Appendix SIX

## Synthetic Summary of Progress Toward the Enantioselective Total Syntheses of Liphagal



Scheme A6.1 Toward the Enantioselective Total Synthesis of Liphagal: Part 1



Scheme A6.2 Toward the Enantioselective Total Synthesis of Liphagal: Part 2

**Appendix SEVEN** 

Spectra of Compounds Relevant to Chapter 4





Figure A7.2 Infrared spectrum (KBr) of compounds 307A and 307B.



Figure A7.3 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compounds **307A** and **307B**.





Figure A7.5 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **312**.



Figure A7.6  $^{13}$ C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **312**.





Figure A7.8 Infrared spectrum (NaCl/neat) of compound **313**.



Figure A7.9  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **313**.







Figure A7.11 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **318**.



Figure A7.12<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **318**.







Figure A7.14 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **305**.



Figure A7.15<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **305**.





Figure A7.17 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **304**.



Figure A7.18<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **304**.







Figure A7.20 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compounds **319A**.



Figure A7.21 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **319A**.







Figure A7.23 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **321**.



Figure A7.24 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **321**.





Figure A7.26 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **322**.



Figure A7.27 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **322**.





Figure A7.29 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **323A** and **323B**.



Figure A7.30<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **323A** and **323B**.







Figure A7.32 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **331**.







Figure A7.35 Infrared spectrum (KBr) of compound **334**.



Figure A7.36<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **334**.









Figure A7.38 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **338**.



Figure A7.39<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **338**.







Figure A7.41 Infrared spectrum (KBr) of compound **339**.



Figure A7.42 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **339**.







Figure A7.44 Infrared spectrum (NaCl/CHCl<sub>3</sub>/CDCl<sub>3</sub>) of compound **340**.



Figure A7.45<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **340**.





Figure A7.47 Infrared spectrum (NaCl/neat) of compound 342.



Figure A7.48  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **342**.




Figure A7.50 Infrared spectrum (KBr) of compound 348.



Figure A7.51 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **348**.





Figure A7.53 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **349**.



Figure A7.54 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **349**.







Figure A7.56 Infrared spectrum (KBr) of compound 350.



Figure A7.57  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **350**.







Figure A7.59 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **351**.



Figure A7.60 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **351**.





Figure A7.62 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **352**.



Figure A7.63 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **352**.





Figure A7.65 Infrared spectrum (NaCl/CH $_2$ Cl $_2$ ) of compound **357**.



Figure A7.66  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **357**.





Figure A7.68 Infrared spectrum (NaCl/CH<sub>2</sub>Cl<sub>2</sub>) of compound **358**.



Figure A7.69  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **358**.





Figure A7.71 Infrared spectrum (NaCl/CH<sub>2</sub>Cl<sub>2</sub>) of compound **359**.



Figure A7.72  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **359**.





Figure A7.74 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compounds 361A, 361B, and 361C.



Figure A7.75<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **361A**, **361B**, and **361C**.





Figure A7.77 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **362**.



Figure A7.78 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **362**.





Figure A7.80 Infrared spectrum (NaCl/CH<sub>2</sub>Cl<sub>2</sub>) of compound **363**.



Figure A7.81  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **363**.





Figure A7.83 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **369**.



Figure A7.84  $^{13}$ C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **369**.





Figure A7.86 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **356**.



Figure A7.87  $^{13}$ C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **356**.



OMe





Figure A7.89 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **370**.



Figure A7.90  $^{13}$ C NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **370**.



Figure A7.91 <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) of compound **373**.



Figure A7.92 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **373**.



Figure A7.93 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **373**.







Figure A7.95 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **374**.



Figure A7.96  $^{13}$ C NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>) of compound **374**.



MeO

Meo





Figure A7.98 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **375**.



Figure A7.99<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **375**.



MeO





Figure A7.101 Infrared spectrum (NaCl/CHCl<sub>3</sub>) of compound **376**.



Figure A7.102<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **376**.


.



Figure A7.104 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **377**.



Figure A7.105<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **377**.









Figure A7.107 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **379**.



Figure A7.108<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **379**.





Figure A7.110 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **380**.



Figure A7.111 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **380**.





MeO

MeO





Figure A7.113 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **381**.



Figure A7.114 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **381**.





Figure A7.116 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **382**.



Figure A7.117 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **382**.







Figure A7.119 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **383**.



Figure A7.120<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **383**.



MeO

MeO

Figure A7.121  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>) of compound **385**.



Figure A7.122 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **385**.



Figure A7.123 <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **385**.





Figure A7.125 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **388**.



Figure A7.126<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **388**.







Figure A7.128 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **389**.



Figure A7.129<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **389**.





Figure A7.131 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **390**.



Figure A7.132 <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **390**.





Figure A7.134 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **391**.



Figure A7.135<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of compound **391**.







Figure A7.137 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **386**.



497





Figure A7.140 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **394**.



Figure A7.141<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **394**.











Figure A7.144 Infrared spectrum (NaCl/CDCl<sub>3</sub>) of compound **396**.



Figure A7.145<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of compound **396**.

Appendix EIGHT

X-Ray Crystallographic Data Relevant to Chapter 4

## CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 1 May 2006

#### **Crystal Structure Analysis of:**

### 319B

(shown below)

| For | Investigator: Ryan | ext. 6131                       |                          |
|-----|--------------------|---------------------------------|--------------------------|
|     | Advisor: B. M. Sto | ltz                             | ext. 6064                |
|     | Account Number:    | BMS1.SQUIBB-2.22-GRAN           | L.SQUIBB1                |
| By  | Michael W. Day     | 116 Beckman<br>e-mail: mikeday@ | ext. 2734<br>caltech.edu |

### Contents

Table 1. Crystal data

Figures Minimum overlap, unit cell contents, stereo view of unit cell contents

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

 Table 5. Hydrogen atomic coordinates

Table 6. Hydrogen bond distances and angles

Table 7. Observed and calculated structure factors (available upon request)



**Note:** The crystallographic data have been deposited in the Cambridge Database (CCDC) and have been placed on hold pending further instructions from me. The deposition number is 606034. Ideally, the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 606034."

# Table 1. Crystal data and structure refinement for 319B (CCDC 606034).

| Empirical formula                                                    | C <sub>15</sub> H <sub>27</sub> NO                           |                                                                                             |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Formula weight                                                       | 237.38                                                       |                                                                                             |  |  |  |
| Crystallization Solvent                                              | Heptane                                                      |                                                                                             |  |  |  |
| Crystal Habit                                                        | Column                                                       |                                                                                             |  |  |  |
| Crystal size                                                         | 0.41 x 0.15 x 0.13 mm <sup>3</sup>                           |                                                                                             |  |  |  |
| Crystal color                                                        | Colorless                                                    |                                                                                             |  |  |  |
| Data Collection                                                      |                                                              |                                                                                             |  |  |  |
| Type of diffractometer                                               | Bruker SMART 1000                                            |                                                                                             |  |  |  |
| Wavelength                                                           | 0.71073 Å MoKα                                               |                                                                                             |  |  |  |
| Data Collection Temperature                                          | 100(2) K                                                     |                                                                                             |  |  |  |
| $\theta$ range for 6053 reflections used<br>in lattice determination | 2.39 to 30.07°                                               |                                                                                             |  |  |  |
| Unit cell dimensions                                                 | a = 6.0159(7)  Å<br>b = 10.0422(12)  Å<br>c = 12.4023(14)  Å | $\alpha = 74.349(2)^{\circ}$<br>$\beta = 81.140(2)^{\circ}$<br>$\gamma = 77.614(2)^{\circ}$ |  |  |  |
| Volume                                                               | 700.99(14) Å <sup>3</sup>                                    |                                                                                             |  |  |  |
| Z                                                                    | 2                                                            |                                                                                             |  |  |  |
| Crystal system                                                       | Triclinic                                                    |                                                                                             |  |  |  |
| Space group                                                          | P-1                                                          |                                                                                             |  |  |  |
| Density (calculated)                                                 | 1.125 Mg/m <sup>3</sup>                                      |                                                                                             |  |  |  |
| F(000)                                                               | 264                                                          |                                                                                             |  |  |  |
| Data collection program                                              | Bruker SMART v5.630                                          |                                                                                             |  |  |  |
| $\theta$ range for data collection                                   | 1.71 to 30.48°                                               |                                                                                             |  |  |  |
| Completeness to $\theta = 30.48^{\circ}$                             | 88.4 %                                                       |                                                                                             |  |  |  |
| Index ranges                                                         | $-8 \le h \le 8, -13 \le k \le 14, -17 \le l \le 17$         |                                                                                             |  |  |  |
| Data collection scan type                                            | $\omega$ scans at 7 $\phi$ settings                          |                                                                                             |  |  |  |
| Data reduction program                                               | Bruker SAINT v6.45A                                          |                                                                                             |  |  |  |
| Reflections collected                                                | 15201                                                        |                                                                                             |  |  |  |
| Independent reflections                                              | $3787 [R_{int} = 0.0535]$                                    |                                                                                             |  |  |  |
| Absorption coefficient                                               | 0.069 mm <sup>-1</sup>                                       |                                                                                             |  |  |  |
| Absorption correction                                                | None                                                         |                                                                                             |  |  |  |
| Max. and min. transmission                                           | 0.9911 and 0.9723                                            |                                                                                             |  |  |  |

### Table 1 (cont.)

## **Structure solution and Refinement**

| Structure solution program                           | Bruker XS v6.12                             |
|------------------------------------------------------|---------------------------------------------|
| Primary solution method                              | Direct methods                              |
| Secondary solution method                            | Difference Fourier map                      |
| Hydrogen placement                                   | Difference Fourier map                      |
| Structure refinement program                         | Bruker XL v6.12                             |
| Refinement method                                    | Full matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters                       | 3787 / 0 / 262                              |
| Treatment of hydrogen atoms                          | Unrestrained                                |
| Goodness-of-fit on F <sup>2</sup>                    | 1.727                                       |
| Final R indices [I> $2\sigma$ (I), 2680 reflections] | R1 = 0.0472, wR2 = 0.0748                   |
| R indices (all data)                                 | R1 = 0.0689, wR2 = 0.0772                   |
| Type of weighting scheme used                        | Sigma                                       |
| Weighting scheme used                                | $w=1/\sigma^2(Fo^2)$                        |
| Max shift/error                                      | 0.001                                       |
| Average shift/error                                  | 0.000                                       |
| Largest diff. peak and hole                          | 0.339 and -0.260 e.Å <sup>-3</sup>          |

## **Special Refinement Details**

Refinement of  $F^2$  against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on  $F^2$ . Conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt), etc., and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.






|       | Х        | У        | Z       | U <sub>eq</sub> |  |
|-------|----------|----------|---------|-----------------|--|
| O(1)  | -4505(1) | 11144(1) | 3840(1) | 28(1)           |  |
| N(1)  | -2790(2) | 9957(1)  | 4223(1) | 21(1)           |  |
| C(1)  | -964(2)  | 9902(1)  | 3535(1) | 18(1)           |  |
| C(2)  | 877(2)   | 8645(1)  | 3887(1) | 17(1)           |  |
| C(3)  | 1046(2)  | 7415(1)  | 3314(1) | 15(1)           |  |
| C(4)  | 2524(2)  | 6123(1)  | 4021(1) | 18(1)           |  |
| C(5)  | 3103(2)  | 4868(1)  | 3493(1) | 21(1)           |  |
| C(6)  | 4334(2)  | 5257(1)  | 2315(1) | 21(1)           |  |
| C(7)  | 3040(2)  | 6534(1)  | 1514(1) | 18(1)           |  |
| C(8)  | 2286(2)  | 7777(1)  | 2102(1) | 16(1)           |  |
| C(9)  | 1074(2)  | 9121(1)  | 1332(1) | 20(1)           |  |
| C(10) | 1234(2)  | 10493(1) | 1604(1) | 22(1)           |  |
| C(11) | -655(2)  | 11007(1) | 2448(1) | 20(1)           |  |
| C(12) | -1380(2) | 7122(1)  | 3382(1) | 19(1)           |  |
| C(13) | 1049(2)  | 6122(1)  | 1112(1) | 24(1)           |  |
| C(14) | 4725(2)  | 6957(2)  | 471(1)  | 26(1)           |  |
| C(15) | -230(3)  | 12347(1) | 2687(1) | 28(1)           |  |

Table 2. Atomic coordinates  $(x \ 10^4)$  and equivalent isotropic displacement parameters  $(Å^2x \ 10^3)$  for 319B (CCDC 606034). U(eq) is defined as the trace of the orthogonalized U<sup>ij</sup> tensor.

| O(1)-N(1)                                | 1.4241(11)               | C(1)-C(2)-C(3)                      | 115.86(9)               |
|------------------------------------------|--------------------------|-------------------------------------|-------------------------|
| O(1)-H(1)                                | 1.017(16)                | C(1)-C(2)-H(2A)                     | 109.5(6)                |
| N(1)-C(1)                                | 1.2844(14)               | C(3)-C(2)-H(2A)                     | 106.0(6)                |
| C(1)-C(2)                                | 1.5045(15)               | C(1)-C(2)-H(2B)                     | 109.3(6)                |
| C(1)-C(11)                               | 1.5119(15)               | C(3)-C(2)-H(2B)                     | 109.1(6)                |
| C(2)-C(3)                                | 1.5612(14)               | H(2A)-C(2)-H(2B)                    | 106.8(8)                |
| C(2)-H(2A)                               | 0.982(11)                | C(12)-C(3)-C(4)                     | 109.18(9)               |
| C(2)-H(2B)                               | 0.987(11)                | C(12)-C(3)-C(8)                     | 114.96(9)               |
| C(3)-C(12)                               | 1.5346(15)               | C(4)-C(3)-C(8)                      | 108.42(8)               |
| C(3)-C(4)                                | 1.5404(14)               | C(12)-C(3)-C(2)                     | 107.57(9)               |
| C(3)-C(8)                                | 1.5570(14)               | C(4)-C(3)-C(2)                      | 106.39(8)               |
| C(4)-C(5)                                | 1.5243(15)               | C(8)-C(3)-C(2)                      | 109.98(9)               |
| C(4)-H(4A)                               | 1.022(11)                | C(5)-C(4)-C(3)                      | 113 13(9)               |
| C(4)-H(4B)                               | 0.993(10)                | C(5)-C(4)-H(4A)                     | 109 2(6)                |
| C(5)-C(6)                                | 1 5226(16)               | C(3)-C(4)-H(4A)                     | 108.3(6)                |
| C(5)-H(5A)                               | 0.963(12)                | C(5)-C(4)-H(4B)                     | 110 5(6)                |
| C(5)-H(5B)                               | 1.017(11)                | C(3)-C(4)-H(4B)                     | 108 1(6)                |
| C(6)-C(7)                                | 1.5365(15)               | H(4A)-C(4)-H(4B)                    | 107.4(8)                |
| C(6)-H(6A)                               | 1.004(11)                | C(6)-C(5)-C(4)                      | 107.1(0)<br>110.84(10)  |
| C(6)-H(6B)                               | 1.001(11)<br>1.011(11)   | C(6)-C(5)-H(5A)                     | 109 6(7)                |
| C(7)- $C(13)$                            | 1.5369(15)               | C(4)-C(5)-H(5A)                     | 109.6(7)                |
| C(7)-C(14)                               | 1.5378(16)               | C(6)-C(5)-H(5B)                     | 110.0(6)                |
| C(7)-C(8)                                | 1.5576(10)               | C(4)-C(5)-H(5B)                     | 110.0(0)                |
| C(8) - C(9)                              | 1.5020(15)<br>1.5364(15) | H(5A)-C(5)-H(5B)                    | 105 7(9)                |
| C(8) + C(9)                              | 0.985(10)                | $\Gamma(5X) - C(5) - \Pi(5B)$       | 103.7(9)<br>114.42(10)  |
| $C(0) - \Gamma(0)$                       | 1.5297(16)               | C(5) - C(6) - C(7)                  | 114.42(10)<br>110.0(6)  |
| C(9) - C(10)<br>C(0) + I(0A)             | 0.984(12)                | C(7) C(6) H(6A)                     | 109.6(6)                |
| C(9) - H(9R)                             | 1.021(10)                | C(5) C(6) H(6R)                     | 107.7(6)                |
| $C(9)^{-11}(9D)$<br>C(10) C(11)          | 1.021(10)<br>1.5254(16)  | C(7) C(6) H(6B)                     | 107.7(0)                |
| C(10) - C(11)<br>C(10) - U(10A)          | 1.3234(10)               | H(6A) C(6) H(6B)                    | 109.0(0)                |
| $C(10)$ - $\Pi(10R)$                     | 0.980(11)                | C(6) C(7) C(12)                     | 103.8(8)<br>110.26(10)  |
| $C(10)-\Pi(10D)$<br>C(11) C(15)          | 0.963(11)<br>1.5227(16)  | C(6) - C(7) - C(13)                 | 110.20(10)<br>106.02(0) |
| C(11) - C(13)                            | 1.3327(10)<br>0.062(11)  | C(0)-C(7)-C(14)<br>C(12)-C(7)-C(14) | 100.92(9)<br>107.11(0)  |
| $C(11)-\Pi(11)$                          | 0.902(11)                | C(13)-C(7)-C(14)                    | 10/.11(9)<br>100.26(0)  |
| $C(12) - \Pi(12A)$<br>$C(12) - \Pi(12B)$ | 1.003(11)                | C(0)-C(7)-C(8)                      | 109.30(9)<br>112.71(0)  |
| $C(12) - \Pi(12D)$                       | 0.99/(11)                | C(13)-C(7)-C(8)                     | 113.71(9)<br>100.24(0)  |
| C(12)-H(12C)<br>C(12)-H(12A)             | 0.994(12)                | C(14)-C(7)-C(8)                     | 109.24(9)               |
| C(13)-H(13A)                             | 0.969(12)                | C(9) - C(8) - C(3)                  | 113.62(9)               |
| C(13)-H(13B)                             | 0.990(12)                | C(9)-C(8)-C(7)                      | 112.57(9)               |
| C(13)-H(13C)                             | 0.996(13)                | C(3)-C(8)-C(7)                      | 115.88(9)               |
| C(14)-H(14A)                             | 0.9/9(13)                | C(9)-C(8)-H(8)                      | 106.2(6)                |
| C(14)-H(14B)                             | 1.005(13)                | C(3)-C(8)-H(8)                      | 103.6(6)                |
| C(14)-H(14C)                             | 0.99/(12)                | C(7)-C(8)-H(8)                      | 103.5(6)                |
| C(15)-H(15A)                             | 1.014(12)                | C(10)-C(9)-C(8)                     | 115.08(9)               |
| C(15)-H(15B)                             | 1.000(12)                | C(10)-C(9)-H(9A)                    | 107.3(6)                |
| С(15)-Н(15С)                             | 0.989(13)                | C(8)-C(9)-H(9A)                     | 10/.9(6)                |
|                                          | 102.0(0)                 | C(10)-C(9)-H(9B)                    | 108.8(6)                |
| N(1)-O(1)-H(1)                           | 103.0(8)                 | C(8)-C(9)-H(9B)                     | 111./(6)                |
| C(1)-N(1)-O(1)                           | 112.92(9)                | H(9A)-C(9)-H(9B)                    | 105.6(9)                |
| N(1)-C(1)-C(2)                           | 114.97(10)               | C(11)-C(10)-C(9)                    | 115.95(10)              |
| N(1)-C(1)-C(11)                          | 123.26(10)               | C(11)-C(10)-H(10A)                  | 106.0(6)                |
| C(2)-C(1)-C(11)                          | 121.77(10)               | C(9)-C(10)-H(10A)                   | 109.8(6)                |

Table 3. Bond lengths [Å] and angles [°] for 319B (CCDC 606034).

C(11)-C(10)-H(10B) 108.9(6) C(9)-C(10)-H(10B) 110.2(6) H(10A)-C(10)-H(10B) 105.5(9) C(1)-C(11)-C(10) 113.20(9) C(1)-C(11)-C(15) 110.49(9) C(10)-C(11)-C(15) 110.64(10) C(1)-C(11)-H(11) 106.7(7) 107.9(7) C(10)-C(11)-H(11) C(15)-C(11)-H(11) 107.6(7) C(3)-C(12)-H(12A) 113.6(6) C(3)-C(12)-H(12B) 114.1(7) H(12A)-C(12)-H(12B) 106.8(9) C(3)-C(12)-H(12C) 109.7(6) H(12A)-C(12)-H(12C) 105.8(9) H(12B)-C(12)-H(12C) 106.3(9) C(7)-C(13)-H(13A) 109.4(7)111.3(7)C(7)-C(13)-H(13B) H(13A)-C(13)-H(13B) 106.3(9) C(7)-C(13)-H(13C) 112.7(7) H(13A)-C(13)-H(13C) 107.4(9) H(13B)-C(13)-H(13C) 109.5(9) C(7)-C(14)-H(14A) 111.5(7) C(7)-C(14)-H(14B) 113.5(7) H(14A)-C(14)-H(14B) 107.7(10) C(7)-C(14)-H(14C) 110.1(7)H(14A)-C(14)-H(14C) 105.0(10) H(14B)-C(14)-H(14C) 108.7(10) C(11)-C(15)-H(15A) 111.2(7) C(11)-C(15)-H(15B) 107.8(7) H(15A)-C(15)-H(15B) 110.5(9) C(11)-C(15)-H(15C) 110.3(7) H(15A)-C(15)-H(15C) 107.5(10) H(15B)-C(15)-H(15C) 109.6(10)

| $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O(1)229(5)  | 225(5)          | 330(5)          | -51(4)          | -13(4)          | 65(4)           |
| N(1)201(5)  | 170(5)          | 247(5)          | -64(4)          | -44(4)          | 23(4)           |
| C(1)195(6)  | 172(6)          | 201(6)          | -80(5)          | -24(5)          | -39(5)          |
| C(2)175(6)  | 167(6)          | 161(6)          | -36(5)          | -17(5)          | -42(5)          |
| C(3)147(5)  | 158(6)          | 159(5)          | -40(4)          | -19(4)          | -29(5)          |
| C(4)185(6)  | 180(6)          | 162(6)          | -23(5)          | -13(5)          | -25(5)          |
| C(5)225(6)  | 159(6)          | 229(6)          | -37(5)          | -42(5)          | 2(5)            |
| C(6)179(6)  | 205(6)          | 254(6)          | -103(5)         | -27(5)          | 4(5)            |
| C(7)164(6)  | 193(6)          | 181(6)          | -65(5)          | -8(5)           | -13(5)          |
| C(8)147(6)  | 180(6)          | 165(6)          | -40(5)          | -21(5)          | -36(5)          |
| C(9)222(6)  | 212(6)          | 149(6)          | -26(5)          | -8(5)           | -30(5)          |
| C(10)250(7) | 180(6)          | 195(6)          | 10(5)           | -6(5)           | -52(5)          |
| C(11)205(6) | 167(6)          | 227(6)          | -22(5)          | -51(5)          | -17(5)          |
| C(12)164(6) | 202(7)          | 218(6)          | -61(5)          | -3(5)           | -41(5)          |
| C(13)228(7) | 257(7)          | 247(7)          | -112(6)         | -42(6)          | -10(6)          |
| C(14)237(7) | 306(8)          | 232(7)          | -100(6)         | 35(5)           | -33(6)          |
| C(15)351(8) | 171(7)          | 310(7)          | -56(6)          | -31(6)          | -39(6)          |

Table 4. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for 319B (CCDC 606034). The anisotropic displacement factor exponent takes the form:  $-2\pi^2$  [ h<sup>2</sup> a<sup>\*2</sup>U <sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|        | Х         | у         | Z        | U <sub>iso</sub> |  |
|--------|-----------|-----------|----------|------------------|--|
| H(1)   | -5840(30) | 11001(16) | 4446(13) | 67(5)            |  |
| H(2A)  | 611(17)   | 8240(11)  | 4700(9)  | 18(3)            |  |
| H(2B)  | 2372(19)  | 8949(11)  | 3752(8)  | 18(3)            |  |
| H(4A)  | 4005(19)  | 6406(11)  | 4113(9)  | 22(3)            |  |
| H(4B)  | 1692(17)  | 5871(11)  | 4782(9)  | 14(3)            |  |
| H(5A)  | 4060(20)  | 4102(13)  | 3959(10) | 29(3)            |  |
| H(5B)  | 1668(19)  | 4503(11)  | 3465(9)  | 24(3)            |  |
| H(6A)  | 4678(17)  | 4427(12)  | 1973(9)  | 21(3)            |  |
| H(6B)  | 5870(19)  | 5459(11)  | 2391(9)  | 21(3)            |  |
| H(8)   | 3746(18)  | 7985(10)  | 2218(8)  | 12(3)            |  |
| H(9A)  | 1780(19)  | 9161(11)  | 556(10)  | 23(3)            |  |
| H(9B)  | -608(19)  | 9093(11)  | 1319(9)  | 19(3)            |  |
| H(10A) | 1180(18)  | 11255(12) | 916(10)  | 21(3)            |  |
| H(10B) | 2728(19)  | 10415(11) | 1870(9)  | 18(3)            |  |
| H(11)  | -2074(19) | 11239(11) | 2116(9)  | 22(3)            |  |
| H(12A) | -1412(17) | 6178(12)  | 3264(9)  | 20(3)            |  |
| H(12B) | -2364(19) | 7833(12)  | 2839(10) | 27(3)            |  |
| H(12C) | -2179(19) | 7128(11)  | 4145(10) | 23(3)            |  |
| H(13A) | 1653(19)  | 5487(13)  | 629(10)  | 31(3)            |  |
| H(13B) | 110(20)   | 6953(13)  | 651(10)  | 29(3)            |  |
| H(13C) | 50(20)    | 5634(13)  | 1746(10) | 35(4)            |  |
| H(14A) | 5910(20)  | 7379(12)  | 643(10)  | 31(3)            |  |
| H(14B) | 3970(20)  | 7639(13)  | -182(11) | 37(4)            |  |
| H(14C) | 5570(20)  | 6104(13)  | 222(10)  | 32(3)            |  |
| H(15A) | -1510(20) | 12715(12) | 3225(10) | 26(3)            |  |
| H(15B) | -120(20)  | 13063(13) | 1952(11) | 31(3)            |  |
| H(15C) | 1210(20)  | 12151(13) | 3037(10) | 41(4)            |  |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 319B (CCDC 606034).

| D-HA            | d(D-H)    | d(HA)     | d(DA)      | <(DHA)    |  |
|-----------------|-----------|-----------|------------|-----------|--|
| O(1)-H(1)N(1)#1 | 1.017(16) | 1.843(16) | 2.7884(13) | 153.2(12) |  |
| O(1)-H(1)O(1)#1 | 1.017(16) | 2.584(15) | 3.2256(17) | 120.8(10) |  |

Table 6. Hydrogen bonds for 319B (CCDC 606034) [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x-1,-y+2,-z+1

## CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 23 January 2007

#### **Crystal Structure Analysis of:**

### 370

(shown below)

**For** Investigator: Ryan McFadden

Advisor: B. M. Stoltz

ext. 6131 ext. 6064

ext. 2734

Account Number: BMS1.SQUIBB-2.22-GRANT.SQUIBB1

By Michael W. Day 116 Beckman ex e-mail: mikeday@caltech.edu

Contents

Table 1. Crystal data

Figures Minimum overlap, unit cell contents, stereo view of unit cell contents

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Table 5. Hydrogen atomic coordinates

Table 6. Observed and calculated structure factors (available upon request)



370

**Note:** The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 634511. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 634511."

| Empirical formula                                                 | $C_{22}H_{28}O_3$                                                                                                                                           |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula weight                                                    | 340.44                                                                                                                                                      |
| Crystallization Solvent                                           | Hexanes/ethylacetate                                                                                                                                        |
| Crystal Habit                                                     | Fragment                                                                                                                                                    |
| Crystal size                                                      | 0.26 x 0.22 x 0.17 mm <sup>3</sup>                                                                                                                          |
| Crystal color                                                     | Colorless                                                                                                                                                   |
| Data Colle                                                        | ection                                                                                                                                                      |
| Type of diffractometer                                            | Bruker SMART 1000                                                                                                                                           |
| Wavelength                                                        | 0.71073 Å MoKα                                                                                                                                              |
| Data Collection Temperature                                       | 100(2) K                                                                                                                                                    |
| $\theta$ range for 8994 reflections used in lattice determination | 2.29 to 34.45°                                                                                                                                              |
| Unit cell dimensions                                              | $\begin{array}{l} a = 23.2678(15) \ \text{\AA} \\ b = 13.8762(9) \ \text{\AA} \\ c = 11.8122(8) \ \text{\AA} \end{array} \qquad \beta = 108.548(2)^{\circ}$ |
| Volume                                                            | 3615.7(4) Å <sup>3</sup>                                                                                                                                    |
| Ζ                                                                 | 8                                                                                                                                                           |
| Crystal system                                                    | Monoclinic                                                                                                                                                  |
| Space group                                                       | C2/c                                                                                                                                                        |
| Density (calculated)                                              | 1.251 Mg/m <sup>3</sup>                                                                                                                                     |
| F(000)                                                            | 1472                                                                                                                                                        |
| Data collection program                                           | Bruker SMART v5.630                                                                                                                                         |
| $\theta$ range for data collection                                | 1.73 to 34.57°                                                                                                                                              |
| Completeness to $\theta = 34.57^{\circ}$                          | 89.7 %                                                                                                                                                      |
| Index ranges                                                      | $-36 \le h \le 36, -21 \le k \le 21, -18 \le l \le 18$                                                                                                      |
| Data collection scan type                                         | $\omega$ scans at 5 $\phi$ settings                                                                                                                         |
| Data reduction program                                            | Bruker SAINT v6.45A                                                                                                                                         |
| Reflections collected                                             | 37303                                                                                                                                                       |
| Independent reflections                                           | 37303 [ $R_{int} = 0.0000$ ]                                                                                                                                |
| Absorption coefficient                                            | 0.081 mm <sup>-1</sup>                                                                                                                                      |
| Absorption correction                                             | TWINABS                                                                                                                                                     |
| Max. and min. transmission                                        | 1.0000 and 0.7508                                                                                                                                           |

# Table 1. Crystal data and structure refinement for 370 (CCDC 634511).

#### Table 1 (cont.)

## **Structure solution and Refinement**

| Structure solution program                   | Bruker XS v6.12                             |
|----------------------------------------------|---------------------------------------------|
| Primary solution method                      | Direct methods                              |
| Secondary solution method                    | Difference Fourier map                      |
| Hydrogen placement                           | Difference Fourier map                      |
| Structure refinement program                 | Bruker XL v6.12                             |
| Refinement method                            | Full matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters               | 37303 / 0 / 339                             |
| Treatment of hydrogen atoms                  | Unrestrained                                |
| Goodness-of-fit on F <sup>2</sup>            | 1.182                                       |
| Final R indices [I>2o(I), 21619 reflections] | R1 = 0.0601, wR2 = 0.1106                   |
| R indices (all data)                         | R1 = 0.1018, wR2 = 0.1173                   |
| Type of weighting scheme used                | Sigma                                       |
| Weighting scheme used                        | $w=1/\sigma^2(Fo^2)$                        |
| Max shift/error                              | 0.001                                       |
| Average shift/error                          | 0.000                                       |
| Largest diff. peak and hole                  | 0.570 and -0.427 e.Å <sup>-3</sup>          |

### **Special Refinement Details**

This crystal is a non-merohedral twin and data were integrated and the structure refined as such. The twin law (179.8° rotation around the *c*-axis) was determined using CELL\_NOW on a group of orientation reflections, 690/781 reflections were assigned to domain 1 and 452/781 were assigned to domain 2, 89 of which were exclusive to this domain.

Refinement of  $F^2$  against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.









|       | Х       | у       | Z       | U <sub>eq</sub> |  |
|-------|---------|---------|---------|-----------------|--|
| O(1)  | 1481(1) | 5234(1) | 2876(1) | 28(1)           |  |
| O(2)  | 684(1)  | 1843(1) | 6684(1) | 28(1)           |  |
| O(3)  | 623(1)  | 556(1)  | 5078(1) | 28(1)           |  |
| C(1)  | 1332(1) | 4548(1) | 2231(1) | 21(1)           |  |
| C(2)  | 1679(1) | 3923(1) | 1575(1) | 16(1)           |  |
| C(3)  | 2328(1) | 4235(1) | 1655(1) | 20(1)           |  |
| C(4)  | 2752(1) | 4090(1) | 2946(1) | 24(1)           |  |
| C(5)  | 2709(1) | 3082(1) | 3421(1) | 25(1)           |  |
| C(6)  | 2065(1) | 2867(1) | 3409(1) | 20(1)           |  |
| C(7)  | 1593(1) | 2918(1) | 2152(1) | 19(1)           |  |
| C(8)  | 1643(1) | 2037(1) | 1419(1) | 25(1)           |  |
| C(9)  | 2569(1) | 3662(1) | 794(1)  | 26(1)           |  |
| C(10) | 2332(1) | 5298(1) | 1303(1) | 27(1)           |  |
| C(11) | 1203(1) | 4003(1) | 347(1)  | 21(1)           |  |
| C(12) | 657(1)  | 4078(1) | 469(1)  | 25(1)           |  |
| C(13) | 721(1)  | 4029(1) | 1779(1) | 23(1)           |  |
| C(14) | 912(1)  | 2985(1) | 2204(1) | 21(1)           |  |
| C(15) | 836(1)  | 2720(1) | 3400(1) | 20(1)           |  |
| C(16) | 873(1)  | 3401(1) | 4275(1) | 22(1)           |  |
| C(17) | 826(1)  | 3130(1) | 5385(1) | 22(1)           |  |
| C(18) | 736(1)  | 2184(1) | 5622(1) | 20(1)           |  |
| C(19) | 699(1)  | 1478(1) | 4742(1) | 21(1)           |  |
| C(20) | 746(1)  | 1757(1) | 3647(1) | 21(1)           |  |
| C(21) | 803(1)  | 2524(1) | 7636(1) | 29(1)           |  |
| C(22) | 592(1)  | -189(1) | 4224(1) | 33(1)           |  |

Table 2. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for 370 (CCDC 634511). U(eq) is defined as the trace of the orthogonalized U<sup>ij</sup> tensor.

| O(1)-C(1)    | 1.1998(9)  | C(21)-H(21B)     | 1.028(9)  |
|--------------|------------|------------------|-----------|
| O(2)-C(18)   | 1.3818(9)  | C(21)-H(21C)     | 0.987(8)  |
| O(2)-C(21)   | 1.4275(10) | C(22)-H(22A)     | 1.018(10) |
| O(3)-C(19)   | 1.3677(9)  | C(22)-H(22B)     | 1.033(8)  |
| O(3)-C(22)   | 1.4304(10) | C(22)-H(22C)     | 1.036(10) |
| C(1)-C(13)   | 1.5297(12) |                  |           |
| C(1)-C(2)    | 1.5508(11) | C(18)-O(2)-C(21) | 115.88(7) |
| C(2)-C(11)   | 1.5236(10) | C(19)-O(3)-C(22) | 116.95(7) |
| C(2)-C(3)    | 1.5449(11) | O(1)-C(1)-C(13)  | 130.05(8) |
| C(2)-C(7)    | 1.5923(11) | O(1)-C(1)-C(2)   | 132.08(8) |
| C(3)-C(9)    | 1.5311(12) | C(13)-C(1)-C(2)  | 97.86(7)  |
| C(3)-C(10)   | 1.5324(12) | C(11)-C(2)-C(3)  | 115.97(7) |
| C(3)-C(4)    | 1.5432(11) | C(11)-C(2)-C(1)  | 95.61(6)  |
| C(4)-C(5)    | 1.5230(12) | C(3)-C(2)-C(1)   | 117.85(6) |
| C(4)-H(4A)   | 0.992(8)   | C(11)-C(2)-C(7)  | 108.61(6) |
| C(4)-H(4B)   | 0.996(8)   | C(3)-C(2)-C(7)   | 118.24(6) |
| C(5)-C(6)    | 1.5221(12) | C(1)-C(2)-C(7)   | 96.91(6)  |
| C(5)-H(5A)   | 1.030(8)   | C(9)-C(3)-C(10)  | 106.53(7) |
| C(5)-H(5B)   | 0.966(8)   | C(9)-C(3)-C(4)   | 109.50(7) |
| C(6)-C(7)    | 1.5426(10) | C(10)-C(3)-C(4)  | 109.68(7) |
| C(6)-H(6A)   | 0.988(8)   | C(9)-C(3)-C(2)   | 111.79(7) |
| C(6)-H(6B)   | 0.996(7)   | C(10)-C(3)-C(2)  | 110.12(7) |
| C(7)-C(8)    | 1.5238(11) | C(4)-C(3)-C(2)   | 109.18(7) |
| C(7)-C(14)   | 1.6080(11) | C(5)-C(4)-C(3)   | 112.82(7) |
| C(8)-H(8A)   | 0.980(8)   | C(5)-C(4)-H(4A)  | 112.3(4)  |
| C(8)-H(8B)   | 0.967(8)   | C(3)-C(4)-H(4A)  | 107.6(5)  |
| C(8)-H(8C)   | 0.992(9)   | C(5)-C(4)-H(4B)  | 107.9(5)  |
| C(9)-H(9A)   | 1.001(9)   | C(3)-C(4)-H(4B)  | 108.1(4)  |
| C(9)-H(9B)   | 0.993(9)   | H(4A)-C(4)-H(4B) | 108.0(6)  |
| C(9)-H(9C)   | 0.981(9)   | C(6)-C(5)-C(4)   | 110.87(7) |
| C(10)-H(10A) | 0.988(9)   | C(6)-C(5)-H(5A)  | 109.0(4)  |
| C(10)-H(10B) | 0.997(8)   | C(4)-C(5)-H(5A)  | 110.2(4)  |
| C(10)-H(10C) | 0.982(9)   | C(6)-C(5)-H(5B)  | 109.2(5)  |
| C(11)-C(12)  | 1.3280(12) | C(4)-C(5)-H(5B)  | 109.6(5)  |
| C(11)-H(11)  | 0.901(7)   | H(5A)-C(5)-H(5B) | 107.9(6)  |
| C(12)-C(13)  | 1.5082(12) | C(5)-C(6)-C(7)   | 113.39(7) |
| C(12)-H(12)  | 0.951(8)   | C(5)-C(6)-H(6A)  | 108.5(4)  |
| C(13)-C(14)  | 1.5519(11) | C(7)-C(6)-H(6A)  | 109.1(4)  |
| C(13)-H(13)  | 0.950(8)   | C(5)-C(6)-H(6B)  | 111.6(4)  |
| C(14)-C(15)  | 1.5240(11) | C(7)-C(6)-H(6B)  | 108.4(4)  |
| C(14)-H(14)  | 0.968(7)   | H(6A)-C(6)-H(6B) | 105.5(6)  |
| C(15)-C(16)  | 1.3829(11) | C(8)-C(7)-C(6)   | 110.53(7) |
| C(15)-C(20)  | 1.3977(11) | C(8)-C(7)-C(2)   | 114.65(7) |
| C(16)-C(17)  | 1.4002(12) | C(6)-C(7)-C(2)   | 107.68(6) |
| C(16)-H(16)  | 1.004(8)   | C(8)-C(7)-C(14)  | 108.84(7) |
| C(17)-C(18)  | 1.3713(11) | C(6)-C(7)-C(14)  | 112.01(7) |
| C(17)-H(17)  | 0.939(8)   | C(2)-C(7)-C(14)  | 102.98(6) |
| C(18)-C(19)  | 1.4120(11) | C(7)-C(8)-H(8A)  | 112.0(5)  |
| C(19)-C(20)  | 1.3868(11) | C(7)-C(8)-H(8B)  | 111.8(5)  |
| C(20)-H(20)  | 1.015(7)   | H(8A)-C(8)-H(8B) | 107.1(7)  |
| C(21)-H(21A) | 0.990(9)   | C(7)-C(8)-H(8C)  | 109.6(5)  |

Table 3. Bond lengths [Å] and angles [°] for 370 (CCDC 634511).

| H(8A)-C(8)-H(8C)                                          | 109.5(7)                |
|-----------------------------------------------------------|-------------------------|
| H(8B)-C(8)-H(8C)                                          | 106.7(7)                |
| C(3)-C(9)-H(9A)                                           | 112.5(5)                |
| C(3)-C(9)-H(9B)                                           | 109.4(5)                |
| H(9A)-C(9)-H(9B)                                          | 110.4(7)                |
| C(3)-C(9)-H(9C)                                           | 110.5(5)                |
| H(9A)-C(9)-H(9C)                                          | 106.6(7)                |
| H(9B)-C(9)-H(9C)                                          | 107.2(7)                |
| C(3)-C(10)-H(10A)                                         | 110.1(5)                |
| C(3)-C(10)-H(10B)                                         | 107.9(5)                |
| H(10A)-C(10)-H(10B)                                       | 108.8(7)                |
| C(3)-C(10)-H(10C)                                         | 113 3(5)                |
| H(10A)-C(10)-H(10C)                                       | 108 1(7)                |
| H(10R) - C(10) - H(10C)                                   | 108.1(7)<br>108.5(7)    |
| C(12)-C(11)-C(2)                                          | 100.5(7)                |
| C(12) - C(11) - C(2)<br>C(12) - C(11) - H(11)             | 107.50(0)<br>123.9(4)   |
| $C(12)$ - $C(11)$ - $\Pi(11)$<br>$C(2)$ $C(11)$ $\Pi(11)$ | 123.9(4)                |
| $C(2)-C(11)-\Pi(11)$                                      | 120.0(3)                |
| C(11)- $C(12)$ - $C(13)$                                  | 108.78(8)               |
| C(11)-C(12)-H(12)                                         | 130.1(5)                |
| C(13)-C(12)-H(12)                                         | 121.1(5)                |
| C(12)-C(13)-C(1)                                          | 96.58(7)                |
| C(12)-C(13)-C(14)                                         | 107.33(7)               |
| C(1)-C(13)-C(14)                                          | 100.80(6)               |
| C(12)-C(13)-H(13)                                         | 116.9(5)                |
| C(1)-C(13)-H(13)                                          | 116.6(5)                |
| C(14)-C(13)-H(13)                                         | 115.8(5)                |
| C(15)-C(14)-C(13)                                         | 114.77(7)               |
| C(15)-C(14)-C(7)                                          | 115.31(6)               |
| C(13)-C(14)-C(7)                                          | 103.12(6)               |
| C(15)-C(14)-H(14)                                         | 108.7(4)                |
| C(13)-C(14)-H(14)                                         | 109.7(4)                |
| C(7)-C(14)-H(14)                                          | 104.6(5)                |
| C(16)- $C(15)$ - $C(20)$                                  | 118 28(8)               |
| C(16)- $C(15)$ - $C(14)$                                  | 122.09(7)               |
| C(20)- $C(15)$ - $C(14)$                                  | 1122.09(7)<br>119.60(7) |
| C(15)- $C(16)$ - $C(17)$                                  | 120.80(8)               |
| C(15) - C(16) - U(17)                                     | 120.50(8)               |
| C(13)- $C(16)$ - $H(16)$                                  | 120.3(4)<br>118 7(4)    |
| $C(17) - C(10) - \Pi(10)$<br>C(18) - C(17) - C(16)        | 120.7(4)                |
| C(18) - C(17) - C(10)<br>C(18) - C(17) - U(17)            | 120.70(8)               |
| C(18)-C(17)-H(17)                                         | 120.1(5)                |
| C(16)-C(17)-H(17)                                         | 119.2(5)                |
| C(17)-C(18)-O(2)                                          | 125.25(7)               |
| C(17)-C(18)-C(19)                                         | 119.42(7)               |
| O(2)-C(18)-C(19)                                          | 115.32(7)               |
| O(3)-C(19)-C(20)                                          | 126.04(7)               |
| O(3)-C(19)-C(18)                                          | 114.77(7)               |
| C(20)-C(19)-C(18)                                         | 119.19(7)               |
| C(19)-C(20)-C(15)                                         | 121.61(8)               |
| C(19)-C(20)-H(20)                                         | 120.7(4)                |
| C(15)-C(20)-H(20)                                         | 117.6(4)                |
| O(2)-C(21)-H(21A)                                         | 109.7(5)                |
| O(2)-C(21)-H(21B)                                         | 103.5(4)                |
| H(21A)-C(21)-H(21B)                                       | 111.6(7)                |
| O(2)-C(21)-H(21C)                                         | 112.4(5)                |
| $\sim$ / $\sim$ / $\sim$ /                                | × /                     |

| H(21A)-C(21)-H(21C) | 108.8(7) |
|---------------------|----------|
| H(21B)-C(21)-H(21C) | 110.8(7) |
| O(3)-C(22)-H(22A)   | 109.2(5) |
| O(3)-C(22)-H(22B)   | 106.3(5) |
| H(22A)-C(22)-H(22B) | 109.3(7) |
| O(3)-C(22)-H(22C)   | 109.9(5) |
| H(22A)-C(22)-H(22C) | 110.2(7) |
| H(22B)-C(22)-H(22C) | 111.8(7) |

\_\_\_\_\_

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O(1)  | 395(4)          | 242(3)          | 222(3)          | 3(3)            | 138(3)          | 53(3)           |
| O(2)  | 369(4)          | 292(3)          | 190(3)          | -1(3)           | 115(3)          | -64(3)          |
| O(3)  | 365(4)          | 231(3)          | 251(3)          | -21(3)          | 101(3)          | -68(3)          |
| C(1)  | 263(5)          | 231(5)          | 134(4)          | 83(4)           | 61(3)           | 32(4)           |
| C(2)  | 179(4)          | 175(4)          | 143(4)          | -1(3)           | 56(3)           | 3(3)            |
| C(3)  | 204(4)          | 213(5)          | 192(4)          | -6(3)           | 60(3)           | -12(3)          |
| C(4)  | 186(4)          | 314(5)          | 212(5)          | -24(4)          | 56(4)           | -23(4)          |
| C(5)  | 197(5)          | 344(6)          | 191(4)          | 33(4)           | 47(4)           | 49(4)           |
| C(6)  | 215(4)          | 237(5)          | 162(4)          | 19(4)           | 66(3)           | 43(4)           |
| C(7)  | 190(4)          | 211(4)          | 154(4)          | 1(3)            | 54(3)           | 3(3)            |
| C(8)  | 306(5)          | 232(5)          | 210(5)          | -8(4)           | 94(4)           | -18(4)          |
| C(9)  | 260(5)          | 306(6)          | 255(5)          | -1(4)           | 117(4)          | 3(4)            |
| C(10) | 265(5)          | 266(5)          | 290(5)          | 9(4)            | 98(4)           | -44(4)          |
| C(11) | 259(5)          | 207(5)          | 166(4)          | 8(4)            | 55(4)           | -14(4)          |
| C(12) | 222(5)          | 295(5)          | 197(4)          | 67(4)           | 10(4)           | 0(4)            |
| C(13) | 190(4)          | 293(5)          | 235(5)          | 58(4)           | 91(4)           | 56(4)           |
| C(14) | 212(4)          | 237(5)          | 177(4)          | 13(4)           | 50(3)           | -12(4)          |
| C(15) | 140(4)          | 252(5)          | 207(4)          | 24(4)           | 39(3)           | 5(3)            |
| C(16) | 202(4)          | 227(5)          | 239(5)          | 35(4)           | 79(4)           | 9(4)            |
| C(17) | 192(4)          | 247(5)          | 207(4)          | -27(4)          | 64(3)           | 16(4)           |
| C(18) | 170(4)          | 262(5)          | 183(4)          | 25(4)           | 57(3)           | -14(4)          |
| C(19) | 152(4)          | 237(5)          | 222(4)          | 29(4)           | 38(3)           | -25(4)          |
| C(20) | 171(4)          | 257(5)          | 202(4)          | -18(4)          | 38(3)           | -23(4)          |
| C(21) | 380(6)          | 307(6)          | 219(5)          | -22(4)          | 128(4)          | -24(5)          |
| C(22) | 453(7)          | 236(6)          | 314(6)          | -27(4)          | 137(5)          | -30(5)          |

Table 4. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for 370 (CCDC 634511). The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$ ]

|                                                           | Х                  | У       | Ζ       | $\mathrm{U}_{\mathrm{iso}}$ |
|-----------------------------------------------------------|--------------------|---------|---------|-----------------------------|
| $\overline{\mathbf{H}(\mathbf{\Lambda}\mathbf{\Lambda})}$ | 3170(4)            | 4250(5) | 2050(7) | 23(2)                       |
| H(4A)                                                     | 3170(4)            | 4250(5) | 2339(7) | 23(2)                       |
| $\Pi(4D)$                                                 | 2032(3)            | 4339(0) | 3408(7) | 23(2)                       |
| $\Pi(\mathbf{J}\mathbf{A})$                               | 2033(3)<br>2091(4) | 2373(0) | 2907(7) | 20(2)                       |
| $\Pi(SD)$                                                 | 2981(4)<br>1055(2) | 3027(0) | 4229(8) | 52(2)                       |
| H(0A)                                                     | 1955(3)            | 3333(5) | 3933(6) | 14(2)                       |
| H(6B)                                                     | 2036(3)            | 2221(6) | 3755(6) | 14(2)                       |
| H(8A)                                                     | 2064(4)            | 1905(5) | 1462(7) | 22(2)                       |
| H(8B)                                                     | 1413(4)            | 2116(6) | 584(8)  | 29(2)                       |
| H(8C)                                                     | 1473(4)            | 1466(6) | 1705(7) | 28(2)                       |
| H(9A)                                                     | 2575(4)            | 2951(6) | 943(7)  | 30(2)                       |
| H(9B)                                                     | 2982(4)            | 3894(6) | 856(8)  | 35(3)                       |
| H(9C)                                                     | 2312(4)            | 3763(6) | -34(8)  | 32(2)                       |
| H(10A)                                                    | 2060(4)            | 5396(6) | 478(8)  | 33(3)                       |
| H(10B)                                                    | 2753(4)            | 5468(6) | 1337(7) | 26(2)                       |
| H(10C)                                                    | 2205(4)            | 5737(6) | 1830(7) | 28(2)                       |
| H(11)                                                     | 1272(3)            | 4011(5) | -362(6) | 7(2)                        |
| H(12)                                                     | 269(4)             | 4139(6) | -120(7) | 26(2)                       |
| H(13)                                                     | 399(4)             | 4292(5) | 2014(7) | 20(2)                       |
| H(14)                                                     | 684(3)             | 2531(5) | 1606(6) | 15(2)                       |
| H(16)                                                     | 941(3)             | 4098(6) | 4131(6) | 18(2)                       |
| H(17)                                                     | 868(3)             | 3601(6) | 5976(7) | 20(2)                       |
| H(20)                                                     | 739(3)             | 1260(5) | 3013(7) | 16(2)                       |
| H(21A)                                                    | 1225(4)            | 2762(6) | 7834(7) | 31(2)                       |
| H(21B)                                                    | 741(4)             | 2132(6) | 8327(7) | 31(2)                       |
| H(21C)                                                    | 524(4)             | 3080(6) | 7436(7) | 30(2)                       |
| H(22A)                                                    | 230(4)             | -69(7)  | 3483(9) | 51(3)                       |
| H(22B)                                                    | 529(4)             | -826(6) | 4621(7) | 29(2)                       |
| H(22C)                                                    | 989(4)             | -199(7) | 4001(8) | 47(3)                       |
| 11(220)                                                   | 565(I)             | 1//(/)  | 1001(0) | 17(3)                       |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 370 (CCDC 634511).

Appendix NINE

Compounds Submitted for PI3K Biological Screening

| Compound Structure                       | Cantley# | Notebook#      | %ee | Quantity (mg) | Storage Method            |
|------------------------------------------|----------|----------------|-----|---------------|---------------------------|
| МеО<br>ОМе<br>(±)-398                    | 1        | 16RMM2-1129135 | 0   | 12            | Solution<br>in<br>Benzene |
| MeO<br>OMe<br>Br<br>(±)-399              | 2        | 16RMM1-1212203 | 0   | 6.8           | Solution<br>in<br>Benzene |
| OMe<br>                                  | 3        | 16RMM1-1213207 | NA  | 4.3           | Solution<br>in<br>Benzene |
| OMe<br>MeO<br>(7.5 to 1.0 dr)<br>(±)-348 | 4        | 16RMM1-1107101 | 0   | 6.1           | Solid                     |
| OH<br>OMe<br>(±)-334                     | 5        | 15RMM1-0917163 | 0   | 4.0           | Solution<br>in<br>Benzene |
| OAc<br>(±)-401                           | 6        | 14RMM1-0809259 | 0   | 1.5           | Solution<br>in<br>Benzene |

Table A9.1 Compounds Submitted for PI3K Biological Screening: Part 1

| Compound Structure          | Cantley# | Notebook#      | %ee | Quantity (mg) | Storage Method            |
|-----------------------------|----------|----------------|-----|---------------|---------------------------|
| он<br>(±)-331               | 7        | 14RMM1-0706161 | 0   | 5             | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>(±)-376       | 8        | 16RMM2-0121289 | 0   | 30±5          | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>Br<br>(±)-377 | 9        | 16RMM1-0119289 | 0   | 2.0           | Solid                     |
| (±)-319A and (±)-319B       | 10       | 17RMM1-0227145 | 0   | 9.7           | Solid                     |
| (±)-323A and (±)-323B       | 11       | 14RMM1-0619109 | 0   | 3.0           | Solution<br>in<br>Benzene |
| (±)-305                     | 12       | 16RMM2-0118287 | 0   | 3.1           | Solution<br>in<br>Benzene |

## Table A9.2 Compounds Submitted for PI3K Biological Screening: Part 2

| Compound Structure                                         | Cantley# | Notebook#          | %ee | Quantity (mg) | Storage Method            |
|------------------------------------------------------------|----------|--------------------|-----|---------------|---------------------------|
| (2 : 1 mixture; (±)-307B<br>major diastereomer unassigned) | 13       | 13RMM1-0324231     | 0   | 8.7           | Solid                     |
| (±)-318                                                    | 14       | 13RMM2-0907277     | 0   | 2.2           | Solid                     |
| (tautomeric mixture)                                       | 15       | -<br>17RMM1-012437 | 0   | 2.1           | Solid                     |
| (±)-362                                                    | 16       | 17RMMc-0209103     | 0   | 6.0           | Solution<br>in<br>Benzene |
| (±)-363                                                    | 17       | 17RMMc-0211107     | 0   | 8.6           | Solution<br>in<br>Benzene |
|                                                            | 18       | 15RMM1-0906111     | 95  | 16            | Solid                     |

Table A9.3 Compounds Submitted for PI3K Biological Screening: Part 3

| Compound Structure                                                                                        | Cantley# | Notebook#      | %ee | Quantity (mg)                   | Storage Method            |
|-----------------------------------------------------------------------------------------------------------|----------|----------------|-----|---------------------------------|---------------------------|
| (+)-143                                                                                                   | 19       | 19RMM6-090937  | 95  | 10                              | Neat Oil                  |
| (+)-312                                                                                                   | 20       | 19RMM1-091151  | 95  | 8±3<br>Compound<br>is Volatile! | Solution<br>in<br>Benzene |
| (-)-313                                                                                                   | 21       | 19RMM4-090937  | 95  | 2.6±0.6                         | Solution<br>in<br>Benzene |
| Me0<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,        | 22       | 17RMM2-0211113 | 0   | 7.3                             | Solid                     |
| MeO<br>Br<br>(+)-379                                                                                      | 23       | 19RMM1-091471  | 95  | 2.1                             | Solid                     |
| MeO<br>MeO<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | 24       | 19RMM1-091675  | 95  | 6.0                             | Solid                     |

Table A9.4 Compounds Submitted for PI3K Biological Screening: Part 4

| Compound Structure                                                                                        | Cantley# | Notebook#      | %ee | Quantity (mg) | Storage Method            |
|-----------------------------------------------------------------------------------------------------------|----------|----------------|-----|---------------|---------------------------|
| MeO<br>MeO<br>(+)-381                                                                                     | 25       | 19RMM1-091889  | 95  | 1.6           | Solid                     |
| MeO<br>MeO<br>(±)-382                                                                                     | 26       | 17RMM1-0425227 | 0   | 3.3           | Solution<br>in<br>Benzene |
| MeO<br>MeO                                                                                                | 27       | 19RMMmethylepi | 95  | 3.8           | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | 28       | 19RMM1-091155  | 0   | 3.2           | Solution<br>in<br>Benzene |
| он<br>(±)-357                                                                                             | 29       | 16RMM1-0103235 | 0   | 3.3           | Solution<br>in<br>Benzene |
|                                                                                                           | 30       | 16RMM2-0103235 | 0   | 3.5           | Solution<br>in<br>Benzene |

Table A9.5 Compounds Submitted for PI3K Biological Screening: Part 5

| Compound Structure                                                                                        | Cantley# | Notebook#      | %ee | Quantity (mg) | Storage Method            |
|-----------------------------------------------------------------------------------------------------------|----------|----------------|-----|---------------|---------------------------|
| O<br>SPh<br>(±)-359                                                                                       | 31       | 16RMM3-0114261 | 0   | 6.8           | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>HeO<br>(±)-389                                                                              | 32       | 18RMM2-071897  | 0   | 1.8           | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | 33       | 18RMMx-0718101 | 0   | 8±2           | Solution<br>in<br>Benzene |
| MeO<br>MeO<br>(±)-385                                                                                     | 34       | 18RMM5-070851  | 0   | 4.2           | Solution<br>in<br>Benzene |
| мео<br>(±)-386                                                                                            | 35       | 18RMMc-0722119 | 0   | 1.5           | Solution<br>in<br>Benzene |

Table A9.6 Compounds Submitted for PI3K Biological Screening: Part 6

| Compound Structure            | Cantley# | Notebook#      | %ee | Quantity (mg) | Storage Method            |
|-------------------------------|----------|----------------|-----|---------------|---------------------------|
| OMe<br>MeO<br>(5R,8R,11S)-394 | 36       | 19RMM1-1026197 | 95  | 2.5           | Solution<br>in<br>Benzene |
| мео<br>СНО<br>(±)-396         | 37       | 19RMM1-1024191 | 0   | 1.0           | Solution<br>in<br>Benzene |
| ОМе<br>ОМе<br>(±)-370         | 38       | 16RMM5-1130137 | 0   | 4.0           | Solution<br>in<br>Benzene |
| H O<br>MeO<br>(±)-373         | 39       | 17RMM2-0318197 | 0   | 2.0±0.5       | Solution<br>in<br>Benzene |
| OMe<br>OMe<br>OMe<br>(±)-388  | 40       | 17RMM1-0504233 | 0   | 1.4           | Solution<br>in<br>Benzene |
| CN<br>0<br>322                | 41       | 17RMM1-0312171 | NA  | 1.0           | Solid                     |

Table A9.7 Compounds Submitted for PI3K Biological Screening: Part 7

Appendix Ten

**Cross References to Characterization Binders and Notebooks** 



Table A10.1 Cross References for Compounds from Chapter 2: Thujopsene

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                          |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|
| DY01                         | (-)-113                 | <sup>1</sup> H NMR: 7RMM1-0211109H<br><sup>13</sup> C NMR : 17RMM1-0211109C13C<br>IR: 17RMM1-0211109NaCD  |
| DY02                         | )<br><br>(-)-112        | <sup>1</sup> Н NMR: 17RMMc-0212115Н<br><sup>13</sup> C NMR : 17RMMc-0212115C13C<br>IR: 17RMMc-0212115NaCD |
| DY03                         | 0<br><br>(-)-109        | <sup>1</sup> H NMR: 17RMM1-0219139H<br><sup>13</sup> C NMR : 17RMM1-0219137C13C<br>IR: 17RMM1-0218137NaCD |

# Table A10.2 Cross References for Compounds from Chapter 2: Dysidiolide

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                          |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|
| AS01                         |                         | <sup>1</sup> H NMR: 17RMM2-0228151H<br><sup>13</sup> C NMR : 17RMM2-0228151C13C<br>IR: 17RMM2-0228151NaCD |
| AS02                         | (+)-79                  | <sup>1</sup> H NMR: 18RMM1-0726157H<br><sup>13</sup> C NMR : 17RMM1-0312169C13C<br>IR: 17RMM1-0312169NaCD |
| AS03                         | 0<br>(+)-120            | <sup>1</sup> H NMR: 18RMM1-0729161H<br><sup>13</sup> C NMR : 18RMM1-0729161C13C<br>IR: 18RMM1-0729161NaCD |
| AS04                         |                         | <sup>1</sup> H NMR: 17RMM2-0401201H<br><sup>13</sup> C NMR : 17RMM2-0401201C13C<br>IR: 17RMM2-0401201NaCD |
| AS05                         | 124                     | <sup>1</sup> H NMR: 17RMM1-0402209H<br><sup>13</sup> C NMR : 17RMM1-0402209C13C<br>IR: 17RMM2-0402209NaCD |

Table A10.3 Cross References for Compounds from Chapter 2: Aspidospermine

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                                 |
|------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
| DM01                         | 101                     | <sup>1</sup> H NMR: 11RMM1-0916107CH1H<br><sup>13</sup> C NMR : 11RMM1-0916107CC13C<br>IR: 11RMM1-0916107CIRNaCD |
| DM02                         |                         | <sup>1</sup> H NMR: 11RMMC-918111CH1H<br><sup>13</sup> C NMR : 11RMMC-0918111CC13C<br>IR: 11RMMC-0918111CIRKBr   |
| DM03                         |                         | <sup>1</sup> H NMR: 13RMM3-0321215H<br><sup>13</sup> C NMR : 11RMM1-1003179CC13C<br>IR: 11RMM1-1003179CIRNaCD    |
| DM04                         | (-)-75                  | <sup>1</sup> H NMR: 17RMM1-0617255CH1H<br><sup>13</sup> C NMR : 17RMM1-0617255C13C<br>IR: 11RMM1-1006193CIRNaCD  |
| DM05                         | (+)-219                 | <sup>1</sup> H NMR: 11RMM1-1013203CH1H<br><sup>13</sup> C NMR : 11RMM1-1013203CC13C<br>IR: 11RMM1-1013203CIRNaCD |

Table A10.4 Cross References for Compounds from Chapter 3: Dichroanone: Part 1

| Characterization<br>Binder # | Structure<br>(Thesis #)                                                                          | Spectral<br>Data                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DM06                         | (-)-143                                                                                          | <sup>1</sup> H NMR: 12RMM3-0110665CH1H<br><sup>13</sup> C NMR : 11RMM1-1016215CC13C<br>IR: 11RMM1-1016215CIRNaCD                                          |
| DM07                         |                                                                                                  | <sup>1</sup> H NMR: 12RMM2-110665CH1H<br><sup>13</sup> C NMR : 12RMM2-110665CC13C<br>IR: 12RMM2-110665KBr                                                 |
| DM08                         | o<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | <sup>1</sup> H NMR: 11RMM2-1018221CH1H<br><sup>13</sup> C NMR : 1RMM2-1018221CC13C<br>IR: 11RMM2-1018221CIRKBr                                            |
| DM09                         | (-)-234                                                                                          | <sup>1</sup> H NMR: 12RMM2-111679CH1H<br><sup>13</sup> C NMR : 12RMM2-111679CC13C<br>IR: 12RMM2-111679CIRNaCD                                             |
| DM10                         | (-)-250                                                                                          | <sup>1</sup> H NMR: 12RMM1-112189CH1H<br><sup>13</sup> C NMR : 12RMM1-112189CC13C<br><sup>19</sup> F NMR: 12RMM1-112189CF19F<br>IR: 12RMM1-112189CIRNaHex |

Table A10.5 Cross References for Compounds from Chapter 3: Dichroanone: Part 2

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                              |
|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| DM11                         | (-)-237                 | <sup>1</sup> H NMR: 12RMM1-112087CH1H<br><sup>13</sup> C NMR : 12RMM1-112087CC13C<br>IR: 12RMM1-112087CIRNaCD |
| DM12                         | сно<br>(-)-252          | <sup>1</sup> H NMR: 12RMM2-112293CH1H<br><sup>13</sup> C NMR : 12RMM2-112293CC13C<br>IR: 12RMM2-112293CIRNaCD |
| DM13                         | (+)-253                 | <sup>1</sup> H NMR: 12RMM1-112293CH1H<br><sup>13</sup> C NMR :12RMM1-112293CC13C<br>IR: 12RMM1-112293CIRNaCD  |
| DM14                         | он<br>(-)-242           | <sup>1</sup> H NMR: 12RMM1-1204105CC13C<br><sup>13</sup> C NMR : 12RMM1-112599CH1H<br>IR: 12RMM1-112599CIRKBr |
| DM15                         | (±)-260                 | <sup>1</sup> H NMR: 11RMM1-0920123-100H<br><sup>13</sup> C NMR :<br>IR: RacoQuinoneNaNeat                     |

Table A10.6 Cross References for Compounds from Chapter 3: Dichroanone: Part 3

| Characterization<br>Binder # | Structure<br>(Thesis #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spectral<br>Data                                                                                                               |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| DM16                         | о<br>(+)-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>1</sup> H NMR: 12RMM1-1128101CH1H<br><sup>13</sup> C NMR : 12RMM1-1128101C13C<br>IR: 12RMM1-1128101KBr<br>DichroanoneNaCl |
| DM17                         | о<br>(+)-267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>1</sup> H NMR: 12RMM1-1213109CH1H<br><sup>13</sup> C NMR : 12RMM1-1213109CC13C<br>IR: 12RMM1-1213109CIRNaCD               |
| DM18                         | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>1</sup> H NMR: 13RMM1-0209121CH1H<br><sup>13</sup> C NMR : 13RMM1-0209121CC13C<br>IR: 13RMM1-0209121CIRNaCH               |
| DM19                         | $ \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | <sup>1</sup> H NMR: 13RMM4-0212123CH1H<br><sup>13</sup> C NMR : 13RMM4-0212123CC13xC<br>IR: 13RMM4-0212123CIRNaCH              |

Table A10.7 Cross References for Compounds from Chapter 3: Dichroanone: Part 4

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                                             |
|------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| DX01                         | (±)-235                 | <sup>1</sup> H NMR: 8RMM1-020739CH1H<br><sup>13</sup> C NMR : 8RMM1-020739CC13C<br>IR: 8RMM1-020739CIRNeat                   |
| DX02                         | OH<br>                  | <sup>1</sup> H NMR: 8RMM1-020947CH1H<br><sup>13</sup> C NMR : 8RMM1-020947CC13C<br>IR: 8RMM1-020947CIRNaCD                   |
| DX03                         | OH<br>                  | <sup>1</sup> H NMR: 8RMM2-020947CH1H<br><sup>13</sup> C NMR : 8RMM2-020947CC13C<br>IR: 8RMM2-020947CIRNaCD                   |
| DX04                         | H0 0<br>(±)-240         | <sup>1</sup> H NMR: 7RMMx-0116235CH1H<br><sup>13</sup> C NMR : 7RMM1-0116235CC13-500C<br>IR: 7RMMx-0116235CIR2NaCD           |
| DX05                         | (±)-229                 | <sup>1</sup> H NMR: 8RMM1-0327143CH1H<br><sup>13</sup> C NMR : 8RMM1-0327143CC13C<br><sup>19</sup> F NMR: 8RMM1-0327143CF19F |

Table A10.8 Cross References for Compounds from Chapter 3: Dichroanone: Part 5
| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                              |
|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| DX06                         | он<br>(±)-231           | <sup>1</sup> H NMR: 8RMM1-0324141CH1H<br><sup>13</sup> C NMR : 8RMM1-0324141CC13C<br>IR: 8RMM1-0324141NaCD    |
| DX07                         | (±)-254                 | <sup>1</sup> H NMR: 8RMM1-0408181CH1H<br><sup>13</sup> C NMR : 8RMM1-0408181CC13C<br>IR: 8RMM1-0408181CIRNaCD |
| DX08                         | OMe<br>(±)-257          | <sup>1</sup> H NMR: 8RMM1-0408185CH1H<br><sup>13</sup> C NMR : 8RMM1-0408185CC13C<br>IR: 8RMM1-0408185CIRNaCD |
| DX09                         | ОМе<br>Бг ОН<br>(±)-258 | <sup>1</sup> H NMR: 8RMM2-0410187H<br><sup>13</sup> C NMR : 8RMM2-0414187C13C<br>IR: 8RMM2-0410187IRNaCD      |
| DX10                         | OMe<br>(±)-259          | <sup>1</sup> H NMR: 8RMM1-0414205H<br><sup>13</sup> C NMR : 8RMM1-0414205C13C<br>IR: 8RMM1-0414205NaCDD2O     |

Table A10.9 Cross References for Compounds from Chapter 3: Dichroanone: Part 6



Table A10.10 Cross References for Compounds from Chapter 3: Dichroanone: Part 7

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                                          |
|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
| LI01                         | (±)-307A (±)-307B       | <sup>1</sup> H NMR: 13RMM1-0324231CH1H<br><sup>13</sup> C NMR : 13RMM1-0324231C13C<br>IR: 13RMM1-0324231CIRKBr            |
| L102                         | (+)-312                 | <sup>1</sup> H NMR: 15RMM1-cyclobuteneH<br><sup>13</sup> C NMR : 15RMM1-cyclobuteneCC13C<br>IR: 15RMM1-cyclobuteneCIRNaCH |
| L103                         | (-)-313                 | <sup>1</sup> H NMR: 14RMM3-0814271CH1H<br><sup>13</sup> C NMR : 14RMM3-0814271CC13C<br>IR: 14RMM3-0814271CIRNaNeat        |
| L104                         | (±)-318                 | <sup>1</sup> H NMR: 13RMM2-0407275CH1H.<br><sup>13</sup> C NMR : 13RMM2-0407275CC13C<br>IR: 13RMM2-0407275CIRNaCD         |
| L105                         | )<br>(±)-305            | <sup>1</sup> H NMR: 14RMM1-061599CH1H.<br><sup>13</sup> C NMR : 14RMM1-061599CC13C<br>IR: 14RMM1-061599CIRNaCD            |

Table A10.11 Cross References for Compounds from Chapter 4: Liphagal: Part 1

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                                   |
|------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| L106                         | )<br>(±)-304            | <sup>1</sup> H NMR: 13RMM1-0411287CH1H<br><sup>13</sup> C NMR : 13RMM1-0411287CC13C<br>IR: 13RMM1-0411287CIRNaCD   |
| L107                         | HQ<br>N<br>(±)-319A     | <sup>1</sup> H NMR: 14RMM1-0618107CH1H<br><sup>13</sup> C NMR : 14RMM1-0618107CC13C<br>IR: 14RMM1-0618107CIRNaNaCD |
| L108                         |                         | <sup>1</sup> H NMR: 14RMM1-061397CH1H<br><sup>13</sup> C NMR : 14RMM1-061397CC13C<br>IR: 14RMM1-061397CIRNaCD      |
| L109                         | CN<br>CN<br>322         | <sup>1</sup> H NMR: 17RMM1-0312171H<br><sup>13</sup> C NMR : 17RMM1-0312171C13C<br>IR: 17RMM1-0312171NaCD          |
| LI10                         | (±)-323A and (±)-323B   | <sup>1</sup> H NMR: 14RMM1-0619109CH1H<br><sup>13</sup> C NMR : 14RMM1-0619109CC13C<br>IR: 14RMM1-0619109CIRNaCD   |

Table A10.12 Cross References for Compounds from Chapter 4: Liphagal: Part 2

| Characterization<br>Binder # | Structure<br>(Thesis #)      | Spectral<br>Data                                                                                                 |
|------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|
| LI11                         | OTMS<br><br><br><br><br>     | <sup>1</sup> H NMR: 14RMMc-0625125H<br><sup>13</sup> C NMR : 14RMMc-0625125C13C<br>IR: 14RMM1-0625125NaNeat      |
| LI12                         | он                           | <sup>1</sup> H NMR: 14RMM1-0703151CH1H<br><sup>13</sup> C NMR : 14RMM1-0703151CC13C<br>IR: 14RMM1-0703151CIRNaCD |
| LI13                         | ОН<br>0 ОН<br>334            | <sup>1</sup> H NMR: 15RMM1-0917163H<br><sup>13</sup> C NMR : 15RMM1-0917163CC13C<br>IR: 15RMM1-0917163KBr        |
| LI14                         | OAc O<br>OAc O<br>OAc<br>338 | <sup>1</sup> H NMR: 15RMM1-0921189CH1H<br><sup>13</sup> C NMR : 15RMM1-0921189CC13C<br>IR: 15RMM1-0921189CIRNaCD |
| LI15                         | ОН О<br>ОМе<br>ОН<br>339     | <sup>1</sup> H NMR: 15RMM1-1001207CH1H<br><sup>13</sup> C NMR : 15RMM1-1001207CC13C<br>IR: 15RMM1-1001207CIRxKBr |

Table A10.13 Cross References for Compounds from Chapter 4: Liphagal: Part 3

| Characterization<br>Binder # | Structure<br>(Thesis #)          | Spectral<br>Data                                                                                               |
|------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|
| LI16                         | оме<br>он<br><i>340</i>          | <sup>1</sup> H NMR: 15RMMc-1002215H<br><sup>13</sup> C NMR : 15RMMc-1002215C13C.<br>IR: 15RMMc-1002215NaCDCH   |
| LI17                         | Br<br>OH<br>OH<br>OH<br>349      | <sup>1</sup> H NMR: 15RMM1-1008263H<br><sup>13</sup> C NMR : 15RMM1-1008263C13C<br>IR: 15RMM1-1008263NaCD      |
| LI18                         | OMe O<br>OMe<br>OMe<br>351       | <sup>1</sup> H NMR: 16RMM1-102651CH1H.<br><sup>13</sup> C NMR : 16RMM1-102651CC13C<br>IR: 16RMM1-102651CIRNaCD |
| LI19                         | OMe O<br>Br<br>OMe<br>OMe<br>352 | <sup>1</sup> H NMR: 16RMM2-110389CH1H<br><sup>13</sup> C NMR : 16RMM2-110389CC13C<br>IR: 16RMM2-110389CIRNaCH  |
| L120                         |                                  | <sup>1</sup> H NMR: 16RMM1-102445CH1H<br><sup>13</sup> C NMR : 16RMM1-102445CC13C<br>IR: 16RMM1-102445CIRKBr   |

Table A10.14 Cross References for Compounds from Chapter 4: Liphagal: Part 4

| Characterization<br>Binder # | Structure<br>(Thesis #) | Spectral<br>Data                                                                                          |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|
| Li21                         | Meo<br>(±)-348          | <sup>1</sup> H NMR: 16RMM1-1107101H<br><sup>13</sup> C NMR : 16RMM1-1107101C13C<br>IR: 16RMM1-1107101KBr  |
| LI22                         | Me0<br>(+)-369          | <sup>1</sup> H NMR: 16RMM1-1126123H<br><sup>13</sup> C NMR : 16RMM1-1126123C13C<br>IR: 16RMM1-1126123NaCH |
| LI23                         | MeO<br>MeO<br>(±)-356   | <sup>1</sup> H NMR: 16RMM2-1130137H<br><sup>13</sup> C NMR : 16RMM2-1130137C13C<br>IR: 16RMM2-1130137NaCH |
| LI24                         | MeO<br>MeO<br>(±)-374   | <sup>1</sup> H NMR: 16RMMc-1201145H<br><sup>13</sup> C NMR : 16RMMc-1201145C13C<br>IR: 16RMMc-1201145NaCH |

Table A10.15 Cross References for Compounds from Chapter 4: Liphagal: Part 5



Table A10.16 Cross References for Compounds from Chapter 4: Liphagal: Part 6

| Characterization<br>Binder # | Structure<br>(Thesis #)                                                                     | Spectral<br>Data                                                                                               |
|------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| L129                         | (±)-358                                                                                     | <sup>1</sup> H NMR: 16RMM2-0103235H<br><sup>13</sup> C NMR : 16RMM2-0103235C13C<br>IR: 16RMM2-0103235NaDCM     |
| L130                         | 0<br>SPh<br>(±)-359                                                                         | <sup>1</sup> H NMR: 16RMM3-0114261CH1H<br><sup>13</sup> C NMR : 16RMM3-0114261CC13C<br>IR: 16RMM3-0114261NaDCM |
| LI31                         | MeO<br>MeO<br>Br<br>(±)-377                                                                 | <sup>1</sup> H NMR: 16RMM1-0119289H<br><sup>13</sup> C NMR : 16RMM1-0119289C13xC<br>IR: 16RMM1-0119289NaCD     |
| LI34                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | <sup>1</sup> H NMR: 17RMM1-013169C<br><sup>13</sup> C NMR : 17RMM1-013169C13C<br>IR: 17RMM1-013169NaCD         |
| L135                         | 0<br>(±)-362                                                                                | <sup>1</sup> H NMR: 17RMM1-020175H<br><sup>13</sup> C NMR : 17RMM1-020175C13C<br>IR: 17RMM1-020175             |

Table A10.17 Cross References for Compounds from Chapter 4: Liphagal: Part 7



Table A10.18 Cross References for Compounds from Chapter 4: Liphagal: Part 8



Table A10.19 Cross References for Compounds from Chapter 4: Liphagal: Part 9



Table A10.20 Cross References for Compounds from Chapter 4: Liphagal: Part 10



## Table A10.21 Cross References for Compounds from Chapter 4: Liphagal: Part 11