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I PLASMA CSCILIATIONS AND RADIO NOISE FROM

THE DISTURBED SUN

Many investigators have suggested that plasma oscillations
in the solar corona may be the source of large bursts of radio
noise in the meter wavelength region. Two aspects of this problem
are considered in this report: (a) the excitation of plasma oscil=
lations by directed beams of charged particles, and (b) the con-
version of energy in the longitudinal plasma oscillatiéns to
transverse electromagnetic waves by means of random inhomogeneities
in electron density.

It appears unlikely that charged particles whose velocity is
much less than the r.mes. thermal velocity of the coronal electrons
will excite plasma oscillations. Charged particles whose velocity
is much greater than the r.m.s. thermal velocity excite oscillations
in a band of frequencies, including frequencies above the local
plasma frequency., However, qualitative arguments indicate that the
noise should be concentrated in a narrow band of frequencies
slightly below the local plasma frequency. Thus it is impossible
to explain the Type II (slow) bursts in the manner assumed and un-
likely that the Type III (fast) bursts are explainable in this
manner. The transfer of energy is studied in detail and it is shoun
that only waves whose phase velocity is less than the directed beam
of charged particles receive energy from the beam.

It is shown that plasma oscillations radiate a small fraction
of their energy if the electron density is not uniform. In particu=-
lar, random fluctuations in density, of the amount expected in
thermal equilibrium, cause about 10~5 of the plasma-~oscillation
energy to be radiated; the remainder is dissipated by short-range
collisions, Larger fluctuations than this are 1likely, and hence
more energy should he radiated,
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I. INTRODUCTION

Advances in high frequency radio receiving techniques during and
folloming the war have made a valuable new tool available to the
astronomers. Wlthin the last decade radio observations have been made
of the sun, ths moon, plénets in our solar system, and other sources
of eleciromagnetic radiation within and without our galaxy . Long
before these receiving techniques were available it was suggested that
the sun should be a radiator of radio frequency electromagnetic energy
just as it is a radiator of energy in other parts of the spectrum. Only
within the last decade, however, has it been possible to study this
radiation, Observations are limited to frequencies above a few tens
of megacycles per second‘(lo-QO meters) by the characteristics of the
earth!s ilonosphere and to frequencies below several tens of thousands
of megacycles, (.5 to 1 ert) by molecular absorbtion bands in the earthls
atmosphere and by‘difficultieé in recelver technique.

Solar radiation in the meter wavelength range is exceedingly com=-
plex. At a particular frequency the radiation consists of a steady or
slowly varying component, on which are superimposed sudden increases of
intensity, or bursts, These bursts may be many orders of magnitude
gﬁeatar than the steady component. The behavior at different frequencies
is frequently very different., This complicated behavior has led to
attempts to separate the radiation into distinet components, according
to the duration, polarization, and spectrum of the radiation, and ac-
cording to associated optical features and the apparent locétion of the
source of the radiation., An excellent summary of components of radia-

tlon is to be found in "The Sun" (1) edited by G. P, Kuiper, and in a
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series of papers by J. P, Wild in the Australian Journal of Scientific
Research (2). '

| Only the thermal component of solar radiation produced by the free-
free transitions of electrons of the solar atmosphere can be séid to
" be understood at the'present time. The intensity of thermal radiation
can be calenlated from a knowledge of the physical state of solar at-
mosphere and the propagation characteristics of electromagnetic energy
in the solar atmosphere (1),(3). Other camponents of solar radiation
are generally assocliated with disturbances in the solar atmosphere and,
because of the variety of characteristics which the bursts show, it
seems likely that different camponents of the disturbed radiation are
to be explained by different mechanisms,

To study the theoretical aspects of radio radiation fram the dis=-

turbed sun requires a firm optimism. Observations are generally made
at a single frequency; angular resolution of even the interferometer=~
type receivers is poor, and solar disturbances with which the radiation
seems to be associated ére not generally understood, It is not surpris-
ing to find many explanations proposed with little evidence to decide
between them. One of the most interesting proposals, which has stimu-
lated considerable theoretical investigation, is that plasma oscllla-
tions in the solar corona may be responsible for certain types of
Yexcess" radiation. The basic problem is to account for the large
intensities of this radiation and its relatively narrow spectrum. The
attractive feature of the plasma oscillation theory is that the coherent
motion of large mmmbers of électrons ought to radiate energy very freely
and it should be easy to account for the large intensities. Unfor-

tunately, however, it turns out that there is no radiation frem the



coherent motion of electrons in oscillation of a uniform plasma
because the displacément current of the field and the convection
current of the moving electrons exactly cancel, with no net current
left to excite the electromagnetic field. Nevertheless, the plasma
theory remains attraétive because it is belieﬁed that only a very
small fraction of the energy which might reside in the oscillations
needs to be radiated in order to explain the observed intensities,
Thé plasma oscillation problem naturally divides into two parts,
(a) the excitation of the oscillations to large amplitudes, and

(b) the radiation of a fraction of the energy in the form of electro-
magnetic waves. Both of these aspects of the problem are discussed
in lhis paper.

The plasma oscillation theory probably originated with the dis-
covery by Haeff (L) and others of the principle of the double stream
amplifying mechanism. Haeff (5) suggested that a group of charged
particles moving outward through the solar corona would interact with
the coronal electrons in such a way as to amplify statistical fluctua-
tions associated with either group of charged particles., It appears
as though Haeff originally intended the theory to explain the fact that
the continuous radiation in the meter wavelength region is much greater
than expected from a 5000° X black body radiator. This is now known to
be explainable by the loéoK temperature of the corona, from which meter
wavelength thermal radiation originates, Hael{'s original suggestion
failed to include other pertinent characteristics of the solar atmos-
phere,

The general theory of plasma oscillations has since been developed

considerably by Bohm (6) and collaborators., Feinstein and Sen (7) have
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extended Haeff's theory of the excitation mechanism. The principal exten-
sion of Feinstein and Sen was the inclusion of the effect of the thermal
valocities of the coronal electrons in an approximate manner, They
studied the growth of plasma disturbances caused by a group of monocener-
getic charged particles passing through the corona and found that it was
possible for the disturbances to grow larger when the monoenergetic beam
was either slower or faster than the r.m.s. thermal velocity of the elec-
trons. Bohm and Pines (6) find however, that when a single charged
particle traverses a plasma it excites the plasma oscillation only if the
electron travels faster than the r.m.s, thermal velocity of the plasma
electrons. This discreparcy is examined in detail in Section IV and it
shown that when the wvelocity of the monoenergetic beam of particles is
less than the mean thermal wvelocity of coronal electrons, the growing
waves found by Feinstein and Sen are really "evanescent" or "cutoff"
waves, and do not give rise to amplification of small disturbances.
LEvanescent blasma waves, which occur in a bimodal distribution of elec-
tron velocities such as may exist in a shock front which moves through
an ionized gas, have heen misinterpreted as giving rise to growth of
small disturbancss (8). The conditions under whiech growth of small dis-
turbances is possible is reexamined using the linear theory.

In Section V the nonlinear aspects of the problem are discussed
gualitatively and an estimate is made of the amplitude which the plasma
oscillations may attain. In Section VI the coupling of longitudinal
plasma osciliations and transverse electromagnetic wéves hy inhomo-
geneities in electron density is evaluated and the conditions for escape
of transverse waves from the solar atmosphere are discussed,

Characteristies of Type II and Type III Bursts. The plasma oscil-
lation theory is a likely candidate for explaining the Type II (slow)

and Type III (fast) bursts of radiation reported by Wild et al (9),(10),
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(11). Type II bursts last for 5 to 10 minutes and have a spectrum-~
time curve as shown in Figure la. Type IIT bursts last for 5 to 15
seconds and have a spectrum~time curve as shown in Figure 1lb. At a
particular instant of time, emission occurs over two relatively narrow
bands which differ in frequency by about a factor of two, The strik-
ing similarity in the spectra in the two frequency beands suggest that
both are &ue to the same source, a nonlinear oscillation in which

both fundamental and second harmonic amplitudes are appreciable,

Other characteristics of Wild's spectra indicate that part of the
radiation in the low frequency band is attenuated because the radia-
tion originates near the critical level for escape of radiation. Using
a model of the undisturbed corona,the radial velocities of the distur-
bances can be determined.

Only four of the Type II (slow) bursts have been observed, but
soveral hundred of the Type III (fast) bursts have been observed, Of
the Type III bursts observed, second harmonic radiation was distinectly
identifiable in twenty events and probable in about half of the events.
Third harmonic radiation is less than one-tenth the intensity of funda-
mental and second harmonic radiation and has not been detected. Single
frequency measurements (12),(13), indicate that bursts may be associated
with solar flares, Radio fadeouts caused by intense ultraviolet radia-
tion of the sun are nearly coincident with the onset of flares. Magnetic
stormms caused by corpuscular streams frequently follow the flare one
day later (1h). If the bursts of radiation are assumed to originate
from a point in the corona where the frequency of the disturbance is
equal to the local electron plasma frequency, the radial welocity of

the disturbance through the corona can be computed, The velocities
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obtained, using the electron density of the undisturbed corona, are
ahout 500 kn sac‘l for the slow bursts and between .6 x 105 and

1.0 x 105 Y sec™L

for the fast bursts. Optical observations give
velocities somewhat less than 500 km see“l kfor material in an erupe=
tive prominence. The velocities of corpuscular streams which reach
the earth are about 1800 lm sec.l o Thus there is independent evi-
dence for motion of the same general velocity as inferred from the
Type II burst data. However, thére' is virtually no independent evi-
dence for particles of the velocity implied by Type IIT burst data.
The observed radiation is randomly polarized, This is taken as
an indication that steady magnetic fields do not play an important
role in these phenomena. Measurements of the sun's magnetic field by
Babcock (15) indicate fields of only a few gauss, except near a sun-
spot, The magnetic field effects will not be important in plasma

oscillations if the square of the cyclotren frequency, W

much less than the square of the plasma frequency @, =/1;§ ez/e‘J mo.

When B = 1 gauss, o, is 2.8 mc. and the plasma frequency in the
? e

= ¢B/m is

corona is typically 100 mec, hence the neglect of the magnetic field
is valid. Several analyses (16),(17),(18),(19), have been made of
plasma oscillations in a static magnetic field, in an attempt to ex-
plain the enhanced radiation (1)» associated with sunspots. It cannot

be said, however, that these theories explain the enhanced radiation.,

Model for Type II and Type III Bursts. To be more specific about
the process which might give rise to these bursts, assume that a
volume V of quasi-neutral ionized gas of unknown density moves out-

ward through the corona with a velocity u as shown in Figure 2. The
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velbci‘byf u is 505-1800 ¥m 'secf'l for Type II bursts and «6 to

1 x 10° kn sec™> for Type III bursts. Under certain chditions the
outward moving gas cloud may excite the plasma oscillations of the
~coronal ele‘ctrons.v It wili be the object of subsequent analysis to
determine these conditions, the frequencies which are involved, the
amplitude of oscillaﬁion which is attained, and the amount of electro-
magnetic energy which is radiated, The mechanism by which such a

group of particles may attain this drift veloecity will not be diseussed.
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' II THEORY OF VAVES IN A PLASMA

- For the purposes of this paper the term plasma will be used to
denote a 'completely ionized gas which, in the absence of disturbances,
is electrically neutrél. Ionization and recombination will be neg-
lected, The solar corona is a dilute plasma comi)osed prlmarily of
hydrogen :'Lohs, helium ions, and electrons in the xia*c.io 52127 . Due to
the extremely high temperature d;f‘ the corona only about one atam in
107 is not ionized. Short range collisions, i.e,, collisions which
deflect electrons through an appreciable angle, occur very infrequently.
A measure 6:E‘ the average number of short range electron-ion collisions
per second is obtail;ed from the Chapman-Enskog method of solution of the

Boltzmann equation (20) (3)

LA
'ﬂc = 3 mXT ’ﬁm fn [1 *'(hd T)l IL.1
3

~ where no is the number of electrons per em” , e and m are the
electronic charge and mass, respectively, & is Boltzmannls constant,
T dis the temperature of the gas, and d ié the maxirmm value of the
impact parameter, d is usually taken to be the mean interpgrticle
distance, rio- /3 , since vbina.ry collision theory does not apply for
more distant encounters., Ion motion can be neglected, because of the
_'1arge mass of the ions,

The effect of long range encounters, involving the simultaneous
'interaction of many electrons and ions with small momentum transfers
may be taken into account by assuming that the electrons also move in

the average field produced by many neighboring electrons, This average

field is to be computed from the charge density averaged over a volume
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which is large enough to contain many electrons, but small enough so
that macroscopic properties of the plasma do not change significantly
1n the volume. Collisions of intermediate range are not taken into
account by elther mebthod, but thelr effect can be estimated by taking
dmax to be the Debye wavelength. The value of 170 obtained in this
way differs very little from the value given by IT.1 because of the
logarithmic dependence on impact parameter. In the vpresent problen,
the short range collisions play a minor role and hence the effect of

encounters of intermediate range may be neglected completely.

The FElementary Theory of Waves in a Plasma. The elementary theory

of plasma waves neglects the thermal velocity of the elgetrcns and
short range collisions. The equations for the mean electron velocity,

v , and charge density, p , are

dv ° .

—_— 2 = (BT*TTXB II,2
dt n (" h "') *
dp . |

"é‘.E + v (P _'V_') e 0 . I1.3

Small perturbations in the mean velocity and charge density from their

steady values, v =0 and p = Py 3 denoted by LAY and Py respectively,

obey the lineariszed equations

ov

e A} |
ot m§1 ITh
3y |

B PPV Ep = 0 . 1.5

It is assumed that the steady magnetic field is zero. Maxwell's equa-

tions, with the above charge density Py and current density
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:'71 =P, ¥ as sou;f'cg terms, are

» B = IIO
VeB =0 | 6
§7 . D = p, + pa IT.7

=1 1 1

. 8By
Vxﬁl Tt T 1L.8
3D,
VxH = £1+'_a.£+_1 - I1.9
'= : B = ®
Bt GE BTRE 0

1
due to the plasma electrons. Bscause of II.5 and IT.8, the magnetic

where p* and e_wl are charge and current densities other than those

and electric fields can be derived from vector and scalar potentials

B) = Vx4 Vea, =0 II,n
El = --Za-,g-Vﬁl e ) II'12

Substituting these expressions into IT,7 and II,9 yields

2 ' A
AV} = L 11
. 8253 3 .

2 F - — -
VAl - p'O 21 6 y'o atz +Q eca'bv¢l I«"oisl 'IIolh

Da.fzeren tiating IT,13 twice with respect to time and using IT,5 and

av:
J e =L
AII i fOI‘ -—a-f and Yy

2 ’Q-V
.@..é.vzg-_-.--.}._ 1+p IR VAR
5t on

which may be rewritten,
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. 2
2 oc p*
..9... + w2 v2 ¢ = - ._.1._. 1 IT.15
at? P 1 €, at?
2
e ne-
where we= --2- & = 2. . 11,16
1% o mn (3 om .

is the electron plasma frequency.
- Differentiating II.1l with respect to time and using II.) and
17,12 yields

2 3k
a‘ 2 5w = ‘: 2 ‘_ = = l Vg, - 1
v A_L Ho€ o 02 p.ompo —sT ¢l +p,0€o-—-2 9{1 p,o

or

2
o) 2 oJ*
3 {2 4 . =1 _ 2 - Al S alt
1,17
then free charge is not present p%‘l = _q*‘l = 0 , and the solutions of
IT.15 are of two types
2 _ .
v ¢l = 0 11,18
2
L+6’ g = 0. I1.19
at P71

Solutions of the first type, II.18 , are not required in charge-free
regions (21), Solutions of the second type, II.19, describe the elec-
tron plasma oscillations. Note that ¢1 can be any arbitrary function
of position and that IT.19 prescribes only its time dependence, This
means that any region of the plasma, if given an initial disturbance
of this type, will continue to oseillate indefinitely with a frequency
equal to the plasma frequency, without spreading outside the area of

origindl disturbance. In these simple harmonic oscillations there is
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an interéhange of the kinetic energy of the electron motion and the
potential energy of the electric field., The sum of the convection

current, J., , and the displacerent current, Dy s Vanishes at every

-.l ——"
ot
point, as does the magnetic field B. . If the electrons drift with

L
an average VelOCiﬁY,}io then it ean ba shown that energy of the plasma
oscillations is transported with just this velocity.
Since ¢E obeys II.19, tha last term on the right side of II.17

is zero and the equation for A, becemes

vl | 2-3-2:- € o = 0 11420
-1 U.OGO ab2 uo (o] wp'é‘l ¢

II1.20 is sometimes called the Prcca Equation. When the time dependence
int . .
is simsoidal, € , II.20 is the veector wave equation for a medium

which has an index of refraction, n , given by

. IT.22

When the frequency, & , is less than the plasma frequency, Qp s electro-
magnetic waves no longer propagate through the medimm, but are totally
reflected if incident from outside the plasma. Solutions of IT.21 rep-
resent static magnetic fields, which are assumed to be absent in this
enalysis,

Figure 3 shows how the two characteristic frequencies wp and
Y Vvary with height above the photosphere in the solar corona. Data
is taken from references (3) and (22). It may ke seen that the collision

frequency is always many orders of magnitude less than the plasma fre=-

quency. In most aspects of this preblem it will be permissible to
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neglect shé:rt range collisions altogether.

The Effect of Thermal Velocities. Vhen the random velocities of

thermael agitation are taken into account, the plasma oscillations des-
cribed by the scalar potential in the preceding paragraphs no longer
remain confined to the region where the disturbance is originated. The
thermal velocities allow the disturbance to spread at a maximum velocity
which is of the order of the r.m.s. velocity of thermal agitation. The
Boltzmann eqﬁa’cion can be used to include the effect of thermal veloclties
of the coronal electrons, Long range interactions are included in the ex-
ternal force term, (E+ux B) *V, £, of the Boltzmann equation,

%%*' (@ v)f-F(E+uxB) -V £ = (—S—%

collisions °* 11.23

i‘(x_'_,p_,t) is the mumber of electrons per unit volume in six-dimensional
phase space in the vicinity of the point (r,n) at time t , and E and
B are the electric and magnetic fields averaged over a volume which con-
tains many electrons. If the equilibrium distribution is denoted by fo
and small deviations from the equilibrium distribution are denoted by fl,
the linsarized equation obeyed by fl is

ai‘l e ’ af

~=F + (u+V) fl';n-(-E—1+E:: El) * Vv, fo = (—-a-) . II.2L

collisions

where _1_3_1 and _121 are the perturbations in the average electric and még-
netic fields. The steady magnetic field is assumed to be zero throughout
this paper. Uhen the electron velocities are amall compared with the

velocity of light, the magnetic force u x gl is small compared with the

electric force E’-l « flthough in some phases of the analysis which
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follous, a few electrons fvill have velocities which are a small
fraction of the velocity of light, this magnetic force will neverthe-
less be neglected. A completely relativistic treatment would change
the quantitative aspects of‘ the results only slightly and the qualita-
tive aspects not at all. In some problems, however, the qualitative
nature of the results are changed by this appraximation (19),(23).

The effect of short-range collisions may be taken into account
epproximately by writing

1

ot

of
N & - ‘Jc fl - iI.2s5
collisions :

In the absence of other forces, this tends to return the distribution
to the equilibrium distribution in a time 1/4), .

The electric and magnetic fields E and B satisfy the Maxwell

1, =1
equations I1,7 through II.10 with pl and 51 given by
p1 - jfl(g) du 11,26
_{1 = -8 Sg i‘l(p._) du . IL,27

These equations, together with the conditions which £, B, D., _1?_1 s B

must satisfy at the boundaries, completely determine the fields and the
electron distribution function in an arbitrary volume.

Some investigators have studied the propagation characteristics of

—

-ik -
(e .

plane waves with sinusoidal space dependence The former

procedure is of value if a sinusoidal external driving force is present,
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while the ’latter is suited to the study of' disturbances in the un-
bounded medium. Either procedure is legitimate since the linearity
of the equations allows solutions obtained in this manner to be added
in such a wéy as to satisfy the boundary conditions, or initial condi-
tions of the problem., ZLandau (2L) and Twiss (25) have demonstrated
the usefulness of the Laplace transform in meeting boundary conditims
and initial conditions,

If sinusoidal time dependence is assumed, waves whose amplitude
increases without bound in some épatial direction are found to éxist.
The boundary conditions play a very important role in determining
whether waves which increase or decrease in some spacial direction are
excited or not, particularly in plasma problems where electrons travel
in all directions. In most wave motion problems such waves are gener-
ally excluded, if the region of interest includes infinity, ty the
requirement that the fields be bounded everywhere or at least that
the total energy is finite., Waves which become large at large dis-
tances are generally associated with sources at infinity and these are
generally not of interest., In linearized plasma problems some of the
waves which increase without bound are not associated with sources at
infinity, but represent, instead, waves which derive their energy from
the kinetic energy of the electrons., Of course, waves of this type
cannot really increase without bound either, because only a finite
-amount of kinetic energy is available from the electrons, This ulti-
mate limit on energy is absent in the linearized theory, however, and
waves vwhich increase without bound and which are excited by sources of

finite energy arise in the linear theory. 4t some point non-linear
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effects prevent further growth of the wave. amplitude,

The linear theory is suﬁ'icient to establish whethef disturbances
which are small enough to be deécribed accurately by the linear theory,
such as random fluctuations, can grow to very large amplitudes., TFor
thls reason 1t is essentlal to establish which of the increasing waves
can bé excited and represent a genuine tendency for small perturbations
to be amplified, An analysis of the problem without linearization
would be very difficult. Scme of the qualitatiwve aspects of non-linear
operation are discussed in Section VI, It will be assumed in the fol-
lowing sections that the volume of the disturbed region is so large
that the theory of waves in an unbounded medium is applicable., While
it is true that some modification is expected near the boundaries, the
fraction of the total volume which is occﬁpied by the boundary regions
is certain to be small compared with the total volume which is involved

in the disturbance.

Plane Ylaves in a Plasma. One of the simplest problems which can

be solved using this formalism is to determinc thec characteristics of

plane waves in a plasma. Assuming that the time and spacial dependence
i{wb=lk~

is given by the factor e ( = E) the current in a plasma due to a

field E is found from II.27, II.2L, and II1.25 to be

u(V f. a-l)
= --—-j 2o L gy . I1.28
ile-ken)*d, =~ ,

Afver integration by parts this expression can be written

4y = ie€, [xt B K g:_l] I;.29
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wWhere
2 £ (u) au
O Mo -~ .
@ 7-1-, “me, 5 (@-k+uw) -1V_ TEa30
1 82 El{.fo(.u;) dE
) 2 o

% % and (x are the electric susceptibilities of the plasma elec-

trons; '}(o is a scalar and ')L 1 is a diadic. ’Z’.t :Ls the susceptibi~

ity for transveroe waves, since for these waves, k « 13'_1 = 0 and the
second term of II.29 doess not contribute to the current. When fo is

spherically symmetric in velocity space Xl is simply a constant times
the diadic (k k) ,

(k k)
(S —_;2—7('1 . IT.32

For plane waves, the Maxwell equations II.6 through IT1,10 become
with p* = =0 |
( P =0

1
k . El = 0 IT.33
keD = o IL.3k
kxk = °°§1 1I.35
kxl = oD tig IL.36
=€ 5% B =k h TL37

Forming the vector triple product k x (k x §1) and using II.36 and
IT.37

kx (kxE)= on(lc.:c g‘l) = -n2 paeogl +iop, il

»



Using the ‘vector identity, k x (kx -E'l) = k2 §1 + k(k - Ei) s and

substituting IL.29 for -‘11 3

2 Syl 2 2 )
k -E'l+'15(£'£1) - e Mo€o By — @ “oéo'ztgl+=x-l & IL.8

then the velocity distribution is spherieally symmetrie in veloecity space 3

the expression 11,32 for Z‘l can be used so that II.38 may be written

k(k+E.)
[k2+m2 lJ'oéo:) (l+1t)] ‘}i:"l-"}-c-'(}i'-Ezl)'“‘02 l~L0607(:'-”(‘:‘2“1 = 0.

1139
Any electric field _11:.1 and wave vector k which satisfy this relation
give permissible solutions to the sbove differential equations, Vithout
loss of generality, it may be assumed that k is in the x direction.

In component form II,39 becomes
k2x " 92 Mo € (1% xt) E]x-kicE]x+m2 p’oeox 1%y = 0 IL.LoOa
K2+ o uy €y @+ Xy) Ty = 0 | IL.Lob
k"’x + @ &, (1 + X B, = O . II.L0c
If E]y or Elz are not zaro, TT.40b and II.LO require that
k2 +<n2p.€- (1+z,0) = 0 , ILn
x o0

Using IT.)1 in II,LOa shows that By = 0 in this case. IIL.l1 is
called the transverse wave dispersion relation since El and k are
perpendicular for this case. % 4 is the transverse wave susceptibility,

There are two orientations for the electric vector s corresponding to the
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two possible polarizationd.
then Ely and L~ are zero, and E_  is not zero, TI.4Oa be-

cones

o p €, 1+ X,o+Xy) = 0 . IT.W2

This is called the longitudinal wave dispersion relation since "E‘l and
k are parallel for this case, ’}( % + 1’1 = X,G is the longitudinal
wave susceptibility. Since o® u_€_# 0 the longitudinal wave behavior
is obtained by setting Zﬂ equal to -1 .

Yor a spherically symmetric velocity distribution

ia+P, £ (u) du

92 .
L méoS[“"E‘E-chlz I3

To summarize, the transverse wave relationships are

keByg =0

keE, = 0 (pp=0)
kxhy = oy

kxfy = 06U+ L)E,

and the longitudinal wave relationships are

g_:<§11=0 (‘El,o- = 0)

a+%)=0 .
These relations are valid only when the velocity distribution is

spherically symmetric., When this assumption is not valid, such as

vhen a directed beam is present, the waves may no longer be purely
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longitudinal oxr purely transverse.
The diadie susceptibility of a single dirccted beam of wvelocity

1 is found from IL.28 to be

1 ".’22 oazp
Xt = & (0-k-u) ;él = o k)2 (kw) .

Collisions have been neglected, and g e is a unit diadic.
When collisions are neglected the expressions for the longitudinal
and transverse susceptibilities of a spherically symmetric velocity dis-

tribution may be appraximated by

@ 2 — |
= ow —'-E E— 2 a o L J
’x:q 0)2 [1 + a)2 u- + + i'Kﬁi II-L\)»-L
2
® 2 :
7(_t=-—-%[1+%-1-{—§ t-;g*"-]-i-ix IL.5
@ o by :
~5 Suz f (u) du
where u“ = Q s and the properties of a spherically
JEo(w a L o= = o=
symetric velocity distribution, T =0, uwy=uly=w, =3 o,

have been used, For the Maxwell=Bolbzmann distribution

m /2 T m""‘T'uz 5 Mr
£, = (271')('1' )32 o W g vhere u® = . II.L6
o
The long wavelength approximation (ka« '—'-'~2'"") used by Sen and others
: u

consists of retaining only the first two terms in the expansion of the
real part of x and neglecting the inaginary part altogether. The
imaginary parts of these expressions arise from integration arcund the
contour being obtained by making Y ¢ Small but not zero. This rule
is also a result of the transform method of solution (24),(25). The
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imaginary part of the susceptibility signifies a damping originally
noted by Landau (24) and is closely connected with particles which
travel with nearly the wave veiocity. Its exact significance is

. discussed later, in comnection with a study of energy transfer in

2
such waves. Since ("0—2' >/c:2 for transverse waves, all terms but the
k
first in the series IL,40 are negligible so that IT.LO becomes
2

=
Fo= -5 -
®
Reinserting the effect of collisions changes this to

-

X, = - —E— IT.7
t w(w -1 vc)

For the Maxwell-Boltzmann distribution function, II.4l, the longitu-

dinal wave eleciric susceptibility can be shown to be

()
-~w—2;~'§“ l*g'icia\/g * xT[Erf(ik'[—.) 1} | II.8

where E rf z is the error function of complex argument.
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III ENERGY RELATIONS FOR PLASHA WAVES

In 1938 Tonks (26) gave an snergy conservation theorem for a

simple electron beam

2 2 2 pv3
L 2 2 2 e

11,1

This follows simply from the equation of motion of the electrons,

dv .

-a-TE'-!-(y_-V)y_a-x-&-(:E_-!-y_xg) - III,2
the continuity equation,

ap _ .

+tVepr = 0, IT1.3

and Maxwell's equations for the electromagnetic field, E x H is the

electromagnetic energy flux and - %-1;-5 pf is the kinetic energy flux

w. 1 2 1, g2 - LB P -
or power flow. 5 eo_l_’l_ s 2“0-11 s and 55 PL are the elec

tric, magnetie, and kinetic energy densities, respectively.

In nearly all electron beam problems it is necessary to linearize
the equation of motion and continuity equation and hence restrict the
discussion to. small disturbanges in order to solve thes partial differ-
ential equations, The linearization process can be carried out in a
consistent mamner by expanding all field quantities in terms of an

amplitude parameter & by writing,

-1-521 4+ o & @ III.L[.

T = u,+8y 2

-0 1

2
p=po+§pl+5 p2+onq
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etc,. Ss;mbols with the subscript zero denote the steady or undis-
.turbed quantities, symbols with the subscript one denote the first
order perturbations of these quantities and symbols with higher sub-
scripts indicate higher order approximations which are usually neg-
locted. Energy densities and fluxes of the disturbances with non-zero
time averages will be of order 52 since they generally involve
products of two time varying quantities, For example, the electric
energy density of a disturbance would be 62(% €, _Ejz l) + If the
definitions of kinetic power flow and kinetic energy density suggested
by III.1 are used, it is necessary to know second order quantities

Py s U, 28 well as zero and first order quantities, provided u, is
not zero., In this section the electrons are assumed to have a non-
zero drilft velocity u o A thermal plasma may be regarded as a

collection of electrons with a distribution of drift velocities, u o

as shown at the end of this section. The kinetic power flow is given

by
2
Py = pvzx = p, uzou + 5(90 Wyt 2po n,u - v + Py 3_1_01120)
2 2 42 .
8% (p W, WP, W, B2 U v T Ut ITLLS

2
W T Py It W Ty Py Lty XUt poll-ovzl)'

To compute this quantity correctly to order 82 s, and p2 must be

2
found, This requires the solution of an inhamogeneous partial diiffer-
ential equation for the second order quantities in which products of

first order quantities appear as source terms. A special prcblem has

been treated in this manner by Walker (27).



Energy Relations from the Iinearized Equations. To avoid having

to campute second order quantities and to work campletely within the
framework of the linear thebry it will be postulated that the linearized
equations which are of first order in the expansion parameter, 6 , are
the r:_’.gorously correct equations and a conservation theorem will be
derived by manipulating these equations., This is a generalization of

an idea due to Chu (28). The following linearized equations are used

—=1
B, & o —= III,
Vx i vy TI.6
8@1
Vx i, = Po _1+p o o-—a-; ITI.7
ov
-1 e -2
- + (uo. 7) 7, = 4_E_1 I11.8
op
—-—].; + . = . )
red AR CI S Y u,) o . IIT.9

If the solutions are irrotational, Vx 1_‘!‘.1 =Vx - 0 , the following

relation can be shown to hold

2

III.10

‘The irrotational fields correspond to the longitudinal plane waves of
Section II, If the solutions are solenoidal, V « & =V v, =0, the

follouing relation can be showm to hold,



2 P %
2 |.m  Z1 1,, =1 Jomy, 22 L -
[-Epo__z_+eo_2__+po 2]+V [-..eg..o > +_:1x§l 0.

ITT,11

The solenoidal fields correspond to the tz'ans{rerse plane waves of
Section II. In the expression for the irrotational waves, the first
two terms can be interpreted as the kinetic energy density of the
electrons as a result of the small disturbance, the third term as the
energy density of the electric fleld, and the last term as the kinetic
power flow in the disturbance. In the expression for the soleonoidal
waves, the first term can be interpreted as the kinetic energy density
of the electrons, the second and third terms as the electric and mag-
netic energy densities, respectively, and the fourth and fifth terms
as the kinetic and electromagnetic power flow, respectively.

The first relation, III,10,is obtained in the following way. The

usual conservation theorem for the electromagnetic field may be writ-

ten

3 521 ig|

"a‘i[e 2 T "T'a"_]+v ( ZL"Hl]’= mEyt gy = - By e (et e vy
IiIL,l2

The term E; plu *P, 1) gives the rate at which the electron

bean takes energy from the field, in the linear approximation. To
express this term as the time derivative of an energy density plus

the divergence of a power flow, mltiply IIT.6 by (e u * A, _Y_l) =d;
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- oV,
il. 1— (pu +po-l).-§b-+il [(u 'V)V]
2
v op
I-n.. -a—- -:__]_: 'y - . -——]-5 ¢ .
= ‘e{at (o= * P B em) -8, - %y 5+ ) [(B viz ]}
III.13
3
Using —= ==V » J in this expression
J '{at (Po * 1 8 ° 11)+ (B-o' 11) V. 21_ + .’:I.l'[(.‘io° V)Yﬂ]
IIT.1L

Since u is a constan‘b, and it is assumed that VX 'Y'l =20,

(DIB

_g [(v + V) u, + le(qu )+u (Vx v )] can be added to the
right side of III.lh without changing the result. These terms, together
with the last two terms on the right side of III,1l, continue to pro-
duce V * l:(y_ o y_l) d 1] . Upon substituting the value of J 1B
obtained in this manner, IIT,10 is obtained. III,1l may be proved in
a similar manner, |

If the plasma consists of electrons with more than one steady
velocity such as in a thermal plasma, the above relstions can be

generalized. Sinca the magnlmdes of ¥, and pl depend on the

1
steady wvelocity, these quantities will be denoted by 31(30) and

pl(g o) « The energy relation for irrotational waves becomes

2 2
(u vy (m E
%{'QZ[% R k@)1 )] ¢ €
+V { Zp(u )vl(u)+pl(u)u Lo ¥y (u)]} 0.

II1.15
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The ensergy relation for solenoidal waves becomes

' 2
3 fmn Z Polug) ¥y (Be) .121 521
& e Y& TR 2
2

2 o]
. u. v (u
mn 0 =07 =0 -0
+v~{-eg : +_E_1x§1}—- 0.
N

The power carried by the various components of the plasma is additive

since there are no cross product terms in this expression.

Power Flow and Energy Transfer in Plane Vave Disturbances. The

expressions just developed will now be used to caleculate the kinetic
power flow of one group of electrons in the plasma, and the exchange of
energy between this group of electrons and the electric field. Two
cases are of interest, (a) frequency real and propagation vector complex,
and (b) propagation vector real and frequency complex. Both cases are
treated simltaneously by assuming the space and time dependence to be

given by the factors e(9 *iet) e"(.'g'."'l.l.‘.) -r

. Using the equation
of motion and the contimuity equation it is easily shown that the per-
turbations in velocity, charge density, and current of a group of elec-

trons whose steady velocity is u, is given by

- & El
v, (u) = —0H>R _ IIT.17
[P+ie- (L+a0) - n,
-5 ()| (L+ik) - E
) = 2 roley) (L E-l].z 111.18
e O {\)*jm-(_g-l-i]i)op_-o-
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- 2 poao) [ 38 1) 25 @+ 1) B @+ ) u, 8]
P+ t0 - L+ 10 - z,]°

il_(}-l-o) )

111,19
Note that ! = iP!' = (0 =k » u,) - i(V - _:_Q_ - u,) is the complex
freguency of disturbance as seen by these electrons. After some alge=-

braic manipulation the average"'rate of traﬁsfer of energy from the

7
£ield to the electrons, Re (I, E* ) = - ..5%. , may be written,
Re (30 EY) = €405 (u,) P2 2""' >; 2‘;‘"'9' B EYe L2We-Lox)
[‘7' + o ] II1,20

The average kinetic power flow, '2- Re J . (u . v ) may be written,

F =20l (@) (¥1° *N'Z)E'*(a?’l-w’k)Elu

= 3 (z)‘b-_g_;'r)

o' L‘"’

111,21

The average*lci_ne'tic energy density may be written
x ¥

B B (e B ug ?1]62(‘7"?‘:@‘2)

y

W ‘E C “) (..o [(712,,, 6)12) (1):2 + mt2)2
111,22

vwhere mgp (y_g = —po(g o) n—fego is the plasma frequency of the group of
electrons with velocity u_. The features of these expressions are best
examined by applying then to the special cases.

When the frequency is real and the propagation vector is complex,
the amplitude of the disturbance increases or decresases as it propagates.
‘The average rate at which electrons receive energy from the field is
given by

=) (&) - _ EO) ;Q - ﬁ .
[( £y *(60- ‘u )2] 7 o mZP () By - BH e — 7,
y 11,23

T Average over one period of the disturbance.
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The denominator of this expression is always positive, the frequency

is positive, hence the electrons receive energy from the field if
@-k+u) Loy <o .

Conversely, the electrons give energy to the field if

(m-_12°20)£"_1.o>° *

For oxample, if the electrons move so as to ses a field which increases
with t;i.rne, __g * U, is nepative and the electrons give energy to the
field only vhen (w -k »u ) is negative. This will occur if the
component of electron velocity in the direction of the wave front nor-
mal is greater than the phase velocity of the wave. The electrons also

give up energy to the field when they move in the direction in which
| the field decreases, if their component of welocity in the direction of
the wave vector is less than the phase velocity of the wave,

It is interssting to examine the kinetic power flow under these

circumstances. For convenience, assume that the electrons move in the

direction of propagation, call it the % direction, then

- E- By ok
Fk = o 21& ug) - “’2p (1) Uy __:_3;__2:_1__ . obx . x ‘
[(quox) ' (m-l&u"x)]  mal

Thus the kinetic power flow is in the direction of the electron veloeity
conly if (o - kg uooc)>0 and in the opposite direction if (a)-kx uwc)‘(o.
The latter curious situation, in which the power flow is in the opposite
direction from the direction of the carriers of the energy, comes about
because the kinetic energy of the disturbance is negative, This simply

means that the total kinetic energy of the electrons is less when a
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disturbance is presgnt than when no disturbance is present,

The physical explanatioﬁ of this result is as follows, Assune
that d.c. electron velocity and propagation vector are both in the x
direction énd that the electrons travel slightly faster than the cons-
tant phase planes of the wave, In a coordinate system which moves with
the ﬁave, the electric field of the wave is a sinusoidal static field
and the electrons move slowly through this field in the +x direction.
The electrons tend to bunch in the regions where they travel mors
slowly, i.e., where the potentiél is low, and spread out where they
travel more rapidly. In the stationary coordinate system the slectrons
also appear bunched in the regions of lowest veloeity, and since there
are more electrons with reduced velocity than there are with inereased
velocity, the total kinetic energy is less than in the undisturbed
case, I1f, however, the d.c. electron velocity is less than wave velo=
city in the stationary system, in the coordinate system which moves with
the wave, the electrons move slowly through the potential of thé vave in
the -x! direction. They are strongly bunched in the regions of low
velocity (in the -x! direction) in this coordinate system but in the
stationary coordinate system the electrons appear bunched in the regions
of highest velocity. The total kinetic energy is then greater than in
the undisturbed situation.

Thus under some circumstances it is possible for a disturbance to
increase as it propagates along the electron beam or beams with the
energy in the field increasing at the expense of the kinetic energy of

the electrons which travel faster than the wave velocity.
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A similar situation ocours when tﬁe prbpagation vector is assumed
to be real and the frequency is complex. A disturbance of this kind
increases or decreases exponentially with time throughout all space. In
such a disturbance the avefageﬁ'rate at which electrons of welocity u,

absorb energy from the electric field is

s 2 2 2 *
g VWV + et - (k-u) €, E" E 2V
. [ =" 29 ] 2 (p‘o) ...._C’_...:.L_E....!-_.. e . III,25

at - [1)2 v (@-k - 20)2] 5 O

The averagé*'kinetic energy density of these electrons is

'3
5 o (1) 5 e . III.26

92 + o0 - (k » 30)2
[\32 (o -k _130)2]

1
Wk=2

From the first of these two expressions it may be seen that electrons
receive energy from the fisld if

V2o o k) > 0
whereas they give energy to the field if

P22 o (kou)’d 0

When the amplitude of the disturbance increases with time, ¥ is positive,

hence electrons give energy to the field if
(- u)?> V% + P

or when the component of the electron velocity in the direction of the
propagation vector is a little larger than the phase velocity of the wave.
From the second of these two expressions, it may be seen that the

kinetic energy of the disturbance is negative if

1'averaged over a spatial period.
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K - 1__1_0)27 _-02 RPCE

Thus under some cireimstances it will be possible for a disturbance
to increase éxponentially with time, the energy in the field increasing
at the expense of the kinetic energy of electrons which travel, roughly
speaking, faster than the wave, |

It should be noted, however, that the net or total time-average
power flow of a wave which increases in some spacial direction is zero.
If this were not so, the power flow would be proportional to the square
of the wave amplitude and hence would increase in the particular spacial
direction, This would imply a source of energy which, according to the
conservation laws, dees not exist., When a wave does increase in some
spacial direction, some of the electrons transmit energy in the direction
in which the waves increase and others transmit an equal amount of energy
in the opposite direction. ZIlectrons which travel slower than the wave
may transmit energy in a direction opﬁosite to their steady veloéity, U, e

Similarly, when an oscillation increases with time, the space-average
of net or total energy density does not increase, but remains constant.
The kinetic energy density of the electrons which travel faster than the
wave have their kinetic energy reduced at a rate which is just equal to
the rate at which the energy in the field and the kinetic energy of other

electrons increases.

The Electric Susceptibilities. Equations III.6 and III.7 can also

be used to determine the current which is induced in the plasma by the

electric field _1_'3_1 « Assuming simusoidal time and spatial dependence,



gtlot - k. r) these equations becone

s ei
o-keu)y = -EE,

ilo-k-u) "1"190(‘-50)5°_1’-1 =0 .

Solving these for Py and 31 and forming gl =P Y + P glves

(a=k+u ) B +u k « E
-J]_ = iZ;pé(uo) 0 3
u (,3-]{.11)
-0 ( -~ -0

The electric susceptibilities, as defined by II.29 are,

%t = 'Z m2p )

4 o (0)-£'_L_‘l_o)

2
_ls-p_omp(go)

l:_'?Q

% ole-keu)?

These expressions are campletely equivalent to IT.30 and II,31 if short

range collisions are neglected,



_37..

v ‘CHARACTERISTICS OF LONGITUDINAL WAVES IN A PLASMA

Energy Loss Due to Short-Range Colligions. In this section it

will be assumed that a quasi-neutral group of charged particles
traverses the same space as the coronal electrons and ions. The elec-
trons interact more strongly with the field than do the ions because of
their smaller mass. To determine whether high speed particles can

travel an appreciable distance in the solar corona, the energy loss is

estimated from the formula (29)

L
dB n, ¢ p dmax v
"d';c' = - é ) nd. . ol
?-nreomv min

Although this formula is not accurate for electron-electron collisions
involving large momentum transfers, it will suffice for anestimate.

The minimum valve of the impact parameter, dmin’ is determined by the
maximum energy which may be transferred in a single collision

e2

d, = Iv,
min b,wéo n 72 2

The maximum value of the impact parameter, dmax’ may be taken as the

-1/3
n
o]

mean interparticle distance, + For electrons whose velocity

is about one-third the wvelocity of light,

L 1
- E & 1.6 x 107 xn 1v.3

in the sclar corona. Since the distance these electrons must travel
to escape from the corona is about 106 km, the energy loss due to
short-range collisions will not be appreciable, For much slower elec-

trons, however, this energy loss will be very important.
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Waves Assoclated with a Square Distribution Function. Before

discussing waves in non=-thermal plasmas, several aspects of waves in

thermal plesmas will be discussed. When the distribution function can
be written

W = L)L @) E @) IV

the longitudinal wave dispersion relation II.L8 can be written

o
= o2 £ o) du

= — & Iv,n
P_oo (“‘13: ux)z

The x direction is taken as the direction of the wave vector X .

Short range collisions have been neglected, If the Maxwell Polizmann
distribution is approximated by assuming that velocities up o a wvalue
U are equally probable and that no electrons have a velocity greater

)
than Uo , integration of IV,5 leads to

o2 = ol 4 k2 T . 7.6
P X o

The distribution function is shown in Figure La, and the relationship
IV,6 is shown in Figure lb. In’oérpreted as a relationship which gives
the frequency of oscillation of a disturbance whose wavelength is

211/1cx s 1t is seen that all disturbances have a natural oscillation fre-
queney greater than the plasma frequency and that long wavelength dis-
turbances (ki«mi / Uzo) oscillate with a frequency nearly equal to
the plasma frequency. VWritten as a relationship which gives the propa-

gation characteristics of waves with frequency o , it becomes
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Iv.7

When the frequency is greater than the plasma frequency the phase

velocitjr of the waves is

v::a“')"‘s 0 Iv.8
P K .

and the group velocity is

& 2 72"
Vet & - Uo‘/l'(‘”P/‘”) . 1.

Note that ¥ Vg = Uzo s

formulas where the cutoff frequency is @, and intrinsic velocity of

and that these formulas are similar to waveguide

propagation is Uo instead of the welocity of light.,

The energy transferred by these waves can be computed from the
expressions of Section III, III.23 shows that, on the average, the
electrons do not exchange energy with the field, since )e =0, IIL.2L

gives the average kinetic power flow of electrons whose velocity is U,

Fo. 2 ‘°2p (uy) €, I BY
ko Ta-k_u )3 "x 2 . 1V,10

Since m)kx Woos the denominator of this expression is always positive.
Thus electrons traveling in the positive =x direction transport a.ce
energy in the positive x directions and electrons traveling in the
‘negative x direction transport a.c. energy in the negative x direc-
tions Because of the way in which the denaminator depends on n’x R

electrons traveling in the positive x direction transport more energy

in that direction than electrons traveling in the negative direction,
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provided kx- is positive. The total kinetic power flow is obtained by

integrating I1.9 over all velocities,

2 o) €, Epy B
T = (2 b e x
(Pk)total 27U, 1-2 > V.11
- (_9__2_) v €o Fix Ea‘lx
a@p g 2 .

The average stored electric energy is given by III,16 and the average
kinetic energy may be obtained by taking ¥ = O in III.25 and integrate-

ing over all veloclties. The result is easily shown to be

2 € E]J: E¥
= 20 (o) 1x
(W, ) = (5 a1
K¢ op mzp ) L . Iv,12

These relationships may be combined to give

P oar = g [(wk)total R WE] .13

so that the total a.c. energy of the disturbance can be regarded as being
transported at a velocity equal to the group velecity of the wave, This
type of relationship has been provéd for many other wave-like disturbances.
Since the group velocity is very small for long wavelength disturbances,
i.e., when the frequency is equal to or slightly greater than the plasma
frequency, little energy is transported in this region, The maximum
velocity of energy transport is Uo s and this is achieved at frequencies
which are much higher than the plasma frequency. The disturhances then
have a very short wavelength con_lpared with the Debye wavelength and the
rectangular veiocity distribution used in this discussion is not a valid

approxination to a true thermal distribution (6),(2L).
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When the frequency is less than the plasma frequency (this situa=-
tion could exist if the medium were excited by an external source of
this frequency) the propagation constant becomes pure imaéinary
(kx =0, Ex # 0 in the notation of Section III) and waves increase
or decrease with distance. The nature of these waves may be determined
by examining the energy exchange. III.2L, with k =0, gives the
average kinetic power flow of electrons with velocity uo

F o? °°2p (ux) ‘ €, By By e-Z'Q:x
k [m2+ﬁ,% ui 2 ™ 2 .

7.1k

Thus, when Qx>0 s electrons traveling in the positive x direction
transport a.c. energy in the positive =x direction, but the amount of
energy which they transport decreases as they travel because of the fac-

x
zﬂx" ) « Conversely, electrons traveling in the -x direction

tor e
transport energy in that direction but the amount of energy transported
increases as they travel., Examination of the rate of energy transfer
from the field to the electrons,
- (.02 co2 40 %C
BPTX E*
[w2+f2 u2:{2 eoE]x x
X X

, IV.15

shows that the electrons which transport less energy as they travel
(ux>0) are giving their energy to the electric field, while the elec-
trons which transport more and more energy as they travel (”x< 0) are
‘zaining this energy from the field. This is as expected,

If the observer is imagined to be at x = 0 , the source of the dis-
turbance must be at some negative x coordinate, A source at x =1,
for example, can be imagined as sending out a.c. energy in the positive

X direction via electrons which travel in that direction. As these
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electrons travel they give up their a.c. energy to the field, Electrons
traveling in the -x direction, in turn, receive this energy from the
field and carry it back to the éource. There is no net kinetic power
flow in such a wave, for at each point, on the average, as much energy
flows in the «x direction as in the +x direction. A4ll energy sent
out bj the source is returned to it. If Lis negative, the distur-
bance increases in the -x direction, and the source is located at
some  +X coordinate.‘

From this result it may be concluded that when the frequency is
less than the plasma frequency, only waves which decrease auway from the
oource may be excited, The situation is analogous to that of a wave-
guide operated below its lowest cutoff frequency; waves always decay
awvay from their source. |

The Double Stream Amplification Process. In Section III it was

shown that electrons can give up energy to the field and, at the same
time, acquire a greater velocity modulation if the electron veloéity is
greater than the wave veloecity. A simple example of this is the double-
stream‘ amplification process discovered by Haeff (L) and others. Assume
that the plasma consists of two groups of particles, one which travels
with veloeity Uy and the other which travels with velocity U, e The

distribution function may be represented by
fc:x(ux) = n ﬁ(u.x-ul) + Ny a(ux-uz) V.16

and the resulting longitudinal wave dispersion relationship is



. .coz | | mz
(m+i£xu1 '}S:ul) (m+izxu2 -l&_uz)
5 o 2 nge? .
where o ol e m and b2 = €, * Following Haeff, only the

i nm 12wl 3 n " 3
special case - % )= will be discussed and the "mean" velocity u,

and "mean" plasma frequency °°p may be defined as

n E ul 112

2 A 2 Iv,18
“p ©pl _ ©p2 | )
u2m usy u22

Using these definitions in IV,17 and solving for kx - iﬂ %

2 N 2 1
i) 9922 _ay % [%p 0 e.2%
(l&-lﬂx—'{;) ('dm"ul) +;—§-: =+ b w) e I
m m m

The lower sign yields one wave which increases in the +x direction,
'ax< 0 , and one wave which decreases in the +x direction, 2‘ >0,
if

8.2 e
(mp)<:2u1_u2

Iv.20

For both waves = »/fu, , 80 that the phase velocity of the wave is
0

u, and thus lies bhetween u:L and 1

o
With this result in mind, the power flow in the two waves can be

~ discussed, Consider the increasing wave, ﬂx< 0, first., o =~ JS: uq

is positive and ¢ =~ Ig{ u, is negative, hence by III.23 the first group
of electrons receives energy fram the field and the second group of

electrons gives energy to the field. From III.2L4 it may be established
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that the first group of electrons transports energy in the +x direc-
tioh and the second group of electrons transports energy in the «x
direction., FPower flow in a difection opposite to the direction of
motion comes about, as explained in Section II, because the second
group of electrons loses kinetic energy by becaming bunched. Thus
both groups of electrons become more strongly bunched as they travel,
the faster electrons giving energy to the field and to the slower
electrons,

For the decreasing wave, lzx is positive, and the direction
of kinetic power flow of the two groups of electrons is the same as
in the increasing wave. But now the fast electrons receive energy
from the field in order to increase their total energy to that of the
unperturbed state which they ultimately reach. The slow electrons give
up their excess energy to the field.

Pierce has recently given an explanation of the double stresam
amplification process in terms of a coupling of modes of propagation
(30). For stream mumber one, in the absence of stream number two, the
characteristic waves are obtained from III.16 by setting Wy equal
to zero |

otom g
ke = s Ay

. Iv.21

and the characteristic waves of the second stream in the absence of

the first are
@ T

kx=.__"..°.)!£~ﬂx=o . V.22

up

These solutions are shown in Figure 5 by the solid lines. The solutions
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with the plus signs are called the slow space charge waves and the
solutions with the minus signs are called the fast space charge waves
because the waves have phase veldcities which are less than or greater
than the elsciron velocities of the appropriate electrons. Piercels
theory of coupling of modes of propagation shous that if two modes whose
phase ﬁelocities are approximately equal and whose power flow is in
.opposite directions, are coupled together, one of the modified waves
will increase with disiance and the other will decrease with distance,
When the power flow of the two modes are in the same direction, the
modified waves are constant amplitude waves. From III.2L it may be
shown that the power flow in a slow space charge wave of a single streanm
(0 = kx u<0) is negative and the power flow in a fast space charge wave
of a single stream (w - kx u>0) is positive, In the double stream
process there is a frequency band in which the slow space charge wave
of the fast stream couples with the fast space charge wave of the slow
stream to produce a pair of new waves, one of which inereases with dis-
tance. The energy which appsars in the electric field in this increasing
wave comes from the kinetic energy of the faster of the two groups of
electrons. Furthermore, osince the group veleoecity of sach of the two
original waves is positive, both the increasing wave and the decreasing
wave can Be established in the region x>0 by a source at x =0, At
large x, of course, the increasing wave becomes much larger than ths
decreasing or constant amplitude waves,

The two-siream theory is not applicable to the solar corona be-
cause the coronal electrons do not all have the same velocity. The
electrons of the undisturbed corona are approximately in thermal equili-

brium and thus thelr velocltiew are dlstributed according to the
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‘ o
Maxwell-Boltzmann law, II. . Assuming a temperature of ZI.O6 K,

their r.m.s. x-directed velocity is given by

[2Z - /?.LT_L,- ' -1
L - A23900 kn sec . : Iv,23

According to the measurements of Wild, eited in the introduction, the

Type II (slow) bursts appear to travel outward through the corena at

a velocity which is about one-tenth this value, and the Type IIT (fast)
bursts appear to travel outward at a wvelocity which is about ten times
this valua. Thus if the slow bursts are to be explained as an excita-
tion of the plasma oscillations of the coronal electrons by a directed
beam of charged particles, it is essential to include the effect of the

distribution of coronal electron velocities.

The Analysis of Feinstein and Sen. Feinstein and Sen (7) approxi-

mated the coronal electron velocity distribution by the "square! dis-

tribution discussed earlier,

i
fo(u) = 'é',{?o" lul < UO IV.ZL\.
= 0 lul>U,

and took the directed beam to be monoenergetic
f,(u) = n, s(u~-u) . Iv,25

The resulting dispersion relation is
2 .
@ pl o pg

. 17,26
of = (g = 02 (e -k uy + 180)°

1 =
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where o . is the plasma frequency of the coronal electrons

pl. €m
n 32

1 . ' .
and ‘°p22 = e is the plasma frequency of the electrons in the

directed beam, Feinstein and Seh have solved this relation for

ky - ifx assuming the frequencv to te real, for a wide variety of
eleciron densities and velocities, In particular, they looked for
frequencies; » , for which the wave amplitude increased in the direc-
tion of the travel of the directed beam, i.e., for which fx u,<0 .
It was found that such increaesing waves were possible even when the
velocity of the directed beam, u, , was less than the velocity of the
coronal electrons, U, » Sen (31) later applied these results to esti-
mate the density and motion of solar material associated with the

Type II bursts.

The idea that slow electrons can exclite the plasma waves appears
to be in emiradiction with the 'result of Bohm and Pines who have shown
that a single charged particle moving through a thermal plasma loses
energy to the plasma oscillations and hence excites them, only when its
velocity is greater than the r.m.s. thermal velocity of the plasma
electrons.

The energy concepts discussed in Section II can be applied to the
increasing waves found by Feinstein and Sen to deiermine their nature,
Since Feinstein and Sen do not give k,_ and [x as a function of w,
but give oniy the values of o for which ,[x u 0< 0 , it is necessary
to solve IV,26 again, The qualitative nature of the sclutions may be
obtained by using Pierce!s theory of coupling at modes of propagation.
The waves associated with the distribution IV,2l; have already been

discussed. The waves associated with distribution IV,25 are described
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by the relation

o V.27

Kk, = 2%)393 f.=0 .
The characteristics of the waves of the two separate distritutions

are shoun in Pigures 6a and 6b by the solid lines. The characteristics

of waves of the composite distribution are depicted by the dashed lines.
A pair of increasing and decreasing waves are present, for which

k, u,<0 , over a band of frequencies which is centered about wpl when

W . = . s The center frequency is higher when mp2 is greater than

pl P2
mp2 « The essential point to note is that }Sc u, is negative and hence

os-kxuo>0

for both the increasing and decreasing wave. Thus the directed beam
of electrons receives energy from the field when Ix u°<0 s rather
than giving energy to the field, and the kinetic power flow for this
group of electrons is in the +x direction. These waves are really
modified evanescent waves, similar to those exhibited by the square dis-
tribution.,

From the point of view of the coupling of modes of propagation,
the increasing and decreasing waves can be thought of as arising from a
coupling of the fast space charge wave of the directed beam with the
wave of the thermal plasma which has a phase velocity in the negative x
direction. The power flow of these two waves is in opposite directions
and hence increasing and decreasing waves are expected when they are
coupled, Furthermore, since the group velocities of the two waves are
also in opposite directions, it is not possible to say that both in-

ecreaging and decreasing uwavas are established in the rapgion 0Zx< 1 hy
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asource at X =20 .‘ A study of the excitation of two waves of this
type (32) shows that the excitation of the wave which increases in the
+x directlon is determined primarily by the boundary condition at
X = 0 whereas the exéitation of the wave which decreases in the +x
direction is determined primarily by the boundary condition at x =1,

When the veloci’dy of the directed beam is greater than the velo-
city of the coronal electrons, increasing and decreasing waves are
found in tuwo different regions as shoun in Figure 6¢c . One set of in-
creasing and decreasing waves resemble the evanescent waves of the
thermal electrons alone and the previous description of the evanescent
waves of the thermal plasma a&pplies with one exception: kx is no
longer zero but slightly negative. This causes the thermal electrons
to transport a small emount of energy in the negative x direction as
may be seen by integrating IIT.26 over all velocities, This energy
flow just compensates for the extra energy which the directed beam
transports in the +x direction,

4s a final argument against the excitation of plasma oscillations
by slou electrons, it may be shgwn that the dispersion relation IV.26
if interpreted as a relation whiqh gives the oscillation frequency of
disturbance of wave number k. ( / % = 0) , yields no solutions for which
9 is positive if uo< Uo « The proof of this statenent will now be

outlined, Rewriling III,26
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where r = — and u = —i‘{"““"‘ is the complex wave velocity. Putting
(6v3 pl x

the right side over a cammon denaminator

¥, @) (u-w) (u-up)

<°2p1 | (@? - 12) (u-u_)?

iv.28

[ 4

uo-\/r @+ r) 020--1120
l+7r

u, +/r 1+ 1) UZO- uzo'
Uy T 1+

where u1 =

If it is assumed that Ol-uoc U0 it may easily be established that
- 4
U ™ €%
uoé u24 Uo N

The right hand side of IV,28 is easily sketched for real u from this
¥nowledge ol the pole and the zerc locations, Such a skeich lis shown in
Figure 7. TFor every value of ki , i.e. for all wavelengths of distur-
bance, the left side of IV,28 is real and positive, Figure 7 shows that
for each value of @X thers are four real values of the wave velocity
which satisfy IV.28. Since IV.28 has only four solutions, all soluticns
are real. From the definition of the wave velocity, it is seen that the
four frequencies of vibration are real (‘9 = 0) . However, when the
‘velocity of the directed beam is greater than the velocity of the
coronal electrons u,o>U° s one of the characteristic frequencies of
vibration has a negative imaginary part, (V>0) , indicating that

disturbances may grow larger with time.
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Sumi (33) has also studied the excitation of longitudinal oscil=
lations of a thermal plasma by a directed beam of electrons, and
reached the conclusion that the phase velocity of the wave must be
greater than the velocity of the directed beam for excitation to take
place, This coneclusion is incorrsct as shown in Section IIT by
physical, as well as mathematical arguments. Sumi's error can te
traced to the rule used in indenting around the singularity at the
wave velocity (w-k-u = 0) in the integration over all electron
velocities., The correct rule has heen given in Section II, The re-
sults of Ahiezer and Feinberg (3l) suffer from a similar difficulty.

Sen has also studied the characteristics of long wavelength
plasme waves in a bimodal welocity distribution (8) such as is thought
to exist in the transition region of a shock wave as it propagates
through an ionized gas. However, the long wavelength approximation
is not generally applicable when looking for amplifying waves, be-
cause the phase velocities of the waves must be mueh larger than the
velocities of any particles. Thus there can be no extraction of
energy from fast particles. All increasing and decreasing waves found
undar these circumstances must be evanescent waves,

There have been other instances in which solutions of the plasma
equations were incorrectly interpreted as representing amplification
of small disturbances. On closer examination many of these solutions
have been fouhd to represent evanescent waves, Bailey (19), for
example, suggested that two electron beams in relative motion in the

presence of a constant magnetic field can make possible the amplifica-

tion of transverse electromagnetic waves, If this were true it would
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be very fortunate for it might end the search for schemes which convert
longitudinal plasma oscillation energy to transverse electramagnetic
wave energy. However, Twiss (25) has been able to show, by means of
a transient solutlon of a boundary value problem in Balley's medium,
that the increasing waves are excited only by reflection and these
wavés_ decrease away from the plane of reflection. Roberts (35) sug-
gested that amplification is possible in a dominant mode waveguide
when an electron beam is nresent, but Walker (23) has pointed out that
the wave discussed by Roberts is simply the evanescent or cutoff wave-
guide mode, modified very slightly by the presence of the electron beam,
Most of these errors have been errors in interpretation. There
has been a great tendency for investigators to regard all waves whose
amplitude increasss in the direction of flow of an electron beam as
amplifying waves which derive their energy from the kinetic energy of

the electron beam.

Landau Damping. Vhile the imaginary part of the transverse wave

susceptibility given by IL.}5 is always negligible, the longitudinal
wave suscepbibility given by II.Ll can have an appreciable imaginary
part when the wave velocity is small enough for a significant number of
electrons to be traveling faster than the wave, This imaginary part of
the susceptibility gives rise to a damping of the plasma oscillations

as first noted by Landau (2h). According to the arguments of Section
III, which neglects the effects of short range collisions, the total
3eCe Onergy in a damped oscillation must be zero since there is no place
for the energy to go when the oscillation is damped out. It is possible

for the total a.c. energy to be zerc because the a.c. kinetic energy of
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the electrons which travel faster than the wave is negative and equal
in magnitude to the positive a.c. kinetic energy of electrons which

-are slower than the wave and the energy in the electric field.

Excitation of Plasma Oscillations by a Directed Beam. Previous

calculations have either been incorrect or incamplete, so it has been
necessary to find the solutions of the longitudinal wave dispersion
relation for a variety 6f parameters., The formula II L2 for the sus-
ceptibility of a lMaxwell-Boltzmann distribuiion of electrons is not a
convenient one for computetion, so the one~dimensional form of the dise

tribution function has been approximated by

oy /"
> .28
ux Toa 1

folclsc) =

The width at half-maximum of this distribution is 20,1 « The moments of
the distribution do not exist and it has the disadvantage that there are
more high speed particles than in the Maxwell-Boltzmann distribution.
These disadvantages are not particularly serious. The directed beam of
electrons is approximated by the distribution

az/rr '

folu) = 5 . V.29

- )2
(ux U‘2> +a2

.u2 is the mean value of the X component of the velocity of the directed
bean and 2a, is the width of its distribution. Ietiing n be the
.number density of electrons in the thermal plasma and n, the number
density of electrons of the directed beam, the resulting longitudinal

wave electric susceptibility may be writiten
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2 2
. mpl - m_22

[w-i‘b’-l%ial]z [m-i\)-kx (u2+ia2)]2 )

Iv.30

This result is obtained by substituting IV.28 and IV,29 into II,32 and
neglecting collisions, The first term is the susceptibility of the
coronél electrons and the second term is the susceptibility of the
directed beam. The longitudinal wave dispersion relation is obtained
by setting this equal .to =1 + This operation has the following signi-
ficance, Vhen IV,.30 is equal to -l , the imaginary part of the first
term of the expression must be the negative of the imaginary part of the
second term of the expression. The imaginary part of the susceptibility
is proportional to the conductance of the electrons, hence is positive if
the electrons take energy irom the field and negative if the electrons
give energy to the field. Thus one group of electrons gives energy to
the field and the other receives energyv. The case where the directed
beam gives energy to the field is of primary interest in this pr‘oblem.
The real part of the susceptibility must be equal to -1 in order to
cancel the susceptibility of free space. Since free space is capacitive,
the electrons supply an induetive susceptance. Fnergy cmceillates back
and forth between the electric field and the kinetic energy of the elec-
tions, much as in a resonant electric circuit.

The dispersion relation IV,30 may be solved for o - iV by means
- of the root locus method (36) . Iet (0 - iV )/}Sc be defined as the
camplex wave velocity, u, and let ﬁl and U, denote ig, and

2
u, * ia2 respectively. IV.30 can be written



i

P |

._,%. = l + r
2 T2 -

®o1 (u 111) (u -1,

w

2 V.31

or

(u-8) @ -F)

1+1)w ol (u_-u-l)z (u.'-ﬁz)z

1v.32

where - - - -
112"'1’.111 + iﬁ-‘(uz -ul)
u
3 1 +n
= . uytru, - i‘/—?(ug-ul)
L 1+

o= (2
pl
Since k, 1is assumed to be real, the left side of this expression is
real and positive, Hence the right side must be real and positive.
Figure 8 shows the points '1'1'1, 52, 53, and Eh plotted in the complex
wave velod ty plane., In order for the point u to be a solution of
IV,50, the angles shown in Figure 8a,b must total an integral number

times 2m

91 * 92 + 93 + gh = 21wn . IV.33

If the point u satisfies IV,33, kzx/(l-l-r) °’2p1 may be found from

K £ |

x 4 1),

~= = (L+r) . IV.3h
234 7,
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Cscillations which inecrease with time correspond to points in the
lower half of the wave velocity plane, since in that region Y is
positive. The shaded area of Figure Bc shous the region of wave

, velocities for which the direcited beam gives energy to the field and
the coronal electrons receive energy from the field, OUnly solutions
in this region are of interest in the present study.

Mthough the root locus rethed was useful in a preliminary study
of the sclutions of IV.31 s nore extensive calculations nave been made
with the Electrodata Datatron computer using an iterative method, Same
of the results of this study are shoun in Figures 9 through 1lli. The
renainder of the results are tabulated in Appendix I, Figures 9, 10,
and 11 show the loci traced out by the caiplex wave velocity, u , as
k, varies from zero to infimity with o equal to .1, 1.0, and 3,0,

respectively. In these three cases a, 1is assumed to be zero. The

2
different loci correspond to different values of the parameter
- (%:-2{-)2 . The loci start at Eh (kx = Q) and end at 1‘1‘2 (k, = ©) .
Figures 12, 13, and 1L shou the loci traced out by the complex
frequency as k. varies from zero ‘o infinity for the three sets of
parameters of Figures 9, 10, and 11l. The complex Irequency aluays has
a negative imaginary part (@ >0) , indicating that such disturbances
increase with time, ihen the wavelength of the disturbance is infinite
(k, = O), the frequency is zero. It can be seen from the rigures that
the rate of growth is largest when lg( u2/mp1 is of the order of unitye.
The results given in Flgures 9, 10, and 11 are somewhat more

'general than might first appear. 4&s may be seen from IV,32, the addi-

tion of a constent, {(u! + ia), to u , Uys Uy u3 , and ﬁh does not
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change ISc + This is eqﬁiva.lent to a translation in the complex wave
velocity planes The addition of a real cvoustant (a' = 0) is equi-
valent to fransforming to a coordinate system which moves with the
velocitj u? , The real part of frequency of oscillation in the new
coordinate system is given hy the non-ralativistic Toppler shifit for-
mula,

w! = ¥ kx u? Iv,.35

and the imaginary part of the frequency is unchanged. The addition of

an imaginary constant (u'! = 0} is equivalent to a broadening of the

distributions
a! = oy +al
Iv.36

a'! = g +a! .
2 2

The real part of the frequency is unchanged but the imaginary part of

the frequency (=) is increased by a!
-y! = -P+qa! V.37

and hence the rate of growth of the oscillation is decreased.

A nunber of features of fhe'se results have been noted: (a) If
the directed beam is monoenergetic (a2 = 0) and the velocity spreéd
of the coronal electrons is not neglected (al # 0) disturbances of
all wavelengths increase with time. However, disturbances whose wave-
length is greater than two or three times aapl/l:t2 increage at a mch
slower rate than disturbances of other wavelengths and after a short

time are unimportant. If the directed beam has a slight distribution



of velocities (a2 # 0) only the longer wavelength disturbances in-
erease with time., This result is obtained by translating the wave
veloelty locli in the imaginary u direction and noting that the parts
of the. root loci correspoﬁc"d:;g to disturbances of short wavelengths are
shifted into the upper half plans, Complex wave velocities in the
uppér half plane represent damped disturbances. (b) Long wavelength
disturbances increase with time even if the directed beam has a velocity
which is less than the width of the thermal velocity distribution of
the coronal electrons (% = 3) . A small velocity spread in the
directed beam (%z.OB) campletely eliminates this effect, however,
(e¢) For the disturbances which increase most rapidly s the real part
of the frequency is generally just a little less than the plasma fre-
quency of the coronal electron, S In none of the cases is this
frequency greater than the plasma frequency of the coronal electrons,
although in many it is just a few percent less. Appreciable growth
occcurs for disturbances whose frequency is greater than plasma fre-
quency mpl or the critical frequency for escape, mpf + mpg
sy \/_m « (d) The real part of the frequency in a coordinate
system which moves with the directed beam is w'!' =@ - k, Uy s which
is approximately equal to the plasma frequency of the directed beam.
Thus each group of particles oscillates at a frequency which is nearly
equal to its natural oseillation frequency.

Figure 15 summarizes one aspect of these results; the conditions
under which a plasma may be unstable due to the presence of a directed

beann of electrons. The lines »r = constant denote the stability

boundaries for the various values of I Regions to the left and
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below these lines represent values of al' and a, for which some

disturbances increase with time., Regions to the right and above
these lines represent values of a; and o for which no distur-
bances increase with time. From this curve it appears unlikely that

a
any disturbances increase with time when -2 =10 , If a particular

W
1
set of parameters . Qs Gos and r lie just within the unstable region,
only the very long wavelength disturbances increase with time and the
frequency of these disturbances are much less than the plasma fre-

quency.
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v HEMARKS ON THE NON-LINEAR ASPECT OF THE PROBLEM

.In the preceding section it was found that disturbances of certain
wavelengths increase with time very rapidly. Even if the initial dis-~
turbances are the small random fluctuations which are always present,
it takes very little time for these disturbances to grow to extremely
large amplitudes. For example, the amplitude of the fastest growing
disturbances (7 /oaplz.B) increases by a factor of 1010 in only 16
plasma periods or about 10'7 second, Uther disturbances may grow at a
slower rate but it is clear that, as far as observations are concerned,
the non-linear behavior of the plasma process is the most important.
Very little progress has been made in this important aspect of the
problem. In this section an estimate of the final amplitude will be

made using the resulits of a simple non-linear calculation,

Hon-Linear Oscillations of a Simple Plasma, If all electrons

have the same velocity, zero velocity ior convenience, a traveling-wave
solution of the non-linear equations can be obtained (37),(38),(39).
Assume that all field quantities are functions only of the quantity
x!' =x -Vt , where V is the wave velocity. In a coordinate system
which moves with the wave wvelociiy, all field quantities are independent
of time. The equation of motion becomes
X4y 2 =—-§-(-Y—2-) - .2 V.l
3t 1 et 2 ! *
Integration of V.1l yields

slo

2 2
v e ¥
T " afr7 v.2
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where the constant of integration has been chosen tomake v =7V in
the absence of a disturbance (@ = 0)., The continuity equation

' becomes ‘

5 o) .0

BT a0 g e 0 e
Integration of V.3 yields

pv. = pV V.l

where the constant of integration has been chosen to give p = Po in

the absence of a disturbance (v = V) .Poisson's equation, from which

the field is determined, can be written

52¢_p-p°=£9_. .Y.-]_]=92_ L 1
a2 € €o |V € | 1+ 2287

m V2 V.5

vhere V.l and V.2 have been used. V.5 is conveniently expressed in

terns of the dimensionless variables

§= (_*‘.EJ_C—' §= i_ev"a‘g‘ D) V.6

v

ik 2 S

= 2 . v"?
ag? /143

When.i@ is small compared to unity, the right side of V.7 can be ap~

proximated by sirply - ii. Evidently this yields the linearized, or

small amplitude, result of simple harmonic equation. V,7 can be in-

a®

tegrated by multiplying by 2 agr dS
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V.8

uhere the constant of integration has been taken as h(A2 -2) 4 Ilot-

ting 1 +§= 1 +fl and solving for an

dag
an \’A2 -N 2
d§ - 1+ Y‘. . v09

Using Dwight (LO) 320.01 and 321,01, yields

=’-17L 2_ +ﬂ
§ =sin™ = A2 - F + I, 7,10

7
5 S0 as to make $ syn-

The constant of integration was taken to be
metric ahout § = 0 . It is easily shown that the normalized electric

field and charge density is

a® _ , f2__2'_ .
a._.g. = 92 AS - vL Voll
a?q | _-2n _
ag? 1+n |
2
a® a-®
Figure 16 shows § , 'a"g"' sand 1+ 2 :{g‘é‘ versus § for
A =,, .5 and 1.0 . The small amplitude approximation (A<<l) of

P =0
pO V.12

N

V.10 is simply

M= %— = A sing .13

hence A is an amplitude parameter. From V.12 and Figure 16 it is
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geen that the charge density becoines irxi‘ini_‘oe when fL= -1 (A - 1)
At this ampiitmde electrons are just beginning to overtake their
neighbors. At larger amplitudes the velocity would be a multivalued
function of position x' . The normalized charge density, electric

field, and potential wave forms may be expanded in a Fourier series,

2
E._nz'g__g__-y]_z 1+ a_ A cos§ +a2A2 cos 2§ +a3A3 cos 3 + o o o

o ag? 1 V.lk
a a2 a3A3
g_§.=3‘2-[allxsin§ +~%—-sin2§ *3 sin 3§ + * ° '] V.15
1 agh? -l
i Z - -2—[31A COSg +—E— cos 2§ + 5 oS 3§ + 0 ‘] R Volé

The coefficients Ay, a5 , and ay are approximately equal to unity
but depend somewhat on 4 . They are plotted as a function of A in
Figure 17. 7Thus these simple non-linear plasma oscillations are very

rich in harmonics.

Estimate of the Maximum Limiting Amplitude of Plasma Oseillations.

The linear theory is useful in predicting whether a particular distri-
bution of velocities is unstable, i.e., whether smé.ll disturbance may
grow larger. In Section IIT the source of energy for these increasing
disturbances was shown to be the klnetlc energy of the dlrected bean.
Clearly, only a limited amount of energy is available and disturbances
must cease to grow when non-linear effects become important. The pre-
vious non-linear calculation shows that these effects are quite impor-
tant when g becomes of the order unity, V dis the velocity of

mv2
the electrons relative to the wave.
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Using the relations of the linear theory,

: 2
g = k& . ___I“"i"‘l‘-“iz .
i k@ ? K2 ’ 17

the condition for the validity of the linear approximation can be ex-

pressed as

e _E°%

2m |o- i'D.-_lg'

y << 1 . V.18
u,|

The growth of the disturbances may not be limited by non-linear effects
until this quantity becomes of the order of unity, however. It is

easily shown from the equation of motion, III.17, that the above quan=-
20

mve
electrons, v, , to the difference between the wave velocity and the

tity, » is simply twice the ratio of the a.c. velocity of the
component of d.c. electron velocity in the direction of the wave, It
is also equal to twice the ratio of the a.c., charge density to the d.c.

charge density of the electron beam,

It will be assumed that growth of the disturbance is limited by
non-linear effects when this quantity, evaluated for electrons which
travel iester than the wave and hence the ones that supply energy to the
disturbance, is equal to unity. It is interesting to note that limiting
amplitudes of increasing waves in traveling wave tubes may be predicted
with a reasonable accuracy in this manner., Because of the similarity
of the situations (in one case the beam of fast electrons interacts with
a slowly traveling electromagnetic wave of a helix and in the other the
fast electrons interact with a traveling plasma wave of the coronal

electrons) it is reasonahle to apply the same considerations to determine
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the limiting amplitude of the ilncrsasing waves.
The spaca-average of the energy in the electric field of the plasma

oscillation at this limiting amplitude is given by

. 1 .
E .
U, = L ) -1 351. .
162 Nom u22 [(l ke 1.3.2)2 . (9_)2] RNl
H ® e 2 @ @ B5)
1 co2 nzmuzz (u-u2) 2 v
x 8 (_....2.) 2 Y » 119
@ . 2
.]2: no mu22 is the kinetic energy of the directed motion of the fast

electrons, ;—)—7 is of the order unity. The last factor is much less

than one, mdpcan be evaluated using the resultis of linear theory given
in Section IV. This factor is roughly fourth power difference between
the complex wave velbcity and the fast electron velocily divided by the
electron velocity. This factor is tabulated in the Table I for -3—1-'- =,1.

The wavelength of the disturbance is taken as the one which increases

most rapidly with time,

Table I
r 003 010 030 2100 «300 1.000
(u _u2)2 2 _
—~ .00007!4. .000L6 .0026 016 072 «37
2

An approximate analytical expression for the factor given in Table T
is L 1'3 /2 » Thus less than a few percent of the kinetiec energy of
the directed beam is transferred to energy of plasma oscillation.

Spectral Distribution of Energy. The spectral distribution of the

noise energy at a time t such that the linear theory is still appli-

cable can, in principle, be computed by assuming that initially (t=0)
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the disturbances which are present are simply the random fluctuations

of thermal iequilibriu'm. As shown in the preceding section, certain
wavelength components of these disturbances increase very rapidly with
time. At the time when the limiting amplitude is reached, the oscilla-
tion energy will be confined to a narrow range of wavelengths, and hence
to a narrou range of frequencies, This can be seen as follows, Suppose
there are I;I(m) modes of oscillabion per unit volume whose frequency
(real part) is between @ and w+dw and that at t = 0 the energy
of these modes are €(w) . At a time 1t later the energy density

spectrum is

W) - M) €(@) 2”@ V.20

If «, is the frequency whose rate of growth is largest V(w) can be
. 1 2 R
- approximated by V (o.\m) + 217" (com) (a)-mm) , Where " (wm) is nega-

tive. For large Vv (mm)'b the energy derisity spectrum can be written

2P (@)t ()0 -0 8

W(w) & N(wm) € (mm)e V.21

assuming that H(w) and €& (©) are slowly-varying funetions of w .

The fractional width of the distribution

=4

® 1 : 1 '
— — = VC 22
G a9 () YV @gday ()

decreases with time. From Figures 12, 13 and 1l it is found that

2% "(cum) @, is of the order of unity. Since the exact initial conditions
are not known, the time t a
be destermined., But the limiting amplitude is so much larger than the ini-
tial amplitude, that ot will be a large number, and hence the spectrun
will be narrow with the maximum energy at a, the frequenéy whose growth rate

is greatest.
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VI COUPLING OF LONGITUDINAL PLASNMA CSCILLATIONS AND TRANSVERSE
' BLECTRQHAGHETIC WAVES

The previous sections have dealt with special aspscté of longi-
tudinal.plasma oscillations. These waves represent the collective
motions of the electrons and the Poynting wvector vanishes identically.
The disturbances which reach the earth, on the other hand, are trans-
verse electromagnetic waves. In a uniform unbounded plasma these two
wave types are completely independent, or uncoupleds The solar atmos=-
phere is not unbounded, nor uniform., The principal deviation from
uniformity is the slow steady decrease in electron density between the
inner corona and interplanetary space, where the electron density can
be considered to be negligible, In addition, the corona is not simply
a quiet atmosphere at a high temperature, but there are many irregu-
larities of varying size (1). There is undoubtedly a small amount of
coupling between transverse and longitudinal waves which arises from
the steady decline in electron density with radius in the undisturbed
corona. More abrupt discontinuities in density, associated with
departures from the quiel or undisturbed coronal conditions, should
give rise to an even greater amount of radiation. G. B, Field (Ll1)
has, for example, computed the radiation which is generated when a
plasma wave impinges on a plane interface at which the electron density
drops sbruptly to zero, This model is a rather drastic one to apply to
the situation in the corona, but it is at least indicative of a
phenamerenwhich is likely to be significant in acecoumting for the ob-

gerved radiation,
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In this section, the problem of radiation and coupling between
wave types vgill be approaehed from a different point of view, To a
certain extent it is complemeniary to Field's, The small density
gradient wﬁich extends over great distances will be neglected, and
it will be assumed that there are many small regions where the elec-
tron density is slightly higher, or slighily lower than the average,
The dynamics of the density fluctuations will not be treated; they
are assumed to be independent of time. Aotually, the fluctuations
are not steady in time but have their own dynamic character. Hou-
ever, when their characteristic frecuencies are very much lower than
electron plasma frequency, they may be considered independent of time
for the analysis which follows. It is assumed that the plasma elec-
trons have been left in a state of large amplitude oscillation by the
passage of a directed beam. The presence of the directed beam is
’ neglected in this part of the analysis, although its presence is neces-
sary to maintain the plasma oscillations at a high level becauée of
damping by short range collisions, The principal result of this
analysis is to show that the fluctuations in density give rise to a
coupling between the longitudinal plasma oscillations and the trans-
verse electromagnetic waves. A plasma wave is scattered by an
irregularity in density and some of its energy is transferred to the
electromagnetic wave., The amount of scattering is evaluated when
the fluctuations are randem and can be characterized by a mean square

fluctuation and a correlation distance.

Coupling by Density Fluctuations. The analysis begins with

Maxwell's equations and what might be termed the macroscopic eguations



of a plasma:

oB
= -—: VIQ
Vx E 5 1
ol

Vxﬁ = -é-t-+£t Vi.2

VeD =
D= op VL3
vV.B = 0 Vil

..._._.ape-l-v'p v
ot e -

]
[
=
'y

vl

Pe g% " % pe B ="V, 1.6
where pe is the electrcn charge density, Py is the total charge
density (electrons and ions), Jy is the total current, and ¥ is the
electron mass velocity. The second term on the right of VI.6 is a
pressure termm which takes into account, in an approximate manner, the
convection of momentum by the electron thermal velocities, This term
causes the frequency of oscillation to depend on the wavelength, and
choosing W2 equal to ul = 3&T/m gives a long wavelength dispersion

relation in agreement with II,39

2

m2=mp+k255 ) VI.7

This result can also be obtained from the equations of change of Chap=-
‘man and Cowling (20) by assuming the electron gas to be adiabatic and
noting that in a plane plasma wave only one degree of freedom of the
‘electrons is involved, motion in the direction of the electric field,

or uave vector,
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The éffect of convected momentum is te couple adjacent regions
of the medium. Without this efféct the longitudinal oscillations in
, é plasma of varying density wuld simply occur at the frequency which
is characteristic of the-meaium at each point, If the density
.varied, each region would oscillate at a different frequency., The
effect of the pressure term is to couple adjacent regions of space
so that the oscillation has the same frequency everywhere. In this
case when the density varies from point to point the wavelength can
be considered to vary from point to point according to Eq. VI.7 .
Rather than attempting to obtain exact solutioné of (1) - (6)
for specified discontinuities, the irregularities will be considered
as a perturbation from the uniform case. The irregularities in
density will be characterized by an expansion parameter, § , and only
the first order corrections will be obtained, All conditions and
Solutions for the undisturbed conditions are denoted by a superscript
zero. First order perturbations in this procedure arevdenoted by a
superscript one. Quantities which are independent of time are denoted
by a subseript zero, and a.c. or time dependent quantities are denoted
by a subscript one, The need for such a notation will become clear.,
The irregularities in ion density are assumed to be known. Due to
thelr large mass, the characteristic frequencies of the ions are much
lower than the irequencies of the disturbances, which are of the order
of the electron plasma frequency, The electron density tends to
follow the ion density and maintain approximate neutrality, The elec-

_tron and ion densities may be written
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0 0 1 1
Po =P TP *8 (7 +p)
1

= o0 .
Py = =P =8Py

where the ion density is taken to be independent of time., Since the

electrons have no steady or d.c. velocity, the electron velocity may

be written
o} 1
g™ L% 0%,

Similarly there is no d.c. electric field when the perturbation is
absent (8 = 0) but there is, in general, a d.c. field when the

perturbation is present, so that
0 1
£ = Q;L+ 6 (§4,+ Eﬁl)

When the perturbation is absent and there is no a.c. disturbance, the
electron and ion densities are uniform and there are no steady electric

or magnetic fields. The velocity is zero.

Plasma Conditions when Perturbation is Present but with A.C.

Disturbances Absent. Terms of VI.3 and VI.6 of first order in & and

independent of time are,

o"‘l = l 1
€V E, P3P, VL8
%gl +w ‘Vp =0 . V1.9

To solve VI.B and VI.9 in terms of p- which is assumed to be known,

let El°= - V{Zlo (since V x _Iilo= 0) « Then VI,8 and VI,9 beccme
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' 2 1 1 1 '
-6 T ek el .
-2 o P R
mpoVQlO-PW Vpo = 0 . VI, 11
' 1
The latter equation implies that - % poo ¢lo + pr o is a constant

which is independent of position and which can be taken to be zero,

1,421 .
P F v vpy = 0. VI.12

Combining VI.10 and VI.12 the following equation for ¢10 is obtained:

2 1
G s L VI.13
o W2 [+] éo
(8]
=R
where c.)2 =28 .
poc €on

This equation gives rise to a shielded coulomb field,

1 . (e} @y o lz-z]
Po = lmeog Iz - x| v e

with a shielding length Z—;}- = E ps & result which is already known
=]

fram the Debye-Huckle theory of electrolytes,

Thus when the perturbation in ion charge density pli is lmown

the potential #l , the electric field p;lo, and the electron charge

density p% , may be easily obtained, One of the consequences of the

"shielding" effect is that, although pli may have rapid fluctuations
in space, ¢10 cannot. ¢lo has virtually no fluctuations of wavelength
less than the shielding length QD + Furthermore, it is easily shown

that plo is related to ¢10 in the following manner:
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€
1 0o _Jd
e = 2 ¢ »

o f& e

Thus plo also has virtually no irregularities of wavelength less than

£y,

VI15

AdC. Disturbances in the Absence of Irrsgularities in Density.

The parts of Egs (1)=(7) which are time dependent but of zero order in

& are o
3B
Vx Eol B - -a"bl Wolé
0
aD
v =5 L
(o)
0 a!l = e o .o 2] Fo) e
Po 58 T "mPoly -¥ VP, V1,18
7. §_°l = 0 V1,19
veD? = p° VI
- Z1 = pl «20
3p2 .
=tV ehE) = 0 VE.21

In addition, the current is given by _-.Iol= poo y_°l + The solution of

equations VI,16 through V1,21 are conveniently discussed in terms of

the vector and scalar potentials _4_01 and ¢°l . In view of VI,19 the

magnetic field can be derived from a vector potential whose divergence

is zero

o] o) o)
B =vx A veal = VI,
B x 49 82 =0 11,22
. aAO
and in view of VI.16 the electric field differs from - —p- by the

gradient of a secalar
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an°

o =1 o
E B - -V e VI.2
=1 ot ¢1 3

Substituting VL.23 into V1.20 gives
w2 40 . 0O

Differentiating with respect to time and using VI.21 resulbts in

. apO
3 2 1 3 :
-€, 3tV ¢°1 = 2t -~V (Poo _‘_{01) .

Differentiating with respect again to time and using VI,18 and VI, 20

results in

2 2 40 o X1 8 0 0 290
-, =5 VP, = -V p )= -vs|-mPo B P

[
o]
&

= e 2 0 2.2 o
Pom Vv ¢l+ vV ]
"0, 2 VP A+ PR (g, V2 %)
Thus ¢°1 must satisfy the following equation
52 2 2 2 V2 o
(g—b-é- + mpo - W ) ¢ 1 = Q , VI.QI"'

VI,2l is satisfied if

or if 0
2 2 2.2, 0 _ '
(5-%-2--}%0-1«1 V) ¢l— 0 . V1026
o

The equation satisfied by A. may be derived in a similar manner.

1
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V1.17 nmay be written

0 o b anl
Vx(fox_l) T My P Iy FH& 3 oc

Differentiating with respect to time and using VI,18

3 o | e o 0 2 0 aaE--01
—— = - - E -

: Vx(Vx_A_l) p,o[ m.00__1 W Vpl]-r N w2

Using VI,20 and V1,23, this may be uritten in the form

3 2 2\,
at[ v o (atz m15“3)A p'o €"ca

1=V V2¢°]

vi.27
Soiutions of VI,25 are not required when there is no free charge present
in the plasma. An analogous situation occurs in the elsctrodynamics of
free space,(21). ﬁence only solutions to VI,26 and Vi,27 are required.
Notice that these solutions are independent, i.e., _@_01 does not enter
into the equation for ¢O 1’ and any ¢°1 which is a solution of VI.26
makes the right side of the equation for éol equal to zeroc. VI.27 may

therefore be written

52
2,
v -v-é

1 a tz wpo 0 L VI.28
The solutions of ViI.26 are the longitudinal plasma waves or oscillations
of the medium and the solutions of VI,28 are the trgnsverse electromag-
netic waves of the medium. The properties of these Wé.ves have been disg-
cussed in some detail by others. It is sufficient to remark here that

Vi.28 gives propagating electromagnetic waves only when the frequency
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(of a sinﬁsoidal wave) is greater than copo + The sinusoidal solutions
of V1,28 are the same as for the ordinary electromagnetic wave equation
'in a medium of dielectric constant € (1 - 0—30;1%9—) N

VI.26 is valid only for wavelengths which are long compared to

the screening wavelenzth (long wavelength approximation) which occurs

when the frequency is close to o o+ For plane waves of sinusoidal
i i(et -k 1) .
time dependence, e = =, one obtains the frequency-wave mumber

relationship

2 2 2 .2
mpo+w kX . Vi.29

e
i

Only the frequency range 8 “Qp o€ 0€ 1.2 copo , Where the long wavelength

approzimation is valid, is of interest.

Effect of Density Irregularities on the Sinusoidal Fields. The

effect of the perturbation on the a.c. fields will now be considered.

The a.c. parts of VI,1 through VI.6 which are first order in & are,

1
B
ngll = - VI.30
1
. ap
WXHL = + 1 VIL31

=1 -1 ot

i 0
° axl + v .ia.’.v'.}. =2 - po E:L - pl E° -po El +w2V pl VI.32
Py Po T3t n o =1 o -1 "1<=o 1
1
AV El = 0 VI.33
Ve 233. = pll VIl 3k
apll v p° 1 . 1v° - 0 VT.35
3E o¥Y1*7p, L . R

These equations are very similar to equations VI,16 through VI.21 except

- that several new terms appear, each of whiech is a produect of a time
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independent factor associated with the perturbation and a time
dependent factor associated with the free wave solutions of VI,26

or VI.28., These new terms will act as source terms in the equations

- 1
for ¢ll and ,fs_ll. Proceeding as before and letting B 1 =Vx 5_11 P
1
1 O
=177 wm F, and

2
2 F2) 1 el 2 - 2.2 -

the following equations for éll and ¢1 are obtained:

3 » 324k
-VEATrp e =1 .,.2 Iy]._, e[l po.,.°
ot [ R o P o
2
2 o L2 1 0
3 2 2 o[V =to€o (52 * 0po) 2 Poo P11
ot - V ¢l=m Vo—aE + - F *
atz po 2 1 po p -1 po =
l-w o€ o o] o]
V.38
Since 'Wz o &°~10°3 in the solar corona, this quantity can be neg-

lected in comparison with unity.
Thus it is seen that the effect of the discontinuities is to pro-

duce source terms whicia are equivalent to a charge density, Py s

, .
o e 1 o] 0 El

s .. = 257 e E- + i VI.
at? pl m [po =1 'pl "'o] 39

and a current density, _.f;_ 2

ad"
-1 e | 1l o )
"za%”-a[% Eyrey -Eilo] TL.L0

1 It is assuned that ¥ - _.‘}.11 be related to ¢ll in this manner rather
than taking V - £l_1i to be zero., This amounts to a choice of the
gauge.



From VI.39 and VI L0 it is seen thzt

a‘\’
(8

+V'J‘i) = 0

e

i.e., that the equivalent source current density and charge density
satisfy the continuity equation.
When the time dependence is sinusoidal, Eq. VI,38 may be solved

with the aid of the scalar Green's function

' -iy® ~®po V¢ =90
Grlz,rt) = o e gz -r |z -r| et

VI.li
The first term gives the modified longitudinal field and the second

term gives an outward traveling spherical plasma wave. VI,37 may be

solved with the aid of the diadic Green's function

2 2
1 e 1w
' = —— VI'
GII(fﬁ.I.'. ) = (ee) 1o L ‘r..rxl © ‘ L2

where (ee) dis the unit diadic. This part of the solution gives out-

ward traveling electromagmetic waves,

Scattering of Plasma Waves and the Generation of Electromagnetic

Wa.ves by Irregularities in Density. The preceding theory will now be

used to calculate the energy scattered out of a plane plasma wave into
electremagnetic radiation. The plasma wave is assumed to propagate in
the 2z direction, as shown in Figure 18, The electric field is given

b,
v o i(wt -k« 1)
E = E_ e e - = VI.L3
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' W - :
where k2 = ——-—-—5—-9-0- , k. =k =0 .,
z W X 7

The point of observation, P, is assumed to be a large distance

away iron the scattering repion in the vicinity of the origin. The

. fm2 -m2 '
R0 |z-z|

 vector potential éll may be written

u e
1 _ o iwt S .1 o o 1%e e 13 3
VI.lh
letting g be a vector in the direction OP with magnitude @ /p.oel =
2
W% = Opy
—— and introducing the vector to the source-point r' , the

above equation can be written

i(wt =g 1) )
1 p'oe e — S . l o o l "la'?_t
2, T Iom hnor S(ee) [po :E‘-l"' e E o]e dx 'dytdz!?
v

1
VI.LS

at large distances from the scatitering volume., The contribution from

the second term in the square brackets can be neglected in comparison
with the first when the plasma wavelength is long compared to the sereen-
ing lengthe. Under these conditions, the integral is & vector in the =z
direction since _E_]_ol is in the 2z direction. Thus éll is in the =z
direction,

The time average of the radial component of the Poynting vector is
ﬁ=-]-‘-§-sin29m2Al.Al¥ VI.U6
2y, =1 =1 -

(951 , does not contribute to the radial Poynting vector.) Substituting

VI.L5 into VI.l6 with the indicated approximation, VI.L6 becomes
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— 16 .2 ‘°p1<‘> ”zoei o o
IIs—‘l-—-sin ° (. %)
_ 2 By 161:2 RZ -1 =1

VIU7

S - dr'd"
e P
o o

The e:épected value of II can be evaluated using the correlation func-
tion of the density fluctuations, if the correlation function becomes
small in/gistance which is small compared to a dimension of the region

of integration, V . The volume V is assumed to be finite either be-
cause the density fluctuations are limited in extent or as is more likely,
because the plasma wave itself is present only in a limited region of

space. The correlation function Y (7) 4is defined by

() = (Jp'o )2<p(z:) p(z+T D= lin % SE‘-%"-%;S%—’Z-"-—)— dr .« VIS
o V> v o
VI.L7 may then be written
o b uiel * -ikez -iger
- %-\/g sin? @ -—13-12;%5‘3—‘-'3"1 E% vS‘V(T)e e = Tar
° | v VI.L9

where T2 = x2 + y2 + 22 s and \P is assumed to depend only on the msg-

nitude of .

Assuming that \{)(‘T') vanishes sufficiently rapidly at infinity,
the integration can be extended to the infinite domain. Converting to
‘spherical coordinates, in which the p‘olar axis is parallel to the wvector

q + k , the integral appearing in VI,L9 can be written
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N e o S 1 §
_ . «ilgtk e
I = g‘(‘f('r)el'g kI Tcos o2 4 sin © de
0 0

V1,50

|k +q

2r .
= 1Y — Tsin (|k + q|T) a¥7 .
0 al -
To evaluate this integral the density correlation function must be

known., As g lower limit, the density fluctuations in thermal equili-
brimm may be used. In Appendix TIT it is shown that the density cor-

relation function is

- T/
ooy b VL5

‘I'I'I’.lo D

It is probably not a very good approximation to assume that the ions
are in equilibrium after the passage of a directed beam of charged par-
licles since low frequency lon oscillations may be excited and the
density fluctuations may be greatly enhanced., it least one feature of
V.51 is qualitatively correct, however, the maximum distance over
vhieh correlation exists is roughly the Debye wavelength 2 D The
amplitude of the fluctuations may be much greater. It should be noted
from VI.50 that only density fluctuations whose mean spacing is greater

than about l;t—l.i xT%T contribute appreciably to radiation.
+q 3

Substituting correlation function VI.51 into VI.50 results in

! 1
To [irin g re’li]® - T2

The magnitude of q is small compared with the magnitude of k and

I

(kz .Od)2 is small compared with unity. Hence the second factor of VI,.52
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is approximately unity.
The expected value of the Poynting vector at a large distance is

given by.

/ ° £ Vv
<II> 2\ sin” ¢ o 72 By Ve VI.53

Introducing the following definitions,

1 E. - E
Gpoyflo€o = e W= e lu iy

and integrating the Poynting vector over a large sphere, the total

radla'bed power is found to be

1 [E 1 ¢
——— A VI.5h
3 \/ € ;?‘_o n

Hoting that W is the total energy stored in the electric field of
the plasma oscillation, and very nearly equal to the total energy of
the oseillationt, it is seen that PAY is just the reciprocal of the
time required for the oscillation energy to decrease by a factor 1/e
due to the radiated energy when other sources of damping are absent.
At a point in the corona where the plasma frequency is 100 mc, %0

is about 50 cm and n, is about ol ox 108 em™3 . If the oscillation

R a3 € . .
i‘"_r-equency is ZL.ZLOmpo s for which /..é..; 242 , it is found that

1 When the frequency of the plasma oscillation is Wpo » the potential
energy is 1/4 €, % EO"' which is also equal to the kinetic energy

of the osc:z.llatlon. When the oscillation takes place at a slightly
higher frequency there is an additional potential energzy term

%;11 1;2 ]O' plpl , Which may be regarded as the internal energy of the
electron goas. It is (k fn)g times the electric energy and hence prac-
cally negligible,
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%. = %372‘310-5 sec™l VI.55

Damping of the plasma oscillations by short range collisions has been
neglected., Since the cdllision damping time is of the order of a
second, most of the energy in plasma oscillations will actually be
dissipated.by this mechanism but the fraction, :%?4310'5 s of the
energy is radiated in the form of transverse electromasnetic waves.

Propagation of Electromagnetic Waves in the Solar Atmosphere and

their Escape into Space, Propagation of elsctromagnetic waves in the
solar atmosphere has been adequately treated in the literature and only
a few essentials are raviewed here in order that they may be applied to
the present problem. The electric susceptibility for transverse waves

is given by IIZ.17. The corresponding complex index of refraction is

2 A
\/1-+ A = 1-—-39————— VI.56

w(w - i)

Since the change in the refractive index in an electromagnetic wave-
length is generally very small the ray concept of electromagnetic dis-
turbances is usefl in studying the propagation characterigties of the
solar atmosphare. Actual ray paths and absorbtion characteristics of
transverse electromagnétic waves in the solar atmosphere have been com-
puted by Young (3) and by Jaeger and Westfold (Lk2) . To get a
qualitative idea of the ray paths, consider the solar atmosphere tc be
a plane stratified medium of varying index of refraction and neglect
the absgrbtion due to short-range collisions. The angle, © , which a

ray makes with a vector which is perpendicular to the plares of equal



refractive index can be found from Snell's law
nsin® = n sing , V1.57

where n is the refractive index at the point of interest and n  and
é o ore the index of refréction and the angle which the ra;j makes with
the normal to planes of constant refractive izidex at a reference point
along the ray path.

Since the refractive index is less than one in the solar atmosphere
and it increases monotonically to unity with inereasing distance from
the center of the sun, rays are bent toward the normal in traveling oute
wards. If the reference point is taken to be the point of origin of the
electromagnetic wave and the point of interest is far enough from the
sun that the refractive index is substantially unity, the angle 6 is

given by

gin@ = n_sino® . VI.E8
0 ls]

Typical paths are illustrated in Figure 19, The maximum value of © 1is

) ﬂ
obtained when Qo =5,
sin Qm = n°< i VI.59

Vhen the disturbance originates just above the critical layer for the
frequency of the disturbance. (the critical layer is the layer at which
the plasma frequency is squal to the frequency of the disturbance) n o
is small and hence Qm is small, At large distances from the sun the
disturbance.is confined to cone of half angle, Qm s Whose axis of symmetry

is a solar radius passing through the point of origin of the disturbance.

More accurate calculations, taking into account the spherical nature of
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surfaces of constent refractive index by Smerd, cited by Wild et 2l
(11), give

sin 876 = n_ . VI.60
m o

_Thué the half angle of thé escape cone is a little larger than given by
the simple theory. Figure 20 shows the half angle of the cone into
which. radistion escapes as a function of the ratio of the frequency of
the radiation to the critical frequency at the point where the radiation
originates.

V1,5, shows that the energy radiated is proportional to ‘/6/60
or to the refractive index, n, at the point where the radiation
originates, Thus the radiation efficiency is small when the frequency
of radiztion is only slightly greater than the critical frequency of the
point vhere the radiation orlginates, Thls is more than offset by the
focusing effect of the varying refractive index, howewer, The radiation

escapes only into a solid angle,

m 21 (1 - cos Qm)

2

S 1.32nm nf

2
no<<l .

The ratio of the energy flux of a distant point in the escape cone to
the flux which would exist at that point if the same currents (VI LO)

were to radiate in free space is approximately

Ll» i 3.03 2
Mo " 1327 n2 n, (nge<1) .

.Thus, although.the total energy radiated is smaller when the frequency
is only slightly greater than the local eritical frequency, this energy

~ is radiated into a small solid angle and the emergy radiated per unit
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solid angle is actually increased,

Absérption of electromagnetic energy along the ray path must also
be taken into account., The fraction of the energy which escapes is
given by e-w‘ where ¥ is the "optical depth" at the point where the
radiation originates and is related to the imaginary part of the re-

fractive index, n; , through the relation
' ©
Y= 2 SS ny
e
o

The integration is along a ray, and so is the origin of the radiation.

ole

dS ® VI e 61

The optical depth of the point where the real part of the refractive
index vanishes given by Young is approximately .4 , 2.0 , 1.0 , and 20
at a frequency of 30, 100, 300, and 1000 megacycles per second respecw
tively. Thus the absorption of electromagnetic energy is not very
great. However, the optical depths of the same points are much smaller
at twice the local plasma frequency so that second harmonic radiation
would hardly be absorbed at all, It has been suggested (11), (38)

that this differential absorption may account for the fact that the

second harmonic radiation is about as intense as the fundamental radia-

tion.
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VII  SUMMARY AND CONCLUSIONS

In the preceding sections several special aspects of the theory of
'plasma oscillations in the solarncorona have been explored. It has
been shouwn that the longitudinal plasma oscillations are independent
of the transverse electromagnetic waves in a uniform plasma, but that
the tuwo wave types can be coupled by deviations from the uniform condi-
tions. The conditions wnder which a directed beam of charged particles
can excite the longitudinal plasma oscillations has been examined in
detail by considering the energy exchange process, It is shown that
there are evanescent plasma waves, which do not represent an excitation
of plasma oscillations, btut uvhich have previously been interpreted in
this way. Qualitative non-linear arguments are used to estimate the
naximum amplitude which the plasna oscillations can attain. Prior to
the attaimment of this limiting amplitude it is shown that the fre-
guency spectrun of the oscillations is nearly Gaussian, but it has not
been possible to estimatevthe actual width of the spectrum. In the re-
maining feu paragraphs some of the observations of Type II and Type III
bursts will te considered in the light of these results,

Tyvpe II (slow) Bursts. The results of Section IV indicate quite

clearly that slow charged particles do not excite coronal plasma oscil=-
“lations appreciably. While this does not rule out the possibility that
the Type II bursts involvg & plasma oscillation phenomenon, the exeita-
- tion mechanism is not the double stream process, If there are other,

as yet undiscovered, excitation mechanisms it is possible that the
radiatianprocess gsuggested in Section VI may “e important in accounting

for the observed electromagnetic radiation.
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Type IIT (fast) Bursts. In Section VI it was noted that only

electromagnetic radiation of frequency greater than the local electron
‘plasma frequency can escape from the solar atmosphere. Thus in applying
the results of Section IV it is important to find conditions where ap-
preciable noise energy of frequency greater than the local plasma
frequency is produced, It was noted that in all cases the disturbance
which increases most rapidly aluays has a frequency (real part) which
is less than the plasma frequency, However, for a wide variety of den-
sities of the fast particles disturbances whose frequency is ahove the
local plasma frequency increase almost as rapldly as those whilch increase
most rapidly. According to the argument of Section V, when the limiting
amplitude is reached in a relatively short time, the spectrum may still
be rather broads Assuming that at later times the spectrum does not
differ significantly from the spectrum which exists at the time limiting
amplitude is rsached, except for the presence of second and higher har-
monics, there may be appreciable energy above the critical frequency.
The time required to reach limiting amplitude, and hence the spectrum
width, has not been determined. One of the principal factors which
makes this difficult to estimate is the lack of knowledge of the initial
conditions and boundary condifions. It should be possible,'however, to
make such an estimate by devising a very specific model of process in
which the boundary conditions are knoun and the initial disturbances are
the random fluctuations présent in thermal equilibrium. This would seem
to.be worthy of further investigation.

To see that an explanation of Type III bursts in terms of the exei-

tation 6f plasma oscillations by fast electrons is plausible from the
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energy standpoint » the total electromagnetic energy radiated may be
estimateds At the present status of the theory the results of com-
.putations on the dispersion relation given in Section IV and Appendix
I suggest that the noise amplification can take place for a variety of
densities of fast particles and does not suggest that a particular
density might be required to explain the observed bursts. Hence the
electron density of the directed beam is not known but it may be writ-

ten in terms of the dimensionless varisble r as 100 ™ and its

mean velocity is about 1020 cm sec™t Assuming that the volume of
the disturbed region is 3.027 mnB (1), the kinetic energy of the elec-

trons is
1 .2 27
n, V(-2- m,, ) = Lhe6x10 ' r erg .

/2

In Section V it was shown that only a fraction, .05 r3 , of this
energy may be converied to cnergy of plasma oscillations and in Section
VI a radiation process which radiates about ZI.O'5 of the energy of
plasma oscillations was described, Hence the total radiated energy is
about

W=,x :I.(')22 r5/2 erg = .2 X 10:LS r5/2 Jjoule .

The above radiation efficienéy is actually an optimistic estimate since
frequencies below the local plasma frequency produce no radiation at

all. To estimate the energy flux at the earth it may be assumed that

the electromagnetic energy is radiated uniformly into a small solid
angle, of the order of a half a steradian. The total energy falling

on a square meter at the earth, assuming the earth to be within the escapé

cone, is approximately
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T 15 5/2 -
v~ 22 x 10 r z.2x107r5/2joxﬂ.e n~2
J?_Rfm .5 x 2 x 1022

‘earth

Wild et al (11) observe a flux of about 10720 yatts m™° (cps‘)-l
over a banduidth of zbout 3 x 107 cps for a period of about 15 seconds.
‘i’he total energy received per square meter is therefore about .hS:\@::LO“:L-L
joule mm2 . Taking. r to be about .03 produces about the right amount
of energy.

Oné important aspect of the problem which was not treated in Sec-
tion IV where the oscillations of a uniform unbounded plasma were studied,
may be of importance here., The electron density is a slowly varying
function of solar radius and as the electrons in the directed beam move
out through the corona they encounter regions of lower and lower plasma
frequency. Al some point in the coron, these electrons become modulated
to the maximm amplitude with narrow band noise whose center frequency
is just below the local plasma frequency at that particular point. As
these electrons continue to move outward they eventually find tﬁemselves
in a medium whose plasma frequency is below the noise frequencies., Since
the plasma frequency of the coronal electrons is a relatively slowly
varying function of soler radius , bthe change in plasma Irequency seen by
the electrons of the directed beam as they move outward changes appre-
| ciably only in many plasma periods and it may be possible to have a
continudl readjustment of spectral distfibution in such a way that the
noise frequency always remains below the local plasme frequeng . If,
 however, there is a slight delay in the readjustment it may be possible

for the noise frequency to be above the local plasma frequency. This
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entire phése of the process takes place at limiting amplitudes vhere
- the nonlinearities are of primary importance., This is a difficult non-
rlinear noise problem and it has not been possible to deal with it at

all. This effect should be considered in more detail,
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APPENDIX I

The following tables give the solution of IV,32 for a variety of the
parameters cnl/v.2 s ccz/u2 s T 4 and ]Sc/‘”pl .

o Y ke |
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APPENDIX II

To calculate the correlation function of the electron dens ity
in thermsl equilibrium consider a box of unit volume and let the ion
charge density in this box be described by giving the coefficients of

Fourier expansion of the density + The expansion coefficient of
> Nk

the electron density of the same mode is

o = Nk
k l+k2£i

In thermal equilibrium,

({7 Vl.k'> S

o o

where n, is the number of ions per unit volume. This states that

ATT,]

the amplitudes of the k and k' modes are indspendent. The above
value of =k may be obtained by assuming that the gas propagates

i

sound waves., _The energy in the k™ mode is %1' R ct? ("‘y'[o“) and
in t hermal equilibrium its expected value is just kT . Using the
isotnermal sound speed c1? = WTA1 , the abow result is obtained.

The density correlation function is

+ Pk Ppr _-iker ik'. (z+T)
popp (Dl (57 o e x0T
Qo k.k1 o o .

Z Pr P\ -ik-Y
= 2 e .
[+

k 0

" Converting the sum to an intsgral and using 4AIT.1,

\‘J 1 ‘Y e-ik'r d'vk
| (r) = Ty (1+1{22§)2 2n)3  °

There is an upper limit on the magnitude of k , of the order of the
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reciprocal of the interparticle distance, which is determined by
equating the number .of modes so Obtained to the total number of
degrees of freedom of the particles. However, negligible error is.
conmﬁtt;ed By ex‘hending the above 1imits. of integration to % oo .
The integral may be evallia‘c;ed by converting to spherical k-coordinates
and the result is found to be

1 T/
8rn 4 }33 .

Y1) - ATI.2
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II A FIELD ANALYSIS OF THE M TYPE
BACKWARD WAVE OSCILLATOR

ABSTRACT

A field theory of electron beams focused by crossed electric and
magnetic fields is given, The theory is basic to the understanding of
the small signal behavior of crossed field electron devices, It is
applied to explain the slipping stream, or dioccotron, effect as a
coupling of two swrface waves of the electron beam, and to derive the
start oseillation conditions of the M-type backward wave oscillator,
It is found that the slipping stream effect can reduce the starting
current by an appreciable factor. The results are compared with the
thin beam theory which neglects space charge effects.

An analysis of a loaded strip transmission line is given, from
which a method of representing sﬁace harmonic slow wave circﬁits by a
surface admittance boundary condition is obtained, Forward and back-

ward space harmonic interaction may be treated equally well,
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I, INTRODUCTION

The iast few years have seen the invention of a host of new
" microwave amplifier and oscillator tubes. The small signal theory

of tubes us:i.ﬁg electron beams focused by axial or longitudinal mage
netic fieidé is now rather well developed (1),(2),(3),(4)s(5)e The
theory of tubes using electron beams focused by crossed electric and
magnetic fields is not so well developed, perhaps because this type

of tube has not been so important until recently. The M-type (M for
nmagnetron, because of the similar steady flow conditions) backward
wave oscillator is likely to be wvery important because of its higher
efficiency of conversion of d.c. energy to a.c., energy and its greater
tuning rate than the longitudinally focused, or O-type (0 for ordinary)
backward wave oscillator. The operating characteristics and the theory
of this new type of tube are summarized in refarence (6).

The major contribution of this paper is to present a field
analysis of M=type tubes which makes it possible to take inlo account
| space charge effects, that is, the effect on the motion of the charge
_ of fields generated by the space charge.s It is not possible to do
this without a number of assumptions, to be discussed later, the
principal one of which is that the umperturbed condition in the beam
is a generalization of the planar Brillouin(7) state, While, in
prineiple, this state can be réalized in beam type tubes, it is doubt-
ful vhether most tubes fulfill this condition very closely.
Although this paper concentrates on the gpplication of the theory

to the M-type backward wave oscillator, the theary developed here is
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fundamental. tb all M-type beam tubes, The diocotron, or slipping
stream amplifier, is discussed briefly, inasmuch as some of the
effects which it exhibits have a bearing on the backward wave oscil-
lator disouseion.

A schsmatic diagram of the M-type backward wave oscillator is
shown in Figure 1, Electrons emitﬁd from the cathode, C, are focused
into a beam through the combined action of the magnetic field BOnc ’
and the electric field produced by the plate, P, the sole, S, and the
slow wave circuit, or delay line, L. « When the electrons travel to the
right with a velocity gpproximately equal to the phase velocity of ome
of the space harmonics of a wave of the slow wawe circuit, a strong
modulation of the electrons occurs and they may give energy to the
field, much as in a magnetron. If the energy flow of the circuit wave
is to the left, this energy, reinforcing the modulation of the beam as
it goes, is delivered to the transmission line connected to the circuit
on the left, and ultimately delivered to a load. The circuit is ter-
minated on the right, by T , so that there is no reflection of electro-
magnetic energy at this end of the cireuit. The electrons are collected
by K , after their passage through the interaction region.

Iﬁ order for the modulation of the beam to reinforce, and for
oscillations to increase with time until non-linearities limit the amp=-
liﬁude s the circuit wave and the electrons must have a certain relative
velocity and the tube must be greater than 2 certain minimum length.

The latter condition can also be intei'preted to mean that, for a given
length, a certain minlmum current in the electron beam is required,
These "start oscillation® conditions will be determined in this analysis.

The elementary theory neglects space charge effects (8), (9)s This
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' analysis stu&ies the effeects of space charge (par’cicular]y the slipping
stream effect) on the start oscillation conditions. French workers
report (6) that the current required to start osecillations is frequently
only one<half or one-third the value predicted by the elementary theory
and éuggest that space charge effects are responsible, An approximate
theory which they have devised (6),(10) to explain this result is dis-
cussed at the conclusion of this analysis.

In order to carry out the analysis it is necessary to make a
number of assumptions. These are listed here for reference, although
in many cases a more detailed discussion will be found at the point at
vhich they are introduced.

1. All quantities are assumed to be independent of the x
coordinate over the width of the tube w . Fringing fields are neg-
lected, and it is assumed that the beam does not spread in this direc-
tion,

2. A self-consistent field method is used. The particle aspect
of the electron is ignored by considering the motion of an equivalent
charged fluid,

3. The analysis is none-relativistic. Non-relativistic equations
of motion are used, Magnetic fields are neglected, except in Section V
where the slow wave circuit is discussed, The electric field is as-
sumed irrotationals

h. The analysis is restricted to small signals. A1l equations
are linearized by neglecting the products of time-varying quantities,
The t and 2 dependences are assumed to be ej@t-a z)’ and super-
position applies.

5. An equivalent surface charge density and surface current
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'density is uéed to take into account the deformation of the boundary of
the electron beam,

6. Only a finite mumber of modes of propagation are used, so that
'it is not possible to meet all the boundary conditions on the motion of
the electron beam at the point at which it enters the interaction region.

7. It is assumed that the electron beam affects only one of the cir-
cuit space harmonics, Thus the "rising sun" effect and operation near a
circuit entoff frequency is not analyzed, although the manner in which
these two effects may be studied is outlined in Section V ,

8. It is assumed that the steady state of the electron beam is the
planar Brillouin state, or a modification of it, so that the steady or
dece velocity of the beam is in the 2 direction only,

2

9. MNumerical camputations are carried out for small ‘332. only,

although there is reason to believe that the results ﬂouldmgot be signi-
2

ficantly different if &2' were as large as unity.

D

10. The sole is assumed to be far from the beam in the numerical posi-
tion of the analysis, This is not an essential assumption, Other cases
may be calculated with no additional difficulty. Actually, it is
desirable to have the beam close to sole and far from the eircuit for

high efi’iciency operation.
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II, THE ELECTRONIC EQUATIONS

The equations obeyed by the field guantities in the interior of
the electron beam will be derived in this section. The motion of the
'charge will be 'discussed irom the Euler point of view, as well as fram
the Lagrange point of view, since some confusion exists in the litera-
ture where these methods have been applied to electron beam problems.

Figure 2, shows the configuration to be analyzed.

Staacg State of the Beam. It is assumed that the eleetrie and

magnetic forces balance at every point within the beam and that the
flow is reetilinear, Thus

Byt () B = 0 15,1

where the velocity, u, may depend on y . The electric field, E

?

varios with y because of the charge in the beam,

aE P
- ==-é—9 s 11,2
a3y o _

where the factor s has been introduced to account for the possibility
of neutralization of the electron charge by ions. 8 is 1 when there
are no ions, and O when the electron charge is coampletely neutralized.
8 might be termed the "slip" parameler since when s = 0, all electrons
move with the same ielocity, while when 0<sg1l , the upper electrons
slip past the lower electrons. DIMfferentiating IT.1 with respect to y
and cambining with II.2, the gradient of the steady velocity io found to
be
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2
e I
$=-B'1" == L8 The3

In the remainder of the analysis the velocity gradient will be denoted
by

2
_ u ®p
A = w Ec—- 8 IIoh

It will be assumed that the sense of the steady magnetic field is as
shown in Figure 2, However, reversing the magnetic field and the elec-
tric field simply changes the sign of o, »

It should be pointed out that the étea.«iv flow condition Just des-
cribed is somewhat more general than can be obtained if the electrons
are emitted from a unipotential cathode, for in this case there is the
additional restriction

%ﬁa = Y\ ¢c: | L5

where @ is the poténtial from which E, is derived, measured fram
the cathode. It ig easily shoun that this additional restrietion is
compatible with IT.3 only if (:’-;-)2' s=1 , Differentiating II.5 with
respect to y and using IL1 ,

n Do
1 -é; = Y\ ay - ..YkEoy = r\u Bax
which may be written

% - Y\ B¢m = wc . 11‘6

This restriction means that in the absence of ions, the electron plasme
frequency and the electron cyclotron frequency mpst be the same, This
is the planar Brillouin condition (7). The more generql condition II.3
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'will be assxﬁxéd unless otherwise noted,

In practice, this type of steady flow is seldom realized, although
in prineiple it can be obtained. The use of these steady flow condi-
| tions may be regarded as a working hypothesis, whose usefulness is to
be determined by a comparison with the experimental results. It is
true that in many physical problems some of the simpler results of a
calculation do not depend particularly on the model chosen for the
analysis, so long as the model is internally consistent. The field
point of view makes possible an internally consistent analysis in which
most of the approximations which must be made to solve the problem are
mathematical approximations which have previcusly received careful
scrutiny, The major physical assumption in this analysis is that the
above steady flow conditions are realized.

In practical beams of this type the indication ssems to be that
the ocurrent densities are such as to make co% congiderably less than
oazc and electrons do not follow linear trajectories., Perhaps some of
“the features of such a beam may be described satisfactorily by replac-
ing 1t by a Brillouin flow beam with the same value of o .

Perturbations from the Steady State. The linearized equations »

in Eulerian form, for small perturbations from the steady state are

av.

-1 . * = -

Beavne @Oy oG gy E
3py .

..8-€+v. (po _7.1+E pl) s 0 I1.8
GOV.E]_ = pl 1109

Vx& = 0 . 11,10




AThe subscript 1 denotes the perturbation of a quantity, and the sub-

seript O denotes the unperturbed or steady value of the quantity.
The term u x 21 has been neglected in II,7 because it is of order
(u/c)2 smaller than §1 .
tions with the magnetic field,

Equation II.10 is one of the Maxwell equa-
31’ neglected, and expresses the static
approximation,.

It will bhe convenient to assume that the t and 2 dependence of

all quantities 1§ given by the factor

e"j (Qt - pz) IL,11

In the remainder of the analysis, this dependence will be understood
and the above factor amitted, execept where required for clarity. The
symbols for the field quantities are subsequently to be considered as
phasors, denoting the amplitude and phase of the sinusoidal, or a.c.,
perturbation of the quantity in question.

Since Vx gl = 0 , the electric field is derivable from a
~potential, Becauge of Il,11 the 2z component of the electriec field
is just a constant times the potential, and it is possible to omit
using a potential and express all quantities in terms of E z For

1
example, the X component of IT,10 becomes

a P
ay+jBE]_y=0 or Elys-jﬁ ay . 11,12

11,9 becomes
| Ely oA
= Js Elz . II.13

Eliminating EU‘ between these equations gives:



2
B, 2 Py
WZ - 3 Elz = - jﬁ -E:’- ’ IIolh

‘and II.8 may be solved for Py

| v
Po (7%1 - 3pvy,)

P 5 ° 3(o = pu) . 11,15
In camponent form IT.7 is

j(w = pu) Yy %" Y‘L(E1y * v, Bcn:) 11,16

(o = pu) 7 “N(Ey, = Vyy By) IL17

The x equation is not required since the problem is assumed to be

‘two-dimensional,- Vig = 0. Solving for W and v yields

Iy 1z
» = u) -
Vly = j(w au -;ELJéL mc Elz II018
(o - pu) + (0, =A)
vy, - . s * 0 ® Ry , 11,19

ne
where _0_2 = (0 = pu)2 - aac(cnc-A) .

To obtain the differential egquation obeyed by Elz s Substitute

pl from II.15 into TT.1ll, obtaining

a2 P 3(7}&2 3B 7,)

z
o p* Bz T Eo (@ = pu)

. II.20

Differentiating II,18 with respect to y , bearing in mind that u as

well as Epp and E,, are functions of y , and using IT.19 ,



82Elz 2 | mzp B, Zﬁb{(w-ﬁu) %Z_+$w° Elz}
o2t |5E P s ne ’
11,21

which may be rewritten,

o2 1 22 w2 | 2 52 . A
[1-5.{2] aajz“-a_{h ﬁ(wﬂ“)b%“-ﬁe[l'&%*'ﬁ%.;]%'o '

This result may be obtained by another method, analogous to the
lagrangian description in hydrodynamics (11), in which the motion of an
individual particle is described, The position of the electron is given
by

r = r(a,b,e,t) + r,(a,b,c,t) I1.23

whore ._r_o(a,b,c,t) is the position of the electron in the absence of
the small a.c. disturbances $ a,b,c, are parameters which tell which elec-
tron is being described (for example, a,b,c, might be the xyz coordinates
of the electron at ¢ = 0); £ is the a.ce. perturbation of the elsctron
position as a function of time,

The equation of motion of the electiron is

2

iz E()-t-d!'xB(r)] II.2L
— R - r — .
pr [" e = =

whére E(r) = _E_o(r) + gl(r)
B(r) = I_Bo(r) + _}_3_1(:') (_B;l(r) may be neglected,

however, )
:E_o and _]§° are the steady parts of the electric and magnetic fields

and it is assumed that §°(ro) tux §°(_z_'_° ) = 0 for all electrons so
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'that the unperturbed trajectories are straight lines. The linear, time-

dependent part of the above equation is

2
daTr. dry
_;b'::'-z. = - [-E:L(ro) t(ry VME) i X go] . 11.25

4+ ancmsmd $hn Poand dhad wmadd am AP
L4 - v L7

€
E
2
£

the electron into a region where the decs field is different appears as
an a.c. force on the electron since the motion is time varying. In the
linear approximation -E-l may be evalunated at its unperturbed position
ro « If a,b,c, are the unperturbed electiron coordinates at t = 0,
the unperturbed coordinates at time t later are,

Xo = a

Yo =P 11,26

Z, =C*+ uo(b)'b .

job e".‘i?z

Assuming the fields to vary as e it is easily seen that

in the linear approximation the time dependence of the force acting on

w=pu)t
the electron is ej( v pu) hence differentiation with respeect to time,

dat
IT,25 becomes,

—‘-i—, is equivalent to multiplication by j(w=-pu) « In component form

2 oE
“(w=pu) y; = =0 [EJJ + _a_;g y1*i@=pu) 3y Bax] IL.27
~(0-pu)? 3 = “'\[:E'lz - Jle-pu) vy Bmc] 11,28

@Bt 5 serstood. )



VSolving for yl and 2z, ,

Jlo=-pu) By - op By,

jo-pu)y, = LY I1.29
lon o ?,q._f__ +

jo=-pu) 2, = Ho-p) ‘}(;gﬁu) 2 7% By I1.30

3E

where Y{ 5}-9 has been replaced by the value obtained from II,2 and IIL.l,

P
Y(-—-S’- - ..E_. 8 s-mz 8 = «@n A,
a €o p c

Notice that II,30 differs from II,19 although II,29 and II,18 are the
same, II,18 and IT.19 describe the velocity field at a particiilar point
in space, while I1,29 and IT,30 describe the a.c. veloeity of a particle
whose unperturbed trajectory passes through this point, but whose per-
turbed trajectory does not. v

The charge density in the vicinity of a particular particle is

calculated from the lagrange contimuity equation

Po

gl g
gI® 8l

using the particle positioms,

(o =Bu)t -
¥y = ba-yl(u, ijElz) eJ(&.‘ pu) e Jpe

J(w=pu)t =jpe
2= cg+ut + zl(u,E]‘V E,)e e .

Performing the indicated computations, and using -geus =45
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. [ ¥ ¥ ealh -
..g% =] + [ A N | %Z il ____ - jBtA Y] J(w=pult e Jge
% - -3y RICH pu)t o -Jpe

j(w=-pu)t =jpe
-—-sAt-}-[azlﬁ mp BB

ab

vk Tl

3z J(e=pu)t -jpe
-é-c- le- jﬁ 21 8 -]

ay. . y-
L Oy oz o9zdy [ 1,43 aE_ll 1..._:.L.E..~1;A - ]

G(@=pr)t -ype Jo-pu)t -dpe

+ seeond
order terms.

+iphty; e

Thus

pa2 . -
e:}(oa -pu)t o Jpe

ay L ay 3k,

ay- oy yy o J(e=pu)t -jge
"1'(9"%)‘%[&11“ EEL% aEll gl:z"jp‘l]‘ ‘ o

11,31
From IT.29 and IT.30 '

L= 'L[%'_% - o ?L;]

.zl -Y([l 2t ]Elz 1 “e Ey

(0= Bu)2 n2 j@=-pu) N2 -
Thus
ay- +28(w = Bu) “ % P By
5;}' =1 Q_m | [Elv " J(o-pu) Elz] J(w-au)zn.f!}
T - &3 % 1

-2 &, "\ emnz -
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‘Substituting into IL.31 for oy »

EELﬁuE%fjgl' EFxV 'T’"""T Eiél Jz;f-a:)z #

e T S e e
P P \*TZ D ~Ta-pu) ne » - # [1 (@ = pu) It x oJ(@=Bu)t
o-JfC
- B ;%?
J@-pu) §22
o Pz, 28 b (a-pu) % + pu ]
'e Py n.?. -z " F ), * 2 I

1 By,

where Ely - T =5~ bas been used. This is an expression for the
charge density in the vieinity of a given particle, Taking ¢ +u°'b -
to be a constant in this expression rather than ¢ = cons'bant, and

ot 32)’2) is

b = y, the a,cs charge density at the point (x,y + ¥y e
obtained. To a first approximation this is the a.c. charge density at
the point x,y,z « II.32 is precisely the same as the right side of II,21.
m the two methods give identical results, as they must, although they
differ in detail,

This will now be compared with the method of Warnecke, Doehler and
Bobot (12), which is in error. To campute the a.c. charge density they
use j(m-pu)yl and j(w-pu)zl' (TI.29 and I1.30), as the y and z
components of 8.c. velocity in the Bulerian contimiity equation IT.15,
whereas the Lagrange contiﬁuity equation should be used, Another way of
stating the difficulty is to note that IT,29 and II.30 do not give the
velocity at a fixed point in space (x,y,z) but rather the velocity at

the point (y + Y1, 2 * zl) ¢ The welocity at (y;z) can be computed



from this however, if it is remembered that the particles which are at
(ys2z) came from an unperturbed position (y - Y15 2 = 2;) where the
steady part of the 2 wvelocity is

u(y) = % yl - u(y) - Ml L}
This contributes to the a.c. velocity at the fixed point giving

vly = jlo = pu) ¥y I1.33

Vg = j(w = pu) Zq ~ A Yy e 11,34
Using IX,29 and IT.30 in II.3kL givee exactly IT,19 . The extra term in
II.3L subtracts from the 2 component of velocity. This can be under-
stood as follows: If the particles move upward, ¥1> 0, the z velocity
of a given point will be less because the particles which are at this
point have come from a point below where the steady velocity in the 2z

direction is less (if A>0). This effect contributes to the a.c. veloecity

of the point since ¥y 0 the vertical displacement is an a.c. effect,

Discussion of the Differential Equation for Elz. II.2]1 may be sipe

plified in three special cases, First, if s = 0 all electrons have the
same velbcity, u ., Because of the constant electric field, however,
different electrons are at different electrostatic potentials, depending
on their position in the beam. Since differente lectrons are at different
potentials but all have the same velocity, they cannot have been emitted
from a unipotential cathode with zero initial velocities., Thus the fol-
lowing analysis does not apply to a situation which is easily realized in
practice, Nevertheless, it is imstructive to consider this case in some
detail because of its simplieity., This relatively simple case forms the
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basis for discussion of the more complicated slipping stream case
(3 f 0) °
When s = A = 0, II.21 reduces to

wz d2E1
P —z. - 2 = 0 . IIQBS
[1 - (m'-pu)z-mzc ][ dy? P Elz]

The solutions of this equation are of two types:

2 2

(a) (co-g?vu)2 = mp +me 11,36

a2

(v) —5;_,5-32 E, = 0 . I1.37

Solutions of type (a) have a charge density in the interior of the beam
assoclated with them. In a coordinate system which moves with the elec-
trons all disturbances of this type oscillate with the frequency

oai + mzc + These disturbances are the plasma oscillations of the
beam, nodified by the magretic field (when o, is zero, the frequency
in the moving coordinate system is simply mp) « The frequency of os-
cillation does not depend on the variation of the disturbance with the
trans wrse, or y, coordinate. Fields which go with this type of solu-
tion are localized within the beam, and are not coupled to external
electromagnetic cireuits (gridded cavities excepted), This type of
solution is similar to the solution (w -;311)‘2 = o:% found by Rigrod
and Lewish in their study of wave propagation along a magnetically
focused cylindrical ele ctron beam.

The charge density modulation in the interior of the beam is zero

for solutions of the second type, and the differential equation for Elz
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is especial]& simples The nature of thesec solutions is discussed
in Section IV, following the discussion of boundary conditions in
Section III,

When s is unity (intermediate valunes of s will not be discus-

sed), it is convenient to express II.2l in terms of dimensionless

variables,
r = E II.38
P
§= - oofn | II.39
or

2
popun-the 2

*
De

The dependence of € on y is through the dependence of u on y .
With the aid of II.h, it is easily shown that

ak = p dy . II.LO

With these substitutions the differential equabion for E&,, becomes

[1 - r 2 ] d2Elz + 2r6 ﬁ.ﬂ

rhgz- 1+1r° ag? (rngz- 1+r2)2" dg
ILL1
2 L '
-]l - r + 2r ] =
| [ PHg2 -1 (PhE2-1) "3
which may be rewritten
d2 z . 2r6 dElz
ag? (—r’*;2 - 1+r2)(rh§2 -1) d§
IT. )2

oplt
-11
[ + (rhgz - 1*1'?)(1'&;)2 - 1)

]Elz"'o.



The second instance in which a simplification is obtained is when

Q, and o, are equal, (r=1). When r =1 IIL2 becomes

daElz | 2 dE, , 2 ’
52 E(EZ-1) a8 '[1 +§2(§'_2-1JE12 =0 IL3

The substitution, E _ =€Y¥, further simplifies this to

2
d‘P"' 2 d‘P"‘P“O . IIoh)-I-

g B2, af

IT.hl has also been obtained by Macfarlane and Hay (13) in their
analysis of wave propagation along 2 slipping stream of electrons using
an action function "P +« Their results apply only to the case r=sgs=l
and to forward wave electramagnetic circuits, Although the case
r=g=1 is of interest in the analysis of the backward wave oscillator
the use of the functions defined by II.Ll; complicates the analysis con-
siderably. Since the numerical work of this report deals only with the
simpler cases, a detailed discussion of the properties of these func-
tions is not given here. It will suffice to note that § = -1 and
§ =41 are regular singular points of the equation, and § = o is
an irregular singular point., Two linearly independent solutions of
equation II,L3 in the range ~1< §< 1 , together with their derivatives
have been obtained by numerical integration of II.hY and are shown in
Figure 3. One of these solutions has been chosen to be an even function
of § and the other to be odd. Both are singular at § =1, -1, although
there exists a linear combination which is not.

The third instance in which II.42 simplifies is when rh is small
compared with unity, and only waves whose phase velocity is approximately
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equal to the electron veloclty are considered, The latter restriction
may be éxpressed more precisely by 'g, £ 1, When these two condi-
tions are satisfied, the coefficient of the first derivative term in
II.42 is small, and the cosfficient of Elz is zpproximately equal to

one so that the following approximate differential squation is obtained,

&y,
ag2

With the aid of the relation d§ = -fdy, this becomes

- E.l.z = 0. IIth

2
s ) Elz - BZ Elz = 0 II.hé

which is the same equation as obeyed by Elz outside the beam. In
later sections it is primarily this third special case that will be of
interest.

It should be noted thet In this special case, as in the first special
‘case', the a.c. charge density in the beam vanishes, The previously
cited error in the French work, together with en error in the sign of
 the force given by the second term of 11,27, prevented them fram ob-
taining this simple equation for the field in the interior of the elec-
tron béan.

Conditions at the Surfaces of the Beam. The equations applying to

the interior of the beam have been derived. In the free space batween
the beam and the sole, and between the beam and the slow-wave eircuit,

Elz obeys the free space equation

e

z 2
w2 P '
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which is obtained from II,1lh by setting Py equal to zero. The
joining of the solutions in three principal regions is accamplished
by means of the equivalent surface charge method used by Hahn (1) and
Feenberg (3) and others. The motion of edge electrons may be rather
camplicated, but the effect is to produce a rippling of the boundary
as shown in Figure La. As far as an interior electron is concerned,
the difference between this situation and the ummodulated sitnation
can be represented by a charge distribution as shown in Figure Lb or
es While it may be difficult to calculate the exact motion of the
edge electrons, only the total excess charge which accumulates on the
boundary influences motion of the interior electrons, and for this pur-

ppse it is sufficiently accurate to use

V.

G:':Poyl -:903_(;%;). 1.8

for the surface charge density. The upper signs apply at the upper

surface of the beam while the lower signs apply at the lower surface

" of the beame u, is the velocity of the upper edge electrons and u_

is the velocity of the lower edge electrons. At a boundary E]y is

discontimious by an amount ¢,/ €, and E,, is continuous,
Solutions in the three re;ions may be written

E,;, = G sinh p(y+t+a) -(at+tt)<y< -t
- o Fi(E) * O Fx(E)  -beyeo II.kg abe

= Ch cosh By + 05 sinh By O¢yced
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E]y = ;scl cosh B(y+t+a) ~(att)eye -t
= 3 [c2 Fvl(g) + GB-F'Q(E)J “t<ye 11,50 abe

=3 [Ch sinh By + 05 cosh py] o¢ycad

where Fl(_E ) eand F2(§) denote the two fundamental solutions of
I1.37, II.43, or IT. 46, In the first and third cases Fl(E) and
F2(§) may be regarded as standing for cosh By and sinh By, respec-
tively. In all three cases, %il = gFY(E) .

Requiring K, to be continuous at y = -t and y =0 (E =& _
and § , respectively) gives two relationships among the five constants,

G, sinh pa = G, F1(§ )+ c:3 F2(§ ) 1I.51
c, F(§,)+ c, F(E,) = G, . I;.sz

Requiring Ely to be discontimious by an amownt T ./eg o Elves two

more relationships among the five constants,

2T 805 F_""(;‘) ) 1153
2

W
C, cosh ga +-(—ZE-2 [02 F']_(E_)*% F'2(§_)+-&-;%‘-l: C, sirh ﬁa]

m2 4
CS - 02 F'1(§+) +03 F'2(§+) --(-Z-P? [02 F'1(§+)+03 F'2(§+)"' @ -—';u+ 05]
11,5k

Two boundary conditions at y = d must still be applledj E]y
and E,, mey be specified, Actually, only the ratio of E‘ly to Elz
is significant in determining the allowed values of § , since specify-
ing either E]J or E,, in addition to the ratio only determines the
amplitude of the wave., With the four equations II.51, II.52, II.53 and
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iI.Sh, and the ratio of Ejy to E,, at y =4, it is possible to
eliminate all five constants and obtain a transcendental eguation which
determines the allowed or characteristic values of B and hence the
characteristic waves of the system.

The characteristic waves when the circuit is absent will be dis-

cussed in the next section.
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IIT, THE ATMITTANCE METHOD AND SPACE CHARGE WAVES

The Adnittance Method, It is sometimes more convenient to use the

admittance method (14),(15), to satisfy the boundary conditions at beam
edges. The normalized admittance will be defined as

P+ 3jQ = -—E]y-' III,1
Bz
where P is the real part of the admittance, or conductance, and Q is

the imaginery part, or susceptance. This normalized admittance is re-
lated to the usual E-mode admittance (14),(15),

Y ._5.3.;. 1I1,2
E B

through the equation

k /eo
IE B-I-F ™ (P + 3Q) 113

where x is the phase velocity of the wave divided by the welocity of
B

light (which is small) and %9- i8 the characteristic admittance of

©
froe spase., P + jQ ie normalized in the sense that the surface admit-

tance of free space is given by

P+jq = +3 IIL.h

This is easily seen from the following consideration:

For y<0 an appropriate solution of IT.4i7 which is bounded at wm is

Using II,12
. g
By = 39 of



Consequently "
E.
P + jQ - _.].I - J -
By
Similarly, for y>0 ,
| -y -By
By " Qe By 3G .
Honce P+ jQ = «J o
The normalized admittance of a conducting plane at a distance 4 is

+ J coth pd o It is easily shown that if the admittance at a particu-

lar plans is (P + jQ)l, the admittance at distance d above this

plane is
. ) (P-a-jq)l-o»;jtanhﬂd
> =
(77 30 = T e pa (P gQ), TS
or wvhen P 1is zero simply
+ tanh gd
Q = Ql IIT.6

2 T+Qltanhg3d

The usefulness of the normalized admittance lies in the fact that only
the ratio E’.Ly/Elz is important in determining the characteristic

waves of the system. This method is used in this section to obtain the
propagation constants of the space charge waves which propagate on a
bemm between two conducting plamese Throughout the remainder of this
section it will be assumed that the fields Ej_z and E1y obey the

free space equation IL,47 inside, as well as outside the beam, and that
the slow wave circuit at y = d in Figure 2 is replaced by a conducting

plane,



-29 -

The boﬁnda.ry condition at the lower edge of the beam may be
writteﬁ

o

By -
E, €0y,

ya.t y’-‘b‘

2y
Bs

+ IIX.7

The first term is the admittance just above the lower surface, the
second term is the admittance just below the lower surface (and equal
to j coth pa), and the third term is the discontinuity in surface ad-
mittance provided by the equivalent surface charge. The latter term
may be expressed in terms of the admittances with the aid of IL.L8,
I1,18, and the definition of «°

p?
O . "’zp El.I @,
éoﬁiz _Q-:z.[ Elzlyat-:-‘,ﬂw-gu_s . I11.8

In terms of the susceptance Q. ,

2 2
Q, [1 - (2.?..] =Q + .?.P__L
U 2] v N2e-p)
Q- @2 ®
or 0. = t — - P 2(: ITI.9
% (2 -a)e- )
a |
Since Q_,. = coth a, IIT.9 may be written
2 ' 2
(@ =-gu_) coth pa + &3 ®
Q_+ - n- 2 P P 2 IIIO]-O
t . ~a3) (o - pu)

Using the transformation formmla III.6, since the fislds obey the free

space equation in the beam, this admittance appears as



E{L (m-ﬁu Jeoth pa+a m] [(ﬂ_. - 2)(93 - pu )]ts.nh Bt
Qﬂ III.ll

° [JZ (0=pu_ )cothﬂﬁa-m ]tanhﬁt+[(.fl - )(w-ﬁu )]

just below the upper edge of the beame The boundary condition at the
upper edge of the beam can be written,

Sy . oy 9.
P y=0' Elz eo Elz

I1L.12
y=0" '

which may be expressed in terms of the admittances with the aid of IT.L8,
1,18, and the definition of &% , |

2
o + &p f‘h mc
= - = Te-m) | * 111,
€o Elz ﬂ...z [ o Jlo-pu, ] L
In terms of the susceptance Q ,
Q [ m% @% @y V
= Q - - - e III.lh
¢ 9 mz] 0, -pu)

Thus the normalized susceptance just above the upper edge of the beam is
[(.ﬂ. (o =fu_)ecoth ga-l-m o ] [(_0_2 - )(m Bu, )]t.anh gt
o [.ﬂ-- (as - fu_)eoth pa*co a)] tanh gt+ [(ﬁ_ -mz)(m-pn )]

IIL.15
&2 ' 2

S R Il e
.Q.l. . .Q—+(m‘$u+)

Finally, this admittance must be transformed to y=d by means of
Q-[- + tanh pd
“ 1*Q... tanh pd ¢

17,16

The resulting susceptance is a function of the prépagation constant B .
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i‘he propagatibn constants of the characteristic waves of the sya'beni
are obtained by equating this expression to the susceptance of the cir-
cuit at y = d , Since in this section the circuit is replaced by a
conducting plane, the susceptance Qd mst be infinite. From IIT1.16
this is oasily seen to occur when

Q+ & - cot:h ﬁd III.].?
©

Space Charge Waves of the Non~slipping Beam. When s = 0, all

electrons have the same velocity, u, = u_-= LI If the beam is very
thick, Bt»>1, the fields generated by the equivalent surface charge on
the upper edge of the beam will be negligible at the lower edge of the
beam and the fields generated by the equivalent surface charge on the
lower edge of the beam will be negligible at the upper edge, and the
vaves associated with the upper and lower boundaries of the beam may be
analyzed separately. The waves associated with the upper boundary may
be found by setting tanh gt = 1 in III,15 and equating this to IIIL.17,

02 2

w 4]
1 - Pz.. 2" S = -cothpd . 11,18
L2 L (o ~ pu)

Using the definitiom or £ ana rearranging slightly, this becomes,

@l

(@ - pu - a,) (o-pu) = P . IIL.19
_ 1l + coth fd

Solving for B ) —
] Bo ‘/ Bo.2 8
1 = ﬁe - > < (—2—-) P — III¢2°

P B
By ® Be""é?“' \/(-29-)2+ —R IiL.21
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where the usnal traveling wave tube notation is employed:

@ 4 “p
u Be "ﬁ?' Bps"" *

Pe = m

The first wave has a phase velocity which is less than the electron
_veldcity, while the second wave has a phase velocity which is greater
than the electron velocity. Ihe electron velocity field corresponding

to these waves can be found froam 11,18 and II.19. Hewriting them as

nvy 38 -Be) By v Be By

- IIT,22
0 (B-8,0% - 82
UV, 3(B =) Eyz -Be by 111,23

2
YL (B 'Be)a -B Py
and using the ratio of E._w to Elz in the interior of the beam (*j)

EIH = Elz III‘zh
A(\ P-Bg * B

U¥z . ~JEq 4
n B =B *Be

. IIT.25

Since the electric field decays exponentially ('ej3 ¥) in the interior of
the beam, electrons near the surface of the beam deviate further fram their
equilibrium paths than do electrons in the interior of the beam, DBecause
these waves are, in a sense, supported by the electrons nsar the surface of
the beam, they are callsd surface waves. Comparison of ITI.25 with III.2L
shows that the phase of the 2z velocity differs from the phase of the ¥
velocity by = , but the amplitude of the two components of velocity are

2
equal, Thus themotion of each electron is the combination of a drift at the
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electron is tiie combination of a drift at the velocity u and a ¢ircu-
lar motion, A given amplitude of the electric field, Elz s produces a
greater velocity modulation of the electrons for wave 2 than for wave 1
since the denominators of III,2L and 111,25 are smaller for wave 2 than
for ﬁave 1.

In a coordinate system which moves with the electrons the frequency

of oscillation is higher for wave 2

m2 '
o, )
t = - . - -9-2 .............12_.._...
o', = o=-pu > *J(z) +1+cot.hpd 111,26
than for wave 1
2 ¥
() @, 2 @
t = e - =2 o [t2 ——e 111,27
LT 0T T T \/(2) " T+ coth pd

Electrons execute many more circles in drifting a fixed distance when
wave 2 is excited than when wave 1 is excited, In addition “"2 is
positive and the electrons execute counter-clockwise circular motion,

when wave 1 is present, while o' is negative and the electrons exe-

1
cute clockuwise motion.

The waves assoclated with the lower boundary may be found by setting
normalized susceptance, I11.10, equal to «1 , since the fields in the
beam may be assumed to be proportional to e.ﬂy + The resulting equation

can be written,
2

[}

- - - P
(0-pu + mc) (o = pu) T ooth 111,28

and its solutions are
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o |8 e
c [+]
93 = ﬂe /( ) 1+c°m Bd I11.29
2 L |
B B B

?u'-’ﬁe*-a‘“‘/(") "TTom R T30
The electron ﬁlwity field is given by

Yy (. _~hs ITI.31

'\. ﬁ “Bg = 8¢
Vg _ Z3Fs 111,32

Yt B"'ﬁe "Bc

As before, the velocities are equal in magnitude but differ in phase

by -;-. For wave 3

2 \
« 2o [ 242, %0
co’3 = o)-Bau i /( 2) + m 111,33

the frequency is negative and the circular motion is clockwise; while

for wave |

2 \
0) o
mham-shu - --+ \/('—) r;gfg;;; II1.3h

the frequency is positive and the motdon is counterclockwise. The
circular motion is greatest for edge electrons, less for electrons in
the interior of the beam, being practically negligible for electrons
vhich are more than 2 small fraction of an electronic wavelength (dis~

tance measured in units A, = %E) fram the boundary of the beam.
)

It is interesting to note that when mzp <L cozc the propagation

constants of the four waves are given by
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ﬁzp /B
1+ coth pa L35

B2, /Be
1 + coth gd

B, = B, +

By =Bg = B, - IIT.36

'33 -3 - [322/33 111,37
, e 1+ coth pa

By = Be * B, * .;?./P_L__ II1.38
coth pa

Waves 1 and 3 have phase velocities zpproximately equal to the electron
velocity and are similar to those to be discussed later in the slipping
stream analysis, Waves 2 and l are sometimes referred to as the fast
and slow cyclotron waves, respectively, since their phase velocities
are less than and greater than the electron wvelocity and the frequency
in the moving coordinate system is approximately equal to the cyclotron
frequency. As the charge density of the beam approaches zero, the fre-
quency of these waves in a system moving with the average velocity of
the elsctrons approaches o

c
_cular motion which an electron executes in a magnetie field, which is

and these waves describe the natural cir-

counterclockwise for the sense of magnetic field assumed here, Simi-
larly, as the charge density of the beam decreases the frequency of
waves 1 and 3 tends to zerc and these waves describe the natural drift
motion which an electron executes in crossed electric and magmetic
fields.

To discuss the waves it is convenient to introduce a new variable,

& = B/By « The susceptance just above the beam IIT,15 can be written
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.Q+‘\u

o

{[(5 -1)° _mZ] [6 -1] coth B ab - r2m3} +{[6 -l] [(5_1)2 o2 2]}tanh b0
{[6-17? #*]fs -3 cotn 6 -2} tamn pet5+{5-1][(5__1) 7 2]

{(5 1)2 - _m2r2} r2 m3 111,39
"1 (6-1)2 - m? S [5-1][(5 -1)2 -m2] :

Upon putting this over a cammon denaminator, a common factor (6-1)2 -m2

may be cancelled from numerator and denominator, so that Q may be written

{ 1}{5 1 (6 1)2 op? _m2r2][1 +tanh(ﬁet6)] -2n2(5 -1)‘banh(3et6)
+ rln 3 tanh (ﬁetS)}-t»m r'* tanh p_ 6

S _1[{{[(5 _1)? -m2][a -1] «Zltanh 5, 6 + [5-1][(6-1)% -n? - 2,2]}]—

where coth B a & has been taken equal to 1 (a=o0) for simplicity. To

find the modes of propagation when there is a conducting plane at a dis-
tance d above this beam it is necessary to equate this expression to
-coth B, d6 and find the values of & which satisfy the resulting
relation, The solution may be effected by plotting the susceptance of
the beam and -coth B, 46 as a function of 8 and locating the inter-
sections of the two curves., This procedure is illustrated in Figure 5,
where it has been assumed that coth pad=1, Bt = .50, m=1/2,
and r» = 1 , The suscoptance at a distance d--'-g-:— above the beam is

also shown. Intersections of the beam susceptance curve with the free

space curve, Q = -1 occur at
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5 = g- = 0,30, 0,86, 1.16, 1469 .
e

The waves for which & = ,30, 1,69 may be termed the fast and slow
cyclotron waves respectively while the waves for which 6 = .86, 1,16
are similar to the waves whose phase velocitles were approximately
equal to eiectron velocity which were found in the thick beam case.
Figure 6 shows the distribution of E,, across the beam far each
of the four modes. The values calculated from the thick beam formulas

111,20, III.21, II1.29, and III.30 are

5 = g—e- = 0,13k, 0463k, 1.366, 1.866 ,

and are in qualitative agreement with above results., In both cases there
is one fast cyclotron wave, one slow cyclotiron wave, and two waves with a
phase velocity near the electron velocity, one a little faster and one a
little slower than the electrons. Previous investigators have found only
one wave (8),(9), or claim that only one of the two waves near the elec-
tron velocity can couple to external circuits (6). The field analysis
shows that there are two waves near the electrom velocity which can
couple to external clrcuits. In many other respects the curves of

Figure 5 are similar to those obtained from an equivalent circuit theory
(8)5(9).

aQ
Connection between Energy Transfer and F - The power extracted

fron the electron beam c¢an be obtained by integrating the Poynting wvec-
tor over a surface just above the beam, The time average of the
Poynting vector is
1
II = 2 Re (E”z Hx) III.hl
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~ ' A (ot -p2)
If a single wave whose space and time dependence e is present
this may be rewritten
1 i I
II = SE, B¢ Re (Ez) = -3 E, E¥ Re(Yy) IIT. N2

According t.o IIT.3 IE is proportional to P+ jQ with a real constant
of proportionality. In the preceding section it was found that P is
zero for reel values of the propagation constant, Thus the net energy
transfer is zero since the time average of the Poynting vector is 2zero.
Energy may be extracted from the beam if more than one wave is present
or if the amplitude of the wave increases or decreases with z
Inereasing and decreasing waves can be represented by assuming the

z dependence to be e"(‘:‘-}‘w)z

3 positive a represents a decreasing
wave and negative « an inereasing wave, ITIT.}2 is still valid. Since
Y; is analytic along the B axis, except at four points (see ITI.LO
and Figure 5), the real part of the admittance can be found fram the
imaginary part in the following way:

In a neighborhood where Y is analytie,

oY.
Y, (B - Ja)= Yg(B) +(-:)a)-£- o small IIL.L3
| )
Since YE(B) and *-55 are pure imaginary, the real part of YE(fB-;]a)
is glven by
_ olp
Re Y, (B=-Ja)= -Ja )
or in terms of the normalized admittance
P(p -ﬁa)“'g'g' a . IIT bk

It may be concluded from this result that energy is extracted from the



R

The most interesting case is when a<O0 , for in this case the wave
increases with distance and the additional energy which appears in the
field as the wave increases is obtained from the kinetic energy of the

electrons, Reference to Figure 5 shows that 29 is positive only if

3
B is greater than B, , that is, if the wave velocity is slower than

the electron veloecity.

When two constant amplitude waves are present,

-3812 ~38p2
Ez - Ezl e + EZZ e

. =3B, 3 ~JBo%
He =T Eye™l -YgpEpe
and the time average of the Poynting vector is given by

1 - X

+ Y5y E,y E:Z 3‘3(31' Bo)z + Ty Bga E:I e-l-j(ﬁl“ﬂz)z] .

¥ In same respects this condition is analogous to a theorem for elec-
trical networks: the 2z coordinate replaces the time variable and
-(a+ jp) replaces the complex frequency variable p = O+ jo (the
frequency is a constant in the electron beam problem). In the elsc-
tron beam problem the admittance is pure imaginary along the P axis

- (@ = 0)3 this corresponds to a reactance network., The susceptamce
slope of a passive reactance network is positive., If the suscep-
tance slope is negatbtive over any part of the frequency range, onergy
can be extracted from the network. Energy can be extracted from the
electron beam if 23 is positive; the difference in sign arises fram

the negative sign preceding 8 in the exponential 2z dependence,
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. Wpiting T - By end T, = JB., vhere By and Ry, are pure
real,

T. -i(By ~Bp)%
TI*’-%RG[JBElEzlE*zze _1 2

* By Byp B P -ﬁz)z]

ITTL6

This expression has oscillatory 2 dependence and energy may b imagined
to flow out of the electron beam at one point and into the beam at
another, Since the length of the beam is finite, it is possible to obtain
a net extraction of energy.

Space Charge Waves of the Slipping Beam: mzp Bmall Gompared with

eazc s Waves Near the Electron Velocity. The restriction to waves near

the electron velocity can be stated more precisely,

Since for the waves disoussed in this and later seetions

€

P

@-p)l= L . -
III.47 is satisfied if cnzp is small compared with mzc. Under these
_circumstances, '
.2
0’ = - g -ayle, - A= - ITT.48
. e .
and the surface charge density on the lower edge of the beam is
o
ag. - Oy 1l

€, B, f“_c jl@ - pu_)

IIT.k9

while the surface charge density on the upper edge of the beam is
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eﬁz @, J(» - gu,) o5

The last two equations are obtained fram III.8 and IT¥,13 by neglecting
Ely/E]_- in comparison with o /(m-ﬁu) since the former is of order of
magnitude unity and the latter will be of order of magnitude ( )

“p
The normalized susceptance ;just above the beam is
, 2
(o - pu_)(tanh pt+coth pa) - &?P‘ w2
Qo-l- = c@f + P II1.51

(w=-pu_)(1+ tanh pt coth pa) - ®p tanh pt  wp(e -pu,)
e
‘which may 3lso be written

2
- tanh Bt + coth - 2
- (B -g.)(tanh pt+coth pa) - r“m B_ _r2aps 2
° (8 -p_)(1+ tanh pt coth a) -r2mpB_ tanh pt (B =B4)

@
- 3""11_‘. .

where B_ =

ﬁle

To simplify the writing of this expression, a new variable v s is defined
B =g, @+r®nV) II1.53
and the following additional definitions are mads,

tanh pt = T cothpa 3 C

€= u.,.-u_-la_i = smrz-:-E

€& is the fractional welocity spread and is assumed to be small compared
to unity, The slip parameter, s, will be retained in order that subse-
quent expressions will apply to both the slipping or non-slipping cases.
Since T and C are slowly varying functions of B , they may be taken



as constants, evaluated at

- O ®
-— t— -

B = - ‘ u+“"u
u, u -

*

The expression for the normalized susceptance, III.52 becomes

. (V -spt)(T+C)+1 1
¢ (Y -spt)1+TC) 4T Y

- sg_t(1+1TC) = T
T+GC ‘92-17_813_t+_l%‘c'fél* : T+0C

PV i

= 1+71C
I1I,55 is subject to obvious simplification if the beam does not slip

. 111,55

(sv- 0 or if the conducting plane below the beam is far removed (C = 1).

When C =1

0, - 1)2_-0[53_1-,-;;!]1- sﬁ_‘b-i"%‘f
’ V- e+ i)

Figure 7 shows a plot of III,56. The slipping and non-slipping casmes are

. II1.56

shown separately, Two features which are common to both curves should be
noteds (a) the normalized susceptance is very nearly equal to +1 , the
free space value if P > 1, and (b) the slope of the susceptance curve
is positive in the vicinity of V= 0, indicating a range of wave velo-
cities in which it is possible to extract energy from the beam. Intersec-
tions of these curves with line Q = -1, the normalized susceptance of
the free space above the beam, determines the propagation constants of the

waves when the upper conductor is also far removed, It can be seen that

when s =1, no intersections are obtained, A4An analytical solution may be
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* obtained by setting III.56 equal to ~1 ., After a slight amount of

algebraié manipulation the resulting equation can be written
: 1 T
1)2 - (s ﬁ_t) v + 5 (s B_t -‘m) = 0 111,57
The éolu‘bio‘ns of this equation are

t t 2 t P
v B AT e - 58

When the beam does not slip (s = 0) +this reduces to

’ T
Ve + m) IIT.59

and upon substituting into ITI,53

T
2(1+7T)

B =8 erin ) 1.0

(note B, = p_ when s =0)

One wave has a phase velocity which is slightly greater than the elec~
tron wvelocity (lower sign) and the wave has a phase velocity which is
slightly less than the electron velocity. VUhen the beam is thick

(T =1) III.59 gives the same result as III,35 and III,39 derived
earlier s 2 '

‘“g IT1.
Zeécu ' HIIG].

o
L]
gle
RS 4

When the beam slips (s = 1) III.58 becames

_ Bt , [Bt2 st 2
V-2 G -Feme - FLL.62

Furthermore when the beam 1ls thick (T* 1) the solution of this equa-

tion is
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(M

V

* IT1.63

1
VvV = Bt-3

Using III.53 and III.5h the corresponding propagation constants are

found to be
2
® ®p
—-—
B1 u, 2mc u, IIL.6h
P
By = & B 1II.65

- 20 u_ .

The first wave is a surface wave associated with the upper surface and
has a phase velocity a little less than the velocity of the upper edge
electrons, The second wave is also a surface wave associated with the
lower surface and it has a phase velocity which is a little greater than
the velocity of the lower edge electrons, These waves are similar to
the waves described by III.61 except that the velocity of the sppropriate
edge electrons is different,

It is interesting to note that most of the longitudinal current in

the electron beam is the surface current:

€o B,
ii = G.iu: = :j—-—2-—-—=u+ III.66

where Elz is the longitudinal field at appropriate edge of the beam,

. £ .
TII.66 is obtained by substituting IITL.6L or IIT.65 into III.50 or IIL.L9.
The current in the body of the beam is obtained by integrating p, Vi,



- hs -
o"2
Thus the body current is 2 B times the surface ocurrent in the thick
i)
(4]
bem.

When the beam thickness is less than an amount given by pt=%l,.3,
I11.62 gives complex conjugate values of 9 . Consequently one wave in-
crelases with distance and the other decreases with distance, and small
perturbations may grow as they are propagated along the electron beam,
It is important to note that a source of disturbances at z = 0 sets
up both the increasing wave and decreasing wave in the region z20 .
Small disturbances will grow large until the growth is limited by non-
linear effects or until the electrons are collected, Figure 8 shows
the rate of growth of the disturbance with distance as a function of
the beam thicknesss:

2
a = m:__.Eu: \/(E_Ef) - (Eéf)z -%T-}TT . II1.67
This result can be understood in terms of Pierce's theary of coupl-
ing of modes of propagation (16). The increasing and decreasing waves
" come about through the coupling at the upper surface wave with the
lower surface wave, Uhen the beam is not very thick, the fields of the
upper _a.nd lower surface waves overlap and the waves become coupled. The
arguments of the preceding gsection indicate that the electronbeam givaa
up energy to the field by being modulated with the upper surface wave
and receives energy fram the field by being modulated with the lower
surface wave, Thus in the wave which increases with distance, the
source of energy which appears in the field comes primarily from the
upper edge electrons. The energy axchange takes place in the same way

as in a magnetron: the electrons move into a region of higher d.c,
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i:otential. ‘wifhout appreciable change in velocity by interaction with
the high' frequency field,

' The critical thickness for growing waves is independent of the
plasma frequency and hence of the current density in the beam. This
result can be explained in the following way. Ordinarily, an increase
in current increases the coupling between space charge waves but, in
the slipping beam type of Fflow, an inerease in eurrent also increases
the difference in velocity of the upper and lower edge electronsv and
hence increases the difference in velocity between the two surface
waves., These two effects change the coupling in opposite directions-
with the net result that the coupling is independent of current.

Similarly, the beam thickness enters in two ways: the thicker the
beam the greater the velocity separation u, - u_ and, the less the
fields of the two surface waves overlap. Both effects tend to reduce
the coupling between the two surface waves,

The tendency for small perturbations to grow larger as they
propagate along the electron beam has been termed the "diocotion®
effect by French workers. A fundamental error in their analysis (12)
.of this effect has dlready been pointed out, This led to a prediction
that the rate of growth of perturbations is proportional to the square

root of the beam thickness for thin beams,

2
/)
t

This result is incorrects The analysis of the present paper further
more shows that there exists a maximm thickness, beyond which growth

does not occure
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Two of the results derived here arve easily campared with the
results of Macfarlane and Hay's(13) analysis which applies when
mp =, . The latter predicts a maximum rate of growth and a maximm
frequency at vhich amplific¢ation can occur

- %
~ ®
max T g
( § ) u.|. - u_
< 42
u++ u_ n'i' + u.
@ o2 707

max p u.'. -u_ .

while the analysis of this paper predicts

e

14
“maxf--zo-—ﬁ:-;r

auc(_..z._...

2

Op wetu
&)m ) .65 %—-—- W ou, .

It is seen that the theory presented here would actually give fairly
accurate results when applied to the extreme case, @ = @ s even
though the principal assumption made in the derivation (wzp &< eozc)

does not apply.

Susceptance of the Beam at the Circuit. In the subsequent analysis

it wiu be assumed that the lower plane is far removed, It will be

’ necéssary to know the normalized susceptance of the beam at a distance
d abowve its upper surface, minus the normalized susceptance of free
space at this same point. Using the susceptance transformation formula
II1,6 on III.56 gives
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T4.1 1 —
. "2+9[1+Tfm° ”-’“]*m”-"lw] 1.8

Q
‘ 1)2*7)[1+T%-+T;’sﬁ°t ]+ T"%:’i[sﬁ-t' i“?'i‘]

where T' § tanh pd

Qb_l - _v[_]%_f? %'E-%] * ?ﬁ:—%: [8 Bt "f?:f] III.69
\)2+V[1$T%-:%-spt]+ I [sg_-b--iTTT] .

To determine the characteristic waves of the system when a slow wave cir-
cuit is present at 2 = d, it is necessary to matech this susceptance to a
similar susceptance for the circuit., This concludes the discussion of

the electron beam characteristics. In the following section the circuit

characteristics are discussed.



IV THE SURFACE ADMITTANCE OF THE SLOW WAVE CIRCUIT

Characteristiecs of a Periodie Cirecuit., The surface admittance of

the electron beam which is a function of the propagation constant of
the wave and other parameters, was derived in the preceding section.
This section will deal with the characteristics of the slow wave cir-
cuite The structure shown in Figure 9 is analyzed and these results
are then generalized to include other types of slow wave circuits, The
principal result of this analysis is the determination of the surface
admittance which such a slow wave circuit presents to the electron beam,
particularly when the electrons have a velocity nearly equal to phase
velocity of one of the space harmonics of the circuite. Only the trans-
verse magnetic modes will be discussed.

In some respects this analysis is similar to one made by Parzen (17.)
of the same type of circuit. His analysis applies only to very low
current electron beams focused by a very large axial magnetic field,
while in the treatment presented here it is not necessary to specify the
Eea:u conditions specifically when deriving the circuit properties.
Parzen's treatment can be shown to be equivalent to a presentation of
the circuit by a fixed admittance wall (15), and thus backwerd wave
circuits are not treated correctly. This is equivalent to the neglect
of the sum in IV,39. The sum turns out tc be very important, even
though it is zéro for waves which propagate at exactly the circuit
velocity. The analysis of this section differs from a previous andlysis
of the same type of circuit by the author (18).

While it is possible to write down the camplete set of equations

which determine the fields and propagation constants of this structure,
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with or without the electron beam, the boundary conditions are mixed
and the solution of the set of equations requires the solution of an
infinite determinant (19). Instead of following this procedure a
variational method will be used in which the longitudinal electiric
ﬁeid at y = 0 is the trial function, First, an integral equation
for this field will be derived.

According to Hlech's (20)) theorem the true fieclds of this structure

satisfy the periodicity requirement

-3i8.D

B (7,5+D) = e PO E_(y,2)

Ey(y,zﬂl) = e"jBoD EY(Y,Z) v,1
H (y,2+D) = oo K (y,2)

where the phase factor e-jBOD is determined by the boundary conditions
o.f the -preblems E,s Ey’ H, are the only field components present in the
transverse magnetic modes when the fields are independent of the x
coordinate, 4An expression for the electiric field at y = 0 which satis-

fies periocdicity condition IV.1 may be written

+0o —j2un z
€(z) = E,(0,2) = e"“j’3°z Z L . Iv.2
' nNn=® win

The inverse of IV,2 is obtained by multiplying IV.2 by Fe e

. D ‘D .
and integrating from = 3 to 3°¢

. D/2 nmz
ST

-D/2

dz . Iv.3

In the absence of the electron beam the electric and magnetic fields
in the region =b<y<0 are given by
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R +00
eSS e
Z nee® g8inh zn b
-jpn cosh §..(y+b) _dZn'nz
E = ¢"dPo® E % ( “Jn sinh ;:n b e P V.5
‘n= -
- .
“Jﬁo Mn joae o cosh ¥ (y-rb) . j—ﬁ——“ 2 V.6
Z sinhl b
n=-0o n
where an & pi -k2 IV.7
Bn = B 2%9 IV.8
¥ o= ofp e, . V.9

These fields satisfy Maxwell's equations and the boundary condition at
¥y = =b,
EZ = 0,

The magnetic field at y =0 is

38 2 = -j2rnz
' Hx(O,z) = - O E Yno Mye D Iv,10
n= =
where I = o€ coth ¥y b is the E-mode (transverse magnetic) sur-

face admittance of free space for the nth space harmonic,

When the electiron beam is present IV,10 may be written
_521:11 2z

Hx(o,z) = -8 E Y M e D vl
n==
where Y, is the E mode surface admittance at y = O with the electron

beam present, and is determined by the methods of the previous sections,

In this section, the total field in the region +be¢y< 0 is the
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superposition of an infinite number of partial waves or space harmonics
as given by the summations in IV.L, IV.5 and IV,6 , Since the propa-
gation constant of each space harmonic is different there is a different
E mode admittance, L, , for each of these space harmonics. However,

in the preceding section it was shoun that when s = 0 the swrface
admittance with the beam present is practically equal to that of free

space except when
3 2."39 b
PassBo X Bc ¢
Thus most Y, will not differ appreciably from Ino + It is assumed

that this is also the case when s = 1 ,

The fields in the slot which lies between - 52‘- and § may ve
written
. d
3 sin gpo-y) PP s
E, = (2 - ano) B, ~%in q ¢ cos g .
n= ’
d
o) cos q (¢ ~y) nu(z+3)
ny 4, o 2
- - gin IV,13
Ey nzao (2 6rxo) B, (qnd) sin q_ ¢ d .

d
i joe, cos q. (c=-¥) nn(z+7
H= 4 (2-8y0) B (- qno) sinznc cos g V.1

where q2n=k2-(ga!§2 Gno=1 n=0

=0 n#o0

Only the fields in one slot are specified, fields in adjacent slots
differ only by the phase factor e""j‘3 oP .
These fields have been chosen to satisfy the appropriate boundary
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" eonditions at the conducting surfaces:
Ez =0 at y=¢

- ™ d
Ey 0 at sz s i .

At y =0 IV,12 and IV.1lh became,

d
@® nn(z+3)
E,(0,2) = Zo (2-86,,) B, cos — 2 IV.15
ne
@® nw(z +%)
He(0,2) = > (2-8,,) (<I',)B, sin = IV.16
n=20

3‘060 th
where I'n =4, cob q9,° is the admittance of the n~ harmonic in
the 31015.

The following boundary conditions must still be satisfied:

(a) Ez(o,z) as given by IV,15 must be equal to Ez(o,z) as
given by IV,2 ,
(v) E&(O,z) as given by IV,16 must be equal to H,(0,z) as
given by IV,1l ,
D

(e) Ez(o,z) must vanish in the interval %&\zll- 3 e

The first of these conditions will be satisfied if

© ntr(zi-.i‘..)

() = Z (2-8,,) B, cos -——a-—-g- . V.17
n=0

mu(z+
Multiplying IV,17 by % cos __.&._2_ and integrating from - -g- to-g-
yields

/2 | mu(z'l'd)
B, = % S/ E(z) cos-—d—-z- dz . Iv,18
-d/2

The second condition will be satisfied if



J_oo~ 2nnz ® +d)
-3B2 E -0 > (2- ' prlerZl o
e © 0 e I, M e 2 (2 6no)*Yan eos d 9

‘Upon substituting IV,3 and IV,18 for M, and B, , respectively, and

interchanging the order of integration and summation, IV,19 becomes

lD/2 o -j(po+21;rn)(z_z,)
5 S €z Z T e dz! =
-D/2 n = -00
d/2 d d
% / e(z') i‘ (2-8 )Y!' cos n“éz”ﬂé‘) cos n“(:""g}- dz? .
no’ n
-d/2 n=0 V.20

This is an integral equation for &(z). &(z) must satisty this inte-
gral equation in the region - -g-d ZL% and must vanish in the intervals

d D .
-2-<lzI<2 « letting

1 <= -j(po+2’5n)<z-z') .
GI(z,z') = E Yn e Iv,21
n=-oo
to d ad
nw(z+%) nn’(gl+-é-)
1 2 4
GII(Z,Z!) = a' nZ=o (2 “Bno) Y'n cos ] cos "‘""“"‘"—""""d Iv,22

denote the Green's functlons for reglons I and II, the equation which

€ (21) must satisfy is conveniently written as s

d/2
[GI(z,z') - GII(z,z')] € (z1)da' =0 | 2| « %

-d/2 1V,23
E(ZI) = 0 g—‘lzflég .

In IV,23 GI(z,z') is a function of the propagation constant, B, .

Both 3 (z') and ;30 are unknown, From the general theory of periodic
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.stmlctﬁre;s if is known that for a given set of dimensions and for a
particular frequenecy thé slow wave circuit of Figure 9 supports waves
only for special values of § o * Consequently, it is expected that
IV-23 can be satisfied only for these special values of B, + In
other words, IV,23 determines the propagation constant By a8 well as
the field £ (z') .

IV.23 may be converted to a stationary form for the determination
of the propagation constant, 8,, by mltiplying by £ (-z) and inte-

grating from -4 to +§,

2
a/2 4/2
S S‘ € (-2) [GI(z,z') - Gn(z,z')] €(z') dzt dz = 0 IV,2}
-4/2 =-4/2 '

For the true field e(z) and true propagation constant B o this is a
trivial operation since the integral IV,23 is identically zero for all
%z between - % and % « However, if & (z) differs from the true
field it will not, in general, be possible to satisfy IV.2h, whereas .
it may be possible to satisfy IV,2h with a value of B, which differs
slightly fram the tWrue value., IV.24 is a weaker condition than IV,23;
. only a weighted average of the difference in tangential magnetic fields
is required to vanish, the weighting function being &(-z).

By substituting various trial functions & () into IV.2k, an im-
plicit relation for the propagation constant Bo is obtained, It will
now be shown that the value of B, thus obtained is insensitive to
small deviations in the trial function from the true field. Denoting
the true field by &€ °(z) and the true propagation constant by ﬁ% ,
the first variation of IV,2h is



- 6] -

4/2

SS - 8€(-2) [GI(z,Z‘) -“GII(z,Z')] €°(z') dzdzt
-d/2 po"Bga
d/2
v o5, )Y '€°(-z)s§';[‘}1(z.z') - Gnﬁz,z'>] €°%") daas'
-d/2 Bo= 8
a/2
+ ‘ﬂ\ E°(4)_[Gl(z,z') - GII(z,z')] 6 E(z1) dzdzt = O,
~d/2 o=B°o
1v,25
The first term vanishes because of the integral equation
a/2
S [GI(Z,Z') - GII(Z,Z')] 60(2') dzt = 0, Iv.23
- o '
d/2 . 3033 °
The third term vanishes because
d/2 :
€°(z) [GI(z,z') - Gn(z,z')] dz s 0 IV.26
-4/2 -

=00

g-g9

vanishes for all 2z' , This follows from the symmetry properties of
the CGreen's functions,

Gi(zszf) = Gi('z')'z) V.27

GII(Z’Z‘) =. GII(-Z".Z)

and the original integral equation IV.23 . IV.26 is proved by substi-
tuting IV,27 into IV,23, replacing =-z' by 2 and -z by 2!, and
interchanging the limits of integration.
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Thus

a/2
88, SX E°(-2) 53; [GI(Z,z') - GII(Z,Z-)] £°(z1)dadz’ = 0
-d/2 | B, = Iac; .28

or B po = 0 , provided the integral which multiplies 5 8 o does not
vanish, It seems unlikely that this integral vanishes and numerical
calculation for the example discussed later bears out this conjecture.
48 a result, when IV,2l is used to determine the propagation constant,
small errors in the trial function E€(z) produce no error in the
propagation constant to first order.

Substituting the series expansions for &€(z) (IV.2 and IV,15)
and the series expansion for the Green's functions (IV.21 and IV,22)
into IV.2k and performing the indicated integrations yields

[ ]
2 _
D -S T, M2 +dn§= (2 - 80) T1_B% = 0, V.29

n =«

If the field is assumed to be uniform in the slot, €(z) =1,

/2 2nnz 2'"‘)‘_1.
Bz T a 9in(Bo+7p/ 3
]{n = % S e ﬁtJ e dz = hi] m g; IV.30
-3/2 (Bo-" )3
W% %)
B, -% S/ cos ’L"E‘-@—’—-— = 5, IV.31
| -3/2

and IV,29 becomes

g in(g, + Zun) d 2
81r. E .2- d ™
S In 5 g“n < +D-Y'° 0. Iv.32
= 8o+ 252 3

A better trial function, which takes into account the singular nature



of the fields at corners of the fins when d<D , is

E(z) = n/2 . 1,33
J1-&?2
' :
In this case M -ﬁJ("g" 5 Iv.3k
- n/2 )
cuVE g, & o e V.35
=0 n odd

and IV,29 becames

© 2 4 = om
Z Y, 5[:7 ("‘— + Tﬂnd)] D E (2 -ono)r'ngo ) - 0.
n® =00 n :ldo Iv.36
O

Either IV,32 or IV,36 with the proper values of Y, and I! can be used
to determine the propagation constant B 0 * These two trial functions are
not good approximations to the true field at very low frequencies, where
the field, £(z), is nearly antisymmetric, In this region it would be better

to employ a linear cambination of a symmetric function and an antisymmetrie
function, determining the relative proportions by using the stationary
property of IV,29, The solution of IV,32 for a particular set of dimensions
is shown in Fig, 10. Computation is facilitated by converting IV,32 to a
more rapidly converging series as discussed in ref,(17). The electron beam
is assumed to be absent and only the propagation constant for the lowest
mode has been determined. Curves of this type have been discussed by others,
(21),(22),(23)s A brief resume is given here.

Without loss of generality B D may be assumed to lie between -
and w o Since an = p,P*2wn, the phase constants of the other space
harmonics are obtained by simply displacing the fundamental curve (n=0)
by multiples of 2w , The velocity of energy propagation can be shown to
be equal to the group velocity (2L), which is given by

KD
v = o D)

g 3(B4D) V.31
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' Thus when B‘ODI ie between O and w energy flows in the +z direc-
tion, while if gD is between -v and 0 energy flows in the -z
direction. It should be noted that the phase velocity of space harmonics
-gi— is not a]nays of the same sign as the group velocity. For example,

when -n<p D<O the group velocity is negative and the phase velocity
of all space harmonics for which n>0 is positive, A space harmonic

whose phase velocity is of opposite sign fram the group velocity at the
wave is cammonly called a backward space harmonic and sometimes, less
precisely, a backward wave, Vhen the phase velocity of a space harmonic
has the same sign as the group velocity of the wave it is called a for-
ward space harmonic or, sometimes, a forward wave, Backward space
harmonics are of importance in oscillator tubes while forward space
harmonics are of importance in amplifier tubes., At low frequencies

(small XD, kD = %), the behavior of this slow wave circuit is mach like

a strip transmission line, which propagated a transverse magnetic wave

at the velocity of light. The effect of the fins is to capacitively load

the line so as to decrease the phase velocity of the wave to about .65

times the velocity of light. As the frequency is increased, the phase

shift per section increases until 8D = w , where refiections from suc-
cessive fins (or slots) reinforce and total reflection of the wave occurs.

This is .analogons to Bragg reflection of X-rays in crystal lattices. For
a range of frequencies above the frequency at which total reflection
occurs, no iransmission occurse Other transmission bends occur still

higher in frequency but these are not of interest in the present discus-
sion.

Solttj.on with the Electron Beam Present. Solution of IV,29 is ecar-

ried out in a similar manner when the electron beam is present, except
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that the _admittanees Y, are no longer the simple Y _ . In the pre-
ceding section it was found that the admittance with the beam present
differs apprecliably fram that of free space only for certain rather
'narrow ranges of the propagation constant, 8 « The case of most in-
terest in eleétron tubes is when the electron welocity is approximately
equal to the phase velocity of one of the space harmonies, so that the
electrons interact strongly with the circuit field, Under these cir-
cumstances the admittance for this particular space hamonic, n = m
for example, will differ drastically from the free space value, while
the other space harmonic admittances will be practically equal to
their free space values, 4&n important exception to this situation
occurs when other space hammonics have gpproximately the same phase
velocity as the cyclotron waves of the beam, This effect will be dis-
cussed later in this section, and for the present it will be assumed
that the space harmonic admittances Y, are equal to their free space
valves Ino excopt for n=m + IV,29 can then be written

' (¢ 2] da X
(T =T )M + S I +5 Z(z -8,0) ILBE = 0 1V.38
ns

n= =co

by adding and subtracting a term I nfn . Solving IV.38 for Y

[2.*]
T, =%, ?1—[ ; Yo M§1+ % E (2-5,,) ', an] . IV.39
| n=0

m*™ n= «oo

This equation may be interpreted as follows. On the left stands the
admittance of the electron beam at a plane wWhich just grazes the cireuit.

The right side also has the dimensions of an admittance, and since the
propagation constants of the system are found by equating this admittance
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to the beam admittance, this expression is just the admitiance which
the eircuit presents to the electron beam, In the remainder of the
~ analysis it will be convenient to subtract Y, from both sides of
IV.39 and denote the quantity in brackets by JS . The J has been
uséd in the definition in order that S be real forreal B . S is

a susceptance.

.) 3
Ym - Imo ® 32 . Iv‘m
m
The quantity
00 4 00
S = %[ Yno Mzn + ﬁz (2 -ano) Y'n an] Iv.la
n= =00 n=0

is closely connected with the problem of finding the propagation con-
stants of the circuit in the absence of the electron beamj when B, is
equal to the propagation constant of the circuit in the absence of the
beam, S is zero., If the propagation constant of the mth space harmonic
with the beam absence is denoted by B, and the propagation constant of
the nt® space harmonic with the beam present is denoted simply by 8 ,

S can be approximated by

as 2
s - @), @-8) 35D (B-p,

) )
%% B

Iv.h2
in a small neighborhood around B Except when @D =(2m + 1)v ,
i.e., when operation is near the upper cutoff frequency of the circuit

and the first derivative is small, the first derivative term by itself
is a satisfactory approximation to S .



-66-

S 1is a periodic function of pD with period 2w . This is
verified by noting that replacing B by BD+2w in IV.M is
equivalent to replacing m by n+l in the first summation and
does not affect the second summation, Since the first summation
is bver all values of n , this sum is also unchanged, Furthermore,
8 1is an even function of gD . This may be demonstrated either by
examining the terms in the sum in detail or by appealing to the sym-
metry properties of the circuit., Similarly -%? is an odd perioedic
function of B D with period 2n ., Thus (%E')Bm does not depend
on m since the different values of @D differ by 2w.

As a result, if -w<p D<O so that the net emergy flow of the

05
wave is in the negative 2z direction, (&') will be equal in mag-

nitude but opposite in sign from the valus i’; (%-) far the cor-
responding wave with energy flow in the positive z direction
(0<p°D<u) at the same frequency. Figure 11 shows (%?-)ﬁm for
the circuit whose characteristics are shown in Figure 10,

Thus when the electron beam has a velocity approximately equal
to the phase velocity of the m*’h space harmonic of the slow wave cir-
cuit, the circuit presents a susceptance to the beam given approxi-
mately by

B, = Bpo= 5o (%)pm (7 - ) V.3

n

where the sign of (gg-) is negative for forward space harmonic in-
m

teraotion and pogitive for backward space harmonie operation, This is

the principal result of this section. It gives a simple representation

of the susceptance presented to the electron beam by the slow wave
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- oircuit, Fletcher (5) has sﬁown that it is possible to represent the
susceptance of a sheath helix, at the surface of the helix, in this man-
ners He has also demonstrated for the sheath helix, the equivalence
bétween this type of representation and the Pierce equivelent circuit
representation, It seems likely that most slow wave circuits can be
represented approximately in this manner. Pierce (8) for example,
assumes that this is possible. The treatment of this sectlon demonstrates
by means of a field anslysis that this is possible for the loaded sitrip
transmission line, e space harmonic circuit, and determince the pertinent
constants of the representation, It is also possible to determine these
constants experimentally (25) (26).

In Section V it will be assumed that the slow wave circuit may be

represented by a susceptance
P =8p
Bm - Bmo * cm B IVl
mn
placed at the plane of the circuit, The values of G, and §  ob-
tained in this section will not be used specifically in the camputations,
but rather a wider variety of values such as might be ocbtained with other
types of slow wave circuits will be assumed.

Camparison with the Pierce Circuit Equation. Pierce derives a

similar eircuit equation using the normal mode theory (8) but the con-
staixts in his circuit equation must be evaluated from a field analysis
(4),(5) or by experiment (25),(26)s The difference in sign in the cir-
cuit equation between forward space harmonic operation and backward
space harmonic operation can be deduced from the equivalent circuit ap-
proach, tut the above analysis constitutes a proof of the validity of
this type of circuit representation. The relationship between the



constant € in TV.49 and Plerce's traveling wave tube impedance param-
eter 'K will now be determined, Pierce's circuit equation for a

thin beam is (see Figure 12)

v PmE, g -
- 5 Ohs
1 p2ap2 by

where V is the voltage at the electron beam, 1 is the conwvection
current of the beam, and 01 is the capacitance between beam and cir-
cuit in a unit length of cireuit, |

IV.L5 gives the circuit impedance at the surface of the circuit if

the secand term is neglected,

v_ PP
_2 °
i p-si

Furthermore, if g= g, this may be written

v Pro i_ 2B-
A e A Al L v.16

IV.h6 is similar in form to IV, L. If the beam is a thin sheet beam of
width w , the convection cwrrent in the 2 direction is related to
the discontinuity in magnetic field by

G - [(H]x)bél&w B (Hlx)above ] *v *

The longitudinal field is related to the voltage ¥ by

PR T
38~ B,

" so that IV.h6 may be written



_electron bean collector .

ficure 12, The Tlerce Travelins Vave Tubde
ELguilvalent Circult
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B ~Bn (Hlx)below - (H]x)above
B,

[ LY

A S

38y ¥ [Ty = To]: .7

Pn ¥ [Bmo - Bm] (T, =3 Bm) ¢

Solving for B - B, »

1 B-Bnm
v B ° IV.48

Ll L

Camparison of IV,L8 with IV.Ll shows that the Pierce traveling wave
tube impedance parameter is inversely proportional to G, ,

2 1
K & « -a-;:‘-,- -rm- . Iv‘.hg

K is the value of the impedance parameter at a plane which just grazes
the circuite Thus IV.LL can also be written

2 1 B-Byp
Bm - Bmo = -R pmw —ﬁ-.?— IV.SO

and, in terms of the normalized susceptance,

/l"o
2 €o (B~
% "% " Ew —_I-{-g'('?'ﬂ':_m . V.51

IV.51 can also be expressed in terms of the variable 7V of the preced-
ing section (III).

%= %o = f’éﬁ’ - b) IV.52
where
2 . kw K 1
* ) T &2 1‘2!!1 IV053
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and b is defined by

2 mb) . IV.5h

Bn = B, (1 +r
b 48 a measure of the difference in wveloeity of upper edge electrons
aﬁd the phase velocity of the nt space harmonic in the absence of
the electron beam. When b > 0 the upper edge electrons travel
faster than the space harmonic field, ¥ 2 35 a dimensionless para-
nmeter which is a measure of the strength of circuit field.

In Section V the circuit eguation, IV.52, will be combined with

the electronic equation, III,68, to find the waves of the electron

beam in the presence of the circuit.

Operation Near the upper Cutoff Frequency, B, = ?_W.D";.l .

In this region two space harmonles are important; one is a forward
space harmonic and one is a backward space harmonic, It is necessary
to retain both terms of IV.}2 in approximating S . The consequences
of the extra term and thé conditions under which it must be retained
will now be examined.

When the electron beam is absent, the phase constants of the
circuit space harmonics may be found by setting S, as given by
IV.k2, equal to zero, Clearly, one solution is g = By » but this
equation has two solutions, To the extent that third and higher order
terms can be neglected, the other solution must represent the nearby
space harmonic which hes a propagation constant

2n +1 2n + 1

B = —F—w+ (D m-By)
2n + 1 V55
T ni AT



-75 =

.It should be noted that these two space harmonics are not space har-
menics of the same wave, One is a space harmonic of a wave whose net
energy flow is in the positive 2z direction and the other is a space
harmonic of a wave whose net energy flow is in the negative 2z direc-~
tion, 4s such, these space harmonies, together with the waves with
vhich they are associated, can exist on the circuit independently of

each other, With the aid of IV.55, IV.42 can be rewritten

s = (%,s:)ﬁm(ﬂ “B)(1* " Ba:_f? Z ) V.56
n " D T »

The second facter has been adjusted so as to vanish at the value given
by IV.55 and still have the form given by IV.2. From IV,L7 it can be
seen that the one term approximation will be valid when the electron

beam ip present if 2ll the propagation constants, p , which are deter-

mined using the one term approximation satisfy the condition

2m+ ]
g -yl 2(g, - —5—m . Vg7

For electron beams which have approximately the same velocity as the

mth space harmonic |B -Bml is generally between .01 B, and .1 By

Finally, it should be noted that as P> Z:nﬁ-l;l v the second term of
the second factor in IV,E8 becomes large campared with the first term,

but that the factor (%?') 8 approaches 2zero in such a manner that
' m

2g
(§_' is roximately constant
292 By app:! .
The two term approximation is not used in subsequent analysis but
is necessary for a correct analysis of operation near the high frequency

cutoff, _
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Simultaneous Interaction of the Electron Beam with More Than One
Space Hammonic of the Same Wave, This effect has been termed the

rising sun effect by French workers (6), because of its similarity to

.a.n effect which occurs in rising sun magnetrons. It is observed to
cause slight é.nanalies in the starting conditions. Although this effect
is not studied in Section V, the formal modifications which would be re-

quired in the thecory are presented here, It is possible to have simul-
tansous interaction with three space harmonies of the same wave if

‘ zgl-;l 2 A= integer , Iv.p8

2|

for under these circumstances when electrons have a veloeity approxi-
mately equal to the phase velocity of the mth space harmonic, the slow
cyclotron wave is approximately in synchronism with the m + ,Q space
hamonic and the fast cyclotron wave is in synchronism with the m - 2
space harmonic. It is then necessary to treat three terms separately
in IV,29 ,

I YT -Y

2 2
(m-Do. M(m"ﬂ)* [m 1“‘:’] Ya® ['I(m"’,e)-x(m-*ﬂ)o M%m-l-Q)
| N

‘[I(m-,e) )

+ jJ8 =0

b4

-9’ T s 4 ? ete, are functions of the

The various admittances Ym

propagation constants

9 .
B-'z'"ﬁ", B > p"'g'ﬂb'g"

respectively, vhere B is the propagation constant which is approximately
equal W B, » and must be determined from the theory given in the pre-

vious section, The approximation IV,};2 for S may still be used,
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V START OSCILLATION CONDITIONS FOR THE BACKWARD WAVE OSCILLATOR

Characteristic Waves of the System. The electronic equation, ITI.69

must be combined with the circuit equation IV.52 to determine the propa-
gation constants of the waves of the beam in the presence of the circuits

The resulting equation is Y T
2T 1-T¢ - e
L (V) -b) mid *“*T']:l*T' [35-*"1”]
v I L L T 1T T T e
wr Vv +v[—‘—1+'rm1"’T' -s 3_1;] * """"1....33'[8?_1"'_‘1‘14- ]
V.l

Since T = tanh 8t and T' = tanh Bd are slowly varying functions of
B s they may be considered- as constants in this equation. They are to

be evaluated at B = ~p, = p_ o IV.1 has three solutions,

u, w4
since it is of third degree in 9) . When the coupling between the cir-

cuit and beam is weak, it is expected that these solutions will represent
a circuit T.wfave and an upper and lower surface wave of the beam. The
solutions of this equation will be discussed in more detail in connection
with the numerical examplese

The analysis which leads to V,1 neglects all waves except those which
have a phase velocity nearly equal to the electron velocity. Thus many
of the characteristic waves will not be cobtained from V.l; the cyclotron
waves and the waves with density modulation in the interior of the beam,
found in the non-slipping beam, are omitted, Higher order waves of the

circuit are also omitted.

Boundary Conditions at z = 0,L . The boundary conditions which

must be satisfied at z =0 and 2 =L can be described loosely as

(a) The beam enters wmodulated at a plane z =0, The ¥
and 2z velodity and displacement of each electron from
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its equilibrius position is zero, The eleotric fiold at
z = 0 depends on the exact details of the coupling of

circuit to an external waveguide or tranamission line,

(b) The circuit is terminated with a perfect absorber of elec-
tromagnetic energy at z = L . In practice the circuit
{;ermination is confined to the immediate vicinity of the
slow wave cireuit and spread over a short distance in the
z direction,.

It is clear that even if these conditions could be stated more pre-
cisely, such as by specifying the exact shapes of all conductors and
absorbers, it is only possible to meet three boundary conditions with
the three waves that have been studied., For this reason this analysis
is far short of .a complete field analysis. Only certain aspects of the
problem have been studied from the field point of view. It is, for
example, possible to give a camplete description of the fields associated
with the three waves which have been studied.

Since the analysis has been reduced to a treatment of what are
. thought to be the three most important waves of the system, it is
necessary to select the three most important boundary conditions. The
electron beam propagates two waves in the absence of the eircuit., One
is aséocia’ced with the upper boundary and one is associated with the
lower boundary., Thus two conditions should probably be applied to the
électron beam at z = 0 in such a manner as to determine the strength
of these two surface waves, It is more important to have the a.c, cur-
rent in the electron beam be zero at z = O than to have the velocity
be zero there since current modulation produces a direct effect in the

circuit while velocity modulation produces an effect only after it has



been converted to a current. In Section III it was shown that when

m2 <<l coi nost of the a.c, beam current is in the form of surface

|2
current, Hence it seems reasonable to require that the surface cur-

rent at theAtwo beam edges be zero at z = 0 ,

It is interesting to note in this regard that J., W. Sedin (27)
has shown that in the theory of Plerce and Muller it is sufficient to
specify the current in the beam at 2z = 0 , In this case there are
only two waves near the electron velocity rather than three, so that
only one condition is required at 2z = 0 , Sedin also finds that the
cyclotron waves, although they are excited only to a small extent and
produce very little electric field, produce a velecity modulation of
the beam which is comparable with that produced by the waves near the
elsctron velocity, These waves are necessary to meet the boundary
conditions on the wvelocity at z = 0 , However, little error in the
start oscillation conditions results by neglecting these waves and
not satisfying the initial velocity conditions.

The third wave which is included in V.1 is the wave of the slow
wava cireuit whose group weloeity and power flow are in the negative
2z direction. Thus the third boundary condition should probably be
applied at z = L in such a manmer as to determine the strength of
the clrcuit wave, This boundary condition is most easily formulated
| by analogy with the Pierce theory of traveling wave tubes. The Plerce
equivalent circuit is shown in Figure 12, Since only the circuit wave
with energy flow to the left is required, the absence of energy flow
to the left at 2 = L can be insured by taking V, , the circuit
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voltage, to 'Be zero at this point. To be sure, the wave to the left
is excited in the region between 2z =0 and 2z = L by the eletiron
‘beam, and must be employed in thap region.

By analogy it may be argued that the boundary condition which rep-
resénts a termination at 2z = L in the field analysis is: Ez(d) = 0,
i.es, the electric field at the surface of the circuit must be zero.
It is permissible to use the electric field in this case since it
differs fram the potential only by the facter +JB , which is nearly
the same for all waves. Notice also that zero longitudinal field at
the circuit does not imply zero longitudinal field at the beam, since
these points are generally separated by a small distance, Similarly,
in the Pierce equivalent circuit, V, = O does not imply V=0
since there can be a voltage drop V’3 o aeross the capacitance C, ,

1l
which represents the space between the beam and the circuit,

The Starting Conditions. The amplitudes of the three waves will

be specified by giving the strength of the longitudinal electric field
'of each wave at the upper edge of the beam., Denoting these amplitudes
by EL), E(2)) ana (3) | the total longitudinal field at the upper
edge may be written,

Elz(°)=E(1) e-jB].z + E(z) 3'3322 + E(B) e'J@BZ V.3

The suwrface current density on the upper edge of the beam for a single
wave of propagation constant B is

'y

i = wo,= -

2
mpn+ € Elz(o)

J (‘0 - B'ﬂ.+ )mc *

This may be rewritten in terms of the variable P as
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v, €4 Byp(o)
- J oY) . Vels

Hence the total surface cwrrent of the upper edge of the beam when all

three waves are present is

) (1) ~IBs?
i, = =Ju, € Ev e — . V.5
i=1 Vi
Since this must vanish at 2z = O, one of the three boundary condltlons

is expressed by

—— = 0 » v06

To express the other two boundary conditions, Elz at the lower edge

of the beam and at the circuit must be expressed in terms of E(i) + To

do this note that, for a single wave, Elz and E in the interior of

1y
the beam are given by

E, - g(1) [oosh Py + A sinh gly] V.7

Ely = jE(l) [sinh ﬂly - Al cosh 3131-] . V.8

A‘l may be determined as follows., At y = -t , the lower edge of the

beam,

E, = E(l)[ cosh Bt - A, sinh Blt] V9
%r=ﬂQWﬁMWf+wahq. V.10

Equating %l obtained from the quotient of these two expressions to
Z
co2 1
Jii- —_— |25 1 - V.ll
coc(co'-ﬂln_) sp b= 1




. the admittance just sbove the lower edge of the beam, the following

relationship is obtained

Trh 1 L spth-2
1-T4, spt-v, sg_t - A
Solving for A1 s
V1 -8+ TIT
'%. - ﬂ- - 3ﬁ_t + T . V.12

I+T

The total longitudinal field of lower edge of the beam Elz(-t) is

found by substituting Vel2 into V.9 and summing over all three waves

3 38 -s8t
Elz = cosh pt[l—'l‘] 2 : E(i) e 12 ﬁ___s_ﬁ_"___.r_ . V.13
=1 ))1 -Sﬁ_‘b +_—-Tl+

The surface current density at the lower edge of the beam when a single

wave is present, is given by

2
u @y €o Ez

1 = u o = -
- - - (aa-ﬁu_)ooc ’

which may be rewritien

i = Ju—————-‘€°E1’

- V-t ° Volh

The total surface current density at the lower edge of the beanm is
given by suming the contributions from the three waves

3 E(i) ejsiz

1=1 'Vi- sg_t +i-2'_;1-1;

i = ju_€, cosh gt [1-7]

. Vol5

Since this also must vanish at z = O, the second of the three boundary
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eonditions is expressed by,

3 (1)
> E =0 . : V.16

i=1 Qi-s;s_u%:r

The fields in the region above the beam may be written

E, = () [cosh By¥ * 4, sinh 31y] Vel7?
Ey = JE(l) [sinh Byy + A, cosh 513'] V.18

where A_ may be determined as follows, From V.7, V.8, V,17, and V.18

2
= JA, and
IR~

These ratios differ by the normalized admittance of the equivalent sur-

y=0 *

y=0,

face charge density at y =0
2

- —p
jA2 JAI + j (0) -plu+)mo »

Using the vallue of 4 given by V.12

1
1 Vi- gt * T 1
A = Al - — g =T - V.19
2 Vv y t + ; " *
1 1~ SB ¥+ 15T 1
Denoting A, ,which is a function of Y, by Az(‘l> ), the total

longitudinal field at the circuit may be written as

om0 32 [10 @m0 FE o

where T!' £ tanh Bd
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This must vanish at 2z = I, , Thus the third boundary condition is ex-

pressed by

3 o -
§1 '[1+ xz(w)i)rt] gd) o B 0 V.21

To obtain the start oscillation condition Vb, Vol6 and V,21 must be
sstisPled simltaneously with non-zero ECN), E(2), or E) | mus
will only be possible for certain values of b and L.

Fran V6 and V.16 it is easily established that E(L), E(?) ang
E(3 ) must be in the ratio

1 ) 1
VoV, sl Vst o)

1 - 1
Y 3(91 -8B b+ ]._f-—T') 7)1(\73 -8p b+ 1—-3—-1')

’

1 1 -
1)1(1)2 - ss_t'fl—;g; 92(\)1 - sp_t+i—§1f)

so that V.21 may be writien

2 fur a0 : - L]0
i=1 [“ K i)T]["a(”k' 3 _t+ 75 Vi~ 8 4 5

Ve22
where i } k are cyclical permmtations of 1, 2, and 3 + Since

B, = B, @ +m¥)

3B L

a common, non-zero factor e can be removed from V,22 leaving
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' . -jv.e
142,09 )T'][ - - " 1 ]eJ i“a o
ii:l[ G ' 1)5('91;' 8p_t+IT M) Vk('ﬂj - 38}*%5)
| | V.23

ﬁhere 0= $+Lmr2 ¢« The roots, ’\)i s of V,1 are functions of the
geometrical parameters of the circuit and the beam, the beam current, and
the parameter b , which denotes the difference in velocity betwéen the
upper edge electrons and the circuit space harmonic in the absance of the
electrons. The procedure which will be adopted here is to assume that
the beam current and all the geometrical parameters, except the length of
the tube, are known. The length of the tube at which oscillation begins
to occur is found by adjusting © , the length parameter, and b , the
velocity difference parameter until V.23 is satisfied,

Tumerical Solution of the Start Oscillation Conditions., The follow-

ing more ar less typical conditions have been assumed for the numerical

work which follows

ﬁt’ = .50 T = .h521
Bd = 50 Tt =« 4621 Ve2i
pa = o C =121,0000 .

The circuit impedance, represented in dimensionless form by W 2 , is
varied since it is expected that when it is small space charge effecls
will be important and when it is large spaece charge effects will be unim-
portant, Although the circuit analyzed in Section IV is capable of pro-
viding only a limited range of wvaiues of )?2 s @ rather wide range of

)’( 2 is likely to be encountered when other circuits are also consi-
dered. Calculations have been made for the non-slipping case (s = 0)

cam case (3 = 1) |

P s -
as well as the 8135 Ping .
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The first stage of the camputation is to sclve V.l for 1
Y o am:l-;)3 , for a mmber of values of b , Figuwes 13, 1k, and
15 are plots of the solutions of V,1 versus b for Y L s =o0l,
-.001 and the remaining parameters given by V.2L . 4s | bl inereases
all burves ‘are asymptotic to straight lines, Two of the asymptotes are
the solutions which would be obtained by replacing the circuit by a
conducting plane and the third asymptote is 3/ = b, the circuit solu-
tion in the absence of the electron beam. Thus in these regions the
solutions represent waves similar to those studied in Sections III and
IV, In the intermediate regions where the curves deviate considerably
from the asymptotes, the waves of the beam and the wave of the circuit
are coupled together and are of an intermediate nature. |

It is interesting to note that in the slipping stream case the
waves of the beam are described by complex conjugate values of v ’
hence one wave increases and one wave dscreases with 2z o This effect
was described in Section IIT and it is found to affect the starting
conditions significantly. In the non-slipping case (s = 0) the waves
of the beam are constant smplitude wavas, one faster than the electrans
and one slower than the electrons, In Figures 13b, 1lb, and 15b, it
can be seen that when the phase velocity of the unperturbed circuit wave
is approximately equal to the phase velocity of the faster of the two
beam waves (V 3) , an increasing and decreasing pair of waves results.

A similar situation occurs in the ordinary backward wave oscillator (28),

(29).
To find the zeros of V.23 it is convenient to plot the function

F(b,0)

F(v,0)
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where

3 1 ) 1 1-9%°
iﬁ’(b,e) = ;L [1 * 02("5.”'][-»3 () -8Bt +T57) ‘)k("j -5 t +1-T;-,f)]

V.16

in the complex plane with b and @ as parameters. Figure 16 shows a
typical plot from which it is possible to determine the values of b and
© that make F(b,0) equel to zero. Although there is more than one
pair of b and © which make F(b,0) equal to zero (not shown in
Figure 16), only the solution with the smallest value of © has been
obta ned, This corresponds to the minimm length of tube for oseilla-
tion, If the tube is considerably longer than this minimum length,
other modes of oscillation are possible, but these will not be discussed,
Solutions have been obtained for W2 = =,10, =.0L, and -,001 (®2
is negative for backward space harmonic operation) with s =0 and

g =1, The results are sumarized in Table I ,

Comparison with the Pierce-Muller Theory. Muller (9) has adapted

Pierce's (8) theory of interaction between a forward wave circuit and a
thin electron beam focused with crossed electric and magnetic fields to
backward wave interaction and finds for the M type backward wave oscil-
lator starting conditions
KI
o o .2

-G & off W - @ v.17
where I o is the beam current, V., is beam voltage (not the circuit
voltage), K is impedance parameter at the plane of the circuit, # is
the ratio of the field (Ej,) at the beam to the field at the circult

and q = JEI at the beam. Space charge effacts were neglected in
z
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TABLIE 1

M-Type Backward Wave Oscillator Start Osecillation Conditioms

Summary of Mumerical Computations

gase b *]
2

* = "01 (o]
ey J1 550

¥2 = .01 0
ey 36 1250
s =1 *
2

R = -el (¢)
.o 28 565
2

WK = =401 ¢
s =0 27 1720

12 = «-,001 .265 5&300

(]
[}
o

ey

J.736

j1.016

51,009

k7

«50

«50

22

209 £.55°
Oh2 ¢ -12°
.006L £.-35°
5
«50

50

o3

+209 £-55°

OL2¢ 12°

0064 £35°
.08

.001
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deriving this expression. V,17 can be written in terms of the para-
meters of this paper as

2
- x2 (BoL mr2)2 2pt off = ("21) V.18
or - '

2 /2
[>] - L P V.19
© Pt 7 J-x2 (2pt) a @

The subseript O is appended to © to distinguish the value of ©
calculated in this mamner from that obtained from the field analysis.
When the beam is not thin it is appropriate to average ¢2 over the

beam cross section,
0
-2 1 2
g £ S g° a
-t

0 g Le02P
3 S BT o L T
%

Taking o = 1, and substituting for 32 V.17 becomss
| 284 -2pt .2
R I m?)? e (e 1) = (@)
or
o = =2
o "—xlz ’
where
OF 1-T! 2
¥ o 072 WYY L T X - V.20

For the numerical examples Bt = 5 pd = .5 this becomes

6 = n/2 :
° -+2325 82 v.21
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The results of the field amalysis given in Table I have been compared

to the thin beam result of Pierce and Muller given by V.2l, This com~
parison is shown in Figure 17 where /6, is plotted versus W 2,
9/9° is the length of the tube at start oscillation as predicted by
the field anslysis of this paper divided by length predieted by the
Pierce-Muller thin beam theory. The comparison is made when the beam
slips (s = 1) and when it does not slip (s = 0).

Also shown is the result of an appraximate analysis of space
charge effects by Epsztein, His result is discussed at the end of
this section,

From the definition of W 2 (IV.53) it is seen that the ¥ 2 is
increased by increasing the circuit impedance and decreasing the plasma
frequency of the beam (and hence by decreasing the current)., In the
region of large X 2 the circuit fields are much stronger than the
fields produced by the space charge so that space charge effects ares
negligible. In this region the field analysis and the Pierce-Muller
analysis should agree, and they do.

Figure 17 shows that when the slipping of the beam is ignored
(s = 0) the results of the field analysis agree relatively well with
the Pierce-Muller theory for all values of x 2 whereas if the slipping
is taken into account and R 2 is small, the field analysis predicts a
considerably shorter length of tube. Although no specific experimental
data is available to check this curve, the magnitude of the effect is
large enough to explain the French observations. Roughly speaking, the
factor by which the current is reduced is the square of the factor by
which the length is reduced.
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| Thié result seems plausible on the following grounds. The backward
wave oscillator may be considered as a contimuous amplifier with modula-
tion at the electron beam by circuit fields along the entire length of
the tube, The slow wave circuit feeds back energy to the beginning of
the tube to sustain this modulation, Due to the slipping beam effect
small perturbations in the beam conditions at 2z = O modulate the beam
more and more as it drifts through the tube, even in the absence of the
slow wave circuit. Thus when the slipping beam effect is present the
eircuit ecan be coupled more loosely to the beam than is otherwise pos-

sible, and still have oscillation occur.

Discussion of the French Theory of Space Charge Effects, Recently
Epsztein (6),(10), has modified the thin beam theory to include the
effects of space charge., In this theory the electrons in the thin beam
are assumed to move in the field of the circuit plus the field generated
by the electronic charge. The beam is assumed to have a finite vut
small thickness and the field at the center of the beam is computed by
assuming that the density of the beam is constant and using an equiva-
lent surface charge density to represent deformations of the beam
boundaries. The space charge field computed in this manner is then
assumed to act on all electrons. This causes a modification of the
propagation constants of the two waves in thin beam theory., This in
turﬁ causes a decrease in the length (or current) of the tube required
for start oscillation, The reduction computed in this manner is said
to be in agreement with the experimental results.

Although Epszteint's theory applies only to thin beams, it may be
campared with the results of this paper by replacing the thick beam of
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this paper by a thin beam with the same current at the average position
of the thick beam, His result can be written in terms of the parameters
of this paper as follows:

2 2
= 2. . 2 m APt

Only the first two terms in a series expansion are given and the formula

HII."‘

spplies only when the second term is small compared to unity. This re-
sult is plotted in Figure 17.

Epszteint's treatment 1s an attempt to inelude a.c., space charge
effects, It does not take into account the d.c, space charge effect
or slipping beam effect, since when the beam is thin all electrons have
substantially the same velocity. The 8 = 0 analysis of this paper
is undoubtedly a better description of the same situation and it does
not predict an apprecigble reduction in starting length or cwrrent.
Only when the slipping beam, or diocotron, effect ls taken into account
are the predicted starting currents much less than given by the simple
thin beam theory, Thus there is considerable doubt as to the correct-
ness of Epsaztein's explenation of space charge effects,

The analysis presented in this paper, although requiring lengthier
calculations, offers the possibility of studying the effect of other
parameters, such as beam thickness, distance from the eireunit, ete. on
the characteristics of the M-type backward wave oscillator, Although
it has not been discussed here, the magnetron amplifier can be analyzed
in a similar manner,
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LIST OF SIMBOLS

attennation conobant in 2z direction

propagation constant in 2z direction

@D,
Po=5s Bo=ms Bm, B =%, 8-

S‘a'|8

propagation constant of the fundamental space harmonic of the
periodic slow-wave circuit
propagation constant of the nt'h
slow wave circuit

space harmonic of the periodic

Bi - ¥ , transverse separation constant for the nth space

harmonic of the periodic slow wave circuit

B/Bg » nmormalized propagation constant

%;. » transverse veloclty gradient in electron beam

bl , fractional velocity difference in electron beam
n

permittivity of free space

2 component of electric field at a plane which just grazes the
slow wave circuit

charge to mass ratio of the electron (y\> 0)

B+ Lmr? s length of backward wave oscillator at start oscillation
in dimensionless units

length of backward wave oscillator at start oseillation as pre-
dicted by the thin beam theory, in dimensionless units

dimensionless constant of coupling between circuit waves and
spaca charge waves of the electron beam

permeability of free space
B - B

r’m B+
constant B

s dimensionless variable representing the propagation
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U - w
8 Iy s dimensionless variable which is a linear function of

the ¥ coordinate in the electron beam

steady or d.ce component of the charge density of the electron
bean _

perturbation or a.c. component of the charge density of the
electron beam

equivalent surface charge density which represents the deforma-
tion of the upper boundary of the electron beam

equivalent surface charge density which represents the deforma-
tion of the lower boundary of the electron beanm

radian frequency of sinusoidal osecillations

Box s radian cyclotron frequency of electrons in a magnetic
field B ox

)
-2 radian plasma frequency of the electron beam
e J

o

\
\[(m-gu)z - mc(mc -A) s 2 quantity with the dimensions of

frequency (sec"l) which appears in the solution of the elec-
tronie equations,

distance from lower edge of beam to conducting plane
8, - B,

mr2 B
+
electron velocity in dimensionless units

difference in the mt‘h space harmonic phase velocity and

E-mode, or iransverse magnetic, surface susceptance

E-mode surface susceptance for the nt space harmonic at the

plane of the slow wave circuit, of the space below the circuit
with the electron beam present

E-mode surface susceptance for the m'hh space harmonic at the
plane of the slow wave clircuit, of the space below the circuit
with the electron beam absent
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steady part of the magnetic field vector

By x component of steady magnetic field

C = coth pa

1 | “space charge" capacitance in the Pierce equivalent circuit
D period of the slow wave circuit

steady part of the electric field vector
time-varying part of the electric field vector
¥y component of the steady electric field

¥ component of the time-varying electric field
E:'_25 2 component of the time-varying eleetric field
i equivalent surface current on upper beam edge

i equivalent surface current on lower beam edge
k = o w € s free space wave number

K Pierce traveling wave tube circuit impedance

L 1angth of backward wave oscillator at start oscillation

©
m = —= ratio of cyclotron frequency to oscillation frequency
®
P normalized surface conductance
Q normalized surface susceptance

4]

vector position of an electron in the Lagrangian description
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unperturbed position of an electron in the Lagrangian deseription

perturbation position of an electron in the Lagrangian description

% ratio of plasma frequency to cyclotron frequency
c

s1lip parameter

sum which arises in determining propagation characteristics of
the slow wave circuit

thickness of electron beam

tanh gt

tanh pd

steady part of the velod ty field

u(y) , z component of the steady velocity field
2z component of velocity of the upper~beam edge

% component of veloclty of the lower-beam edge

time-varying component of the velocity field

¥ camponent of the time~varying velocity field

2 component of the time=-varying velocity field

width, or x dimension, of the tube

perturbation in y position of electron in Lagrangian deseription
perturbation in 2z position of electron in Lagrangian description

E-mode, or transverse magnetic, surface admittance
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E-mode surface admittance for the mth space harmonic, at the
plane of the slow wave circuit, of the space below the cir-
cuit with the electron beam present

E-mode surface admittance for the m'l space harmonic, at the
plane of the slow wave circuit, of the space below the cir-
cuit with the electron beam absent

Admittance of slow wave circuit slotis to nth harmonic



