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ABSTRACT

In this report, we show, following a second order expansion in the pressure
amplitude, analytical expressions for the amplitude, and the conditions for
existence and stability of limit cycles for pressure oécﬂlations in combustion
chambers. Two techniques are used. The first technique is an asymptotic-
perturbation techniqﬁe where the asymptotic oscillatory behavior is sought by
expanding the asymptotic solution in a measure of the amplitude of the wave,
mainly the amplitude of the fundamental. The second technique is a
perturbation-averaging technique wheare an approximate solution is sought by
applying a perturbation method followed by an expansion of the solution in the
normal modes of the acoustic field in the chamber. It is shown, to third order in
the amplitude of the wave, that both techniques yield the same results regarding
the amplitude and the conditions for existence and stability of the limit cycle.
However, while the first technique can be extended to higher orders in the pres-
sure amplitude, the second technigue suffers serious difficulties. The advantage

of the second technique is in its ability to handle easily a large number of

modes.

A stable limit cycle seems to be unique. The conditions for existence and
stability are found to be dependent only on the linear pararheter‘s. The nonlinear
parameter affects only the wave amplitude. In very special cases, the initial con-
ditions can change the stability of the limit cycle. The imaginary parts of_the
linear responses, to pressure oscillations, of the different processes in the
chamber play an important role in the stability of the limit cycle. They also
affect the direction of flow of energy among modes. In the absence of the ima-

ginary parts, in order for an infinitesimal perturbation in the flow to reach a
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finite amplitude, the lowest mode must be unstable while the highest must be
stable; thus energy flows from the lowest mode to the highest one. The same
case exists when the imaginary parts are non-zero, but in addition, the contrary
situation is possible. There are conditions under which an infinitesimal pertur-
bation may reach a finite amplitude if the lowest mode is stable while the
highest is unstable. Thus energy can flow "backward” from the highest meode to
the lowest one. It is also shown that the imaginary parts increase the final wave

amplitude.

Second, the triggering of pressure oscillations in solid propellant rockets is

discussed. In order to explain the triggering of the oscillations to a non-trivia

y—t

stable limit eycle, the treatment of two modes and the inclusion in the combus-
tion response of either a second order nonlinear velocity coupling or a third
order nonlinear pressure coupling seem to be sufficient. Moreover, some

mechanisms which are likely to be responsible for triggering are identified.



..vﬁ__

TABLE OF CORTENTS

ACKNOWLEDGMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF SYMBOLS
INTRODUCTICN

References 1
DESCRIPTION OF THE PROBLEM
2.1 Introduction

22 Observed results and numerical solutions

2.3 Possible interpretations of the observed results

and the numerical solutions
2.4 Formulation of the problem

2.5 One-dimensional linear problem
for a solid propellant rocket,

2.8 Purpose of this work
2.7 Concluding remarks
References 2
EXPANSICN METHODS
3.1 Introduction
3.2 Limit cycle of a nonlinear oscillator

3.3 Two-parameter expansion
using Stokes method

3.4 Application of the two techniques to some
nonlinear hyperbolic equations

3.5 Concluding remarks

References 3

o

Page

iii

18

18

34

35

41
52
52

54

87

70
79

80



-viii-

EXPANSION OF THE CONSERVATION EQUATICONS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Introduction

Conservation equations in dimensionless form

The linear problem

The nonlinear problem

Application of the results

Expansion using the perturbation~averaging technigue
Concluding remarks

Appendix 3A On the structure of the boundary conditions

References 4

LONGITUDINAL MODES: AMPLITUDE AND CONDITIONS FOR
EXISTENCE AND STABILITY OF LIMIT CYCLES

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

Introduction

A simple proof for need to change the expansion _
Presentation of the expansion

Existence of limit cycles

Application of the results

Discussicn of the results

Stability of the limit cycle

Discussion of the results

Appendix 5A General reason for changing expansion
Appendix 4B General formulation for longitudinal modes

References 5

EXPANSION IN THE NCRMAL MODES OF THE ACOUSTIC FIELD:
AMPLITUDE AND CONDITIONS FOR EXISTENCE
AND STABILITY OF LIMIT CYCLES

6.1

8.2

Introduction

Preliminary

81
81
83
85
895
103
108
115
118

120

122

135
136
145
147
151

156

187
187

158



'iX'

o
w

Case of zero frequency shift
8.4 Case of non- zero frequency shift

6.5 Comparison with numerical solutions and
experimental results

8.5 Concluding remarks
Appendix 8A Possible limit cycles
References 6
TRIGGERING OF PRESSURE OSCILLATIONS
7.1 Introduction

7.2 Discussion and interpretation of
some previous works

7.3 Justification for neglecting
out-of-phase components.

7.4 Relationship between the form of
combustion response and triggreing

7.5 Determination of the limit cycle.
7.8 Comparison with some experimental results
7.7 Comparison with some numerical soluiions
7.8 Concluding remarks

Appendix 7A

References 7
THIRD CRDER ACOUSTICS

8.1 Third order acoustics :
Perturbation-averaging technique

8.2 Third order acoustics :
Asymptotic-perturbation technique

B.3 Concluding remarks
References 8

CONCLUSION

198

20%

203

203

205

215

217

235

237

254

277

280

281



Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12a

Figure 2.12b

—.X-
LIST OF FIGURES

Sketch of the lirniting amplitude phencmenon.

Sketch of the triggering phenomenon.

Sketch of a T-burner.

Oscilloscope trace of a t};pical good T-burner test. Reference 2.1.

Frequency and amplitude versus time for the test shown in Figure
2.3

Oscilloscopes traces for firings of two different propellants. Refer-
ence 2.1.

Limit cycle in the case of a liquid-propellant rocket. Reference 2.2
Numerical solution from reference 2.4,

The limit eycle for two different initial conditions. Reference 2.4.
The experimental apparé.tus in reference 2.5.

High pressure pulse waveform and spectrlllm. Reference 2.5.

Nonlinear amplification of flow disturbances in an 1 X 2 X 20 in.
solid propellant rocket. Reference 2.8.

Nonlinear amplification of flow disturbances in a liquid- propellant
rocket, Reference 2.2.

Time-history and propellant
mass flow rate at the head

end of the combustion chamber
as the result of a 20% amplitude
disturbance, Referencs 2.7.

Tirne-history and propeilant
mass flow rate at the head

end of the combustion chamber
as the result of a 40% amplitude
disturbance. Eeference 2.7.



F

igure 2.13

Figure 2.14
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1

Figure 8.1

Figure 8.2

Figure 6.3
Figure 8.4
Figure 8.5

Figure 8.8

Figure 8.7

Figure 8.Ba

Figure 8.8b

Figure 6.9

'Xi‘
Time evolution of pressure oscillations at head end of the motor,
using a nonlinear combustion response. Reference 2.4,
Schematic of a cylindrical rocke.
Phase diagram of (a,3)
Schematic of a longitudinal rocket.
Schematic of a cylindrical rociket.
Dimensionless frequency correction,
Domaine of stability for two nonlinear oscillators.

The non-influence of the initial conditions on the limit cycle ampli-
tude. '

Influence of the damping rate ¢; on the speed of reaching the limit
cycle,

Influence of the initial conditions on the stability criteria.
Influence of the imaginary parts on the stability conditions.
Case of three oscillators with % = G,

Influence of the imaginary parts on the increase of the amplitude
of the limit cycle

Case of three oscillators with & # 0.

Time evolution of pressure oscillations at the head end of a motor
{ no particles), Reference 8.2.

Time evolution of pressure oscillations at the head end of a motor
( 15%, 2 micron particles ). Reference 8.2.

Comparison of the analytical results with the experimental ones
given in reference 8.3. The straight line represents the approxi-
mate analytical resuits. The circles represent experimental data
poeintis.



Figure 7.1

Figure 7.2

Ca

Figure 7.

o~

Figure 7.

Figure 7.5

Figure 7.8

Figure 7.7a
Figure 7.7b
Figure 7.7¢
Figure 7.8
Figure 7.9
Figure 7.10

Figure 7.11

-vij-

Phase Diagram for Eq, (7.1)

Phase Diagram for Eq. (7.10)

Proof of the ability of Bgs. {(7.14) and ’(’?.15) to predict triggering.
Model for one-dimensional cylindrical solid propellant rocket.

Proof of the ability of pseudo second order nonlinear velocity cou-
pling to predict triggering.

Proof of the ability of third order nonlinear pressure coupling to
predict triggering.

The experimental apparatus in reference 7.1.
Existence of a non-trivial stable limit cycle.
Threshold of triggering.

The numerical example used in reference 7.2,
Triggering and limit eycle existences,
Threshold of triggering.

Sensitivity of the triggering {o the decay rate of the first mode.



-xiii-

LIST OorF SYMBCLS
A Arbitrary quantity
A; Coeflicient of coswst
B, : Coeflicient of sino;t
B1p -Amplitude of the first mode of the limit cycle
agp Amplitude of the second mode of the limit cycle
Aqp Limit value of A
Big Limit 'value of B;
c.c. Cofnplex conjugate.
¢4 Coefficients introduced in Chapter 7
C; Coefficients introduced in Chapter 7
dj Coefficients introduced in Chapter 7

D11, Eps Coefficients introduced in Chapter 7

dg Diameter of the chamber

=N Coefficients introduced in Chapter 7

I Punction introduced in Chapter 4

f; Coeflicients introduced in Chapter 8

Fy Ty Coeflicients introduced in Chapter 8

Fy Function representing nonhomogenuous and nonlinear terms
f; Coefficients introduced in Chapt_er 8

G, G;, Gz Coefficients introduced in Chapter 8

hp Coefficient introduced in Chapter 8
i V=1

K Complex frequency

k Wavenumber

m Mass burning rate



-}d.'\:r_

m' Perturbation of mass burning rate

P Pressure

P’ Perturbation of pressure

Plmn Coefficient of du™e™® in the expansion of p
Ig Steady state mass burning rate

r Burning rate

T - Temperature

T Perturbation of Temperature

t Time

1 Velocily

Perturbation of velocily

Wimn Coefficient of gyPer™
in the expansion of u

Vi Coefficients in Appendix 7B

w; Coefficients in Appendix 7B

X Axial cocrdinate

v Function defined in Chapter 3

o Gl"OWtfll rate of the i th mode

o Growth rate

8 The nonlinear coefficient

81, Be Arbitrary coefficients

&; Parameters defined in Chapter 6
Ve Laplacian

V. Divergence

£ Perturbation parameter, also a measure of the amplitude

K Thermal diffusivity



-XV-

Mach number of the mean flow

Linear combustion response Lo pressure oscillations
Frequency shift of the limit cycle.

Density

Density perturbation

Coefficient of &uPe™ in the expansion of p

Small parameter

Real frequency

Complex conjugate

Nondimensional quantity



Chapter 1

INTRODUCTION

Oscillation of pressure in combustion chambers is a common, usually
unwanted feature of most types of high-capacity combustion systems. The
highly concentrated energy release by chemical reactions is responsive to flow
disturbances, and the resulting combustion disturbances can, under certain
conditions, amplify the original flow fluctuations. In combustion systems
designed for steady state operation, such oscillations can be harmful to an
extent ranging from a mild noise through causing vibration of doors and loose
parts, up to the extreme when they cause a high-pressure combustion chamber
to explode or a low-pressure cne to implode. The major reason for studying
combustion instability is to understand the mechanisms responsible for such
unsteadiness, to know what control variables can be altered to reduce the harm-
ful effects without excessively increase the capital cost of the combustion sys-

tem or lowering the combustion efficiency.

Three types of combustion instabilities have been shown experimentally and
theoretically to occur. The first type is the combustion roaring where a "white”
noise, with a whole spectrum of frequencies, takes place. The second type is the
Helmholtz resonator oscillation which corresponds to the bulk oscillation of the
gas in the chamber; its frequenby range is usually 10 to 100 Hz. But the most
troublesome instability, especially in high-energy combustors, involves oscilla-
tion of the flow near ¢ne of the natural acoustic frequencies of the chamber.
The frequencies range from a few hundred Hertz to a few thousand. The reason
for the importance of this kind of oscillations is the fact that the combustion

processes tend to respond most sensitively in this range of frequencies.



Depending on the amplitude of the oscillations, two regimes of behavior may
be distinguish'ed: linear behavior for which the disturbances are infintesimal;
and nonlinear behavior for which the oscillations are so strong that noniinear
effects become important. The linear or nonlinear behavior of oscillatory
combustion depends fundamentally on the combustion processes. It is indeed
the effects of the oscillations on these processes and, hence, on the combustion
rate itself, that supplies to the system an amount of energy sufficient to balance
the energy absorbed by dissipative processes, thereby sustaining the oscilla-

tions.

A quantitative understanding of the responsible combustion processes and of
the damping processes is essential to explain correctly the instability
phenomenon and to: provide for improved control. Because of the complexity of
the over-all combustion system, stability analysis lacks rigor of representation
of the physical problems, but such analysis provides the necessary link between
basic knowledge and combustion behavior. Theoretical studies of combustion
instabilities usually require the solution: of nonlinear partial differential equa-
tions governing the physical processes in the combustor. To solve these equa-
tions one usually treats first the linearized version of these equations and then

attempts to soive the full equations.

The linear acoustic instabilities correspond to small fluctuations in the flow.
The investigations in the area of linear instabilities are well advanced. However,
the obvious shortcoming of the linear theories is their inability to predict
observed behavior when the instability is in the nonlinear regime. Two impor-
tant problems usually arise:

(a) What is the asymptotic oscillatory condition produced in the chamber in
the case of linear instability? Clearly the oscillation cannot grow indefinitely but

is actually limited by nonlinear effects.



(b) Is it possible, in the case of linear stability, that fluctuations above a cer-
tain amplitude may become amplified?. The corresponding phenomenon is

called nonlinear instability, or triggering.

Both problems are clearly nonlinear. This work is devoted to answering
these two questions. Since we are dealing with nonlinear behavior, it is clear that
a nonlinear analysis should be used. To solve the nonlinear equations one has

two choices: solve the equations numerically; or use an approximate analysis:

The major advantages of using an approximate analysis are first, the very
low cost of computing the asymptotic oscillatory condition, especially for three-
dimensional problems; and second, an approximate analysis will yield direct
insight into the quantitative and qualitative influences of the different processes
in the chamber. The major disadvantage is that, by definition, the method is
approximate and therefore cannot represent accurately the various contribut-
ing processes. On the other hand, numerical analysis, while yvielding in general a
more accurate representation, costs much more and cannot explain easily
either quantitatively or qualitatively the role of each process in the chamber in
establishing the limit cycle. From the point of view of physical understanding of
the nonlinear instabilities in combustion chambers, an analytical solution will
yield a deeper insight than the numerical solution. The results of this work will

show the point.

Generally, to solve partial differential equations governing physical
processes, we use a perturbation method taking advantage of a small parame-
ter. If the nonlinearity of the differential equation is not strong, the differential
equation can be separated into linear and nonlinear parts. The nonlinear part is
multiplied by a small parameter £ and a series approximation method is used to
find the solution. This perturbation method was first introduced by Poincare!. It

has received much attention®5+4:5 for the solution: of nonlinear problems with



weak nonlinearity. The solution is sought in the following form

y(xt) = yolx) + eyi{ %, t) + f vy %, t) + % ya{ x, t) + ete (1.1)

where yp is the steady state solution, y, is the first order approximation ( linear
problem ), y; and yg are respectively the second and third order approximation

( nonlinear problem ).

To find the asymptofic oscillatory behavior, two techniques in particular are
conmmonly used. The first technique is to expand the asymptotic solution (
limit of y{x,t) when t-~ ) in powers of a measure of the amplitude of the
asymptotic solution, while specifying the asymptotic behavior in time, harmonic
for example. For asymptotic harmonic motion, the small parameter, or the per-
turbation pararneter, can be chosen to be, for example, the amplitude of the
fundamental. Then we equate the coefficients of like power in the amplitude. A
form of this technique is used in Chapters 3 to 8. This technique will be referred

to as the "asymptlotic-perturbation technique.”

Recently, this technique has been applied to the problems of pressure oscilla-

6 and Zinn7.

tions in combustion chambers by, among others, Maslen and Moore
However, the expansion which will be presented in this report is different from
those reported in references 8 and 7 in many aspects shown in Chapter 3. The
major difference is the capability of our expansion to yield simple anclytical

results regarding the amplitude and the conditions for stability of the asymp-

totic solution.

The second technique involves substituting in the differential equation the
series (1.1} and retain terms to the desired order ( y; for second order, etc ).
The solution functions ¥, ¥3, ete. are then expanded in terms of the spatial nor-

mal functions of the linearized equation, the first order problem. Spacial



averaging, using Green’s theorem { Chapter 3, Section 3.8), is then applied to the
differential equation. The partial differential equation is then reduced to an
infinite system of second corder ordinary differential equations for the time-
dependent parts. The asymptotic behavior is found by taking the limit of the
time-dependent parts of the solution when t- . This technique will be referred

to as the "perturbation-averaging technique.”

9

Among others, Zinn and .‘Powell8 and Lores and Zinn~ have used this tech-

nique to study the unsteady motion in liquid propellant rocket motors. They
solved numerically a truncated part of the infinite set of second order ordinary

nonlinear diffential equations for the time-dependent parts. Keller and Kogel-

0

man used the same technique of expansion in the normal modes to study a

11

nonlinear partial differential equation, the Klein-Gordon~~ with a nonlinear

term of the sort appearing in the the Van der Pol equations. To solve the set of

second order ordinary nonlinear differential equations they used their two-

12 13,14

time™™ method. However, they, among others , noticed that the the two-

time method is completely equivalent to the method of averaging. For low order

approximations, it is often easier to apply the method of averaging. It was

Culick!® who first applied the methed of averaging to study the nonlinear

behavior of acoustic waves in combustion chambers.

The method of averaging was develop‘ed originally by Krylov and Bogo-

16

liubov™" and by Bogoliubov and Mitropolskiil7 for the purpose of providing

approximate sclutions to ordinafy differential equations with small nonlinearity.

More recently, this method has been applied to nonlinear partial differential

8 and McGoldrickig used it to treat the

20

equations in several contexts.. Benney1
problem of water waves interaction. Montgomery and Tidman®" used the same
technique to treat the problem of plasma waves, and I\Eozﬁ:gc:»meryzl to solve the

noniinear Klein-Gordon equationll. The same technique has been used by many



22,23,24

investigators to solve the equations of nonlinear waves in solids. The

analysis in Chapters 8 and 7 are based on this technique.

The most distinctive point between the " perturbation-averaging " technique
and the " asymptotic-perturbation " technique, as will be shown in Chapter 2, is
the treatment of high order approximations. In both techniques (perturbation-
averaging and asymptotic-perturbation ), our objective is to find the limiting
amplitude of pressure oscillations in combustion chambers by solving the con-

servation equations of the flow field.

The limiting of the growth of pressure oscillations in combustion chambers
has long been the object of investigation, but the best available data have been

®5 with T-

obtained with systems using solid propellants. Experimental results
Burners, a cylindrical chamber with center vent and with one or both ends ter-
minated with end-burning propellant grains, show the general behavior most
clearly : the pressure oscillation grows initially in time but, after few cycles, it
levels off toward a limiting value. Figure 1.1 is an idealized envelope of the pres-

sure history. From this figure, it is clear that the process is nonlinear. The final

oscillatory condition is said to reach a limit cycle,

In general, a limit cycle corresponds to a periodic solution to nonlinear auto-
nomous, i.e. no time-dependent coeffcients, systems. A limit cycle is indepen-

dent of the initial conditions but it may depend on their range.

One classical example of the existence of limit cycles is the Van der Pol’s

oscillad;org6

27

» when the damping is amplitude-dependent. Following this analogy,
Culick™" introduced a theoretical interpretation of the limiting amplitude, of
pressure oscillations in combustion chambers, by introducing a model of one
nonlinear oscillator for which the nonlinear terms represent the wall losses and

particle attenuation. But a detailed examination of the structure of the
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waveform of a limit cycle, found exper'irnemfr,aﬂyg5

. confirmed that the process is
more complicated. The waveform shows a distortion of the fundamental acoustic
mode and invelves generation of higher harmonics by different nonlinear
processes, mainly the nonlinear gasdynamics of the flow. This is essentially the

phenomenon responsible for the formation of shock waves in fluid flow.

To explain the effect of t;he nonlinear gasdynamics on the formation of limit

cycle, Culick®

presented an approximate analysis for the contribution of this
kind of nonlinearity. By expanding the pressure field in the normal acoustic
modes of the chamber, he showed that the nonlinear behavier could be
represented by the equations for a system of nonlinear oscillators. Using refer-
ence 15 as a basis, Jensen and BecksteadzB examined the influence of the
energy transfer among modes on the formation of limit cycles . They found that
indeed the gasdynamics nonlinearity played a major role in establishing the
limit cycle. As a means of checking the approximate analysis, Culick and
Levine29 integrated numerically the conservation equations in rocket chambers,

using the method of characteristics. They found that for small pressure distur-

bances the approximate analysis yielded satisfactory results.

Interest in dealing with the limiting amplitude in combustion chambers lies
not only in interpreting some experimental data but in understanding the gen-
eral behavior of pressure oscillations in combustion chambers. In fact, the
results which will be elaborated in this report are of general application and can
be applied easily to any sort of combustion chambers { ramjet engines, solid and
liquid propellant rocket, furnaces, ete.) . Here, we will apply the results to selid

propellant rocket motors because of the availability of data.

None of the references cited above provides satisfactory answers to the iol-
lowing questions: when does a limit cycle exist? what are the effects of the linear

parameters on the existence, stability, and amplitude of the limit cycles? and



what are the effects of the nonlinear parameters?

The aim of this work is to answer these questions by giving explicit analytical

results, while limiting the discussion to a finite number of modes.

In Chapter 2 we define the physical problem, the motivations of this work,
and the objectives. In Section. 2.2, we show some experimental results and
numerical solutions, reported by other investigaters. This constitutes the physi-
cal ground of the analysis in this work. Section 2.3 deals with the interpreta-
tions of these experimental results and numumerical solutions. This helps to
define the scope of the analysis to be carried out. In Section 2.4, we define the
physical problem in mathematical terms where we emphasize the structure of
the initial and boundary conditions. Section 2.5 deals with the analysis of linear
stability of pressure oscillations in a one-dimensional model for a cylindrical
solid propellant rocket motor. This helps define the physical and geometrical
properties of the chamber in mathematical terms. Finally, we state in Section

2.6 the precise purpose of this work.

In Chapter 3, we establish the groundwork for the expansion in the amplitude
of the wave starting from simple examples. Section 3.2 deals with the expansion
of the frequency in the amplitude of the oscillator in order to find the limiting
amplitude, or limit cycle, for the solution of the well-known Van der Pol's equa-

tion. -

In Section 3.3 we present a method of expansion in two parameters. The pur-

pose is to show how the method can be expanded in many parameters.

Having verified in Section 3.2 the usefulness of the expansion, in Sections 3.4
and 3.5 we deal with the extension of the analysis to the solution of a nonlinear
hyperbolic equation. The point is to demonstrate how the limiting amplitude

may be found.



Chapter 3 ends with a discussion of the basis for an expansion of the solution
of the nonlinear conservation equations in combustion chambers. The expan-
sion presented in Chapter 3 will be extended in Chapters 4 and 5 to find the lim-

iting amplitude for pressure oscillations in combusticn chambers.

In Chapter 4 we apply the expansion developed in Chapter 3 to the conserva-
tion equations in combustion chambers. We start by developing the conserva-
tion equations in dimensionless form followed by analysis of the linear problem,
to determine the linear growth rates for different harmonics. The results of the
linear analysis are then applied to a one-dimensional problem. After that, the
nonlinear problem is treated. It is convenient to distinguish two classes of prob-
lems: the class of purely longitudinal modes for which the frequencies are
integral multiples of the fundamental; and all other possibilities. For the second
class, only a single mode is taken into account. The point is to show that the ”
asymptotic-perturbation "technique can be extended easily to third order in the
pressure amplitude. The resuits are applied to a one-dimensional problem. The

first class will be the subject of Chapter 5.

In Section 4.8, we apply the perturbation-averaging technique, discussed in
Chapter 3, to the conservation equations in combustion chambers. The analysis
is carried only to secend order in the pressure amplitude. Only the results for

longitudinal modes are discussed in detail.

In Chapter 5 we discuss the class of pure longitudinal modes. We will be
show, by applying the " asymptotic-perturbation " technique presented in
Chapter 3, how the limit cycle can be obtained. The conditions for existence of
the limit cycles will be determined. The results will again be applied to a one-

dimensional problem.
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The crucial point of whether such limit cycles physically exist, i.e. are stable,

is treated in Section 5.7.

For simplicitly, the analysis in Section 5.7 will be restricted to the treatment
of longitudinal modes, partly because that is the case treated in Section 5.5 and
partly to simplify the calculations. However, the analysis can easily be applied to

three-dimensional problems once the limit cycles are found.

In section 5.7.2, the conservation equations are linearized around the limit
cycles which are found using the asymptotic-perturbation technique. A system
of two linear partial differential equations is obtained. Application of Green's
theorem yields a parameifric linear system of ordinary differential equations for
the time-dependent parts, The method of averaging will then yield a linear sys-
tem with constant coeflicients, When the expansion of the pressure in the acous-
tic modes is limited to two modes and to second order in the pressure ampli-
tude, explicit analytical results for the conditions for stability of the limit cycles
are obtained. The particular case when the imaginary parts of the linear
responses of the different processes in the chamber vanish is carried to comple-

tion.

Section 5.7.3 deals with the results for the stability of the limit cycles. One
major conclusion is that, when two modes are acccounted for, the stabilty
depends only on the linear parameters. The nonlinearity affects only the ampli-
tude. It is found that, in order for an infinitesimal disturbance in the flow to
reach a finite amplitude, the first mode should be unstable and the second mode

should be stable and should decay at least twice as fast as the first mode.

In Chapter 8, we will deal with the determination of the limit cycle using the
technique of expansion in the normal modes of the chamber, following the

method reported in reference 15 and using the results obtained in Chapter 4,
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Section 4.6. In this chapter, we will use the analysis presented by Cuﬁck15 for
the solution of the nonlinear waves in combustion chambers. The objective is to
support our results obtained in Chapters 4 and 5 by using a different approach
to determine the limiting amplitude. In this chapter, we use the peturbation-

averaging technique to find the amplitude and the conditions for existence and |
stability of the limit cycle. Broadly, the analysis breaks into two parts. First, for
a chosen type of limit eycle (there are two), the conditions for existence and the
amplitudes are found. Then a perturbation procedure is used to examine the

stability of the limit cycle.

In Section 8.1, we treat the case when the fundamental frequency of the limit
cycle is equal to the fundamental frequency of the chamber. Section 8.1.1 deals
with two modes only. The objectives are to calculate the amplitude and to deter-
mine the conditions for existence and stability of the limit cycle. The purpose is
to explain the influence of the linear and nonlinear parameters on the forma-

tion of limit cycle. Levine and Baum°C

reported some numerical results showing
that the limit cycle seems to be independent of the initial conditions. We will
show analytically in Section 6.1.1 how, in special cases, the initial conditions
can change the stability of the limit eycle. The influence of the imaginary parts
of the linear responses on the final amplitude is demonstrated. The objective is
to see how these imaginary parts alter the amplitude and the conditions for sta-
bility of the limit cycle. The reason for studying this effect is the suspicion that
the phase relationships between the pressure oscillations and the different
processes in the chamber play a major role in the stability of the limit cycle. In
section 6.1.2, we deal with three modes. The purpose here is to confirm the basic

conclusions found in the treatment of two modes and to show how the analysis

can be extended to any number of modes.
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In Section 6.2, we treat the case when the fundamental frequency of the limit
cycle is slightly diﬁ‘erént from the fundamental acoustic frequency of the
chamber. The objective is to extend the results to a wider range of linear
coefficients, thus making the application of the results to practical probleins
more accurate. Two modes are fully treated. In order to confirm the results, the

case of three modes is treated only numerically.

Section 8.3 is a comparison between the analytical results on one hand and
the numerical and experimental results, reported by other investigators, on the
other hand. The main purpose:of this part is to show how the analytical results
can be applied to real problems, in order to understand the physical mechan-
isms behind the limiting amplitude phenomenon. Because of the availabilty of
data on solid propellant rocket motors, these results will be applied solely to
this kind of systems. But the validity and the scope of application are much

wider and the results can be applied to any sort of chamber.

Chapter 7 is devoted to the treatment of the problem of nonlinear instability,
or triggering. The system is linearly stable but nonlinearly unstable. Figure 1.2
shows an idealized sketch of pressure history illustrating this phenomenon. It is
seen from this figure that for a small initial disturbance the oscillation decays
in time but for a large initial disturbance the oscillation will be amplified and
eventually levels off toward a non-trivial limit cycle. Our aim in Chapter 7 is to
establish a framework for further research on this phenom;non, In this
chapter, an analytical formulation, using a third order expansion in the pres-
sure amplitude and treating two modes, for the triggering of pressure oscilla-
tions in solid propellant rockets is presented. In this section, we will show major
mechanisms responsible for triggering and how they affect this phenomenon.
The reason for studying this problem is the realization that triggering, or non-

linear instability, is' a general phenomenon and is not related to a particular
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chamber geometry or to a specific propellant. This is, to our knowledge, the first

global analytical representation of triggering.

In Chapter B, we compare the applications of the perturbation-averaging
technique and asymptotic-perturbation technique to the solution of the third
order acoustics in the nonlinear conservation 'equations in combustion
chambers. The purpose of this chapter is to examine the role of each technique

in describing triggering.

The final results are summarized in: Chapter 9. Future extensions of the

analysis are discussed.

The most tangible contributions of this work are first the establishment of
analytical results for the amplitudes and conditions for existence and stability
of limit cycles for pressure oscillations iﬁ combustion chambers { this is an
answer to question (a) above ), and second the elaboration of a successful
groundwork to predict triggering ( answer to question (b) above ). The practical

applications are very wide and the results can be used directly to interpret

experimental data.
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Chapter 2

DESCRIPTION CF THE PROBLEM

2.1. Introduction

In this chapter, we define the general problem to be solved in this report.
Broadly, the problem breaks into two parts. First, we discuss the limiting ampli-
tude phenomenon in combustion systems. This phenomenocn will be discussed in
details in Section 2.2.1 where some experimental results and some numerical
solutions, reported by other investigators, will be shown in detail. The impor-
tance and the generality of this phenomenon will be pointed out. Second, the
triggering phenomenon of pressure oscillations in combustions devices will be
discussed in detail' in Section 2.2.1 where we show some experimental results
and numerical solutions. The need for interpreting these phenomena by relat-
ing them to some physical mechanisms is at the origin of this work. Following a
discussion of the experimental results and the numerical solutions, we give in
Section 2.3 some possible interpretations of these phenomena. This will consti-
tute the ground for the analysis carried out in this report. In Section 2.4, we for-
mulate the general problem to be solved and we define the basic characteristics

of the physical problem.

2.2. Observed resuits and numerical solutions

In this section, we will show some experimental results and some numerical
solutions 'regarding the limiting amplitude and triggering phenomena in
combustion chambers. The interpretation of these phenomenon motivates the
analysis to be followed in this work. In Section 2.2.1, we show some experimental
resuits and numerical solutions showing the existence of the limiting ampiitude

phenomenon, while in Section 2.2.2 deals with the existence of the triggering
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phenomenon. This section constitutes the physical basis for the analysis in this

report.

2.2.1. limiting amplitude for a lineariy unsiable sysiem. .
In the firings of T-burners, laboratory devices used to determine the propeilant
response to pressure oscillations and shown in Figure 2.1, the pressure oscilla-
tions show a peculiar result. The pressure grows initially in time, indicating the
system is linearly unstable, leveling off after few cycles to a non-trivial limit
cycle. Figure 2.2 shows one the test results reported in reference 1. Figure 2.3
shows the variation in time of the préssure and frequency from the test shown
in Figure 2.2. In Figure 2.4, we show, from reference 1, some other test resuits

for different propellants.

The phenomenon also occurs in liquid-propellant rockets. Figure 2.5 shows

one of the test results reported in reference 2.

Clearly, the phenomenon is nonlinear, otherwise the pressure would grow
indefinitely, We see that the limiting amplitude phenomenon is of general
nature, since it may occur in any combustion device. To interpret this

3 and Levine and Baum? integrated numerically

phenomenon, Culick and Levine
the conservation equations in solid propellant rockets and they found that the
nonlinear gasdynamics may well be a major cause for limiting the pressure
amplitude. Figure 2.8 is one of the numerical results reported in reference 4.
Moreover, in reference 4, the authors integrated the conservaticn equations for
different initial conditions. They found that the limiting amplitude is always the
same. Figure 2.7 shows two of their numerical results for different initial condi-

tions. This suggests that the limiting amplitude phenomenon may well be

independent of the initial disturbances.
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vertical 5 psi/em

horizontal 0. 25 sec/cm

Figure 2.2 Oscilloscope trace of a typical good T-burner
test. Reference 2.1.
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Figure 2.4 Oscilloscopes traces for firings of two
different propellants. Reference 2.1.
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However, many important questions still do not have satisfac—tory answers.
First, when does the limit cycle exist ? Second, what is the amplitude of this
limit cycle ? Third, when is the limit cycle stable ? All the above references do
not give satisfactory answers to these questions. Our main concern in Chapters
4 to 8 is to answer these queétions. The results would be applicable to any

combustion system.

2.2.2. Triggering of pressure oscillations in combustion chambers .
In the ﬁrmgs5 of solid rocket motors at Aerojet Corporation, the rocket motor
is pulsed into instability. Figure 2.8 is a schematic of the rocket motor used in
reference 5. In Figure 2.9, we show the pressure waveform and its spectrum for a
given test reported in reference 5. When the initial pulse is strong enough, the
wave grows in time leveling off to a non-trivial limit cycle. A similar phenomenon
was encountere‘d experimentally by Brownlees. Figure 2.10 shows one the test
resuits in reference 8 where the pressure grows to a non-trivial limit cyele if the

initial pulse is strong enough.

The same phenomenon is encountered in liquid-propellant rockets. Figure
2.11 shows one of the test results reported in reference 2, We see from this
figure that for a strong pulse the wave grows in time leveling off to a non-trivial

limit cycle.

On the numerical level, Kooker and Zinn7

integrated nurmerically the conser-
vation equations in a one-dimensional solid propellant rocket. Figure 2.12 is one
of their results. They found that a nonlinear combustion response of the propel-
lant to pressure oscillations may well be a major cause for triggering. More sim-
ply. Levine and Baumd’ integrated numericaily the conservation equations in a
cylindrical solid propellant rocket with a given nonlinear response of the propel-

lant. They found that a nonlinear combustion response is capable of predicting

triggering. Figure 2.13 is one of their numerical results. In both references 4 and
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trum. Reference 2.5.
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Figure 2.10Nonlinear amplification of flow disturbances
in an. 1 X 2 X 20 in. solid propellant rocket.
Reference 2.6.
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AERODYNAMICS IN COMBUSTION
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Figure 2.11Nonli'nee§r amplification of flow disturbances
in a liquid- propellant rocket. Reference 2.2.
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7, the limit cycle, or triggering limit, was found to be independent of the pulse
amplitude, as long as this amplitude is above a theshold value. This is an impor-
tant information in the sense that the triggering limit may not a continuous

function of the initial conditions.

2.3. Possible interpretations of the observed results and the numerical solutions
First, we give some interbretations to the limiting amplitude phenomenon in
a linearly unstable system. Second, we draw some causes for the triggering
phenomencn in a linearly stable system. The conclusions we draw will constitute
the basis for all the analysis in this report. In fact, the analysis in this work is

aimed mainly at examining the validity of these conclusions.

From the experimnental results and the numerical solutions regarding the
limiting amplitude phenomenon, we saw in the last section that the nonlinear
gasdynamics may well be a major cause for 1imitih,g the amplitude. This is
eésentiaily the same mechanism responsible for the formation of shock waves in
gasdynamics. The growth of the wave generates higher harmonics. However, the
shock wave does not occur because of the damping of the higher harmonics by
the different processes in the chamber, mainly the response of the fuel to pres-
sure oscillations. In fact, if the fuel response is frequency-dependent then the
combustion of the fuel may drive the lower harmonics while damping the higher
ones. The limiting amplitude corresponds to the situation where the damping

mechanisms exactly balance the driving mechanisms.

Chapters 4 to 6 deals with the examination and the extension of these
hypothesis. The results will be verified by comparing them to some experimental

results and numerical solutions.

To interpret the triggering phenomenon of pressure oscillations in combus-

tion chambers, we saw in the last section that a nonlinear combustion response



-35-

coupled with the nonlinear gasdynamics may well be a major cause for trigger-
ing. For a small initial disturbance, the response of the fuel may be always
damping regardless of the harmonic content of the disturbance. Therefore,
there is no physical mechanism which can provide energy to the wave. Conse-
quently, the wave decays in time. However, for a large initial disturbance, the
fuel response may become driving for some harmonics, The wave grows in time.
However, because of the nonlinear gasdynamics, higher harmonics will be gen-
erated and, subsequently, damped by the different combustion processes. The
triggering limit occurs when the damping mechanisms exactly balance the driv-

ing ones.

In Chapter 7 we examine and extend these hypothesis. The results will com-
pared with some experimental results and numerical solutions to check the vali-

dity of these hypothesis.

Te start the analysis, the problem should be defined in mathematical and
physical terms. The conclusions of the analysis may, therefore, be direcltly

related to some physical characteristics of the chamber. This is the object of the

next section.

2.4. Formulation of the problem

In this section, we start with the conservation equations in combustion
chambers and we determine the adequate boundary conditions.” These equa-
tions will be discussed in details for the linear problem of a one-dimensional
cylindrical solid propellant rocket. The objective of this discussion is to relate
the mathematical terms to the geometrical and physical characteristics of the

chamber. Therefore, the analytical results which will elaborated in this work
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may directly be interpreted in some physical terms.

2.4.1. Conseruvation equafions in dimensioniess form .
‘In the derivation of the conservation equations, we make the following assump-
tions
1) No mass addition within the volume.
~2) No heat transfer within the volume.
3) No viscous stresses within the volume.
4) The effects of the combustion are assumed to occur at the boundaries of
the chamber.

5) The entropy waves are neglected.

These assumptions can be removed at the expense of much labor in carrying
out the analysis but the essential idea remains the same, namely the influence
of the gasdynamics nonlinearity and the effect of the dispersion, or frequency-
dependence, of the boundary conditions. Therefore, in order to gain under-
standing of the nonlinearity phenomenon most simply, we maintain these

assumptions.

Following the above assumptions, the conservation equations can be written

in the following form

L 49 (puy=0 (2.1)

p(%%+m\?g)+Vp=:‘l (2.2)
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p # ~7 = constant. (2.3)

where p, u, p, and ¥ are respectively the pressure, velocity, density, and heat
ratio, E_represenis the interaction between the gas and the pérticles in the flow
field. In most of the analysis we will assume F_= 0. The inclusion of I would
require additional conservation equations for the particles. Essentially, we ares
examining the influence of the nonlinear gasdynamics and the boundary condi-

tions. Elimination of p between {2.1) and (2.3) yields

gl;-ﬂ»ypv 4+wVp=0 (2.4)

Define the dimensionless quantities

io

rw_ ] ~_ P ~
p"' 1 - 1 ll_—'
T ° P

0
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w2
t
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oty
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ke
F e

where py,pr.2p and L are respectively the pressure, density, sound velocity of

the mean flow and the characteristic length. By substituting the above quanti-

ties in (2.2)-(2.4), one gets

%7m.ﬁ+iv 5=0 } (2.5)
8L w oy e YD
A L v+ =0 (2.6)

D
2
~



BAT7=1 (.7)

Egs. (R.5)-(2.7) will be the basis for the analysis. We will omit the sign ™

hereafter.

2.4.2. Boundary conditions .
To fix ideas, we will focus on the boundary conditions in solid propellant rock-
ets, mainly because these conditions will be used later in the analysis, Chapters
4 to 7, to compare with some experimental results and numerical solutions. We
have mainly two kinds of boundary conditions, one condition at the burning sur-
face relating the burning rate to pressure oscillations and one condition at the
nozzie entrance relating pressure and velocity fluctuations. In general, a boun-
dary condition is derived from Eq. (2.8) as
Vp 3.V )

~ OO
——h ey T e .—‘E.*. ‘V
n. > n.p{ at ..V i

at boundary, where n_is the normal to the surface of the chamber. In all the
analysis in this work, the boundary conditions are assumed to be linear, except
in Chapter 7 where a nonlinear combustion response is assumed. The linear
boundary condition at the nozzle entrance is given, for a quasi steady motion,

byB

nu _ g 7-1 (2.8)

]

P 2

where Mg is the Mach number at the entrance of the nozzle, u' and p' are respec-

tively the linear fluctuations of the velocity and pressure.
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The boundary condition at the burning surface is deﬁnedg by an admittance

function of the form

==~ My Ay (2-9)

where M is the Mach number at burning surface and A, is the admittance func-

u
tion. We have My = —a-’—, where uy and a; are respectively the gas velocity and
f

sound speed at the burning surface. Usually, the expression for the mass burn-
ing rate is given, in dimensional quantities, by
m' Pr

= Ry(o) (2.10)

where my = pjuy;, @ is the real frequency of the oscillation; and Ry is the linear
combustion response of the propellant. In dimensional quantities, the admit-

tance function becomes

== - My Ay (.11

Using the definition of Aj, assuming that the references guantities are those at
the burning surface and that the processes are isentropic between the density

and the pressure, we get from (2.10) and (2.11)

Ap = Myp(yRy — 1) (2.12)

A common expression for Ry is the following relationg between fluctuations of

the mass burning rate and pressure:
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Ry= — nAB (2.13)
A+ -K——-(l +A) + AB

where A and B are related to the propellant combustion parameters. Usually A
is in the range of 10 and B in the range of 1 for practical propellants; see refer-
ence 9 for more details. The coeflicient X here is a complex quantity and is the

root of the following equation

A = 1) =10 (2.14)

K . . . , .
where here } = —-is the dimensionless frequency, with « and rg respectively
rg

m )
the thermal diffisuvity and the burning rate rg = ;f—, With A = A" + A0, the
- Pr

roots of equation (2.14) become

3[ 1 2 ';'

i1+ ——1_—-[(1 + 1807~ + 1]
22

n IH

1 1—
A = = ’ (2.15)

Z\)ll-a

[ L
_1_[(1 + 180 7% — 1] (2.18)
2

22

Therefore, Ry is a complex quantity and frequency-dependent. It may be written

as follows

Ry = R{Nw) + iR{Mw) (2.17)
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Fxpressions (2.8), (2.13), and (2.17) will be used in Section 2.5 to relate the
mathematical results regarding the growth rates of the wave to some physical

and geometrical charactaristics of the chamber.

2.4.3. Influence of the initial condilions .
In general, the initial conditions should be given in order for the system of con-
servation equations (2.5)-(2.7) to be well defined. However, since both
phenomena we examine are related only to periodic motions, one needs only to
determine the periodic motion of Egs. (2.5)-(2.7). These conditions can be simply

written as foliows

p(x,t + Tp) = p{x.t), u(x,t + Tg) = ulx,t), ete.

where Tq is the period of the oscillations. The conclusion here is that the initial
conditions need not be specified unless the method of solution involves the
incorporation of the initial conditions., For example, if the method of solution
describes the behavior of the wave from t = 0 then it is essential to include the
influence of the initial conditions on the behavior of the wave, even though the
asymptotic solution when t —> = ‘may well be independent of these cenditions.
We will see in the next chapter that one the two methods we use to solve the sys-
tem of equations (2.5)-(2.7) has this feature, the second method treats directly

the periodic selutions only.

2.5. One-dimensional linear problem for a solid propellant rocket

The purpose of this section to show how to relate the mathematical results
of the lincar analysis to the geometrical and physical characteristics of a given
combustion chamber. In particular, we will express the growth rates of the pres-
sure wave in terms of some physical characteristics of the chami)er. In Chapters

4 to 7, the analytical results will be given in terms of these growth rates.



Therefore, the results of these chapters can be directly transiated into some

conditions on the geometrical and physical characterisics of the chamber.

2.5.1.

Conseruvation equolions.

Consider the solid propellant rocket shown in Figure (2.14). For a one-

dimensional analysis with constant cross sectional area, the conservation equa-

fions can be writtenm

in the following form

) 3 )
% . a;} = (2.18)
4 L. 0 2, 00 _
FTE A . =0 (2.19)
3 1 o, B 1 o 8 _ ., 1
= = 0 =) + Zou= + = .20
e (e + 2L1)+ Py ule + 5 ) 8X“u m{eq 5 &) (2.20)

where p, u, p, and m are respectively the density, velocity internal energy, pres-

sure and mass burning rate. The coefficients eg and ugy correspond respectively

to the internal energy and velocity of the gas leaving the burning surface. inter-

nal energy, pressure and mass burning rate. The equation of state is for a per-

fect gas

where R is the gas constant. Equations (2.18) and (2.19) give
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Figure 2.14 Schematic of a cylindrical rocket.
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9p  Blpw) _
ot x0T
du du 1 dp
— 4+ + otz
p6t+ ’Ouax v 9% .
o 8T _yx=18 =1 8D _ _ep_q)-L1y2
Par TPk v B8t 5 ax m( (T - 1) Eu)

Equation (2.28)-(2.28) will be the basis to what follows in this chapter.

2.5.2. The steady sicie .

From Egs. {2.26)-(2.28), the steady state equations becomes

d{pu -,

dx N
du;.l_.;d;p____um
dx =y dx

AT _y=1.8p _ _eim_qy - Loz
pudx 4 udx m( (T =1) éﬂ}

(2.28)

(2.27)

(2.28)

(2.29)

(2.30)

m is generally a function of the pressure alone. In steady state, a eommon

expression for m is m = ap”, where the exponent n indicates the sensitivity of

the combustion to the pressure.

From the steady state gasdynamics, the pressure and density are constant

to second order in the Mach number My at the burning surface. This means that

m is constant to this order. Consequently, Eq. (2.29) gives



ou du, Bp o
[ s e um (2.21)

On the other hand, Egs. { 2.18) and (2.20) yield

piie+ tatspulier Luty s Touzme—or Luz-Lu =0 (222)

where we have have the approximation that gas leaving the burning surface has

the same properties as the gas in the chamber, i.e. gg = e and ug = u.

Multiplication of (2.19) by u and subtraction of the results from Eq. (2.22)

gives

o (e- %-uz ) (2.23)

By introducing the enthalpyh = e + f;— in (2.23) we get

éh o 8h 8 _ 0 - _rp - L2 4
Poc " P%ex T Bt Tax m(h - ut) (2.24)

If we now choose the enthalpy to be zero at the flame temperature and if the g

as is perfect then the energy equation (2.24) becomes

AT BT b _ B - o r o7y - Ly?
T e e m( cp(T = Ty) —z-u) (2.25)

where T and c, are respectively the gas temperature and the heat capacity at
constant pressure. By using the dimensionless quantities introduced in Section

2.4.1, BEgs. (2.18), (2.21), and {2.25) become
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i
u= { mx
J;
giving u = bx, where b is a constant determined by an overall mass balance of

the chamber

d§
Mbﬂ‘dg =bw =

where dg is the constant diameter of the chamber. This equation gives

= 4
b= 3 My
which means that
u= L Wx = Mya
dg

I
t = —X.
with @ 4 X
2.5.3. linear stability onalysis .
In this section we will keep terms to order 0 ( My, ); therefore the results in the
last section are applicable, mainly that thevpressure, density, and temperature

are constant in the steady state. Expan»:i11 P, o, T, u, and m as follows

p =1+ &(pio + Mpp1y)eikt
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p =1+ z(pio + Mppyyjeikt

T=1+ E(TIO + Mlel)eikt

u = My + £{u,q + Mpu,,)eikt

m=m+m =M, + W Rp(w)elp,p + Myp,, ) eikt

where use has been made in the last expression of the relationship m' = Ry(w) p".

The coefficient K is the linear complex frequency

K=w-—-in

with o the real frequency and « the growth rate. Furthermore, we expand the

complex frequency as follows

K = Koo + MpKoy + - -

The objective of the following analysis .is to determine K. By matching the

coefficients of £e’X* in the conservation equations, we get

dﬁ1o
. —19 _ . 3
iKgop10 + = 0 (2.32)

. 1 dpio
= - .
iKgou,g + P 0 (2.33)
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. -1
iKeoT10 —~ 2—7—910 =0 (R.34)

- . .. p
From the equation of state ;— = RT we have

Moo T (2.35)

Using (2.34) and (2.35) we get

Pro= T (R.38)

Substituting g0 in (2.32) and eliminating p;; between (2.32) and (2.33), yields

2
d U1
dx®

+ Kooulo = 0. (23?)

In the following calculations we determine the boundary conditions satisfied
by u;g. The boundary condition at the nozzle entrance is proportional, as we
have seen in Section 2.4, to the Mach number M, at the entrance of the nozzle.

However, an overall mass balance over the whole length of the chamber gives

dé
M
e7T 4:

= MpdoL (2.38)

which means M, = 4My al-’— Consequently, the boundary condition at the nozzle is
0 :

propeortional to My for EL— of order unity. In this case u;g satisfies
0
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15(0) = ue{l) =0 (2.39)

By solving Eq. (2.37) subject to conditions {2.39) we get

Keg=nm,n=0,12,-""- (2.40)

and

Uyg = AsinKgex

We now equate the coefficients of sMue®™. The objective is to determine Kg;.

Equations {2.26)-(2.28) then give

. duyy _dpig g | . .
KeoP11 + dx - " UTgx TP T Rp(@)p1o — iKorp10 (R.41)
. 1 dp _du,g da .
]:KOOU'II + -7— d}il = — u d; - ulg‘d—g" — 0 — lKglulo (242)
. -1
iKooTyy — £ P11 = —Tyg (2.43)

with, from the equation of state E— = RT,

P1o ' \
P10 = - Pu=Pu + Tys (R.44)

By using {2.44) and following the same procedure leading to (2.37), Egs. (2.41)-
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(2.43) yield the following equation for u;,

d2u1 1

. - o ; Z - 14
dx2 + Kooull = [ -2 ‘7— -+ R?(&?) - ” : (245)
d? du
— iKoc(C + l)um - ‘_)C‘," dzéo - iKogCX 10 - 2K01Kogum

dx

with u,q = sinKggx and p;g = — ycosKgx. The coefficient ¢ is equal to é}— The
0

boundary conditions for u,, are, by using the nozzle boundary condition given in

Section 2.4,
;;(0) = 0, uyy(1) = 1= 5@‘9'0(1)
2 Mbl. 1
which gives, using {2.38),
-1 ,
uy,(0) = 0, uy (1) = 31‘5‘_1010(&) (2.45)

Following the same procedure leading to expression (2.40), we obtain the follow-

ing expression for Kg;

Koy =i 2=~ Ry( - + + 48
01 2[ 5 Rp(eoo) > > 4 p | (R.48)

wherec = f— This means that the linear frequency shift is simply
0
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Wo1 = — %’R;gi)(%o)

-and the linear growth rate is

%1:'2‘{"2

! FRO(wgg) + L2k 221y  (2.47)

e
7 04 7 do ~

For the second harmonic, we have the frequency shift

©op = — %Réi)(gﬁoc)

and the growth rate is

' —l + 1 _1 [s]
Aoy = “é‘{ - 2% + R;(,r)(zwoﬁ} + 2 > -2 > —47(10 ] (.48)

where we replace simply wgg by 2wog.

Expressions {2.47) and {2.48) give the relationships between the growth rates
for different harmonics of the wave and the physical‘ and geometrical charac-
teristics of the chamber. The interest of pursuing the calculations in this sec-
tion will become evident when in the next chapters the amplitude and the condi-
tions for existence and stability of the limit cycle will be given in terms of these

growth rates.

After we have completed the formulation of the problem, we will state in the

next section the objectives of this work.



2.6. Purpose of this work

We saw in Section 2.1 that the processes involved are clearly nonlinear. In
Section 2.1.1 we saw that the gasdynamics nonlinearity may represent a major
cause for leveling off the growth of the pressure wave in the combustion
chamber. The effects of the nonlinear gasdynamics will be the object of Chapters
4 to 6. In these chapters, the linear problem is assumed to be well defined. In
particular, the linear growth rates are assumed to be known quantities. The
boundary conditions are assumed to be linear. We will discuss in details the
influence of the nonlinear gasdynamics on the establisment of the limit cycle.
The results will be given in terms of the linear and the nonlinear parameters of

the problem, mainly the linear growth rates.

In Section 2.1.2 we saw that the nonlinear gasdynamics and a nonlinear
combustion response may well be at the origin of the triggering phenomenon.
Chapter 7 deals with this issue. Also, in that chapter, the linear problem is

assumed to be well defined.

The methods to be used to solve approximately the nonlinear conservation
equaticns will be discussed, through simple examples, in Chapter 3. The reader

who is familiar with these methods may skip that chapter.

2.7. Concluding remarks

In this chapter, we presented the physical problem to be solved and we out-
lined the motivations and the objectives of this work. To achieve these objec-
tives, a nonlinear analysis is necessary to carry out in order to interpret the
phenomena involved. For solving analytically the conservation equations in
combustion chamber, we can use only some approximate methods. The purpose
of the next chapter is to introduce two known methods for expanding the con-
servation equations. We will apply these methods to some simple problems in

order to show, in a simple way, the basic features of each method. The two
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methods will be applied in Chapter 4 to the nonlinear conservation equations in

combustion chambers.
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Chapter 3
EXPANSION METHODS

3.1. Introduction

The approximate methods to solve nonlinear partial differential equations
may be classified in three categories: the asymptotic, the weighted residual, and
the iterative methods. In the asymptotic methods we look for a selution when a
physical parameter; or variable, of the problem is very small. A typical asymp-

totic method is the perturbation method !,

In the methods of weighted residual, we desire the approximate solution to
be close to the exact one in a way that the difference, or residual, be minimized

a%'3 which

in some sense. A typical weighted residual method is Galerkin’s metho
requires the weighted integrals of the residuals to vanish, A typical case of
Galerkin's method is the expansion of the solution in the normal functions of

the linearized problem.

The third category is the iterative methods4’5 which attempt to solve the
equations by repetitive calculations starting from the solution of a simplified
form of the equations and then successively improve the approximation. In this

work, we deal only with the first two categories.

We shall discuss possible approximate methods for finding the final oscilla-
tory behavior, or the asymptotic solution in time, of a nonlinear partial

differential equation. We deal here with two methods.

A particular case, derived from the method of weighted residuals, consists

of expanding the scolution in the normal functions, or modes, of the linear



problem. As a means of minimizing the residual, we use a spacial averaging tech-
nique based on the use of Green’s theorem (see Chapter 4, Section 4.8). For
hyperbolic equations, this averaging technique usually leads to a system of non-
linear ordinary differential equations of second order for the time-dependent
parts. We further reduce this system by applying the time-averaging technique,
which is a perturbation method, to find a system of first order nonlinear ordi-
nary differential equations. The asymptotic solution is obtained by examining

the solution of this system when t » =,

One may also use a method derived from the perturbation methed in which
the solution is expanded in powers of a small parameter, Since our objective is
to find the asymptolic solution with a given behavior in time, i.e. harmonic, we
assume a priori the behavior in time. Essentially, the method reduces to finding
the harmonic solutions for the partial differential equations. Therefore, the
problem of secular terms, which correspond to the infinite growth of the

approximate solution in time and usually encountered6

in perturbation
methods, is avoided here by specifying the behavior of the scolution in time.
Hereafter, this technique will be referred to as the "asymptotic-perturbation
technique"”. In tne next section we will show that this technique is a particular
case of Stokes' expansion. We will use interchangeably the name of asymptotic-

perturbation technique or Stokes’ expansion to designate the same method of

solution. This corresponds to the first method introduced in Chapter 1.

Finally, we can use a mixed ?rocedure. We start with a perturbation method
in a small parameter but we keep terms of higher orders. The direct result is
that the partial differential equation remains nonlinear. Now, we apply the
method of averaging in space and then in time, described above. The advantage
is that we reduce the nonlinearity to any desired order and avoid the secularity

of the solution by use of the regular perturbation method. Hereafter, this



technique will be referred to as the " perturbation-averaging technique ". This is
a particular case of Galerkin’s method. We will use interchangeably the name of
perturbation-averaging technique or Galerkin's method to designate the same
method of solution. This corresponds to the second method introduced in

Chapter 1.

The aim of this chaﬁter is to show, using simple examples, how the
asymptotic-perturbation and the perturbation-averaging techniques allow the
determination of the asymptotic oscillatory behavior of nonlinear partial

differential equations and what are the advantages of each.

Since our geal is to find the limiting amplitude, we present in Section 3.2 an
example of a nonlinear oscillator which exhibits a limit cyele behavior. The
equivalence of the asymptotic-perturbation and perturbation-averaging tech-
niques in determining the limit cycle is shown. In Section 3.3 we present a two-
parameter Stokes’ expansion. The purpose of this section is to show how Stokes’
expansion can be expanded in many small parameters. This point will used in
Chapter 4 where the two small parameters will be the amplitude of the wave and
the Mach number of the mean flow. The ultimate goal of Chapter 3 is to present
a basis for an expansion of the solution of the nonlinear conservation equations
in combustion chambers. These equations are usually hyperbolic. For this rea-
son, we present in Sections 3.4 and 3.5 an example of a nonlinear hyperbolic

- equation, where both techniques are used to find the asymptiotic solution.

3.2. Limit cycle for a nonlinear oscillator

In this section, we will review how the limiting amplitude of the motion of a
nonlinear oscillator can be determined with an expansion in the asymptotic
amplitude of the motion of the nonlinear oscillator. Let us consider the well-

known Van der Pol’s equation6
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G+o0(yP—0f)y+y=0 (3.1)

where 0<< 1. We would like to determine the limit cycle and its amplitude.
First, we apply the asymptotic-perturbation technique; and second, we apply the

method of averaging. The two methods will be shown to yield the same results.

3.2.1. Asymptotic-periurbotion technigque or Stokes’ expansion.
In this section, we will review how the limiting amplitude of the motion of a non-
linear oscillator can be determined with an expansion in the asymptotic ampli-

tude of the motion of the nonlinear oscillator.

We would like to determine the limit cycle for Eq. (3.1) and its amplitude.
First, we apply the asymptotic-perturbation technique and second, in the next
section we apply the method of averaging. The two methods will be shown to
yield the same resulls.

NOW we introduce the asymptotic-perturbation technique and we apply it to the
same nonlinear problem given in (3.1). The solution is expanded in terms of the
amplitude of the solution to the linear problem as a small parameter. However,
using the expansion in the amplitude requires some choice of the expansion:
what terms should be included and in which ferm. Here, we will use a form of an
expansion invented by Stczle;es7 in the last century.. In 1847, Stokes, in the
course of study of the velocity of propagation of oscillatory waves on an
incompressible flow in an open channel, expanded the height y of the wave as

follows

¥ = a cos @ X + fp a° cos 20 X + ete. (3.2)

where a is the height of the wave to first approximation, x is the direction of

propagation, « is the frequency of the wave, and f,, stec. are coeflficients to be
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determined from a recursive solution of the nonlinear equations governing the
behavior of the wave by equating the coefﬁciénts of a™ cos nwx. This is true only
if we are looking for periodic solutions, since we can specify the final solution
independently of the initial conditions.: In fact, the periodicily conditions
replace the initial conditions. In (3.2), only one mode is taken into account in
B

the linear regime. The reader is invited to read the book by Kevorkian and Cole

and the paper by Millman and Kellerg on this subject.

Here, we apply the same procedure to problem (3.1). The structure of the
expansion is dictated by the form of the nonlinear terms. Assume, for example,

K, 1 -ikt

that the solution to the linear problem is of the form %—ae" + —se , Where ¢
4

is the amplitude of the solution; then the cubic nonlinearity generates third
order terms in £ of the form £3e%Kt + £3™t 4 ote, These terms interact with the
linear terms, by means of the cubic nonlinearity, to produce seventh, eighth,

and ninth order terms in ¢, and so forth.

We start by first assuming that the asymptotic solution has the following

form :

2 yim = £/t + 82 by + &3 by !Xt 4 4cec. (3.3)

where c.c. stands for complex conjugate. Only one mode is taken into account
in the linear regime. This form is generated following the struéture of the non-
linear term y%y in (3.1). For example, the square of £elk! + c.c generates a
second order in £ constant term represented by bg; ¥°¥ then will couple the
second order term by and the first order term ¢ e'X* to produce a third order
term represented by bsg. The complex conjugate must be present, since the quan-

tity viim is real. We now expand the frequency K as follows
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K=Kg+sKi + 2 Kp #+ ...
with K, Kz, in general, complex quantities and £ 2 measure of the amplitude of
the asymptotic solution. Now expansion (3.3) gives
dyf, =e? e® 1Kt 12 2% £ 283 py 1Kt 1+ cc
2Vim =1 Keel®t +i KeP by elXt +. + coc.

2¥im = — KR e elBt — KR e% b, oKt 4+ e,

Multiplying the first two of these expresions, we have

BYfVim =1 Ke® elXt 4 {Ke303iKt L 4L o .

After substitution of these expansions and that of X in (3.1), equating the

coefficients of ze!K*t yields

-K8-io®Kg+1=0

For o< <1, this equation gives

Ko=—-iZ-+ 1 | (3.4)

For illustration, we keep the + sign term only. We collect now the

coefficients of £%e!kt to get
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which means that K; = 0. Gathering terms proportional to £2e'¥? we have

ZKgKg—-é-a Ky + 103 K, =0

with solution

Ko

K :..i‘_.o-._._._—.
®7 8B 2Ky +iol

For 0<< 1, K; reduces, using (3.4), to

Ke= —+i— (3.5)

When the limiting amplitude is reached, the complex frequency K should be real,

giving

Im{Kg+ 2Ky, +ete.)=0"

where Im stands for imaginary part. Therefore, using (3.4) and (3.5),

£=20 << 1. (3.8)

Eqgs. (3.4) and (3.5) also yield
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Consequently, from (2.18), the'limit solution becomes

Vim = 0{e't +c.c.) + G 57)

=R o cost + 0( o). (3.7)

This is a periodic solution. In the phase plane { y, ¥ ), this is a circle. That is the
origin of the name "limit cycle”". In general, a limit cycle corresponds to a closed
orbit in the phase plane ( y, ¥ ). Moreover, we see from (3.8) that £<< 1; there-

fore, the expansion is legitimate.

3.2.2. Application of the method of cveraging . As a means of supporting
the results of the expansion in the amplitude and in order to show its appropri-
ateness in giving useful results, we will check the results in (3.7) by using the
method of time-averaging, which is a step in the perturbation-averaging tech-

nique or Galerkin's method. Write the solution in the following form :

y=acos(t+g¢ (L) =acosv.

This form assumes o priori that the initial conditions contain only the first har-
monic and that the higher harmonies are negligible. This is an important
feature of the Galerkin's method, where essentially all the harmonics should be
present in the expansion. However, for 0<< 1, we expect all the harmonics

higher than the first to be negligible in comparison with the first harmonic.
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It is a common practice to assume Minorsky’s com:‘li’t:ion10

a(t)cosy —a g sing=0. (3.8)

which simply states that the velocity of the oscillator is

y==—a(t)siny (3.9)

as if the oscillator were linear. The acceleration then becomes, using Egs. (3.1)

and {3.9),

y=—asiny—-a(l—g¢)cosy. (3.10)

Now, we substitute Eq. (3.10} in (3.1) to get

a (t) ¢ cos ¥ + & sin ¥ = o a® cos®y sinpsi. (3.11)

Egs. (3.8) and (3.11) may then be solved for & and ¢, to give

2

A=- EqT-r—- o (a8cos?y siny — ac? sing ) sinydy
. o aw
P = -é-T-r—_]; (a®cos®y siny — ac?® siny ) cosydy

These two expressions give
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=2 a’ _ .2
a=-g a ( =0 )3 (3.12)
¢=0 (3.13)

11

which are correct to first™~ order in . When the limit cycle is approached, &

vanishes and ¢ becomes a constant, Equations {3.12) and (3.13) then give the

amplitude and frequency of the limit cycle :

a=20+0(c)

+0(o)

e
I
[ ad

The limit cycle sclution becomes

Vim =20 cost +0( o ).

Hence, Eq. (3.7) is recovered. The two methods yield the same resuit.

3.2.3. Stability of the limit cycle .
One notices, from (3.12), that the existence of the limit cycle is independent of
the sign of ¢ . However, the stability of the limit cycle depends on this sign. In

fact, from Eq. (3.12), the phase diagram { a, &), Figure 3.1, shows that the limit

eycle is stable if, and only if,

o> 0. {(3.13)
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This result can also be found using the asymptotic-perturbation technique

Write the solution y of (3.1) as follows
Y= VimtY
where vy, is the limit eyele solution, vy, = 2 sigma cost, and y' is a small pertur-

bation around the limit cyele. Linearizing (3.1) near vy, yields

§ +y =-0[(40%0os®t —0®) § —40%sin2ty' ] (3.14)

This is a linear system. We can always expand ¥’ as follows

vyt)=at)sin(wt+¢ )=A(t)sint+ B (t)cost

"where A = acosg and B = asing. Following the method of averaging ( see Chapter

4, Section 4.8), A (t) and B (t) satisfy the following equations

R
%2‘—-= El;- , Fncostdt (3.15)
dB _ 1 Ao ,
TR Fysin t dt. (3.18)

where Fj is the right-hand side.of {3.14). These equations reduce to

dr _, 4B _

at Qg T8

giving



Hence, the limit cycle is stable for

This is the same result {3.13). This technique will be used in Chapter 5 to find
the stability criteria for the limit cycles of pressure oscillations in combustion

chambers.

3.3. Two-parameter expansion using Stokes method

In this section, we apply Stokes’ expansion in two parameters, mainly the
amplitude £ of the solution and another small parameter, for example o given
(3.1). We apply the technique tb the same problem (3.1) treated in the last sec-
tion. The only difference is that here we expand in two parameters. The interest
of this section will be demonstrated in the next chapter where the small param-
eter ¢ corresponds to the average Mach number of the mean flow. The treat-
ment of the interaction between the acoustic field and the mean flow field will be

greatly facilatated if we can expand in two parameters. _
For convenience, we write again Eq. (3.1)

y+o(y -a?)y+y=0 (3.1)

where << 1. Expand y as follows

2¥im = &(1 + 0yy; + 0%y + 0%yy5 + ... )l
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+ %(ygq + 0¥a1 + 005z + 0%ygg + ... )l

Moreover, the complex frequency K is expanded as follows

K=K00+O'KQI+ M +€(K10+O'K11+ )

+8%(Kgp + 0Kpy + + - )

Formally speaking, it is always pessible to expand in many parameters,
regardless bf their relative magnitudes. However, when we cut off the expansion
the relative magnitudes of the different parameters should be taken into
account. This point will be explained further at the end of this section when

some results regarding the limit cycle are obtained.

We now determine the limit cycle of (3.1) using the two-parameter Stokes’

expansion. By equating the coefficients of eole™, we get

Kgg =1 (3.17}

We now collect terms proportional to goe™ and so?e™* to get

Kor = Koz =0

By gathering terms proportional to s0%e™®, we obtain

— 2Ko3Kos — K&oyis + Y13 — iKog = 0

giving, with the use of (3.17),
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(3.18)
On the other hand, equating the coefficients of £%0%e®™* yields Kzq = 0. We
now coilect the terms proportional to 2o eX to obtain

) i
— 2K Koo — Kéoysy + yar + Z‘Koo =0

which gives, using {3.17),

Koy = L (3.19)
B
2.l _ sl _
o s B [0 5 0
which means that
£ =20 (3.20)

This is the same relation (3.6} found in the last section. The purpose of this
example is to show that Stokes' expansion can be extended to many parameters.
The only requirement is to when to cut off the expansion. For example, from
(3.20), if we cut off the expansion in the linear part of Vim to £0° then the terms
in £%¢ should be the last terms to be included in the nonlinear expansion of Vim,
since ¢ and ¢ are of the same magnitude. But the reiationship between = and o
has no effect on the expansion itself. Similar situation will be encountered in

Chapter 4, where o will correspond to the Mach number of the mean flow and &



_70-

to the amplitude of the periedic acoustic wave,

In the following calculations, we apply the two methods to some nonlinear

hyperbolic equations and we will compare the results of the applications

3.4. Application of the two methods to some nonlinear hyperbolic equations
In this section, we apply Stokes’ expansion and Galerkin’s method to some
nonlinear hyperbolic equations. Some conclusions will be drawn as to the

features of each method.

3.4.1. Application of Stokes expansion . We now apply Stokes’ method to

the following nonlinear wave equation

8 5* 8
F-th=oip i) Fren? (3:21)

where ¢ is an arbitrary constant; The boundary and initial conditions are

8 gyy=0., &2 - I .
P (o.t)y =0., ™~ (m,t) 2P {m.t) (3.22)

p(xt) = po (Xt + To)

where Ty is the period of the solution; and ay, is a constant diﬁefent from zero
for reason shown in Eq. (3.28). We now use Stokes’ expansion in the amplitude
of the wave to find the limit eycle. Write the asymptotic solution p{x,t) and the

complex frequency K in the following forms :

p(x.t)=eeXtp; (x)+ el py(x)+.. +cc (3.23)
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The frequency X is expanded in ¢

K=Kg+eK + 2Kz + ...

Expansion (3.23) gives

[pl12=2¢|p, (x)|%+&pf(x) ikt

+e8pr (x)pa(x)el® +6%p (x)pf (x) Xt + -+ +ecc.
%It)—=iKse"Kt P1(x)+2iKefp ¥t +iKPps(x)elkt + -+ +ece
%et‘g-=—1(2p1(x)se”‘:'L -4 KPP py(x) sefikt
-K¥LBps(x)eelkt + .- + e

p?=22 | pi(x) P+&pf (x)e® X +
2%8py (x)pa(x)el® +2%9p, (x)pfP (x) ¥t + . +ce.

Substitution of the above expressions in (3.21) gives an expansion in £e™®, with

Ln=1, 2, ete. By equating the coefficients of se' Xt in (3.21), we get
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dzp 1
dx?

+(KE-ioKo)pi(x)=0

The solution to this equation is

py(x)=Ae™M™

-ik1x

+Be (3.24)

where

l\ils—-

= (KB-ioK) 2. (3.25)

The boundary conditions (3.22) have to be satisfied. This gives A = B and the fol-

lowing values for k; :

K, tan k, = — %—ﬂ'ab (3.26)

For simplicity, we assume that a, is pure real number, k; then becomes a real

number and the first mode can be written as

ik € -ikyx
a¥ g 2T

£
e pa(x) = So'i¥ 4 2

with £ the amplitude of this mode.

Our objective is to find K; which will show, as we will see laterin the analysis
( Eq. {3.29)), the effects of the various terms in Eq. {(3.21). To do so, pi? and p,

are required. By gathering terms proportional to %X, we get
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dapém _
dx?

~-20¢C

after using conditions {3.282), the solution is

P =—-cox?+4é
where
6=—4 2 4 con?
8p

(3.27)

(3.28)

We see that when ay, vanishes, d, and therefore p§°). cannot be determined. A

similar situation will be encountered in the next chapter when we treat the non-

linear conservation equations in combustion chambers. Now eguate the

coefficients of 2™, to find

Ki[ -RKg +i0 Jpaf(x) = 0

which means K, = 0. Gathering terms proportional to £2e®kt yields

The solution satisfying conditions (3.22) is

2ikyx

+e —Ziklx) + ‘_}’_g__( olke®

74

pa(x) =7vp + 72 (e
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Where

k% = 4K§ — 2ioKy

7 or2 TP (kB - 4kd)

Rimky Rink, -2 iﬁkl)]

i - 2ink Tr
7s = — Bikyyz (e e T+ ‘é‘[‘?o +yg(e” T t+e

vy = ikg(eiﬂka —e —'i‘n'kz) _ Zr__ab(einkg +e —i‘nke)

Finally, we equate the coefficients of %' ¥t to find

2

dp3 . - .
o7 +(KE-ioKy)pa(x)= —2K Ko pa{x) —2i0 Ko [p1(x) [Ppr(x)

+i0 Kz p1(x) + 2 0 ¢ pr(x)pa(x) + 2 ¢ ¢ p1ps(x)

We apply Green's theorem to this equation, which consists here of multiplying

both sides of the equation by p;(x) and integrating from 0 to , to find

Keio — Kol Ef = [p1(x)fs(x)]§ — [f1(x)pa(x)]F — _,/;nhpx(x)dx (3.29)

where
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' i dp; |
h=(3.30) —2i0 Ko |p1(x)[?p1(x) + 2 0 ¢ p(X)pe(x) + 2 ¢ ¢ py(x)pfV(x)

Expression (3.29) gives the complex shift of frequency K; . The effects of
the various parameters in Eq. (3.21) are clear, especially the effect of the

second order nonlinear term cp?.

Expression (3.29) leads to the suspicion that the knowledge of ps(x) is
necessary to determine K,. However, it will be shown in Appendix 4A that only
second, or lower, order terms are necessary. It should aiso be emphasized that
K, corresponds to first order, in &, problem; K; to second order; and Kj to third
order. This means that the determination of the eigenvalue to the fAird order
problem, here K;, necessitates only the previous determination of the second, or

lower, order eigenfunctions.

One notices also that the boundary conditions (3.22) are locally satisfied by
the expansion in the amplitude. This is not the case of the expansion in the nor-
mal mode 7(t) cos x since cos x doesn’t satisfy the second condition in (3.22).
However, the global satisfaction over the whole volume is satisfied by means of
Green’s theorem. This is a general chéracteristic of the method of expansion in

the normal modes.

3.4.2. The method of perturbotfion-cveraging: Applicaiion and disadvan-
tages . In this section, we apply the perturbation-averaging technique to a sim-
ple problem and we show how disadvantageous it is to use this technique to
obtain high order approximations for the asymptotic solution. Consider the fol-

lowing nonlinear hyperbolic equation
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62 62
_E'atz - ..P..aXg = p? (3.31)

with same initial and boundary conditions given for problem (3.21). We expand

p as follows

P = &p; + &%py + &° pg + ete.

where £ is a measure of the amplitude of the solution to the linear problem. We
would like to determine the third order correction ps. First, we start with the
linear problem

p1  py

- = (. 3.32
BtR ax? ( )

The following expansion of p; satisfies (3.32) and (3.22)

epy = 7o (t) + 7, (L) cos x + 75 (L) cos Bx + ete. (3.33)

where, in the linear problem,

Mm+m=aym

T + 47y = 8p M

Now we treat the second order problem. The quantity pp satisfies the follow-

ing equation
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®ps  %ps _ .,

- ——=pf. 3.34
6t2 8}(2 pl ( )
Add (3.32) and (3.34) to get
_afE_ - QE_E'_ = sgplg (335)
ot? ax*

where p' = £p; + & pe. Expand p' and p; in the same normal modes of the

linear problem

ep; = Mg (t) + 7y (L) cos x + 72 () cos 2x + ete. (3.36)

!

p' =mp (t) + ;; (L) cos x + 75 (L) cos Bx + ete.

Substitute these expansions in (3.35) and apply Green’s theorem, to find an

infinite set of nonlinear oscillators, one oscillator for each mode,

[1N]

Mg =

T fr—
3
+
Ngs—*

Mt =apm + MM

2
1

l‘ﬁi—-—‘

g +4m =ap e +

This is the same method reported by Culicklg. As we see from the last two

equations, the zero™ mode 7,(t) does not influence the first and the second
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modes. This is notithe case for the asymptotic-perturbation technique where
the zero mode pd® is present, Eq. {3.30) in the correction Ky of the complex
frequency K of the first mode. To include these effects in the analysis here, one
may extend the analysis to third order by determining ps; The quantity ps

satisfies

&°ps _ °ps

Bt2 x®

=2 P1Pz (3.37)

Adding this equation to (3.34) and (3.32) gives

62 ' az '
S —5;{%—= 6% pf + 2¢° pipe. (3.38)

where now p' = £ py + &° pz + £ ps. As usual, we expand p: as follows

gp1 =7 {t) + 71 (L) cos x + 7 (L) cos Bx + ete, (3.39)

However, the expansion of pz should: now satisfy (3.34). Currently, there is,
up to our knowledge, no formal and consistent way to handle (3.37) by expan-
sion in the normal modes of the linear problem. This is a major reason why we
use the asymptotic-perturbation technique to handle high orders. Extension of
the perturbation-averaging technique to third order is part of our future

research.

The choice of example (3.31) to show the simplicity of the application of the
method of expansicn in the asymptotic amplitude is intended as an illustration
of what will happen when we deal with more complicated problems. The conser-

vation equations of the flow field in combustion chambers present a kind of
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second order nonlinearity similar to the one shown in Eq. (3.30). For example,
the convection term u.V u is a form of second order nonlinearity. Remarkably,
‘Stckes9 found that a third order approximation in &, the asymptotic amplitude,
was necessary to show the dependence of the velocity of propagation of the wave
in an open channel on the amplitude of the wave. For this purpose he used an
expansion similar to the expansion in Section 3.4. It is clear that when higher

order approximations are needed a perturbation in the amplitude is useful to

apply.

3.5. Concluding remarks

The major result of this chapter is that the asymptotic-perturbation tech-
nique, presented in Section 3.4 can indeed predict the limiting amplitude of the
solution of a nonlinear hyperbolic equation and can be carried out te higher
orders in a systematic manner, This chapter has provided us, through simple
examples, with adequate tools to handle more complicated problems and
showed us a comparison between the two techniques of expansion: asymptotic-
perturbation and perturbation-averaging. Regarding the asymptolic solution,
the two expansions gave the same results. This conclusion will be confirmed in
Chapter 8 where we treat the conservation equations in combustion rchambers
using an expansion in the normal modes. However, carrying out the expansion
to higher order approximations showed the shortcomings of the expansion in
the normal moedes and, in general, the perturbation-averaging technique to

predict, in a simple way, the asymptotic solution of the nonlinear equation.

These results will be extended in the next chapter to the analysis of the

nonlinear conservation equations in combustion chambers.
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Chapter 4
FEXPANSION OF THE CONSERVATION EQUATIONS

4.1. Introduction

The purpose of this chapter is to apply the technique of expansion in the
asymptotic amplitude to the conservation equations in combustion chambers.
The analysis will be shown to be of general application. However, our attention
will be directed to the acoustic oscillations of the pressure in a cylindrical
chamber. There are three kinds of oscillations: the tangential, or azimutal; the
radial, and the longitudinal, or axial, oscillations. The linear, unperturbed

acoustic pressure may be writtenl in the following form:

p' = cos kix cos m@ Jn(ky,r) et

In this expression, cos kx corresponds to the longitudinal modes with kj the
wave number and x the axial location; cos m& corresponds to the tangential
modes with m an integer representing the tangential mode order and @ the

angle in polar coordinates; and J,(Ky,r) corresponds to the radial modes with

Jm the standard Bessel function of order m and kyy = (5&)2 - kf.
0

In combustion chambers, the combustion products generate a mean flow.
The effects of this fiow on the acoustic field are importantz. The waveform is
distorted and the frequency is shifted. The acoustic modes are said to be per-
turbed by the mean flow. Therefore, the inciusion in the analysis of the mean
flow effects is essential to accurately predict the behavior of the pressure oscil-

lations in the chamber. This is the motive to include in the expansion of the
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asymptotic solution a second small parameter, the average Mach number, g, of
the flow field. It will be shown in this chapter how the inclusion of this second

parameter will permit the determination of the perturbed modes.

The linear analysis is performed using a double expansion to first order in
the wave amplitude { linearized problem) and to any order in the average Mach
number. The perturbed modes and the frequency shift will be determined. In
particular, the frequency becomes a complex quantity. The imaginary part of
this quantity is called the linear growth rate because it determines the wave
growth, or decay, in time. The results of the linear analysis are applied to a one-

dimensional case.

The finite amplitude effects, or nonlinear effects, neved a more elaborate
treatlment. The generation of different harmonics by the nonlinear motion of the
wave as well as the dependence of the frequency on the amplitude of the wave
have to be included in the analysis,, as we have seen in the last chapter. There-
fore, the nonlinear analysis will be performed using a double expansion to any

order in the wave amplitude and in the average Mach number.

In the nonlinear analysis, it is convenient to distinguish two cases: first, the
case for which the modes are pure lengitudinal and whose frequencies are
integer multiples of the fundamental, and second, all other possibilities, For the
second case, we present in Section 4.4.1 a double expansion in the wave ampli-
tude and in the average Mach number. The objective in this section is to sup-
port the conclusion of Chapter 3, Section 3.3, regarding the capability of the
expansion to handle higher-than-second orders of approximation. A third order
expansion of the conservation equations is carried cut and the dependenceﬂ of
the frequency on the amplitude of the wave is determined. The resuits are

applied to a one-dimensional problem.
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In section 4.7, we apply the perturbation averaging technique to the conser-
vation equations in combustion chambers. The analysis is carried to second
order in the pressure amplitude. Only the results for longitudinal modes are dis-

cussed in detail.

4.2. Conservalion equations in dimensionless form:
In the derivation of the conservation equations, we make the following

assumptions

1) No mass addition within the volume.

2) No heat transfer within the volume.

3) No viscous stresses within the volume.

4) The effects of the combustion are assumed to occur at the boundaries of
the chamber.

5) The entropy waves are neglected.

These assumptions can be removed al the expense of much labor in ela-
borating the expansion but the essential idea remains the same, namely the
influence of the gasdynamics nonlinearity and the effect of the dispersion, or
frequency-dependence, of the boundary conditions.: Therefore, in order to gain
- understanding of the nonlinearity phenomenon most simply, we maintain these

assumptions.

Following the above assumptions, the conservation equations can be writ-

ten in the following form

%‘%—+V.(p1_],_)=0 (4.1)



-84 -

p(%%é—_u,ﬂg_)-FVp:O (4.2)
p p 7 = constant. (4.3)

where p, @, p, and 7y are respectively the pressure, velocity, density, and heat

ratio. Elimination of p between (4.1) and (4.3) yields

%%—+'ypv L+uvp=0 (4.4)

Define the dimensioniess quantities

aO.
L' L

?

i
E’_[F

¥

1

I

ety

I

= P - L.
P Po £ Po

where pg, g0 .20 and L are respectively the pressure, density, sound velocity of
the mean flow and the characteristic length. By substituting the above quanti-

ties in (4.2)-(4.4), one gets

%wv.gyg;vg:e (4.5)

aT - v 5
pl =+ A.VE)+ ——=0 4.8
pPlos+d ) 5 (4.8)
A 7=1 (4.7)

Egs. (4.5)-(4.7) will be the basis for the expansion. We will omit the sign ~
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hereafter. The linear problem will now be treated by linearizing these equations,

to determine the linear growth rates for sinusocidal motions,

4.3. The linear Problem
In the linear problem, we expand the quantities p, p, and u to first order in
the wave amplitude { by definition of the linearized problem) and to any order in

the average Mach number. A particular acoustical mode is considered.

4.3.1. Mntroduction .
An ample discussion can be found in the work of Culickz and Flandros. Here,
we will point out the main features and some additional results. In what follows,

we will expand the pressure, densily, and velocily in the two small parameters ¢

and
P=1+uPpoz +* +&(pro + uprr + - )e = pg + ep’ (4.8)
p=1+pPpog+ -+ 8lpro+ uprr + 0 )& = po + gp! (4.9)
u= i+ e(ugg + gy + 0 et = ug + 2u’ (4.10)

The average Mach number of the flow is caracterized by u; £ is a measure of the
amplitude of the acoustic wave, for example the amplitude of the first harmenic;
P11 . ete., represent the distortion of the acoustic wave by the mean flow; and K
is the dimensionless complex frequency of the acoustic wave. The real part of K
is the dimensionless frequency of the acoustic mode and the imaginary part is
the dimensionless linear growth rate of the wave. The purpose of the following
calculations is to determine this growth rate for a given configuration of the

chamber.
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In general, the dimensionless complex frequency K is a function of both the
amplitude of the wave and the average Mach number of the flow. But, for linear
problems, K depends only on the average Mach number. Hence, K may be

expanded as follows

K =Kgo + uKoy + @Koz + - - (4.11)

where, in Kj;, 1 is the power in the expansion in the wave amplitude, and j is the

power in the expansion in Mach number.

4.3.28. Analysis ond resulfs . The point in this section is to determine Ky;,
Koz, ete. We do so by matching the coefficients of & u™ &%, to obtain the follow-

ing systems of ordinary differential equations

For (ILm) = (1,0), we get the linear acoustic equations

iKGOpIO +4V g = ] (412)
v
iKggulg + Pao =0 (4—13)
with the boundary condition ‘
f10 = .V pP1o

From these two equations, we get

Y ®p1o + K&p1o = 0. (4.14)
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Many textbooks treat this problem (see for example reference 1). The expres-
gion for the pressure given at the beginning of this chapter is that for the case

of a'constant cross-section, cylindrical chamber with f,4 = 0.

For (Lm) = (1,1}, we get the equations for the distortion of the acoustic

wave by the mean flow:

iKoop11 +7 V. U1 = —iKp1p1o0 = 7P1oV - T —T .V pig (4.15)

V pu1

ﬂ{gguu + = —LKOIU-IO -uv 40 —um.V v (416)

To determine Kp; we proceed as follows. Take the divergence of Eq. (4.18) and

use Eqgs. (4.12) and (4.15) to find

V ®py1 + K&p1: = — 2K01KooP1o + i (4.17)
where
hyy= - '—L—(V , (E.Vum-l-um Vl_l)) +iKgpUW.VDyo +7iKpopio V.0

Koo

Multiply (4.17) by pio and Eq. (4.14) by py;, subtract the results, integrate over

the volume, and apply Green’s theorem, giving

f(PlGV gpu — P11V *pio)dv = ermfu ds - anfmdS
g8 2

v

where v is the volume; s is the surface; and fi, = n.V pim- This relation can be

soved to give the following expresion for Ky
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2Ko1Koo Bfy = — fPiofiz ds + [puifio ds + [piohyy dv (4.18)
8 2 v

where

Ef = [ phdv
v

The same technique will be used throughout this chapter and chapter 4 to find
the coeflicients in the expansion of the frequency in the average Mach number,

and, in Section 4.4 and Chapter 4, in the wave amplitude.

One may conclude from expression (4.18) that, in order to determine Kp;,
p11 and f;; must be known in advance. However, it will be shown in Appendix 4A
that only knowledge of pig and fig is necessary. In other words, the determina-
tion of the eigenvalue for a problem of a given order, here Kp;, requires

knowledge of the eigenfunctions of one, or more, order less, here p;q.

For {1, m)=(1,2) we get the second order correction to the acoustic wave by

the mean flow

iKooP12 + ¥ V. Uyp = —ikgz P1o — 1 Ko1 P11 (4.19)

=7pPuV. T —~TV Py —¥Poz V. Wo — U10.Y Doz

v
iKgouiz + 512 = ~iKog t10 — 1 Kog uss (4.20)
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- P11, VU — 4V uy; — iKgopozllio

From these equations and following the same procedure used above to deter-

mine Kg;, we deduce the following expression for Kpg

2KozKoo Ef = — fPiofiz ds + fpiefiods + F (4.21)
8 a8

where,

F = —iKge Kozfpupmdv + 1 Kep f (T.V p11) P10 dv
v v
+71iXKoo J (P11 V @) prodv+iKoo f (0. V Poz) Prodvy
v v
+ 7 1 Koo f( Poz V U0 ) P1o v — 7 1 Koy fpmv Ay dv
v v

+_f(V TV 0.V T) ) Pro dV—iKoomeV A{ poz 110) AV
v v

4.3.3. Application.
Now the above results for the linear coefficients Kj; and Kge, in the expansion
of the complex frequency K in the average Mach number, will be applied to prac-
tical problems. First, we apply Eq. (4.18) to the longitudinal modes of the model
of the combustion chamber shown on Figure 4.1. In this skeich, A, and Ay
represent the admittance functions at the boundaries. For By = 0, the frequen-

cies of the longitudinal acoustic niqdes of the chamber are integer multiples of
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the fundamental. Application of Eq. {4.18) gives

Ko1 = —1i7 (Ag1 — Bo1)

where Ag; and Bg, represent the first coefficient in the expansion of the admit-

tance function at each boundary. The growth rate of the wave is

agy = 7(AS) — BEY)

where the superscript (r) refers to the real part of the quantity.

The case where Byg is pure imaginary and A; = 0 yields the following expres-

sion for Kp; :

7By (1 + e 2 ro0) '

Kqr =
o1 2(1 + 7Bgo)

where the unperturbed frequencies are given by

Koo = tan™!(iyBog)

Since Byg is different from zero, the solutions for this equation are not integer
multiples of the fundamental. From the expression for Kg,, the linear growth

rate is

g1 = — 7B cos?Kyg

This case will also be the basis for the application carried out later in the

analysis, Section 4.4.2.2.



As a second example, the expression of the linear growth rate of the wave
will be derived for the problem of a cylindrical rocket shown on Figure 4.2.
Assuming the steady burning rate to be constant, we get from a mass balance
for a control velume limited between 0 and x the following expression for the

axial velocity, averaged over the cross-section,

where rp is the constant burning rate and dg is the diameter of the chamber. For
simplicily, we neglect the response of the propellant to unsteady flow in the

chamber. By applying Eq. (4.18) we get

Ko = i¥Boy + i-g—(l + )

r
wherec = 4-5—. The linear growth rate is then
0

oo = — yBEY - %‘(1 +)

This expression for og; shows clearly the effect of the gradient of the steady
state velocily on the growth rate of the wave. This arises from the loss of acous-

tic energy through the nozzle by convection.

A similar expression for Ky can be found by using Eq. (4.21). For example,
for the case of Figure 4.1, with Bgg pure imaginary and A; = 0, the expression for

Kog is
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»
Ko = 1 7BR(1 )
o 4(1 + ¥Bgo)?

Now that we have determined the linear growth rate for any mode, the non-
linear problem will be treated. Expansions (4.8)-(4.10) must be changed in order

to accommeodate the nonlinearity.
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4.4. The noniinear problem

4.4.1. IMiroduction . Finite amplitude sfanding waves are the most
encountered finite amplitude waves in combustion chambers. They have been
the object of investigation for a long time. Stckez‘4 investigated the periodic
motions of nonlinear systems having infinitely many degrees of freedom. Pen-

5

ney and Price™ examined finite periodic gravity waves in a perfect fluid. Three-

dimensional standing surface waves of finite amplitude have been analyzed,

8

using the perturbation method, by Verma and Keller". Concus’ discussed stand-

ing capillary-gravity waves. Tadjbakhsh and Keller8 examined the standing sur-

face waves of finite amplitude. McQueryg

studied periodic solutions to a class of
autonomous and nonautonomous partial differential equations, using the per-

turbation technique.

For the particular case of pressure ocillations in combustion chambers,

10

Maslen and Moore™" examined the periodic solutions of transverse waves in a

cylindrical rocket, using a perturbation technique. They determined numeri-
caily the shift of frequency due to the nonlinearity of the wave motion. Zinn'!
applied the perturbation technique to three-dimensional conservation equations
in combustion chambers. However, the structure of his expansion differs from in
the sense that the behavior of the wave in space was predetermined except in
one coordinate. The special effects of the boundary conditions on the structure
of the expansion was not mentioned. Moreover, in reference 11 the author did
not either point out the particularity of the longitudinal modes, or link the

results of the analysis to those of the expansion in the normal modes of the

acoustic field.

In this section we examine the finite amplitude periodic standing waves in
combustion chambers. The extension of the analysis to traveling waves is

straightforward. The basic procedure consists in expanding the unknown
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frequency and the waveform in two small parameters: the average Mach number
of the flow and, as we have done in Chapter 2, a measure of the wave amplitude,
for example the amplitude of the fundamental. These expansions are then sub-
stituted in the conservation equations and terms of like powers are equated.
Once this is done, the method leads to a sequence of linear problems. The first
of these is homogeneous (the linearized problem) while the rest are inhomo-
geneous. The solvability (here the satisfaction of the boundary conditions) cri-
teria for the inhomogeneous equations yield the coefficients in the expansions of
the frequency and the waveform in the small parameters. Since we are
interested in the influence of the nonlinearity of the conservation equations on
the linear frequency and waveform, the boundary conditions are assumed to be
linear, i.e., independent of the wave amplitude, but they may depend on the

average Mach number,

It is convenient to distinguish two cases: first, the general case where the
frequencies of the modes taken into consideration are not all integer multiples
of the fundamental; and second, the case of pure longitudinal modes whose fre-
quencies are integer multiples of the fundamental. The first case is treated in

the next section while the second will the subject of the next chapter.

4.4.2. General Cose .
In this section, the frequencies of the modes taken into consideration are not
integer multiples of the fundamental. The expansion is generated‘as follows. We
start with one mode in the linear regime and then, taking into account the
structure of the nonlinearities of the conservation equations, we add additional

modes to the expansion. For example, if we start with a linear wave of the form

g cost, then the second order nonlinarity (u.V u, etec.) generates a second har-

monic of the form é—-sz cos2t and a shift of the mean values of the form %—82.

Both terms are of second order in the amplitude &, The same nonlinearity again
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will couple the second order terms with the first order term £ cost, to generate
third order terms and so forth. The following expansion is generated following

these guidelines.

4.4.2.1 Ezpansion in amplifude and average Mach number.

Expand p, p and 1 as follows

p=1+48pog+ .. +8(pProg+upra+ - ) &K + £%(pogg + UpPz1o + 00 )
2 2iKt
+ &° ( P + MPa1g + -0 ) e!
+ &% paoy + Mpara + 0 )@ EY + 8 pgog +upsat o )R+ 0t

where c.c. stands for complex conjugate. The density p and velocity u = 4t + u'

have similar expansions.

The pressure p is a real quantity. Therefore, using the complex notation,
each term in the expansion has, in general, to be accompanied by its conjugate,
Since the conservation equations are nonlinear, the expansion using complex
notation must include the complex conjugate of each term in the expansion
because the nonlinearity will couple the quantity with its complex conjugate.
This coupling does not occur in linear problems and, therefore, the inclusion of

the complex conjugate has no effect on the analysis of linear problems.

The above expansion is similar to the one given by Eq. {2.13) in Chapter 2 .
The only difference is that here we have a double expansion in both the wave
amplitude ( the same as in (2.30) ) and in the average Mach number. The inclu-
sion of a second parameter, the average Mach number, is required to treat the

interactions between the mean flow and the acoustic field. Equations (4.15)-
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(4.17) in Section 4.3 showed how the inclusion of this parameter allows determi-
nation of such interactions.
The dimensionless complex frequency K is expanded as follows

K= Kgg + nu’KUI + jJ,EKoz + - + E(KIO + ,u,K“ + } + Ez(Kgg + ‘LLKE]_ + ) + ete.

In this expansion, Kyg is the eigenvalue to the linear acoustics problem. The
eigenfunction p;g; of this problem is a first order:in £. Similarly, K5 and Ky

correspond respectively to the second and third order acoustics problems.

44228 Detailed expansion . We now substitute the expansions of p, u, g,
and K in the conservation equations (4.5)-(4.7) and we match the coefficients of

ElﬁmeniKt'
For (I,m,n) = (2,0,0), we get

—Ragopzoo + 7V goo = ~¥P1oaV -Uie1 —¥P10.4Y U101 —Ur0.1.V Proa (4.22)

—U10,1-V P10,

V Pzoo . . o o
—Rogolzgg + — = =l40,1.V Uyp,1 —W10,1-V Uso,1 +i010,:KooU10,1 - (4.23)

s E ]
= ip10,1Ko0t10,1

where ( )" denotes complex conjugate of the quantity and qgq is defined by
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Koo = wgo —i0og

In general, agg is not equal to zero and corresponds to the linear growth rate of
the acoustic wave with no mean flow. uggo and pgep can be determined by solv-
ing (4.22) and (4.23). This yields a d.c shift in the mean flow due to the non-
linearity of the wave. Thié phenomenon is called: acoustic streaming and it
corresponds to the time-independent flow of fluid induced by the nonlinear
acoustic field. It was first introduced by Rayleighlz. A thorough discussion on

this phenomenon is reported in reference 13.

The following calculation is aimed at demonstrating that the coefficient K;g,
in the expansion of the complex frequency K, vanishes. We will prove also that
there cannot be such terms as 2 e in the expansion. Assume that there are

such terms and equate the coefficients of £% et in the conservation equatiens,

to find
iKooPzo,1 + ¥V Uge1 = — iKjoP101 (4.24)
\'4
iKooUgo,1 + ___p;z_oi = —iKigu0,1 (4.25)

From these two equations and from the linear acoustic equations (4.12)-(4.13)

(in those equations p;q and Uyq are the same as pjg,; and u,g; here ), one gets

V ®pgo.1 + K&peo1 = — RKyoKooP1o.1, (4.26)

The solution of this equation is the sum of a trivial solution to the homogeneous
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problem

¥V *pzo.1 + Kéopees = 0.

and a non-trivial solution proportional to K;q. The trivial solution has the same
form as the solution of the linear problem (4.15) and, since this trivial solution
is a second order term, it can be neglected in compariscon with the linear term.

We are left with the non-trivial solution, a solution which is proportional to K;ig.

Now we apply to Eq. (4.28) the same technique used in Section 4.3 to obtain

Ko;. After some manipulations, we obtain the following expression for K

2K10Koo E%o1 = — fPioafzon ds + Jpeoifion ds (4.27)
s 3

with fimn = AV Dimn and B, = f p,:dv. Since the boundary conditions are
v

assumed to be linear, pgp, and fgg; satisfy a linear relationship identical to the
one between p;p,; and fjg,;; see Appendix 4A for details. The direct conclusion is

that the right-hand side of (4.27) is zero. This means that

KIO = 0.

Moreover, pgg,;. being proportional to Ky, is equal to zero. Using Eq. (4.25), one

deduces that ugg; is proportional to X, and, therefore also vanishes.

Now we turn to the determination of the second order acoustics equations.

By equating the coefficients of &° e?Kt we get
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RiKooPzoz + 7V Uzoz = ~¥P10.aV W01 —Uie.1-Y Proa {4.28)
) V Doz
RiKgougoz + ‘—‘7‘;—‘= ~U40,1-V Wi0,1 (4.29)

with fygs = 0.V Pggz on the boundary. These equations can be solved for pags
and uggp. The expressions for pggz and ugg e are needed in the following calcula-

tion to determine Kszg.

The coefficient Kgp will be determined from equating the coefficients of

£3 e®t In doing so, we obtain the following system for pgg; and ugg;

iKoopao.: + ¥V g0y = —iKeoP101 — 7P2o:2V -Uig1 — YP10.1V Uzoz (4.30)

*
— U501V Peoz — YP20,0Y U101 — YP10.1V -Ygzoo

E-]
— 0,1V P2o.o — Yz0.0Y P10, — YzozV Pioa

V Pao.1 Py s .
iKpouso,: + > = —iKggU10,1 — Uzo,2.V U101 — U10,1.V Uzo2 (4.31)

- * . Ed *
= 30,1V Ugo0 — Ugo,0-V Wi0,1 — iKooP10,1020,0 *+ iKooPzo.2U10,1

k) @ * -
— p10.1{ W10.1.V 101 + g1V Wig1 ) — P10 Y101V W01 — 1Koopzo.ot10,1

with fag; = 0.V pso: on the boundaries. Elimination of wugy; between these two



- 108 -

equations yields the following Helmholtz equation

V ®pgo,1 + Kobso,r = — Kool —iKzoP10,1 — ¥P2o.2V -Uig1 — ¥P10.4V -Uzoz (4.32)
~ 50,1V Pzoz = P20V U101 ~ P10V -Uzo0 — 10,1V Pzoo — Uzoo¥ Pros
~Ugg,2.V Pro,1 —Uz0,0-V P1o,1 )
+ ¥V .(=iKzoU0,1 — Ugp,2.V Uio,1 — Wip,1.V Uz
= 10,1V Uzoo — Uzo,0-V Uip1 — iKoop10,1Uz0,0 + iKoopze 2101
= p10.1{ W1V Uip1 + 0,1V Uig1 ) = L1041 Uio.1-V Wio,1 — KooPzo.0l10,1)
Each term on the righ£ hand side of this equation is determined from the
results of lower order calculations. Now we write (2.32) as follows

V ®pgo,; + Kfopso,r = — 2 Kgo Koo + haoy

and we apply to this equation the same technique developed in Section 4.3 to

find Kg;. The final result is the following expression for Kag

2 Koo KooB5o. = 7 fP10.1f30.1d8 — 7/ Paoafioads + [ hagy proadv  (4.33)
8 g v

where fg0; = L V Pap.1 - Kop represents the effects, on the linear frequency and
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growth rate, of the nonlinearity of the conservation equations.

As we have seen above, Kgg corresponds to the third order accustic prob-
lem. In the determination of this coefficient from expression (4.33), one needs to
know only the second, or lower, order terms, i.e. psp,; needs not be known. In

appendix 3B we show the point.

4.5. Appilication of the resulls
Now the results elaborated above, mainly expression (4.33), will be applied
to the one-dimensional model of the combustion chamber shown on Figure 4.1.

The linear unperturbed frequencies are given by

Koo = tan™( — i7Bgo)) (4.34)
where
u
Bog = 10.1 at x=1. (4.35)
Pioa

In order to have longitudinal modés whose frequencies are not integer multiples
of the fundamental, we choose By to be pure imagiﬁary. The overtones of a
solution to (4.34) are not solutions. Therefore, the general férmulation for the
determination of the effects of the nonlinearity of the conservation equations
can be applied. For simplicity, the boundary conditions for different harmonics

are taken as follows

Q10,1 _ Umol

=8 4.38
Pio,1 PmoJ o0 ( )

where m = 1,2,3, ete. The values of the dimensionless frequency shift Kyq for
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different values of the dimensionless admittance function Bgy are determined

from (4.33) and given in table 4.1.
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Table 4.1. Dimensionless Frequency Correction

Admittance Frequency Correction Ksg
i0.5 - 0.70766 + i 0.000
il1.0 ~1,7037 + 1 0.000
i1.6 -2.2664 + i 0.000
iR.0 - 2.6533 +1i0.000
iR.5 -2.9337Y2 +1i0.000

For clarity, we plot these values on Figur'e 4.3, where wqg is the real part of Kqg.
To obtain the dimensional frequency shift K¢ we use the definition of the

dimensionless time in Section 4.2, to get

d) = K 'l
K¢ 20T

As we see from this table, the expénsion presented in Section 4.4.2 iz capa-
ble of handling the third order acoustics in a straightforward, but lengthy,
manner. In reference 14, we see a difficulty in using the expansion in the nor-
mal modes to handle the third order acoustics. Also, we notice that the correc-
tion Kypp is pure real and, therefore, we cannot deduce anything about the effects
of the nonlinearity on the growth of the wave. This can be handled, although not
done here, within framework of the above analysis by including real parts in the

15

boundary conditions (4.38). These effects were first shown by Betchov™~, using a
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method of characteristics, in the treatment of pressure oscillations in a column

16

of gas. Chester™~ generalized the results of Betchov by using a regular pertur-

17

bation scheme. Collins~' , in treating the vibrations of a string, used the result-

18 extended the

ing, or asymptotic, amplitude as a small parameter. Jiminezg
approach of Collins to the pressure oscillations in a column of gas. However, the
objective of this section was simply to demonstrate the capability of the expan-
sion to handle higher-than-second order acoustic problems. The determination

of the amplitude and the conditions for existence of the limit cycle will be dealt

with in the next chapter for the particular case of pure longitudinal modes.

In Chapter 3, we discussed two methods of solutions to nonlinear partial
differential equations: the asymptotic-perturbation method and the
perturbation-averaging method. Having applied the asymptotic-perturbation
technique to the conservation equations, we apply now the perturbation-

averaging technigue.
4.6. Ezpansion using the perturbation-averaging technique

4.8.1. Ihiroduction .
In this section we will show how to apply Green'’s thecrem to reduce the system
of conservation equations (4.5)-(4.7) to a system of nonlinear second order ordi-
nary differential eqﬁations. Then, this system will be reduced further, using the
Method of time averaging, to a system of first order nonlinear ordinary
differential equations. The approach presented here is a simplification of the
general approach presented by Cuhcklg and a direct application of the

perturbation-averaging technique te second order in the amplitude.

In Section 4.6.2, we reduce the conservation equations of the flow field in
combustion chambers to a nonlinear hyperbolic equation (4,42). Application of

Green’s theorem is shown in detail, leading ultimately to a system of nonlinear



- 107 -

oscillators (4.48).

Section 4.8.3 starts from this system and shows in detail the application of
the Method of time averaging, yielding a system of first order nonlinear ordi-

nary differential equations (4.53).

4.6.2. Presenfalion of the method .
This method has been applied by Culick? to the general problem of conserva-
tion equations in combustion chamber. The following two sections are a
simplification of the general formulation given in reference 19 to the case where
there is one phase and no mass addition. Therefore, the problem reduces to that
of nonlinear acoustics with mean flow. We start from the conservation equa-

&
o
tions in dimen}ﬁonless form

95:—+7pVg_+g_V p=0 (4.37)
du. Vp _

p‘(-é—t—-f-l;_;v_l_l_)—!- > =0 (4.38)

ppT=1 : (4.39)

Write now the pressure,density and velocity in the following form

P=P+p
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Expand p' and u’ in the normal modes of the chamber as follows

p =) m t ) x) (4.40)
i=0
= mit)
u = vV % X_)
i§1 7k Wl
where the ¥; satisfy
V3 + kP =0 (4.41)
and
Va; =0 (4.42)

on the boundary. It is easy to verify that the ekpansion (4.40)-(4.41) satisfies the
linearized version of the equations (4.37)-(4.39). By replacing p and u by their
expansions (4.40) in equations (4.37)-(4.39) and retaining terms of order ¢, su
and &, one gets

B ?
—Laatz —V?%p' = +yV(AVUW +UVE +u.Vu))
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d ap' du’
—_— 4 = 3 !\_ t ¥ et ' '
o (p'V . +p'V.u") 3 (uwvp +u."§f'p)+'yV.(p————6t )

For simplicity, we will focus on the one dimensional problem with constant

cross sectional area: The equation above becomes

: 2.1 = ' b
=+7(_6u+2du gu |, d~u

Bt 2!
8%p' _ 9% o . 1
ax® dx 8x dx® 2 Bx

Bt? dx?

t e D 2.0 1 +
6p6u+.8u+,8u+6p6u)
gt ox dxdt dx ot gt 9x

— (4.43)

du’ 8p’ , ®p' . _ d%p' | Bu dp’ u' 8p' , ., 8%
— + + + + + .
5t ox TV omer T Vamet T ot ox? T Bt ox TP oxar

Equation (4.43) is a nonlinear hyperbolic equation. We now apply Green’s
Theorem to this equation. First, Green’s theorem can be written in the following

form

Jtvegdv= ftVgds- fVivegdy (4.44)
v 8 v

where v and s are respectively the volume and surface; for one-dimensional
problems, with constant cross-section, the volume becornes a line and the sur-
face becomes a point boundary. Second, multiply both sides of (4.43) by 4 and
of (%.41) by p'. subtract the results, integrate over the volume and use Green’s

Theorem and equation (4.42) to find
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d? p1
Wxax] 1J0p'§[/1 X_dg OP"){’IdX"

1
%’ dad du' d?g 1 Pu?
- + +u + %
7‘[ (@ ax” *ax ox ¢ ax® | 2 ax Thdx

1 ,
gp' 6u , , %u , 8%u' |, 8p' Au’
+ + ;
7 G TP et T P amer t ar oy Ve

1 _,
du' dp’ , O%p' . . 9%p’ au_8p’. du' 3p' , B?u’ 4
+ + = + 3 b 45
{ (Gt ox " Wamor " Tawmar * ot ox VeX f (Gt ax TP axat)‘”’ﬁé‘ ) t
(44 5) /

Here, following (4.41) and (4.42), %; = cosinx. The boundary conditions are con-

tained in the first term of (4.45). We approximate %l:—;— by—poz—%- and u’

bylg,

R(l)
w = “71002 (R +1

n=1

=—7 il[Rr(lr) "y!( t )@Z’nwj -1 0 f5’11”7n( t )#’n#’j]:

where the approximation #, + w%7, =0 has been made in the last term. The
terms Rff) and Rrgi) correspond respectively to the real and imaginary parts of
the admittance functions at the boundary for the mode n. By replacing p' and
u' by their expansions {4.40) in (4.45), one is led to evaluate the following

integrals
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@ oA 1 ef
EEZ—JG p'Pdx = — ERPCAC

am _ < lag
A T L dx = ::é:l TSy o Pedx

1 13—~ ] ) 1 3=
d_u_@E_. . - v du 7 . ;
Jo G 50 idx z oy gy Yatadx

1 53— oo 1 4=
du 8p' 1. _ . du,, ..
Jo et —n‘glﬂnf; ax Vnidx

1 - I o v 1
i AR < - N
Jougghdx = - 5 wdx

1

4
Jiu

d?*a = 1 . g
dx = —— il i
d%x Yidx n§—:_:1 JkE ant., Ynidx

1 g2y = Al dyn '
Jo oo tiax = X i f 0-g iz,

We see that the linear terms can be written in the following form

'ﬁi + wigni = Z ( Eni??n + Dni'f]n)

n=1

where the constants Ey and Dy are integrals depending on the steady state

conditions and the normal modes ¥, and ;.
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The same technique as above will now be applied to the nonlinear terms in

{4.42). We are led to evaluate the following expressions :

1 ! aPu? NI
_g—f nél ¢d’<“z 2 : “{(;dxmpndx)’glﬁ

~ 212
n=1 m=1 ;'ank

S = y 2 T f Yotz

n=i m=1

1 & & 1
f P’ ata S x = T o Y Ml f Ve¥midx

n=1 ms=1

SuQ_p’_ e dﬁn dvlfm

1

i

i PR N ML VNN

u > >
¢ gxét v n=imer K5 Y0 dx dx

We see that the nonlinear terms can be put in the form

Z z (Amni Mm + Broni?nfim)

n=1 m=1

where the constants Ap,; and Bhp are function only of the normal modes

Ym, ¥n and ¥ .

In conclusion, we finally have the following system of equations for non-

linear oscillators; one oscillator for each mode :
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B+ wf 7= 3 (Bnn +Duin) + Y, Y, (Amntm?n + Brmifim?in) = Fn (4.48)
n=1

n=1 m=1

Enn is found to be proportional to the imaginary‘part R of the linear response
of the n'® mode. This remark will be used in the next section to show that the

linear frequency shift is proportional to R

4.6.3. Application of the Method of Averaging .
The purpose of this section is to show how to apply the Method of Averaging to a
system of ordinary differential equations representing a system of oscillators.
The analysis to follow is only for longitudinal modes. Without loss of generality,

we will show the method by applying it to system (4.48). Write now

7(t) = Alt) sinayt + Bi{t)cosut

and assume Minorsky’sgo condition

Ai(t)sinet + Bi{t)coset = 0. (4.47)

The velocity and acceleration are then

7 = o Ait) coset — w; Bi(t) cosait

7 = oy Ajcoset — wAsinet) — wy(Bisinot + &;B;coswt) (4.48)

Equations (4.46) and (4.48) give
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wiAjcoswt — wBisinet = Fy (4.49)

Equations (4.47) and (4.49) may be solved for A;(t) and By(t), giving

At) = é—- _coswit (4.50)

Bift) = — —;‘— Lsinest (4.51)

1

Now, we average (4.50)-(4.51) over the highest pericd %r_ and assume that
1

all Ai and ’B’i are approximately constant over that period of averaging, produc-

ing the formulas

dA 2n

n_ 1 e,

%" Znn _j; Fpoosoptdt

B 21

dig 1 “ . .

T - o f(; Fnsinwgytdt.

Replace F, by its expression in (4.46) and calculate the integrals, to find® the

following set of equations :

dA

d_tn‘ = Qn An + &y Bn + n';L 2 [Ai(An—i - Ai—n - An+i) - Bi(Bn—i + Bi—n + Bn+i):1f (4-533)
i=1
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dB,
dt

= Og Bn ~ @ An + n% Z [Ai(Bn—i + Bi—n + Bn+i) + Bi(An-—i - Ai;n + Ani-i)} (4‘-53b)

i=1

where f8 = ?—;‘7—11\)1 . The coefficient &, is found to be proportional to E,, in Eq.

(4.46). However, we found in the last section that E., was proportional to the
imaginary part R{Y of the linear response, Therefore, 8, is proportional to R,
This result will be used in Chapters 6 and 7 to discuss the influence of the ima-

ginary parts R{ on the stability of limit cycles.

Equations (4.53) constitute the basis of calculations in Chapter 8 regarding
the determination of the amplitude and the conditicns for existence and stabil-

ity of limit cycles.

4.7. Concluding remarks

In this chapter, we used the two techniques, asymptotic-perturbation in
Section 4.4 band perturbation-averaging in Section 4.8, to expand the conserva-
tion equations in combustion chambers. The asymptotic-perturbation tech-
nique was carried to third order in the amplitude of the fundamental while the
perturbation-averaging technique was carried only to second order in the am‘pli-
tude. In the following chapters, we limit the discussion to longitudinal modes
only. In Chapter 4, we determine, using the asymptotic-perturbation technique,
the amplitude and the conditions for existence of limit cycles. Chapter 5 deals
with the stability of the limit cycle. In Chapter 8, we apply, using the the
perturbation-averaging technique, to the results obtained in Section 4.6, We will
also determine there the amplitude and the conditicns for existence and stabil-
ity of limit cycles. Chapters 7 and 8 deal with triggering of pressure cscillations

in combustion chambers.
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Appendix 44

ON THE STRUCTURE OF THE BOUNDARY CONDITIONS

For illustration, we start with the following system of partial differential

equations
¢ fu
'5%+ x = H1nlpiu] (A1)
8 3
St 5= #Ldp (A.2)
with
Ls[p, u, 4] = 0. on the boundaries (A.3)

where pis a small parameter; L, Ly, and 1p are linear operators. For example

Lol P u] = ey(x)p + cp(x) 2+ dy(x)u + dy() 21

We will show in the following calculations that the boundary conditions

(A.3) can be written in the form

L) (p) + ulbu)(p, u) = 0. (A.4)

where L) and Léw) are linear operators. Note that there is only one argument,

here p, in L§P). The direct conclusion of (A.4) is that, in the determination of the
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eigenvalues of order n, one needs only the eigenfunctions of order {n-1) or less.

The following analysis will show the point.
Write Egs. {A.1) and (A.R) as follows

Lip + Lpu = ply(p, u) (A.5)

Low + Lyp = alu(p, 0) (4.6)

where I; = lg = E?T and Ip =1, = 5@; are linear operators with inverses 1,7}, etc. ‘

Equations (A.5) and (A.8) reduce to

= -1 ' Lyp + ple ™ Lp(p, u) = Ls(p) + ule(p, u) (A7)
u=—Lg " Lyp + plg™! Ly(p, u) = Lo(p) + ulg(p, u) (A.8)

These two equations can, in general, be solved to give a simple equation in p

alone. Moreover, substitution of (A.7) in (A.3) gives

Lp(p, Ls(p) + ule(p. u), 1) = 0.

This equation can be expanded in powers of u

oL
La(p, Ls(p)) + ua—;-(p. Ls(p) + ulg(p. w)) + -+ =0.

which can be written in the following form
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L) + ulfu)(p.w) + -~ =0.

which is Eq. (A.4). For example, the boundary conditions can be of the following

form

gﬁ— + cy(x)p + ulp(p, u) = 0.

For this form of boundary conditions, it is very useful to define the linear unper-

turbed problem with the following boundary conditions

P10
ax

+ 1 (x)p1o =0

In the application of Green’s theorem, the surface integrals (here point
values, since one-dimensional problem) in expressions (4.18) and {4.21), Chapter
4, contain only terms of lower order than the eigenvalue. For example, in
expression (4.18), in order to determine Kp;, we need only to know the unper-

turbed acoustics modes p;p and ;0. In fact, the term under the surface integral

sign is
Piof1n — f10P11 = [{ — c1(X)p11 + LplP1o, U110 — [{ — e1(x)P10 Y11 + O(k)

= L(p10: Wio)P1o + O(u)

Therefore, one needs only the expression of L{pig U;g) in L(p, u) to determine

Ko;. In general, if the boundary conditions are defined as follows
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LPNp) + uLi(p, u) = 0.

then the linear problem should be defined with the following boundary condi-

tions

L{P(p) = 0.

The analysis can be extended easily to nonlinear and three-dimensional
problems. The only modification is to substitute the small parameter u by the
amplitude parameter £ and the linear operators L, L, and Lg by the nonlinear
operators Ny, Ny and Np. One direct conclusion is that, in order to determine Kig
from expression (4.27), one needs only to know pyg and w,g. Similarly, in order to
determine Kz from expression {4.33), one needs to know only pzgz, Uspz and

lower order terms.
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Chapter 5

LONGITUDINAL MODES:

AMPLITUDE AND CONDITIONS FOR EXISTENCE AND STABILITY OF THE LIMIT CYCLSS
5.1. Introduction

The stability of longitudinal modes for pressure oscillations in combustion
chambers has been the object of investigation for a long time. Chu and Ying1
examinéd the nonlinear thermally driven ocillations in a pipe with a traveling
shock wave, using a characteristic perturbation method. They predicted that the
fluctuation could attain a limiting value but they did not determine the expres-

g also used a shock wave model to

sion for the limit cycle amplitude. Sirighano
examine the nonlinear stability of pressure ccillations in combustion chambers.
The expression for the amplitude of the limit cycle was found using a numerical

routine. Marxman and \ﬁfoaltilrige3 examined the interaction between a traveling

5 treated

shock wave and a burning surface. Zinn and Lores® and Lores and Zinn
a similar problem by expanding the acoustic quantities in the normal modes of
the acoustic field in the chamber. The limit cycle was found by solving numeri-
cally a set of second order coupled nonlinear ordinary differential equations.
The technique developed here treats only the asymptotic solution. Direct

analylical results for the amplitude of the limit cycle will be presented. Its

advantage is its capabitility to handle high orders in a straightforward manner.

The case of pure longitudinal modes must be treated differently from the
general case presented in the last chapter, Section 4.4.2. In Section 4.2 we show
the point. A new double expansion in the wave amplitude and in the average
Mach number is introduced. For simplicity, the analysis in this section is carried
out to second order in the wave amplitude. Appendix 5B deals with higher ord-

ers. The dependence of the complex frequency of the wave on the wave
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amplitude is defermined. The analysis is applied to a one-dimensional problem.
The amplitude and the conditions for existence of limit cycles for pressure oscil-
lations are determined. The effects of the dispersion, or frequency-dependence,
of the responses of the different processes in the chamber to pressure ocilla-

tions are shown to be essential in establishing the limit cycle.

5.2. A simple proof for need to change the expansion

In the expansion presented in Chapter 4, Section 4.4.2, we treated the gen-
eral case of acoustical modes whose frequencies are not integer multiples of the
fundamental. The reason for restricting the discussion there to that kind of
mode will be shown in the following calculations. For illustration, we use the one-
dimensional model shown in Figure 4.1 with Bgg = 0. From the last chapter, Eq.
(4.34), the linear, unperturbed frequencies of the longitudinal modes are integer
multiples of the fundamental. The linear acoustic problem becomes, from Egs.

{(4.12) and (4.13) in Chapter 4,

duyg g
'K + — e _l
KooP1o1 + 7 — 0 (5.1)
dpig.1
iK o —— )
oolio,1 Sdx (5.2)

with %i— =0 at x = 0,1. This system yields, with ¢ in (4.8) being taken as half the

amplitude of the fundamental, expressions for p;g; and u;g;,

Prog = (€0 + ¢ Koo%) , (5.3)



Uig1 = — %,‘(eﬂ{oox —e _iKOOX) (5.4)

with Koo = n m where n is an arbitrary integer. Keeping these results in mind, we
write down the system of second order acoustics equations, Eqgs. (4.28)-(4.29) in

the last chapter give

. dugg 2 dug, dpo,

RiKooP2oz +7 ax . 7Pw. dlx - — w0, d;c - (5.5)
) dpzo 2 dugg;

RiKgouggz + Sdx = - Wea gl Koo £10,1U10,1 (5.8)

Pioa

with p1o1 = irom the energy equation (4.7) in the last chapter. The above

system yields, after substituting for p;g; and u;q; their expressions (5.3)-(5.4),

2
d*Ugg 2
dx?

1 2iKnnX - 2iK,
+ 4 Koz =~ 2y K (1+ ) (e Too® _ g = BiooTy

The solution to this equation is

Uggs = A o g o TR0 E -é—'y iKgpx (1 + %—) (eZiKm’x -e ZiK"°X) (5.7)

where A and B are constants. Assume further that

dpso,2 dpgpz |,
—_— ) = —=={1)=0.
g (0) (1)

Using (5.6), Eq. {(5.7) then gives
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1
Koo (1 + =) = 0.
0o 7,)

which is impossible. Therefore, the expansion presented in Section 4.4.2 is not
valid for pure longitudinal modes whose frequencies are integer multiples of the

fundaxﬁental.
5.3. Presentation of the expansion

5.3.1. Iniroduction fo the expansion . As we have seen in the preceding
section, the expansion breaks down when the mode considered is purely longitu-
dinal T.ﬁth Koo = nm . In this section we will show how to handle this case. For
clarity of presentation, the expansion here is carried out only to second order in
the wave amplitude. Appendix 5A deals. with the general formulation to any

order. Expand p,p and u as follows

P=1+/Fppt - +s (Pioa + #P1yg + ...) X (5.8)
D .
+&( 889p102 S2eetu) ¥ upiig + - ) e2iKt
Sagfi( it .
te ( 6&;1)1310,5 e ﬁgé (&) + MP113 + ) GSIKt + . 3

+ 2% pgoo + Mpzio* )

+ &%( ooy + Mgy + - JelKE
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2) .
+ &% ( 552)920,2 ezagé (e + Pzt o) e?ikt

N 3 2) .

The density p and velocity u = g + u' have similar expansions. The complex fre-

- quency K is expanded as follows

K= Kog + j,l,KQl +[‘ng2 + -+ E(Klg + ;'J:Kn + ) + Ez(Kgg + ,U,Kgl + - ) + ete.

The terms pjgz. P11z, etc., are introduced in order to avoid the indeter-

. 2ol )t ez pit
minacy of . , etc, noted above. The terms e gtu) , e g3 /(1) , ete.,
20,2 » Pz1,2

are introduced in order to avoid the double determinacy of Ky; ( see Eq. (5.11)).

2ogf ult

The term e is introduced to aveid the double determination of X;;. The

terms 64Y, 6§V, ete., will yield the amplitudes of the higher modes.

5.3.2. Detailed expansion and resulfs . In this section, we will match the
coefficients of slu™e™* and we will show how expansién (5.4) will allow us to
determine the limit cycle. First, we note that pjg;, Pigg etc., correspond to the
linear acoustics modes. The components pi;,;, P11z, ete., correspond to the first
order distortion of the linear acoustics modes by the mean flow. ?he treatment
of these components is similar to the one presented in Section 4.3, Chapter 4,
We will treat here only the nonliﬁear components of the waveform. The analysis
here is essentially for one-dimensional oscillations, but for the sake of maintain-
ing a parallel with Section 4.4.2, Chapter 4, we use the notation for three-
dimensional motions. We start with {(1,m,n)=(2,0,0) to get from the conservation

equations
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~ 2 cgoPzo0 + ¥ V . Uggo = =¥ P10V -Uin1 — ¥ P10V W0 (5.9)

k-3 £
= W0,1-Y P10,1 — U10,1-V P10,1

¥V ugpp

— & Opoliggo F = =01V U1 — W01V Uygs (5.10)

- E ] . *
+ 1 Koop10,1U10,1 — 1 Koop10,1%10,1

The terms pgoo and uggp represent, as mentioned in Section 4.4.2, Chapter 4,
the time-independent flow of fluid induced by the nonlinear acoustic field, or

accustic streaming.

A problem arises in the treatnﬁent of the equations of acoustics streaming
when agp = 0: since the analysis is one-dimensional, each equation is a first
order ordinary differential equation in pggg or uggg alone. If the fwo boundary
conditions are given in terms of pggg Or g alone then the problem can not be
solved. However, we can circumvent the problem as follows. Assume first that
Qg is different from zero, eliminate uggg or Page between Egs. (5.9) and (5.10),
and then set agg = 0, to find a second order ordinary differential equation in uggg
Or Pgog and the difficulty is removed. For the remaining analysis in this section,
the acoustics streaming effects have no further influence since we limit the
analysis here to second order in the wave amplitude. However, their influence
will become apparent when we deal with higher order expansions; see Chapter 8,

Section 8.2.

Now we determine the coefficients gi!, etc., because they will be needed

later to calculate Kjq, K;;, ete. For simplicity, we limit the analysis to the first
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term gif) in the expansion of gé(u) in 1

gi = gfl) + p gl + ete.

and only K, will be determined. By equating the coefficients of sue®* in the con-

servation equations and fhen by taking the limit o = 0, we get

2 iKooP11z + 7 V- Une = ( — 2iKoy + 2a¢ef¥ ) proz — 7 Pioz Ve - T V Piog

V pugz

2 iKepugiz + = ( —RiKp; + 20dVedd ) wi0p ~ T .V uige — eV T

To these equations we apply the same technique used in Section 3.3 to deter-

mine Kg;. The result is
4(ko1-idPefd) koo Ehz = ~ fproafinz ds + Jpiialic; ds (6.11)
3 g

i

- ‘K‘—f(v (T.V ujop + Wz . VT)) Pros 4V
0o

v

+iKoo J (@ .V Prog) Proa AV +7 i Koo [ (D102 V.U ) Pios dv
v ¥

where

Himn = .Y Pimn
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However, Ky, is determined by equating the coefficients of sue®™ as shown in Sec-
tion 4.3, Eq. (4.1B), in the last chapter. We see that if gél) were not present in
the expansion, Eq. (5.11) would give another value for Kj, and the expansion

would break down. This is the reason for introducing gél).

We now direct our attention to the determination of K;q. There are two ways
to do so. First, we equate the coefficients of £*u%¥ and then we take the limit

o =0, to get

iKooPzo1 + 7V -Ugg1 = — iKyoP1o1 — ¥68p 1027 oy — ¥84P1047 -Wiog
— 6§01V P10z — 6802V Pios

V pPags
. V2o . 1).. ¢
iKgougo,1 + v iKiguigs — 6810,V Uigz

— RiKooo® V10,1102 + K05 p10.2u10.1

The expression for the coeflicient K;q is obtained following the same technique

used in Section 4.3, Chapter 4, to determine Kp,. The result is

2 K10KooEfo1 = — [ Proafeods + J f101Pgoads + S hi0.1P 10,44V (5.12)
g g v

where



hiog = —7687p102Y -ufos — ¥65Vp101V Uige
- 6§Yu]01V Proz — 68V1027 Pros
+ V. (= 6§01V uyp — 8810V Uggy — 2iKoo85 01010102 + Koo0dp10.2110.1)-

This equation corresponds to a relationship between K, and 641, Another way to
determine determine Kiq is by equating the coefficients of £2ule? t and then by

taking oo = 0, to obtain

RiKooPzo.2 + 7V Ugge = — 2(iKyp + y0gld Y65V Droz — ¥P10.1V U30,1 —Wig,1 V P10

) V Pac.z ) .
RiKgolge,e + ———— = — R(iKyp + a0y V640102 — U101V Uigy — Koop10,1110,1-

These two equations yield

BN (Kyo — ioogld) ) KooBhoz = — JP10.17 Pageds (5.13)
=
+ 2iKoo fP10.1( Q10.1.V P10 YAV + giTKoomeJ( P10.1V Uig,; Jdv
v . v

+ 2iyKoo f P10.1(W10.2.V Wio,s + iKoop10,1110,1)dV.
v

This is another relationship between Ko and &§V. Egs. (5.12) and (5.13)
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determine uniquely K;o and 851

The limiting amplitudes correspond to the values of £ which make the ima-
ginary part of the complex frequency K vanish. The values of ¢ determine the
amplitude of the first mode and the coefficient 65! determines the amplitude of

the second mode when the limit eycle is reached.

5.4. Existence of limit cyeles
In the preceding section, we have shown how to determine the terms in the

expansion of the complex frequency K

K=Kog + uKo; + - +&(Kyg+...) + e¥(Kgg + - -+ ) + ete.

The imaginary part of this quantity is

o =ago+ pod + -0 +e(age + ) F2(oge + - )+ ete. (5.14)

When we limit the expansion of K to first order in u and to first order in &, then

the growth rate o becomes

o= agg + pedl) + sage

The limit cycle is then reached when a vanishes, i.e.

oo + podl + eoyg = 0

The coeflicients cgg and ad? correspond to the linear problem and, in general,
exist. The existence of a limit cycle reduces to the existence of a non-zero value

for oyp. This result will be applied in the next section to a one-dimensional



problem.

When we limit the expension of X to second order in g, then we have, from

(5.14),

4
o = O + ,!,L(Xﬁ]i) + g X + 82 Rag

The existence criteria become

1) oo should exist and be non—zero.
2) oo should exist and be non—zero.
3) afy — 4 (2gg + uefl) rgg > 0.

The discussion can, of course, be extended to any order in u and & It
should be emphasized that this discussion is valid also for the general case

freated in Chapter 4, Section 4.4,

9.5. Application of the resuits
Now the above results will be applied to the. longitudinal model of the
combustion chamber shown in Figure 4.1. The conditions for existence and the

amplitude of the limit cycle will determined.

First, Eq. (5.11) yields the following relationship between K;q and 6§V

K1

1

6§t = .
Kool 5 k1)

(5.15)



Second, Eq. (5.13) gives

1
Kool + =)
o) = T
(4K — 4oyod! )
Using (5.12), this reduces to.
2 142
Koo { 1 + ‘7'“)
Ko = . 5.186
7 8Ky — Bicyoedd) (5:18)
On the other hand, Eq. (5.9) yields the following expression for gid
2( Koy —iodPell) ) = iy(BR-afN)= —i o (5.17)

where uadl) is the growth rate of the first mode and wod? is the growth rate of

the second mode. In particular, when Ky is a pure imaginary, i.e.,

Kﬂl = -1 [X(gi), then

off) ~2afp

(1) -
Thus, from {5.186),
Koo 1 o (&
o = (1 + =)( - E 5.18
10 D) 7)( cxé?) ( }

The frequency, when the limit cycle is approached, should be real, giving
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podl + 2 a0 =0

which reduces, using (5.18), to.

1
e= L —afflof ) ? (5.19)
&
Koo 1
= —— 1 + =), Define
where 8 3 (1 > ) n
o =M914511) , Qg =Ma6§)
to get
o= A= (5:20)
We now define
p1 = £p101e' Kt + c.c., pp = 26fpygeel ¥t + coc. (81)

From expansion (5.8), we see that, when we neglect the distortion by the mean
flow and nonlinear terms, p; and pg correspond respectively to the first and

second modes. Using Eq. (5.3), p; becomes

p1 = 4 £ coswx coswt (5.22)

where © = Kqq. Using (5.20), we get the amplitude of the first mode
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apg=4e= —~\/é — 04 Qg (5.23)

The second mode disturbance will be determined as follows. Eq. (5.15) gives

540 = _:313_‘.’_‘19__
—+1
Kool 5 )
Using Eq. (5.18), we get
i)
o= —i( - )# (5.24)
odf!
The second mode disturbance becomes, using (5.3) and (5.24),
— afd) & . (1 L
pg = — 2i £ cosBwx { — —él-)——)z (e®t —e ") = _ 45 cosRwx sin2wt( ~ 3—%—) 2
fx(g1 Oiéx

Hence, we get, using (5.20), the following expression for the amplitude of the

second mode

agg = —- (5.25)

5.6. Discussion of the results.

Equations (5.23) and (5.25) yield the amplitudes of the first and the second
harmonics of the limit cycle. These results will be found again in Chapter 5
when the expansion in the normal modes of the chamber is treated. That consti-

tutes a strong support of our expansion.
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It is essential to notice here that, in order to reach a limit cycle, ;¢ must

exist be non-zero, giving, from (5.18),

oaoe < 0 (526)

This means that both a source of energy and a sink of energy should be present.
This is a direct proof of the effect of the dispersion, in the sense of dependence
on the frequency, of the boundary conditions on the establishment of the limit

cycle.

A physical interpretation of the condition (5.26) is that , in order for a
limit cycle to exist, at least one mode should extract energy from the wave while
another mode is supplying energy to it. The transfer of energy from one mode to
another is done by the nonlinear motion of the wave. For example, the non-
linear convection term 1.V u in the conservation equations can be perceived as a
vehicle transfering energy between the first and the second modes, The limit
cycle is reached when the processes supplying energy to the wave balance the

processes extracting energy from the wave,.
5.7. Stability of the limit cycle

5.7.1. Inlroduction . In the last section, we used the asymptotie-
perturbation method to determine the amplitude and the conditions for
existence of limit cycles for pressure oscillations in combustion chambers. The
crucial point of whether such limit cycles physically exist, i.e. are stable, is

treated in this section.

The technique we follow here consists in linearizing the conservation equa-
tions near the limit cycle solution. The result is a system of of linecr partial

differential equations with periodic coefficients. This system is similar to the
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system of Bloch Waves6

encountered in the theory of electrons in crystals. The
solution to this system is found by expanding the solution in the normal modes
of the reduced system obtained by neglecting the time-dependent parts. Applica-
tion of Green’s theorem ( Chapter 4, Section 4.8) then yields a system of second
order linear ordinary differential equations with periodic coefficients, one equa-
tion for each mode. This system can be treated used the Floquet theory?. How-
ever, the structure of the periodic coefficients makes the treatment by the
method of time-averaging particularly easy, especially for longitudinal modes
where the final result reduces to a sysiem of first order linear ordinary

differential equations with constanf coefficients. The study of the stability of

such a system is straightforward and very abundant in the literature.

For simplicity, the following analysis will be directed to the treatment of
longitudinal modes. partly becausg, in the last chapter, the limit cycles were
found only for the longitudinal modes, partly because of the relative simplicity
of the calculations: Only two modes are taken into account. However, the
analysis covered in this chapter can easily be applied to many modes and to

three-dimensional problems once the limit cycles are found.

5.7.2. Ancolysis ., The objective is first, to linearize the conservation equa-
tions near the limit cycles; and second, to study the stability of the limit ¢ycle
by applying Green’s theorem, or spacial averaging, and the method of time-
averaging. We start from the conservation equations.

%%J.- YypV . u+uvVp=20 (5.27)

u_ I v ; Vp 5.28
” !! . !! D .
( ot ) 94 ( )
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pp 7= (5.29)

For illustration, only one-dimensional problems will be treated. Moreover, we

limit the expansion of the pressure, density, and velocity to two modes

p=1+p;+pg+p
p=1+p +pg+p
u=Tu+u Fus+u

where( p1, pz }.{ p1 .02 ). and ( Uy, Uz ) are the first and the second mode com-
ponents of the limit cycle. To make matters simple, we will focus on the case

treated in Chapter 4, Section 4.5, where we found

P1 = aig cos WX cos wt (5.30)

Pz = 8gp cOsSRwX sin2wt (5.31)

where

e =
B39 = I “alaz:azo—“‘ﬁ—

The expressions for u,, etc. can be found from the linear acoustics equations

using (5.27) and (5.28). For example



= - ?{]-sincox sinewt: (5.32)

On the other hand, p', o' and u' are small perturbations near the limit cycle.

The linearization yields the following system of partial differential equations

@aﬁt'_i_y %‘i’.:hl (5.33)
Ly %’é‘: hy (5.34)
where
hy=-yp 6(ﬁ+;§ * Ug) —7 (1 +p; +p2) aai —-u' 6@62 o) (5.35)
~(@+ T ) B
ha = — (1 +7; + 73) %‘}-1;'— (5.36)

e — AT+ ) o
-u (1 +p, +p3) P (1 +p1+pg) (W+u; +1uy) 3

T+ T ) (T + u; +uy)
~at p lud+u; +up Sax
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Equations (5.33) and {5.34) yield

azp! 62.99 _ 6h1 ahg _
| ax® Bt ox o (5.37)

Since p;, etc., represent, from the previous chapter, the components of the limit
cycle and, therefore, are harmonic functions of time, Eq. (5.37) is a linear,

paramelric, inhomogeneous hyperbolic equation.

In Section 5.7.1, we apply Green's theorem to equation (5.37), using the
technique described in Chapter 4, Section 4.8, to obtain a system of two ordi-
nary, linear differential equations with time-dependent coefficients. This system
will be reduced in Section 5.7.2, using the method of time-averaging, to a system
of ordinary differential equations with constant coefficients. The standard stabil-

ity analysis is then applied to obtain conditions for stability of the limit cycle.

5.7.2.1 Application of Green’s Theorem . Expand the pressure and velocity

as follows

p = ni(t)coswx + Ma(t)cosPux

a(t
u = 21-(—)ﬂmwx - %’i—)—smzwx .

and apply Green's theorem ( see Chapter 4, Section 4.6) to Eq. (5.37). This tech-
nique consists here of multiplying Eq. (5.37) by cos wx, i = 1,2, integrating the
results over the total length of the chamber, and using Green’s theorem, to find

the following system of ordinary differential equations
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# + wfn = Dyt + Crcoswing(t) + Cosinwtss(t)

+ CacosBwtn (L) + CusinRwtn, (L)

flg + wEN, = Daghle + Fycoswin (t)B + Fasinwts, (t)

where

e = Bty = 2w

Diy=—20;,Dgz=—-2 g

(5.38)

(5.39)



1 3
Fg = - é‘amw( 1+ —.},_)

System (5.38)-(5.39) will be reduced further using the method of time-averaging.
The point is to reduce this system of second order linear parametric, differential
equations to a system of first order linear differential equations with constant
coefficients, Thus, the stability of the limit cycle can be studied in a much

easier way.

5.7.2.2 Application of the Method of Averaging . The description of the

method was described in Chapter 4, Section 4.6, Expand 7; and 7 as follows

m(t) = A;(t)sin wt + B;(t)cos wt
72(t) = As(t)sin 2ot + By(t)cos 2wt

Substitution of these expressions in (5.38) and (5.39) yields, after application of

the method, the following system of ordinary differential equations for the 4

and Bj

dA
-a—tl—= o1A; + ¢;B; + By (5.40)

dB,

_é‘t—' = o1 By + c3hA; + 04hp (541)
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dA,

—_—= 0{21‘3&2 + d]_Bl (5'4-'2>
dt

dB :

=2 = osBa + dsi, (5-4-'3)
dt

where -
cy = —c¢g = —fFag
cg = —cg = —fa

d; =~-dg=-2 fay

and 8= g—( 1+ -71’—). The stability of the limit cycle is now reduced to the stabil-

ity of the trivial equilibrium point of the system (5.40)-(5.43). By writing
A; = U,eM, ete., where Uy, etc., are constant, and replacing these expressions in
the above linear system we get a linear system of equations for Uy, ete., of the

form

where M is the matrix of the linear system and X represent U,, ete. This system
has non-zero solutions only when its determinant vanishes. This gives a polyno-
mial equation in A, the characteristic polynomial. The conditions under which
the limit cycle is stable are reduced to those under which all the roots of this

polynomial have negative real parts. Many textbooks treat this problem; see
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reference 8, for example. These conditions are commonly known as Routh-
Hurwitz or lienard criteria. For a polynomial of the form

P(?\) =A%+ 8.37\3 + aghz + 5.1}\

these criteria are

a,> 0, ag> 0, agag —a; > 0.

For the system in question the characteristic polynomial is

PIA)=A* =203 (oy + 0 ) + A% 0f ) + A(Boyf + 4afng).

The stability conditions are then given, by -applying Lienard criteria,

oytog > 0O

4ofog + 20408 > O

40,08 + 40f0os — 208 > 0.

These conditions reduce to

2&.1 + Xa <0 (5.4—4‘)
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oy +op> 0 (5.45)

o > 0. (546)

To these one must add, Eq. (5.23), the existence condition a;0 < 0.

5.8. Discussion of the results.

The results are shown on Figure 5.1, As we see from the graph, in order to
get a stable limit cycle, the first mode should be unstable. The second mode
should be stable and should decay af least twice as fost as the growth of the
Jirst mode. The major conclusions from the above analysis are first, that fhe
stability of the limit cycle depends only on the linear coefficients, ond second,
that the noniinear coefficient § affects only the amplitude of the limit cycle. The
existence of both a source of energy ( @; > 0 ) and a sink of energy (op < 0) is
necessary to obtain a limit cycle. The same results will be found in Chapter 8
using a completely different techniqueg. The purpose of the next chapter is to
support the expansion presented in Chapters 3 and 4. We shall show, by using
the perturbation-averaging method, that we obtain the same results, reported in
this chapter, regarding the amplitude and the conditions for existence and sta-
bility of the limit cycle. More results will be elaborated regarding the influence
of the imaginary parts of the linear responses of the different processes in

combustion chambers.
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Appendix s5a

GENERAL REASON FOR CHANGING EXPANSION

In Section 5.2, Chapter 5, we presented a simple example showing the need
to change the expansion presented in Chapter 4 when we treat longitudinal
modes whose frequencies are integer multiples of the fundamental. In this
appendix we present the general reason for changing the expansion presented in

Chapter 4.

The conservation equations (4.5)-(4.7) in Chapter 4 can be reduced, by
eliminating p and u, to a nonlinear partial differential equation which, for one-

dimensional problems, has the following form

8* 8°
e = ® .

with

%E— = Ng(p) on the boundary.

where N, and Np are two nonlinear operators. We further expanded p as follows

P=1+puPpog+ ... +£(prog + P11y + - ) eK? (A.2)

+8%( DPaoo + MP21o + v ) + 2% (Ppog ¥ MPmig + - ) eRIKE
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For the case of longitudinal medes whose frequencies are integer multiples

of the fundamental, we have

dzplo. -
e L £ KR pygy =0 (A.3)
with -
dpioa ‘
— = — '4__
P 0atx=0,1. (A.4)

The solutions to (A.3) satisfying (A.4) are -

p{gh = cos K{¥x (A.5)

with

K# =nmn=01,2, - (A.6)

These solutions constitute a complete set of orthogonal functions.

As we see from expansion (A.2), we include one mode only in the linear part

of the expansion, say pl{é?l. The nonlinear term pggo(x) then satisfies

d? )
______dp;: £ + 4K paoz = N () (A.7)

where N,;Ez) is the quadratic part of N;. Since the set of functions p{’é?l are a com-
plete set of functions, pgz and NP (pi})) can be expanded in terms of these

functions
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Pzoz = Co + c;p{fh + cepff)) + ete. (A.B)
NP (p{Hh) = do + dipi; + dep @) + ete. (A.9)

with dj, in general, is different from zero. For example, if ngz)(plfé?l) = p{§)® then

dg=dg = -;—- and d, =0. Substitute expansions (A.B) and (A.9) in (A.7) and

equate the coefficients of p{§), to get

co [ 4KHR - KF?] = dp (A.10)
where use has been made of

a%p{3)

SR kgl =0

However, for longitudinal modes whose frequencies are integer multiples of the

fundamental, we have, from (A.8),

K{” = 4Kty

Eq. (A.10) then reduces to

O=dg

In general d; is different from zero. Therefore, expansion (A.2) breaks down. One
way to overcome this difficulty is by introducing in :(A.Z) a second harmonic of

the same order as the first harmonic, i.e.
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P=1+ufpea+..+e(pros+uprir+ - ) ekt (A11)
+5(prog + Mpue + - ) e?ikt
+ 2%(Pgoo * MPa1o + v )+ £° (Paog + MPo1g + - -+ ) eRiKE 4

This is the basis of the expansion used in Chapter 5.

The analysis is general and can, of course, be extended to any number of

modes and any reasonable type of nonlinearities.



Appendix 5B

GENERAL FORMUIATION FOR LONGITUDINAL MODES

In this appendix we extend the analysis presented in Chapter 5, Section
5.2, to any number of modes. The extension to higher orders in the wave ampli-
tude is the subject of Chapter 8, Section 8.2. To save space, we show in detail

the expansion of the pressure alone

P=1+4"poz+ -+ +2(Proa*Mpig + o) &K
+2( 68102 ezugéi)(#')t + Uppe + o ) gRiKY
+& 541)1010‘3 eﬂctgéﬁ(#h + upiis + ) QK L.
+ &*( paco + MPa1o + T )
+ &%( ppos + #sz + - )elKE
+ 82 ( 6§pagsz Q20e )t ipais + -+ ) %KY

2 :
+ 8% (6902 S ppsiz + -0 )t + e tee (B.1)

0



- 162 -

The coefficients gi?, gf?), ete., are introduced to resolve the multiple deter-
mination of K;;, K,z ete. In fact, gathering terms in 2ue®™ in the conservation
equations ieads, after application of Green’s theorem, to an expression for K.
Another expression is obtained from equating the coefficients of £2ue®X, In the
absence of gi?, we are faced with generally two different values for the same
coefficient, and the expansion breaks down. A similar situation exists for z. In
general, the introduction of gjtm)(,u} allows the single determination of Ky —1 0. j =

234 ...,andm,n=123,..

In a concise form, the expansion {B.1) can be written in the following form

> (@) 1.
=1+ Z #zmbo 2m+12 208][ {™pig ne™ Mt* v /-1« Pim J'emKt"'C-C-
=1ln

where 6 = 1 and g™ =0 for n = 0,1. Similarly, the expansicns of the density

and velocity are respectively

= ()
1+ E r"' 19021:1 + 2 2 éi.é‘ n)plo,nenglnm)t'i' 2 M Dlmn emKt+cC

=in=0 =1

As an illustration of how to apply the expansion (B.1) to many modes, we
extend the results shown, for two modes, in Section 5.3.2. io three modes. We
will show how to determine the coeficient Kjg in the expansion of the complex
frequency in the wave amplitude. There are three ways to determine Kjg. First,

we equate the coefficients of 2u%! X" in the conservation equations to get
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ikooPaos + 7YY Uzo: = —iK1oP101 — 784P10.2Y Wios — ¥65Up10.Y U0

— 84701V pioe — 6§02V P1oa

—75é(1)!5§1)P10.3V ~ufo.2 —75§1)5é1)P1'0,2V 10,3

- 551)111'0_1."7 Pioz — 5£1)U10_2'\7 pfﬁ.l

~ 6§V6§Ma52.V prog — 656§ 105.Y Proz

V Dao,s

. _ . o1}, ?
ikopuge,; + = —ikyouyo, — 6§Puip 1.V Uigs

— 8§02V ujp; — 85Y21Koep10,1Mi0,2 + 84MiKooP102100,1
— 88985070 2.V w03 — 88V88 V004V ulne

— 8§164V3iKo0010.2010.3 + 654V55V2Ko0p10.5U10.2

(B.2)

(B.3)

Following the same technique leading to Eq. (5.11) in Chapter 5, we get from Eqgs.

(B.2) and (B.3) a relationship among Kyg. 64V, and 6§,

Another relationship among K;q, 6§1), and 6§Y can be found by equating the

coefficients of £?u%? ¥ By doing so, we get
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RikooPzo.z + 7V g0z = — R(ik1oP 101 + uogdd)) 05 p1ge (B.4)

~ YP101V Ui01 ~ U101,V Pros — 8§ ¥P10aV ufgs — 64Y470.1.V Prog

Pzo2

Rikggugez + V = = R(ik1op1o1 + alogéé))5§l)ulo.2 (B.5)

= U101V W0 — 8§ 105V ufpy — 6§Vusg ..V U103
— Kogp10a U101 + 84MiKgop10,5ui0,1 — 6§"iKoop10,1010,9
Following the same analysis leading to Eq. (5.13), Egs. (B.4) and (B.5) give a

second relationship between K, 6!, and 841,

Finally, a third relationship connecting X, 81, and 8§V is obtained by first

equating the coefficients of £2.%%1%t in the conservation equations, to get

3ikoopzo,s + ¥V .Uz = — 3(ikiopyo,; + et10g$8)65p 105 (B.6)

— 689yp10.47 W0z — 65102 Pag,s )

— 6§Vyp 102V Mg — 650,V Pioz

. 203
3ikgougeg + V P

= — 3(ikigP10,1 + 1088864 u,04 (B.7)
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— 88Ma102.V g0y — 850001V Uig.2

- 8§Y2iKo00 1010102 — 641 iKpop102110.1

The same analysis leading to Eq. (5.13) allows the determination of the desired
relationship. Consequently, Kig, 6§, and 8{") are uniquely determined. The lim-
iting amplitude corresponds to the values of £ for which the imaginary part of
the complex frequency K vanish. The values of & determine the amplitude of the
first mode. The coeficients 641), and 6§1) determine respectively the amplitudes

of the second and the third mode.
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Chapier 8

- EXPANSION IN THE NORMAL MODES OF THE ACOUSTIC FIEID -
AMPLITUDE AND CONDITIONS FOR EEUSTENCE

AND STABILITY OF LIIT CYCLES

6.1. Introduction

In Chapters 4 and 5 we obtained some results regarding the amplitude and
the conditions for existence and stability of limit cycles for pressure oscillations
in combustion chambers, by using the asymptotic-perturbation method. In this
chapter, we will support these results by using the second technique, the
perturbation-averaging method. This technique was presented in Chapter 3, Sec-
tion 3.3. In Chapter 4, Section 4.8, we applied this technique to the conservation
equations in combustion chambers and, for pure longitudinal modes, we
obtained the system of equations (4.52)-(4.53) of ordinary differential equations
for the behavior in time of the different modes. The same equationsg Were

reported in reference 1.

In this chapter, we start from those equations to determine the amplitude
and the conditions for existencie and stability of limit cycles. Consequently, the
following analysis is limited to Iongitudinal modes only. More results than those
found in Chapters 4 and 5 will be elaborated, mainly the influence of the ima-
ginary parts of the linear responses of the different processes in the combustion
chamber. Broadly, the analysis breaks into two parts. First, for a chosen type of
limit cycle (there are two types), the conditions for existence and the ampli-
tudes of the limit cycles are found. Then a perturbation procedure is used to

examine the stability of the limit cycle.
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We begin with the case when the fundamental frequency of the limit cycle
Is equal to the fundamental frequency of the acoustic modes of the chamber.
First, two modes are treated. The amplitude and the conditions for existence
and stability of limit cycles are determined. The results agree with those of
Chapters 4 and 5. Moreover, the influence of the initial conditions is shown. The
crucial importance of the imaginary parts of the linear responses of the
different processes in the chamber is demontrated. Second, we treat three
modes in order to confirm the results found in the treatment of two modes and

to generalize the method of solution to many modes.

The second case, when the fundamental frequency of the limit eycle is
slightly different from the fundamental frequency of the acoustic modes of the
chamber, is examined. The amplitude and frequency of the limit cycle are deter-
mined. Under certain conditions ( shown in Appendix BA), these two cases

correspond to the only possible types of limit cycles.

Because of the availabilty of data on solid propellant rocket motors, the
analytical results will be applied solely to that kind of system., We will compare
our results with the numerical solutions reported in reference 2 and with the
experimental results reported in reference 3. But the validity and the scope of
application are much wider and the results can be applied to any sort of

chamber:

6.2. Preliminary
We start the analysis from the results reported in reference 1 and shown in
some detail in Chapter 4, Section 4.8. In that section, we showed, following

reference 1, that the pressure oscillation, written in the form
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o

p'=Y m(t) cos ey x

i=1
is governed by the following system of equations for nonlinear oscillators, one
oscillator for each mode:
B+ ofmy = H(ny, ) (8.1)

i=1,2,...,j=1,2, ..., and {; is a second order nonlinear polynomial. By applying the

method of averagingl, the following system of ordinary differential equations is

obtained

+ ng- 2 [Ai(An—i =Ain —Apy) —Bi(Bp + Big + Boyy) (6.2)
i=1 )
dB,
dt =0y By =% Ay
+ n"g— Z lI:Ai(Bn—i + Ajn — Bpui) + BilAn—y — Ajon + Any) (8.3)
j=

1

where n=1,2,..,8= —%%wl and m{t)= A{t) sin ot + Bi{t) cos et . The

coefficients o and &, are the linear coefficients and correspond respectively to

the linear growth rate and to the linear frequency shift of the n** mode. We refer

the reader to Chapter 4, Section 4.6 for more details leading to Eqgs. (6.2)-(8.3).
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In particular, in Chapter 4, Section 4}6, we show that the o, are proportional to
the imaginary parts of the linear responses of the n™ mode. This result will be

used in the discussion in Section 8.3.1.5.

Equations (8.2) and (8.3) were obtained by applying the method of time
averaging to Egs. (8.1). It is interesting to mention that expansion of the solu-
tions to (6.1) in two-time scales gives results identical? to those obtained by the

method of time averaging.

In what follows, we will treat two cases. First, the case when the coefficients
4; and B; reach constant values for large time; and second, the case where A;
and B; reach harmonic oscillations for large time. These cases yvield periodic
solutions of the form =;(t)= A(t) sin wit + By(t) cos wit, and, therefore, they
correspond to limit solutions. In Appendix 6A, we show that, under certain con-
ditions, these are the only possible cases, The first case corresponds to the case
when the fundamental frequency of the limit cycle is equal to the fundamental
frequency of the acoustic modes of the chamber and it will be referred to as
Zero frequency shift case ", The second case corresponds to a slight difference of
the fundamental frequency of the limit eycle from the fundamental acoustic fre-
quency of the chamber and it will be referred to as ' Non-zero shift of frequency

case".

8.3. Case of zero frequency shift -
In this section, we will consider the case when the coefficients A; and B; in
7i{t)= Ai(t) sin et + Bi(t) cos wit will reach constant values for t » . The sys-

tem to be solved is the following

OpAn+ % Bp+n 2{ (An—g = Ayp — Apnsi) — Bi(Bn-i + Bip + Bn+i)J =0 (6.4)
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8

G By = An + 05 3 A (Bas + Aun + Basd) + BilAns = A + )] = 0.

1

il
-

8.3.1. Two modes.

(6.5)

In this section, the particular case of two nonlinear oscillators is fully treated.

The amplitude and the conditions for existence and stability will be determined.

For two modes, Eqs. (6.4) and (8.5) become

alAI + 191}31 - ﬂ ( A.]_Ag + BlBg ) = 0.

—GA; + By + B BiAz —ABy ) = 0.

oAy + %Bs, + 8 (A -Bf) =0.

-—'l92A2 + (Xng +2 ﬁ BIAI = 0.

To solve (8.6)-(8.9) it is convenient to write A; and B; as follows

A; = ricosy, B = risiny;, i=1,2.

Equations (8.8)-(8.9) then reduce to

o

cosy¥,

ricos(v~y1) — frirzcos(vi—wg) = 0

(6.6)

(6.7)

(6.8)

(8.9)

(6.10)
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o .
COSI% risin{yv;—¥,) + friresin(v;—ip) = C ‘ (6.11)
O " -
ot rocos{vy—Ps) + Bricos2y, = 0 (6.12)
Wgsm(vz—ﬂﬁz} + Brisin2v;, = 0 (8.13)

where

Y% = Arctan ﬁ— i=1,2

1

We now multiply (6.10) by sin{y; =), (6.10) by cos(v;—#,), and we subtract the

results to get

tan{v1—¥1) = — tan(v; —vg)

On the other hand, multiplication of (6.12) by sin{u—s), (6.13) by cos(ve—is),

and subtraction of the results yield

tan(vs—p) = tan2v,

The last two equations have the solutions

Ve = 2v =Y +mm, ve =2u + s +nm (6.14a,b)
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In order for the solutions to Egs. (6.14a) and {6.14b) to exist, (8.14a) and (8,14b)

should be satisfied simultaneously, giving

Y+ e = (m —n)m

However, by definition of the arctan, — —g— <Y < :g— Consequently
Y= — Y

which, from the definition of 4;; gives
B__ 2% (6.15)
Xy X2

If this condition were not satisfied, then (6.14a) and (8.14b) would have no solu-
tion. Consequently, Egs. (8.7)-(6.9) would also have no solutions. Therefore, con-
dition (6.15) is the condition for existence of a limit cycle with zero frequency

shift. The same condition will be found again in Section 6.4, Eq. (8.58).
By taking into account (8.14a,b) and (6.15), we find from Egs. (6.10)-(6.13)

o ‘9 0l O

g = ————, ry = B 5
Scosy, COSYPCOS

¥1 2

T

> <P < —ﬁ—, we should have

However, since — 5

o0 < 0. (6.18)
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This is identical to condition (4.23) for existence of limit cycle determined in
Chapter 4 using the asymptotic-perturbation technique. Condition (8.18)
assures the existence of the limit cycle and shows clearly the necessity of having
both a source and a sink of energy. The amplitude of the limit cycle can be

expressed via the values of A; and B

Ay = ricosy;, B; = risiny; i=1,2.

The system (8.1) of nonlinear oscillators is autonomous: i.e., if n(t) is a solution
then n{t —t,) is also a solution for any t;. Therefore, because we are also dealing
with the asymptotic solution (limit cycle), assumed to be periodic, one phase in
the expansion of the limit cycle in its Fourier components is arbitrary. This is

equivalent to saying that one of the ; is arbitrary, say v; = 0. This gives

1

l —
=~ —a0p) ?

A
10 Bcosy,

(el 1+ =)

1

'ml—-‘

BIU = 0.
251

A _ e

20 ﬁ
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For the particular case of 8, = 8; = 0, we have

1
l —
Ap = ’B“(“O’haz) ?, Byo=0
2
Agog = —= B =0

These expressions are identical to expressions (5.21) and (5.22) determined in
Chapter 5, using the asymptotic-perturbation method, for the amplitude of the

first and the second harmonics,

Once the equilibrium points A;p and By, i = 71.2, are found, their stability
can be examined by linearizing the system (8.8)-(6.9) near these points. The
eigenvalues of the linear system should all have negative real parts. Lineariza-
tion of (8.2)-(8.2) produces the following equations:

dA
_55-.:(0(1"5A20)A1+('191‘ﬁBzo)Bz—(,BAm)Az—(ﬁBm)Bz

dB :
—== (=% =BBeo ) Ay + (o + BAzo ) By + ( fBuo YAz — ( i )Be

dA,

=i = (RBAw0) Ay = (2FB1o) By + aghp + 5B,

dBs

Tl ( 28B1g ) Ay + ( RBA0 ) By — %Az + agBy



By writing A; = U,;eM, ete., where Uj, etc., are constant, and replacing these
expressions in the above linear system we get a linear system of equations for

Uy, ete., of the form

where M is the matrix of the linear system and X represent Uy, ete. This system
has non-zero solutions only when its determinant vanishes. This gives a polyno-
mial equation in A, the characteristic polynomial. For the systemn in question,

the characteristic pelynomial is

P(AY=A* =2 3o +ag ) + A% of + 65 + 4% %)

% (

+ A Rayoel Boy +ag 31 + 3
1

The conditions under which the limit cycle is stable are reduced to those
under which all the roots of this polynomial have negative real parts. Many text-
books treat this problem (see reference 5 for example ). In Chapter 5, we have
seen that these conditions are known as the Routh-Hurwitz or Lienard criteria.

As we have noted there, for a polynorni‘al of the form

P{A) =2 + agh® + agh® + ag\

these criteria are



a;> 0, ag> 0, agag —a; > 0.

In the following calculations, we will determine explicit results for two cases:

Y =% =0and %, % # 0.

6.3.1.1 4 =% =0: /maginary peris of linear responses vanish .
The case when ¥ =% = 0 is carried out to completion. Equation (6.17) reduces
to

P(A) =A% =273 (oy + o) + A% 2 ) + AM2oy0f + 4aP0,).

The stability conditions are then given, by applying Lienard criteria,

o +oe > 0

4ofog + 2oy > 0

4o0f + 4alog ~ 208 > 0.

These conditions can be simplified to

oy +og< 0 (6.18)

oy + o> 0 : {6.19)
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o > 0. (6.20)

To these one must add the existence condition {6.18). These results are
the same as those found in Chapter 5, Egs. (5.18)-(5.20), and are shown on Fig-
ure 5.1. This constitutes a strong support of the expansion in the asymptotic
amplitude discussed in Chapters 3, 4, and 5. As we see from the graph, in order
to get a stable limit cycle, the first mode should be unstable. The second mode
should be stable and should decay ot least fwice as fast os the growth of the

first mode.

Without the nonlinear coupling, the first mode is unstable, so there is a
source of energy for the system; the second mode is stable, and energy is
exiracted from the system. The nonlinear coupling channels energy from the
first mode to the second mode. We say that the energy flows from the first to
the second mode. When the limit cycle is reached, the effects of the sink and
source of energy compensate and the energy in the wave system remains con-

stant in time,.

To demonstrate the independence of the limit cycle from general initial
conditions, the system of equations (6.1) and (6.2) has been integrated numeri-
cally. Figures 6.1a and 86.1b show the behavior in time of the amplitude of
different harmonics.for different initial conditions. Figures 6.2a and 6.2b show
the influence of the linear damping coefficient oy on the rate at which the limit
cycle is reached and on the limiting amplitude. We conclude that the higher the
damping is, the faster the limit cycle is reached and the higher the amplitude of
the first mode is. Figure 6.3b shows the behavior in time of the pressure ampli-
tude when the conditions (6.18)-(6.20) are not satisfied; it is clearly seen that,
while the existence condition (6.18) is satisfied, the limit cycle is unstable, i.e., it

cannot exist numerically. That was predicted by the analytical results (8.1B)-
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(6.20).

In all these examples, the numerical results agree completely with the
analytical predictions in the sense that the numerical solution of the system of
equations (6.2) and (8.3) yields the same behavior predicted by the analysis
regarding the conditions for existence and stability, and amplitude of limit

cycles.

8.3.1.2 Stability criteric for special inifial condifions .
The following remarks demonstrate that the initial conditions, under very spe-
cial circumstances, can change the stability criteria (8.18)-(6.20). Let us

assume that the initial conditions are of the following form

B,(0) = By(0) = 0.

and that 4, % both vanish. The direct conclusion is that the two modes are in
phase. This will be shown to be the reason for relaxing the stability criteria given

above. Equations (6.6)-(8.9), in this case, become
OL1A1 - {6 AIAZ =0. (6.21)

opAs + BAR =0, (8.22)

B; and Bp vanish for all times. System (8.19)-(6.20) has the following solution
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By linearizing the system: (6.21)~(6.22) near the above solution, it is easily

shown that the stability criterion is simply

o; > 0, og< O (6.23)

The criterion (8.23) is much ieés restrictive than the criteria {6.18)-(6.20). How-
ever, the initial conditions here are very‘restrictrive. The criteria (6.18)-(8.20)
are the general ones under general initial conditions. Figure 8.3b, in comparison
with Figure 8.3a, illustrates clearly the influence of the initial conditions on the
stability criteria (8.18)-(6.20). The only differences between these two figures are
the initial conditions; in Figure 6.3b, where the initial conditions are not in
phase, the limit cycle is unstable as predicted by the stability criteria (6.18)-
(6.20); in Figure 6.3a, where the initial conditions are in phase; the limnit eycle is

stable as predicted by the criterion (6.23),

8.3.1.3 %, % # 0:Jmaginary parts of linear responses non-zero .
We now treat the case in which % and 7% different from zero, while always
satisfying the condition (8.15) for zero frequency shift in the limit eycle. The
point is to show that the stability criteria (6.18)-(6.20) are still valid but are not
necessary. It will be shown that the imaginary parts greatly affect the stability

and amplitude of the limit cycle. Ultimately, the direction of energy flow among

modes will depend on these imaginary parts.

In order for the characteristic polynomial (8.17) to have all roots with nega-
tive real parts, the following conditions should simultaneously be satisfied

according to the Lienard criteria

a1+a2< 0.
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R0y + g < 0.

. Of oy
Bopts( — E?_B + zaé—g—(zal +op))> 0.

The first two conditions amount to the same conditions (8.18)-(6.19) found for
the case % =% = 0. But the third condition implies two possibilities. First
oz < 0; this case yields the same result (8.20) found for % =% = 0. Second,

ot > 0 ; this case vields the following stability condition

204 + '
op < g-2aBo o2 ) (6.24)

This condition shows clearly that it is possible‘to get a stable limit cycle when
the first mode is stable and the second mode is unstable. In conclusion, the

conditions (6.18)-(6.20) are sufficient here but not necessary.

To illustrate the results, Figure 8.4 shows an example of numerical integra-
tion of the system of ordinary differential equationé when the first mode is
stable, the second mode is unstable, and when the criterion (6.24) vis‘ satisfied
but the criteria (8.18)-(6.20) are not. The limit cycle in this case is stable, in

contradiction to the stabiltity criteria (8.18)-(6.20) but consistent with the cri-

terion (8.24).

In the case when the first mode is stable ( a sink of energy ) and the second
mode is unstable ( a source of energy ), the nonlinear coupling channels the
energy from the second to the first mode. The direct conclusion here is that the

energy can flow 'backward"” from the higher to the lower modes. Whether this
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occurs depends on the values of (%,%) which correspond to the imaginary parts

of the combustion responses.

This is, up to our knowledge, the first time such an effect has been shown.
The imaginary parts do indeed play a major role in the process of limiting the
pressure oscillations in combustion chambers. Relying only on the real parts of
the responses of the different processes in the chamber yields insufficient,

sometimes misleading, information about the processes causing a limit cycle.

6.3.2. Three modes .
Now, the system of 3 nenlinear oscillators will be treated. A general approach
- for solving a system of many nonlinear oyscillators can be constructed. The pur-
pose of this section is to show that a stable limit cycle is unique and that the

analysis can be carried out to any number of oscillators.

The uniqueness of a stable limit cycle is an important feature to investi-
gate, since it is a specific characteristic of muiti—degree of freedom systems. In
fact, for the multi-degree of freedom system (8.2)-(6.3), the limit cycle
corresponds to the equilibrium points of this systemn, i.e. the values of A, and B,

n d dBy
at ot Tt

which make vanish. These values are roots of the system (6.4)-

(6.5) of second order multivariable polynomials. For a single degree of freedom
system, the limit eycle changes stability when we move from one limit cycle to
the adjacent one. For example, Figure 7.2, in Chapter 7, shows the phase

diagram for the single degree of freedom system

A _ JA + bA® + oA®
TS

We see from the graph that the limit cycle changes stability when we move {from

one limit cycle to the adjacent one,.
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For a multi-degree of freedom system the situation is quite different.
There are no general rules as to the alternation of the stability of limit cycles. In
section 6.3.1 we examined the case of two oscillators., We obtained two different
limit cycles: the origin and a non-trivial limit eycle. If now conditions (6.18) and
(6.19) are not satisfied while (8.20) is satisfled, then both limit cycles are
unstable. Therefore, we have two adjacent limit cycles which have the same
behavior regarding stability, i.e. both are unstable. This is a clear contradiction

to the rule for a single degree of freedom systems.

By extending the analysis to three modes, we would like to enhance this
conclusion and to support another conclusion about the stability of limit cyeles
for system (8.1}, i.e. the stable limit cycle is unique, in the sense that if the sys-
tem is linearly unstable then there is af most one sfablz asymptotic oscillatory

behavior no matter what the initial conditions.

First, we will show how tc extend the analysis to many modes. The discus-

sion of stability for three modes will follow. Write

ZJ = Aj +i B] j=l,2.3.

where i = V=1. Thus, for a system of 3 nonlinear oscillators, system of equations

(8.2) and (6.3) gives, when the limit cycle is reached,

o i * ® .
cosl'gh Ty ~B (L1 78 + T Zg) = 0 (6.25)
2 eyt g (727,79 = (6.26)

cos P
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O3

_i‘% r—
-_——COS'{,{JSQ Zg+3321£g 0.

(6.27)

where * stands for complex conjugate. Elimination of Zg between {6.28) and

(6.27) yields

\ %
: 7. Z174cosyg e 72
O el'ffg ZS‘*‘ﬁ(Z;z‘FGE 1 4142 Y3

cos Ye O3 )=0.

We now eliminate 7, between (6.28) and (8.25) to get, for y = 7,Z; ,

oy +e; y+ez=0

where

2
gt —i oy CcOoS i gt —
ce =3 cos Yg e %5 + 38 Bt —-——é »-————-——% e ig cosYy e ¥
g af cosyy Og

0o cosV¥s

( ; i9 2 22 ~ivp
cos( We + Uy ) e + % ————-

e, = 128 oy cosa

2
_ o Oz iy

Cn =
7 cosy, cosPis

(6.28)

(6.29)

The conditions under which Eq. (6.29) has real and positive roots are the condi-

tions for existence of a limit cycle, since y = 7,7, is a positive quantity.

Following the same procedure, the analysis can be extended to larger

number of modes. However, the algebraic manipulations become cumbersome.
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In the following calculation we treat the special case of three modes with
% =% =% = 0 The coeflicients cg, c;, and cg become

4 o o
co=98= 4368t 21, o, = 122 u—= + fPay, o = of (6.30)
o3 o3 (451

Since, in the limit cycle, one phase is arbitrary, we can choose Z; to be real, ie.
y = A}, Equation (6.28) then shows that Z; is real. Consequently, from (8.27), Zg
is also real. This means that when & = 0 there are, in the limit cycle, no phase

shifts among modes.

The condition for existence of real roots for Eq (6.29) is that the discrim-

inant ¢; — 4cgep be positive, ie.

24
1—12—> 0. (6.31)
25!

In addition, the acceptable roots should be positive, since here y=Af. In
the case of one limit eycle only, the product of roots of Eq. (8.29) should be < O,

since one root is then positive and the second root is negative, i.e. an unaccept-

c -
able root. The product of roots of Eq. (8.29) is ?2- Therefore, we should have,
0

using (8.30), -

Q% ¢ o, (6.32)

4
B—+ 9
Qg

Inequalities (6.31) and (6.32) are the conditions to obtain a unique limit

cycele. These two inequalities can be simplified to



- 180 -

1 2 ‘
< - <0 (6.33)

c
On the other hand, in order to obtain two limit cycles, the product _f__ of
Q

. . Cy . . .
rocts of (6.29) and their sum - must be positive. These conditions give,
. 0

using (6.30) and (6.31},

X
— 6.34)
aglos — 12ey) > 0O (6.35)
ouea(12ou0e + eag) < O _ (6.36)

Therefore, under these conditions, we have in general two limit cycles. Their sta-
bility can be examined in a straightforward manner, as in the case of two non-
linear oscillators. However, the algebra is too complicated to be reduced to a
simple analytical form in terms of a4, s, and og. In facﬁ, the roots of Eg. (8.29),
which are the Values of the limit cycles, are not simple functions of a;, ag, and
og. The linearization of system (8.2)-(6.3) near these values yields a linear sys-
tem with complicated coefficients in terms of &y, @, and ag. Finally, the stability
conditions according to Lienard criteria give a complicated set of conditions in

terms of oy, &3, and og. However, a parametric study is easy to examine.

The parametric study is carried out as follows. For a set of values for ay,
o, and «y, Eq. {8.29) is solved, to get the values of the limit cycies. The system

(6.2)-(6.3) is then linearized near these values and the stability conditions are



-1B1:-

determined using a numerical routine. The calculation has been repeated for
some thousand sets of values for gy, o, and g, all satisfying conditions (8.34)-
(6.36) for existence of two limit cycles. From this parametric study, we find that

always when two limit cycles exist they are both unstable.

The parametric study is now extended to the sets of values of a;, o, and
og satisfying condition (8.33) for existence of a unique limit cycle. We find that it
is possible to obtain a stable limit cycle. As an illustration, Figure 6.5a and 6.5b
show the results of the numerical integration of Eqgs. (6.2) and (8.3} for three
oscillators and with oy, oz, and oy satisfying condition {8.33). The limit cycle is

stable and its amplitude is exactly the one acceptable root of (6.29).

It appears that the values of the amplitudes of the Iimit cycles have simple
expressions for the particular case of | a; | << | &p | << | 03 | and that the
stability discussion is easy to carry out analytically. With the following calcula-

tion we examine this particular case.

The special case of | 0; | << | 05 | << | ag | is treated to completion for
the initial conditions B, (0) = Bs (0) = Bg (0) = 0. Consequently, frem (8.2)-(8.3),
Bn(t) vanish, since 6, = 0. System (8.4)-(6.5) then yields the following approxi-

mate relations for the limit cycle amplitudes

a1A1 - ﬁ AlAg = 0. (6.87)
oohs + Alz =0. (638)
oshs + 38 AAg = 0. (6.39)

where we have assumed
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FA ] << [Ap | << [ Ag ] (6.40)

This approximation will be justified by the following results. In fact, Egs. (8.37)-
(6.39) have the solutions

1 o3 o
A=+ ——'\; /= a0, Agg = —5—1— Agg =+ % ———'\fal — 040 (6.41)
3

Since | a; | << | as | << | a3 |, it is seen that approximation (6.40) is compati-
ble with solutions (8.41). It is interesting to notice from (6.41) that the

existence condition is now simply

Qg < 0
We now linearize system (8:2)-(6.3) near the above solutions and we calcu-
late the characterisic polynomial, as for two nonlinear oscillators, to get

P(AY=AT =23 op + ag ) + A { opotg } + Roycang

According to the lLienard criteria, the stability conditions are then,

0 Oely > 0. -

a2+a3< a.
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oo { — &y + 03 —0g) > 0.

These inequalities, in addition to the existence condition ez < 0, can be

simplified to

.a1> 0. a2<0, a3< 0.

~ The direct conclusion here is that all the modes higher than first have to be
stable. Moreover, from (6.41) we have two diﬁ“erént roots. This seems {o con-
tradict our earlier conclusion that when two different limit cycles exist they are
both unstable. However, these roots have only a sign difference and actually they
correspond to the same limit cycle. In fact, when we replace these roots in
m(t)= Ayft) sin wit + Bit) cos wit, we see that these roots correspond to two
limit cycles with a phase difference of 7. However, as we have seen in Section
6.3.1 ( discussion after Eq. (6.18)), a limit cycle is determined to a phase shift in
time. Therefore, these two roots correpond to the same limit eycle. The point of
this remark is to notice that having different roots for Eqs. (6.4)-(8.5) does not

always mean having different limit cycles.

Now that we have completed the discussion of the case for zero frequency
shift in the limit cycle, we extend the analysis in the next section to the case of
non-zero frequency shift. Some results for the amplitudes and the frequency

shift of the limit cycle will be presented.

6.4. Case of non-zero frequency shift
In this section, we will consider the case where the coefficients A; reach the
oscillatory behavior A; = dicos(vit + 94 and B; reach By = 6isin(1it + vy fort - o,

Substitution into 7;(t) = Ai(t) sinet + By(t)coswit gives
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(L) = 0 sin{(w; + W)t + )

Thus, in the limit cycle, the amplitude 7;(t) will oscillate with a fundamental fre-
quency of w; + v; . The 1 are yet unknown. The amplitude of the limit cycle as
well as its frequency will be determined. The difference from the last section is
that here the limit cycle is oscillating with a fundamental frequency different
from the fundamental acoustic frequency of the chamber. The frequency shift

is vq.

We treat fully the case of two nonlinear oscillators. The case of three oscilla-
tors is integrated only numerically in order to confirm the results found for two

oscillators. The coefficients 4 and By, i=1,2, then satisfy the following system of

equations
dA
= Ay + 4B — 8 (Ah + ByBy) (6.42)
4B,
— = ~BA + 0By + § ( BiA —ABp ) (6.43)
dA,
-Ef— = phy + 5By + B ( A? —BR) (6.44)
dB
—C-lf— = = %Ay + 0By + 2 8 ByA,. (8.45)

The 9¥; represent the phase of each oscillator and should be taken into account.
However, because the above system is autonomous, one phase is arbitrary, say,

%1 = 0. Thus, by using the limit expressions of A; and B, Egs. (8.42)-(6.45)
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reduce to the following system :

-y 6 sinvyt =o; Geosy t+ & 6;siny, t

— B 6;16c08 ((vy ~vp) t =)

vidicosyt=—9 feosy b+ Sisin vy t

+8610sin ((vy —vg)t —4e)

"‘UgisgSiIl(Vgt +’¢2)=a252008(1‘/2t+’¢'2)

+ U Opsin (Up t + 9 ) + B 0Fcos 2y, t

Valgcos (Ut + 95 ) = —% scos (vpt + s )

+op desin (gt +9p ) + B ofsin 2y t.

(6.47)

(6.48)

(6.49)

Multiply Eq. (6.46) by cosiyt, Eq. (6.47) by sinnit and add the results, to find

aldl - 5 61 52 GOS( ( 2 Vi — Vs )t —"’502) =0.

This equation should be satisfied at any (large) time, therefore
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ve = 2 vy, Xy ~— ﬁ(SgCOS‘Wg =0. (650)

The values of ¢, and d; have-yet to be determined. Multiply now Eq. (6.48) by
sinvt, Eq. (6.47) by cosvit and subtract the results to find

—vy =% —B6sin( ( By — vy )t — g )

Then, with 2v; = v, from (8.50),

=1 =% + Blesin( Yo ) (6.51)

Eqgs. (8.50) and (6.51) then yield

+ vy
tanyy = — (-’%1—":—) (6.52)

A second relation is obtained by multiplying Eq: (6.48) by cos(wst + %) , Eq.
(8.49) by sin(vy t + 95) and adding the results to find

oelz + B6F cos( (R —1p )t =4 ) = 0.

This equation should be satisfied at any (large) time, giving v = 2 v; again and

by + B6fcosy, = 0. (6.53)

Finally, multiply Eq. (8.48) by sin{(u;t + %) , Eq. {6.49) by cos(vet + 9), and

subtract the results to find
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— vl = %l — B6%sin( ( 2y — ) t — s )

This becomes, with 2v; = s,

62(?/2 + 192) + 66125111 '(,l’/z =0 / (6.54:)

Equations (8.53) and (6.54) then imply

'92"‘7/2)

tany, = ( ~
2

(6.55)

Equations (6.52) and (6.55) yield the following expression for the frequency
shift |

_ g% + thoy

S (6.58)

Therefore, the frequency shift'is zero when oyt + %oy = 0. This is exactly the
condition (6.15) for zero frequency shift. Using the result (6.58), Eq. (6.51) then

gives

0 = ?‘(1 + 20, +a2) ) (6.57)
Substituting this result in (8.53) then yields
2
oL _ooe, RO =
of = — 1+ (gr) ) (6.58)
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The last two equations show that the amplitudes of the two modes have
increased when 4# 0., in comparison with the amplitudes of the two modes in
the past section when 4 = 0. For existence of solutions, we should have, from

(6.58) and as before,

e < 0.

To verify the analytical results, Figures 8.6a and 6.8b show the numerical
solutions of the system (8.42)-(8.45) of ordinary differential equations for
different initial conditions. The limiting amplitudes have exactly the same values

given by the formulas (6.57) and {6.58).

By studying the stability of the limit cycle, the direction of energy flow can
be handled in the same manner as for the case of zero frequency shift. The
treatment is more complicated since the linearization of the system of non-
linear oscillators leads to a parameiric linear syétem. The approach presented

in Chapter 5 can easily be used to solve this linear system. This is not done here.

In order to enhance our conclusion that the stability conditions of the limit
cycle for the case %= 0 are sufficient for the stability of the limit eycle for the
case §# 0, the system of equations (8.2)-(6.3) has been integrated numerically
for three modes with two arbitrarf,} sets of ¥ but for the same set of o; used in
Figures 6.5, Figures 8.7a and 8.7b show that the limit cycle is indeed stable,
independently of the 4. This extends the conclusion reached above for two non-

linear oscillators.
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8.5. Comparison with numerical sclutions and experimental results
First, we will compare the results of this analysis with the numerical solu-
tions reported in reference 2. Second, comparison will be made with some exper-

imental results reported in reference 3.

6.5.1. C'ompam'.son with some numericcl resulls .
In 2, Levine and Baum used a numerical technique based on a finite difference
scheme to solve the longitudinal waves in the combustion chamber of a solid
propellant rocket motor. Figures 8.8 show iwo of their results. Figure 6.8a
shows the waveform of the pressure oscillations for a flow without particles,
while Figure 8.8Bb is for flow with 2 u particles. The initial disturbance contains
only the fundamental mode but the final waveform (large time ) contains higher
harmonics. The fundamental mode grows initially in time, indicating that the
first mode is unstable and with a growth rate o, given approximately by the ini-
tial exponential growth rate of the pressure. The amplitude of the second har-
monic will be used .as a basis for comparing our theoretical results and the
numerical results in these figures. This amplitude can be determined from the
numerical data by a Fourier analysis of the waveform. The growth rate of the
first mode can be determined from the variation of the amplitude at the initial

growth of the wave. In the numerical resultsz

, the relative energy density of the
first three modes were respectively 0.813, 0.103, and 0.033 for the case in Figure
8.8a, and 0.811, 0.102, and 0.038 for the case in Figure 6.8b. These numbers
show that thé approximation | o, | << | og | << | &g | is likely, following
{6.40)-(6.41), to be valid here. On the other hand, the frequency shift is zero in
Figure 6.8a and very small in Figure 6.8b, indicating that it is safe to assume

that 4 = 0. Therefore, the amplitude of the second harmonic, given approxi-

mately, Eq. (6.41), by
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Agg = —

can indeed be a criterion for comparison. Table 8.1 shows a comparison of the
value of the spectral density of the second mode ( proportional to the square of
the amplitude ) between our analysis and the results reported in 2. Good agree-
ment is found for the case of Figure 8.8a. The error increases in the case of Fig-
ure €.8b because we neglected the imaginary parts. The trend of error is in

agreement with Eqs. {(6.57)-(6.58).

Since here the first mode is unstable and the second and third modes are
stable, the energy of the wave is flowing from the first mode to the second and

the third modes.

Table 8.1. Comparison between Analysis and Numerical Results of Ref. 2

Spectral density  of second mode

a; s Analysig Numerical Ref. 2 | Error %

Figure 8,8a | 81.31 £.128156 0.103 17.97%

Figure 8.8b | 48.28 G.077 0.102 24.3%
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6.5.2. Comparison with some experimentol resulis .
In the experiments reported by Beckstead et aIB. they carried out a series of
experiments on the.performance of laboratory devices for testing solid propel-
lants. In particular, they changed the combustion area of the solid propellant
and they determined, at the same time, the growth o, of the first mode and the
final amplitude of the limit cycle. But, from our analysis, the final amplitude is

given by

A=~AF+AF) = —-\/é o {0y — ag) (8.59)

by limiting the number of modes to two. Considering the fact that for practical
problems the damping is approximately independent of the combustion area
and the growth rate of the first mede is small compared to the damping rate of
the second mode, it is safe to assume from our analytical results (6.59) that the
amplitude varies ag the square root of the growth rate of the first mode when
the combustion area changes. This criterion is used to compare with the experi-
ments in 3. Figure 6.9 shows the result of the comparison. A fairly good agree-

ment is found.

6.6. Concluding remarks

In this chapter, we have shown, following a second order expansion in the
pressure amplitude and using the perturbation-averaging technique, analytical
results for the amplitude and the conditions for existence and stability of limit
cycles for pressure oscillations in combustion chambers. The results agree com-
pletely with those presented of Chapters 4 and 5 using the asymptotic-
perturbation technique. This constitutes a strong support to the asymptotic-
perturbation technique and to the results regarding the amplitudes and the

conditions for existence and stability of limit cycles,.



“syutod vyep pryuswilaodxn quasoadol
§O[0.U0 D1, 'Sy Nsal prordrure oynulrvoaddn
oy} sjussoadod sull ydreans oyl 89
DOUDIDJOd Ul UDALT S0UO0 [RIUSUILIGAXD 9]
YIM s1nsad [eonA[eue 8y} jo uosuieduo)

69 2aN5L[

-197-
N




-198 -

Moreover, further results were obtained regarding the influence of the
linear responses of the different processes in the chamber on the stability of the

limit cycle and on the energy exchange among modes,

In the next chapter we show that the system of equations (6.2) and (8.3)
apparently does not explain triggering, or nonlinear instability, for pressure
oscillations in combustion chambers. A formal analysis for triggering is dis-
cussed and application of the results to the analysis of some experimental data

is carried out.
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Appendix BA

In this appendix we will show that the limit cycle can have, under certain
conditions, only two forms. To fix ideas, we treat two modes only and we deal

with the pressure at a given location, say, x=0. The pressure has then the fol-

lowing expression

p = 7m(t) +mp(t)

Since we are looking for periodic soluticns, the pressure should be periodic and

with fundamental frequency,

say, w + v. Now, expand the pressure into its
Tourier components

p = asin((w + V)t + 9}

(A.2)
On the other hand
p = At)sinot + Bi{t)ecoswt
+ Az(t)sin2wt + Ba(t)cosBot (A.2)

Equating equations {A.1) and {A4.2)
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sinwt{A,(t) — ajcos(it + ¥))

+ coswt(B{t) — asin{vt + ;)

+ sin2wt{Ap(t) = azcos(2ut + 9s))

+ cos2wt(Bs(t) — azsin{2vt + %)) = 0. (A.3)

Two direct solutions of {A.3) are

A{t) = constant, v = 0.

ana

Ay(t) = asin{vt + 9,) (AL

This is the origin of the two cases treated in the main text.

Now assumme that A,(t), ete., oscillate with a frequency much smealler than

@, and the shift of frequency v is small compared to . Multiply (A.3) by sinat

-

and integrate over one period, keeping in mind that the coeffcient of sinzt

remains approximately constant. The direct result is that this coefficient should

|5}

vanizh in order for {A.3) to be satisfiad:

Al(t) - ax_Sin(:Ut + 77"/1) =0
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ext.

shift of [requency, we have only the cases treated in the main t

noticing nere that this assumption was essential i

For example

A, (t) = a,cos(vt + 9;) + coswt

B;(t) = a;sin(vt + ;) — sinwt, ete.

quaticn {A.3).

[

It is worth

in applying the method of
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Chapter 7
TRIGGERING OF PRESSURE OSCILLATIONS

7.1. Introduction

In this chapter we treat the problem of triggering of pressure oscillations
in combustion chambers using the perturbation-averaging technique. The
analysis is based on a third order expansion in the pressure amplitude; only two
modes will be accounted for. We will show major mechanisms responsible for
triggering and how they affect this phenomenon., The reason for studying this
problem is the realization that triggering, or nonlinear instability, is a general
phenomenon and is not related to a particular chamber geometry or to a
specific propellant. This is, to our knowledge, the first global analytical represen-

tation of triggering.

The analysis in Chapter 6 was limited to determination of the limit cycle
when the system is linearly unstable, i.e. when one or more modes is linearly
unstable. It cannot predict nonlinear instability, or triggering. In fact, the sys-

tem (6.2)-(6.3) in Chapter 8 yields

o

2 (AF +Bf) = iai(Aiz + Bf) _

ti:l i=1

Icu

1
2

o

Therefore, the nonlinearity disappears when we calculate the rate of change of
energy of the wave, For a linearly stable system, all the o; are negative and the
energy of the wave decays in time, whatever the initial conditions. It is therefore

impossible to produce a non-trivial limit cycle if all modes are stable.
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The analysis must evidently be extended in order to explain how a linearly
stable system can be pulsed into instability. By this we mean that for small ini-
tial disturbances the system is stable, but for large initial disturbances the wave

amplitude will grow in time, leveling off toward a non-trivial limit cycle.

The idea of pursuing a general analytical investigation of triggefing
phenomenon is motivated partly by earlier works on the subject. Powell! used
an approximate-numerical analysis to examine, among other things, triggering
of pressure oscillations in liquid propellant rockets. He expanded the acoustic
quantities in the normal modes of the acoustic field; the resulting set of equa-
tions for nonlinear oscillators was sclved numerically. Kooker and Zinnz studied
triggering in solid propellant rockets by solving numerically the conservation
equations. Powell et a13 used an approximate-numerical analysis with a non-
linear combustion response to investigate triggering in scolid propellant rocket

4

motors. Finally, Levine and Baum ~ examined iriggering by solving numerically

the conservation equations using different forms for the combustion response.

The point in the following calculations is to interpret onaiylicaily some
results reported in references 1-4. The aim is to deduce a general formalism for
triggering. Having deduced a formalism, application of the results fto some
experimental data will be carried out. In this chapter, only the perturbation-
averaging technique will be used to carry the analysis, because of the simplicity
to handle the discussions. In Chapter B, we compare the uses of the
perturbation- averaging technique and the asymptotic-perturbation technique

in the treatment of triggering in combustion chambers.
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7.2. Discussion and interpretation of some previous works
In this section, we discuss some results reported in references 1 and 2.
Some interpretations of the results will be given and a general formalism of

triggering phenomenon in any type of systems will be presented.

In reference 1, Powell examined two types of modes for pressure oscilla-
tions in liquid propllant rockets. When only one radial mode is taken into
account, he finds (p. 232) numerically, to second order in the pressure ampli-
tude, that triggering in the sense of an unstfable limit cycle is possible. At the
same time, from the conservation equations, he also finds a coupling of the
radial mode with itself. Keeping these results in mind, we consider the following

nonlinear differential equation

== =gA+baA? : (7.1)

where « is the linear growth rate and b is the coefficient of the self-coupling
term. Figure 7.1 shows the phase diagram { A, A) From this diagram, we see
that for a linearly stable system, i.e. & € 0, the system becomes unstable if the
initial disturbance is greater than A;. The equilibrium point A; is called an
unstable limit cycle. Consequently the numerical result is recovered through the

simple interpretation given by Eq. (7.1)

Also in reference 1, the author considers the case of the interaction, to
second order in the amplitude, between the first and the second tangential
modes. From his approximate analysis he finds no self-coupling. However, there
is a cross-coupling nonlinearity of one mode with the other. From his numerical
computations, he finds (p.200) that it is impossible to predict triggering in the
sense of a stable limit cycle. This phenomenon can be interpreted as follows.

Consider the system of two nonlinear differential equations



- =208 -~

(1°2) _vﬁ Joj weadeiq aseyd 14 9403y




- 207 ~

da,
-d_.t__ = 0(1A1 + blAlAg

dAs

o= Cefie * boAf
In the limit cycle, we have
dA; dAp _ 0
dat © dt
giving the limit cycle amplitude
1
_ e 8
A]_O - (blb )
%
Agg = b,

We see that for triggering to occur we should have

ey g
> 0.
bybg

(7.2)

(7.3}

(7.5)

However, for a linearly stable system o; and o are < 0. Consequently, we must

have

b;bz > 0.
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To study the stability of the limit cycle, we linearize Eqs. (7.2) and (7.3) near the

limit cycle. Write

Ay = Ay + A", Ap = Agg + A%

and substitute these expressions in (7.2)-(7.3), to get a system of linear equa-

tionsin A'; and A's

1

dA ,
5t = (@ + biAgo)A'y + biAsoA’ (7.6)

dAl
-—d—_{;—g— = ophp + 2bgA10A’1 : (7?)

By writing A’y = U;eM, etc., where U, ste., are constant, and replacing these
expressions in the above linear system we get a linear system of equations for

U, ete., of the form

where M is the matrix of the linear system and X represent U,, ete. This system
has non-zero solutions only when its determinant vanishes. This gives a polyrio-
mial equation in A, the characteristic polynomial. For the system in question,

the characteristic polynomial is

P(A)Y =X —=Aog —ay00 (7.8)

where use has been made of (7.4)-(7.5). The product of roots of (7.8) is — ;0.

However, for a linearly stable system o, and oy are < 0. Therefore the preoduct
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of roots is negative. Consequently, the only possibility is that one root has a
positive real part while the second root has a negative real part. The direct con-
clusion is that the limit cycle is unstable whatever b; and by. This means it is
impossible to get triggering in the sense of a stable limit cycle. This is a direct

interpretation of the result cited above,

We now turn to another result reported in reference 1. Powell extends his
analysis to third order in the wave amplitude. First, he considers the first
tangential mode, for which there is no seif-coupling in the second order approxi-
mation but a third order self-coupling. From his numerical results he concludes
that triggering is possible only in the sense of an unstable limit cycle. This con-
clusion can be interpreted as follows. Consider the following nonlinear
differential equation

dﬁ.—cé gcés 7.0
A .
dt ( )

The limit cycle amplitude is simply

The second order term is missing because there is no self-coupling to second
order. For a linearly stable system o, is < 0. Consequently, triggering is possible
only if ¢ > 0. The phase diagram is similar to the diagram shown on Figure 3.1 in
Chapter 2 but with reversed arrows. It is clear that a non-trivial stable limit
cycle cannot exist. Therefore, a model represented by Eq. (7.9) cannot represent
triggering in the sense of a non-trivial limit cycle. This explains the numerical

result cited above.
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Powell further extended his computation to the treatment of the first
radial mode, for which there are a second order and a third order self-couplings.
From his numerical computations, he concludes that triggering in the sense of a
stable non-trivial limit cycle for a linearly stable system is possible. This can be

interpreted as follows. Consider the following nonlinear differential equation

%%—=aA+bA2+cA3 | (7.10)

The phase diagram of this equation is shown on Figure 7.2 for the case where

b# 0,b°—4ac> 0,c< 0. (7.11)

In the following we will show that conditions (7.11) are necessary and sufficient
for Eq. (7.10) to have a stable non-trivial limit cycle while the system being

linearly stable. In fact, the non-trivial limit cycles are the roots of

a+bA+cA®=0, (7.12)

If cenditions (7.11) are satisfied then Egq. (7.12) has two distinct roots, say A

and As. Eq. (7.10) can then be written as follows

aa

T a A(A = Ay)(A —Ap) (7.13)

If the product ﬁ- of roots of (7.12) is < 0 then A, and A; are of opposite sign, say

A; > 0 and A; < 0. The phase diagram is similar to the diagram shown on Figure

3.1 in Chapter 2 but with reversed arrows. For an initial disturbance greater

than A, %—i\— becomes positive and A grows indefinitely. If the initial disturbance
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is smaller than A;, then %—%— becomes negative and A decays to zero. The same

holds true for A,. A; and A, are said to correspond to unstable limit cycies.

On the other hand, if i— is positive then A; and Ap are of the same sign, say

positive with A; < Az. The phase diagram for this case is shown on Figure 7.2.

For an initial disturbance smaller than Ay, %%— is negative for a < 0 and A decays

in time toward the trivial limit cycle A = 0. However, for an initial condition

greater than A; but smaller than A, % becomes positive for e < 0 and A grows

in time toward A,. Finally, for an initial condition greater than Ag, % becomes

negative for a < 0 and A decays in time toward Ag. A, is said to be an unstable
non-trivial limit eycle while A is said to be a stable non-trivial limit cycle. Con-
sequently, Eq. (7.10) explains why the third order analysis in reference 1 of the
first radial mode is capable of predicting triggering in the sense of a stable non-

trivial limit cycle,

We will now discuss some results on triggering reported by Kooker and
Zinnz. In reference 2, Kooker and Zinn integrated numerically the conservation
equations in solid propellant rockets, using a charaqteristic method. First, they
use a steady state burning . rate as a representation of the combustion
processes. No triggering is found. Second, they include, along with the steady
state burning rate, nonlinear particle damping in the conservation equations.
Triggering occurs. In the following calculations we give an interpretation of the
second conclusion regarding the role of the nonlinear particle damping. The
first conclusion regarding the insensitivity of triggering to the steady burning

rate will be discussed in the next section,
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In reference 5, a model representing a second order nonlinear particle
damping is presented and a modal analygis leads to the following system of

equations

dA
._d-__t_l— = alAl + blAlAg + CIAIZ (7'14)

%%2— = qgAg + bpA? S (7.15)

where A; and A; are respectively the amplitude of the first and the second
modes; b;A;A; corresponds to the nonlinear gasdynamics; ¢,Af to the nonlinear
particle damping; and bpAf to the nonlinear gasdynamics. For ¢; = 0, Eqgs. (7.14)
and {7.15) reduce te Eqgs. (7.2) and (7.3). However, in contradiction to Egs. (7.2)
and (7.3), Egs. (7.14) and (7.15) do predict triggering in the sense of a stable
non-trivial limit cycle. Figure 7.3 shows the existence of triggering for a particu-
lar set of coeflicients o, ag, by, be, and ¢;. From this figure, it is seen that for a
small (0.05) initial disturbance the wave decays in time but for a large (0.18) ini-
tial disturbance the wave grows to a non-trivial limit cycle. Therefore, Egs.
(7.14) and (7.15) méy indeed: interpret the numerical results of reference 2

noted above,

This result is important because of the structure of Eqs. (7?14) and (7.15).
These equations contain only a second order nonlinearity. If only one mode, say
A;, were taken into account then these equations would reduce to Eq. (7.1),
which, we know from Figure 7.1, cannot predict triggering in the sense of a
stable non-trivial limit cycle. The mode coupling to second order, along with the
self-coupling, assure the establishment of triggering. This is a simple exampie

showing that new phenomena can occur when we deal with many modes. For one
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mode, triggering is absent, For two modes, triggering can occur.

Another important feature of Egs. (7.14) and (7.15) is the role of the self-
coupling term c;A?. In the absence of such a term, Egs. (7.14) and (7.15) reduce

to Egs. (7.2) and (7.3), and triggering disappears, as we have seen there.

The conelusion from these remarks is that a second order model can
indeed predict triggering providing two criteria are met
a) The model includes a process representing a self-coupling mechanism

b) The analysis includes at least two modes.

The necessity of these criteria is only likely to be true, since we have not
discussed the effects of the "out-of-phase” components. This is the object of the

next section,

7.3. Justification for neglecting cul-of-phase componenis

It is essential to notice that in all the formalism given in Section 7.2 and in
the remainder of this chapter we neglect the "sut-of-phase’’ components B;
defined throughout Chapter 6. In the following discussion, we will give some

justifications.

In Chapter 8, Section 86.3.1.3, we found the inclusion of the @; which
corresponds to the imaginary parts of the linear responses, was nol necessary
for stability. In fact, we found in that section that if the limit cycle is stable
when the imaginary parts are absent, it is also stable when the imaginary parts
are present. These imaginary parts are largely responsible for the presence of
the "out-of-phase” components. In fact, irom Eqgs. (6.2) and (8.3) in Chapter &, we
see that if the &; are zero and if B;(0) are also zero, then B,(t) vanish at all time.
We may therefore expect that the results elaborated in this chapter give

sufficient criteria but probably not necessary criteria for triggering.
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However, in the following discussion we will show that the stability criteria
found in this chapter are not even sufficient. In chapter 8, Section 6.3.1.2, we
found that the stability criterion (6.23) for the case when we neglected the "out-
of-phase" components is less restrictive than the stability criteria (6.18)-(8-20)
found in Section 8.3.1 for the case when the "out-of-phase” components are
present. In both sections, we have ¢ = 0. This means that without the presence
of the "out-of-phase” components, the stability criteria may not valid. Strictly
speaking, the results on stability of the limit cycle elaborated in this chapter are
neither necessary nor sufficient for stability analysis. The treatment of "out-of-
phase" components is a requirement in order to draw unambigucus conclusions

as to whether triggering occurs. This will be the subject of future work.

Fortunately, some experimental data” favor the hypothesis that triggering
is largely amplitude-dependent. In fact, in reference 7 some experiments are
reported on pulsing a linearly stable solid propellant rocket into instability
(more details will be given in Section 7.7). In particular, they change the
waveform of the initial pulse { series MSA 12 to 18 ). Consequently, the phase
relationships among different modes in the structure of the wavelorm vary.
changing the values of the "out-of-phase” components By(0), n =12, ete. The
authors conclude that the amplitude of the pulse is the principal factor involved
in triggering. Nevertheless, they pointed out that there may be some secondary
effects of the pulse waveform that need to be better understood and that
differences in waveform initially generated may be significant; generally, the

amplitude appears to be the dominant factor.

One direct consequence of neglecting the " out-of-phase” components is
that, for two modes, the number of nonlinear differential equations is reduced
to 2 instead of 4, thus making the discussion of the conditions for existence and

stability of the triggering limit easy to examine.
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7.4. Relationship between the form of the combustion response and triggering

The oscillatory motions found in solid propellant rocket motors have a
common feature; the motion depends mainly on some sort of coupling between
the motion and the propellant. The interaction mainly occurs in a very thin
layer near the propellant surface, Therefore, it is appropriate to represent the
interaction by an admittance function relating the combustion rate of the pro-

pellant to the pressure and velocity fluctuations.

One basic assumption in the analysis in Chapter 8 is that the boundary con-
ditions are linear. The nonlinearity represents only second order nonlinear gas-
dynamics. Here, we will assume that the boundary conditions are nonlinear;
numerical resuilts for this type of system are available for comparison. However,
the formalism is general and can represent many nonlinear processes in the
chamber, no matter what their origin. Only the nonlinearity of the combustion
response, along with the gasdynamics nonlinearity, will be accounted for. The
nonlinearity of the nozzle response can be incorporated without additional

difficulties.

In the following calculations, we will consider for comparison only cylindri-
cal solid propellant rockets with constant cross-section; the numerical results in

references 3 and 4 have been obtained only for this type of system.

We consider first a second order nonlinear pressure combustion response

of the form

—-P;-’—'—' ,u,p'}-b%%" (7.18)

where y; is the linear combustion response and b is an arbitrary coefficient. The

dimensionless equations for a simplified model of a one-dimensional cylindrical
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rocket motor { Figure 7.4 ), in dimensionless form, is

%E—+7pv ua+uVp =T (7.17)
p(%%—-i—u.Vu}w'- VP = _um (7.18)
iy it 8

Tp ? =1 (7.19)

where m is the mass burning rate, m = pgr with pg the propellant density, T is
the temperature, and u is the velocity. One notices that equation (7.19) does
not include the entropy change due to mass injection. The inclusion of the
entropy change in the energy equation (7.19) will change the right-hand side of

S
(7.17) from Trh to m. For a real evolution we have T p "» =1, where n, is the

polytropic exponent 1 < np < 7. For practical problems 7y =1.2; therefore
replacing n, by ¥ is not a serious error. The assumption of an isentropic evolu-

tion of the flow will facilitate the expansion.

In the expansion of the pressure, temperalure, and velocity in the normal

modes of the chamber and the use of Green’s theorem ( see Chapter 4, Section

4.6), the right-hand side of {(7.17) will enter as gt—( T 1 ) and the right-hand side

of (7.18) will enter as %{—( —um).

Expand now the pressure, temperature, and velecity,
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T=T+T, p=p+p, u=u+u

where T, § , U correspond to the steady state conditions. Writing the unsteady

pressure and velocity expansionss in two modes only:

p = m(t)coswx + 7p(t)cosRwx

_omlt) a(t)
4 = - —=sinwx — —sindwx ,
Y RYyw

as in Section 4.8, we now apply Green's theorem to Eqs. (7.17) and (7.18) to find

the system of equations for two nonlinear oscillators:

. . .. B
#y + ofm = [1lne + bz — .‘2‘&?2’?}1?72)

5 . 1 . 1. . 14 .
+ ch[g;nml = e — 5t E‘Wzﬂz] : (7.20)

.. . 1
#g + 40Png = [Rlye + b(HF - '2"592?7?)

5 . B . B8 , 3 .
+beg[ = Tmim + Tomfe + et Z‘f?z’nz] (7.21)

r
where ¢g = 4-&9—. with rq the steady state burning rate and dg the diameter of the
0

chamber; o is the dimensionless frequency; and [1]xe and [2]yc are the same as

those arising from the nonlinear gasdynamics given in Section 6.3. The
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influence of u, is included in the linear parts of [1]ye and [R]yg. The term cq

shows the presence of the mean flow velocity

U = X

However, we will find, by applying the method of time-averaging, that the

influence of T disappears. Assume that n; and 12 to have the forms

7 = A (U)sinwt, 7 = As(t)sin2et

and apply the method of time-averaging to find the following system of non-

linear ordinary differential equations

dA
L= ouA; - BiAiAg : (7.22)
dt
dAp
_dt—‘ = oghe + ﬂgAig (723)

where

-1 @ N
,G,—-bla,and,é’g bB ~

We see clearly that the influence of the steady state velocity has disappeared,

since there is no cgin (7.22) and (7.23).

The system (7.22)-(7.23) is a particular case of the system (7.2)-(7.3) How-
ever, for o; and ag both negative, we showed in the treatment of Eqs. (7.2) and

(7.3) in the last section that, for any 8, and 83, system (7.2)-(7.3) could not yield
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a stable non-trivial limit cycle. Therefore, the form (7.16) of the combustion

response cannot predict triggering.

We consider now a second order nonlinear pressure combustion response of

the form

i

where y, is the linear combustion response and b is an arbitrary coefficient. Fol-
lowing the same procedure leading to Eqs. (7.22) and (7.23), we find that no non-
linear contribution iz obtained. Therefore, this form of combustion response

may have little effect on the nonlinear behavior of the wave.

We now treat a second order nonlinear pressure combustion response of

the form

Moo +e | (7.24)

where ¢ is an arbitrary coefficient. This form may well represent a second order
nonlinear velocity coupling. The velocity coupling corresponds to the effects of
the component of flow velocity parallel to the propellant surface. In fact, from

the linear analysis in Chapter 3, Eq. (3.12), we have

du _ 1 8p

0x ¥ 0%

The absolute value corresponds to the basic characteristic of velocity coupling :
the burning response to velocity fluctuations is sensitive to the amplitude of

the velocity but unsensitive Lo its direction.
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We now reduce the system of equations (7.17)-(7.19), following the same
procedure leading to Egs. (7.22) and (7.23). The result is the following system of

equations for the amplitudes A; and Ap.

"a’t?l— = (XlAl - ‘QAIAZ + CIAIE (7.25)
dA
—&f— = opAg + BAR + CpAZ (7.28)
where
¢y = —ﬂfggwc(w}, Cp = —g—qz—wc(Za:) (7.27)
o O

where c, defined in (7.24), is assumed, for generality, to be frequency-dependent,
We see clearly that the absolute value is responsible for the presence of the gelf-
coupling terms A7 an:i cod$. Triggering, in the sense of a stable non-trivial
limit cycle is found. Unlike the result established in Chapter 6, Section 6.2, it
can be shown that the stability of the limit eycle depends also on the nonlinear
coefficients. In fact, Figure 7.5 shows the existence of triggering for a particular
set of coefficients oy, 0g, 8, and ¢;, with ¢z = 0. From this graph it is clearly seen
that for a small (0.05) initial disturbance the wave decays in time but for a large
(0.18) initial disturbance the wave grows toward a non-trivial limit cycle. If the
stability of the limit cycle were independent of ¢y, then the conclusion should
hold for c; = 0. However, for ¢, = 0, Egs. (7.25) and (7.28) reduce to Egs. (7.2)
and (7.3), for which no triggering, in the sense of a stable non-trivial limit cycle,
is possible. Therefore, for ¢; =0, the stable non-trivial limit cycle becomes

unstable. Consequently, stability of the limit cycle depends on the nonlinear
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coefficients.

The above discussion may explain some numerical results reported in
references 3 and 4. In fact, in reference 3 (p. 93), an approximate form is used
for the combustion response similar to the response given by (7.24). Triggering
in the sense of a non-trivial stable limit cycle seems to occur, although the con-
clusion is not shown in a clear way. In reference 4, the conservation equations
are integrated numerically and a combustion responsé similar to (7.24) is used

in the numerical scheme, Triggering is clearly shown to exist.

We treat now a third order analysis. Our purpose is to discuss the influence
of a third order combustion response on triggering. Assume that the response

has the form

. ap' . 'a ' an' 2
= Up + b1p +f1'—6‘%—+bgp2+fgp -6%—+h2(—a-%—, (7.28)

m'
pi

where by, f;, bs, f2, and hy are arbitrary coefficients. Following the same pro-

cedure leading to Egs. (7.22) and (7.23), we get

dA,

_az“: alAl - {)’IAIAZ + dIA? (729)
dA _
'Et’z' = oghs + BoAF + doARA, (7.30)

The coefficients 8; and 8, are dependent on both the nonlinear gasdynamics and
the nonlinear combustion response. The coefficients d, and dp depend only on
the nonlinear combustion response. Triggering dees occur. The stability of the

limit cycle depends on the nonlinear as well as on the linear coeflicients. Figure
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7.6 shows the existence of triggering for a particular set of ccefficients. The

triggering phenomenon here is quite similar to the one shown on Figure 7.5.

Also it is assumed that the phases, i.e. the B;, are not important. In Chapter
8, Section 8.1, it is shown that in the expansion to third order in the pressure

amplitude, the third order terms in the expansion of the nonlinear gasdynamics
term pug—:- contain only coupling terms between the A; and B;. Therefore,

neglecting the B; implies neglecting third order contributions of the nonlinear
gasdynamics. The effect of this assumption has not yet been assessed. One
direct result is that, for two modes, the number of nonlinear differential equa-
tions is reduced to 2, thus making the discussion of stability and existence of

triggering limit easy to handle.

From the above resulls, one concludes that triggering may also be due
mainly to the energy exchange among modes and to a third order nonlinear
pressure coupling. This result is important in the sense that an adegquate
representation of the pressure coupling alone may well predict triggering. How-

ever, in this case, the analysis should be extended to third order.

In the process of demonstrating that the form {7.28) leads to Egs. (7.29)
and {7.30), we have noticed in the calculations that-hg is the only important
coefficient among the coefficients of third order terms, since it leads to the third
order term cAS. later in the analysis, Section 7.4, hy will be found to be associ-
ated, for a specific form of burning rate, to the time-lag in the combustion

response,

It should emphasized that an expansion of the steady state burning rate
. ap'\*
r = ap” in the pressure amplitude can never vield a term of the form hy P Y.

This is an explanation why in reference 2 triggering is not predicted with a
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simple quasi-steady combustion response.

We now turn to the general formulation for a burning rate which can
predict triggering. In order to obtain a meodel which can represent some physi-
cal phenomenon, both velocity and pressure couplings should be present. We
expand the combustion response as follows

m' _ dp’_ 2 8p" 9p'\?
o pp + b1 At | +bgp™ + f2p 3t fhz( at) (7.31)

This form includes both pseudo second order nonlinear velocity coupling and

third order nonlinear pressure coupling. The nonlinear velocity coupling
c 8py . . .
p' | At | is not truly a second order because of the absolute value. Triggering

does ocecur. For one mode, conditions (7.11) should be satisfied. Therefore,
whether one mode is sufficient to predict triggering depends on the various
parameters in (7.30), i.e. on the model for the combustion response. The
coefficient hp is found to be the only imporiant coefficient among third order
term coefficients. Later in the analysis, hp will be found to be associated, for a

specific form of burning rate, with the time-lag in the combustion response.

To make the analysis directly applicable, we treat only triggering of pres-
sure oscillations in solid propellant rockets. However, the analysis yields results

which can be generalized to other systems.

A detailed formulation for triggering is presented below, From the conser-
vation equations of one-dimensional flow in solid propellant rocket motors, the
existence of triggering for pressure oscillations in combustion chambers is
proved. For a given set of parameters, one stable limit cycle is shown to exist.
The main reason for existence and stability is the equilibrium among velocity

coupling, nonlinear driving of the combustion { mostly due to the time lag
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between the pressure and the combustion response )}, and the energy exchange

among the acoustic modes of the chamber.

An application to some experimental results, reported in reference 7, will be
carried out in Section 7.8. Good prediction of the results is achieved. Then we

apply the analysis to some numerical solutions reported in reference 2.

Some forms of the burning rate proposed in earlier works lead to forms of
the combustion response postulated here as prerequisite for triggering. In the
theory of deflagration of solid propellant, a simple model8 relating the propel-
lant burning rate to the pressure is given by

r(©) = ro)(: + S TEE) (732)

where rq is the steady state burning rate: rp = ap™ with n the burning rate
exponent; ¥ is a constant having a value close to unity, dependent on the propel-
lant and the combustion model; and « is the thermal diffusivity of the solid pro-

pellant.

The choice of this expression for the burning rate is taken mainly because
of the simplicity in carrying out the expansion in the amplitude and still predict
triggering. Moreover, every term in expression (7.31) has some physical mean-
ing. Consequently, the coefficients of the expansion correspond tr; some physical

parameters.

It is true that the linear (AB) model? represents more faithfully the
combustion processes in the propeilant. In reference 9, a critical review of
different linear combustion responses is presented. In the following, we present

a short summary of the (A,B) model since we will need later in the analysis the
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time-lag deduced from the {A,B) model for comparison {Section 7.6 .) This model
produces the following relation between fluctuations of the burning rate and
pressure:

m’ nAB

—_— = (7.33)
P oA+ S -(1+a)+aB

where A and B are related to the propellant combustion parameters. Usually A
is in the fange of 10 and B in the range of 1 for practical propellants; see refer-
ence 9 for more details. The coefficient X here is a complex guantity and is the

root of the following equation
MA —-1) =10

where here (] = EC—;—-is the dimensionless frequency. With A = A+ iA® ) the roots
rg

of this equation become

Jd L 1lE
A = i+ 1+ 18077 +1]7 (7.34)
22
L
AQ = L {(1 + 180 z)é_ - 1}2 (7.35)
= = :
227

These results will be used in Section 7.6 to deduce an expression for the time-

lag. In fact, expression (7.33) can be written, for harmonic motion, as
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. . et — ﬂ‘)
mee'* = |up|poe*®e " =pge  ©

where |u,|e™* e~ ? is a simple expression for the right-hand side of (7.33), with
44p the amplitude and ¢ the phase of the complex response. Therefore, one may

define a time-lag by

=%
T= S (7.38)

However, when it comes to nonlinear burning rates, there is, so far as we
know, no simple nonlinear model other than (7.32). Model (7.32) gives, despite
its limitationsm, a simple means for predicting triggering, as we will see in the
next section. In the foilowing discussion, we will consider only the form (7.32)

for combustion response.

An imagi_nary part in the combustion res:ponse to pressure oscillaiions
represents a time-lag. Following a similar reasoning, a nonlinear combustion
model should reflect a similar behavior, i.e., the nonlinear combustion response
should reflect a time-lag. The time-lag concept in a combustion chamber was
first introduced by Crocco and Chengll for concentrated combustion and by
Chenglz for the specific problem of solid propellant rockets. Their attention was
focused on the abnormal pressure peaks in rockets and their analysis was solely
linear. To interpret triggering of pressure oscillations in liquid propellant rock-

ets, Sirignanol 3

used a shock wave model with a time-lag in the propellant
combustion. His analysis predicted triggering but did not give either the thres-
hold value or the final amplitude. Recognizing these shortcomings, }\/Ii’cchell“r
calculated numerically the final amplitude, after tedious algebraic manipula-

tions. It is difficult to interpret the relative importance of the different physical
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processes. The point here is to present a model which can be used to predict, in

a simple way, both the threshold and the final amplitudes.

Tt is true that including a time-lag introduces an imaginary part in the
combustion response and, therefore, neglecting the "out-of-phase"” components,
as we have done in the last section, becomes inconsistent. In the following cal-
culations, we will show the point. Assume, for simplicity, that m = ap™(t =1

writem =mg + m' and p = 1 + p', to find, by linearization,

f - L _a_E'__']
m' = anf[p T

Using this expression on the right-hand sides of the conservation equations
(7.17) and (7.18) and applying successively Green’s theorem and the method of
time-averaging (see Section 4.8) give the following contribution of the time-lag T
to the behavior in time of the "out-of-phase” component B; of the fundamental

acoustic mode ;

dBl _ 1 2
T -z—am'w Ay

where A, is the 'in-phase " component of the first mode. Since in the frame of
our analysis in this chapter A, is takeﬁ into account:and B, is not, we see clearly
some inconsistency in introducing a time-lag. However, we still keep our
hypothesis that the the "out-of-phase” components are not impertant for stabil-

ity, mainly because of the justifications given in Section 7.3.

We are looking for a combustion response of the form (7.31), since this

form can predict triggering. The following representation of the burning rate
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r(t) = re{t = (1 + +glul) (7.37)

yields, after expansion in the pressure amplitude, the desired form (7.31). The

term g |u'| may represent velocity coupling with g an arbitrary coefficient. This

is similar to c| %%—I in form (7.24).

Following the same analysis leading to Eqgs. (7.22) and (7.23) and taking into
account the results (7.25)-(7.26) and (7.29)-(7.30), we get

dA,

= Al — FAAs + G1A? + c”Af + d10PA A% (7.38a)
dAs
—d'—N" = OigAg + ﬁAlz -+ GzAga + Cg&?zAS + dngAle.g (738b)

The details are presented in Appendix 7A. Here, only the coefficient 5 represents
the nonlinear gasdynamics. The coeflicients c¢;, d;, 1 = 1,2, are functions of ratio
v of the specific heats, the burning rate exponent n, and the area ratio and they
are proportional to the coefficient hy in (7.30). Moreover, the coefficient ¢, is

found in Appendix 7A, Eq. (A.9) to be positive. Since «; is negative for a linearly

C .
stable systern, -&-1— is negative. Therefore, conditions (7.11) are not satisfied for
1

the first mode. However, as we will see in the applications, the coupling between
A; and Ap will allow triggering {o occur, The conclusion here is that, for solid pro-
pellant rockets and with the model (7.3R) for the combustion response, we need

at least two modes to predict triggering.
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The coefficient hs is found in Appendix 7A, by expanding the burning rate
expression in the pressure amplitude, to be proportional to the time-lag 7. The
coefficients G, and G, represent either nonlinear particle losses, as we have seen
in the analysis leading to Eqs. (7.14)-(7.15) in Section 7.2, or velocity coupling, as
we have seen in the analysis leading to Eqgs. (7.25)-(7.28). In the case of velocity
coupling, the ceefficients G, and Gz are similar to ¢; and ¢z in (7.27}. In the case

of particle damping, Jensen and Beckstead® give the following expressions :

1

— 3.2
2 d I 2 WY Ty
Gy = — —em—( L), L (7.39)
3 oy L
(1 + 3em)®

and Gg = 8G;. The parameters in (7.39) are defined as follows. p is the mean flow

density; P is the mean flow pressure; & is the gas viscosity; d is the particle diam-

eter; e = —_p—. with py, is the particle density per unit volume of the mixture; ¥y’ is
D
Cp + cle
the effective heat ratio for the mixture and defined by ' = ———L with Cp
Pp
C‘_, + C —_
e

Cy, and C respectively the heat capacity of the gas at constant pressure, the
heat capacity of the gas at constant volume, and the heat capacity of the parti-

cle; Tg is the relaxation time due to particle attenuation and is defined by

- Ppmdz

To 18

. with ppm the density of the particulate material per unit volume of

particles. Appendix 7A contains the details of the calculation leading to Egs.

(7.38), along with the details for the expressions of ¢;and d;, i = 1.2,



7.5. Determination of the limit cycle
In the following calculations we determine the limit cycle for pressure
oscillations with a combustion response of the general form (7.31). In the limit

cycle, Egs. (7.38) become

C{]_A]_ —6A1Ag + GlAj? + 010}21"\;? + d.lﬁ)gAlﬁgz =0. (?.40&)

cohs + BAZ + GoAf + cow®Ad + dae®AfA; = 0 (7.40b)

The last equation gives

2 2413
Af - et {XgAg - GgAz — Cold Ag (74—1)
B + datAg

Equations (7.40a) and (7.41) then yield

vO + egy® + 7t FegyS + eyt ey +ep =0 (7.42)
where y = Az and e; are functions of the different parameters in Egs. (7.38), given
by the following expressions :

eg = 68, ey = 2656, + 0fGE

ep = 62 + 2800, + + GF(BGs + cpdot®)



- 236 -

ez = 20g03 + 20162 + G%(Cgﬁwz + dgGgC«)z)
ey = 05 + 26,05 + + GFloadaw?)
5 = 26263, € = 532

where

8o = ouff

6; = oydae® — 8% — ¢ 007

62 = - ﬁdng - chng + !edlﬁ)z
83 = (didg — ¢;cz)0*

The different limit cycles are found by solving Eq. (7.4R). The acceptable solu-
tions are the real roots of {7.42) which give a positive value to the right-hand

side of Eq. (7.41).

The stability of a given solution {A,9.A20) is handled by linearizing the sys-
tem (7.38) near this solution and by calculating the eigenvalues of the obtained
linear system, as we have done before in Chapter 8, Section 8.3, for two and

three oscillators.
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7.6. Comparison with some experimental resuits

In order to show that the above theory can indeed predict triggering, Equa-
tions (7.38) are first applied to the series MSA-19 to 26 of the experiments
reported in reference 7 on triggering phenomenon in subscale solid propellant
motors, shown on Figure 7.7a. In these experiments, a smokeless cylindrical
solid propellant rocket motor was pulsed into instability and both the threshold
value and the final amplitude were recorded. No solid particles were present in

the flow; thus the coefficients G; and G may represent only velocity coupling.

Figure 7.7b shows the numerical integration of Eqgs. (7.38) for a particular
set of experiments in reference 7. It is clearly seen from this figure that trigger-
ing can indeed be predicted. A stable non-trivial limit cycle is reached for the
pressure oscillations in a linearly stable (&, and ap are negative } system. The
values of the parameters shown on Figure 7.7a are chosen such that the limit
cycle amplitude is close to the experimental one. G, is taken to be positive (
driving term ) and Gp to be negative ( damping term }. It is worth noticing here
that the value 2.107%s of the time-lag used in the comparison lies well in the
range of values of time-lag reported in reference 12. For comparison, the value
of the time-lag given by expression (7.38) from the (A,B) model, where the values
of A and B are respectively 11.5 and 0.88 { given in reference 7 ), is approxi-
mately 7.1075s. This is in the same range as 2.107%s. The values -1.0 and -50.0 for
n; and oz lie in the practical range of linear decay rates. No physical explana-
tion has been found for the coefficients G; and Gy apart from the asscciation

with velocity coupling.

It is essential to notice that Eq. (7.42) has in general six roots. Conse-
quently, we have, in general, six different limit cycles. From the numerical solu-
tion of (7.42) for the set of values shown on Figure 7.7a, we get four different

limit cycles, two roots being complex quantities. However, we see from Figure
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7.7 b that for quite different initial disturbances, C.07 and 0.13, the wave ulti-
mately reaches the same limit cycle. This suggests that a stable non-trivial

limit cvele may be unigue.

The parametric study of‘ thec triggering phenomenon is carried out by
varying the values of the parameters o, g, 7, Gy, and Gp. Over one thousand
sets of values for these ?afameters are taken. For each set the roots of Eq.
(7.42) are calculated using a numerical routine. The stability is then examined
by linearizing Egs. (7.38) near the limit cycle. It is found that triggering is very
sensitive to the decay rate o, of the first mode. The lower is the value j¢, |, the
higher is the limit cycle amplitude. If both G; and Gg vanish, then the triggerin
phenomenon disappears. Also from the parametric study, we have found that
always the stable limit cycle is unique. This is found for a wide range of the
parameters. For a given sel of parameters, many limit cycles can exist but at

most one is stable.

Figure 7.7c shows the triggering threshold, When the initial pulse amplitude
is below a certain value the wave decays. The low value of 0.004 represents the
initial rate of change of the pressure and not the pulse amplitude. The ampli-
tude of the pulse is deduced from the geometry, the location of the pulser, and
the duration of the pulse. For practical pulsers, this rate corresponds, as it is

the case in this application, to approximately 8% of the mean pressure.
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Table 7.1. Comparison beiween Our Analysis and Experimental Results of Ref. 7

Iy

Analysis | Experiment Ref. 7 | ErrorZ%

Limiting Amplitude 0.106 0.122 14%
Pulse Amplitude (psi) 86.8 108. 19.6%2

Table 7.1 shows a comparison between the theoretical and the experimental
results. The theory seems to predict well both the limit cycle amplitude anc
trigzering threshold. of velocity coupling if we include the nonlinear particle

losses.

7.7. Comparison with some numerical zointions

[n reference 2, a numerical integration of the conservaiion equations in a
one-dimensicenal solid propeﬂant rocket is reported. In that work, the combus-
tion medel used did not include velocity coupling. However, particle attenuation
was accounted for. The point here is not to apply exactly our analysis te the par-
ticular problem treated in 2 but rather to show that cur model can predict
trigoering in the absence of velocity coupling if we include the nonlinear particle

losses.

FEquations (7.38) are applied to the case of the cylindrical rocket shown in

Figure 7.8. In this case, both G; and G, are negative. They correspond, as we have

.39), to nonlinear particle losses, with Gs = 8Gy.
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In Figure 7.9, it is clearly seen that triggering can indeed be predicted
without the inclusion of velocity couplinz. A stable limit cycle, as before, Is
unique. Figure 7.10 shows the time history for an initial pulse just below the
triggering threshoid for pressure oscillations. Figure 7.11 shows the sensitivity
of trisgering to the decay rate o, of the first mode. In this figure, all the parame-
ters in Figure 7.8 remain the same except that o, has now the value of -3 instead
of -1, Bven for a very large initial disturbance of 0.25, the wave decays in time.
This suggests that triggering may not occur if «; is above a certain value. Since
o, is highly sensitive to the ratio of the cross-section area of the chamber to the
propellant area, there may be a limit of this ratic above which no triggering can

Qccur.

7.8. Concluding remarks

In this chapter we presented a general formalism for triggering of pressure
oscillations in combustion chambers. A second order model for the nonlinear
processes in the chamber may indeed predict iriggering if two conditions are
met

a) The model incorporates a process representing a coupling of a mode with
itsell

b) The analysis includes at least two modes.

A third order analysis can predict triggering without a second order seli-
coupling of the mode with itself. To predict triggering, two conditions must be
satisfied |

a) There is a third order self-coupling

b) The analysis includes at least two modes.

1

Both features disagree completely with the classical results of one-dagree ©
freedem analysis. The multi-degree of freedom systems do indeed show some

peculiar eflects not known for the one-degree of frecdom systems.
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Significantly for applications, we identified some global mechanisms

invelved In triggering. For example, the mechanism producing a term having the
. . 0o’
form p'| —-t——' in the vicinity of the propellant surface may indeed be a major
o

.

ource for triggering. The same can be said about the mechanism preducing a

w

term. On the other hand, a mechanism producing terms proporticnal
is very likely to have no effects on triggering. A mechanism producing
p—= 6 probably has very little effect on triggering. These results will help, fe

example, refine modeling the boundary layer near the surface of the propellant
to identify new mechanisms responsible for triggering. This approach should be

investigated. If these mechanisms can be associated with some physical

1y

phenomena, then the resuits will largely enhance our physical understanding o

the triggering phenomenon.

We have also proposed a practical formulation for prediction of triggerin

g

in combustion chambers. The analysis was bas2d on a nonlinear model of the
combustion response to pressure oscillations, The effects of the energy
exchange among modes, velocity coupling, pressure coupling, and nonlinear par-
ticle attenuation were shown in detail. The model was applied to the particular

case of solid propellant rocket motors. Good prediction of experimental results

and good agreement with numerical solutions were achieved.

We have shown also that it is of fundamental importance tAo include the "
ut-of-phase " components for an accurate stability analysis. In fact, the majer
wealtness of the analysis presented in this chapter is the omission of the " out-
of-phase " components. The inclusion of these components should vield unambi-
guous results for the occurence of triggering. This will be the subject of future

worl,
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EQUATIONS FCR THE LiMIT CYCLES

In this appendix, we will show in detail how to get Eqs. (7.38) for the limit
cycles, following model (7.32) for the combustion response. We start with the

formulation of the transient burning rate of solid propellant

’,\!/ © drg(t - T)

rit) = rolt — {1 +
\“‘) 0( )\ fg{t _ T) dt

)

—~
*
4
s
~t

where ry = ap” is the steady state burning rate. With dimensionless variables, a

simplified setl of conservaticn equations in a rocket motor is

g?+7pv u+uVp=Tm (A.2)

o Vo . -

(—;E—-r-u.V“)+--———7A = —um (A.3)
i Sl

Tp 4 =1 (AA.\

where m is the mass burning rate, m = pgr with p, the propellant density, T is
the temperature, and u is the velocity. Notice that equation (A.4) does not
inciude the entropy change due to mass injection. The inciusion of the entropy

change in the energy equation (A.4) will change the right-hand side of {A.2) from

m to m. I'or a real evolution we have T p > =1, where n, is the polytropic
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exponent 1 < n; < 7. For practical problems 7 = 1.2, therefore replacing n, by 7
is believed not to be a serious error. The assumption of an isentropic evolution
of the flow will facilitate the expansion.

In the expansion of the pressure, temperature, and velocity in the normal
modes of the chamber and the use of Green’s theorem ( see Chapter 4, Section

4.8), the right-hand side of {A.2) will enter as —aqt—( T 1 ) and the right-hand side

of (A.3) will enter aséa;( -urm).

First, we will deal with the unsteady term - . Vrite
ré(t -y 4t
8 . 3 v dret - 7) -
Nl s o Vo= =0 [ S S Y 4 ; 31 (A =N
at\ 1 Il ] at LTpSrC\t T/\l + ré(t —T> dt I t‘A;.u}
5} P . J - . W drg(t - T\ -
——{—um)= — — oyt — 7)1 + = =] (A.8)

ax ax gt —7)  dt

expand the pressure, temperature, and velocity,

T=T+T, p=p+p, u=d+u

where T, B, U correspond to the steady state conditions

b i drg(t — 1)

in the pressure
rs(t —7) dt

Expansion of the unsteady term
D2
ampiitude, with ro = ap®, shows easily that the coefficient of p'{ 5t } is alwavs

(o}

preporticnal to 7. This means that the coefficient hp in Eq. (7.31) is proporticnal

to 7 This remark is used at the end of Secticn 7.5.



- 250 -

. , N - . 8. . R
We now write the unsteady pressure and velocity expansions™ in iwo modes

p =m(t)coswx + Ma(t)cosRwx

c_oomy Mot}
= — —sinowx - —sindw¥,
v )

We now apply Green's theorem to Egs. {A.2) and {A.3), as we have done in the

analysis leading to Egs. {7.22) and (7.23) in Section 7.4, to obtain two equations

for two nonlinear oscillators, one oscillator for each mode. The details of th

Lo £

[§M

resuits at this step are very lengthy. Only the final results, following applicaticn
of the method of time-averaging will be shown in detail. To this system of equa-
tions for nonlinear oscillators we apply the method of time-averaging after

expanding 1, and 7, as follows

7, = A {t)sinwt, 7 = Ag(t)sinlwt

This leads to the following system of nonlinear ordinary differential equations

da,

5 A — BA A, + ¢ 0fAT + d,0”A AR (A.7)
dA;
o= dede + BAT + caePAd + dawPAlA, (A.3)

where
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cy = EV-I + 1},\]1]' Cg = [Vg + .W‘g]

with

H

- 2 + 1) P S 4k
v, —~7r(n = 1).8[ =¢ Ts—k'i‘bm( )]

W, = E‘}{T( 2=l 1) —(a+ 1)n+ 2))

1y~ m+1Mn+2) -1, .
_37/:_ e 4 o+ 1\n+ 1 }
\7 72 o v /
8,3 1 - 1 s
— = + ——=in(Bké)+ - sin(4k
grat F g oin(REE T —psin(ekd)]
_ .’.2 y g 8 l £ 1 i (Bk )1
Vz - - - ’\n v “')’ [dr‘; Ssz ”‘q\ é J

i -1 + 1\ n -+ ?\, v -1
- 27(-;-7~2 (o ~,:2('1 L= (n + 1))
'_Pi_l' lt 4 ——-13-——3'111(4—k£>+ ——E——gin(‘ka:)]
34 a4kl SRkl

On the other hand d, and d; are given by
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d; = 7 n+1)—(n+ n+2)
g 1y —=1 n+ {n=2)  ~-1,
- ST - + - +1
2 \7/ "/‘: 2 7} \n )}
4{ Ls ;=3 sin(RkE)+ L in{4ké)+ L sin{8k£)]
L2 T BkL YT B 24kl 5/
~y 1
d, = ——l-é—w(j—/———'n +1) = (n+ 1)(n + 2))
1 v =1 { 1¥Mn + -1
B Untd) . o+ 1)
.4(—1—5 2 sin(Zké)+ ——1-——5111’(4"5)-5- L sin{Bk¢£)]
“2° " BKL > BKkL 24kl g

where £ is the length of the propeilant. For the case presented on Figure 7.7a we

have

c; = 0.03068708YT, cp = — 0.1004227%T, d; = 0.8049125%T, dy = 0.605345y+

Since ¥ and 7 are positive, ¢y is positive and condition (7.11) in Chapter 7 cannot

o

¢ satisfied for one mode. The treatment of two modes is therefore necessary.

Kemaric: The expansion of the steady state term rg(t — 1) should, in
o

eral, be taken into account. However, for practical values of the burning rate

exponent 2, the heat ratio 7, and heat diffisuvity «, it can be shown that this
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contributicn is negligible compared to the contribution of the unsteady term.
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Chapter 8

THIRD ORDER ACOUSTICS

Third order acoustics has long been the object of investigation. For appli-
cation to liquid propellant rocket motors, Zinnl predicted triggering gqualiia-
tively by extending the expansion of the conservation equations to third order
in the amplitude. Using an expansion in the normal modes of the acoustic field,
Powell2 treated the problem of third order acoustics for the case of radial and
tangential acoustic modes in liquid propellant rockets. Culick3 enco%,ered
difficulties when he attempted to extend the perturbation-averaging method to

third order.

In this chapter, we deal with only pure longitudinal modes. Our purpose is
first, to justify some simplifications taken in the last chapter, mainly the omis-
sion of the third order nonlinear gasdynamics; second, to extend the
asymptotic-perturbation method presented in chapter 4 to higher orders in the
amplitude; and third, to discuss the applicability of the perturbation-averaging

and asymptotic-perturbation methods to the problem of triggering.

We compare in this chapter the application of the perturbation-averaging
and asymptotic-perturbation methods to the problem of triggering. The expan-
sion of the conservation equations is carried to third order in the amplitude of
the wave. We concentrate here mainly on the nonlinearity arising from the gas-

dynamics within the volume of the chamber.

In Chapter 3, Section 3.3, we compared the two methods in the solution,
to third order in the amplitude, of a single nonlinear hyperbolic equation. We

found that for that equation it was advantageous to use the asymptotic-
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perturbation method. Especially, we pointed out that the influence of the second
order d.c. shift on the first and the second moede was difficult to incorporate
using the perturbation-averaging technique. A similar situation will be found in

this chapter regarding the conservations equations in combustion chambers.

In Chapters 4 to 6, we expanded the conservation equations to second
order in the amplitude, using the two methods of expansion. We found that the
two methods yielded the same results regarding amplitude and conditions for
existence and stability of limit cycles. However, in Chapter 7 we showed that the
second order analysis, with nonlinearity arising only from the gasdynamics, was
incapable of predicting triggering. We extended the analysis there to third order
in the amplitude using the perturbation-averaging method. However, as we
pointed out there, we neglected the contribution of third order noniinear gas-
dynamics. Only the third order nonlinear boundary conditicns were taken into
account. In this chapter, Section 8.1, we will treat this contribution and justify
the approximation made in Chapter 7, Section 7.3, regarding the omission of the
third order acoustics when the "out-of-phase” components are neglected. We will
also compare the coﬁtributions of the third order acoustics arising respectively

from the gasdynamics and the nonlinear boundary conditions.

In Chapters 4 and 5, we applied the asymptotic-perturbation method to the
conservation equations for the case of pure longitudinal modes, However, we
limited the expansion there to second order in the amplitude. The nonlinearity
arose only from the nonlinear gasdynamics. We found from Eq. (4.26) that a
non-trivial limit cycle could not exist if the system is linearly stable. Therefore,
the triggering phenomenon could not be explained within that analysis. In this
chapter, Section 8.2, we extend the formal expansion to any order in the wave
amplitude and in the average Mach number of the mean flow. However, we carry

out the calculations in detail only for the third order acousties arising from the
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gasdynamics. We will show that this method, unlike the perturbation-averaging
method, is capable of incorporating the full contribution of the third order
nonlinear gasdynamics. In particular, the effects of the second order d.c. ghift
on the acoustic modes are taken into account. This is an extension of the con-

clusion reached in Chapter 3, Section 3.3.

The triggering phenomenon is discussed in Section 8.2.3, using the
asymptotic-perturbation method. We will show in that section how to determine

the limit cycles and how to study the stability of a given limit cycle.

Finally, a comparison between the perturbation-averaging and asymptotic-
perturbation methods regarding the prediction of triggering is carried out in

Section 8.3. Some conclusions as to when to use each method are drawn.

8.1. Third order acoustics: Perturbation-averaging technique

In this section, we apply the perturbation-averaging technique to study the
third order acoustics. We concentrate on the nonlinearity arising from gas-
dynamics. We limit the discussion to pure nonlinear acoustics with no mean
flow, since our main objective in this section is to determine the influences of

the third order acoustics. The conservation equations are

%}——!—'}'pv L+uVp=0

W, ouys TP .
ol ot +u.vuw)+ > =0

pp 7=

Expand the pressure, velocity, and density as follows
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p=l+sep',u=t0+eu ,p=1+gp

In the conservation equations, the only obvious third order term is

pu.vuw (8.1)

All the other terms are of second order or less. However, there are other third

order terms. In fact, the expansion of the isentropic relation -E?-= 1 in the pres-
p

sure amplitude yields

= By Lol gypey et
pr= o+ (o= p

Therefore, second order terms like p' %%— include third order terms which should

be included in the analysis.. However, the contribution of :;L'I—{‘g;—— 1)p® s
shown?® to be very small compared to p'u'.V u' for v < 1.2, and that the smaller ¥
is, the smaller the contribution is. The exact relationship between p and p is
generally of the form

where 1 < n< 7y, n being the polytropic exponent. Consequently, the actual

correction is even smaller than expected. Therefore, the third order contribu-

tion from p' %%— will not be included in the analysis in this section.
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Moreover, a full treatment of the third order nonlinear gasdynamics
should include the effects of the steady state shift ( d.c shift ). In fact, a cou-
pling between the first order terms and the second order steady state shift
terms produces third erder terms. However, it is very difficult to include such
effects using the expansion in the normal modes. This is the main reason why it
is more accurate to use the asymptotic-perturbation technique when the order

of perturbation exceeds 2. This is the subject of the next section.

8.1.1. FEzpansion of the third order acousfics . In this section, only the
term (B.1) will be considered. By applying Green’s theorem ( Chapter 4, Section
4.8 ) to the conservation equations, the term (8.1) is represented by a term of

the form

¥ SV 4 (pu' Y w)dv (8.2)

where ¥, is a normal mode of the chamber. We limit the expansion in the nor-

mal modes of the chamber to three,

p' = m(t)coswx + 7Mp(t)cosBwx + 7ma(t)cos3wx

L mt) () Aalt)
1 = — ——=sginwy — —sinlwyx - ——sin3wx
Y@ 2yw Syw

(8.3)

Now the application of Green’s theorem yieilds the following contribution

of the term (B.1) to the system of nonlinear oscillators for the 7;(t), i = 1,2,3. For
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the first oscillator, we have

%1 + wPn; = First and Second order terms + F{® (8.4)
where
PO = = Loniidn + amis — g — — e — ——sngieh
1 872 i -8’)’2113 24?2 117351 472,=..12 1672 271273

1 .. 1 ., 1 .. 1 ..
+ St + —{y‘g‘f]s??l?h - “y—g'f}s’i‘?z??s = 5NNz

R4y? 8 8 187y*?
For the second oscillator, we get
B2 + wine = First and Second order terms + F{9 (8.5)
‘where
Fés)--l ..+1 s 1 > . 1 ..
= ZF’?WZ’UI éfy?‘??l’f?z'fis 'i‘z';g‘ﬁl'f"}sﬂz o 7273
— ez — —meaty = ~ et + —g s — — s
872 22" Wznsm v 32 5;5‘?73;2 1 WB 273
and finally, for the third oscillator, we obtain
%3 + w§ns = First and Second order terms + e (8.8)

where
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F§) . 1
o Y e .
3y 872 Mt _—l 677 M MeTe

1 1
— + -
""—‘1 272 ™M™ 5—77?72?71"72
= I laflay — — ey — Tttt
16’}’2 2RI 1272 2113712 24:72 3713713

We will now apply the Method of Averaging ( see Chapter 4, Section 4.8 for
details) to equations (8.4)-(8.8). Expand #;(t) in the usual form

(L) = As{t)sines(t) + Bi(t)cosewy(t)

After lengthy calculations, with the use of the method of averaging described in

Section 4.8, the following system of ordinary differential equations is obtained :

da,

I First and Second order terms (8.7)

+ 6 — By(A} + BY) — Ba(A? - BF) - Ba(Af — BY) + 2A,B1A5 + 2A,BoAg]

dB,

T First and Second order terms (8.8)

+6[ + Ay(Af + Bf) +A5(Af - BF) — Bs(A§ ~ BE) + 2A,B,Bs — 2A;B,B;]
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—éf—- = First and Second order terms (8.9)

+ 0] 4 Bg(A1Az + ByBp) + 4 Ag(AgB; — BeA;) —2 Bg(Af + BE)]

dB

—a—tz— = First and Second order terms | (8.10)

+ 6] — 4A5(AA; + B1Bg) + 4 Ba(AgB; — BaA;) + 2 A;(AZ + BY)]

-d—:- = First and Second orderterms (8.11)

+6[ By( ~3A% +Bf) —3B,(A% - BE) +6 A;A.B, — 3 Bs(Af + B8]

dBs

ek First and Second order terms (8.1R)

+6[ A;( =3 Bf + Af) + 3 A,(Af — BE) + 6 B1AB; ~ 3 Ag(A§ + BS)].

The new parameter arising with the third order term is § = The first and

2%
second order terms are the same as those given by Egs. (6.2) and (8.3) in

Chapter 6.

B.1.2. Applicution fo iriggering . It is clearly seen from this system that

the third order nonlinearity presented here consists in coupling among the A;
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and the B;. Neglecting the phases, i.e. neglecting the B;, implies neglecting the
third order nonlinear gasdynamics term pu'.V u'. This is the reason why we did
not include the contribution of the third order acoustics arising from the gas-

dynamics in the analysis presented in Chapter 7.

It is interesting to notice, from Eqgs. (8.7)-(8.12), that there are no self-
coupling terms, either to second order or to third order, due to the nonlinear
gasdynamics. However, from the discussion following Eqs. (7.14)-(7.15) and
(7.29)-(7.30), we found that such features were very likely to be essential in
causing triggering. Consequently, the third order acoustics arising from the gas-
dynamics may not produce triggering. We found from Section 7.3 that the non-
linear boundary conditions might yield self-coupling terms, and, therefore, may
cause triggering. For a volumetric process to cause triggering, the only require-
ment seems to be that the structure of the process possess some terms similar
to those given by expressions (7.24) and (7.28). The nonlinear gasdynamics does
not satisfy these requirements and, therefore, may not contribute, by itself, to

triggering.

However, as we mentioned in Chapter 7, Section 7.3, the "out-of-phase” com-
ponents may influence the stability of the limit cycle. The third order contribu-
tion of the gasdynamics may infiuence the stability of the limit cycle by chang-
ing the phase relationships among modes. This will be the subject of future

work.

In the following calculations, we will establish how the energy of the wave

dA;
may change due to the influence of the: gasdynamics. Multiply —a—tl— by Ay and

dB; | ]
kel B; in Egs. (B.7)-(8.12), and add the results to find
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1

—B—E%-[rf +rf +r8] = yrf + oprf + agré + ordrasin(y — 3uv;) (8.13)

where A; = ricosy; and B; = rysiny;,

Eq. (8.13) implies that initially the energy of the wave may increase if the
right-hand side of (B.13) becomes positive. However, this does not necessarily
mean that triggering occurs. To check the possibility of triggering, Egs. (B.7)-
(B.1R) have been integrated numerically for over a thousand sets of values of oy,
%z, 03, and 4. For a given set, the initial conditions have been varied in such a
way that the right-hand side of (8.13) becomes positive. Despite an initial
growth, the wave always decays in time to zero. From a physical point of view,
this can be interpreted as follows. The nonlinear gasdynamics treated here
serves only as a means of transfer of energy among modes. It does not contri-
bute to the growth or decay of the wave. The initial growth of the wave, sug-
gested by Eq. (8.13), may be due to incomplete representation of the third order
acoustics arising from the nonlinear conservation equations, mainly the
absence of the effects of second order d.c. shift on the acoustic modes. This is a

reason for using the asymptotic-perturbation method in the next section.

8.2. Third crder acoustics: Asymptotie-perturbation technique

In this section, we extend the analysis presented in Chapter 5, Section 5.3,
to higher order in the wave amplitude and to any number of modes. To show the
generality of the approach, we include the effects of the average Mach number of
the mean flow. The direct application is the determination of the third order

acoustics arising from the gasdynamics.

B.2.1. General formulation of the eTPONSION |
In this section we extend the expansion presented in Section 5.3 to higher order

in the pressure amplitude using the asymptotic-perturbation technique. To save
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space, we show in detail the expansion of the pressure alone

p=1+fpoz+  +&(Pioa+MPr1a +...) 5"
+5( 6p102 egagén(mt +pprg + o ) eFIEE
+&( 6{pros ezagénu)t +pprg ) K+ 4
+ &%( paoo + 4Pz1o * )

+ e%( pagy + MPz1 ¥ yelKY

+ 62 ( 6paoz ezagéa(mt A

+ 2 ( 68pgo eﬁﬂtgée)(ﬂ-)t t upagg + - ) €K (5.14)
+ &% paoy + Upsry + - el KY

+ &3 ( 6§37pso;z Greedm)t ppars + - - ) eRiKt

3) .
+ &% ( 68%paga emgfg (wit upgiz + - )ikt 4+ o e
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The coefficients gf?, gf%, etc., are introduced to resolve the multiple deter-
mination of Ky, Kyz. ete., as we have discussed earlier in Chapter 5, Section 5.3.
Gathering terms in £fue™ in the conservation equations and application of
Green’s theorem, leads to an expression for X;;. Another expression is obtained
by equating the coefficients of £*ue®¥t In the absence of gi?,. we are faced with
generally two different values for the same coefficient, and the expansion
breaks down. A similar situation exists for K;z. In general, the introduction of

g™ (1) allows the single determination of X, _ im =284 ...,andm,n=123,....

The introduction of 5&2). 6&2)‘, ete., allows unique determination of Ksq. In
fact, collecting terms in £u%* yields a relationship betwee Kyy and 642
Another relationship is obtained by equating the terms in £5u%e®®, The
coefficients Kzq and 5é2) are therefore unigquely determined. A similar situation
exists for 4% in the determination of Kzp. In general, the introduction of c‘ij(n)

allows the single determination. of Kyg.

The effects of the d.c shift terms pgop and uggg on the acoustic modes will
be included when we deal with the third order acousticas, mainly Eqgs. (B.21) and

(B.22). Moreover, the effects of the mean flow are easily incorporated to any

order.

More concisely, the expansion (8.14) can be written in the following form

o 50 o r (Il) L
- .2 o ng it | ; .
P=1+ 3 ™poam + 2, % &6 ppae 2+ Y uTpima| e + e,
m=1 I=1n=0 | m=1

where 6™ = 1 and g™ =0 forn = 0,1. Simnilarly, the expansions of the density

and velocity are respectively



- RB7 -

0 =0 o f (11) oo .
p=1+ Y wpgom + 3, ¥ sliﬁlfn’,olo.nengl W 4 S o] 6P 4 coe,

m=1 I=1n=0 m=1 ]

oo o0 r (Il} Ed . )
u=pud+ y ¥ 9[61(n)u10'neng1 G 3 w4yl @™+ e,
=1

For u = 0, this expansion reduces simply to that of the pure acoustics problem

with no mean flow.

This expansion will be applied in the next section to the determination of
the contribution of the nonlinear gasdynamics. A discussion of the use of the
results to examine triggering of pressure oscillations in combustion chambers

will follow.

B8.2.2. Deferminaiion of the third order ncoustics .
In Chapter 5, Section 5.3, we carried the calculations to second order in the
wave amplitude and determined an expression for the coefficient K0 in the
expansion of the complex frequency K in the asymptotic amplitude, In this sec-
tion, we will carry the calculations to third order in the wave amplitude and we
will show in detail the steps necessary to determine Kgy. The results will be

applied to study triggering of pressure oscillations in combustion chambers.

For simplicity, we limit the expansion (8.14) to two modes oniy, First, we
determine the coefficient gé}) because it will be needed later in the analysis {
Egs. (B.19)-(B.20) ) leading to the determination of K. To determine gdl, we
equate the coefficients of sue® Xt in the conservation equations. By doing so, we

get
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2 KooP122 + 7 V. taze = ( — 2(iKoy + odVefd ) 112
+ ( — 2( iKop + afVedl) + afdefd) pige 65V (8.15)
+(=7Pn2V.0-T.Y pyg) +{ -7 po2 ¥V Uyoz ~ Uygz -V Pog)diY

v
R iKpouypg + ——pyl_g'z‘: (B( —iKp; + + afPeii)piis

+2( —iKoz + + afledl + afPeld)p1o208Y (8.16)
= YUz VT —TW.Vuy; 5 — RiKgpPgalyoz 08t

Following the same technique leading to Eq. (5.11) in Chapter 5, we find a rela-
tionship between Ky and gfl), the coefficients gi¥) and 6§V being already deter-
mined in Chapter 4, Section 4.4. However, Koz is determined by equating the
coefficients of sue'Xt as we have done in Chapter 4, Section 4.3. Consequently,

g8l is set uniquely.

Second, we determine gé'%), since it will be needed later in the analysis ( Egs.
(B.21)-(B.24)) to calculate Kyg. The determination of gi?) is based on the unique-
20

ness of Ky;. In fact, collecting coefficients proportional to efue! Xt yields

KooPz1,1 + 7 V. gy = —iK11p1o,; — iKioP11g — iKp1Pzo,1
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— ¥P201V .0 — WYV pag1 — ¥6Vp 102V Uiy
— 65y 1.V prog — 784p1147 Uigp — 66102.Y P11

= —iKyip1oa + Wy (8.17)

Peia
) Pei1 _ . , "
iKooug:,; + V ' iK1 — iKjguyy,; — iKpruge s

- = 1 %
—Upg,1.V T — WY gy — 63027 w1,

- 6§Vas) 1.V weg - RiKooP101 W12 — RiKoodiYp11 1102

~ 60 1U102.Y T = 6075, TV Wy — RiKo1 8§V p10.1 0102

- - . 1 *
+ iKpop11,2u10,1 + 1Ko18£010.2u10 1

= _iKll + Wu - (818)

Following the same analysis leading to Eq. (5.12) in Chapter 5, Eqs. (B.17) and
(8.18) produce an expression for K;;. However, another expression for K;; can

be deduced by equating the coefficients of eue?1¥t. By doing so, we get the fol-

lowing two equations
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—2( iKo; + a5§)g§§))6§2))pgo,g -2 (Ko + ou088d)p112
+ (=7 PloaV Uig = W12V Pioa) + { =7 Proz V -Uipq — uipeV P10,2)65"
+ (= W02V Pr1a — 7P117 U102)88) + ( =7 P11z V Ujoy — UforV Pire)
(=Y P111 V U1 — MotV Prig) + (=¥ Proa ¥ Mi1,1 — U111V Proa)
+{ =7 Peoz V.0 —TWYV pggp)dsV

= c;Ky; + g8 (eq + ca6f) + 68 + Cs (8.19)

2 iKgngl_g +V Pe12

= - 2(iKy; + afPeld + oy g8h + amgﬂ))éénum.z
— 2( Koy + ofPedd)88 uz0 — 2(iKip + 0888 ) Wir e
+ (= uio VUpg— Uy eV ufp) +( = Ups V Uir,; = UppgV Ugeg)ddV
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+(—~ U0z VU — WY ugpg)ds® —P101U10,1.V T = 010,17V ujgq

2 — — -3 .
~ Pro11101-V T =~ P20,1T.V Urg,y — iKogP10,1U11 1

N . . * . 1 L]
— Ko1p10,1010,1 ~ KooP11,1110,1 = RiKogP10,.1U11 2 — 2iKgeds Yp711 %02

- 2( Koy + afPgdl) 64Vp70 1 U102

= d, Ky + gff/(de + de6f?)) + 46 + 4, (8.20)

where ¢; and d; are here functions of lower order terms. These lower order terms
were determined in Chapter 5, Section 5.3: consequently they are known quanti-
ties, and hence so are the ¢; and d;. It is worth noticing that the coefficient gdl
is present on the right-hand sides of (8.19) and (8.20). This is the reason why we
first determined gf!’ by Eqs. (8.15) and (8.18). Following the same analysis lead-
ing to Eq. (5.13) in Chapter 5, Eqgs. (8.19) and (B.20) yield a relationship among
i1 67, and gff). However, Ky, is already determined from Egs. (B.17) and (B.1B).
Consequently, we are left with a relationship between 6§2 and g8, This relation-

ship will be used later in the analysis { Egs. (8.21)~(8.24)) to determine Kap.

We now return to determination of Kzo- The results elaborated above con-
cerning the expression of g{2) will ve needed in the analysis. There are two ways
to determine Kyg. First, we equate the coefficients of aspﬂeliKt in the conserva-

tion equations to get
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= e,Kop + e505%) + eg (8.22)

where e; are here functions of lower order terms. These lower order terms were
determined in Chapter 5, Section 5.3; consequently they are known gquantities,

and hence so are the g; .

Following the same analysis leading to Eq. (5.13) in Chapter 5, Eqgs. (8.21)
and (B.22) yield a relationship between Kpg and 6%, It is worth noticing here
that the d.c shift terms Pzogp and Uggg are present in Eqs {B.21) and (8.22), con-
sequently they influence the expression of Kzp We found some difficulties in

including these effects in Section 8.1, using the perturbation-averaging tech-

nique,

A second relationship between Kgzq and 6£%) is obtained by equating the

coefficients of s%%“m . By doing so, we get
RiKoopaoz + 7 V . ugez = — R(iKgo + ;’iaogl(g))5§1)P10,2
— R(iKyp + amé;z(%))éémpao.z + (=7 P11V -Ueo.1 — Uz0,1-V P1o,1)
+ (=7 PaooV Wipz — Uige.V 920;0)551) + (=7 Pro2¥ Veop — uzc.Ov"Z P10.2)05"
= w,Kap + WoiSS?) + wyg (8.23)

’

Pao.2

RiKoougez + V = — 2(iKpo + 2tpog (BN a0,
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- 2(iKyo + 210888068 g0z + ( — w101V Uzo — Upo1.V Upgs)

\ 1 :
+ (= Ugg0.V Wigp — W02V Ugg )05V — 1Koop10.1U20,1

— 1KgoPz0,1U10,1 — iKioP10,1410.1

= W4K20 + W56£2) + Wg (8.24)

where w; are functions of lower order terms. These lower order terms were deter-
mined in Chapter 5, Section 5.3, consequently they are known quantities, and
hence so are the w; . Following the same analysis leading to Eq. (5.13) in Chapter

5, Eqs. (8.23) and (8.24) yield a second relationship between Ky and 6§%). Conse-

quently, Kyg and 64%) are uniquely determined.

It is essential to notice that K;p and Xz are not necessarily unique for a
given configuration of the chamber, In fact, the algebraic equations relating déa)
and Ky are in general quadratic because of the nonlinear relationships between
288 and 6§? given by Eqs. (8.19) and (B.20). This means that the coeflicient ws is
in general function of 657, Therefore, (8.24) is a nonlinear relationship between

Kog and 649,

It is worth noticing here that g8 is present in the relationships between Ky
and &§%. This is the reason for determining g8 by Eqgs. (8.17)-(8.20). Moreover,
in the determination of gf¥ by Eqs. (B.19) and (B.20), the coefficient gfb is

present. This is the reason for determining gf!) by Egs. (8.15) and (8.18).

It is evident that the procedure is lengthy, even for only two modes. How-

ever, the analysis is straightforward and systematic and, therefore, amenable to
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compuler progamming, All the nonlinear terms are included. This was difficult
to achieve by the use of the perturbation-averaging technique presented in Sec-
tion £.1. No formal explicit results, similar to expression (5.18) for K5 in
Chapter 5, are obtained here for the expression of Kyg. This will be the subject of
future work. The purpose here is mainly to establish that the technique can be

extended to higher orders,

8.2.8. Aﬁpéicatian to iriggering .
In Chapter 5, Section 5.4, we discussed, using the asymptotic-perturbation
method, the existence of limit cycles. In particular, we treated the case when we
limit the expansion of the complex frequency K to second order in the ampli-
tude. As we have seen in Chapter 4, Section 4.4, this corresponds to the third
order acoustics. In that case, we have from Section 5.4 the following expansion

of the growth rate a:

— 1 2
& = agg + padl Teoyg + g g

The existence criteria become

1) oo should exist and be non-trivial.

2) ogg should exist and be non—trivial. -

3) ofy — 4 (oo + ) g > 0.

For a given a;q and gy, we have in general two different roots, say £, and &,.
Consequently, there are in general two different limit cycles for given values of

@0 and ogg. For each root, the waveform of the limit cycle is given, as we have
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seen in Section 5.5, by

P1 = ep10.1e Kt + ce., Pz = 265Up00el ¥t + e,

where p; and p; are respectively the first and second Fourier components of the
limit cycle. It is essential to notice that o;g and agy are not necessarily unique
for a given configuration of the chamber, as we have seen at the end of the last

section.

The stability of each limit cycle is examined following exactly the same
technique presented in Chapter 5. The results of this examination yvield some
conditions, similar to those found in Section 5.2, on the stability of the limit
cycie. If for a linearly stable engine, these conditions are not satisfiesd, then this
limit cycle is unstable and may correspond to a triggering threshold. This is
similar to the stability of the equilibrium peint A, in Figure 7.1 for one-degree of

freedom systems.

However, if the stability conditions are satisfied, then the limit cycle
corresponds to the asymptotic oscillatory behavior, or triggering limit. This is
similar to the stability of the equilibrium point Az in Figure 7.2 in the last

chapter for one-degree of freedom systems.

It is essential to notice that we are dealing here with many modes. Conse-
quently, both limit cycles may well be unstable or, a priori, stable. However, the
later possibility is unlikely to occur, since we have seen in the last chapter, Sec-
tion 7.7, that a non-trivial stable limit cycle seems to be unique. The point of
this remark is to notice that having two different limit cycles does not neces-
sarily mean that one limit cycle is stable while the other one is unstable. This is
a clear contradiction to the rule for one-degree of freedom systems where for

two adjacent limit cycies cne has to be stable while the other is unstable.
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8.3. Concluding remarks

Now that we have discussed triggering, using both the perturbation-
averaging and the asymptotic-perturbation methods, we compare the two
methods regarding the prediction of triggering. Some conclusions as to when to

use each method are drawn.

We start with the advantages and disadvantages of the method of
perturbation-averaging in describing triggering. We notice first from Egs. (8.7)-
(B.12} that the inclusion of many modes is simple to carry out. This is an advan-
tage in the treatment of steep-fronted waves where many modes should be
taken into account. Moreover, as we have seen in Chapter 7, the behavior of the
wave in time up to the limit cycle can be described. Therefore, the initial distur-
bances can easily be incorporated, giving the influence of the initial conditions
on triggering. In addition to that, we can determine how fast a triggering limit is
reached by examining by examining the behavior of the wave in time. This is
Important information. For example, in the case of solid propellant rockets, it is
very useful to know, from the approximate analysis, that triggering is reached
before or after the burnout of the propellant. In the latter case, the analysis
should be changed, since after the burnout there is no more combustion in the

chamber.

However, as we have seen in Section 8.1, it is very difficult to fully represent
the third order nonlinear gasdynamics, mainly the effects of the_second order
d.c. shift terms on the acoustic modes. Moreover, the extension of the
perturbation-averaging method to higher order in the amplitude is not straight-
forward. This is a disadvantage in the sense that the method may fail to
represent some physical phenomena which do not show up to second order in
the amplitude. Also, we notice in Section B.1 that it is not straightforward to

include the effects of the average Mach number of the mean flow. This is clearly
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a disadvantage in the application of this method to high speed flow engines.

We now discuss the advantages and disadvantages of the asymptotic-
perturbation method in predicting triggering. First, we notice from Section 8.2
that we can fully represent the third order nonlinear gasdynamics, especially
the effects of the second order d.c shift terms on the acoustic modes, Second, as
we have also seen in Section B.2, the analysis can be extended in a systematic
way to any order in the wave amplitude This is a clear advantage, since we can,
in general, fully represent any physical phenomenon, no matter what the order
at which it occurs. We notice further from Section 8.2, that it is straighforward
to include the effects of the average Mach number of the mean flow. This is a

clear advantage when we deal with high speed flow engines.

However, it is very cumbersome to include many modes in the application
of the asymptotic-perturbation method, Even for two modes, in order to
represent the third order acoustics of the nonlinear gasdynamics, the pro-
cedure was very lengthy in Section 8.2. This is a clear disadvantage in treating
steep-fronted waves where many modes should be present. Moreover, the
method is incapable, by conétruction, of predicting the behavior in time of the
wave. Therefore, it is impossible to assess directly the influence of the initial dis-
turbances. However, the stability discussion offers adequate information about
the influence of the initial conditions. In fact, an unstable limit cycle may
correspond to the threshold amplitude, therefore giving a limit for the values of
the initial conditions for which there is no triggering. Another disadvantage is
the inability of the method to assess how fast a triggering limit is reached, since

the explicit behavier in time is unknown.

In final count, when we are interested mostly in the existence of triggering
and when the number of modes is not of crucial importance, i.e. no steep-

fronted waves, or the flow speed is high then the asymptotic-perturbation
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7 method has a clear edge over the perturbation-averaging method in the sense
that all the phenomena involved can be fully represented. However, when we are
interested in steep-fronted waves, i.e. many modes, with low speed flow or when
the evolution in time of the wave is of crucial importance, then the
perturbation-averaging method offers a simple and efficient, but presently

incomplete, technique of treating triggering.

One may even use both techniques conjointly. We may start with the
perturbation-averaging method to get some information about the wave
behavior in time. The method of asymptotic-perturbation is used afterward to

include all the mechanisms in the system.
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In this report, we have studied the conditions for existence and stabilily,
and amplitudes of limit cycles for pressure oscilations in combustion chambers.
The analysis has been based on expansion of the general conservation equations
in the pressure amplitude. Two techniques were used. The first is an
asymptotic-perturbation in which the asymptotic oscillatory behavior is sought
by expanding the asymptotic selution in a measure of the amplitude of the wave,
usually the amplitude of the fundamental. The second is a perturbation-
averaging technique where an approximate solution is sought by applying a per-
turbation method fellowed by an expansion of the solution in the normal modes
of the acoustic field in the chamber. It was shown that, to third order in the
amplitude of the wave, both techniques vielded the same results for the ampli-
tude and the conditions for existence and stability of the limit cyecle. However,
while the first technique can be extended to higher orders in the pressure ampli-
tude, the second technique suffers serious difficulties. The advantage of the

second technique is in its ability to handle easily a large number of modes.

In the approximation to second order, we found the following results. A
stable limit cycle seems to be unique. Under very special conditions, the initial
conditions affect the stability o.f the limit cycle. The imaginary parts of the
linear responses of the different processes strongly influence the stability cri-
teria and the amplitude of the limit cycle. They affect the exchange of enerzyv

among modes.

We also presented a general formalism for friggering of pressure oscilla-

tlons in combustion chambers. A second order model for the nonlinear



- 282 -
processes in the chamber can indesd predict triggering if two conditions are

a) the model incorporates a process representing a coupling of a mode with
itsell; and

b) the analysis includes at least two modes.

A third order analysis can predict triggering without a second order self-
coupling of the mode with itself. To predict trigzering, two conditions must be
satisfied

a) there is a self-coupling to third order; and

b) the analysis includes at least two modes.

Both features disagree completely with the classical results of one-degree of

reedom analysis. The multi-degree of freedom systems do indeed show some

peculiar effects not known for the one-degree of freedom systems.

More importantly, we identified some global mechanisms involved in trigger-
ing. In the special case of solid propellant rockets, we examined the conse-

quences of special forms of the response of combustion to oscillations. For

example, a mechanism producing a p’'| :pt—[ term may indeed be a major source
o

. : : ; . ., o'
for triggering. The same can be said for a mechanism producing a p (—a%—‘g. Cn

the other hand, a mechanism producing terms proportional to p”® is very likely

t

. . . . . . . , 0’
to have no effects on triggering. Likewise. a mechanism producing p T;t— nas,

probably, very little effect on triggering. These results will help guide modeling
the boundary layer near the surface of a burning solid propellant to identifv
new mechanisms responsible for triggering. This approach should be investi-
gated. If these mechanisms can be associated with some physical phenomena,

then the cesults will greatly enhance our physical understanding of the
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e also proposed a practical formulation for prediction of triggering in
combustion chambers. The analysis was based on a nonlinear model of the
combustion response to pressure oscillations. The effects of the energy
ekchange among modes, veloeity coupling, pressure coupling, and nonlinear par-
ticle attenuation were shown in detail. The fnodei was applied to the particular
case of solid propellant rocket motors. Good pr‘edic"tion of experimental results

and good agreement with numerical solutions were achieved.

In the framework of the third order theory, a model of the combustion

response inciuding both a pseudo second order nonlinear velocity coupling and

R

energy exchange among meodes predicts triggering. A model including a third
order nonlinear pressure respohse and energy exchange among modes can
predict triggering. A stable limit cycle seems to be unique. The triggering

1
i

phenomenon in solid propellant rockets:

[
[#2]

gems to be due mainly to three factors
© pseudo second order nonlinear velocity coupling , third order nonlinear pres-
sure coupling in the combustion response, and energy exchange among modes.
However, in principle, second order nonlinear particle damping may replace the
velocity coupling as a factor for triggering. In this work, nonlinear pressure
coupling has been reiated mainly to a time-lag between a pressure Auctuation

and the burning rate.

We showed also that it is of fundamental importance to include the " out-

i

of-pnase " components for an accurate stability analysis. In fact, the major
weakness of the analysis presented in the treatment of triggering in this work is
the omission of the " out-oi-phase " components. The inclusion of these com-
ponecnts should yield unambiguous results as to whether triggering occurs. Thi:

T
3
& o P

will be the zubject of future werk.



For the prediction of triggering by the perturbation-averaging techniqgue,
we notice first that the inclusion of many modes is simple to carry out. This is
an advantage in the treatment of steep-fronted waves where many modes should
be taken into acccunt. Moreover, the behavior of the wave in time up to the
limit cycle can be described. Therefore, the initial disturbances can easily be
Incorporated, giving the influence of the initial conditions on triggering. In addi—

tion to that, we can determine from the behavior in time of the wave, the rate at

which the triggering limit is reached.

However, it is very difficult to represent fully the third order nonlinear gas-
dynamics, mainly the effects of the second order d.c. shift terms on the acoustic

modes. Moreover, the extension of the

o]

erturbation-averaging method to higner
order in the amplitude is not straightforward. This is a disadvantage in the
sense that the method may fail to represent some physical phenomena which
do not show up to second order in the amplitude. Also, it is not straightforward
to include the effects of the average Mach number of the mean flow. This is
clearly a disadvantage in the application of this method to engines in which the

1

flow may reach high speed.

By using the asymptotic-perturbation method to predict triggering, we can
fully represent the third order nonlinear gasdynamics, especially the effects of
the second order d.c shift terms on the acoustic modes. Also, the analysis can be
extended in a systematic way to any order in the wave amplitude This is a clear
advantzﬁge, since we can, in general, fully represent any physical phenomenon,
irrespective of the order in the wave amplitude at which it occurs. Voreover, it
is straighfcrward to include the eifects of the average Mach number of the mean

flow. This is obviously important when we deal with hizgh spead flow engines.

However, it is very cumbersome to include many modes in the applicaticn

of the asymplotic-perturbaticn method. Dven for two modes, in order to



- 285 -

represent the third order acoustics of the nonlinear gasdynamics, the pro-
cedure is very lengthy. This is a disadvantage in treating steep-fronted waves
where many modes should be present. Moreover, the method is incapable, bv
definition, of predicting the behavior in time of the wave. Thersfore, it is impos-
sible to assess directly the influence of initial disturbances. However, the stabil-
ity discussion offers adequate information about the influence of the initial con-

1

ditions. In fact, an unstable limit cycle may correspend to the threshold amp!li-
tude, therefore giving a limit for the values of the initial conditions for which
there is no triggering. Another disadvantage is the incapability of the method to

assess how fast a triggering limit is reached, since the explicit behavior in time

is unknown.

In final count, when we are interested mostly in the existence of triggering
and when the number of modes is not of crucial importance, i.e. no steep-
fronted waves, or the flow speed is high then the asymptotic-perturbation
method has a clear edge over the perturbation-averaging method in the sense
that ali the phenomena invoived can be fully represented. However, when we are
interested in steep-fronted waves, i.e. many modes, with low speed fiow or when
the evolution in time of the wave is of crucial importance, then the
perturbation-averaging method offers a simple and efficient, although incem-

plete, technique of treating triggering.

One may even use both techniques conjointly. We may start with the
perturbation-averaging method to get scme informatlion about the wave
behavior in time. The method of asymptotic-perturbation may then be used sub-

sequently to include all the mechanisms in the system.

Future research in the area of nonlinear instabilities of pressure oscilla-
tions in combustion chambers may have three dircctions. The first direction :s

the oxiension of the perturbation-averaging technique to many meodes and to
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igner orders. The second éne is the study of the influence of the phase relation-
ships among modes on triggering. The third direction is the elaboration of expli-
cit results regarding the third order acoustics using the asymptotic-
perturbation technique Being able to handle these problems may greatly
enhance our understanding of the nonlinear processes in combusticn chambers,
mainly the combustion response to pressure oscillations and to veloeity fluctua-

tions.

The applicaticn of the results of this work to real engineering problems will
be much expanded if we can extend the results for axial modes to three dimen-

sional problems in which axial, radial, and tangential modes coexist.



