) is varied. Since the OPP
freeways are a subset of the GVG (Section 4.7.1), the OPP uses the same expression,
G1(y,A) = 0, to trace its freeway edges.

Recall from Section 4.1 that the robot begins incrementally constructing the
GVG, by taking a small step in the direction of the tangent of the GVG edge. This
step is the prediction step. The prediction step for the OPP method is always fixed.

Normally, this prediction step takes the robot off of the roadmap, so on a hy-
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perplane orthogonal to the tangent, the robot invokes a correction method to bring
itself back to the roadmap. Let VG be the matrix formed by taking the derivative
of G with respect to coordinates of a hyperplane orthogonal to the step direction.
The hyperplane orthogonal to the tangent and passing through z (the starting point
of the robot) is termed the normal slice plane, and the correcting slice plane, which
is parallel to the normal slice plane, is where the correction procedure takes place.

When V,G(y,A) is full rank at @ = (y, ), it is possible to use an iterative
Newton’s Method to implement the corrector step. If y* and A* are the k*" estimates

of y and ), the k 4 1% iteration is defined as
k1 _ K Lk
P =y = (V,6) Gt (420

where V,G is evaluated at (y*, \¥).

In Section 4.1, we demonstrate that V,G(y, A) is full rank for the GVG. The
second part of this section is dedicated to showing V,G(y, A) is also full rank for
the OPP.

Finally, there are two terminating conditions: (1) when the robot encounters
the boundary of the environment, and (2) when the robot detects a single object

distance gradient is orthogonal to a slice, thereby detecting a fold bifurcation.

4.7.1 OPP is a Subset of GVG

Proposition 4.11 The freeways (ridge curves) of the OPP method are a subset of
the GVG edges.

Proof: Recall Proposition B.18. It states that at a point £ € R™, if zero is in
the interior of the generalized gradient of the multi-object distance function, D,
then D attains a local maxima at =. That is, for z, = (\,yD)T € R™, if 0 €
int (9 D(y«; A)) = int(myOD(y«;A)), then y, is a local maximum on a slice. This
proof hinges on the above proposition, and the following two lemmas whose proofs
appear in Section A.3.

Lemma A.21 Gwen a set of n arbitrary vectors in R™, then 0 € int(Co{v; €
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R™: i=1,...,n}) if and only if {v; ER™ : i =1,...,n} positively span R™.

Lemma A.22 It requires a minimum of (m+ 1) vectors to positively span R™.

In the OPP method, the freeways are the trace of local maxima of the multi-
object distance function, D, on slices which are diffeomorphic to R™~!. Proposition
B.18 indicates that for all points on the freeway, the origin must be in the generalized
gradient of the multi-object distance function, 8D, constrained to a slice. Recall
that « is equidistant to A obstacles, if and only if the generalized gradient of D is
the convex hull of h single object distance gradient vectors.

By Lemma A.21, the origin is in the convex hull of a collection of vectors if
and only if those vectors positively span the space. Therefore, by Lemma A.21 and
Proposition B.18, if z is a local maxima of D, constrained to a slice, then the single
object distance gradient vectors positively span T,R™~! which is diffeomorphic to
R™. Lemma A.22 guarantees that the generalized gradient of D is the convex hull
of at least m gradient vectors. Therefore, « is equidistant to at least m obstacles at
a local maxima of D.

When z is a local maxima of D, not only is it equidistant to m objects, but by
definition of D, the point « is closer to these m objects than to any other object.

Thus, the OPP freeway segments are a subset of the GVG edges. |

Figure 4.16 depicts the correspondence between local maxima of D and equidis-

tance of points in the GVG to nearby obstacles.

4.7.2 Traceability

Since the OPP freeway components are a subset of the GVG edges, the OPP freeway
edges are generated by tracing the roots of the same function, G, whose roots define
the GVG. Recall from Section 4.1 that the roots of G1 can be found via a two step
procedure: (1) a prediction stage and (2) a correction stage. The GVG prediction
step occurs along the tangent to a GVG edge, whereas the OPP prediction step
occurs in a fixed “sweep” direction. The correction phase requires that VG be

invertible, which is shown to be true on a hyperplane orthogonal to a GVG edge.
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Figure 4.16 The local maxima of the multi-object distance function occurs only
at equidistance. The two circles both correspond to the same point. The dashed
circle surrounds the point, equidistant to objects C; and Cj. The solid circle
surrounds the point on the slice where distance is maximized, as depicted by
the graph of the distance function in the left-hand side.

The following proposition guarantees that V(G is invertible during the correction

phase for the OPP.

Proposition 4.12 In a neighborhood of a point  on a freeway, VyG(z) is invert-

ible.

Proof: 1t will be shown that VG is invertible on a freeway, and then by continuity
of the distance function and the determinant function, VG(z) is invertible in a
neighborhood of the OPP freeways. This proof relies on the following lemma whose
proof appears in Section A.3

Lemma A.23 If {v1,...,vn} postively span R™ 1 then {v1—vo,v1—v3,...,v1—

Um} span R™~L,
Lemma 4.13 At a point x on a freeway, VyG(z) is invertible.

Proof: Let z = (A, y7)T be the coordinates where the y coordinates span the hy-
perplane, Y, orthogonal to the sweep direction and A corresponds to the sweep
direction. Proposition B.18 states that if 0 € int(dy D(y; X)) = int(nyOD(y; \)),
then y is a local maximum. Therefore, if = (X, yT)7 is a point on a freeway, then

0e CO{Vydl, ceey Vydm}.
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By Lemma A.21, 0 € co{Vydi,...,Vydy,}if and only if the vectors {Vydy,...,Vyd,}
positively span the slice. Therefore, at a local maxima (i.e., a point on a freeway),
{Vydi,...,Vydy,} positively span the slice.

Finally, by Lemma A.23, since {Vydi,...,Vyd,} positively span the slice,
{Vydi — Vyds,Vydi — Vyds,...,Vydi — Vd,,} span the slice. That is, they

are linearly independent.

Therefore,
rVydl(y, A) — Vyda(y, )
Vydi(y,A) — Vyds(y, A)
VYG(ya A) =
| Vydi(y,A) = Vydm(y, M)
is invertible. v

Since the determinant function and distance function are continuous, there exists

a neighborhood about the OPP freeways for which Vy G is invertible. ]

4.8 Conclusion

This chapter introduced an incremental procedure to construct the GVG and the
HGVG. This procedure requires only local sensor distance measurement data, and is
therefore practically implementable, as demonstrated by our simulations. Hence, the
generalized Voronoi graph and hierarchical generalized Voronoi graph introduced in
this work appear to be useful means for implementing sensor based motion planning
algorithms. We also believe that with small modifications, some of the numerical
methods introduced here can also be useful for “sensorizing” other (e.g., the OPP
method) robot motion planners. The next step is to demonstrate the validity of

these approaches on an actual mobile robot.
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Chapter 5

Implementation and Experiments

5.1 The Robot

The robot used in our experiments is a “B12 Mobile Robot Base” (B12) produced
by Real World Interface, Inc.! (also described in [22]). The robot’s base has three
synchronously driven wheels which remain parallel at all times. The robot contains
an on-board Motorola 68000 computer that directly controls the motion of the
B12. The robot also has a “G96 Sonar Board,” which controls a ring of twelve
ultrasonic sensors, each radially pointing outward and equally distributed around
the circumference of the robot. See Figure 5.1.

Dead reckoning of the robot’s translation is accomplished by integrating the
number of encoder counts produced by wheel rotation. Net rotation is measured by
a sensor which measures the roation of the base. This procedure does not take into

consideration slippage of the robot’s wheels.

5.2 Sensor Model

The B12 mobile robot uses ultrasonic sensors to measure distance to environmen-
tal features. These sensors determine distance by measuring the time of flight of
the ultrasound pulses that reflect off an object and return to the sensor. Although
these sensors provide accurate distance measurements, their azimuth readings are

not precise. For this reason, we develop a simple sonar sensor model that is com-

!Real World Interface, Inc., P.O. Box 270, Main Street, Dublin, NH 03444 USA
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Figure 5.1 B12 Robot.

patible with the incremental construction procedure of the GVG. We assume that
the sensors are rigidly attached, pointing radially outward from the robot. The
sensors measure distance to nearby obstacles, along a fixed direction termed the
sensor measurement aris. The absolution orientation of the sensor measurement
axis is a function of the robot’s position and orientation (See Figure 5.2). Finally,
the distance gradient associated with a particular sensor is assumed to be a unit
vector pointing along the sensor measurement axis away from the robot. Since the
closest point may occur anywhere within the sensor beam pattern, and it is assumed
that the distance gradient points along the beam pattern centerline; this can induce
errors in the direction of the gradient. However, the accumulated error decreases as

the number of sensors increases.

5.3 Distance Function

Incremental construction of the GVG is based on the distance function, d;, the dis-

tance to the nearest point on object C;. Sensors provide the distance to the nearest
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Figure 5.2 Simplified Distance Measurement Sensor Model.

point from the sensor, without knowing from which obstacle the nearest point came.
Therefore, the incremental construction of the GVG described in Chapter 4 and in
[17] has to be adapted for sensor based implementation on actual robots. In order

to do this, we recall the raw distance function which was defined in Section 4.4.

5.3.1 Raw Distance Function

A key feature of the generalized Voronoi graph, and related structures, is that they
are defined in terms of a distance function, a function that encodes distance between
the robot and nearby obstacles. This makes the GVG and HGVG well suited for
sensor based use because many sensors provide range information. The raw distance
function,

plz,s) = |z + As|| where A = A:rr[loin )D(m + As) =0, (5.1)
€[0,00

provides the distance to all the points on the boundary of the environment that are
within line of stght of the robot. See Figure 4.5 for an example of the raw distance
function.

A key feature of the raw distance function is that it can be readily approxi-
mated by many realistic sensor configurations. The sensor measurement provides
an approximate value of the distance function p(z,s), and the direction to which

the sensor is facing corresponds to the direction of measurement (s € S™71). See
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P(X,s)

*
S

Figure 5.3 The solid polygons are obstacles, and the rays emanating from the
point z are values of p(z,s) for a fixed z and s € nbhd(s*). As s passes s*,
there is a jump in the value p(z, s).

Figure 5.1. In Figure 5.3, it can be seen that the raw distance function is not

continuous. At a point z € R™, lim,_, ..+ p(z, s) # lim,_, .- p(z, s), for s € §™1

Definition 5.1 (Cone of Continuity) The cone of continuity, o(z) at a point z,
is the closure of the set of directions for which p(z, s) is continuous with respect to

s€ Sm—l.

Note that o(z) C S™~!. Typically, at a point = there is more than one cone of
continuity, so we attach an index, «, to it, and denote p* as the ath cones of
continuity at . Note that S™~1 = J, 0*(z).

In the planar case the cone of continuity is simply a closed interval. See Fig-

ure 5.4.

5.3.2 Compute Distance with Raw Distance Function

We can now relate the raw distance function to the slanted and visible distance
functions, defined in Section 2.1. See Figure 2.7 for an example of the visible distance

function.
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Occluded regions

Figure 5.4 The differently shaded regions each correspond to a cone of continuity.
The unshaded region corresponds to the points that are not within line of sight
of x.

Lemma 5.2 The visible distance (V-distance) to an object at a point x is a local

manima of the raw distance function in the interior of a cone of continuity.

Proof: Recall the definition of the visible distance function:

min ¢ ) |l —¢l|, if ¢ €int(Ci(z)),

df (¢) = ~
oo, if ¢ € int(Ci(z)),

(5.2)
where CN’,(:B) is the set of points on an object C; that are within line of sight of z,

ie.,

Ci(z) = {c € 8C; : Yt € [0,1], (1 —t) + ct € FS).

The ath cone of continuity, ¢*(x), can be broken down into sub-regions, each
associated with a particular obstacle. The set directions associated with only the
boundary of C; (i.e., points in int(C;i(z))) be denoted 5¢(z). Clearly, Uicr(a) 87 (2) =
0“(x) where the index set I(z) corresponds to each obstacle associated with the cone

of continuity.



156

Since ¢ = z + p(z, s)s, another way to represent C;(z) is
Ci(z) = {z + p(z,s)s € OC; : Vs € o¥(z)}.

And since p(z,s) = flz — ¢|, ¢ =  + p(z,s)s = = + ||z — c||s which implies that
s = ﬁ":_gﬂ Therefore, there is a one to one correspondence between each s € p%(z)

and ¢ € C;(z). Hence,

d/(z)= min |-
c€int(C; (z))

= min [z — 2 — p(z,s)s||

x+p(z,5)s€int (C;(z))

= min _ (2, 5)s]|
z+p(z,s)s€int (C;(z))

= min plz,s)

z+p(z,8)s€int (C;(z))

= min z, s).
s€int(g7 (x)) P, 9)

Lemma 5.3 The slanted distance (S-distance) to an object at a point z is a local

minima of the raw distance function in a cone of continuity.
Proof: The proof of this Lemma parallels that of the proof of Lemma 5.2. |

Since the slanted distance function and the visible distance function are the same
for all points on the GVG, the distances to the m closest obstacles which define a
GVG edge are the values of the m smallest local minima of the piecewise continuous

regions of the raw distance function.

5.3.3 Distance Function

The robot must be able to convert raw sensor readings into distance function read-
ings while ideally avoiding a costly obstacle segmentation procedure in order to

effectively perform the incremental construction procedure.
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Figure 5.5 Sensor Readings

It is not sufficient to sample the two smallest sensor readings to determine the
distance to the two closest obstacles because multiple sensors may detect the same
obstacle. The minimum distance to each of the obstacles can be found from the local
minima in the circular array sensor readings. An example is depicted in Figure 5.5
where a robot with eight sensors and their measurements is drawn. Sensor H has
the smallest value, 10, and is thus pointing at the nearest obstacle. Altough Sensor
A has the second smallest measurement, it is not associated with the second closest
obstacle because it is not a local minima. Sensor C is associated with the second
closest obstacles because its value is the second smallest local minimum in the sensor
array. The distance gradients are the unit vectors pointing along the respective
sensor centerlines. This method bypasses a costly obstacle segmentation procedure

and enables construction of the GVG directly from range sensor data.

5.4 Implementation on a Mobile Robot

Once the distance to individual convex obstacles can be identified, the robot can
generate a GVG using the procedures set forth in Chapter 4.

Incremental accessibility is simply gradient ascent applied to the distance to
the nearest obstacle. Since the nearest obstacle is associated with the sensor reading
with the smallest value, simply moving in a direction opposite to which the sensor
with the smallest value is facing is gradient ascent of the distance to the nearest

obstacle.
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Figure 5.6 The tangent space is defined by the closest sensor readings.

Once the robot has found a GVG edge, it must incrementally trace the edge
and store an internal representation of it. The distance measurement method, de-
scribed in Section 5.3.3, determines the distance and direction of the two closest
obstacles.

Since there is a finite number of sensors, the robot can rely upon a lookup table
scheme to determine the tangent space of the GVG. The orientation of the tangent
spaces corresponding to each closest sensor pair is stored in the lookup table, indexed
by the two closest sensor locations. Since there are only twelve sensors, a lookup
table is a good trade-off between speed and memory storage. The robot orients
itself onto the tangent space of the GVG edge and then takes a fixed step along the
GVG edge’s tangent direction.

In the current implementation, the correction step is an adaptation of the pro-
cedure described by Equation (4.3), which prescribes the direction and magnitude
of the robot’s correction course. Upon completion of the prediction step, the robot
makes a ninety degree turn which points the robot in the direction prescribed by
Equation (4.3). Instead of moving by the amount specified in Equation (4.3), the
robot rolls in a straight line until its two smallest sensor readings are equivalent
within a threshold. After reaching the GVG, the robot repeats the step-correct
procedure until it encounters a meet point or a boundary point.

It is worth noting that the sensor associated with the nearest reading to an ob-
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stacle will change in a continuous fashion as the robot explores a GVG edge. When
there is an “abrupt” change in a sensor associated with one of the two closest obsta-
cles, then the robot has passed by a meet point. An “abrupt” change is a function of
the resolution of the sensor system and robot’s step size. In our experiments, since
we have very few sensors and thus a very low resolution, an “abrupt” change was
indicated by a shift of the local minimum by one sensor location (See Fig. 5.7).

Finally, when the robot enters a corner (i.e., reaches a boundary point), it simply
turns around and retraces its steps to a previous meet point with unexplored GVG
edges.

Another important feature of the GVG is that it produces a concise representa-
tion of the world. The GVG edge is stored as a list of points and the GVG vertices
are stored as list of pointers, each pointing to a GVG edge with which the GVG
vertex is associated. This representation is a significant savings in storage when
compared to other world models such as a discrete pixel representation. Further-
more, in tracing out the GVG edges, there is no need to fully identify each obstacle
(i.e., perform complicated obstacle segmentation) and thus there is no need to store
a representation of each obstacle.

Since the goal of this research is the incremental construction of an environmental
map that can be used to make future excursions into an environment, we did not

implement the incremental departability algorithm.



160

T Shaped Room

GVG

Figure 5.8 T-shaped Room with Actual GVG.

5.5 Experimental Results

The results of one experiment is shown in Figs. 5.8 and 5.9. In this trial, the room
was “I-shaped,” with the geometry of the room and the theoretical GVG shown in
Fig. 5.8. The experimental GVG constructed by the robot is shown in Fig. 5.9.
The small squares denote the edge termination points, while the hatched squares
represent meet points. For safety reasons, the robot does not trace the edge all the
way to the wall’s boundary. The octagon shown on the graph represents the point
where the robot first accessed the GVG. The experimental GVG edges are jagged
because the tangent is crudely approximated because of the angular inaccuracy of
sonar distance sensors and the low resolution of sensor placement. However, the
GVG is connected, and the edges are far away from the workspace boundary. Our
experiments show that the actual GVG construction is quite robust even with crude
distance sensors having large errors in distance measurements.

Two more experiments were performed. One of them is simply a hallway (see
Figures 5.10 and 5.11 for displayed result) and the other is an “L-shaped” room (see
Figs. 5.12 and 5.13 for displayed result).

5.6 Conclusion

This chapter described the implementation of a general sensor based planning strat-

egy, based on the generalized Voronoi graph, for the special case of a planar environ-
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ment. We showed that using the algorithm of Chapter 4, a robot equipped with only
a ring of sonar sensors can explore an a priori unknown environment and produce
a one-dimensional representation (the GVQG) of that static environment.

With this one-dimensional representation, the robot can plan future excursions
into the environment. One avenue of current work includes using the GVG to plan a
shortest distance path between two points. First, a path is determined by planning
a path to the GVG, then along the GVG and finally to the goal. Next, this path is
deformed so that its length is minimized without violating any obstacle constraints.

In this work, we did not consider all of the implications of sensor noise, and
limited sensor range on our algorithm. Also, we assume that the robot has a rela-
tively accurate dead reckoning system. The next step in our research is to consider
the issues of sensor noise, limited sensor range, limited sensor resolution and dead
reckoning for the planar robot. It is our belief that there are features embedded
in the GVG structure which lend themselves to the issues of limited sensor range,

sensor noise, and dead reckoning.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Sensor based planning incorporates sensor information, reflecting the current state
of the environment, into a robot’s planning process, as opposed to classical planning
which assumes full knowledge of the world prior to planning. We have developed a
rigorous basis for sensor based motion planning for a robot, modeled as a point, in a
bounded three-dimensional Euclidean space. Specifically, we defined the hierarchical
generalized Voronot graph (HGVQG) to serve as a basis for robotic sensor based
motion planning. The HGVG is a roadmap is a one-dimensional representation
of an environment populated with obstacles, and has three key properties: (1)
accessibility, (2) connectivity, and (3) departability.

We make no claim that the HGVG has any clear advantage over other roadmap
approaches; however, we demonstrate in a rigorous fashion that the HGVG is suf-
ficient for motion planning. A major advantage that this approach has over other
methods is its well defined technique to incrementally construct the HGVG using
only local line of sight information. This is necessary for sensor based planning
because typically there does not exist one vantage point from which the robot can
see the entire environment, so the robot must intelligently traverse the environment
in order to build up a complete representation of it. Finally, the incremental con-
struction techniques described in this work can be applied to other motion planning

schemes. Simulations and experiments validate this approach.
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Finally, in this work we developed techniques for differentiating nonsmooth func-
tions and applied them to the distance function, which is not smooth at its extremal
points. Furthermore, we defined and analyzed distance functions which measure dis-
tance only to obstacles that are within line of sight of the robot. These distance
function results are applicable to other motion planning schemes in addition to the

HGVG.

6.2 Future Work

The ultimate goal of work initiated in this thesis is to enable an articulated and
arbitrarily shaped robots equipped with sensors to explore and map realistic un-
known environments. The HGVG is just a first step towards this goal, but provides

a rigorous basis for future work research directions, described below.

6.2.1 Sensor Based Motion Planning for Set Robots

The original problem that motivated this work was sensor based planning for highly
articulator robots such as robot snakes [11, 12, 14, 13, 37]. Such robots can be
represented as a point in a multi-dimensional configuration space. The analysis done
in this work only applies to robots whose configuration spaces are diffeomorphic to
R™ and is thus applicable to mobile robots i the plane, to floating robots ‘that can
only translate, and to highly articulated robots with only translational (sliding)
degrees of freedom.

The next step would seemingly be to extend the definitions in this work to
apply to point robots operating in other types of configuration spaces; however,
this may prove to be difficult because there is no clear way to infer configuration
space distance information from workspace distance measurements. Instead, we are
developing new roadmaps in terms of workspace distance functions, which measure
distance between a robot and the environment.

The next evolutionary step is to redefine the HGVG for a robot that can be

modeled as a line segment, sometimes called a rod (see Figure 6.1). The resulting
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roadmap is termed the rod hierarchical generalized Voronoi graph (rod-HGVG), the
planar version of which has already been defined in [18]. The rod-HGVG is defined
in terms of the rod single object distance function which is the shortest distance
between a rod R at configuration g and a convex obstacle C;. See Figure 6.2. The
rod distance function is denoted D;(q) = min,¢,(pr).ccc; lI* — ¢l| where g(R) is the
set of points in the plane occupied by a rod, R. Since the rod-HGVG is defined
in terms of a distance function, it can be incrementally generated using procedures
similar to those described in Section 4.1.

Once the rod-HGVG is finished, its definitions will be extended to the case of
the convex set robot. Next, we will define a roadmap for two convex sets, connected
by a joint. This will provide the foundation for developing a sensor based motion

~ planning scheme for a chain of convex set robots (i.e., a snake robot).

6.2.2 Sensor Issues and Mobile Robots

Dead reckoning is the process in which a robot determines its location relative to
an absolute coordinate system. The HGVG can be further refined to take into ac-
count dead reckoning. Throughout this work, it is assumed that the robot knows
its location at all times (i.e., it has a GPS-like system on board), which was a
satisfactory assumption for our experiments, but is not for large realistic environ-

ments. Nevertheless, there are geometries embedded in the HGVG which can help
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the robot determine its actual position to within some error bound. For example,
at each meet point, we can store more information about the environment; this is
not memory-consuming because the meet points form a set of measure zero on the
HGVG. Each time the robot returns to the vicinity of a meet point, it can use this
detailed information to localize itself.

A parallel direction of current research focuses on sensor limitations such as sen-
sor noise and effective sensor range. Recent work considers the development of the
saturated generalized Voronoi graph which is defined in terms of a distance function
that can accurately measure distance only over a pre-specified range. Outside of
this range, the distance is considered to be infinite.

Typically, when incrementally constructing the GVG and HGVG, the robot
explores edges which are redundant; such redundant GVG edges can be removed
from a connected GVG component without affecting the component’s connectivity.
Therefore, the exploration of such edges can be omitted, thereby decreasing the
time needed to explore and map an unknown environment. The resulting structure
is termed the reduced generalized Voronoi graph. Current work includes using the
raw distance function to eliminate redundant edge traces. The raw distance function
will also be useful in dealing with sensor quantization. Sensor quantization considers
the discretization of range data.

Finally, near-term work will deal with the “two-and-a-half dimensional problem.”
This problem is part two-dimensional because the robot operates on the surface of
a non-flat terrain, but this problem is also part three-dimensional because the robot

must decide if hills and valleys should be viewed as obstacles or not.

6.2.3 Robot Vision and Sensor Placement

The incremental construction procedure may require robot vision in environments
where range data is not readily available. For example, if the robot is traveling
down a sidewalk, there are no walls on the sidewalk’s periphery which the robot can
use to center itself in the middle of the sidewalk. In this case, the robot must rely

on a vision sensor.
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Not only can the HGVG draw upon prior work in machine vision, but it also has
applications to vision in the field of active perception. In particular, the HGVG can
be applied to the art gallery problem which deals with the placement of stationary
guards in an environment such that the sum of the views of all of the guards covers
the entire environment. A variant of this problem is determining the path that a
guard must take in order to see the entire environment. The HGVG prescribes such

a path.

6.2.4 Injection Molding

It is our hope that the HGVG will have non-robotic applications. One near-term
use of the HGVG is in injection molding. Injection molding is a process in which
molten plastic is forced into a mold, and then when the plastic hardens, it assumes
the shape of the mold.

One of the tradeoffs in part design is manufacturing cost. For injection molding
parts, required flow length is the maximal distance plastic has to flow in the mold.
Currently, the required flow length is determined late in the design process when
most of the part manufacturing cost is already locked into the design. The HGVG
can be used to determine the required flow length early in the design process, and

thus give more freedom to the designer.
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Appendix A

Relevant Mathematical Material

The results contained in this chapter are independent of the assumptions stated in

the thesis and apply to any m-dimensional Euclidean vector space.

A.1 Useful Topology Definitions and Relationships

The following is a list of basic topology definitions and results which are useful to
this work. Although the following definitions are standard to point set topology,

we used the definitions from Marsden’s book entitled Elementary Classical Analysis

[32].
A.1.1 Topology Notation and Definitions
Definition A.1 (e-Neighborhood) ([32], p. 32) An e-neighborhood about a point

z € R™ is the set {y € R : |l — yl| < €}.

Definition A.2 (Open Sets) ([32], p. 33) A set A C R™ is said to be open if for
each z € A, there exists a € > 0 such that an e-neighborhood of z is fully contained
in A.

Definition A.3 (Neighborhood of a Point) A neighborhood of a point z, de-

noted nbhd(z), is an open set containing z.

Definition A.4 (Interior of a Set) ([32], p. 36) For any set A C R™, a point
z € A is an interior point of A if there is an open set U such that z € U C A. The
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interior of A is the collection of all interior points of A and is denoted int(A). This

set might be empty.

Definition A.5 (Closed Sets) ([32], p. 37) A set B in R™ is said to be closed if

its complement in R™ is open.

Definition A.6 (Accumulation Points) ([32], p. 39) A point z € R™ is called
an accumulation point of a set A if every open set U containing = contains some

point of A other than itself.

In a subsequent lemma, we say an accumulation point of a set A is a point «

such that in a neighborhood of z, there exist points other than z in A. That is,

(nbhd(z)\{z}) N A # 0.

Definition A.7 (Closure of a Set) ([32], p. 41) Let A C R™. The set cl(A4) is

defined to be the intersection of all closed sets containing A.

Theorem A.8 ([32], p. 42) Let A C R™. Then cl(A) consists of A plus all of the

accumulation points of A.

Definition A.9 (Boundary of a Set) ([32], p. 43) For a given set A in R™, the
boundary is defined to be the set

OA = cl(A) [ l(R™\A).

A.1.2 Useful Topology Results in Sensor Based Planning

The following proposition is useful for enumerating the boundary components of
the structures used to define the HGVG. However, the result is general to all sets

in R’ITL

Proposition A.10 For two subsets A and B of R™, the boundary of the intersec-

tion of the two sets obeys the following inclusion:

oA B) C (aAﬂ cl(B)) U (aB ﬂcl(A)) .
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Proof: This proof depends upon the result of the following lemmas.

Lemma A.11 For two subsets A and B of R™, the closure of the intersection of

A and B s a subset of the intersection of the closures of A and B. In other words,

cl(A()B) C cl(A)[l(B).

Proof: By Theorem A.8, for all ¢ € cl(A()B), there exists a neighborhood, ¥ =
nbhd(z), such that (Y\{z})NANB # 0. Since ANB C 4, (Y\{z}))NA4 # 0.
Similarly, (Y\{z})N B # 0, and thus all points 2 € cl(A[) B) are accumulation
points for both sets A and B. Therefore, for all z € cl(ANB), = € cl(4)Ncl(B). V¥

Lemma A.12 For two subsets A and B of R™, the closure of the union of A and

B 1s equal to the union of the closures of A and B. In other words,

(Al B) = c1(4) | <U(B).

Proof: First, we show cl(AJB) C cl(A)Jcl{(B). By Theorem A.8, for all z €
cl(A|J B), there exists aneighborhood, Y = nbhd(z), such that (Y\{z}) N(4AU B) #
0. Since A C AUB and B C AU B, either (Y\{z})NA # 0 or (Y\{z})NB # 0.
Therefore, all points z € cl(A|J B) are accumulation points for either A, B, or both,
and thus, for all z € cl(AU B), = € cl(4) Jcl(B).

And now, we show cl(4) Jcl(B) C cl(A|J B). By Theorem A.8, if z € cl(4)Jcl(B)
then there exists a neighborhood, Y = nbhd(z), such that (Y\{z}) N 4) U((Y\{z}) N B) #
0. In other words, (Y\{z}) (AU B) # 0. Therefore, all points = € cl(4)Jcl(B)
are accumulation points of A{J B, and thus for all @ € cl(4) Jcl(B), z € cl(A B).

v
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By Defintion A.9,
(04N <i(B)) | (8B N1 (4))

= (cl (4) el (R™\4) el (B)) U (1Bl (R™\B) (e (A))
=cl(A) e (B)N (cl R™A4) <l (Rm\B)) .

(A.1)

Also, by Defintion A.9,
(A B) = l(A[)B)[ | l(R™\(A[B)) (A.2)
= cl(A[B)[)cl(R™ A JR™\B). (A.3)

By Lemmas A.11 and A.12, the following are true:

(AN B) Ce(4)(e(B),
cl ((]R’”\A) U (]R’”\B)) C c(R™\A4) |l (R™\B).

Therefore,

o (4N B) Nel (R™MA) U R™\B)) € e (4) el (B)[) (cl(R™\4) |l B™\B)),

and using the identities from Equations A.1 and A.2,

a4 B) c (4N el(B)) | (BN cl(4)).

A.2 Convex Functions
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Definition A.13 (Convex Hull) The convezr hull of the set of vectors {v; : i =

1,...,n}is

Co{v;:i=1,...,n} = {mew € R such that A\; > 0 Vi and ZAi=1}.
=1 =1

Definition A.14 (Convex Function) The function f: R™ - R is conwvez if for

all z;,1=1,...,n, >y Ai=1,and 0 < \; < 1,

f (Z Aw) <3 Aif ().
=1 =1

Lemma A.15 Let f be a convex function and U be the convex hull of {z1,...,Tm}.

For allz € U, f(z) < max; f(z;).
Proof: Pick & € U where £ = &1+ -+ + Apm.

f(a:) = f(;\lxl +-ee+ S‘mmm)
S 5‘1f($1) +--+ ;\'mf(w'm)

< Apmax; fz;) + -+ + Ay max; f(x;) (A.4)
= max; f(2;) DT N
= max; f(z;).

]

Lemma A.16 A convezr function only has local mazima on the boundary of its

domain.

Proof: Assume there exists an = which is a local maxima of the convex function f.
This implies there exists a neighborhood,Y = nbhd(x), for which f(z) > f(y) for all
y € Y. Choose m points y; from the neighborhood Y. For all 4, f(z) > max; f(y;).

This contradicts the result of Lemma A.15. ]

Lemma A.17 For a non-constant convex function f: R™ — R, if there exists an

open set U such that f(xz) = c for all x € U, then f(y) > ¢ for all y € R™\U.
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Proof: Let z1 be in U and y € U. By hypothesis, there exists a nbhd(z) such that

for all € nbhd(z1) there exists an € > 0 such that

f(A=ez+ey) <(I-e)f(z)+ef(y)
fl@) <(d-ef(z)+efly)
fl@)—(1=e)f(z) <ef(y) (A.5)
flz) < fly)
flz1) < fly)

A.3 Convex Hulls and Positively Spanning Vectors

Lemma A.18 (Nguyen and Goldman & Tucker) In an m-dimensional vector
space, a set of vectors {v; € R™ :i=1,...,n} has at least m+ 1 vectors {v; € R :
t=1,...,m+1} if and only if

1. m of the m + 1 vectors are linearly independent, and

2. a strictly positive sum of the m~+1 vectors is the zero vector, i.e., Efjlwrl Ajv; =

0 where A; > 0 for all i.
See [33, 23] for proof.

Lemma A.19 A set of n arbitrary vectors {v; € R™ : 1 =1,...,n} positvely spans

R™ if and only if there exists a v; such that for all w € R™, (w,v;) > 0.

Proof: Let w = ;"1 a;v; be a nonzero vector and thus, there must be exist an

a; > 0.

0 < (w,w)
= (Xie1 o, w) (A.6)
= i {owvi, w).

This implies that there exists an i where {oyv;,w) > 0 and since o; > 0, we can

conclude that (v;,w) > 0 for at least one 1. [ |
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Lemma A.20 The origin is contained in the interior of the convex hull of a set of
n arbitrary vectors {v; € R™ : 1 =1,...,n} if and only if there exists a v; such that

for all w € R™, {(w,v;) > 0.

Proof: Let w € R™ be a nonzero vector. Since 0 € int(Co{vi,...,v,}), there exists a

Y = nbhd(0) C int(Co{vi,...,v,}). Chose a postive s € R such that w, = sw € Y.

Therefore, w, = Y. 1 ajv; where a; € (0,1) because w, is in the interior of the
convex hull of {vy,...,vn}.
0 < (ws,ws)
= (3L ovi, ws) (A.7)

= 2 ie1{ivi, wy).

This implies that there exists an ¢ where {a;v;,ws) > 0 and since o; > 0, we can
conclude that (v;,ws) > 0. That is, (v;,ws) > 0 for at least one 7. Finally, sicne

w, = sw for positive s, we can conclude that (v;,w) > 0. |

Lemma A.21 Given a set of n arbitrary vectors in R™, then 0 € int(Co{v; € R™ :
Y

t=1,...,n}) if and only if {v; e R™: i =1,...,n} positively span R™.
Proof: This proof is a simple consquence of Lemmas A.19 and A.20. |

Lemma A.22 (Goldmand and Tucker) It requires a minimum of (m + 1) vec-

tors to positively span R™.

Proof: Assume that the vectors {v1,...,vn,} span R” (a minimum of m vectors is
required to span R™). For all w € R™, w = 7" a;v; where a; € R. Define the
vector, vp, 11, which is the negated sum of the other v}s: vy41 = —v1—vyp— - —vy,.

Let k = (max; |a;|) + € where € > 0. Then the following holds for all w € R™,

w =300 aw;
= 221(% + ’{)vi + KUpt1 (AS)

=Tt b,
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where for i = 1,...,m, b; = a; + & and by,+1 = k. Since K > 0 and & > |a;| for all
i, all the b;’s are positive. Therefore, m + 1 vectors may positively span R™.

Now, it needs to be shown that a minimum of m + 1 vectors are required to

positively span R™. Recall vy,41 = —v1 —v2 — - -+ — vyy,. Clearly, vy, 41 is an element
of R™ and it is not positively spanned by the other m vectors {v1,...,vpn}- |
Lemma A.23 If {v1,...,v,,} postively span R™™ 1, then {v) — vo,v1 —vs,...,v1 —

Um} span R™71,

Proof: Since {v1, ..., Vs } postively span R™~1 there exists a set of nonzero {a; €
R} such that 0 = ;% a;v; (Lemma A.18). In fact, by Lemma A.18, we can write
one of the vectors as a linear combination of the others. Without loss of generality,

ay

v = — Y, Z_;U& For i > 2, let b; = 2. So, v1 = — > 1" biv;.

Dimo CiVi — Dimg civ1 =0

St civi ~v1 2 itaci =0

Yimgcivi + (Xt bivi) (it ei) =0
Yitolei+ (Xtaci)bi)vi =0
(Tizaci) (L+ (i226:))) vi = 0
Yiteci=0 or Yitob=-1

Yo ci(vi—v1) =0

(A.9)

rrrree

>t 5b; = —1 cannot be true because Vi, b; > 0, Since by Lemma A.18 the set
{va,... vy} spans R™~Y ™ iy = 0 if and only if ¢; = 0 for all i. Therefore,
Yo ci(v; —v1) = 0 if and only if ¢; = 0 for all ¢ and thus {v; — vy :1=2,...,m}

are linearly independent. These m — 1 linearly independent vectors span R™~1. W
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Appendix B

Nonsmooth Analysis

B.1 Introduction to the Distance Function and Nons-

mooth Analysis

The application of nonsmooth analysis to the Euclidean distance function is im-
portant because this function is an integral component of many path planners, in
addition to the one described in this work. Prior work in motion planning has not
fully considered the important issues of nonsmoothness when this distance function
is employed as the basis for motion planning. In this chapter, we show that this
function is in fact always nonsmooth at the points that are of interest to motion
planning. For example, the freeway curves of the OPP method are the set of the
local maxima of the nonsmooth Euclidean distance function constrained to a slice

(See Section B.3).

B.2 Review of Nonsmooth Analysis

The Euclidean distance function is nonsmooth at many points of interest and does
not have a conventional derivative at these points. However, one can build a calcu-
lus for such nonsmooth functions from a less restrictive class of assumptions than
smoothness: Lipschitzness, regularity, and convexity. We review here some essential
results from nonsmooth analysis and develop a few useful results. A more compre-

hensive treatment of nonsmooth analysis can be found in [19]. Throughout this
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section, assume that X is a finite dimensional vector space.

Definition B.1 (Lipschitz) A function f(z) is Lipschitz near x when

1/ (z:) = flzp)ll < Kllzi — z4]|  Vai,z; € nbhd(z),

where K is a positive scalar.

Definition B.2 (Generalized Directional Derivative) The generalized direc-

tional derivative ([19], p. 10) of f(z) in the direction v is

fly+tv) — fy)

t ?

f°(z;v) = limsup
y—z,i—0t

for all t € R, and y,v € X.

Definition B.3 (Regular) The function f is regular ([19], p. 39) at = when: (1)

for all v, f (z,v) exists, where f is the usual one sided derivative; and (2) for all
v, fl(m?'u) = f°(z,v).

All convex functions are regular ([19], p. 40). It can be shown that the single
object distance function of a convex set is a convex function ([19], p. 40).

While a Lipschitz function need not be smooth, it does possess a generalized
gradient. This definition is key to the notion of a gradient of a nonsmooth distance

function.

Definition B.4 (Generalized Gradient) In a finite dimensional space, the gen-
eralized gradient ([19], p63) of a Lipschitz function f at a point x is denoted by
Of () and given by:

Of (z) = Co{zljiqz Ve :az; &S,z & Qy},

where Q5 is the set of points where f fails to be differentiable, S is any set of measure

zero, and Co means convex hull.
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Note that if f(z) is smooth at z, then df(z) reduces to the conventional gradient.
The use of the 0 can be confusing because it can also mean “boundary” when it
precedes a variable that represents a set.

Now, we introduce some properties that are useful in the context of generalized

gradients.

Proposition B.5 The negated convex hull of a set of vectors is the convex hull of

the negated vectors, i.e.,
~Co{z1,...,zn} = Co{—21,...,—z,} (B.1)

Proof:
—Co{ml, - xn} = {3 iz}

={Xit1 — N}
= {¥it1 Ai(==zi)}

= Co{ — 21, ,——m”}

Proposition B.6 ([19], p38) 8(sf)(x) = s8f(z) Vse R

In particular, note that (—f) = —8(f).

Proposition B.7 ([19/,p47) Let {f;},i=1,...,n, be a set of functions which are

Lipschitz (respectively regular) near zg. For z in a neighborhood of zg, the function
fe) = max {fi(x)) (B2)

is also Lipschitz (respectively regular).

Since f(z) in Equation B.2 is Lipschitz, we can define its generalized gradient.

Proposition B.8 (Pointwise Maxima) ([19/,p47) For the function

7=

flz) = Hll?_}fn{fi(m)}
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, where each f;(x) is regular, f(x) is regular and has the generalized gradient,
Of (z) = Co{dfi(x) : i € I(z)}, (B.3)
where I(z) is the set of indices for which f;(z) = f(z). That is, f;(z) attains a

maximum for all 7 € I(x).

Proposition B.9 (Pointwise Minima) For a set of regular functions f;(z), the

function

g(2) = min (fi(e)) = — max (~f(z) (B.4)

Laeay

has a generalized gradient given by
8g(z) = Coldfi(z) Vi€ I(x)}, (B.5)

where I(x) is the set of indices for which f;i(z) = g(z), i.e., where f;(x) attains the

minimum over all ¢ € I(z). As before, g is regular.

Proof: The proof is a simple consequence of Proposition B.5 and B.6.

Og(xz) = —Co{O(—fi(z)) Vi€ I(z)}
= —Co{—0(fi()) Vi € I(z))
= Co{0fi(z) Vi € I(z)}.

B.3 Distance Function

A function which encodes the distance between a robot and nearby obstacles is key
to our definitions. This section exploits the properties of the X-distance function
and its gradient. These properties are generalizable to the V-distance function.
Again, we assume a point robot operating in a subset, termed the work space (W),

of an m-dimensional Euclidean space. The work space YV is populated by obstacles
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Ci,...,C, which are convex sets. Non-convex obstacles are modeled as the union

of convex shapes. It is assumed that the boundary of W is a collection of convex

sets, which are members of the obstacle set {C;}.

Recall the following definitions:

e single object distance function (Definition 2.1)
di(z) = mi -
(@) = min flo ol

e single object distance function gradient (Equation 2.2),

T — ¢

di = B
Veile) = o

for ¢y € C; such that ||z — cg|| = mincec, ||z — ||

e multi-object distance function (Definition 2.2)

D(z) = miindz-(a:).

B.3.1 Properties of the Distance Function

Proposition B.10 The single object distance function, d;, is continuous.

Proof: The single object distance function d; is said to be continuous if for every

€ > 0, there exists a § such that | — y| < § implies that |d;(z) — d;(y)| < €, where

z,y € W. Let § = € and assume |z — y| < 4.
If d;(xz) > d;(x), we then have

|di(x) — di(y)] =||x —ce| — |y — ¢y|| (where ¢, = argmin d;(z) and ¢, = argmin d;(y))

=z —co| = ly—¢yl  (if di(z) = dj(2))

<le—cy| = ly—cy| because |z — ;| < |z — ¢y

<z -yl
<.
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Otherwise, if d;(z) > d;(x), we then have

ldi(z) — di(y)| = {lz —ca|l = |y —¢y|| (where ¢; = argmin d;(z) and ¢, = argmin d;(y))
=ly—¢l—lz—c| (ifdi(z) < dj(x))
Sly—co| = |z —co| (because [y —cy| < |y — o)
Sly—z|=lz—y
<4

Since § = €, | — y| < § implies that |d;(2) — di(y)| < e. [
Proposition B.11 ([19], p. 51) The single object distance function, d;, is Lips-
chitz.

As a result of Proposition B.7, we have

Proposition B.12 The multi-object distance function, D, is Lipschitz.

B.3.2 Generalized Gradient of the Multi-Object Distance Function

The generalized gradient of the multi-object distance function exists because the
multi-object distance function is Lipschitz by Proposition B.12. Since the multi-
object distance function is of the form in Equation B.4, where each d; is regular,

Proposition B.9 states that its generalized gradient will have the form
OD(xz) = Co{Vdi(z) :i € I(z)}. (B.6)
Recall that I(x) is the set of indices where d;(z) = D(z). The physical intuition
is:

1. If there is a unique closest point (and hence a unique closest obstacle), 8D (z)
is a unit vector pointing away from the closest point. In this case, D(z) is

smooth.

2. If there are a set of equidistant closest points, then 9D (z) is the convex hull

of the gradients with respect to each point. In this case, a robot is equidistant
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to multiple convex obstacles.

We now consider in more detail how to compute the gradient of d;. When there
is a untque closest point ¢y € C; to = & cl(C;), then the gradient is

T —cg

(B.7)

That is, Vd; is a unit vector emanating from z pointing away from c¢;. When C; is
convex, d; is smooth everywhere but on the boundary of C;.

However, d; is not smooth when there are multiple closest points. Such a case
occurs when C; is not convex, and « is equidistant to multiple points, {c;}, on the
boundary of ;. The single object distance gradient is not smooth and takes the
form

8d;(z) = Co {'””_—Cf vc]} . (B.8)

e —c;ll

However, if a concave object is treated as the union of convex shapes, then the

generalized gradient, D(z), is still the same.

Proposition B.13 The generalized gradient of the multi-object distance function
1s independent of whether or not concave shapes are decomposed into convexr com-

ponents.

Proof: In this proof, obstacles may be concave. Let x be a point which is equidistant
to k closest points on the boundaries of both concave and convex obstacles, where

k < m and m is the dimension of the space. Let K be the number of obstacles

to which « is equidistant. That is d;,(z) = --- = d;, (¢). Naturally, K < k and
when all obstacles are convex, K = k. Let I; be the number of points in object C;
K
equidistant to . Therefore, Z I, =k.
=1

Finally, the single object distance gradient can be written as

8di(z) = Co { s kot } : (B.9)

lz = cill” "z — < |
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The generalized gradient of the multi-object distance function can be written as

8D(z) = Co{dd;, (x),...,0d:, (x)}

. iq . ix
_ . T—Cy. _ K T—Cy
— T Cl 11 T C1 ig-
=Co< Co e e ] ,.-.,Co R TR ]
1 Iil ¢ z CII'A_

. R .11 . _ iI—
C { ey Ty e iy
= Lo ey = yeeey T ey
_an At e K IR 3
el et 17 eI el |
—_ T—C1 T—Ck
= Co{ =2y, 2y

= Co{Vdi(z),...,Vdi(z)}.

B.3.3 Distance Function on a Slice

The OPP curve fragments are traces of local maxima of D, constrained to a slice. A
slice is a set of points {x : a(x) = A} where X is a scalar and Uycp{z : a(z) = A} =
W. For now, we assume that a slice is a hyperplane, and that coordinates are chosen
so that a(xz) = z1. In this case, we can decompose the physical space coordinates a

into “slice coordinates” y and the “sweep coordinate” A: = = (A, yT)7.

Definition B.14 (Single Object Distance Constrained to a Slice) The dis-

tance between a point, which is constrained to a slice, A, and a set C; is

di(y; \) = di(z) = min lly — gl (B.10)

a~1{A)=X
where y € a~1()\). Hereafter, d; is shorthand for d;(y; A).

See Figure B.1 for an example of the distance function plotted along a slice. At
each slice point, d; is computed to the nearest point of the obstacle.
Typically, a robot’s environment is populated with multiple obstacles, and thus

we define a distance function for multiple obstacles.

Definition B.15 (Multi-object Distance Function Constrained to a Slice)

The distance between a point, which is constrained to a slice, A, and the nearest
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Figure B.1 Distance function plotted along a horizontal slice.

Slice

Obstacle Free Space
Figure B.2 Distance function plotted along a diagonal slice.

obstacle to that point is
D(y;\) = min di(y;A)  ye€a'(N), (B.11)

where n is the number of convex obstacles in WW.

This is the function which is maximized to generate the freeways of the OPP,
and to access a GVG edge. See Figure B.2 for an example of D plotted along a slice.
However, note that D and D are not necessarily smooth (at the local maxima), as

can be seen in Figure B.2.
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B.4 Extrema of Distance Function

To implement a sensor based incremental construction of a retract, we must compute
the gradient of our distance measurements directly from sensor data. In particular,
for the OPP freeways, the local maxima of D(y; \) needs to be determined on each
slice. In order to extremize D(y;)) on a slice, we must compute its gradient with
respect to the slice variables, y. In this section we show how sensor data can be
used to compute this gradient, and how to reliably find and differentiate between
the different required extremal points on each slice.

We want to compute the generalized gradient of D(y, A) with respect to the slice
variables, y. However, our sensors give us data which can be used to construct the
generalized gradient of D(x) in the ambient space. This difference can be resolved

as follows.

Proposition B.16 The orthogonal projection of 0D(z) onto the y subspace is equal

to the partial gradient of D(x) with respect to y. In other words,
7y (0D(z)) = 8y D(x),

where m, orthogonally projects vectors onto the y subspace and Oy represents partial

differentiation with respect to y.

Proof: First recall that for smooth functions

Vzlf(xlva) = Ty (Vf(wla"BQ)) .

If there is a unique closest point, then D(x) is smooth at z, and the proposition is
proved. If there is not a unique closest point, by Definition 2.4,
OD(z) = Z A;Vd;(z) such that Z Ai=1 XN >0.
i€l (x) iel(x)

Now project this generalized gradient onto the y coordinates:
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Ty (8D(z)) = my | Y. AiVdi(z)

i€l(z)
= Y m(\Vdi(z)) = Y A\myVdi(z)
i€l(z) i€ l{z)
= Z )\Lvy(d,(:c)) - 8@/(D(w))

iel(xz)

Thus, it is quite straightforward to compute Byf)(y,)\) from simple distance
sensor data.

An important question which must now be addressed is: How do we reliably
determine if we are at a maxima, minima, or saddle point on a slice? For the
local maxima, some of the local minima, and saddle points, D(z) and D(z) are not
smooth. Thus, unlike the case of smooth functions, we cannot use the vanishing of
D’s gradient as an indication of an extremal point. However, as the following results
point out, it is possible to differentiate between the extremals. To our knowledge,
these results are new to the nonsmooth analysis literature. They are equivalent to
the Hessian, or curvature conditions, which classify the extremal points of smooth

functions.

Proposition B.17 Local Extrema ([19], p38) If f attains a local minima or maxima

at z, then 0 € 9f(z).

In general, the converse is not always true, but for the multi-object distance

function, a converse statement follows.
Proposition B.18 In T,-R™, if 0 € int(0D(z*)) then z* is a local mazimum.

Proof: This proof relies on the following lemma whose proof appears in Section A.3.

Lemma A.20 The origin is contained in the interior of the convex hull of a set of
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Figure B.3 Geometry of proof of Lemma A.20.

n arbitrary vectors {v; € R™ : i =1,...,n} if and only if there exists a v; such that
- for allw € R™, (w,v;) > 0.

By Lemma A.20, there exists an ¢ for which {v,—Vd;(2*)} > 0. That is, there
exists an ¢ for which d; decreases in the direction of v in a neighborhood of z*. Since
this is true for all v, there is always a d; that decreases in any direction v. Therefore,

for € > 0,
di(z + ev) < d;(zs) = D(z4).

By definition, D(z. + ev) < d;(z+ + €v), thus
D(z. + ev) < D(zs) Ve, v.
which implies that D(z.) is a local maxima. |

Figure B.3 may better help visualize this proof.

Corollary B.19 Let z* = (\,y*). Let T,xR™1 = o71(\) = 7,7, R™ be a co-

dimension one slice (isometric to R™~1). We have
0 € int(Co({V,di:(y*; \)})) <= 0¢ 9, D(y*; ),

and if 0 € int(Co({Vd;(y*; \)})), then y* is a local maxima of D on the co-dimension
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slice.
Proof: At z* = (A, y*), we have

8,D'sN) = 8,D(")
= m,0D(z*) (Proposition B.16)
= m, Co{Vd;(z*):i € I(z)} (Proposition B.9 and Equation B.6)
= Co{myVd;(z*) : i € I(z)}
= Co{Vydi(z*) :i € I(z)}
= Co{V,ydi(y*;\) i € I(z)}

(B.12)

Therefore,
0 € int(Co{myd;(y*; \)}) <= 0€ 8,D(y*; \).

The rest of this proof parallels the proof of Proposition B.18. By Lemma A.20,
there exists an i for which {v,—V,d;(2*)} > 0. That is, there exists an  for which
d; decreases in the direction of v in a neighborhood of &*. Since this is true for all

v, there is always a d; that decreases in any direction v. Therefore, for € > 0,
di(y + €v) < di(y«) = D(y.).
By definition, D(y. + ev) < Jb(y* + ev), thus
D(ys+ ev) < D(y.) Ve, v

which implies that D(y,) is a local maxima. |

The conditions for local minima and saddle points are similar, and can be proven

in a similar way.

Proposition B.20 At a saddle point, D is nonsmooth, and the origin is contained

in the boundary of dD(z").

Proposition B.21 At a local minima of D, 0 = 8D(z*).



189

Figure B.4 Gradient of Obstacles 1 and 2 at ..

Figure B.5 Projection of the Gradients.
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Convex Hull 1
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Figure B.7 Saddle Point.

Proof: At a local minima, there must be one unique closest obstacle. In this case,
the generalized gradient reduces the single object distance gradient. At a local

minima, this gradient vanishes. |

Figure B.8 shows an example of a local minima. Generically, D is smooth at

local minima. We term a connected local minima curve a valley curve.



191

Pojected Convex

Hull

———

Figure B.8 Local Minimum.



192

Appendix C

Generalized Voronoi Complex

The generalized Voronot complex is a class of structures whose properties are ex-
ploited to show connectivity of the HGVG in Chapter 3. In this chapter, after in-
troducing some new notation, we define the generalized Voronoi complex and show
it is a connected structure. As an example, we demonstrate how the generalized
Voronoi diagram is a generalized Voronoi complex, and thus a connected structure.

It should be noted that the generalized Voronoi complex can be viewed as a
type of dual of the GVG and HGVG. For example, when the generalized Voronoi
regions form a cellular decomposition of the free space, the connectivity graph of
this decomposition is a dual to the generalized Voronoi diagram. We term such a

dual, a generalized Delaunay triangulation.

C.1 Basic Notation

Definition C.1 (Sub-boundary) 94 is the subset of the boundary of a set A,
such that 94 is fully contained in A (i.e., DA = AN OA).

Definition C.2 (Adjacency) Two sets A; and A; are adjacent if
cl(A;) [ el(A4;) # 0.
Definition C.3 (Sub-adjacency) Two sets, A; and A;, are sub-adjacent if

OA: [ 0A; # 0.
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C.2 Basic Definitions

Definition C.4 (Generalized Voronoi Cell) A generalized Voronot cell V is a

subset of a space X such that:
1. Vis a connected set,
2. The sub-boundary of V is not empty (9V # 0),
3. 9V is a path connected set.

An example of a cell which satisfies the above criteria is a closed simply connected
set. Generalized Voronoi Regions are also examples of generalized Voronoi cells

(Lemma C.10).

Lemma C.5 There exists a path from any point in a generalized Voronoi cell to

its sub-boundary.

Proof: Let V be a generalized Voronoi cell. If z € V and y € V, then there exists a
path from z to y, because V is connected, by definition. If y € 9V, there still exists

a path from z to y because dV is a subset of V. |

Lemma C.6 If two generalized Voronoi cells, V; and V;, are sub-adjacent, then

their sub-boundaries are path connected (i.e., &v; U 3\7]- is connected).

Proof: Let E'?Vij = 9V; névj. By definition, 8V; and 3\7]- are each path connected.
Since V; and V; are sub-adjacent, 3\715 is not empty. Therefore, a path from any
point in V; to a point in V; can be formed by making a path from a point in V; to
a point in V;; and then by continuing this path from the point in V;; to a point in

V;. Therefore, av; U 5Vj is path connected. |

Corollary C.7 If two sets V; and V; are each sub-adjacent to the same set V,

then 8\77 and 5Vj are connected.

Proof: By Lemma C.6, 8V, is connected to évk and 3\7]- is connected to a’vk. By

transitivity, dV; is connected to a’vj. |
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q q
S S
o | | U q
g g
Figure C.1 Tessellation. Figure C.2 Deformed Path.

C.3 Connectivity of the Generalized Voronoi Complex
Proposition C.8 The generalized Voronoi complex is connected.

Proof: The strategy of this proof is to show that a path between any two arbitrary
points in the free space can be deformed into a path on the generalized Voronoi
complex, V.

Recall X is a connected set. Let ¢: [0,1] — X be a continuous mapping repre-
senting a continuous path between c(0) = ¢, € X and ¢(1) = g, € X. Note, g, and
gq are called the “start” and “goal” locations of a path, respectively. Without loss
of generality, assume g5 and g, each lie in unique cells, V; and V; ,» respectively.
That is, g, € Vj, and g, € V; .

By Lemma C.5 there exists a path from ¢, and g, to ¢s € (9\7,15 and g, € 8\7%,
respectively.

Now, all that needs to be shown is that ¢; and ¢, are connected in the gen-
eralized Voronoi complex. Recall, ¢: [0,1] — X is a continuous path between
qs and gy where ¢(0) = ¢, and ¢(1) = g,. For each t € [0,1] assign the index
of the generalized Voronoi cell for which ¢(t) € X belongs. In other words, let
fe: [0,1] = {41, .., 91} € {41,.--,7n}- Note, the image is a subset of all of the cells
because the path typically does not pass through all the cells. Also note, c(¢) € V;,
if and only if f.(t) = j;. Finally note, f.(0) = j, and f.(1) = j,. If ¢(¢) is in multiple
cells, choose any one index.

The function f.(t) prescribes a list of adjacent cells through which the path
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passes. Actually, in a generalized Voronoi complex, f. prescribes a list of cells
which are sub-adjacent. Consider two sub-adjacent cells, V;, and V;,,,. By Lemma
C.6, 8V, is connected to dV;, +1 (through ;.. = av;. Nav;, +1)- By re-invoking
Corollary C.7, all of the sub-boundaries in the list of generalized Voronoi cells pre-
scribed by f. are connected. Therefore, ¢; and g, are connected. Since this is true
for arbitrary gs and gg4, the generalized Voronoi complex is connected.

In summary, in a connected space, X, a path between ¢, and g, can be formed
with three connected components: (1) between g and ¢, (2) one along the general-
ized Voronoi complex between ¢s and gy, and (3) one between g, and ¢4. Since this
is true for arbitrary ¢, and g, in a bounded space, the generalized Voronoi complex

is connected. [ |

C.4 Generalized Voronoi Diagram

Proposition C.9 (The generalized Voronoi diagram is Connected) In an m-

. . . . . 2 .
dimensional space, the generalized Voronoi diagram, F=, is connected.

Proof: The union of all two-equidistant faces is the generalized Voronoi diagram.
By Proposition 2.11, two-equidistant faces are on the boundary of the generalized
Voronoi region. Once it is established that a generalized Voronoi region is a type
of generalized Voronoi cell and the generalized Voronoi regions form a generalized
Voronoi complex, when X = F&§, then this proof is a simple consequence of Propo-

sition C.8.
Lemma C.10 Generalized Voronoi regions are generalized Voronoi cells.

Proof: By Definition C.4, a generalized Voronoi region, JF;, is a generalized Voronoi

cell if it satisfies the following properties:

1. F; is a connected set;
2. 38F; # 0; and

3. é.‘”ﬂ is a connected set.



196

By the generalized star shape property of generalized Voronoi regions, the gen-
eralized Voronoi regions are connected.

By the boundedness assumption, there exists at least one other obstacle, Cj,
adjacent to C; such that there exists a two-equidistant face, F;;, between C; and C;.
By definition of the two-equidistant face (Definition 2.5), ¥;; C JF;. Furthermore,
by Proposition 2.11, F;; C 8F;. Therefore, the generalized Voronoi region J; has a
non-empty sub-boundary. In fact, 8F; = U; Fij-

()’Dﬁnlaing and Yap [34] define a continuous function, I'm(z), which maps points
from the generalized Voronoi region onto the generalized Voronoi diagram. Since
this function is continuous, then the boundary of the generalized Voronoi region is
a connected set because it is the image of the generalized Voronoi region, which is

a connected set. v

Bibliography
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