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Abstract

Nanocrystalline materials (NCM) are single-phase or multi-phase polycrystalline
materials with crystal sizes in the nanometer range (2-20 nm). Owing to their very small
grain size, NCM have enhanced or novel physical and mechanical properties compared to
conventional materials, making NCM attractive for various technical applications.
Mechanical alloying (MA) is now one of the most commonly used methods to synthesize
NCM, among other far-from-equilibrium materials. During mechanical alloying,
nanocrystalline materials are sustained in nonequilibrium states by continuous external
driving (e.g., collisions, shearing, fracturing, welding, etc.), and can be studied as driven
alloys — a simplified model that grasps the essentials of external driving in a general way.
In this thesis study, the structures and thermal stabilities of nanocrystalline materials
synthesized by mechanical alloying were studied by experimental techniques, and were

modeled as driven systems by Monte Carlo simulations.

A general introduction to nanocrystalline materials is given in Chapter 1 and
discusses their structures, synthesis methods, characterization techniques, properties and
technical applications. In parallel, introductions on phase transformations, driven alloys,
and Monte Carlo simulations are given in Chapter 2. Our theoretical and simulational work
on critical temperature of ordering transformations of driven square alloys is presented in
Chapter 3, while the study on the ordering kinetics and low temperature phase diagrams of
driven bcc alloys is presented in Chapter 4. We found that the ballistic (random) atom
movements, caused by external driving, suppressed the critical temperature of ordering on
square lattices. The decrease in critical temperature was linear only at small driving
intensity. The ballistic atom movements also changed both the transient states and the

steady states of ordering of bce alloys. The stability of B32 order was increased with
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respect to the stabilities of B2 order and an unmixed state because of the smaller defect
enthalpy sustained in B32 phase. In steady state, the B32 phase region encroached into
adjacent B2 or unmixed phase regions, and regions of two-phase coexistence were formed.
The changes were significant and nonintuitive, and provided useful guidance to the

experimental studies presented in Chapter 5, 6, and 7.

In the experimental studies described in Chapters 5, 6, and 7, we studied how the
microstructures of NCM prepared by MA depended on milling intensity, temperature, and
composition (I, T, ¢c). We found: (1) I — The intensity of MA had little effect on the
average grain size or strain, but changed the phase boundaries of Fe-Ni nanocrystalline
materials drastically and in nonintuitive ways. Similar to what was found in Monte Carlo
simulations, a region of bce plus fcc two-phase coexistence occurred from MA, and shifted
asymmetrically to the bce side with increased milling intensity. This was attributed to the
larger heterogeneities in free energy density in the alloy at higher MA intensity. (2) T —
Mechanical alloying of NizFe and Fe3X (X=Si, Zn, Sn) at temperatures from 23 °C to 300
°C showed that the effect of milling temperature was little different from the role of
temperature itself on the microstructure of NCM. (3) ¢ — The same Hume-Rothery rules
for 5% solubility in equilibrium alloys translated to a 25% solubility in nanocrystalline
materials Fe3X (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by MA. Also observed was
the transient DO3 ordering of NCM Fe3Ge prepared by MA upon annealing at high

temperature.
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Massbauer spectra from Fe3zSn powder in the as-milled state, after

annealing at 300 °C for 4 hours, and after annealing at 500 °C for 5 hours.
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Hyperfine magnetic field (HMF) distributions (probability of HMF). Top
two pairs of distributions are from experimental data such as shown in Fig.
7.2. Top pair is from FeggSnyg alloy in its as-milled state (solid curve), and
after annealing at 300 °C for 20 hours (dashed curve). Middle pair is from
Fe75Snps5 alloy in its»as-milled state (solid curve) and after annealing at 300
°C for 4 hours (dashed curve). Lower pair was calculated as described in
the text for states of partial B2 order determined from x-ray diffractometry:

L=0.36 (solid curve), and L=0.49 (dashed curve).

(a) (top) X-ray diffraction patterns from Fe3Ge alloys as-milled for 24 h,
and after the as-milled powder was annealed for 4 h at 350 °C. (b) (bottom)

The DO3 ordered structure.

Difference between the metallic radius of Fe and the radii of the solutes used

in the present study, with approximate boundaries of the as-milled phases.

Darken-Gurry plot for various solutes in Fe. Ellipse was drawn around Fe
with a range in electronegativity of 0.4, and a range of £15% in metallic

radius.
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Chapter 1. Nanocrystalline Materials

1.1 Introduction to Nanocrystalline Materials

The thermodynamic equilibrium state of a metal or alloy at low temperatures is a
perfect crystal, i.e. a three-dimensional periodic array of atoms. However, all engineering
materials in service are somewhat out of thermodynamic equilibrium. Great interest has
focused on highly nonequilibrium materials since Pol Duwez first synthesized metallic
glasses by rapid quenching at Caltech in 1960 [1]. New experimental techniques have been
developed to prepare a variety of materials far from thermodynamic equilibrium, such as

metallic glasses, nanocrystalline materials, and disordered solid solutions.

Nanocrystalline materials (NCM) [2-7] are single- or multi-phase polycrystalline
materials with crystal sizes on the order of nanometers. Because of their very small crystal
sizes, nanocrystalline materials have novel physical properties. The property of interest is
useful for defining the characteristic size of a nanocrystal, but often this size is 10 nm or

below.

A schematic section showing atomic arrangements in a nanocrystalline material is
shown in Fig. 1.1 [2-6]. Here we are concerned with atomic arrangement only. There are
two types of atoms. The atoms in black are inside individual grains, and have regular
nearest neighbor atom configurations. The atoms in white are at grain boundaries and have
different nearest neighbor configurations. While the local atomic structure of all atoms in
grains of the same phase is identical, the local atomic structures of atoms at and near the
grain boundaries are different because the orientation relationships between adjacent grains

are different.
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FIG. 1.1. A schematic cross-sectional representation in a hard
sphere model of a nanocrystalline material distinguishing between the atoms
inside grains (black) and at the grain boundaries (white). The atoms at grain
boundaries are shown in regular lattice positions but in reality may relax to

form different atomic arrangement [2-6).



Nanocrystalline materials with equiaxed grains belong to a more general class of
materials termed Nanostructured Materials (NSM). Nanostructured materials can have
nanostructure in one dimension (layered), two dimensions (filamentary or rod-shaped), or
three dimensions (equiaxed) [5]. In each case, the small dimensions lead to novel or
enhanced physical and mechanical properties compared to conventional crystalline
materials. Depending on the chemical composition profile, NSM can be grouped into four
families. The chemical composition can be homogeneous all across the crystallites and
interfaces, or different for different crystallites (e.g. quantum well structures), or different
only between crystallites and interfaces (e.g., after grain boundary chemical segregation in
a homogeneous NSM). The fourth family of NSM is formed by nm-sized crystallites
(layered, filamentary, or equiaxed) dispersed in a matrix of different chemical composition
(e.g., precipitation hardened alloys). Fig. 1.2 summarizes various types of NSM classified
according to their dimensionality (shape) and chemical composition profile [7]. In
addition, if the core components are glasses instead of crystallites (e.g., in Fig. 1.1, the
black atoms form glassy structures instead of crystalites), the material is termed a nanoglass

[2-4].

1.2 Synthesis of Nanocrystalline Materials

In principle, any method suitable for preparing a polycrystalline material with a
crystal size of a few nanometers and a random texture may be utilized to synthesize
nanocrystalline materials. The original inert gas condensation method used by Gleiter et.
al., is still used widely. Nevertheless, mechanical attrition by high energy ball milling has

become the most frequently used method to synthesize nanocrystalline materials.
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1.2.1 Gas Condensation

The inert gas condensation method [2-4, 6] first used by the Gleiter group includes
two steps: generating nanometer-sized clusters, and assembling the clusters by in-situ
consolidation and sintering. A typical apparatus consists of a gas-condensation chamber
and powder consolidation cell as shown schematically in Fig. 1.3 [2-6]. The UHV
vacuum chamber is first evacuated and then back-filled with a controlled high purity gas
atmosphere at pressures of a few Torr. For producing metal or alloy powders, the gas is
typically inert gas, such as He or Ar. Nj and gas mixtures (Hy + He) have also been used.
Alternatively, a reactive gas or gas mixture can also be used to produce nanometered
clusters of ceramic compounds such as oxides. The grain size depends on various

experimental parameters, including the gas type, the gas pressure, and the evaporation rate.

During the evaporation of the precursor materials from sources A and/or B, atoms
condense into clusters in the supersaturated region close to the Joule-heated sources. The
clusters are transported via convection to the liquid-nitrogen cooled cold finger, where they
are collected via thermophresis. The clusters deposited on the cold finger are subsequently
scraped from the cold finger, collected into a funnel, and consolidated first by a low-
pressure compacting device and then by a high-pressure compacting device.

There exist variations of the gas condensation method. Fig. 1.4 depicts
schematically our two-chamber system capable of gas condensation in a dynamic flow gas
environment [8]. This equipment permits ballistic consolidation of the powders, avoiding
the need for mechanically compressing them into a solid. The evaporation chamber and the
deposition chamber are connected through a nozzle of small diameter (3 mm to 10 mm).
The gas (typically He) flows in the evaporation chamber and is evacuated from the
deposition chamber by a Roots pump with a pumping speed of 80 liters/sec and a base

pressure below 10 Torr. A relatively large pressure difference is maintained between the
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two chambers. The pressure differential depends on the gas flux, pumping speed, and the
conductance of the nozzle (diameter, length, and geometry). This large pressure difference
results in a large velocity for gas flow through the nuzzle (in the range of 30 to 1000 m/s

for evaporation chamber pressures of 0.5 to 5 Torr).

During operation of a gas condensation system modified for ballistic consolidation,
the precursor materials are evaporated and form nanocrystalline particleé in the evaporation
chamber. The particles are carried along by the gas flow through the nozzle and attain the
high flow velocity. The primary crystallites have a size range of 5 to 10 nm before they are
deposited onto the substrate, which is perpendicular to and about 1 cm away from the
nozzle. The deposited area has almost the same 1 cm diameter as the nozzle because lateral
diffusion of the particles is minimal at high velocities. This directional deposition is an
important and useful feature of the method. The deposited materials are dense when there
is a high kinetic energy of the depositing nanoparticles. Therefore the nanoparticles are
collected and ballistically consolidated in situ without the use of thermophoretic collection

and subsequent pressing.

A Kapton window was epoxied on the chamber wall near the substrate to allow for
in situ x-ray diffraction or Mossbauer spectrometry of the deposited material. Through this

window, a three-dimensional structure could be observed during deposition and growth.

1.2.2 Mechanical Alloying

Mechanical alloying (MA) or high energy ball milling (BM) was first developed by
Benjamin and coworkers in the late 1960s for producing oxide dispersion strengthened
(ODS) superalloys [9-13]. These alloys combine the high temperature strength provided
by dispersion mechanisms with the intermediate temperature strength and ductility of a

selected alloy matrix. Some Fe, N1, and Al based ODS superalloys have been developed
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FIG. 1.5. MA ODS superalloy components [13]: (a) a swirler
assembly for a power station, INCOLQY alloy MA 956; (b) a heat treatment
furnace basket, INCOLOY alloy MA 956; (c) a nozzle guide vane assembly
for a gas turbine engine, INCONEL alloy MA 754.
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and used for gas turbine vanes, turbine blades, and sheets for use in oxidizing/corrosive
environments [13]. Fig. 1.5 shows just a few examples. MA can also be used to alloy
elements that are normally difficult or impossible to combine by conventional melting
techniques. Recently it has attracted much attention from the materials science community,
in large part because of the discovery that MA can cause solid-state amorphization [14-24]
and produce nanocrystalline materials [25-29]. Many types of phase transformations have
been observed during ball milling, such as polymorphous transformations of compounds
and disordering of ordered alloys [30-37]. It is also well-established that high energy ball
milling can be used to synthesize alloy phases with extended solid solubilities [25-27, 38-
54], for which the Hume-Rothery systematics for size and electronegativity may be relevant .

[49].

Many collisions between balls or ball and vial wall take place during mechanical
alloying. The sample particies trapped between the colliding parts are subject to severe
plastic deformation repeatedly. They are flattened, work hardened, and broken up. The
mechanical alloying process includes repeated welding and fracturing of powder particles.
If the starting material is a mixture of two or more kinds of powders, strong chemical
reactions such as alloying and amorphization take place. These phenomena are shown
schematically in Fig. 1.6.

There are three typical types of ball mills for mechanical alloying as shown in Fig.
1.7. The vibratory mill is the most common one used in research laboratories and has
become the de facto standard. A vial sealed with samples and balls is shaken violently,
thus causing collisions between balls or a ball and the vial wall. The sample powders are
alloyed and broken into nanometer structures by these collisions. Very high ball milling
intensities are obtained with this type of ball mill. The Spex 8000 mills and the Super-

Misuni NEV-MAR shaker mill (Fig. 6.1) used in this study are of this type. Typically four
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steel balls (two 10 mm and two 3 mm in diameter) and starting powders with a ball-to-
powder weight ratio of 5:1 are sealed in the vial in an Ar atmosphere. The starting
materials are either elemental powders (Fe, Ni, Si, etc.) with 99.9% purity mixed at
designated atomic ratios or powders filed from pre-alloyed ingots (NisFe, Fe75Ni»s, etc.).
During milling, the vial temperature is kept either below 60 °C by forced air cooling if the
Spex 8000 mill is used, or at constant elevated temperatures (300 °C, 200 °C, or 100 °C) by
heating with a feed-back controlled heater or at room temperature by cooling with flowing
cold water if the NEV-MAS mill is used. After the milling is stopped, the vial is cooled for
a few hours before opening. These are the typical experimental procedures of ball milling.
More specific information and details on control of temperature and intensity are provided
in Chapter 6 and 5, respectively. Although chemical contamination from the vial and balls

is unavoidable, the amount of Fe enrichment was not large and usually not a problem.

The attritor mill (also shown in Fig. 1.7) was invented by Szegavi and is often
called a Szegvari Attritor . The rotation of the rotary mixer bar and the arms on it agitate the
balls sealed in the container. The shear force between two rotating balls or a ball and the
wall of the container crushes and alloys the sample powders. The milling intensity is
relatively low and longer milling times are needed compared with the vibratory mills.
However, attritor mills are capable of large quantity production because they allow
continuous feeding of raw materials and extraction of products. Attritor mills with
capacities for 0.5 to 100 kg of powder have been used in industrial production.

A planetary ball mill shown in Fig. 1.7 has a revolving table with vials mounted in
several rotating stages. It is more similar to the conventional rotary ball mills than a
vibratory or attritor mill. Rotary mills can rotate on a central horizontal axis. High energy

can be achieved by using large mills and high rotation speed. Large batches of powders
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(up to about 2,000 kg) can be processed [13]. Mechanical driving forces for alloying and

nanocrystallization are provided by shear forces.

Mechanical alloying (high energy ball milling) has a bright promise as a method for
producing novel phases such as nanocrystalline and amorphous materials, alloying
difficult-to-alloy elements, and inducing chemical reactions at low temperatures. Unlike
many methods of far-from-equilibrium processing, mechanical allosring is scalable to
commercial production quantities [13,55]. However, scaling up and the relation of the
process parameters for different alloy systems are not direct or intuitive, and require further

research. This is part of the goal of this current study.

1.2.3 Other Techniques

Besides the two experimental methods described above, gas condensation and
mechanical alloying, there are quite a few other methods to prepare nanocrystalline

materials. A brief description of some of these methods is provided[2,5,56].

In the sol-gel technique, crystalline sols of the final equilibrium phase are
introduced in a matrix as seeds for nucleation to lower the nucleation energy. This method
does not need high temperature as the nucleation energy is relatively low. It is especially
suitable for preparing stoichiometric compounds containing one or more components with a

high vapor pressure, such as (BaPb)TiOj3 ferroelectrics.

The mixalloy processing method utilizes the turbulent mixing of impinging alloy
streams and in-situ chemical reactions. For example, mixing of turbulent streams of
molten Cu-B alloy and Cu-Ti alloy results in nanocrystalline TiB; in the zone of mixing,
which can become nanocrystalline dispersions in fine-grained material after subsequent

rapid solidification.
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Chemical vapor deposition (CVD) has been used to synthesize nanocrystalline
nitrides and carbides of titanium and silicon. RF-plasma CVD was used to grow
nanocrystalline carbon films and filaments. Crystal sizes as small as 2 to 3 nm could be
obtained. There are other deposition methods as well, such as electron beam vapor

deposition and electrochemical deposition processes [57,58].

Rapid quenching from the liquid state can also give fine equiaxed nanostructures,
with the finest microstructures obtained at the highest solidification rates [59]. Amorphous
phases obtained at extremely high solidification rates in this technique can be used as
precursors to produce nanocrystalline materials by annealing them at relatively low

temperatures for chemical unmixing and nucleation [60].

A new thermo-mechanical processing technique has been recently developed at
Caltech to produce ultrafine grained 304 stainless steel (= 200 nm grain size) [61]. This
technique has two key processing steps: formation of ultrafine dislocation cell structure by
deformation at room and liquid Ny temperatures and subsequent low temperature
annealing, and the conversion of dislocation cells into grains with medium to high
misorientation by deformation at low strain rates and high temperatures, which initiates

grain boundary sliding in the microstructure .

1.3 Characterization of Nanocrystalline Materials

To understand interrelationships among processing, structures, and properties, the
materials must be characterized both during the process and after the process, and on both
atomic and nanometer scales. Features of importance include: crystal structures, grain size
distribution and morphology, nature of grain boundaries and interfaces, defects, chemical

composition and chemical homogeneity.



16

1.3.1 X-ray Diffractometry and Data Analysis

All x-ray diffractoﬁletry work was performed on an INEL CPS-120 diffractometer
system (Debye-Scherrer optics) with a curved position sensitive detector (PSD) spanning
127° in 20 angle. The Co Ka incident radiation was monochromated with a flat graphite
monochromater. From x-ray diffraction, we can identify the various phases present in the
sample, such as bee or fcc phases. When there are multiple phases presént simultaneously,
the phase fraction of each phase can also be determined. For example, in the study of
mechanical alloying of Fe-Ni nanocrystalline alloys, the phase fractions of bcc and fcc
phases in the bee/fee two-phase alloys were calculated from the intensities of the bee (200)
and fcc (220) peaks, which were reasonably immune to problems of overlap with
broadened neighboring peaks. Detection limits for the bce and fcc phases in this study

were set primarily by the statistical quality of data, and are estimated to be about 0.5 %.

To calculate phase fractions of bce and fcc phases, however, the measured peak
intensities have to be corrected for Lorentz-polarization, multiplicity, and structure factors,
which was done in a standard way [62]. Sample absorption also needs to be corrected, and
it is different for our flat samples with Debye-Scherrer optics from that for a Bragg-
Brentano (0-20) diffractometer [63,64]. In comparison, an additional correction factor of

. -
s1n¢.+ Sin(26-¢) is needed, with ¢ the glancing incidence angle for the x-ray beam on the
sin(26—-9)

flat sample, which was 15°. The corrected peak intensity, leor, 1S:

sin@sin20 V2 pp sing +5in(26-9) |
1+cos20 mF'®FK)  sin(26-¢)

Leor(0) = (0) s (1.1)

where V. is the volume of the unit cell, p is the mass absorption coefficient, p is the

density of the material, m is the multiplicity of the diffracting planes, and F(k) is the

structure factor for the unit cell. As usual, k = 4nsin6/A. With little if any crystallographic

texture present in the ball milled samples, the fractions of constituent phases, fpcc and frec,
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were determined by taking ratios of the corrected intensities for the bee (200) and fec (220)

diffractions:
fhee Icor200
=bec _ Icor200 1.2
ffec Icor220 ( )

For nanocrystalline alloys, the absorption factors, Lp, are the same for both bcc
and fcc phases, and therefore cancel in Eq. 1.2. We also assume the same atomic form

factors for the atoms in the fcc and bee phases. Equation 1.2 becomes:

foec oo

xc - . = , 1.3

froo = ! 657 I>20 (1.3)
_ 1.657 Ingo

foce = 1.657I200 + 1270 ’ (1.4a)
_ oo

free = 1.6571200 + Ip30 ) (1.4b)

These are the equations used in calculating the bee and fec phase fractions of Fe-Ni alloys

in Chapter 5.

X-ray diffraction can also provide useful information on average grain size and
strain for nanocrystalline materials. Fig. 1.8 shows an x-ray diffraction pattern from a
nanocrystalline Fe3Si sample mechanically alloyed at 300 °C. Each diffraction peak is fitted
into a Lorentzian function, which is typical of an exponential distribution of the grain size
(the grain size distribution produced by gas condensation method are usually log-normal)
[65]. The insert of Fig. 1.8 shows a very reasonable Lorentzian fitting (solid curve) of the
Fe3Si (200) peak (dotted curve). The average grain size and root-mean-square strain were

estimated in two ways from the x-ray diffraction peak broadening.

In the method of Williamson and Hall [66], we measured the diffraction linewidth

in k-space, Ak, and the k-vector of all diffraction peaks:
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FIG. 1.8. X-ray diffraction pattern of a nanocrystalline Fe3Si sample
mechanically alloyed at 300 °C. The peaks are fitted to Lorentzian functions. The

insert shows the (200) peak (dotted) and its fitting (solid).
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Ak = cosO A29 ’ ‘ (1.5)
A
2 sinB
k = 1.6
3 (1.6)

Here A20 is the full-width-at-half-maximum (in radians) of a Lorentzian function fit to the
diffraction peak. Both small grain size and a strain distribution contribute to the peak
broadening, i.e., Ak. It was found [67]:

Ak = AkSize 4 Akstrain = é +2k . (1.7)

Therefore, a linear curve is expected if Ak is graphed versus k, as in Fig. 1.9 . The
curve was fitted to a straight line (thick solid line) and was extrapolated to zero k. The
average grain size, d, was obtained as the inverse of the extrapolated y-intercept, and the
root-mean-square (RMS) strain, e, as half the slope of the plot of Eq. 1.7. There are a
number of problems with this method of Williamson and Hall [67]. In the present study,
however, absolute accuracy of grain size or strain was not so important as the ability to
detect systematically differences between the specimens. Differential sensitivity was

facilitated by using the same procedures / programs for both data collection and analysis for

all samples.

In a second method, the average grain size was obtained from the width of Fe3Si

(110) peak with the Scherrer equation [68,69]:

0.9 A

- 1.8
A29 cos9 (-8

For comparison, this Scherrer method is included as a dash line in Fig. 1.9. Our previous
work showed reasonable agreement between the grain size obtained from Eq. 1.8 and the

grain size obtained from dark field imaging with a transmission electron microscope
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[70,71]. In this thesis, the average grain sizes were calculated from the bee (110) or fee
(111) peaks with this second method, while the root-mean-squared (RMS) strain was

obtained with the Williamson-Hall method.

Lattice parameters can be determined from the x-ray diffraction pattern by the
Nelson-Riley extrapolation method [64,72,73]. In this method, the lattice parameter, a,,

obtained from the Bragg angle, 6, for each (hkl) diffraction peak has an error Aa:

Aa, cos20 cos20
o< + s 1 9
o sin@ 0 (1:9)

where the error Aay comes from specimen shift, variation in x-ray penetration depth, and

vertical (out of the diffracting plane) divergence of the x-ray beam. Meanwhile a,, itself is

calculated from the Bragg’s Law:

2 2 2
20(8) = AVh Sl (1.10)
2 sin®

cos20 cos20

Extrapolating the curve of ay(0) vs. to 0 = 90° gives the lattice parameter

sin®

aO-

1.3.2 Transmission Electron Microscopy

A Philips EM310 TEM operated at 100 kV and a Philips EM430 operated at 300 kV
were used for the TEM studies. The primary use of TEM study was to provide a check on
grain size and its distribution through dark field imaging. By this technique, one colleague
in our group has confirmed that the grain size distribution after a few hours of ball milling
is approximately exponential [65, Fig. 3.7]. Systematical agreement on average grain size

between this technique and x-ray diffraction was also confirmed.
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FIG. 1.10. A TEM bright field image of a nanocrystalline Fe

prepared by gas condensation in Ny gas and in a magnetic field. The
hexagonal shape and the shell structure (Fe core plus Fe oxide outer shell)
of some nanocrystalline Fe particles as well as the interparticle chains are all

observed on this TEM picture.
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When the grain size becomes so small that the diffraction peaks become very broad,
x-ray diffraction alone can not provide definite information on grain size as the broad peaks
can also be interpreted as evidence of amorphization. High resolution TEM (HREM),
which can show the lattice fringes of crystalline materials, can play special role in such a
situation. HREM is the best experimental technique for distinguishing the very-small-

grained nanocrystalline materials from amorphous materials.

For studies of microstructural morphology, however, TEM can provide unique
information and is especially useful. Fig. 1.10 shows a TEM bright field image of
nanocrystalline Fe prepared by gas condensation in N7 gas and in a magnetic field. The
hexagonal shape and the shell structure (Fe core plus Fe oxide outer shell) of some
nanocrystalline Fe particles as well as the interparticle chains are all obvious from this TEM
picture while other techniques including x-ray diffraction may not be able to provide this

information.

1.3.3 Méossbauer Spectrometry

Mossbauer Spectrometry [74-76] is a technique to study the absorption of y-rays by
the nuclei of atoms. It uses the emission of y-rays (14.41 keV in the case of 57Fe) by
radioactive nuclei (an excited state of 57Fe), and the subsequent reabsorption of these
gamma-rays by other nuclei (57Fe) of the same kind, with negligible recoil energy
transferred to any internal excitation of the lattice. The nuclear emission and absorption
energies are changed slightly by the local atomic environment of the nuclei. Mdssbauer
spectrometry can measure these tiny changes of energy, caused primarily by the first few

nearest-neighbor shells of atoms, and provide useful information about the local chemical

environment of the 37Fe nuclei.
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Many important insights into nanocrystalline materials have been obtained by 57Fe
Mossbauer spectrometry. The Saarbriicken groups of Gleiter and Gonser have been
particularly active in this field [2-4,77-79], among many other investigators. Almost all of
nanocrystalline materials studied in this thesis are Fe-based so that 57Fe Mossbauer

spectrometry can be employed.

The basic setup of 57Fe Mossbauer spectrometry experiments is schematically
shown in Fig. 1.11. Everything is at room temperature for our room temperature spectra.
The source (°7Co, typically a few tens of mCi, in Rh matrix) is moved at constant
acceleration to vary the y-ray energy with a Doppler shift. A stronger absorption occurs
when the y-rays are absorbed resonantly by the 57Fe nuclei in the sample. This gives a

decreased counting rate in the Ar-CHy flow-gas detector.

As an example, a transmission Mgssbauer spectrum from a well-ordered Fe3Si
sample (mechanically alloyed at 300 °C for 48 hours, then DSC-scanned to 600 °C at a rate
of 20 °C / min) is shown in Fig. 1.12. The raw M0ssbauer spectrum (dotted) comprises of
a sum of overlapping ferromagnetic sextets, and the distribution of 37Fe hyperfine magnetic
field (HMF) can be obtained by processing the spectrum by the method of Le Caér and
Dubois [80]. In this method, a set of sextets with progressive HMF were used to fit the
experimental raw data. A linear dependence of isomer shift, IS, on the HMF is assumed:
IS = A * HMF + B. The constants A and B were determined by the quality of fit of a
simulated spectrum (solid curve in Fig. 1.12) to the experimental one. The hyperfine
magnetic field distribution obtained from the spectrum of Fig. 1.12 is presented in Fig.
1.13. The peaks at about 310 kG and 200 kG signify DOs3 ordering of the Fe3Si sample,
which was also confirmed by x-ray diffraction.

‘These two peaks at about 310 kG and 200 kG correspond to the two chemical sites

for Fe in the DO3-ordered Fe3Si sample. These two sites of Fe have 0 and 4 Si atoms in
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FIG. 1.12.  Transmission Mossbauer spectrum from a well-
ordered Fe3Si sample (mechanically alloyed at 300 °C for 48 hours, then
DSC-scanned to 600 °C at a rate of 20 °C / min). The dotted curve is the

experimental spectrum while the solid one is the fitted spectrum.
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their first-nearest neighbor (1nn) shells, respectively [81-83]. Similarly, the peak at about
250 KG corresponds to Fe sites with 3 1nn Si atoms. The intensities of these peaks are
termed Pp, P4, P3, respectively. While short range order parameters can be obtained from
these intensities, chemical composition of Si, ¢, can also estimated [63, Sec. 3.3]. In
short, the following equation is found for sub-stoichiometric Fe1.cX, alloys:

% = %;—?% . (1.11)

The chemical composition for the sample shown in Fig. 1.13 was estimated by this
method to be abéut Fe-23.86 at.% Si. It is not surprising to see a little more than 1 at.% Fe
contamination, since the sample was ball milled with steel vial and balls for 48 hours at 300
°C. Since Mdossbauer spectrometry is very sensitive to local chemical environment, it can
provide information about chemical heterogeneities in nanocrystalline materials. For

example, it can be used to detect chemical unmixing or the presence of multiple phases

(such as Fe oxides).

1.3.4 Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) is a technique to measure thermal
properties of materials, such as specific heat, Cp, and the stored enthalpy, AH. It can be
used to find phase transitions and chemical reactions. Unlike a differential thermal analyzer
(DTA), which uses a single furnace and measures the temperature difference developed
between the sample and a reference material during a thermal event, DSC uses two furnaces
and measures the differential heat flow required to keep the sample and a reference material
at the same temperature. Fig. 1.14 shows schematically various thermal analysis systems
(DTA and DSC) [84]. Besides the difference in method, a DSC system has a smaller

furnace and is more accurate that a DTA system.
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Both a Perkin-Elmer DSC-4 and a DSC-7 were used in this study. Typically
samples were scanned from 50 °C to 600 °C at a scan rate of 20 °C / minute, then were
rapidly cooled to 50 °C. A typical DSC scan trace, taken from nanocrystalline Fe3Si
mechanically alloyed at 300 °C for 48 hours, is shown is Fig. 1.15. To access the nature
of the broad peak around 465 °C, the same nanocrystalline Fe3Si samples were scanned to
various temperatures below and above the peak, and the microstructures of these samples
were then characterized. The peak in Fig. 1.15 was found to originate from simultaneous

grain growth, strain release, and DO3 ordering of the original disordered nanocrystalline

FesSi sample.

The stored enthalpy, AH, can be obtained by integrating the corresponding peak of
DSC scan after base-line correction. The later was typically achieved by measuring a

subsequent DSC scan trace and subtracting this second scan from the first.

1.3.5 Other Techniques for Microstructural Characterization

Other experimental techniques were also employed to characterize nanocrystalline
materials. A JEOL Superprobe 733 electron microprobe was used to measure chemical
compositions and micron-scale chemical homogeneities. The microprobe data
complemented energy-dispersive x-ray spectrometry (EDX) measurements of chemical
composition. Energy filtered imaging was used for structural characterization and chemical
analysis at spatial resolutions of less than 1 nm [85]. Small angle neutron scattering
(SANS) can provide direct information about the composition profile around a grain
boundary. Coupled with other experimental techniques, SANS provides information on
the width, composition profile, and diffusiveness of grain boundaries in nanocrystalline
materials. This information was used to access mechanisms of thermal instability against

grain growth and phase separation, for example [86].
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1.4 Properties and Applications of Nanocrystalline Materials

Unique properties of nanocrystalline materials are usually attributable to one or two
microstructural features. Their small crystallite size can cause confinement, effects either in
a quantum sense (as in exciton confinement in photonic semiconductors), or a classical
sense (as in dislocation interactions in small crystallites). The second important
microstructural feature of nanocrystalline materials is their large volume fraction of
interfaces (grain boundaries or surfaces). For an average grain size of d and grain

boundary width of A, the volume fraction of grain boundaries is approximately
. A
Interface Volume Fraction = 1 — (1 —5)3 ) (1.12)

For grain boundary width of A = 0.5 nm and 1 nm (grain boundaries of 2 to 4 atomic
planes wide), the volume fractions of grain boundaries as functions of d are shown in Fig.
1.16. The fraction of atoms associated with grain boundaries is substantial for
nanocrystalline materials but negligible for conventional materials (grain size ~ 1 wm). This

is expected to give large difference in physical and thermal properties of nanocrystalline

materials compared with conventional materials.

Diffusivity

Grain boundaries form a network and thus provide short circuit diffusion paths for
both self diffusion and solute diffusion. This effect is especially significant at high volume
fractions of grain boundaries. Enhanced diffusivities in nanocrystalline materials have been
reported [87,88]. For example, the diffusivity of Cu in nanocrystalline Au clusters was
estimated to be about 9 orders of magnitude higher than in bulk polycrystalline Au [87].
Technologically, nanocrystalline materials may be useful when solids with high

diffusivities are needed, as in sintering for example.
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Nanocrystalline Metal Particle Catalysts

The large surface volume fraction of nanocrystalline particles make them excellent
candidates for catalyzing chemical reactions. The activity of a solid catalyst is proportional
to the specific surface area of the active component. There are two types of nanocrystalline
metal particle catalyst: nanocrystalline metal particle homogenous catalysts comprising
nanocrystalline metal particles suspended as in a liquid phase médium, and carrier
nanocrystalline metal catalysts comprising nanocrystalline metal particles dispersed on the
surface of oxides [56]. In the first type, nanocrystalline Ni particles (20 nm) were shown
to be excellent liquid phase dehydration catalysts for 2-propanol [89]. As an example of
the second type, the catalysts obtained by fixing nanocrystalline metal particles (1-10 nm)
on a porous carrier such as alumina, silica, magnesia, titania or zeolite have a wide range of

industrial applications [56].

One issue of concern for nanocrystalline particles as catalyst materials is the
potential lack of durability because of their high surface activity and small particle sizes. In
particular, chemical reactions typically require heat or high temperature to increase their
rate. Nanocrystalline particle catalysts used in such conditions may be damaged by various
surface reactions with the carrier or between particles. This can be solved by selecting a
proper carrier, using mild reaction conditions, or by proper regulation of nanocrystalline
particles. Nanocrystalline metal particles regulated by a dry process such as in-gas vapor
deposition or gas phase chemical reaction have been involved in high temperature

processing and can exhibit necessary durability if used under the right conditions [56].

Thermal Properties

Thermal properties substantially different from those of bulk materials have been

reported for nanocrystalline materials. Nanocrystalline Fe and FeF; reportedly have lower
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Debye temperatures [77,79]. Enhanced heat capacity were also observed for
nanocrystalline materials [90,91] although it is believed that some of these early
investigations could have been impaired by the presence of interstitial atoms in the
nanocrystalline materials. Because atoms at interfaces (surfaces or grain boundaries) have
higher energy and weaker chemical bonds, so the large fraction of atoms associated with
interfaces in nanocrystalline materials does suggests a larger heat capacity for
nanocrystalline materials. Our previous x-ray diffraction study [92] on nanocrystalline -
Sn of 7 nm average grain size prepared by inert gas condensation gave a lower Debye
temperature of G)D = 133 K for nanocrystalline B—Sn compared with @p = 161 K for bulk
B—Sn. The large difference in Debye temperature between bulk and nanocrystalline B—Sn
gives a large increase in vibrational entropy, 0.6 kg / atom, for nanocrystalline B—Sn over
that for bulk B—Sn. This larger vibrational entropy of nanocrystalline B—Sn will partially
counteract the grain growth tendency provided by the enthalpy of the high density of
interfaces. It will also help to stabilize nanocrystalline B—Sn against the B —> o phase

transformation at 286 K.

Solid Solubility

In thermodynamic equilibrium, the solid solubility is controlled only by the
chemical potential np of solute A in solvent B. Nanocrystalline materials are far from
thermodynamic equilibrium. Their solid solubility is controlled by both thermodynamic
and kinetic factors. On the thermodynamic side, the chemical potential is expected to
change as the solvent structure changes from bulk to nanocrystalline. The solid solubility
is therefore expected to be different [2,93]. On the kinetic side, solute atoms are trapped
due to rapid solidification processing from liquid or vapor phases. In mechanical alloying,

the strong atomic mixing caused by the external driving forces overcomes the slow
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diffusion caused by the thermodynamic driving force. This results in strong mixing of the
various elements of the alloy. The extended solid solubility in nanocrystalline alloys
prepared by mechanical alloying is one of the topics studied in my thesis research. Details
are given in later chapters. In short, the extended solid solubility in nanocrystalline
materials modifies the thermodynamic equilibrium phase diagrams substantially and can

result in the appearance of new alloy phases.

Magnetic Properties

Finemet [63,94-97] is an excellent soft magnetic material that exhibits simultaneous
high saturation magnetic flux density B and high permeability \. It is a nanocrystalline Fe-
Si-B-Cu-Nb alloy prepared by rapid quenching to an amorphous state followed by partial
crystallization upon annealing. Its soft magnetic properties are attributed to the dependence
of the magneto-crystalline anisotropy on the grain size as described by the random
anisotropy model. In large grains, the magnetic microstructure consists of ferromagnetic
domains separated by domain walls. The magnetization in each domain follows the local
easy magnetic direction and the magnetic coercive field is determined by the magneto-
crystalline anisotropy of the crystal. For nanocrystalline materials, however, each grain
may be smaller than the width of a domain wall. The magnetic moments do not align along
the easy magnetic direction of each crystallite. The effective magneto-crystalline anisotropy
constant can be taken as average over the randomly distributed anisotropy of each grain
within the ferromagnetic exchange correlation length scale. The effective anisotropy
constant is drastically smaller for nanocrystalline materials, giving excellent soft magnetic
properties, i.e., low coercivity and high permeability. Uniform grain size, random texture,

and small strain all help to improve the soft magnetic properties. Finemet should be useful
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in services in many kinds of magnetic devices such as saturable reactors, choke coils, and

transformers.

Another magnetic property, giant magnetoresistance (GMR), has also been
observed in multilayered NigoFepp-Ag thin films with nanocrystalline grains (2 to 4 nm)
[98] and other similar layered thin films [99]. The small grain sizes in the films minimize
the effects of crystal and shape anisotropy, allowing local antiparallel alignment of the
magnetic moment between adjacent layers. With large changes in resistance at low fields,
these GMR materials can have important technical applications, for example, as

magnetoresistive heads for high density magnetic recording.

Nanocrystalline barium ferrite powder is an excellent candidate for a high density
magnetic recording medium [56]. Nanocrystalline barium ferrite particles produced by
glass crystallization are hexagonal plate crystals of 53 nm in diameter and 18 nm in height.
They are easily magnetized in the direction perpendicular to their wide surface. When they
align in such a way that their hexagonal plate surfaces are parallel to the plane of the base
film, they constitute a magnetic recording medium for the vertical magnetization recording
method, which allows much higher recording density than conventional methods of
recording parallel to the surface of the recording medium. It is expected that these media
can provide a recording capacity of 4 Mb on each side of a 3.5 inch floppy disk — 4 times

the current capacity of conventional recording media [100].

Mechanical Properties

Compared with conventional bulk materials, consolidated nanocrystalline materials

can retain both higher strength and better ductility. According to the Hall-Petch equation

Vd
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the yield strength of polycrystalline materials is larger for smaller grain size d due to grain-
boundary strengthening (grain boundaries serve as barriers to the glide of dislocations).
Experiments have confirmed the validity of the Hall-Petch relation for consolidated
nanocrystalline materials, and high strengths have been reported. As an example, the yield
strength in compression tests of an Fe-28A1-2Cr alloy is 0.27 GPa for bulk material, but
2.1 GPa for shock wave consolidated nanocrystalline material of 80 nm grain size, an
improvement by a factor of 8 [101]. While the bulk sample failed at a true strain of 0.3, the
consolidated nanocrystalline sample did not fail even at a true plastic strain of 1.4. The
ductility was improved by at least 5 times for the consolidated nanocrystalline sample. In
addition, Karch et al. [102] have reported increased formability in nanophase CaFs and
TiO7 foils at 80 and 180 °C respectively, while Hahn ez al. [103] have reported 60%
ductility in 99% dense TiO, at 600 °C under far-field compression loading. Coble and
other diffusive creep mechanisms have often been used to explain these trends in ductility
[104,105]. The increased diffusional creep rate originates from the small grain size and
increased grain boundary diffusivity. The higher strength and better ductility of

nanocrystalline materials make them good candidates for structural applications.

In summary, nanocrystalline materials have many novel or enhanced properties
when compared conventional large grained materials of the same chemical composition.

They look attractive for many technical applications.
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Chapter 2. Phase Transformations, Driven Alloys, and Monte
Carlo Simulations

2.1 Phase Transformations: Thermodynamics and Kinetics

A phase is a state of matter that is homogeneous and distinct from other states.
When a system changes its state from one phase to another, it is said to undergo a phase
transformation. Comparing the phases before and after a transformation, there are three
types of phase transformations [1]: (1) change in structure, (2) change in composition, and

(3) change in degree of order.

Examples of a change in structure alone include solid state amorphization and
devitrification, phase transformations between amorphous and crystalline solids. Other
examples are melting, martensitic and massive transformations, Spinodal decomposition or
phase separation from supersaturated solid solutions belong to the second category, change
in composition alone. A change in degree of order alone occurs in B-brass (CuZn), for
example. Below a critical temperature, T,, Cu atoms have a strong tendency to have Zn
atoms as their nearest neighbors on the bec lattice. This is the B2 phase. Above T, all
atoms are randomly arranged over large regions, forming the A2 phase. Upon slow
cooling from high temperature to room temperature, the alloy changes from the A2 phase to
the B2 phase, while keeping the lattice structure and composition unchanged. This type of

phase transformation is also called a disorder —> order transformation, or ordering.

Most transformations in alloys are combinations of two or more of the three basic
types. Supersaturated Fe3Zn solid solution prepared by ball milling undergoes phase
separation into bee Fe and hep Zn upon high temperature annealing. This is a combination

of (1) and (2). In our mechanical alloying experiments, the transformations are typically
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combinations of (1) and (2), sometimes combinations of all three (Fe + Sn — ordered
Fe3Sn). The transformations the as-milled alloys undergo upon annealing are also typically
combinations of the three types. The disorder —> order transformations or spinodal
decomposition studied in our Monte Carlo simulations are (3) or (2) alone, respectively. In

the following, we will focus on disorder —> order transformations of binary alloys.

At constant temperature and low pressure, the Helmholtz free energy, F, determines
the stabilities of various alloy phases. The global minimum of F gives the thermodynamic
equilibrium state of the system while a local minimum gives a metastable state. These
states can be a single phase or a mixture of several coexisting phases. The Helmholtz free
energy of a hypothetical system is given in Fig. 2.1. State f is the equilibrium state and i is
a metastable state. State s may be at the saddle point of a multi-dimensional free energy
curve, and is a unstable state. If the system is initially in a state other than f, statistical
mechanics says that the system will undergo a phase transformation and eventually reach its
thermodynamic equilibrium state f. Knowing the free energy, we can always employ

statistical mechanics to predict the final state of a phase transformation.

However, statistical mechanics does not provide kinetic paths of phase
transformations, or equivalently, what nonequilibrium states a nonequilibrium system must
pass through before reaching its final thermodynamic equilibrium state. There are cases,
such as driven alloys, where free energy is not easily obtainable or not clearly defined. We
need features of kinetics that are beyond statistical mechanics to find the steady states as

well as the kinetics of the phase transformations.

To study pseudostable states or transient states, we also need kinetics rather than
statistical mechanics. The pseudostable state [2] was proposed recently as a name for states

at a saddle point of a free energy function, where
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Free Energy, F

Order Parameter, L

FIG. 2.1. Free energy curve of a system with

equilibrium state f, metastable state i, and a saddle point s.
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At this state, there is no thermodynamic driving force for ordering, and ordering should be

slow when the state variables of the system are near those of the saddle point because

S e gz—) : (2.3)

J 3
Therefore the pseudostable state is relatively long-lived, but it should disappear before
equilibrium is eventually attained. In this sense, it is a transient state.

However, the concept of transient state is much more general than the concept of a
pseudostable state, that is, it need be at a saddle point. As its name suggests, a transient
state is a kinetic phenomenon and should disappear before the steady state or equilibrium
state is attained. To study the appearance of transient states, we use a model system whose
free energy is illustrated in Fig. 2.2. The free energy at stable state f, the initial unstable
state i, and transient state t are Fj, Fr, and Fy, respectively. Because state i has very high
free energy and is highly unstable, the system will undergo a phase transformation to
reduce its free energy, and will eventually reach state f according to thermodynamic
statistical mechanics. However, how will the system travel from i to f? Will it pass
through state t? If the free energy difference AFg ~ AFy >> AFg, then going fromitot
can also reduce the free energy, and the thermodynamic preference for state f over state t is
very weak. It is plausible that the system might pass through state t on its way to state f,
that is, state t can appear transiently. State t can appear alone (for example, the transient
DO3 ordering of Fe3Ge in Chapter 7), or appear together with the state f (see Chapter 4 for

examples). In either case, the transient state formation is due to kinetics instead of
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FIG. 2.2. Free energy of a system with equilibrium

state f, metastable state i, and a transient state t.
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thermodynamics. How strongly the transient state can form also depends on kinetic
factors. For example, if state t forms on a much smaller spatial or time scale than state f,
then the transient formation state t can be very strong (such as transient B2 ordering in
disorder —> phase separation in Section 4.2.3). Even in the opposite situation, however, a
transient state can still form (see also Section 4.2.3). Also we might expect that a transient
state can form more strongly for smaller AFg. There is experimental evidence of transient
ordering. Figure 2.3 shows transient B32 order in a piston-anvil quenched Fe3Al sample
upon annealing at 300 °C [3], while Fig. 7.5 shows transient DO3 order in a ball milled

Fe3Ge sample upon annealing at 350 °C.

If the energy difference AFy; is so small that some external driving force can alter its
sign (as in a “driven alloy”) , then the relative stability of states f and t can be switched.
Also if the external driving force can spread the free energy into a broad distribution, and
cause the energy bands associated with states f and t to overlap, then both state f and state t

can co-exist. These new concepts appear frequently in my thesis work.

To study the kinetics of ordering, there are three approaches: the theoretical
analytical approach, computer simulation, and experimental research. I used all three, but
only the first two are described in this chapter. My theoretical study used two different
approaches. Onsager kinetic rate equations are based on the control of kinetics by the
thermodynamic free energy. The rate of change of an order parameter, L, is given as [4]

dL 1 OF
dt T TkT oL ’ 24

where 1 is the mobility coefficient that depends on the kinetic mechanism. This approach is

employed in the treatment of ordering kinetics of driven alloys in section 3.3.

My second approach to theoretical studies of kinetics is based on activated state rate

theory, and includes the Master Equation Method (MEM) [5-9] and Path Probability
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Method (PPM) [10-13]. As in Fig. 2.1, the system must surmount a free energy barrier
between the initial state i and saddle point s in order to go from state i to final state f.
Subscripts i, f and superscript * are conventionally used to denote free energies at states i,

f, and s, respectively. The free energy barrier is
AF = F*-F; = (E"-E)-T(S*-S)) . (2.5)
Then, the probability of success for an attempt to transfer from i to f is
-AF E; - B” S* - §;
P = exp(ﬁ) = exp(‘T) exp( K ‘) : (2.6)

In a study of ordering kinetics, the transformation occurs step by step, which 1is

typically an atom jump. For an attempt frequency v, the atom jump frequency is

*

E )exp(g—k_—gi—) . 2.7

The entropy change during one atom movement could be small and virtually the same for

i

E: —
0= vexp( T

all possible atom jumps. The attempt frequency, v, and the saddle point energy, E*, are
both taken to be constant for all the jumps. These constant contributions to the jump

frequency are typically set to 1 without loss of generality, then

W o< exp(%) . (2.8)
This equation has been widely used in analytical kinetic theories such as PPM and MEM as
well as in computer simulations of kinetics.

While my computer simulations will be described in detail later in this chapter, the
Master Equation approach is reviewed briefly here. The Master Equation for alloy ordering

kinetics with only one order parameter can be written as

=i - z (i Py - 0b P) . (2.9)
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Here the state of order is represented by the vector P (or a matrix for alloys with multiple
order parameters), whose components represent the probabilities of the various possible
states of order. Using activated state rate theory, the transition probabilities between two
states of order (i‘ and 1’) are given by the matrix @}, each element of which takes the form
of Eq. 2.8. The Master Equation approach in the Bragg-William approximation was

employed in the Sec. 3.1 to study the ordering kinetics of driven alloys. -

2.2 Driven Alloys

As discussed in the previous section, thermodynamics and statistical mechanics are
the standard tools for understanding phase transformations in materials. States of
thermodynamic equilibrium are expected when atom movements are consistent with
activated state rate theory. There are, however, a number of examples where some atom
movements in alloys or semiconductors are not expected to be understood by activated state
rate theory alone: (1) alloys subjected to high energy ball milling [14], a widely used
technique to synthesize far-from-equilibrium alloys; (2) intermetallics in superalloys under
cyclic fatigue, which can cause y’ precipitates in slip bands to undergo sustained shearing
and redissolution [15]; (3) alloys under high energy ion bombardment (irradiation) [16],
such as FeZr in Zircalloy used as a cladding material in pressurized water nuclear reactors.
These alloys are sustained in nonequilibrium states by permanent (continuous) external
driving, such as nuclear collisions, shearing, fracturing, and welding. For simplicity, they

are called “driven alloys” or “driven systems”.

Due to external driving, some atom movements in driven alloys occur with a greater
element of randomness than expected from the Boltzmann factors of activated state rate
theory. These “forced” or “ballistic” atom movements tend to move atoms out of local

environments characteristic of their thermodynamic distribution. Acting in parallel are the
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usual thermal movements, which tend to restore these thermodynamic environments.
Because both kinetic processes are Markovian, a steady state, which is unique at given
conditions, will be achieved eventually [17]. This steady state is termed a “dynamical

steady state” to distinguish it from the steady state of thermodynamic equilibrium.

Nonequilibrium or dynamical (kinetic) phase transformations [18] between
dynamical steady states of driven systems have been of interest in a large variety of fields
[19] besides materials science [20], such as physical chemistry [18,21] and electrical
engineering [22]. Unlike thermodynamic phase transformations, the conventional
Helmholtz or Gibbs free energy is not as useful for understanding dynamical phase
transformations because it does not take into account the external driving. In particular, we

can not minimize a free energy to obtain the steady state of a driven alloy.

To model these dynamical phase transformations, G. Martin et al. proposed a
model of driven systems that is amenable to study by analytical methods and computer
simulations [23-36,37-39]. In this model, the ballistic atom movements are assumed to
occur at random (at an infinite temperature), and therefore are completely insensitive to the
local chemical preferences of an atom. Meanwhile, the thermal atom movements follow
conventional activated state rate theory. Kinetic events sample all outcomes with equal
probability. While this model is an oversimplification of the processes that occur in high-
energy ball milling and ion beam bombardment, it does include an essential difference
between driven systems and thermodynamic systems. In fact, Martin and Bellon’s early
work [23,31,32] on dynamic ordering with this model (ballistic diffusion / Lyapunov
functional) has found qualitative agreement with the observed irradiation-induced inversion
of the relative stability of two ordered phases (LRO and SRO) as well as the domain of

bistability in irradiated NigMo [40].
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Most of Martin and co-workers’ studies of steady states of ordering used the Master
Equation approach with the pair interchange mechanism (two neighboring A and B atoms
exchange their positions directly without the help of vacancy, with an exchange frequency
given by Eq. 2.8 in thermodynamic case). Their theories were developed along two lines.
Along the first line, they sought to balance the diffusional flux of either type of atoms
between the two sublattices so that the average concentration of atoms.on each sublattice
would remain constant and the steady states would be found [23,24,26,27,31,32,34-36].
This gave the relationships between order parameter, temperature, driving intensity, and
interatomic potentials at steady states. In particular, dynamic critical temperature was
obtained. The second line followed the thermodynamic treatment of a thermodynamic
system, i.e., minimizing the thermodynamic free energy in various approximations to
obtain the thermodynamic equilibrium states. Much work was devoted to constructing and
elucidating the properties of a “stochastic potential”, which is the analogy for a driven alloy
of the free energy for a thermodynamic alloy [23,24,32,35]. We review this stochastic

potential approach here.

In thermodynamic equilibrium, statistical mechanics gives the probability of a state i

with energy E;j as

S)_(B(_—Z_B_E_'i_)_ , (2.10)

i =

with B = 1 /KT and Z the partition function, which is the normalization constant.

Suppose E and the free energy F are functions of a single order parameter L. Then the

probability of observing a given value of L is:

P(L) = S)g(:PZ_F_(I_‘Q (2.11)

From Eq. 2.11, the respective stability of two states characterized by L1 and L2 is

estimated from their respective probabilities: g&'g i.e., from the difference of their free
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energies. In driven alloys, the conventional free energy becomes less meaningful and can
not be used in the same way. However, from the same principle, we can build an
alternative “free energy”, the stochastic potential, which can be readily used to compare

relative stability of various states of the driven alloy in the same manner.

To illustrate how to build the stochastic potential, we choose a simple case: B2 (or
checkerboard) ordering in an bee (or square) alloy with AB stoichiometry. The order
parameter L is given by N, the number of A atoms on one of the two sublattice. At steady

state, N is constant, that is:

P(N-DoN-1/N ~ PN)oON/N-1 = PN)ON/N+1 — PN+Dong 1/ (2.12)

according to the Master Equation (Eq. 2.9). n.1/N is the transition rate from state N-1 to

state N.

In the absence of forcing, i.e., in the thermodynamic case, there exists “detailed

balance” of kinetics between states N-1 and N:

P(N-1) _ ONIN

PIN-Don-i/Nn-PN)onnN-1 = 0 or PN) T o . (2.13)
N/N-1
By iteration, this gives
PN) _ . N ONYN
P(Ng) ~ HNO+1 (2.14)

ON/N-1

Calculating ®‘s with the activated state rate theory in the Bragg-Williams approximation
and minimizing P(N) with respect to N gives the same steady state order parameter, that 18
obtained when the thermodynamic free energy in the Bragg-Williams approximation itself

is minimized.
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In the presence of driving, the ®‘s have an additional contribution from the driving,
o, as in Eqs. 3.6 and 3.18. Equation 2.13 still holds at steady state, as does Eq. 2.14, but

now we need to use new ®‘s. Equation 2.14 becomes

P(N) HNN ON-1/N + ON-1/N_f

= 2.15

P(No) o ON/N-1+ ON/N-1_f 1)

= exp (QON) - D(Ny))) (2.16)

with  Q[B(N) - ®(Np)] = in [ON-UNTON-UN £} 2.17)
1’1=N()+1 ON/N-1 + ON/N-1_f

By comparison with Eqs. 2.10 and 2.11, € is the stochastic potential, the
counterpart in the driven alloy to the free energy in the thermodynamic alloy. However, {2

is not so easily obtainable as the right-hand side of Eq. 2.15, and often requires numerical

calculation.

Theoretically, the minimum of the stochastic potential gives the dynamical steady
state of a driven system. Relationships between various parameters and external driving
intensity, as well as the dynamical critical temperature, can be obtained. As in the first
(kinetic) approach, this stochastic potential is also sensitive to features of the kinetic
mechanism. For example, a dependence of the dynamical critical temperature on the details
of replacement collision sequences was found previously {23,24,27]. As always for
approximate kinetic theories, however, the stochastic potential is also sensitive to the nature

of the approximation (point or pair, for example).

It is widely known that driven alloys have very different properties from
thermodynamic alloys without driving; dynamical phase transformations are substantially
different from thermodynamic ones. As early as in 1943, Evgene Wigner predicted a

decreased lifetime for structural materials experiencing fast neutron bombardment in the
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just-invented nuclear reactor [41]. The irradiation damage phenomena of driven alloys
became known as “Wigner’s disease” when observed later on. More recently, Martin and
Hong et al. showed that in comparison to alloy kinetics based on activated state rate theory,

with ballistic jumps the kinetics and the final steady states of driven systems can be altered

substantially [23-39].

2.3 Monte Carlo Simulations

Experiment and theory had been the only two approaches to doing science until
only a few decades ago. Now with the surge of computing power and the rapid
development of computer algorithms, computer simulation has quickly become a third

approach complementary to the first two traditional approaches.

The reasons are twofold. First of all, computer simulation yields exact information,
apart from statistical fluctuations, on model systems which are characterized precisely.
Meanwhile, analytical kinetic theories are rarely solvable exactly. Even the thermodynamic
Ising model [42,43], the simplest model for ordering of binary alloys, can be solved
exactly only in one [43] and two dimensions [44,45], not in three dimensions [46].
Analyses in two and three dimensions typically require various approximations [47-50]. It
is often necessary to employ computer simulations to check the validity of the
approximations made in the analytical treatment of a model. Similarly, experiments are
rarely precisely characterized, leading to controversies on the intrinsic nature of the
observed phenomena. This can pose problems for comparisons between experiment and
theory. Being exact and precisely characterized, computer simulations can serve to bridge

the gap between experiment and theory.

Secondly, model systems studied by computer simulations can be designed

arbitrarily so much richer phenomena can be observed. In contrast, the choice of systems
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studied by experiment are typically very limited. For example, alloy ordering studies can
take arbitrary atom interaction potentials in simulations, but experiments have to take
" whatever the real alloys possess. Searches for particular phenomenon, such as transient
B32 order in binary alloys, consequently proves much easier in simulations than in
experiments. Computer simulation has its own merits as a third approach to scientific

study.

There are many computer simulation methods and applications in statistical physics
and condensed matter physics [51-53]. Monte Carlo simulation refers to a class of
computer simulation methods based on “random sampling™. It has been applied to a large
variety of fields, including ordering transitions. In this thesis, Monte Carlo simulations
have been used to study ordering transitions and spinodal decomposition of binary alloys.
While results and discussion will be presented in the following two chapters, details of the

simulation method itself are given in the following.

Monte Carlo simulations were performed for equiatomic binary bcc and square
alloys with periodic boundary conditions. The typical lattice had N =32 x32x32x2 =
65 536 sites for bce alloys or N = 256 x 256 = 65 536 sites for square alloys, but larger
lattices of 262 144 or 524 288 sites were also used. All sites of the lattice were occupied
by either A or B atoms, except for one site left unoccupied as a vacancy for use in the

vacancy mechanism.

For bec alloys, we considered only the first and second nearest neighbor (1nn and
2nn) pairwise interactions between the two species of atoms, A and B. The ith (i=1lor2)

nearest neighbor pairwise exchange potential V; is defined as:

Vi = Vaai+ VaBi—2 Vasi > (2.18)

where Vynp; (M, N= A or B) is the ith pearest neighbor M-N pair potential in units of kgT.

For convenience, the ratio of 2nn and 1nn pair potentials, v, is also defined:
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V= v, . (2.19)

For square alloys, we considered only the 1nn pairwise interactions, and define the

interchange potential V similarly:

_ Vaa*Vep—2Vap

\Y% 7 . (2.20)

Please note that the factor of 2 difference between Eqgs. 2.18 and 2.20 to follow different

conventions.

The intensity parameter of external driving, f, is defined as:

number of ballistic jumps
total number of jumps

f = fraction of ballistic jumps = (2.21)

f was the intensity parameter fixed during the simulation.

Each kinetic step occurred with a vacancy mechanism [54,55], modified to include
ballistic atom movements. The vacancy mechanism provides a richness of kinetic features
that are not available with the pair interchange mechanism, which was also explored but not
covered in this thesis. The vacancy mechanism can offer new ways by which the
mechanism of atom movements can affect the dynamical steady state of the alloy [24, 37-
39]. Especially at low temperatures, the vacancy mechanism exhibits subtleties of behavior
that cannot be included in analytical theories based on approximations with small cluster
variables. The present Monte Carlo simulation work examined how the strong diffusional
correlation factors unique to the vacancy mechanism [37-39,54-59] affect the phase
boundaries between disordered and various ordered phases at different temperatures, T,

fractions of ballistic atom movements, f, and atom pair interaction potentials, V’s.

In the vacancy mechanism, an atom moves only by exchanging its position with a
neighboring vacancy. All z (z is the 1nn lattice coordination number, and z = 8 for bce

lattice and z = 4 for square lattice) nearest neighboring atoms of the vacancy compete to
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exchange position with the vacancy. One Monte Carlo step is defined as the number of
atom movements equal to the number of sites in the lattice. The number of Monte Carlo

steps was found to be nearly proportional to the time elapsed [S5], so we used Monte Carlo

steps as a convenient time scale.

The vacancy algorithm was modified in the following way to include ballistic
jumps. Before each movement, a random number, R, is chosen, where 0< R < 1. IfR <
f, the movement is determined to be ballistic. If so, all z neighboring atoms have an equal
probability of exchanging positions with the vacancy, and one of them is chosen at
random. Otherwise the movement is a thermal jump, and every neighboring atom has its
own thermal jump frequency, ®;. The thermal jump probabilities, {pj}, are set by the

competition among all z neighboring atoms:

O)-
pj=—i— . (2.22)

z
2, o
1'=1

Using these thermal jump probabilities, {p;}, as weights, the Monte Carlo algorithm then

selects randomly one of the neighboring atoms to exchange positions with the vacancy.
The thermal jump frequencies, {®;}, are calculated according to activated state rate
theory as described above. We rewrite Eq. 2.8 as:

E.
W = exp(E;T) . (2.23)

Remember that E; is the initial state energy for the jumping atom (the jth neighbor of the
vacancy). It is determined only by the configurational environment of the jth atom alone

and is calculated by summing the energy needed to break all its chemical bonds with other

atoms:

Ej = 2 (Naai VAAi + Npp; VBBi + Nag; Vapi) (2.24)
1
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where NMNi are the number of ith nearest neighbor M-N bonds (i=10or2; M,N =
A or B) to our jth atom. Note that E; (Eq. 2.24) differs from V;j (Eq. 2.18) or V (Eq. 2.20)
in significant ways. In particular, Vi (V) depends only on the sum of V, »; and Vgp;
when V g = 0, whereas E; depends on their individual values. When { = 0, the driven
alloys revert to thermodynamic alloys (without driving), and the above vacancy mechanism

is that of a thermodynamic transformation.

Finally, we note that our approach of fixing the fraction of ballistic jumps, f, may
seem different from previous work that used a constant jump frequency for ballistic jumps
[23-34]. For example, the thermal jump rate depends on the state of order in the alloy, so a
constant ballistic jump rate may be more appropriate for determining the kinetics of the
alloy. For determining the steady states of a given alloy, however, both methods must
provide the same result, since both L and f are constant in steady state, and are set by
temperature and the ballistic jump rate. In particular, we expect the steady-state critical

temperature and the dynamical phase diagram to be the same with either approach.

2.4 Characterization of Simulated Alloys

All simulations started from an initially random arrangement of atoms (characteristic
of a quench from T = o) unless otherwise specified. The simulated lattice was examined
periodically to obtain the internal energy density e, average domain length scale <r>,
Warren-Cowley SRO parameters {o(r)} [60], and the LRO parameters, L. for square
lattices and Lyo, Lp3o for bee lattices. The simulated lattice was also saved periodically for

direct observation and further characterization.
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Internal Energy Density e

The pair interaction potentials for all atom pairs in the alloy were summed. A
subsequent normalization by the number of atoms gave the internal energy density e of the
alloy. The entropy can be estimated by an approach based on the cluster variation method
(CVM) [61-63], but entropy measurements were performed routinely in the present work.
Although the internal energy is just part of the free energy, it still plays a significant role,
especially at the low temperatures used in the present work and when there is a high degree

of order in the alloy as in many steady state microstructures.

Average Domain Length Scale <r>

To determine a characteristic length of the ordered domains on square lattices, <r>,
we calculated a real space autocorrelation function after the alloy was transformed as
follows. First, an overlay mask for the perfect ordered structure was generated for all x-
and y-coordinates (i and j, respectively) of the lattice. For i+ even, each site in the mask
was +1; for i+j odd, the site was ~1. The alloy itself was then transformed by first
assigning a value of +1 to each alloy site occupied by an A-atom, and —1 to each site
occupied by a B-atom. These numbers of *1 for all sites in the alloy were then multiplied
by the numbers for their corresponding sites (same (i, j)) of the mask. This generated the
transformed alloy. (For alloys having a strong domain structure, the different domains
were seen in the transformed alloy as regions of sites with a preponderance of either +1 or
—1.) The autocorrelation function of the transformed alloy, A®A, was then calculated by

the usual procedure:

256 256

AGAR) = Y, X AG,j)x AG+R;, j+R) . (2.25)
=l =1
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The autocorrelation function, AQA(R), was calculated for various magnitudes IRI
(where IRl = m), and then averaged over the x- and y-directions. We determined
the first zero crossing on graphs of the averaged A®A versus IRl This value of IR at the
first zero crossing was defined as the characteristic length of ordered domains for the

ordered alloy, <r>.

In the case of spinodal decomposition on square lattices, phase .separated domains
were formed instead of ordered domains. The characteristic length of phase separated
domains on square lattices was calculated similarly as for ordered domains, except that the
alloy itself, with +1 for A atoms and -1 for B atoms, was used in autocorrelation function

calculation (the mask was unnecessary).

SRO Parameters {o(r)}

Information on local atom arrangement is provided by the Warren-Cowley short

range order (SRO) parameters, {c(r)}, which are defined [60]:

or) = 1-% = 1—2—3— , (2.26)

with pa (pB) the probabilities of finding an A (B) atom as a r-th neighbor of a B (A) atom
and xa (xp) the concentration of A (B) atoms. During simulations, {0(r)} were computed

by counting the numbers of all rnn A-B pairs Napr (r = 1,2):

_ 4ANAB1
a@) = 1-=42H (2.27)

where z; is the lattice coordination number for the r-th shell. Specifically,

o) = 1-4BL o = 1-NAR2 (2.28a,b)

for square lattices. o(1) = at(2) = O for the disordered state, and ot(1) = —(2) = -1 for

perfect order.
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LRO Parameters

To characterize the structural evolution during phase transformations, long range
order (LRO) parameters (Lp32, Lp2, and Lymx for B32 order, B2 order, and the unmixed
state of bee alloys, or L for checkerboard ordering of square alloys) were calculated with a
simulated x-ray diffraction procedure [9,37-39], which provided kinefnatical diffraction
intensities, I(k), through three-dimensional (or two-dimensional for square alloys) Fourier
transformation:

k) = | Y fa(r) exp(—ik-r)|2 , (2.29)

all sites
where fa(r) is the atomic form factor for the atom at site r, and fy; = 1 for A-atoms and fy

= ( for B-atoms.

For bce alloys, non—zero intensities of the superlattice peaks (% 15 15) and (100)

measured the extent of B32 and B2 order, respectively, while the excess intensity of the
transmitted beam (000) (minus the (000) intensity of the random alloy) measured the degree

of unmixing. We defined LRO parameters, L3, L2, and Lymx, as the square root of the
111

intensities of the (5 3 5), (100), and (000) peaks, respectively, after normalizing by the

intensity of the fundamental (110) peak of the random alloy:

2 Lijpipip\2
L = (——————ﬁwz 2) , (2.30)
_ /oo 12
Lp2 = (——1“0) , (2.31)

Lumx =

Tonon1/2
. (T%%) , (2.32)
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where all the peak intensities were obtained by summing the corresponding I(k) over a
cubical volume of edge length 1t/(4a) (a is the lattice constant of the bcc lattice) around their

centers in k-space.

For square alloys, the lowest order superlattice diffraction peak corresponding to

the checkerboard ordered structure is (% 15), while the lowest order fundamental peak is

(10). The intensities of these peaks, 111, and 1o, were obtained by integrating I(k) over

2
a square around their centers in k-space of edge length T6£a . The LRO parameter, L, was

then obtained from the intensities in a way similar to that for bcc alloys:

= |Lere . 2.33
L ( & ) 2.33)

For our choices of scattering factor and normalization, all the order parameters,
Lg32, L2, Lumx, and L, ranged from 0 and 1, with 1 corresponding to perfect B32 or B2
order, or complete unmixing of bee alloys, or perfect checkerboard order of square alloys,

respectively.

Our interest was in determining the steady states of the alloys, but the identification
of steady states required monitoring their kinetic behavior. Steady states were identified
when the LRO and SRO parameters did not change if the simulation proceeded further,
except for expected fluctuations. To ensure that the steady state was attained, we typically
waited for times that were a factor of ten longer than the time for which the steady state
values of these order parameters were first detected. In several cases we confirmed that the
steady states were indeed correct by starting the simulations with the alloys having perfect
ordered structures of various types, and verifying that the same values of order parameters

were eventually attained as for the cases of starting from disordered alloys.
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Chapter 3. Ordering Transformations of Driven Alloys on a
Square Lattice

In this chapter, we studied effects of ballistic atom movements on ordering
transformations of equiatomic binary alloys with 1nn effective pair interactions. First, we
took the analytical Master Equation method in the Bragg-Williams (mean-field)
approximation to study ordering transitions via both vacancy and pair interchange
mechanisms, and we compared the results. Second, we performed Monte Carlo
simulations of checkerboard ordering on square lattices [1]. In the third part, we used
results from Monte Carlo simulations to inspire a simple but general analytical theory based
on modified Onsager kinetic rate equations. While the Monte Carlo simulations were
performed for the specific case of checkerboard ordering on square lattices, the theoretical
analyses based on the Master Equation method and the modified Onsager kinetic rate
equation are applicable to both checkerboard ordering on a square lattice and B2 ordering

on a bec lattice.

3.1 Master Equation Method in the Bragg-Williams
Approximation
The lattice (either square or bee) was divided into two sublattices, termed o and
sublattices, each with 1—;— sites. Every atom on one sublattice has all its z first nearest

neighbors (1nn) on the other sublattice. Suppose the concentration of atom species M (M =

A, B, or V in the vacancy mechanism — not to be confused it with a potential) on sublattice

d(®=oorf)is CI?/I- For AB stoichiometry, we have:
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ct+cl =1, cg+cf =1, 3.1)

CS+Cg

1, checf=1. (3.2)

Equations 3.1 and 3.2 are valid also for the vacancy mechanism if we consider only a
limited number of vacancies. With the constraints listed of Eqs. 3.1 and 3.2, there is only

one free independent variable. We define the long range order parameter L.:
L=c%-cl=cf-cg . 3.3)

Note that -1 <L < 1, with L = +1 for perfect order, and L. = O for disorder. We have:

c%=cf = 1;L ’ (3.42)
ch =c§ = i—z‘—L— . (3.4b)
3.1.1 Vacancy Mechanism

In vacancy mechanism, an atom can jump to a neighboring site on the other
sublattice only if that site contains a vacancy. We assume that atom A and atom B are
chemically equivalent (VoA = VBB and VaB = VBA ), so there is no preference of vacancies

on either sublattice, i.e.,
c¢=cf . (3.5)

With Eq. 3.5, we will see that many of the results for the vacancy mechanism become
similar to those of the pair interchange mechanism. We also assume that the saddle point

energies for all jumps are the same, and are denoted by E*.

The jump rates of A atoms from sublattice o. to § and f to o in the point (Bragg-

Williams) approximation are:
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Taag = 5 € @ CP) (Goap + 09 (3.64)

and
Tpan = G C) (2 C) (0pac+ o) (3.6b)

respectively. The first terms in Eqs. 3.6 are the familiar thermal rates. The ®’s are

Boltzmann factors for the thermal jumping frequencies, which we write without the factor
EIT to show their form:

Il

woap = exp(-E* + (Vaa z-DCPH +(Vapz-DCP)) , (7

opac = exp(-E* + (Vaa z- 1D CP + (Vap (z-1 CF)) . (3.7b)

In writing Eqgs. 3.7 we have used the facts that the A atom on o sublattice has all its
first nearest neighbors on the B sublattice, and one neighbor is a vacancy. We define the

average thermal jump rate for A atoms:

<WA> = \/ QAR * OBAQ = exp(-E* + Z; 1 (VAA+VAB)) ) (3.3)
The definition of { gives
f f
Of = 1-¢ <WA> = 1-¢ <®B> . (3.9)

The steady state of the alloy is found by seeking the condition when the total jump
rates of A atoms from one sublattice to the other is balanced by jumps in the reverse
direction, with this condition the atom concentrations on both sublattice will be constant.

This requires:

Taap = TpAa (3.10)
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Combining Egs. 3.1-3.9 into Eq. 3.10, we have:

-1 f
(1 + L) (exp(-"7—L (Vaa-Vap) +T—¢)
-1 f
= (1-D) (exp—L(Vaa-Vap) +T—5) > (3.11)
and
. -1
sinh(® 5— L (Vaa- VAB))
L= P T . (3.12)
cosh( 5 L (VaA - VAB)) + 1%
When f = 0, we recover the familiar thermodynamic results for Eq. 3.12:
LT
L = tanh(=5°) , (3.13)
and
-1)(Vaa -V ~1) (Vaa + VB - 2V
10 - (z-1)( Zflx(A AB) _ (z-1)( AA4k BB AB) (314
When f # 0, we recover the new results for Eq. 3.12. for driven alloys:
0
sinh(52)
= 10 : , (3.15)
C
cosh( T ) 17
and
T = O (1-1) . (3.16)

Equation 3.15 is the general relationship among L, T, T(c) (i.e., the interatomic
potential), and f at steady states for driven alloys. Equation 3.15 reduces to Eq. 3.13
without ballistic jumps (f = 0). Qualitatively, at constant {, larger values of order parameter
L require lower temperatures T with a correspondingly larger thermodynamic driving force

towards ordering. Some steady state L - T curves for constant f are calculated from Eq.
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FIG. 3.1. The steady state LRO parameter, L, obtained with the
vacancy mechanism in the Master Equation method in the point
approximation (Section 3.1.1). Curves were obtained as functions of
temperature T (in units of Tg) at constant f. Each curve is labeled with its

value of f. Curves with f < f* = 0.68 are second order phase

transformations.
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FIG. 3.2. The steady state LRO parameter, L, obtained with the
vacancy mechanism in the Master Equation method in the point
approximation (Section 3.1.1). Curves were obtained as functions of f at
constant temperature T (in units of Tg). Each curve is labeled with its value
of T. The curve with T = 0.25 T < T* = 0.32 TY is a first order phase

transformation.
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3.15 and are presented in Fig. 3.1. For { constant, but less than 0.68 (such as 0.2 and
0.4), the L - T curves all have the same shape as the thermodynamic curve. The ordering
transformations are second order, but with critical temperatures that depend on f as by Eq.
3.16. When f is larger than 0.68 (such as 0.8), however, Eq. 3.15 has three solutions
(one of them is unstable) at certain temperatures near the critical temperature, and the shape
of the L - T curve is different. The ordering transformation becomes first order. The point
where the transformation changes from second order to first order is called a tricritical

point:, and occurs at the values of T and f denoted with an asterisk:
T* = 0.327T) and ' = 068 . (3.17)

Similarly, at constant T (and therefore constant thermodynamic driving force
toward ordering), smaller values of L require larger f with a correspondingly larger external
driving force for disordering. The steady state L - f curves for constant T are calculated
from Eq. 3.15 and are presented in Fig. 3.2. For T constant and higher than 0.32 Tg (such
as 0.67 T(C)), the L - f curves resemble those L - T curves with small f in Fig. 3.1 and the

transformation is second order. On the other hand, the ordering transformation 1s first

order for T lower than 0.32 TO. Recall that T* = 0.32 T is the tricritical temperature.

3.1.2 Pair Interchange Mechanism

In the pair interchange mechanism, two neighboring A and B atoms exchange their
positions directly without the help of vacancy, with a frequency given by Eq. 2.8 in
thermodynamic case. The exchange rate for all AB pairs of the o-p sublattice orientations

to interchange to the 3-o. sublattice orientations is:

% = (—1} CH (zCh) (03 +wp) . (3.182)
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For the reverse interchange, it is:
N
% = G CB) 2 CP) By +wr) (3.18b)

Following the same line from Eq. 3.7 to Eq. 3.9 as in the previous section, we

have:

=
]

exp(-E* + (z—1) (Vaa CR + VA CB) + (z— 1) (VBB C¥+ VBA C) + Vap) ,

(3.19a)

exp(-E* +(z-1)(Vaa CK+ VaB Cg) +(z-1)(Vep CB + VA CR) + VAB) ,

5
i

(3.19b)
o o x« Z2—1
<WAB> = \/ 0B+ of% = exp(-E +755—= (Vaa + VBB +2VAB) + Va) , (3.20)
f
Wf = 7§ <WAB> - (3.2D

Balancing Eq. 3.18a and 3.18b gives:

Z

(1 +L)2 (exp( Iy (VAA+ VBB -2VaR)) + 1—{—?)

2

= (1 -L)2 (exp{z—z_—lL (VAA + VBB —2VaB)) + l—f——f-) , (3.22)
and
sinh(Z —1y (Vaa + VBB - 2VAB))

2L 2
1 +L2 = z-1 f (3.23)

+ cosh( ) L(VAA+VBB-2VAB)) +“1'—__—f
For the thermodynamic case (f = 0), the final results are:

0

2L 2LT,

[+12 - tanh( T ) , or (3.24a)
L1?

L = tanh(~5° . (3.24b)
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Equation 3.24 is the same as Eq. 3.13 for the vacancy mechanism, with the altered critical

temperature:

0 = (z-1) (Vaa ZkVBB —2VAB) - (3.25)

With z — 1 instead of z, the critical temperature obtained here in Eq. 3.25 is slightly
different from the critical temperature obtained by minimizing the thermodynamic free
energy in the point approximation. We worked on AB 1nn pairs in our work, and this
means we know some information on pairs. Therefore our approach differs from the spirit

of the standard point approximation.

In general, with ballistic jumps (f > 0):

2L.TO
oL sinh( TC)
= , (3.26)
1+12 LT £
cosh( ) YT
and
T =19(1-1) . (3.27)

The general relationship among L, T, V’s and f (Egs. 3. 15 and 3.26) differs somewhat
from one kinetic mechanism to the other, and this difference would be even greater were
we to relax the condition of Eq. 3.5. This is typical for theoretical analyses of ordering

kinetics; different details of the kinetic mechanism lead to different details in the results.

The tricritical point is also different. For the pair interchange mechanism it is:
™ = 042710 and f* =058 . (3.28)

The tricritical point of Eq. 3.28 is to be compared with Eq. 3.17 for the vacancy
mechanism. The steady state L - T curves at constant f and L - f curves at constant T are

shown in Fig. 3.3 and Fig. 3.4, respectively.
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FIG. 3.3. The steady state LRO parameter, L., obtained with the
pair interchange mechanism (Section 3.1.2), as functions of temperature T
(in units of Tg) at constant f. Each curve is labeled with its value of f at its

left side. Curves with f < f* = 0.58 are second order phase

transformations.
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Although the steady states of the alloy, L versus T and f (and the values of T* and
f*), are different for the vacancy and pair interchange mechanisms, the general physical
phenomena are consistent. More significantly, both theories predict that ballistic jumps will
cause a simple linear dilution of the critical temperature, and that the ordering
transformation will become first order beyond a tricritical point. As a closing comment on
the analytical treatments of ordering in the point approximation, we note that in the above
treatment, each kinetic step (atom jump or atom pair interchange) has been taken
independently. Any possible correlations among consecutive steps, which might be
different for thermal jumps and ballistic jumps, are therefore ignored. We will see in later

sections that this is a problem that leads to distorted results.

3.2 Monte Carlo Simulations

In this section, we present results from Monte Carlo simulations with a vacancy
mechanism, with emphasis on how the strong diffusional correlation factors unique to the
vacancy mechanism [1-8] affect the phase boundary between ordered and disordered
phases at various temperatures, T, and fraction of ballistic atom movements, f. Our results
suggest a simple but general picture of how the shape of a dynamical phase boundary can

be affected by a combination of thermodynamic and kinetic effects.

The alloys studied are binary alloys of AB stoichiometry on square lattices. Only
Inn interactions were considered. We fixed V5 =0, and used VAo =Vpg >0 (so V=
VaA = VBB), unless otherwise specified. The pairwise exchange potential, V, was defined
in Section 2.3, Eq. 2.20. For thermodynamic alloys without ballistic atom movements (f =
0), it is known that the exact critical temperature for ordering is [9]:

0= 51;5 . (3.29)
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FIG. 3.5. Monte Carlo results with the vacancy mechanism for
the time evolution of LRO parameter L (left axis) and SRO parameter o(1)
(right axis) for an alloy with V =2. Both f = 0 (solid curves) and f = 0.2
(dashed curves) were shown. The driven alloy (f = 0.2) had faster kinetics
of ordering, but smaller steady state values of order parameters than did the

thermodynamic alloy (f = 0).
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(c) MCS = 1000

(d) MCS = 50000

FIG. 3.6. Monte Carlo microstructures of the thermodynamic alloy
shown in Fig. 3.5 (V =2 and f = 0): (a) MCS =0, (b) MCS = 100, (c) MCS =

1000, (d) MCS = 50000. A atoms are shown as black and B atoms as white.
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(2) MCS =20

(b) MCS = 100
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(c) MCS = 1000

(d) MCS = 50000

FIG. 3.7. Monte Carlo microstructures of the driven alloy shown in
Fig. 3.5(V=2and { = 0.2): (a) MCS =20, (b) MCS = 100, (c) MCS = 1000, (d)
MCS = 50000.
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In this section we shall see how the critical temperature is altered by ballistic atom

movements when f # 0.

Started from the disordered state (Fig. 3.6a), which can be obtained by rapid
quenching from high temperature (T = ), the alloy developed short- and long- range order
(SRO and LRO). Fig. 3.5 shows the time evolution (in Monte Carlo steps or MCS) of the
LRO parameter L, and the SRO parameter o(1) for an alloy with V = 2 ét f=0and f=0.2.
The actual states of the alloys during kinetic evolution are shown in Fig. 3.6 and Fig. 3.7,
respectively. Checkerboard-ordered domains, antisite defects, antiphase domain
boundaries, and other types of defects are clearly seen. In Fig. 3.5, the sharp increase of L
and o(1) for f = 0 at about 6000 Monte Carlo steps is due to the annihilation of antiphase
domain boundaries just before the final steady state (thermodynamic equilibrium state) was
reached. While the general shapes of these two sets of curves are similar, there are
noticeable differences. With ballistic jumps (f = 0.2), both L and ai(1) evolved faster, but
had smaller steady state values. Consistently, Figs. 3.7 show that with ballistic jumps, the
ordered domains were larger and better-ordered at the beginning, but had more defects at
the end compared with those for f = 0 in Figs. 3.6. In the early stages, ballistic jumps can
actually speed up the ordering kinetics, even though they are random and tend to disorder
the atom arrangements. Experimental observations have also shown that the overall atom

mobility is enhanced by ballistic jumps (for example, see Ref. 23-25).

Although the kinetics is interesting, our work was devoted to determining the
steady states of the alloys. To ensure that a steady state was attained, we typically waited
for times that were a factor of ten longer than the time for which the steady state values of
order parameters were first detected. The steady state order parameter can also be
confirmed by starting the simulations from different initial states, and verifying that the

same values of order parameters were eventually attained. Figure 3.8 shows one such
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example, for an alloy with V =2 and f = 0.4. Not only did L remain constant (except
fluctuations) for a time of several hundred times longer than its first appearance, but L also
reached the same value for both initially disordered and ordered states. These results

confirm that the alloy indeed reached a unique steady state.

We performed a series of Monte Carlo simulations with variable V and fixed f.

Typical results are presented in Fig. 3.9. For the thermodynamic case with f = 0, the

critical temperature, Tg, was identified with the inflection point of the curve to be ne % =

0.88, consistent with Eq. 3.29. There are many similarities between the L vs. V curves for
f = 0 and for some cases of f > 0, although the ballistic atom movements tend to disorder
the alloy and suppress the critical temperature. The critical temperatures, Tg, were
determined for f > O either by identifying the inflection points of the L vs. V curves, or by
locating the points where L had the same value as at Tg when f = 0. Numbers obtained
from both methods agreed well, and we do not distinguish them hereafter. On the other

hand, the L vs. V curve for f = 0.55 has an almost flat and featureless shape, and is quite

different from the curves for f = 0, 0.2, and 0.35. When f = 0.55, the largest value of L

was no more than 0.2, even for temperatures as low a Ev'f = 100. Direct observations

showed that the lattice had only small ordered domains and no long range ordering.

Evidently there is no ordering transition at any temperature when f = 0.55.

We also performed a series of Monte Carlo simulations with variable f and fixed V.
Figure 3.10 shows typical L vs. f curves for different V. Qualitatively, the shapes of these
curves are reminiscent of curves of L vs. T. Again, by examining the inflection points of
the curves, or by matching values of L to those on the curve for f = 0, critical values of f

for the ordering transition, denoted f., were determined. For example, for % = 1.5 and 2,

fo = 0.275 and 0.355, respectively. Figure 3.10 shows that with reduced temperature, the
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FIG. 3.9. Monte Carlo results for the steady state LRO
parameter, L, as a function of V (i.e., inverse temperature) with f = 0

(triangles), f = 0.2 (circles), f = 0.35 (squares), and f = 0.55 (diamonds).
The data point labeled with “% = 100” was for f = 0.55 and V = 100.
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curves of L vs. f shift towards the right on Fig. 3.10, and converge toward the curve for %

= 100. Accordingly, the critical fraction of ballistic atom movements fc increases and

approaches an ultimate limit fg , as discussed below.

For ordered alloys at low values of T and f, there still remains the question of
whether the ordered domains tend towards infinite length. This question cannot be
answered rigorously with Monte Carlo simulations on finite systems, but we did perform
some tests by extrapolation. The characteristic length of ordered domains, <r>, was
calculated as described in Section 2.4, and Fig. 3.11a presents typical data on <r>, in units
of the lattice constant, as a function of f at temperatures above Tg (or equivalently, for f >
fc). The two curves of <r> vs. f were obtained at fixed temperature, and so are labeled

with their individual value of E\% As f approaches f; from above, <r> increases rapidly and

approaches a size comparable to the size of the lattice in the simulation. With analogy to a

thermodynamic alloy, we might expect <i—> to decrease linearly with —f as f approaches f.
Figure 3.11b presents curves of Ei_> vs. f corresponding to the curves in Fig. 3.11a. The
plateaus a zi—; = 0.33 and 0.25 correspond to integral changes in <r> from 3 to 4, and are

not significant. For larger <r>, however, there seems to be a linear decrease of —<—1r; as f

approaches fc. Extrapolating the linear parts of both curves to =0 gives f; =0.261 and

-
<r>
0.338 for % = 1.5 and 2, respectively. These values are reasonably close to those obtained

from the curves of L vs. f in Fig. 3.10.

We compared the dynamical critical temperatures, T£, that were determined from the
data of L. vs. V and from the data of L vs. f. The values of f. from all curves in Fig. 3.10

are presented as solid circles in Fig. 3.12. The left axis of Fig. 3.12 is temperature,

normalized by the thermodynamic critical temperature T(C) of Eq. 3.29. Also presented in
Fig. 3.12 as open squares are some results from data of L vs. V. These two sets of data

are in excellent agreement. Figure 3.12 is the T—f phase diagram of our driven alloy at the
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steady states. The solid curve separates the regions of ordered and disordered phases. Atf
= 0, the dynamical phase diagram provides the thermodynamic critical temperature of Eq.
3.9. The ordered phase is stable for small values of T and f, whereas the disordered phase
is stable for large values of T and f. Slightly below the phase boundary, the LRO is
imperfect. Slightly above the phase boundary, there is significant SRO. This is typical of
a second order phase transition, and the continuous curves of Figs. 3.9 and 3.10 do imply

that the transition is of second order for all f.

The nearly linear part of the phase boundary in Fig. 3.12, between f = 0 and f =

0.36, was fit to a straight line with a slope of —1.58 + 0.01:

T = (1 - 1.58) TO : (3.30)

As f increased beyond this nearly linear region, T(f: decreased dramatically. At f=0.43, T£
= 0.01 Tg. A logarithmic extrapolation to zero temperature of the dashed curve in Fig.
3.12 provides an ultimate fraction of ballistic atom movements, 12 = 0.43, beyond which

ordering does not occur at any temperature.

3.3 Modified Onsager Kinetic Analysis

Here we develop a simple but general analytical theory for the steady state of an
ordering alloy in the presence of both ballistic and thermal atom movements. The approach
is similar to that of Martin [10]. We use Onsager-type kinetic rate equations, suitably
modified to include ballistic atom movements. Onsager-type kinetic rate equations allow us

to neglect the details of atom movement mechanisms, thereby simplifying the problem.

Nevertheless, this approach should be valid near the steady state of the alloy when d_d% is

zero or nearly zero, which is appropriate for the problem of interpreting phase boundaries
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between phases in steady states of the alloy. We write the time-dependence of the LRO
parameter for the thermodynamic alloy (f = 0) as (Eq. 2.4): )

dL 1 oF
dt T KT oL ’ (3.31)

or equivalently,
T oL T k oL , ‘ (3.32)

where 1 is the mobility coefficient. F and E denote the Helmholtz free energy and enthalpy,
respectively. At steady states, L does not change with time. Therefore,

TgISJ = gf . (3.33)

In a mean-field thermodynamic calculation (f = 0), the contributions to 3—5 are:

QII% = gzLV ", and (3.34)
9 1 -L
TS —Tk—l (1 " L) . (3.35)

It is straightforward to take the mean-field thermodynamic expressions of Eqgs. 3.34 and

3.35, substitute them into Eq. 3.33, and recover the mean-field critical temperature.

For a driven alloy having a fraction of ballistic atom movements, f, the fraction of
thermal atom movements is 1 — f. For the thermal atom movements alone, Eg. 3.32

becomes:

thermal

dL 1 1dE 98§
& =—E(1—f)(T§E—I) . (3.36)

Because the random ballistic atom movements are assumed to occur at infinite temperature,

we have:
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dL I ./19E 38

T “Ef(;: 3 §f) ., or (3.37)
allistic

dL I' . dS

dt =x i3 (3.38)

dtba]listic k dL

for the ballistic atom movements. Equation 3.38 is an entropy contribution. The enthalpy
contribution is zero because the ballistic atom movements are independent of temperature

and local environment.

It is important to note that the Onsager mobility constants in Egs. 3.32 and 3.38 are
different. As discussed in next section, we expect the thermal atom movements to be

increasingly correlated at low temperatures, whereas the ballistic atom movements are not.
We define  as the ratio of mobility coefficients for the ballistic and thermal atom

movements.
1 1
(=1 . (3.39)

It was found from Fig. 3.5 and other studies with the vacancy mechanism [1,7,8,11-13]

that the atom mobility was enhanced by ballistic atom movements, so we expect]l' >1 and

> 1.

Combining Egs. 3.36, 3.38, and 3.39, we can write a complete kinetic equation for

the driven alloy:
dL 1 oE 1 dS
Ez_ﬁ(l—f)i"'ﬁ(l'k(c—l)f)a_L . (3.40)

To obtain the steady state value of L as a function of T and f, we set Eq. 3.40 equal

to zero and obtain;

1+ (-1 9S IE

T3 - (3.41)
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Consider first the case when { =1, that is, the ballistic atom movements have the

same mobility as the thermal atom movements. In this case Eq. 3.41 becomes:
T dS OE
T—foL = oL . (3.42)
Upon comparison with Eq. 3.33, we see that the effective temperature, Tef, of the driven
alloy is rescaled with respect to the thermal temperature, T :

T
= Lo (3.43)

Were Eq. 3.43 true, the dynamical critical temperature of ordering, T£, would decrease

linearly with the fraction of ballistic atom movements by simple dilution, becoming zero

when f=1:

= (1-1TY . (3.44)

This rescaling of temperature is a consequence of the ballistic atom movements being
insensitive to the enthalpy driving force (Eq. 3.38). This reduction of T£ by a factor of 1 —-
f can be regarded as a dilution of the enthalpy driving force in the presence of the fraction,
f, of ballistic atom movements. The same result was obtained previously in our mean-field

kinetic analysis (Egs. 3.16 and 3.27).

In general, however, mobility differences must be considered, and this provides a

second means for the ballistic jumps to affect Tg. We expect { > 1, and in fact { may be a

function of T, f and L. From Eq. 3.41 we write:

1
Tef = T—“l(fﬁf)f ., and (3.45)

f_ __1-f .o

T. = T 3.46
1+ -Df © (3.46)



100

There is no simple scaling of the critical temperature with f unless (T, £, L) has a simple
form. A precise estimate of { is not trivial, and we have not attempted to do so. On the

other hand, we have used our Monte Carlo results for T(f: (Fig. 3.12) to determine {.

3.4 Discussion

The analysis of Sections 2 and 4 relies on a single order parameter, L, to
characterize the microstructure of the driven alloy. It is appropriate to ask if a single LRO
parameter is adequate to characterize the microstructure of the driven alloys, or if the
steady-state microstructures of alloys having the same value of L, but subjected to different
combinations of T and f, may have different order parameters on short length scales. To
address this concern, we compared both the LRO and SRO parameters for the steady states
of alloys with various combinations of T and f. Figure 3.13 shows steady-state values of
the SRO parameters o(1) and o(2) as functions of L for alloys with various combinations
of T and f. The curves are nearly identical. Direct observation of the alloys also confirmed
that alloys with the same steady-state values of L were very similar in appearance. The
LRO parameter, L, seems a reasonable single parameter for specifying the steady state of

order in our driven alloys.

We now use the analytical approach of Section 3.3 with its Onsager-type kinetic

rate equation for L to interpret the Monte Carlo results of Figure 3.12. For f<0.36 or %

<2, Eq. 3.30 describes our data well. By comparing Egs. 3.30 and 3.46, we obtain:

I' 1.58 (1-f)
C=T="T_13ss C - (3.47)

According to Eq. 3.47, the mobility ratio { increases slightly as f increases. This can be

confirmed by comparing the kinetics shown in Fig. 3.5. A much more dramatic increase in
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€ occurs when f > 0.36 or % > 2. These increases in { are not surprising for ordered

alloys, however. At low temperatures (corresponding to large f on the phase boundary of
Fig. 3.12) thermal diffusion in ordered alloys becomes highly correlated and inefficient,
effectively suppressing 1. For thermodynamic ordering transitions on a square lattice, there
are dramatic changes in vacancy mobility when % > 2 [4]. At these low temperatures, the
vacancy becomes trapped in local regions from which it has insufficient thermal activation
for escape. We found the same type of vacancy trapping in the present study. At the
lowest temperatures, the vacancy moved cyclically between a set of sites until it was
dislodged by a ballistic atom movement. This high degree of diffusional correlation
suppresses strongly the effective thermal mobility coefficient, 1. On the other hand, we do
not expect the mobility coefficient for ballistic atom movements, I', to change with

temperature. We therefore expect the mobility ratio, {, to increase with decreasing

temperature, suppressing Tg dramatically when E\% >2.

To investigate further these effects of vacancy mobility, we performed some Monte
Carlo simulations with asymmetrical chemical interaction potentials between A and B atoms
(VAA # VBB), while maintaining the same thermodynamic pair exchange potential, V. It
was established previously that diffusion coefficients, and therefore the effective mobility
constants, will change when Vaa # Vgg [4]. Figure 3.14 shows typical L vs. f curves for
the same thermodynamic potential, V = 2, but for two different cases, one with VaAA =
VBB, and the other with VaA # Vpg. Although the shapes of the curves are similar, the
critical values of f are quite different: fc = 0.20 for the asymmetrical case, while fc = 0.35

for the symmetrical case. This cannot be a thermodynamic effect, since Eqgs. 3.28 and 3.16
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depend only on V. The symmetry of the interatomic potentials must affect f. through the
mobility coefficients. Correlated thermal vacancy motion can explain this behavior.

Vacancy trapping is controlled by the strongest interatomic potential [4], so in the

approximately linear region of Fig. 3.12, we expect .. to decrease by the factor of% as Vaa

increases from 2 to 3. This is approximately correct.

3.5 Summary

We performed a Monte Carlo study of steady states in alloys with thermal and
ballistic atom movements. A vacancy mechanism was used for atom movements in
equiatomic alloys on a square lattice. A T—f phase diagram for the order—disorder transition
was constructed for alloys with symmetrical interatomic potentials (Vas = Vgg). When f <
0.36, the dynamical critical témperature decreased by the factor (1 — 1.58 f) in the presence
of a fraction of ballistic atom movements, f. For f greater than 0.36, but less than 0.43, the
reduction of the critical temperature with f was much more rapid, and the critical
temperature became zero at a critical value of f, fg = 0.43. An Onsager-type analytical
theory was used to explain this behavior. The decrease in critical temperature with f
occurred for two reasons. First, in the presence of ballistic atom movements, the enthalpy
driving force for ordering, ——%, is diluted by the factor (1 — f). Second, the mobility
coefficient for thermal atom movements becomes small at low temperatures, owing to a
high degree of correlation in the vacancy diffusion mechanism. The ballistic atom
movements are not subject to this correlation factor, and so are relatively more important at

low temperatures, leading to a dramatic drop of T to zero near f = 0.43.

On the other hand, the kinetic Master Equation analysis in the point (Bragg-
Williams) approximation with both vacancy and pair interchange mechanisms takes into

consideration correctly only the first factor, the random nature of the ballistic jumps. The
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second factor, the mobility enhancement by ballistic jumps, is ignored. This proves to be a
problem leading to inaccurate results such as a simple dilution of the critical temperature by
the ballistic jumps. It would be interesting to use Monte Carlo simulations to look for the
tricritical point predicted by the kinetic Master Equation analyses in the point (Bragg-
Williams) approximation. Our Monte Carlo work so far has shown no sign of any first
order transition by Monte Carlo simulations across a broad range of temperature, but all the
transformations observed in our studies were at relatively low values of f, below the critical

point of f* = 0.68 (or 0.58).

All the theories and Monte Carlo simulations predicted that if the external driving is
strong enough (f is large enough), only the disordered state can exist at any temperature.
The ordering tendency is completely suppressed even at low temperatures. In another

work we found this is also true for systems with the tendency for phase separation.
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Chapter 4. Phase Diagrams of Driven bcc Alloys at Low
Temperatures

Previous work has shown that ballistic atom movements can cause shifts in phase
boundaries [3-10,13], such as suppression of the critical temperature for A2-B2 phase
transitions [3-5,13], changes in the order of the transition [4-8], and other nonequilibrium
microstructural features at steady states [9,10]. This chapter describes results of Monte
Carlo simulations that were used to determine the steady states of equiatomic bec driven
alloys with first nearest neighbor (1nn) and second nearest neighbor (2nn) effective pair
interactions (Section 2.3). Three phases are expected in these alloys at low temperature,
depending on the relative strength of the 2nn and 2nn interactions: B2 order, B32 order,
and chemically unmixed (denoted as “umx’) bce phases. Our simulations were performed
near all three bee phase boundaries so that we could obtain the phase diagrams of bec
driven alloys [12, 14]. We observed substantial amounts of transient order in distinct
regions during disorder — order transformations, but these states vanished when the steady
state was attained. One example was the transient formation of B2 order in a disorder —>
B32 order transformation. Ballistic jumps, even just a small fraction, induced large
changes in the transient states and steady states of order in the alloy. The phase diagram in
the space spanned by V1 and V; was determined for thermal atom movements alone, and in
the presence of ballistic atom movements. With increasing temperature, the region of B32
phase receded against the adjacent regions of B2 order and unmixed states. With the
presence of ballistic jumps, however, the opposite behavior was found. The region of B32
order encroached on the adjacent regions of B2 order and unmixed state. Furthermore,
with ballistic jumps we found the development of B32/B2 or B32/umx two-phase regions.
The shifts in phase boundaries are attributed to differences in how the internal energies of

the different phases are affected by ballistic atom movements. Local fluctuations in the
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The B2 (top) and B32 (bottom) ordered structures.

FIG. 4.1.
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FIG. 4.2. Thermodynamic ground state phase diagram for
equiatomic bece alloys. The phase boundaries are solid straight lines with

slopes of +2/3, —2/3, and e (V| =0 and V; < 0), respectively.
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internal energy density in the presence of ballistic atom movements caused two-phase

regions in the phase diagram.

4.1 Thermodynamic Ground States

Ground state (T = 0) structures of bcc binary alloys have been classified by
Richards and Cahn [1] and Allen and Cahn [2]. For equiatomic AB alloys with 1nn and
2nn pair potentials, the ground state is either B2 order, B32 order, or an unmixed bec alloy
(denoted “umx”). The B2 and B32 ordered structures are shown in Fig. 4.1. In the B2
ordered structure, all A atoms take the corner sites of the bee unit cells while all B atoms
take the center sites. Every atom has 1nn neighbors of the opposite type and 2nn neighbors
of the same type. The B32 ordered structure is a layered structure along the body diagonal
direction of the bee unit cell. Each atom has mixed 1nn neighbors and 2nn neighbors of the
opposite type. In the unmixed state, A atoms are clustered together, as are B atoms. The
thermodynamic ground state is the B2 ordered structure when v < 2/3 and V1>0, the B32
ordered structure when vl > 23 and V, > 0, and umx when v > -273 and V| < 0. The
ground state phase diagram is shown in Fig. 4.2, with the phase boundaries shown as

solid straight lines. The phase boundaries between B32/B2, B32/umx, and B2/umx are at

Ve =2/3,-2/3, and o (V1 = 0 and V3 < 0), respectively.

It is straightforward to calculate the internal energy densities, i.e., free energy
densities at T = 0, of these three possible ground states, Egy, Eg32, Eymx. With respect to

a disordered solid solution they are:

Epa = -Vi+2Vy (4.1)

Bpp = -2Vy (4.2)
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Eumx = VI+3Vy . 4.3)

Near a phase boundary, for example the B32/B2 phase boundary, the energy difference
between the two phases is very small and the thermodynamic preference for one phase over
the other is also weak. For this reason the unstable phase may form transiently during an

ordering transformation, although it is not the thermodynamically stable phase.

Transient phase formation has been well documented in kinetic studies with the path
probability method and Monte Carlo simulations, which reported that B2 order appeared
transiently although the equilibrium state was B32 order when v was slightly larger than 2/3
[18]. At low temperatures, especially when there is external driving, some defects will be
expected and will contribute an additional energy term to Egs. 4.1 to 4.3. Entropy will also
play arole. It is very likely that these new contributions to the free energy will affect the
phase diagram and the stable states, as well as the transient states. However, the
systematic behavior is not intuitively obvious. Results are provided By our Monte Carlo

simulations presented in next section.

4.2 Monte Carlo Simulations

From thermodynamic ground state analysis, the phase boundaries between the three
ground state phase regions are at v, = {+2/3, =2/3, o}. To study the effect of temperature
and ballistic jumps on the phase diagrams and stable states, as well as transient states, most
of our Monte Carlo simulations were on alloys near these three phase boundaries:
{B32/B2, B32/umx, B2/umx}. Unless stated otherwise, these three regions of v were
obtained with pair potentials having approximate values: {( Vaaq = +1, VBB1 =+1, Vyp0
= +1.32, Vg, =0), (Vaa1 = -1, Vg1 = -1, Vaagz = +1.32, Vgg, =0), (Vaal =

—0.06, VBB1 =0, V25 =-1, Vg, =-1)}. For all simulations, Vapi=0and Vg, =0.
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4.2.1 B32 and B2 Phases

Figure 4.3 shows the evolution of Lg) and Lg3; (Section 2.3) for an alloy with v =
0.667, which is less than the critical v¢ of 0.6728 at this temperature. The alloy has B2
order at thermodynamic equilibrium, as shown by the thick curves labeled with f = 0. B32
order appears transiently before it vanishes completely at the steady state. Similarly Fig.
4.4 shows the evolution of Lgy and Lg3; for an alloy with v = 0.6735, slightly above v.
In the thermodynamic case (f = 0), again shown as thick curves labeled with f = 0, B32
order now is the equilibrium state while B2 order becomes transient. The transient B2
order is very strong at about 3000 MCS. A small fraction of ballistic jumps can also alter
significantly the kinetics of the alloy. Figure 4.3 shows that when f changes from O to
0.01, both B2 order and B32 order start to develop at a much earlier stage as the ballistic
jumps serve to enhance atom mobilities (Chapter 3). In Fig. 4.4, however, the same
change of f only suppresses substantially the transient formation of B2 order, and
suppresses slightly the final steady state B32 order, but does not switch the transient and

steady state of order.

Transient B2 order has been observed previously [18] during disorder — B32 order
phase transformations when B32 order was the thermodynamic equilibrium state. These
transient B2 domains were a few lattice constants in diameter. Much larger regions with a
high degree of order were found in the present study, especially when v was near the
boundary v¢. As an example, Fig. 4.5 shows domain structures on two consecutive (100)
planes at the time when the transient B2 order was a maximum. The simulations were
performed for the case of chemically symmetric pair potentials (V AA=VYBR) with v slightly
above the critical v;. The white region at the bottom is a well-ordered B2 domain, and the
black region at the top is another B2 domain of the other variant. The pattern at the upper

left and right is a well-ordered B32 domain. It is clear that the transient B2 order develops

as distinct domains. Distinct domains were also found for cases of transient B32 order.
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Snapshot of the alloy taken after 200 Monte Carlo steps in

Figure 4.5.

Vanr=

a simulation for the case of chemically symmetric pair potentials with v

0. Two consecutive (100) planes are shown; the center

Vg2 = 0.6756 and f

sites of the unit cell form a square lattice that interpenetrates the square lattice from

the corner sites. The image was prepared by overlaying on the crystal a mask of

B2 order of one domain variant. Atom occupancies consistent with this variant of

B2 order are white, and those of the opposite variant are black. B2 order

therefore appears as regions of black or white; B32 order as regions of diagonal

Stripes.
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The difference between Figs. 4.3 and 4.4 suggests that ballistic jumps favor the
development of B32 order over B2 order. To study systematically how the ballistic jumps
change the steady state and transient state of order, a set of Monte Carlo runs with different
values of f were performed for the same alloy with v = Vpa0/2 = 0.66. The steady state
values attained by the order parameters Lp3, and Lp» are presented as a function of f in
Fig. 4.6a. The figure shows that at about f = 0.003, there is a switch of the steady state of
order. That is, the ballistic jumps cause a change in the final steady state from B2 order to
B32 order. Figure 4.6b presents the steady state internal energy density of the same alloys
as a function of f. The internal energy density increases much faster with f in the B2
ordered state than in the B32 ordered state. This means the B32 ordered state gains much
less energy from the presence of ballistic jumps than does the B2 ordered state. The B32
ordered state is favored over the B2 ordered ;tate in the presence of ballistic jumps. A
higher accumulation of internal energy density in the B2 ordered state is consistent with the
drop in the internal energy at f = 0.003. Examination of the alloys showed that this was
due to more antisite defects generated and sustained in the B2 ordered state that in the B32

ordered state.

In several cases we confirmed that the steady states were indeed steady states by
starting the simulations with the alloys having perfect ordered structures of B2 or B32
order, and verifying that the same order parameters were eventually attained as for the cases
of initially disordered alloys. The steady state is unique (as expected for a Markovian
system [11]), and should be attained eventually for any initial states. One example is
shown in Fig. 4.7, for an alloy with VAoa2/2 = 0.66 and f = 0.01. The transient states,
however, did not form during the kinetic evolution of alloys that began with perfect order

of their equilibrium type.
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Results from many simulations like those of Figs. 4.3, 4.4, and 4.6 were used to
compile the results presented in Fig. 4.8. This figure presents the maximum amounts,
either transient or steady state, of the B2 and B32 LRO parameters as a function of v for the
case of chemically asymmetric pair potentials (V AA2=V2, VBp2 =0). The thermodynamic
case, without ballistic jumps, is the pair of thick curves for f = 0. As expected, the B2
phase is favored for small v, and the B32 phase is favored for large v. The crossover gives
the thermodynamic phase boundary at this temperature, v = 0.6728 + 0.0008. However,
even towards the left of Figure 4.8 where only the B2 phase is found in steady-state, the
B32 phase appears transiently. The amount of this transient state increases with v, and the
B32 phase becomes the steady state structure above v.. The transient appearance of B2
order is stronger for alloys closer to the phase boundary v, since the energy difference is
smaller and therefore the thermodynamic preference of B32 order over B2 order is weaker.
A complementary behavior of the transient B2 structure was found for the case when V was

decreased from values above V.

The transition of stable B2 order to stable B32 order in the thermodynamic case of f
= 0 is very sharp. No coexistence of the B2 and B32 structures was observed in steady
state, except perhaps for the data point closest to the crossover, Vc. Further study of this
case would require a careful analysis of the finite sizes and times of our Monte Carlo
simulations, however.

The curves with f > 0 in Fig. 4.8 show that very small fractions of ballistic jumps
cause the crossover, v (where Lpy = LB32), to move strongly to lower values of v. Alloys
with v between the new and the old values of Vc have their steady state and transient state of
order switched by the ballistic jumps, as shown in Fig. 4.3. Furthermore, when f > 0 and
Vv Wwas near Vc, a two-phase steady state was found, with domains of both B2 and B32

order. The locations of the domains of B2 and B32 order were not static, and the domain
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boundaries migrated with time. A similar phenomenon was also observed near the phase
boundary between B32/umx states with f > 0, and will be described in the next section.
Owing to the finite size of our simulations, the range in v of this two-phase region could
not be mapped precisely, but it spans approximately those values of v between the steepest
slopes of the pairs of curves in Fig. 4.8, where L) and L3 are about 0.5. These regions
of two-phase coexistence are marked by horizontal bands. Notice that while the two-phase
regions move to lower values of v with increasing f, most of the change occurs at the left
edge; the B2 phase becomes especially unstable in the presence of the ballistic jumps for the

case of chemically asymmetric 2nn pair potentials.

Finally, we examined some effects of the finite size of our Monte Carlo
simulations. Using larger lattices with 524 288 sites, we found that the smallest values of
Lpy and L33 in Figure 4.4 decreased with increasing lattice size; an effect of the reduced
importance of the diffuse scattering contribution to the superlattice peak intensities. Also
affected were the values of the LRO parameters in cases where the sizes of the domains
were comparable to the size of the alloy. Changing the size of the alloy did not have other
effects of significance, however. In particular, the transient states, the steady states, and
amount of shift of v caused by ballistic jumps were largely unaffected by changing the size

of the alloy.

4.2.2 B32 and unmixed Phases

The phenomena of transient and steady states, phase boundaries, and two-phase
coexistence for the pair of B32/umx phases are very similar to those of the B32/B2 pair of
phases presented in the last section. Perhaps the only qualitative difference is that one

involves the unmixed state while the other the B2 phase. The presentation and discussions

in this section will parallel those in the last section but with less detail.
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]
Figure 4.9 presents the evolution of the order parameters Lg37 and Lymy in an alloy

with thermodynamic equilibrium as an unmixed state. The evolution of the order
parameters for the thermodynamic case with T > 0 and f = 0 are shown by the thick curves.
Kinetics allows the transient formation of B32 order, and for a brief time this transient B32
order is stronger than the state of unmixing. This is not surprising, since unmixing
requires long-range diffusion, which is less expedient than the formation of B32 order [17-
19]. Nevertheless, the state of the alloy after long times was the unmixed state, as expected
in thermodynamic equilibrium. (As seen in Fig. 4.9 for f = 0, towards the end of our
simulations the order parameter for the unmixed state, Lymy , was still evolving. The long
times and large lattice sizes required to attain two large regions were difficulties in the
present work, and some of our estimates of the steady state values of Lyyx may be slightly

low.)

Figure 4.9 also presents the evolution of order parameters in an alloy with the same
effective pair potentials, but with a small fraction of ballistic jumps (f = 0.001). The early
stages of ordering, which have large relaxation of internal energy, are unaffected by the
presence of a small fraction of ballistic jumps. After about 104 Monte Carlo steps,
however, the small fraction of ballistic jumps causes the two order parameters to be
reversed in magnitude from their values for the thermodynamic case of f = 0. The ballistic

jumps cause B32 order to be favored over the unmixed state.

A set of Monte Carlo runs with different values of f were performed for v =
—Vaa2?2 =-0.66 as in Fig. 4.9. The steady state values attained by the order parameters
Lg37 and Lymx in these alloys are presented as a function of f in Fig. 4.10a. The figure
shows that at about f = 0.0003, there is a crossover of the state of order where the ballistic

jumps cause a change in the final state from an unmixed alloy to a B32 ordered alloy.
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Figure 4.10b presents the steady state internal energy density of the same alloys as a
function of f. The internal energy density undergoes a distinct drop at f = 0.0003. This
drop indicates that in the presence of ballistic jumps, the internal energy of the unmixed
state is larger than that of the state of B32 order. Examination of the alloys showed that
this was due in part to antisite defects, but the importance of an internal interface between A

and B atoms in the unmixed alloy will be discussed in next section.

Figure 4.11 presents a compilation of all our results on the steady state values of the
order parameters L3y and Lyyx for alloys of £ = {0, 0.01, 0.02, 0.05, 0.10} for various v
near the B32/umx phase boundary. For the thermodynamic case of f = 0, we find that the
phase boundary is sharp, and occurs at v = -0.6632 + 0.0002. We define v as the
crossover point of the two curves Lg32 and Lyyx. Notice that with increasing f, v shifts

to lower values of Ivl, primarily because of the strong shift of Lyyx with f.

Examination of selected planes of the alloy showed another important effect of
ballistic atom movements on the state of order. The steady states of thermodynamic alloys
(f = 0) were a state of pure B32 order or a pure unmixed state. For f > 0, however, the
steady states of the alloy were heterogeneous, showing regions of B32 order in contact
with unmixed regions. This phenomenon of two-phase coexisting due to ballistic jumps
was also observed near the phase boundary between B32/B2 phases. Figure 4.12 shows a
steady state of such an alloy. In steady state these regions did migrate with time, but they
did not coarsen (at least coarsening was not observable for times of a factor of ten longer
than the time required to achieve the steady state). The precise boundaries of this two-
phase region were difficult to determine precisely, but they extend approximately between
values of v for which the curves of L3y and Ly were 0.5. With increasing f, this two

phase region grew wider, primarily at the expense of the unmixed state. The domains in
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FIG. 4.12.  Projection of two adjacent (200) planes of an alloy in
steady state with v = —0.6285 and f = 0.01, showing two-phase coexistence.
Corner and center atoms of standard cubic bec unit cell are projected. A and B
atoms are shown as black or white circles. Unmixed regions are found in the
upper left as regions of black or white, whereas banded regions indicate B32

order. Order parameters of the alloy were Lg3p = 0.58, Lymx = 0.23.
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Fig. 4.12 are better described as B32 regions and unmixed regions with internal disorder,
rather than fluctuations within a disordered alloy. The size of the ordered domains in
steady state was found to decrease with increasing f. A fluctuation description is perhaps

more appropriate for higher values of f.

4.2.3 B2 and Unmixed Phases

In the thermodynamic case with f = 0, the transient and steady state behavior of
B2/umx phases was very similar to those of B32/B2 and B32/umx phases described in the
previous sections. The thick curves in Fig. 4.13 are the time evolution of the order
parameters Ly and Lypx in a thermodynamic alloy with Vaa1 =-0.04 and Vaa2 = VBE?2
= —1. While B2 order was the state of thermodynamic equilibrium, the unmixed state
appeared transiently. Notice that the transient umx state was relatively long-lived (it was
still slowly decaying at the end of our Monte Carlo simulation.) compared with those in
Figs. 4.3, 4.4, and 4.7, and peaked at about 4000 MCS when B2 order was already very
strong (Lp2 = 0.9). The unmixed state is much more difficult to develop and grow than B2
order or B32 order because diffusion over a much larger spatial (and therefore time) scale is
needed. The transient appearance of the umx state in this case shows that a smaller spatial
or time scale 1s NOT a necessary condition for a state to appear transiently. A transient
state can appear when its spatial or time scale is much larger, and it lives for a much longer

time.

On the other hand, a much smaller spatial or time scale of the transient state can
cause it to have a very strong appearance. The transient appearance of B2 order was
typically very strong while the transient appearance of the unmixed state was much weaker.
This difference was due to the very different spatial and time scales needed for formation

and growth of B2 phase and unmixed state. Contrary to what was observed in last two
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sections, however, neither the transient state nor the steady state was affected much by
ballistic jumps. After extensive and systematic searching through the phase space, only in
a very narrow range did we find such switch-over of the transient state and steady state by
a relatively large fraction of ballistic jumps compared to those needed in B32/B2 or
B32/umx phases. One example is given as thin curves in Fig. 4.13. Notice the large value
of f (0.1) and the strong appearance of the transient B2 order. No two-phase region was

found near the B2/umx phase boundary for any value of £,

The differences between the alloys near the B2/umx boundary compared to alloys
near the B2/B32 and B32/umx boundaries were not surprising after a second thought,
however. The results on B32/B2 phases in Section 4.2.1 and those on B32/umx phases in
Section 4.2.2 have enormous similarities. For example, the curves in Figs. 4.8 and 4.11
are similar not only in shapes, but also in their degree of phase boundary shifts due to
ballistic jumps. These similarities suggest that the B2 order and the umx state have similar
responses to ballistic atom movements. Examination of the local atom arrangements in B2
and umx structures shows the opposite 1nn atomic environment but the same 2nn atomic
environments. One structure can be considered as the mirror image of the other about the
their phase boundary (V1 = 0), although one domain boundary must exist in the unmixed
state but need not in the B2 state. If an unmixed alloy and another B2 alloy are images‘of
each other (i.e., same V, and opposite V1) about the phase boundary, I suggest that the
transient state and steady state will not be affected by the ballistic jumps in any way similar
to B32/B2 or B32/umx phases because both alloys are expected to respond to the ballistic
jumps in a similar way. The phase boundary will not be shifted by either temperature or
ballistic jumps. These predictions were proved correct by our extensive Monte Carlo
simulations, except very small deviation mainly due to the domain boundary in the unmixed
state and its correlation with other defects. More discussions in term of partition function

and some quantitative details are given in the next a few sections.
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4.3 Thermodynamic Partition Function and its Application to

Low Temperature Phase Diagrams.

Phase boundaries of thermodynamic phase diagrams are generally expected to
change with temperature. To predict these changes analytically, we performed a low
temperature expansion of the partition function for the B2, B32, and unmixed alloys [20].
The idea behind this expansion is to identify the sensitivity of the free energy to small
amounts of disorder, as might be expected at very low temperatures. For the B2 and

unmixed alloys, the partition function, Z, was evaluated with the following terms:

N N
Z= exp(— %) +N exp(— —f}g) exp(— %)

N S N d
+ 4N exp(— —%Q) exp(— —i—%—a) + 3N exp(— ng) exp(— —i—%—b) . (4.4)

The first term is the Boltzmann factor for the perfect crystal, and the second term is the
Boltzmann factor for the perfect crystal with one antisite atom. The third term accounts for
one pair of antisite defects that are separated by a 1nn distance. The atoms in this pair have
one fewer 1nn pair than two separated antisite defects. On the bcc lattice these dimer
defects have a degeneracy of 4N. The fourth term is for one pair of antisite defects
separated by 2nn distances. Specific expressions for the energy differences {d¢} are
provided in Table 4.1. First neighbor pairs of antisite defects in the B32 structure required
a slightly different treatment — the two antisite atoms could be located on sublattices of

either like or unlike species.

Equation 4.4 was evaluated at the three phase boundaries: B2/B32 (V1 >0,V =
2/3V1), B32/umx (V1 <0, Vo =-2/3V)), B32/umx (V| =0, V < 0). The resulting free

energy densities with respect to the disordered solid solution are:
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TABLE 4.1. Terms of energy differences in low-temperature expansion of the

partition function, Eq. 4.4.

8%2 =-Vi +%V2 SBSZ = —%‘ \'%) suglx =V + % Vo }
8e% =4V -3V) 8532 =3V, Se"TX = 4V -3V,
852 =7V -6V, 852 =V 46V, ;86502 =—Vi+6Vy  3eU* =-TV{-6V)
Segg‘ =8V1-5V; 88%31)2 =5V, 85“5‘1‘)" =-8V{-5V, W
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B2/B32 at (Vaa1=VBB1 = %l, Vaaz=Va = ng ,Vi>0):

3
A/ 2V 3V 14V
Fpy= - —2~1 - kT(exp(—-E,l:l—) +4 exp(——kTI—) +3 exp(—-—ﬁgr—l)) , (4.5)
Vi 10V
Fpiy = — —2— - kT(exp(— ) +2 exp( T ) +2 exp( T ) + 3 exp(- 3kT1)) (4.6)

B32/umx at (Vaa1 = VBB1 = yz—l—, Vaaz=Vpo= —%Vl , V1 <0):

2 14V,

Fumx = ~2— kT(exp( ) +4 exp( T ) + 3 exp(3ET )) , 4.7)
Vi 10V,

Fpaa= 5 - kT(eXP(fr—) +2exp(3 kT T + 2exp(3 T 21) + 3 exp(rl ) o 48

Vi

B2/umx at (V1 =0, Vaa2=VRR2 = 5 < 0):
3V 5V

Fumx = ~4—2 - kT(exp( T =) +4 exp( T ) +3 exp(p 2)) , (4.9)
3V, \'Z)

Fpy = == - kT(exp( KT ) +4 exp( T ) +3 exp( )) (4.10)

The presence of isolated antisite defects (the second term in Eq. 4.4) causes no
shifts of phase boundaries. It is therefore reasonable to neglect larger numbers of isolated
antisite defects when writing the partition function of Eq. 4.4, at least for the purpose of
finding shifts of phase boundaries. We note that Eqs. 4.5 and 4.6 were obtained

previously [21].

The low temperature free energy expressions of Egs. 4.5-4.10 show that with

increasing temperature, the B32/B2 and B32/umx phase boundaries shift by the same

amounts. With increasing temperature, the B2 and unmixed phase regions encroach by the
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same amount into the B32 region. On the other hand, the B2/umx phase boundary is
unchanged with temperature, at least to our level of approximation. We therefore expect
that at moderately low temperatures, the B2/umx phase boundary will shift much less with

temperature than will the B32/B2 and B32/umx phase boundaries.

The shifts of phase boundaries caused by temperature predicted by the low
temperature expansion of the partition function were compared to results from the Monte
Carlo simulations. The directions and magnitudes of the shifts were qualitatively consistent
for the two methods, as we now discuss. However, the comparison of these shifts of
phase boundaries required careful consideration of finite size effects in the Monte Carlo
simulations. In particular, the energy density of the unmixed state is affected strongly by
the finite size of the lattice. While the ordered B2 and B32 phases become single domains
in steady state, there must always be an interface between the regions of A-atoms and B-
atoms in the unmixed state. The energy cost of this interface raises the internal energy
density of the unmixed state with respect to the B2 and B32 states of order, causing these
regions of ordered phase to encroach 6n the unmixed region of the phase diagram. To
estimate this contribution to the internal energy, we prepared fully unmixed alloys on
lattices of different sizes, with flat interfaces between the two species. We then determined
the internal energy densities of these perfectly unmixed states. Using this excess energy
density in a T = O ground state analysis of the B2/unmixed phase boundary, we found
shifts of the phase boundary from the ideal 1/v = 0 to 1/v = 0.0079 and 1/v = 0.0333 for
lattices with 128 and 32 unit cells on their edges, respectively. (Notice that these changes
in 1/v scale satisfactorily with the surface/volume ratio of the lattices, as expected.) For
comparison, the B2/umx phase boundary determined by steady states of Monte Carlo
simulations was at 1/v = 0.0322 for lattices with 32 unit cells on their edges. Although the

thermodynamic calculations of this section predict no shift of the B2/umx phase boundary,

the observed shift is explained adequately by the interface excess energy density of the
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unmixed state. The same finite size effect on the energy of the unmixed alloy affects the
shift of the B32/umx phase boundary. In this case there are competing thermodynamic
and finite size effects that provide opposing shifts of the position of the B32/umx
boundary. Evidently the finite size effect of the surface excess energy density of the
unmixed state is dominant, since the boundary shifts into the unmixed state with increasing
temperature (and f = 0). For a lattice with 32 unit cells on an edge, Monte Carlo results
gave v = -0.6632 £ 0.0002. This loss of surface excess energy when the alloy
transforms from the unmixed state to the B32 state is qualitatively consistent with the large
change in internal energy seen in Fig. 4.10b at f = 0.0003. Finally, the B32/B2 phase
boundary is not subject to any ambiguities from an internal interface. Monte Carlo
simulations gave a B32/B2 phase boundary at v, = 0.6728 + 0.0008. This shift from the
thermodynamic ground state value of 2/3 was due solely to the temperature effect, since in
steady state both phases were single domains without antiphase domain boundaries.

Equations 4.5 and 4.6 provided the right sign for this shift, but the magnitude was low.

4.4 Phase Boundaries with Ballistic Jumps

Figure 4.14 shows how ballistic jumps cause shifts of phase boundaries and the
formation of two phase regions between the B2, B32, and unmixed states. The results of
Fig. 4.14 were obtained from the data of Figs. 4.8 and 4.11, and analogous results for the
B2/umx boundary. The dashed lines in Fig. 4.14 are v, versus f. The values of V¢, Where
the LRO parameters have equal values, were obtained by interpolation and are believed to
be fairly accurate. The pairs of solid curves in Figs. 4.14a and 4.14c are approximate
boundaries of the two phase regions, defined as the values of v for which the order
parameters were about 1/2 (see Figs. 4.8 and 4.11). Although these boundaries of the

two-phase regions are semi-quantitative, they do show the right trend.
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The shifts of the phase boundaries with the fraction of ballistic jumps (Fig. 4.14)
are much larger than the shifts with temperature, T. The effects of temperature are almost
negligible on the scale of Fig. 4.14, as can be seen by comparing the data points at f = 0 to
the ground state values of v (which were +2/3, —2/3, o). This smaller effect of
temperature is still found when the shifts of the phase boundaries are normalized by the
average defect density in one of the phases, for example the B32 phase. We can monitor
semiquantitatively the average defect density in the B32 phase in terms of 1 — L (see [22]).
From Fig. 4.11 we see that for the thermodynamic case (f = 0) around v = 0.7 , the value
of 1 ~ L for the B32 phase changes from0at T=0to 1 ~L = 0.1 at the nominal T = 1 of
the present simulations. From Fig. 4.11 we see that for a fraction of ballistic jumps of f =
0.05, around v = 0.7 there is a further change in 1 — L from about 0.1 to about 0.2.
Approximately, then, the fraction of ballistic jumps of 0.05 serves to create about as much
disorder as does temperature itself. With temperature, the B32/umx phase boundary
changes from v = -2/3 to v = -0.663, a change of v of only 0.003. On the other hand,
with a fraction of ballistic jumps of f = 0.05, the change of v is from -2/3 to -0.56, a
much larger change of v of 0.11. Although these numbers are imprecise, the shift of the
phase boundary with ballistic jumps is much larger than expected if the change of v, were
to scale with the defect concentration in the B32 phase in the same way as with

temperature.

Since the energy cost of an isolated antisite defect is about the same in both the B32
and unmixed alloys, we must understand the shift in phase boundary with f as originating
with a type of high-energy defect structure in the unmixed alloy, or a larger number of
defects in the unmixed alloy. Observation of selected planes of the two phases showed that
in steady state the predominant defect was the antisite defect, and there tended to be more of
them in the unmixed alloy than in the B32 alloys. The presence of the same fraction of

ballistic jumps sustains a greater number of antisite defects in the unmixed alloy than in an
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alloy with B32 order. A greater number of antisite defects is also sustained in the B2 phase
than in the B32 phase. The internal energies shown in Figs. 4.6 and 4.10 undergo a sharp
change at the transition points. After accounting for finite-size effects of the Monte Carlo
simulations, it is found that the changes in internal energy at both transitions, B2 — B32

and umx —> B32, were approximately the same.

The detailed mechanism responsible for these different effects of ballistic jumps on
antisite defect populations remains unclear, but it must depend on the detailed kinetics of
atom movements. Here we propose [12,14] that differences in the diffusional correlation
factors for vacancy diffusion in B32 phase and the unmixed state or B2 phase could be
responsible for thermal jumps that are more effective in eliminating the defects created by
the ballistic jumps in B32 phase than in the unmixed state or B2 phase. In the unmixed
state with Vggy = 0, the vacancy would tend to avoid some clustered domains [23].
Similarly in B2 (or checkerboard) ordered alloys at low temperatures, the vacancy will
move most freely along antiphase domain boundaries (APDB's) or other regions of
imperfect order in the alloy due to the strong diffusional correlation effects [24,25].
Therefore in both the unmixed state and the B2 phase, the vacancy was unable to spend
sufficient time within some ordered or clustered domains to eliminate the antisite defects.
On the other hand, the B32 phase allows the vacancy to move more freely through all the
B32 domains by traveling along long channels of 1nn atoms of the like type. As aresult of
the larger diffusional correlation factors (promoting atomic diffusion) in the B32 phase than
in the unmixed state or B2 phase, the thermal jumps can be more effective in eliminating the
antisite and other defects induced by ballistic jumps in the B32 phase. Consistent with this
explanation, we found that [12] near the B32/B2 phase boundary, there is a much smaller
two-phase region, and a much smaller shift of the crossover, Vc, with ballistic jumps in the
chemically symmetric case than in the chemically asymmetric case (Vggy = 0). This strong

sensitivity of the phase boundaries to the chemical symmetry of the A-atom and B-atom
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pair potentials is unlike that of any thermodynamic phase boundary, and is consistent with

our kinetic explanation.

It is tempting to compare the effects of ballistic atom movements to the effects of
temperature, and assign an elevated effective temperature to an alloy in the presence of
ballistic atom movements. This elevated effective temperature would be the temperature at
which a similar alloy without ballistic atom movements would have the same equilibrium
density of antisite (or other) defects. Unfortunately, the B32 —> B2 transition that occurs
with increased temperature does not occur with an increasing fraction of ballistic jumps; the
opposite B2 —> B32 transition occurs instead. While this could possibly be explained by
ballistic jumps causing a larger increase in effective temperature for the B2 than the B32
phase, we believe that using a different effective temperature for each phase causes the
concept of effective temperature to lose some of its appeal. Another important limitation of
the concept of an effective temperature arises because the relative populations of the
different types of defects are generally expected to change with the fraction of ballistic
jumps and with the particular phase. A single parameter of effective temperature is

generally inadequate to account for the populations of all the different defect structures.

4.5 Two-phase Coexistence with Ballistic Jumps and

Implications for Ball Milling of Nanocrystalline Alloys

The two-phase coexistence of both B32 order and B2 order (or unmixed state) in
steady state near their crossover, v, , is an interesting and important feature of driven
alloys. The two-phase regions grow with the fraction of ballistic Jjumps, f, and are shown
as regions between the pairs of solid curves in Fig. 4.14a and Fig. 4.14c. While

reminiscent of a two-phase region on a temperature-composition phase diagram, the origin
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of this two-phase region must be quite different since there is no good parallel between the

fraction of ballistic jumps and the composition.

We attribute the region of two-phase coexistence to local fluctuations in the
fractions of ballistic jumps. If the ballistic jumps create locally some excess internal
energy, statistical variations in the fraction of ballistic jumps will cause local variations in
the internal energy. In the case of chemically asymmetric pair potentials, we expect those
regions where the largest numbers of ballistic jumps have occurred will tend to be regions
of B32 order. Since the ballistic jumps favor B32 order in the asymmetric case, we would
not expect the two-phase region to encroach on the region of B32 stability above v = 2/3,
but for £ > 0 we would instead expect the two-phase region to grow into the B2 or unmixed
region. This is seen in Figs. 4.8, 4.11, and 4.14. Since the ballistic jumps occur at
random in a local region, the fluctuations in their numbers will be approximately the square
root of their number in the regions, being proportionally smaller for more ballistic jumps.
The fluctuations will occur over a smaller spatial scale when the fraction of ballistic jumps
is larger. This is consistent with our observation that the sizes of the ordered domains in
alloys of two-phase coexistence decreased with f, being only several lattice constants when

f was about 0.1. We do not have sufficient data to quantify this effect, however.

It is also noteworthy that the case of chemically symmetric pair potentials with
VAA2 = VBB2 showed a much smaller B32/B2 two phase region. In the chemically
symmetric case, the ballistic jumps contribute almost equally to the internal energies of the
B2 and B32 structures, so fluctuations in the density of ballistic jumps are less likely to
cause the B32 structure to be favored. We expect that there are, however, local structural
differences induced by the ballistic jumps that tend to favor one structure over the other, but

this smaller effect was not investigated in detail.
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On the other hand, the phase boundary in Fig. 4.14b between B2/umx is very
sharp. No two-phase microstructures of B2 phase plus unmixed state were observed in
Monte Carlo simulations. This is as expected. Because both phases have similar stability
with temperature and with f, local inhomogeneity in the internal energy density will not

favor either the B2 phase or unmixed state.

The development of two-phase steady-states in driven systems has been noted
previously, and interpreted with features of a stochastic potential [5,8]. The argument in
the present paper, based on spatial variations in the internal energy density, is somewhat
different. Analysis of such spatial variations requires a description of microstructure
beyond the capability of practical analytical cluster approximations. In the present study,
the A2, B2, B32, and unmixed structures were useful for providing a concrete example.
The concept of spatial variations in the internal energy of a driven alloy is much broader
than these particular B32/B2 and B32/umx examples, however, and may provide guidance
in understanding how inhomogeneous defect densities may lead to two-phase steady-states.
For example, mechanical alloying of Fe-Cu and Fe-Ni nanocrystalline alloys resulted in
broad bcec/fee two-phase regions, where bee phases retained larger strain energy from ball
milling than fcc phases. The spatial inhomogeneity of strain energy is also expected to be
larger in bce phases than in fce phases, though no such measurement has been made. With
analogy to B2/B32 two-phase, we would expect the bce/fce two-phase region to grow
mainly into the bce phase region with increasing ball milling intensity for reasons similar to

those given here. This has actually been observed in experiments and will be presented in

the next chapter.
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4.6 Phase Diagrams of Driven Alloys at Low Temperatures

Figure 4.2 presents a ground state phase diagram for bcc alloys with 1nn and 2nn
interactions [1,2]. Figures 4.15a and 4.15b are schematic phase diagrams that include the
presence of a finite temperature (4.15a), and temperature plus ballistic jumps (4.15b). The
effects of temperature on the boundaries between the B2, B32, and unmixed states are
almost negligible on the scale of Fig. 4.15. A previous thermodynémic study of the

B32/B2 phase boundary [21] seems consistent with our results.

The phase diagrams in Fig. 4.15a and 4.15b are our best efforts. Some of their
features are more reliable than others. The A2 phase boundaries in Fig. 4.15a were
obtained with only one point having mixed Vi and V3, but the straight lines between the
axis intercepts are expected from mean field calculations. The size and detailed shape of the
A2 region in Fig. 4.15b are semi-quantitative. Ballistic jumps cause an enlargement of the
A2 region, drawn in Fig. 4.15b with estimates based on results from the two-dimensional
square lattice [Chapter 3, 13]. A two-phase region might exist around the A2 phase,
although it has not been reported for equiatomic alloys [7-9]. We performed a number of
studies of alloys along the B2/B32 phase boundary at various values of V from +2 to +8.
These plots were similar to those of Fig. 4.8, and provided the values of v and the B2 plus
B32 two-phase boundaries in Fig. 4.15b. The B32 phase plus unmixed state two-phase
region in Fig. 4.15b is drawn in analogy to the B32 plus B2 two-phase region. For the
two-phase region of the B32 phase plus unmixed state, we have data only for one
magnitude of V; (the data of Fig. 4.11), but these data are similar to those for the B32/B2
two-phase region. Although we examined many alloys along the B2/umx boundary, we
did not find any two-phase region of the B2 phase plus unmixed state. We therefore did

not include a B2 phase plus unmixed state two-phase region in Fig. 4.15b, although it

might exist as a very narrow region.
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FIG. 4.15. Low temperature (T = 1) phase diagrams for the
equiatomic bcc alloys: (a) without ballistic jumps (f = 0), (b) with ballistic
jumps (f = 0.1). Dotted lines have slopes +2/3 and —2/3. For comparison
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the thermodynamic ground state phase diagram is shown in Fig. 4.2.
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4.7 Summary

We used Monte Carlo simulations to determine phase diagrams of equiatomic
binary bcc alloys. Both thermal and ballistic atom movements occurred by means of a
vacancy mechanism. Four phases exist on a bec lattice with 1nn and 2nn interatomic
potentials: B32 order, B2 order, an unmixed state of A- and B-rich regions, and a
disordered A2 phase. The goal of our work was to measure and understand the shifts in
the boundaries between the first three of these phases as a function of temperature and

fraction of ballistic atom movements.

We found that near the phase boundaries of all three pairs of low temperature
phases, B32/B2, B32/umx, and B2/umx, the phase out of the pair that is not the
thermodynamic equilibrium state appeared transiently and vanished at the final steady states
during A2 —> order or A2 —> decomposition transformations in the thermodynamic case.
The transient phase formation was stronger for alloys closer to the phase boundary due to
the weaker preference of one phase over the other. With just a very small fraction of
ballistic jumps, this kinetic behavior was altered strongly. The transient state of order in
the thermodynamic case either switched with the original steady state of order, or became a
stable phase coexisting with the other phase. These changes of behavior were strongly

related to the shifts of phase boundaries with ballistic jumps.

In thermodynamic alloys, with increasing temperature the phase boundaries
involving the B32 phase receded under the growth of the regions of the B2 phase and the
unmixed state. A low temperature expansion of the partition function showed that the
higher energy for defect clusters in the B32 phase explained approximately the weak
recession with temperature of the B32 phase boundaries. The opposite behavior was found
in the presence of ballistic atom movements: there was a strong encroachment of the region

of B32 phase into the regions of B2 phase and the unmixed state. The presence of ballistic
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atom movements therefore cannot be considered as a simple increase of temperature. In the
presence of ballistic atom movements there are evidently fewer defects in the B32 phase
(which then has a lower internal energy) than in the B2 phase or the unmixed state. While
the detailed reason for this difference remains unclear, it is expected to depend on the
kinetic mechanism. We propose that it might be the differences in the diffusional
correlation factors for vacancy diffusion. The phase boundary between the B2 order and
the unmixed state shifted much less with temperature than did the boundaries involving the

B32 phase.

Another important feature of the phase diagram in the presence of ballistic atom
movements was the formation of two-phase regions between the B32 phase and the B2
phase, and between the B32 phase and the unmixed state. The width of these two-phase
regions increased asymmetrically (mostly in the B2 or umx phase region) with increasing
fraction of ballistic atom movements, and with decreasing temperature. This simulation
result may provide useful theoretical guidance for mechanical alloying of nanocrystalline
materials. We suggest that when the external driving causes heterogeneities in the
enthalpy, the material may develop two-phase coexistence when the chemical free energies

of the two phases are similar.
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Chapter 5. Two-Phase Coexistence in Fe-Ni Nanocrystalline
Alloys Prepared by Ball Milling at Two Intensities

5.1 Introduction

Ball milling is a common technique to synthesize materials far from thermodynamic
equilibrium, such as nanocrystalline materials and amorphous materials (Section 1.2.2).
The applicability of thermodynamics to materials synthesis by ball-milling is a subject of
ongoing investigation. It is generally expected that the synthesis of new materials by ball
milling depends on the thermochemistry of the alloy, and on the microstructural defects
generated during ball milling. Some interpretations of the steady-state phases formed
during milling have used model free energy calculations (of the “CALPHAD” style) with
polymorphous constraints to restrict processes of chemical segregation [1,3-9]. The
general preferences of Fe-Cu alloys for the bee or fcc structure can be understood in this
way [5-9]. For compositions from 20-40 % Cu, however, as-milled Fe-Cu alloys have a
two-phase microstructure comprising bec and fcc phases [5-13]. Such a two-phase
coexistence cannot be predicted by a conventional free energy argument with a
polymorphous constraint. For a specific composition and temperature, only one phase can
have the lowest free energy. Furthermore, there is evidence from x-ray lattice parameter
measurements that the atomic level mixing induced by ball milling also serves to

homogenize the alloy chemistry, so the bee and fcc phases may have similar chemical

compositions [11,12].

For testing the validity of thermodynamic arguments it is useful to vary the chemical
composition of the alloy, but control over the temperature [14-17] and milling intensity [18-
22] may also be useful. In this chapter, we report our study on Fejop_xNix alloys (x is the

atomic percentage of Ni and varies from O to 50) ball milled at two different intensities.
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Our interest was in understanding how milling intensity affected the region of two-phase
(bce plus fcc) coexistence that we found from about 13 to 30 at.% Ni. Model free energy
calculations (with Thermo-Calc software) were performed for Fe-Ni alloys, and the general
preference of the alloys for fcc or bee structures was predicted from the calculated
polymorphic transformation composition (the composition of the intersection of the bcc and
fcc free energy curves, which was 28% at low temperature). With increased milling
intensity, the region of two phase coexistence was found to expand asymmetrically into the

bece single phase region.

We propose a new explanation of this state of two-phase equilibrium by extending
the polymorphic transformation concept to include defects in the alloy. It is not surprising
that a higher average defect concentration can explain the loss of stability of the bce phase
with milling intensity. To explain two-phase coexistence, however, we consider
heterogeneities in the defect concentration in the alloy. We propose that near the
polymorphic transformation composition, the most defective bcc crystallites will transform
into fcc crystallites, even if the chemical contribution to the free energy for the bec phase is
favorable. Owing to heterogeneities in the defect density in ball milled material, the free
energy versus composition curves for both the fcc and bee phases are no longer sharp
lines, but are effectively smeared upwards in free energy. Using model free energy
calculations, we show that the region of two-phase coexistence can be predicted if ball
milling creates heterogeneities of 2 - 3 kJ/mole in the free energy of the bee phase. We find
that this defect enthalpy is consistent with the average heat release measured by differential
scanning calorimetry. Our interpretation of the region of two-phase coexistence in ball-
milled materials is essentially the same as that used for understanding Monte Carlo

simulations of bcc alloys with thermal and ballistic atom movements [Chapter 4,23,24].
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5.2 Experimental

Ball milling of Fejgg-xNix was performed with a Spex 8000 ‘rnixer / mill, for which
some general information was provided in Section 1.2.2. Using four steel balls (two 10
mm, two 3 mm), the standard Spex 8000 mill provides a milling intensity that we denote as
Iy. With Iy the ball velocity has been reported to be about 3 m/s [25]. In a series of
preliminary tests, we found that milling for 24 h at the I; intensity was more than sufficient
time to reach a steady-state microstructure. For example, Fig. 5.1 presents the average
grain sizes of both bce and fcc phases of Fe7sNiys alloy as functions of milling time at
intensity I;. No difference in grain size of either bce phase or fcc phase was detected when
the powders were ball milled for more than 18 hours (data for 48 hour milling are not
shown in Fig. 5.1). This was also true for the phase fractions. To test further the effect of
milling intensity on the steady-state microstructures of the powders, we modified the Spex
mill to operate at a second milling intensity, lower than the standard one. We replaced the
belt drive puliey on the shaker with a new one having an effective diameter V3 as large as
the commercial pulley. This modification should reduce the kinetic energy of the balls to
approximately one-third of the kinetic energy for intensity I;. We denote this lower ball
milling intensity as Ip.3. We found that 48 hours of continuous milling was sufficient for
the powders to reach steady states with this lower intensity I 3; no differences in grain
sizes or phase fractions were detected when the powders were milled for more than about
36 hours. Our interest in the present experiments was to study the steady-state
microstructures produced by ball milling, not the kinetics of achieving them. All milling
with intensity Iy was performed for 24 h, and all milling with intensity Ip 3 was performed

for 48 h.

During milling there was some tendency for the powders to become enriched with
Fe from the vials and balls. Chemical analyses of several of the as-milled powders were

performed by atomic emission spectrometry, where the powder was dissolved in acid
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solution, introduced as an aerosol in an inductively-coupled plasma discharge, and the light
emission analyzed by an optical spectrometer. We found that the powders milled at the
higher intensity I; increased their Fe concentration more than did the samples milled at the
Ip.3 intensity; typical changes in concentration were 3 at.% for Iy and 0.2 at.% for I 3.

The chemical concentrations given below were corrected for this Fe contamination.

5.3 Experimental Results
5.3.1 Phase Formation and Phase Fractions

Figure 5.2 presents x-ray diffraction patterns from powders of Feg1Nig, Fe77Nij3,
and Feg3Ni37 ball milled at Iy for 24 hours. While the diffraction pattern from Fe77Nip3
has both bce and fcc peaks, the FegiNig pattern has only bcc peaks and the Feg3Niszy
pattern has only fcc peaks. The bee and foc phase fractions were calculated according to
Egs. 1.4, and are plotted against the alloy Ni concentration, X, in Fig. 5.3. Compared to
the boundaries from the equilibrium phase diagram at low temperatures, the bcec and fcc
single phase regions are extended considerably. For example, at 60 °C the equilibrium
two-phase region extends approximately from 2 % Ni to 71 % Ni [29]. We determined the
compositional width of the two-phase region in the as-milled materials by extrapolation of
the data in Fig. 5.3 to zero concentration of the phases, and found the boundaries to be at x
=~ 12 and 30 for I; and x = 18 and 34 for Iy 3, respectively. Alternatively, a criterion of
defining the phase boundary as a composition where the phase fraction fell below 5% gave
X = 16.5 and 29.5 for Iy, and x = 24 and 33.5 for Iy 3. (This alternative criterion seemed
to be more robust on the bee side.) Both methods for determining the phase boundary give
the same qualitative picture. Higher milling intensity shifts the phase boundaries

asymmetrically towards the bcc region, with the bee phase boundary being shifted most
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strongly. Furthermore for any Ni concentration, the higher ball milling intensity, Ij,

always results in less bce phase than the lower milling intensity, Ig 3.

5.3.2 Chemical Analysis

For Feqg0-xNix alloys ball milled at I; for 24 hours, we observed pure (or
predominantly pure) bee phase for x < 12 and pure (or predominantly pure) fcc phase for x
2 30. We therefore expect that ball milling extends the solubility of Ni in the bce phase to
at least 12 %, and the Fe solubility in the fcc phase is extended to at least 70 %. We have
evidence, however, that in the two-phase region the chemical compositions of the
individual bee and fce crystallites are extended even further. X-ray lattice parameter data
are presented in Fig. 5.4. Figure 5.4 also includes results from the JCPDS index of bcc
and fcc alloys, and other previously-reported data [30,31]. There is excellent agreement
between the lattice parameter data from our bcc powders and from those reported
previously, suggesting that the single-phase as-milled bcc powders do not have a
significant mean strain. The data of Fig. 5.4 suggest a mean strain of about 0.1% for the
Ni-rich single-phase fcc powders, however. In the two-phase region for Ni concentrations
below 30 % Ni, the lattice parameters of the fcc phase decrease significantly below their
values in single phase Fe-Ni. In the composition range of two-phase coexistence, the
lattice parameters of as-milled Fe-Ni follow closely the lattice parameters of bulk Fe-Ni
alloys of nearly the same chemical composition. The lattice parameters of the fcc phase in
the two phase region are not characteristic of an alloy having a chemical composition of 30
% Ni, which marks the boundary of the fcc single phase region. Unfortunately, the lattice
parameter of the bcc phase is rather insensitive to the chemical composition of the alloy, so
the bcec lattice parameter data were not useful for checking the chemical composition of the

bee phase.
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Average hyperfine magnetic fields obtained from Mossbauer spectrometry are
presented in Fig. 5.5, together with some hyperfine magnetic fields reported previously for
bee Fe-Ni alloys [28], and data from our own bcec calibration samples. (These samples,
with x = 15, 20, 25, were arc melted under an Ar atmosphere. The ingots were inverted
and remelted four times, and filings taken from them were found to be pure bcc by x-ray
diffraction.) At least to compositions of 12 % or so, these data show that the Ni
concentration in the bce phase of the as-milled powder is the same as the overall alloy
composition. Unfortunately, for higher Ni concentrations the hyperfine magnetic field
becomes insensitive to the Ni concentration in the bee phase, and is not a useful measure of
chemical composition. The measured hmf's are consistent with the x-ray result that the

chemical composition the bec phase is the same as the overall composition of the alloy.

5.3.3 Defect Enthalpy

The bee (200) and fee (220) peaks of x-ray diffraction are shown in Fig. 5.6 for the
Fe100-xNix powders ball milled with intensities I; and Ip 3. These peaks were normalized
to give the same backgrounds and the same bcc (200) peak heights (Fig. 5.6a) or the same
fce (220) peak heights (Fig. 5.6b). Figures 5.6a and 5.6b show that the diffraction peak
shapes for the bee and foc phases were little changed for the different compositions and
milling conditions. These diffraction peaks have significant intensities in their tails, typical
of a particle size distribution that includes some small crystallites. The average grain size
and root-mean-squared strain are presented as functions of nickel composition in Figs. 5.7a
and 5.7b, respectively. Within the capabilities of our peak analysis methods we do not find
any differences in the grain size or RMS strain caused by milling intensity or by chemical

composition differences. We do find, however, that the bce phase has both smaller grains
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and a larger root-mean-squared strain than the fcc phase. This is not surprising and is

consistent with previous studies [10,11].

The DSC traces presented in Fig. 5.8 are differences between the first and second
scans of the sample up to 550 °C at a scan rate of 20 °C / minute. For all specimens we
observed a broad exothermic peak that began at 130 °C. We also observed a second peak
at about 400 °C for the bec alloys and 520 °C for the fcc alloys. Wé performed x-ray
diffraction measurements on the powders heated in the DSC to 550 °C. In none of the
samples of pure bee or fcc phase did we observe any transformation to the other phase after
the DSC scans. We therefore interpret the measured heats as enthalpies of defect recovery.
We also performed partial DSC scans to 300 °C, which is a temperature between the first
and second broad peaks in Fig. 5.8. Figure 5.9 presents the x-ray diffraction patterns of
the Fe53Nig7 alloy at its as-milled state, and after DSC scan up to 300 °C and 600 °C. X-
ray peak analysis showed that the first DSC peak corresponded primarily to the relaxation
of the root-mean-squared strain, whereas the second DSC peak corresponded to grain
growth. Integrating the DSC traces such as those in Fig. 5.8 gave about 1.5 kJ/mole for
the bce alloys, and 0.5 kJ/mole for the fcc alloys. In both cases the integrated heat in the
first peak was approximately the same as the integrated heat in the second peak. These
numbers are only approximate, however. We hesitate to claim, for example, that the
materials milled at the lower intensity showed a distinctly smaller heat evolution than those
milled at the higher intensity, although this seems to be true. Unfortunately, in the
composition range from 25 < x < 35, the fcc phase undergoes a ferromagnetic Curie
transition in the temperature range of our DSC measurements. We were therefore unable to

extract reliable enthalpies of defect recovery for the two-phase alloys.
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5.4 Discussion on Two-Phase Coexistence

For Fe-rich alloys, the as-milled alloy is fully bcc. For Ni-rich alloys, the as-milled
alloy is fully fcc. At intermediate compositions, however, the as-milled alloys are two-
phase mixtures of bcc and fcc phases. This two-phase region spans the range in Ni
concentration, 18 < x < 34, for the milling intensity Iy 3, and the brqader composition
range, 12 < x < 30, for the intensity I; 9. Recall that conventional thermodynamic
explanations of two-phase coexistence rely on chemical segregation between the two
phases. The minimum in free energy of a two-phase alloy, Fyq, 1s found by constructing a
common tangent between the free energy curves of the two phases. The points of tangency
mark the equilibrium compositions of the two phases for any alloy having a composition

between these two compositions.

For several reasons we doubt that the two-phase coexistence found in our as-milled
alloys can be understood with the conventional thermodynamic explanation. There is poor
agreement between the phase fractions shown in Fig. 5.3 and the predictions with the lever
rule and the Fe-Ni phase diagram for any assumed temperature. Even allowing for
enhanced solid solubility in the bcc and fcc phases, the conventional argument is
unsuccessful in predicting the trends of Fig. 5.3 — the lever rule predicts a linear change in

phase fraction across the two-phase region, which is inconsistent with the skewed curves

of Fig. 5.3.

Another reason we doubt the conventional thermodynamic explanation of two-
phase coexistence is our evidence that through the two-phase region the compositions of
the bce and fcc phases are approximately the same. In particular, our data on lattice
parameters show that in the two-phase region, the fcc phase has a chemical composition

close to that of the alloy itself. It is difficult to determine a precise chemical composition of

a phase from its lattice parameter, but the data of Fig. 5.4 suggest that the fcc phase is
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enriched in Ni by perhaps only 3 % beyond the overall composition of the alloy. By
conservation of solute, the bcc phase must also have nearly the composition of the alloy.
Although not sufficient in themselves, our data on hyperfine magnetic fields are consistent
with the bcc phase having the composition of the bulk alloy. Our data cannot show an
absence of chemical segregation to much better than 3-4 %, but this accuracy is sufficient
for what follows. A previous study of as-milled alloys of Fe-Cu suggested that both the
bce and fec phases had nearly the same compositions [10], and we note that the elements

Fe and Cu are less miscible than Fe and Ni.

Another peculiarity of the two-phase region is that it becomes broader as the milling
intensity is increased. This is inconsistent with the general expectation that a higher ball
milling intensity should promote solid solubility. Notice that the broadening of the two-
phase region is asymmetrical; with higher milling intensity the fcc single-phase region grew

(

slightly, but the bcc single-phase region shrank more.

5.5 Interpretations of Two Phase Coexistence

Using results from previous assessments of the Fe-Ni phase diagram implemented
by the commercial software package Thermo-Calc [32,33], the Helmholtz free energy
versus composition was calculated for bee and fcc Fe-Ni alloys at various temperatures,
Fpcc(x,T) and Fgec(X,T). The dark curves in Fig. 5.10 are the calculations for Fyc and Fgec
at 300 K. These resuits were obtained by extrapolation of higher temperature data, so their
precise reliability is unknown. Nevertheless, it is interesting that the two curves cross at x
= 28, which is quite close to the compositions where the as-milled alloys have equal
fractions of the bce and fcc phases (x = 26 and 30 in Fig. 5.3). This crossing of free
energy curves defines the polymorphic transformation composition at the temperature of

interest. (We assume this temperature is 300 K, but Thermo-Calc results show that the
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polymorphic transformation composition does not vary strongly with temperature; it
decreases by only 4 % Ni when the temperature is raised from 300 K to 500 K.)
Polymorphic transformations involve a change in structure with no change in composition,
so0 it is not surprising that the polymorphic transformation line is relevant for as-milled
alloys. A similar argument was used previously for understanding extended solid

solubility in Fe-Cu [5-12].

A simple crossing of free energy curves cannot explain two-phase coexistence,
however. For compositions on either side of the crossing point of the two curves, the free
energy is minimized by the existence of only one phase. We have considered modifications
of the polymorphic transformation concept to explain two-phase coexistence in ball milled
Fe-Ni. These modifications presume that the alloy has spatial heterogeneities involving: 1)
composition, 2) temperature, 3) pressure, and 4) defect structures. In the present section

we discuss in sequence the success of these ideas.

Compositional heterogeneities would allow the Ni-rich regions to be fcc, and Ni-
poor regions to be bec, based on the free energy curves Fiec(X,T') and Fpce(X,T"). The
problem with this argument is that rather large compositional heterogeneities are required to
explain the data of Fig. 5.3. For example, in alloys with low Ni concentration this
argument predicts that the fcc regions would have Ni enrichments of more than 15%, and
our experimental results are inconsistent with such large chemical heterogeneities. A
second problem with the concept of compositional heterogeneities is that we would expect
the heterogeneities to be suppressed with higher milling intensity. With higher milling
intensity, however, the composition range for two-phase coexistence grows larger, in

contrast to this expectation.

The existence of thermal heterogeneities can cause two-phase coexistence if the

polymorphic transformation composition has a strong temperature dependence. For the bcc
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and fcc phases of Fe-Ni, however, Thermo-Calc calculations show that the polymorphic
transformation line is nearly vertical (see also Fig. 7 in [34]). Since the polymorphic
transformation composition changes little with temperature, temperature elevations of 500
K would be needed to obtain fcc phase in the Ni-poor alloys. The bee phase could not be

obtained in the Ni-rich alloys for any elevation of temperature.

Owing to the volume difference of 3 % between the bee and fee phases, pressure
heterogeneities will affect strongly the thermodynamic stabilities of the bee and fcc phases.
Since the bulk moduli of both phases are high, high elastic energies can be achieved with
modest internal strains. An elastic strain of 1% can increase the free energy of the bce
phase by several kJ/mole, so reasonable strains can cause large shifts of free energy
curves. There is certainly a distribution of internal strains in the as-milled alloys, as shown
by the data of Fig. 5.7b, and these internal strains are larger for the bce phase than for the
fce phase. Since the bee phase is also expected to have the larger elastic moduli, it has the
larger distribution of elastic energy density. We believe that these localized strain
distributions, which originate with dislocations and other defect structures, have major

effects on the stability of individual bee and fec crystallites.

We also expect the stability of bec or fce crystallites to be affected by the high
density of grain boundaries, which are capable of elevating bulk enthalpies by several
kJ/mole [2]. The grain boundary energy cannot be understood easily as a property of one
crystallite or another, but this is not necessary. Regions rich in small bce crystallites, for

example, will be expected to have a higher internal energy than will regions rich in larger

fce crystallites.

We do not know accurately the relative importance of grain boundaries and other

defects in affecting the free energy, although the two peaks in the DSC traces, the strain

recovery peak and the grain growth peak, have about equal areas. Similarly, our x-ray
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lineshape analysis does not provide precise numbers for the grain sizes and the root-mean-
squared strains. Nevertheless, we can state with confidence that the enthalpy measured by
DSC scans of the bce material (about 1.5 kJ/mol) is greater than that of the fcc material
(about 0.5 kJ/mol), and the x-ray peaks from the bcc phase are broadened more strongly
than the fcc peaks. Besides the larger defect enthalpy in the bcc phase, we have the
following evidence that there is a larger distribution in defect enthalpy in the bcc phase.
Dark field transmission electron microscopy studies of grain size distributions in ball-milled
alloys have shown a broad distribution of crystallite sizes [26,27], and this is consistent
with the tendency of diffraction peaks from ball milled materials to have Lorentzian shapes
[35]. Our x-ray diffraction peaks were not accurately Lorentzian functions, but they did
show strong intensities in their tails, and more so for the bcc alloys. The root-mean-
squared strain measured for the bece alloys, which was about twice as large as for the fcc

alloys, originates from a large distribution of local interplanary spacing in the alloy.

With a distribution of grain sizes and a distribution of internal strains, we expect
that different crystallites will be destabilized by different amounts. In what follows, we
consider in a general sense the heterogeneities in free energies of the bee and fec phases in
Fe-Ni alloys prepared by ball milling. The free energy is considered in the sense of a
“coarse-grained” free energy, where the coarse graining encompasses several crystallites.
The meaning of the internal energy is not a serious problem in principle, since we can add
to the internal energy new contributions from defect density and grain size. The magnitude
of the excess entropy induced by ball milling, however, is less clear. The simple approach
is to ignore it, and we justify this as follows. Microstructural features such as dislocations
and grain boundaries are often termed “non-thermodynamic”, because their abundance in
thermodynamic equilibrium is essentially negligible. This can be true only if they are
responsible for a relatively minor increase in the entropy of the alloy, but a relatively large

increase in enthalpy. To a first approximation, our picture of an increased free energy in
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ball-milled materials reflects primarily an increase in the internal energy due to the

microstructural defects created by milling.

To accommodate the spatial heterogeneities in coarse-grained free energy, we
modify Fig. 5.10 by drawing a band above the calculated dark curves for Fycc and Fgec.
The bands serve to indicate approximately the distribution of free energy that exists for the
fce and bec regions of differing defect densities. Since the x-ray diffraction peak shapes do
not depend on composition for either the bee or fcc phases (Figs. 5.5, 5.7), we have
represented the elevation of the free energy curves as equal vertical shifts at all
compositions. The centers of the bands match the average enthalpy measured from DSC
scans of bce and fcc material. In milled materials we might expect upwards translations of
the free energy bands that will contribute to the heat evolution measured in a DSC
experiment. However, the lattice parameters of Fig. 5.4 agree reasonably well with those
of bulk Fe-Ni alloys compiled by the JCPDS [30,31], indicating that there is no overall
average strain in the material. It seems plausible that the bottoms of the free energy bands,

associated with the least defective regions, are not altered significantly by ball milling.

During milling, we assume it is possible for a crystallite of one phase to transform
into a crystallite of the other phase when the local coarse-grained free energy favors the
transformation. (There may be a nucleation impediment to this transformation, but
nucleation should be less of a problem when both phases are already present in the alloy, or
when martensitic transformations can occur.) Such a transformation could occur if the
chemical contribution to the free energy is not favorable, provided that the defect enthalpy
is reduced significantly by the transformation. Such transformations of the more defective
crystallites would be expected to occur in the composition range from 17 < x < 33, where
the free energy bands for the fcc and bee phases overlap in Fig. 5.10. We have drawn
vertical dashed lines in Fig. 5.10 to indicate the expected two-phase region. We expect that

for compositions x < 17, the chemical preference for the bee phase is too large to be
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overcome by milling-induced defects. Similarly for x > 33, the defect density in the fcc
phase is insufficient for fcc crystallites to be destabilized with respect to perfect bee

crystallites.

The overlap of the free energy bands in Fig. 5.10 can explain qualitatively the
occurrence of two-phase coexistence in Fig. 5.3, but a little more detail is required to
explain the asymmetrical phase fraction curves in Fig. 5.3 (i.e., the negative skewness for
the fraction of fcc phase). We propose two reasons for this asymmetry. Differences in
curvature of the Thermo-Calc free energy curves of the bee and fec phase (see Fig. 5.10)
cause the bece and fcc free energy bands to approach each other on the Fe-rich side of the
polymorphic transformation composition. The increased overlap of these bands will extend
the range of fcc phase to lower Ni concentrations. Our second proposed reason for the
asymmetrical phase fraction curves in Fig. 5.3 involves asymmetrical distribution functions
for the coarse-grained free energies of the fcc- and bece-rich regions. Figure 5.11 shows
the type of free energy distribution functions™ that are needed to predict the skewness of the
phase fraction data of Fig. 5.3. We have drawn a positive skewness of the distribution
functions in Fig. 5.11, and a wider spread of the bcc free energy distribution function,
Pbcc(F,x,T=300K), compared to the fcc free energy distribution function,
ptec(F,x,T=300K). Each of the distribution functions has been normalized to unity:

o0 o0

1 = fpbcc(F,x',T‘) dfF 1 = jpfcc(F,x',T') df . (5.1)

A two-phase alloy need not have regions that fill all states in pycc and pgcc, however.

Instead, we expect that the states to be filled approximately to a maximum, Fg, defined” so

that:

* For conventional thermodynamics as in Thermo-Calc calculations, the distribution functions in Fig. 8
would be Dirac delta functions whose positions change with composition.

* This argument runs parallel to the using a density of states function for electrons, p(E), that is filled to a
Fermi level, EF, defined at low temperature as the energy that accounts for all electrons.
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FIG. 5.11.  Semi-quantitative distributions of free energy functions
for bee and fec Fe-Ni alloys of three compositions at 300 K after ball milling.

The lowest energies of each curve were obtained from the dark curves of Fig.

5.10 for compositions x = 20, 28, and 33, respectively.
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Fr
L= [ proc(Fx',T") + pocc(BX,T) dF . (5.2)

-0

Vertical lines mark the values of Fg for the three cases shown in Fig. 5.11. Note in
particular that at the composition corresponding to the crossover of the free energy curves
(x = 28), a greater fraction of fcc phase is expected than bcc phase. By shifting the
bottoms of the distribution functions in Fig. 5.11 to coincide with the compositions
provided by the Thermo-Calc free energy curves of Fig. 5.10, the asymmetry of the phase

fraction data of Fig. 5.2 is predicted qualitatively.

The prediction of the asymmetrical phase fraction curves in Fig. 5.3 requires that
Pbec(F,x',T") has a tail that extends to higher F than the tail of pg.c(F.x',T"). With
increased milling intensity, we expect this tail of ppcc(F,c’,T") to extend to yet higher F.
We can then understand how with increased milling intensity, the two-phase region should
extend further into the region of low Ni concentration because Fg moves upwards to

include relatively more of the fcc phase. The effect of milling intensity on the free energy

distribution of the fcc phase, pf.c(F,c',T"), is evidently less strong.

5.6 Comparison to Two-Phase Coexistence in Other

Processings

Our interpretation of two-phase coexistence in as-milled Fe-Ni involves a larger
distribution of the coarse-grained free energy for the bee phase than the fcc phase. This
interpretation is based on the bcc phase accumulating a higher density of defects and
smaller grains during milling. This type of enthalpy buildup may be unique to ball milling,

so it is interesting to compare the composition range for two-phase coexistence in ball
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176

milled Fe-Ni alloys to the composition range for two-phase coexistence for other
nonequilibrium processings. Figure 5.12 compares the phase boundaries of the bcc and
fcc phases of Fe-Ni for five different types of processing. Thermodynamic equilibrium at
room temperature shows a broad two-phase region, bounded on the right by L1 ordered
NisFe, which is a sluggishly-ordering superstructure based on an fcc lattice. Thermal
evaporation [36] and sputtering [37] produce alloys with a narrower range of two-phase
coexistence, as expected. Note, however, that thermal evaporation and sputtering produce
two-phase regions that are located more centrally in the two-phase region of the equilibrium
diagram. In comparison, ball milling produces a two-phase region that is shifted to low Ni
concentrations, and becomes more so with increased milling intensity. It seems that ball
milling differs from the thin film preparation methods in that it produces a higher defect
enthalpy in the bce phase than the fcc phase. It would be interesting to compare the phase
fractions across the two-phase regions for Fe-Ni alloys synthesized by thermal evaporation

or sputtering.

5.7 Summary

We synthesized mechanically-alloyed Fe1goNix alloys over the range of x from 0
to 50. Our Spex mill was modified so that it could also operate at a significantly reduced
milling intensity, and we compared the materials milled for long milling times with the
normal and reduced intensities. We found that the composition ranges of the bcc and fec
single phase regions were greatly extended with respect to their equilibrium ranges. At the
higher milling intensity, we found that the bcc phase was destabilized with respect to the
fcc phase, and the two-phase region shifted to lower Ni concentrations. Lattice parameters

measured by x-ray diffractometry, and hyperfine magnetic fields measured by Mossbauer

spectrometry, indicated that the chemical compositions of the individual phases in the as-
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milled alloys were the same as the overall composition of the alloy. We therefore expect
the thermodynamic phase preference of as-milled Fe-Ni to be influenced by the
polymorphic transformation line. In fact, the composition range for two-phase coexistence

in as-milled Fe-Ni does enclose the polymorphic transformation composition.

In DSC scans, we measured enthalpies for defect recovery in the fcc and bee alloys
of about 0.5 and 1.5 kJ/mole, respectively. X-ray lineshape analysis showed that there
was a large distribution in the internal strains of the as-milled crystallites. We found
evidence for a distribution in the crystallite sizes, and a distribution in crystallite sizes in as-
milled materials 1s generally expected. We propose that heterogeneities in the defect
enthalpy of the fcc and (especially) the bce phase will effectively broaden the free energy
curves. We propose that the distribution in the defect enthalpies is responsible for the
region of two-phase coexistence around the polymorphic transformation composition.
Near the polymorphic transformation composition, the free energy curves of the bec and
fcc phase are not strongly separated, so it may be possible for highly defective bee-rich
regions to transform into fcc phase, even though the Ni concentration may be a bit below
the polymorphic transformation composition. We can predict semiquantitatively the
composition range of two-phase coexistence by broadening upwards the Thermo-Calc free
energy curves by average amounts equal to the enthalpies measured in DSC scans for bce
and fcc alloys. The asymmetrical phase fraction curves can be understood by the
differences in curvature of the bec and fec free energy curves, or by a high energy tail of
the bee free energy curve. If the bece free energy curve broadens upwards with milling
intensity more than does the fcc free energy curve, we can understand the shift with milling

intensity of the composition range for two-phase coexistence.
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Chapter 6. Temperature Effects on Ball Milling of Ni3Fe and
Fe3X (X = Si, Zn, Sn) Nanocrystalline Alloys

This chapter [1] describes studies of ball milling of Ni3Fe and Fe3X (X = Si, Zn,
Sn) at temperatures from 23 °C to 300 °C. The average grain size, internal strain
distribution, and thermal stability against grain growth and equilibrium phase formation of
as-milled powders were measured and compared for different milling temperatures. The
effect of milling temperature was little different from the role of temperature itself on the

microstructure of nanocrystalline materials.

6.1 Introduction

During high energy ball milling, substantial structural disorder in the powder
material is created during severe mechanical deformation. During and after milling the
powder materials are not in a state of thermodynamic equilibrium, but a steady
microstructural state is typically achieved after tens of hours of milling. High energy ball
milling has been used to synthesize nonequilibrium materials such as metallic glasses [2-
16], and more recently nanophase materials [13-21]. These nonequilibrium materials are
unstable at low temperatures, and will usually form large grains of equilibrium crystalline
phases when annealed at low temperatures of a few hundred degrees Celsius. The thermal
stability of nanophase materials is important for both fundamental and technological
reasons. It seems plausible that the control of temperature during the synthesis of
nanophase materials can affect their subsequent thermal stability. A secondary goal of the
present study of ball milling at elevated temperatures was to test if the thermal stability of

the as-milled nanophase materials was affected by the temperature of miﬁing. The primary

goal of our present study was to find how the steady state grain size depends on the
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temperature of ball-milling, and to identify alloy characteristics that may affect this

temperature dependence.

Some work on ball milling at elevated temperatures [22-26] has been reported
previously. The top of Table 6.1 summarizes the available steady state results on
temperature dependent ball milling of Zr-Al [22, 23], and Ti-Cu [24, 25]. The average
atomic strain of Zrg7 sAl12 5 and pure Zr after ball milling at 300 °C was smaller than after
milling at 23 °C. This is not surprising, as thermal relaxation is expected during milling at
300 °C. What is surprising, however, is that the reported grain sizes of Zrg7 5Al12 5 and
TigsCus after milling at 300 °C were smaller than after milling at 23 °C. This is in
contradiction with results on elemental Zr [22, 23]. These currently available results are
interesting, but not yet systematic. We therefore performed an investigation of the effect of
temperature on the steady state microstructures achieved by ball milling, using alloys that
form either intermetallic compounds or supersaturated solid solutions in thermodynamic
equilibrinm. We report results on the binary alloys NizFe and Fe3X (X = Si, Zn, Sn).
The thermodynamic equilibrium states of these alloys at low temperatures are L1, order,

DOj order, or two-phase mixtures, as listed in the second column of Table 6.1.
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TABLE 6.1. Steady States of Ball Milling at Different Temperatures
Alloy | Equili- |Structure} Ball |Averagel Mean | DSC | A, | Metallic
briom | After | Milling | Grain |[Square] Peak 10-3 Radius
State | Ball | Temp- | Size |Strain |Position|*;” "|Difference
Milling | erature | A) | %) | cO | A A)
Previous Results [22-25]
Pure Zr | A3 A3 23 °C 140 | 0.4 0.89
(hep) | (hep) | 300°c | 160 | 0.3
Zrg75- | 2-phase| A3 23°C 100 | 0.6 550 |-6.7] 0.16
Al (hep) | 300°c | 60 | 0.2 | 525
Tigs- |2-phase| A3 23 °C 160 360 {-6.31 0.17
Cu hc o
5 | &ep) | 300°c | 80 370 _
Present Results
NisFe | Ll» fcc 23°C 134 1 0.56 | 510 [2.12 0
200°C | 155 1045
300°C | 187 | 0.36
Fes3Si | DOs bee 23°C 82 1.06 | 465 [1.33] 0.07
300 °C 92 {0.79
Fe3Zn }2-phase| bee 23°C 112 1 0.66 | 357 |1.18] 0.15
200°C | 118 [ 0.57
300°C | 129 | 0.51
Fe3Sn |2-phase| bee 23 °C 61 0.765] 365 0 0.22
200 °C 61 ]0.762
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6.2 Experimental

Some general experimental procedures of ball milling were described in Section
1.2.2. Here we provide some additional details. The starting materials for ball milling
were NizFe powders filed from ingots prepared by arc melting in an argon atmosphere, or
mixtures of Fe and X elemental powders at an atomic ration of 3:.1 (Section 1.2.2).
Temperature-dependent ball milling was performed in a vibratory ball mill NEV-MAS8
(Nisshin Giken, Japan), shown in Fig. 6.1. Cu gaskets were used to seal the vials to
prevent gas contamination during ball milling. Chemical analysis indicated that oxygen
contamination was less than 0.5 at.%, and contamination from Fe in the balls and vial was
less than 0.5 at.% after 48 hours of milling [22-25]. For milling at room temperature
(nominally 23 °C), the outside surface of the vial was cooled by flowing cold water. For
high temperature milling, the vial was heated with an electrical resistance heater in contact
with the vial. Temperatures of 200 °C and 300 °C were maintained by feedback control
with a thermocouple mounted between the heater and the vial. After high temperature
milling, the vial was quenched immediately into cold water to avoid possible grain growth

or strain relaxation.
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FIG. 6.1.
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6.3 Results and Discussion

Crystal structure information is summarized in the third column in Table 6.1. After
ball-milling at any of our temperatures, Ni3Fe had the fcc structure while our Fe3 X (X =
Si, Zn, Sn) alloys had the bcc structure. Figure 6.2 presents x-ray diffraction patterns of
NisFe, measured after 48 hours milling at 23 °C, 200 °C and 300 °C. It can be seen that the
diffraction peaks of NisFe are narrower after higher temperature ball milling. Figures 6.3a
and 6.3b present the average grain sizes determined by Scherrer broadening of fcc (111)
peaks and root-mean-squared (RMS) strains determined by the method of Williamson and
Hall (Section 1.3.1) for NisFe milled for various times at 23 °C, 200 °C and 300 °C.
Higher milling temperatures result in larger average grain sizes and smaller RMS strains.
For all milling temperatures, we believe that 48 hours of milling time is more than sufficient
to achieve a steady state of the alloy microstructure. All new data in Table 6.1 were

obtained for samples ball milled for 48 hours.

We first present and discuss our results from Fe3Zn. Figure 6.4 shows x-ray
diffraction patterns of as-milled Fe3Zn samples. The only difference visible among all
three patterns is that the peaks are narrower after higher temperature ball milling, as for
NisFe in Fig. 6.2. The as-milled samples were single-phase bcc at all milling
temperatures, even though the thermodynamic equilibrium solubility of Zn in o-Fe is less
than 2 at.%. We suspect that there was some clustering or inhomogeneous distribution
(i.e., concentration fluctuation) of Zn atoms on the bcc lattice, because the hyperfine
magnetic field (HMF) distributions shown in Fig. 6.5 of these Fe3Zn alloys peaked around
a large value of 310 kG in a distribution that was narrower than expected for a disordered
solid solution [27]. However, we cannot prove this rigorously. We note also that bec Fe-
Zn alloys were reported previously for alloys prepared by sputtering [28)] and cathodic

pulverization [29], and these authors report some tendency for Zn clustering in more
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FIG. 6.3. (a) Average grain sizes, and (b) Root-mean-squared (RMS)

strains of Ni3Fe after ball milling for various times at the indicated temperatures.
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concentrated alloys. Also worth noticing in Fig. 6.5 is the similarity of all three HMF
distributions, even though the samples were ball milled at different temperatures.
Annealing of the as-milled FesZn materials for 1 hour at 300 °C causes phase separation
and grain growth, regardless of the milling temperature. However, ball milling at 300 °C
for 48 hours causes neither phase separation nor grain growth. In fact there was only a
small difference in grain size between materials milled at 23 °C and 300 °C. Evidently ball
milling, even at high temperature, suppresses the thermodynamic tendencies for both phase
separation and normal grain growth, and results in single-phase disordered bcc

nanocrystalline alloys.

The extreme similarity of the x-ray diffraction patterns in Fig. 6.2 and the HMF
distributions in Fig. 6.5 suggests similar microstructures and therefore similar thermal
stabilities for all three FesZn samples. Indeed, DSC scans of the 48 h ball milled samples
of FesZn match each other very closely, as shown in Fig. 6.6. For all three milling
temperatures, an exothermic peak is found at 357 °C. With x-ray diffractometry we
determined that this peak originated from both phase separation and grain growth. The
slight decrease of the depth of the peak with increasing ball milling temperature was
attributed to larger grain size and smaller strain due to higher ball milling temperature.
Otherwise perhaps surprisingly, the thermal stabilities of the as-milled FezZn materials
were not measurably affected by the choice of milling temperature.

Similar results were obtained for Fe3Si. Figure 1.15 shows the DSC scan of the
Fe3Si sample ball milled at 300 °C. The scan for the sample ball milled at 23 °C is not
shown in Fig. 1.15, but is very similar. There is a broad exothermic peak at 465 °C. The
as-milled Fe3Si samples were annealed at a heating rate of 20 °C per minute up to various
temperatures, 170 °C, 400 °C, 450 °C, 500 °C, 550 °C, 600 °C, and then were rapidly

cooled to room temperature. The annealed samples were then characterized by x-ray
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diffractometry and Mossbauer spectrometry. The average grain sizes and root-mean-
squared strains measured from the x-ray diffraction patterns are presented as functions of
the ultimate annealing temperature in Figs. 6.7a and 6.7b, respectively. Substantial grain
growth was found only after heating to 400 °C for both samples, while most strain release
occurred between 170°C and 500 °C. Both grain growth and strain release contributed to
the broad exothermic DSC peak at 465 °C, but there was little difference in the thermal
stability against grain growth or strain release between samples ball milled at 23 °C or 300

°C.

Both x-ray diffraction patterns and Mdssbauer spectra of the annealed samples ball
milled at both temperatures showed that substantial DO3 ordering also occurred between
400 °C and 600 °C, and this also contributed to the DSC peak. One of the Mdssbauer
spectra is shown in Fig. 1.12, and the hyperfine magnetic field (HMF) distributions
extracted from all Mossbauer spectra are shown in Fig. 6.8. The two peaks near 200 kG
and 310 kG grew with increasing annealing temperature. They had a ratio close to 2:1 after
heating to 600 °C, signifying DO3 order of FesX alloys. From this HMF distribution, we
determined in Section 1.3.3 that the actual chemical composition of this sample was Fe-
23.9 at.%. The extra one percent of Fe was due to contamination from the milling tools.
At lower temperatures (200 °C, 100 °C, 23 °C, etc.), the amount of Fe contamination is
expected to be smaller. The (1/2 1/2 1/2) and (100) superlattice peaks of DO3 order in
Fe3X alloys were also observed to develop after heating to 450 °C, and are shown in Fig.
6.9. They grew with increasing annealing temperature, and reached an intensity ratio (after
appropriate corrections described in Section 1.3.1) close to 2:1 at 600 °C. (However, the
intensity ratios were quite different from 2:1 for other temperatures, especially 500 °C and
550 °C, indicating partial B2-like DO3 order at these temperatures. It is a transient state as
it quickly gave way to perfect DO3 order with 2:1 peak intensity ratio upon heating to 600

°C. See Chapter 2 for more information on transient states, and Chapter 7 for another
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experimental example of transient state of order) Consistent with DO3 ordering as well as
strain release, the lattice parameters measured from x-ray diffraction patterns also decreased
substantially after heating in the DSC to temperatures between 170 °C and 550 °C, as
shown in Fig. 6.10. None of grain growth, strain release, DO3 ordering, or decrease of
lattice parameters show any obvious difference between Fe3Si ball milled at 23 °C and 300
°C. That is, the temperature of milling had little effect on the thermal stability of as-milled

Fe3Si samples.

We found many similarities in the results of elevated temperature ball milling of
NijzFe, FezZn, Fes3Si, and Fe3Sn. X-ray diffractometry, transmission electron
microscopy, and Mdossbauer spectrometry all showed no difference except grain size and
strain among alloys ball milled at different temperatures. A strong exothermic peak was
found in all DSC traces, although it was weaker in the case of NizFe. For all alloys we
confirmed by x-ray diffractometry (from materials run to temperatures below and above the
exotherm) that this exotherm marked the simultaneous occurrence of grain growth, strain
release, and the development of the equilibrium phases listed in Table 6.1. The
temperatures of the exotherms were nearly identical for materials milled at either 23 °C or
300 °C, and these temperatures are listed in Table 6.1. For all alloys studied here, the grain
size after ball milling for 48 h was larger for materials milled at the higher temperatures.
The average grain sizes as functions of ball milling temperature are shown in Fig. 6.11. It
was also found that the root-mean-squared strain was always smaller after high temperature
milling, consistent with previous work [22-25]. We expect that the role of temperature
during milling is to increase atomic diffusivity, which promotes both grain growth and
strain relaxation. The systematics is not simple, however, since the low temperature DSC
exotherms of Fe3Sn and FeaZn indicate high atom mobilities at low temperatures, but these

two alloys are relatively stable against grain growth during high temperature milling.
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Among the alloys listed in Table 6.1, there are distinct differences in the effect of
milling temperature on the as-milled grain size. There was slight increase of grain size with
ball milling temperature for most of the alloys. We tentatively choose to parameterize the
sensitivity of grain size to milling temperature by using the difference in curvature of the
grains in samples milled at 23 °C and 300 °C. We define a temperature sensitivity

parameter, Ak, as:

1

N S
K= g , (6.1)

A T

~

where 1/dgrt is an averaged grain curvature of the alloy milled at 23 °C (drr is the grain
size), and 1/dygr is an averaged grain curvature of the alloy milled at 300 °C. There is
nothing fundamental about the choice of 23 °C and 300 °C for determining the effect of
temperature on grain growth, and our definition of Ax was determined largely by our

ability to perform systematic experiments.

For the alloys in the present study, we found that the temperature sensitivity
parameter, Ax, correlated rather well with the difference in metallic radius of the two
components in the alloy, Irpe — rxl. Both Ax and Irge — rx! are listed in the right-hand
columns of Table 6.1.* The temperature sensitivity parameter, Ax, decreases with the
difference in metallic radius. It seems that for alloys with larger differences in metallic
radius, the thermal tendencies for grain growth become less effective in competing with the
grain reduction that is driven by milling. In a pair of “unsuccessful” experiments, we
found that when the difference in metallic radius is even larger, it was impossible to make
an alloy of the two components (FezIn) or the resulting alloy was amorphous (FezHf). We
noticed that the previous results on Ti-Cu and Zr-Al do not agree with the trend reported
here. We tried to repeat the Zr-Al experiment but had little success due to various problems

such as adherence of materials to the milling tools.

* For our three bee alloys, the root-mean-squared strain also correlates with the difference in metallic radius.
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6.4 Summary

Ball milling of NizFe and Fe3X ( X = Si, Zn, Sn) was performed at temperatures
from 23 °C to 300 °C. In all alloys, the root-mean-squared strain in the material was lower
for the materials milled at higher temperatures. In the alloys studied in the present work,
the grain size was larger for materials milled at higher temperatures. Perhaps surprisingly,
it was found that the different milling temperatures had no effect on the subsequent thermal
stability of the materials against grain growth, strain release, and equilibrium phase
formation, which occurred nearly simultaneously when the materials were heated to
temperatures of 350 to 550 °C. For the different alloys, however, their as-milled grain
sizes had different sensitivities to the milling temperature. The temperature sensitivity

seems to decrease for larger differences in the metallic radii of the elements in the alloy.
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Chapter 7. Extended Solid Solubility in Ball Milled Fe3X (X =
Al, As, Ge, In, Sb, Si, Sn, Zn) Nanocrystalline Alloys

7.1 Introduction

It is well-established that high energy ball milling can be used to synthesize alloy
phases with extended solid solubilities. References [1-14], for example, include reports of
extended solid solubilities, although solubility was not always the main topic of study. A
systematic study of extended solid solubility promoted by mechanical alloying is best
performed with similar solutes under identical experimental conditions. This chapter is
such a study of extended solubility in bce Fe of the main group (IIB, IIIB, IVB, and VB)
solutes Al, As, Ge, In, Sb, Si, Sn, Zn [15]. X-ray diffractometry was our main technique
for determining if the as-milled alloys were bcc, ordered bec, or if they comprised a
mixture of equilibrium compounds. Mdssbauer spectrometry was employed and proved

useful for obtaining information on local chemistry and short-range order in the bcce phase.

We show that the systematics of phase formation in the as-milled phases can be
explained with the first two Hume-Rothery rules [26-28]. We implement these two rules
with a Darken-Gurry plot of electronegativity versus metallic radius {28,29]. Mechanical
alloying extends the compositional range of becc solid solubility from the typical 5% for
alloys in thermodynamic equilibrium, to 25% in the as-milled nanocrystalline alloys of the
present study. Annealing of the as-milled Fe3Ge and Fe3Sn leads to transient appearance
of DO3 order and B2 order before the alloys develop equilibrium phases. The transient
ordered phase found in annealed Fe3Ge was much more stable than that in Fe3Sn, perhaps

because of the better match of the metallic radii between Fe and Ge.

There has been recent interest in transient phase formation during the thermal

annealing of nonequilibrium alloys. When the transient states occur far from
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thermodynamic equilibrium, transient state formation is best understood by kinetic, rather
than thermodynamic arguments [16-20, Chapter 4]. In cases where the equilibrium phases
form by nucleation and growth, however, thermodynamic explanations with an assumption
of suppressed nucleation may be appropriate [21-23]. We have been studying
experimentally the kinetic transients in ordered phases [24], including powders prepared by
mechanical alloying [25]. Here transient order in Fe3Ge and Fe3Sn was observed upon
annealing. We interpret the transient states of D03 and B2 order as an expedient

mechanism to reduce free energy before the formation of the equilibrium phases.

7.2 Experimental Results

In our study of extended solid solubility in this chapter, Fe contamination was a
concern. Chemical compositions and micron-scale chemical homogeneities were checked
using a JEOL Superprobe 733 electron microprobe. Iron contamination from the milling
media was significant only for the Fe3Si alloys, which gained about 2 at.% Fe. This is a
little bit more that the 1 at.% Fe gained in the temperature-dependent ball milling
experiments presented in last chapter, perhaps due to the much higher ball milling intensity

in the study.

X-ray diffraction patterns from the as-milled alloys prepared in this work are
presented in Fig. 7.1. The as-milled alloys of Fe3Al, Fe3Ge, FesSi, Fe3Zn were almost
entirely the bee phase. The alloys of Fe3As and Fe3Sb contained some bce phase, although
with the presence of a second phase we cannot be sure that the stoichiometry of the bcc
phase was Fe3X. In the last chapter, we decided results of a study on bcc FesZn

nanocrystalline alloys obtained by high and room temperature ball milling [13, Chapter 6].
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FIG. 7.1. X-ray diffraction patterns from as-milled powders of Fe-X
powders mixed in 3:1 stoichiometry. Milling time in the Spex mill was 24 hours,
except for Fe-Ge (16h) and Fe-As (50 h). The Fe-Si powders were milled in

tungsten carbide vials, so small peaks from the milling media are seen.
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TABLE 7.1. X-Ray Measurements on bcc Phase of As-Milled Powders

Alloy lattice constant (nm)  grain size (nm) strain

FezAl 0.291 11.7 6.70%
FezAs 0.290 8.4 1.02%
Fe3Sb 0.295 6.0 0.80 %
Fe3Sn 0.298 6.0 0.78 %
Fe3Zn 0.292 13.3 0.62 %
Fes3Si 0.285 9.6 1.10%

FesGe 0.290 8.4 1.10%
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We note also that bce Fe-Zn alloys prepared by sputtering [30] and cathodic pulverization
[31] were reported previously, and these authors report some tendency for Zn clustering in

more concentrated alloys.

Table 7.1 presents results from the analysis of x-ray diffraction peaks from the bcc
phases. The lattice parameters were obtained by the Nelson-Riley extrapolation method
with the (110), (200), (211), and (220) diffractions. The grain sizes‘in Table 7.1 were
obtained by a Scherrer analysis of the (110) diffraction peaks, and the root-mean-squared
strains from the (110), (200), (211), and (220) diffractions by the method of Williamson
and Hall (Section 1.3.1). From Table 7.1, all the bcc phases are nanocrystalline alloys.

In as-milled Fe3As and Fe3Sb, the B8 (NiAs) intermetallic phase was found along
with the bee phase. In spite of our best efforts, the Fe-In powders did not form an alloy.
Although there were problems with adhesion of In to the walls of the vial, the experimental
configuration should have allowed for some alloying of the Fe and In powders. We also
milled Fe-In with surfactants such as hexane, but again no alloy was formed. We note that

Fe-Sb alloys prepared by sputtering were found to be amorphous [32,33].

Figure 7.2 shows x-ray diffraction patterns for Fe3Sn in the as-milled condition,
and after annealing. A bcc phase is not the equilibrium phase according to the phase
diagram [34], which shows a two-phase region below 600 °C and a hexagonal phase
intermetallic compound at higher temperatures (750-880 °C). Nasu et al. [35] used
M@ossbauer spectrometry to infer the formation of a bec Fe-Sn solid solution by mechanical

alloying. The presence of B2 order has been reported in splat-quenched Fe3Sn [36].

Besides the fundamental diffractions of the disordered bcc phase, the x-ray
diffraction pattern of Fe3Sn had a (100) superlattice diffraction characteristic of B2 order at

20 = 35°. We were concerned that this diffraction could have originated from another

intermetallic phase, however. The hexagonal B8 (NiAs) structure is such a candidate,
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FIG. 7.2. X-ray diffraction patterns from Fe3Sn powder in the as-

milled state, after annealing at 300 °C for 2 h, after annealing at 300 °C for 4

hours, and after annealing at 500 °C for 5 hours. Inset is an enlargement of

the region near the (100) superlattice diffraction of the three lower

diffraction patterns.
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°C for 5 hours.
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hours (dashed curve). Lower pair was calculated as described in the text for states
of partial B2 order determined from x-ray diffractometry: L=0.36 (solid curve), and
L=0.49 (dashed curve).
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although with increasing transition metal concentration this structure goes continuously to
the B8, (NizIn type) [26]. The Y phase of composition Fe13Snyg has this B8; structure
[37]. In the present work we used mechanical alloying to prepare an alloy of Fe13Snjg
stoichiometry, and we found a B8, (NipIn type) structure for the as-milled alloy. Although
the (101) diffraction for the B8, structure coincides with the (100) reflection of the B2
structure, other diffractions of the B8, structure were not observed in the as-milled Fe3Sn.
We are confident that the observed diffraction pattern of the as-milled Fe3Sn indicated B2
order in the alloy. The same result was obtained on ball milling of Fe3Sn at elevated
temperatures as described in Chapter 6. As-milled FegoSnyg and FegsSnqs also had
diffraction patterns characteristic of a B2 structure, but their (100) diffractions were
weaker. We also believe that there is some B2 order in the bec phase of the as-milled Fe-
Sb alloy, since the peak at 26 = 35° is so much stronger than expected from the B8 phase

alone.

The amount of B2 order in Fe3Sn increased upon annealing at low temperatures, as
shown in the inset of Fig. 7.2. The intensity of the (100) superlattice peak increases from
3.9 percent of the fundamental (110) peak for the as-milled sample, to 6.5 percent after
annealing at 300 °C for two hours. By calculating the intensities of (100) superlattice
diffractions for various degrees of order in the Fe3Sn (including multiplicity, Lorentz-
polarization, and form factor corrections [38]), we found this change corresponded to an
increase in the Bragg-Williams LRO parameter, L, from 0.35 to nearly 0.50 (where 0.50 is
the highest possible degree of order for the Fe3Sn stoichiometry). Upon further annealing
there is the growth of the equilibrium hexagonal B35 FeSn phase plus bce a-Fe, as seen by
the new diffraction peaks from the sample annealed for 4 hours. The diffraction pattern for
a sample annealed at 500 °C for 5 hours (Fig. 7.2) shows the final phase separation into o-

Fe and B35 FeSn, consistent with the phase diagram [34].
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The presence of B2 order in the as-milled material, and its increase upon annealing,
was also confirmed by measurements of Mossbauer spectra and HMF distributioné (Figs.
7.3 and 7.4). A nonmagnetic solute atom such as Sn will reduce the HMF at a neighboring
57Fe atom, and the HMF distribution can be used to obtain the distribution of solute
neighbo;s about 57Fe atoms [39]. Such assignments of peaks in the HMF distribution to
57Fe atoms with different numbers of first-neighbor solute atoms were shown to be very
similar for the alloys Fe3Al, Fe3Si, FesGe, and Fe3Ga [40]. We make similar assignments
here for Fe3Sn, since the 57Fe HMF perturbations caused by Sn neighbors are expected to
be like those of other non-magnetic solutes [39]. Our assignments are shown as numbers
at the top of Fig. 7.4. To help check these assignments, and to interpret the changes in
these solute neighborhoods upon B2 ordering, a Monte Carlo simulation was performed as
described in Chapter 2. The only difference from Chapter 2 and Chapter 4 is that we
simulated an AB3 alloy (instead of an AB alloy) of 65,536 atoms with first neighbor pair
potentials of Vaa = Vpg = 1.5 kT and Vg = 0. For simulated alloys having values of L =
0.36 and 0.49, we determined the distribution of the number of A-atoms in the first nearest
neighbor shell of the B-atoms by finding all B-atoms and counting their neighbors.
Simulated HMF distributions were then obtained by superposing Gaussian functions
centered at the HMFs determined experimentally for each of the nine possible nearest
neighbor configurations (B atoms with 0 to 8 A-neighbors), but with amplitudes
determined from these computed nearest neighbor distributions. These simulated HMF
distributions are presented as the lower pair of curves in Fig. 7.4. They should correspond
approximately to the top two pairs of curves in Fig. 7.4, which are the experimentally
determined HMF distributions for Fe755ny5 and FegoSnyg as-milled, and after annealing at
300 °C for 2 h. There is good qualitative agreement between the simulated and
experimental HMF distributions. In both the simulated and the experimental HMF

distributions, the probabilities of Fe atoms having 1 or 2 solute neighbors decrease upon
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B2 ordering, whereas the probabilities increase for Fe atoms having 4, 5 or 6 solute
neighbors. We tried to perform a more detailed analysis in which we assumed that the Sn
concentration in the alloy was inhomogeneous with Sn-rich and Sn-poor regions in the bee
phase. These assumptions did improve the agreement between the calculated and the
experimental HMF distributions, but we are not confident that the systematics of the HMF
distributions in concentrated Fe-Sn alloys are sufficiently well understood to justify such

detailed interpretations.

7.3 Extended Solid Solubility

The most important Hume-Rothery rule for solid solubility is the size factor rule
[27], which states that good solubility (5 at.% at modest temperatures) requires that the
metallic radii of the solute atom and matrix atom differ by less than 15 %. Figure 7.6
shows the metallic radii [26,43] of the solutes in the present study. Approximate
boundaries are drawn to show the phases of our as-milled Fe3X alloys. These phases
correlate reasonably well to the metallic radius of the solute atom, although the as-milled
Fe3As did contain a significant amount of intermetallic second phase. The 15% rule seems
reasonably successful for the alloys in the present study prepared by ball milling, although
here we are considering a much larger solubility, 25%, than the 5% that is typically used to

define good solubility.

The second Hume-Rothery rule states that for good solubility, the electronegativity
difference between the two elements should not be too large, typically within a range of
10.4. This second rule was combined with the first rule by Darken and Gurry [28,29] in
constfuctions such as that of Fig. 7.7. Figure 7.7 is a parametric plot of the Pauling
electronegativity [44] versus the metallic radius [26,43]. The ellipse on the plot, centered

about Fe, spans a horizontal range in metallic radius of *15%, and a vertical range in
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electronegativity of +0.4. (For the present plot, we scaled the axes so that the ellipse
became a circle.) In the present study we found that all Fe3X alloys containing solutes
inside the ellipse were bec solid solutions after milling. Alloys of Al and As are near the
edge of the ellipse, but Fe3Al was a bcc solid solution after milling, whereas FezAs
included a significant amount of B8 phase. It is interesting that both the electronegativity
axis and the size axis of the ellipse, which are useful for predicting 5% thermodynamic
solubility, are reasonable axes for predicting 25% solubility in alloys prepared with a Spex

mill.

The small crystallite sizes of the alloys (Table 7.1), could promote a grain boundary
segregation of solute atoms. Our x-ray diffractometry measurements were not sensitive to
such grain boundary segregation, but the 57Fe Mossbauer spectra are sensitive to changes
in local solute concentrations in the bcc phase. The problem is how to obtain an accurate
solute concentration in the bee phase from the measured 57Fe HMF distributions. Such
interpretations are well-established for the solutes Al, Ge, and Si [40]. There was no
indication of any strong loss of these solutes from the bce phase, although the loss of a few
percent is certainly possible. The analysis of Fe3Sn, as shown in Fig. 7.4, was also
accomplished successfully by assuming a solute concentration of 25 %. The HMF
distribution of Fe3Zn certainly did show a loss of Zn from the neighborhoods of 37Fe
atoms, and this could be caused by the segregation of Zn atoms to grain boundaries (or a
segregation of Zn atoms within the bcc grains). The Mossbauer spectra from the two-
phase alloys Fe3As and Fe3Sb were less easy to interpret, but the narrowness of their HMF
distributions at high fields implies some solute loss from the bec phase. This implies a
chemical heterogeneity in these alloys, which in turn could be related to the formation of the

B8 intermetallic phase.
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7.4 Transient Ordering in Fe3Ge and Fe3Sn upon Annealing

The as-milled Fe3Ge was single-phase bcc. Upon anneéling at 350 °C, the
formation of transient DO3 order was observed. This is seen Clearly in the x-ray diffraction
patterns presented in Fig. 7.5a, where the formation of the superlattice peaks of the (1/2 1/2
1/2) and (100) families indicate that a high degree of D03 order had formed after annealing.
The DO3 ordered structure is shown in Fig. 7.5b. There was no formation of the
equilibrium phases in this material after annealing at 350 °C for 4 h or 300 °C for 24 h,
although the equilibrium phases were found after annealing at 500 °C for 1 h. Méssbauer
spectra of the annealed Fe3Ge (at 350 °C) were consistent with the evolution of chemical
environments characteristic of the D03 structure, as reported previously for sputtered films

of bce Fe3Ge [41,42].

The B2 structure was found in as-milled Fe3Sn. We suspect that the bee phases in
Fe3As and Fe3Sb also have partial B2 order, but interpretations of the x-ray and Mossbauer
data were impaired by the contributions from the B8 phase in these alloys. The B2
structure comprises two interpenetrating simple cubic lattices, which provide for good
packing of large and small atoms. Although the B2 structure is not an equilibrium phase
for Fe-Sn, the large size difference between Fe and Sn atoms may promote B2 order in as-
milled Fe3Sn. We suggest that the lower symmetry equilibrium B8; and B35 phases of
Fe-Sn develop a high defect enthalpy during milling, and are destabilized with respect to
the higher symmetry B2 structure. We note that the B2 structure is an equilibrium high

temperature phase for Fe3Al and Fe3Si, although ball milling disorders these alloys into the

bce phase.

When the as-milled Fe3Sn powder is annealed at 300 °C, there is the eventual

formation of a two-phase microstructure of bce o-Fe plus hexagonal B35 FeSn. In the

early stages of thermal annealing, however, the imperfect B2 structure of the as-milled
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FIG. 7.7. (a) (top) X-ray diffraction patterns from Fe3Ge
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h at 350 °C. (b) (bottom) The DO3 ordered structure.
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powder becomes more ordered, eventually achieving nearly perfect order for the FezSn
stoichiometry. This transient ordering may occur for the same reasons that have been
discussed theoretically [16-23]. The growth of B2 order should allow for some free
energy reduction in the alloy. The formation of equilibrium phases would reduce the free
energy by an even greater amount, but this requires many more atom movements to form
critical nuclei and allow them to grow. It may be kinetically expedient, therefore, for the
alloy to develop a transient state of B2 order before the equilibrium phases are formed. The
same argument applies to the formation of transient D03 order in Fe3Ge. The DOj structure
in Fe3Ge was more stable against the formation of equilibrium phases than was the B2
structure in Fe3Sn. We note that the distance on the Darken-Gurry plot (Fig. 7.7) between
Fe and Sn is larger than the distance between Fe and Ge. Perhaps there is a tendency of

transient phases to be more long-lived when this distance is not so large.

7.5 Summary

We used mechanical alloying to prepare several alloys of the FesX composition,
where the solutes, X = Al, As, Ge, In, Sb, Si, Sn, Zn, were all from groups IIB, IIIB,
IVB, and VB of the periodic table. The trends in the as-milled phases largely followed the
metallic radius of the solute atoms; for solutes with metallic radii increasingly different from
that of Fe, a bce solid solution (Ge, Si, Al, Zn), gives way to B2 order of the bcc Fe alloy
(Sn) plus some intermetallic compound formation (As, Sb), and finally no bce-based Fe
alloy was observed for the largest solute (In). Even better predictions of bec solid
solubility were obtained with a modified Darken-Gurry plot of electronegativity versus
metallic radius. The Hume-Rothery rules for 5% solubility in equilibrium alloys seem to

translate to a 25% solubility for powders prepared by mechanical alloying.
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Thermal stabilities of the as-milled beec FezGe and B2 Fe3zSn were tested. Transient
D03 order in Fe3Ge and transient B2 order in Fe3Sn evolved before the nucleation of
equilibrium intermetallics. The transient D03 order in Fe3Ge was much more stable than

the transient B2 order in Fe3Sn, however.
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Chapter 8. Summary with Perspective

8.1 Driven Alloys

The model of driven alloys proposed by Martin was implemented in our Monte
Carlo simulations and theoretical study of disordering —> ordering transformations on
square and bce driven alloys. Though it is an overly simplified physical model of real
alloys subject to continuous external driving, it does catch the essential point — the
randomness of some atom movements in these alloys. The results from the simulations
that only the disordered state can exist if the external driving is strong enough is consistent
with experimental observations that almost all alloys are disordered (or amorphous) after
ball milling for long times. The results from the simulations that ballistic atom movements
cause shifts of phase boundaries in a different way from the shifts caused by temperature
are also consistent with our experimental results on two phase coexistence in ball milied Fe-
Ni. Both these phenomenon (effects of external driving on critical temperatures and on
phase boundaries) were argued to depend on how the enthalpy in the alloy was allowed to

increase, given the kinetic mechanisms for atom movements.

8.1.1 Critical Temperature of Ordering Transformations in

Driven Alloys

The critical temperature of disordering —> ordering transformations on driven
square lattices decreased with ballistic atom movements by the factor of (1 — 1.58 f) for
modest f ( < 0.36). The critical temperature decreased much faster for larger f, and reached
0 above a critical value of f = 0.43. The reasons for the decrease of critical temperature
with ballistic jumps were two-fold: (1) the randomness of the ballistic jumps, which are a

fraction f of total number of atom jumps, dilute the enthalpy driving force toward ordering
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by a factor of (1 —f); (2) the mobility coefficient for the normal thermal atom movements
becomes small at low temperatures owing to the high degree of correlation of vacancy
diffusion, making thermal atom movements less and less efficient in competing with

ballistic atom movements at lower and lower temperatures.

Although my study on critical temperatures of ordering (and spinodal
decomposition) was carried out only on square lattices with 1nn pair interactions, I believe
that the phenomenon of decreased critical temperature with ballistic atom movements in
driven alloys is a general phenomenon. It should be found in ordering transformations of
driven alloys on all lattices and with longer-range atomic interactions. A few simulations
on bee and fce lattices confirmed this, so I approximated the low temperature phase
boundaries between disordered A2 and the ordered phases (B2, B32, umx) in driven bcc

alloys as in Fig. 4.15b.

Although I believe that the critical temperature will be decreased in driven alloys in
general, one cannot know quantitatively how the critical temperature will decrease with
ballistic atom movements without a systematic study. From Sections 3.2 and 3.4, there
exists no simple general relationship between the dynamical critical temperature and f. The
ballistic atom movements are a kinetic process, not a thermodynamic one, so the effects of
ballistic atom movements on a critical temperature depend on the mechanism for atom

movements and not just f.

8.1.2 Transient Ordering and Low Temperature Phase Diagrams

of Driven Alloys

The Monte Carlo study on ordering of driven bce alloys showed the universality of

transient ordering in thermal and driven bcce alloys. In many cases, a phase or state that is

not the final equilibrium one appears transiently during the disorder —> order
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transformations, but vanishes after long times. The transient ordering was found to be
strongest for alloys closest to phase boundaries, probably because of a weaker preference
of the final stable phase over the transient phase. The difference in time scale or spatial
scale for the formation of a phase also plays a role in determining the extent to which a
transient state will develop, and how long it will persist, but this was found not to be the
decisive factor (Section 4.2.3). In particular, in Fig. 4.13 we see that the slowly-forming
unmixed state can appear transiently (albeit weakly) during the formation of the quickly-

forming equilibrium B2 phase.

The relative stabilities of competing phases were affected very strongly by the
ballistic atom movements in driven bce alloys. The stability of the B32 phase was
enhanced by ballistic atom movements with respect to both the B2 phase and the unmixed
state, while the stability of the B2 phase remained about the same as that of the unmixed
state. These changes were attributed to the different response of the different phases to the
ballistic atom movements. More specifically, fewer defects and smaller internal energy
increase were sustained in the B32 phase than in either the B2 phase or the unmixed state.
The accumulation and annihilation of defects is a process controlled by the kinetics of atom
movements, which differs for the different phases. The change in relative stabilities caused
drastic alterations of transient phase formation and of the steady state phase diagrams.
When the relative stability was switched between a pair of phases, the transient state was
also switched. Even more dramatically, when two phases had similar stabilities in the
presence of the ballistic atom movements, both phases could coexist with each other, and a
two-phase coexistence was found in the steady state in the presence of ballistic atom

movements.

Although this thesis research focused on bcc alloys of AB stoichiometry, I
observed similar phenomena in bec alloys of other stoichiometries as well. My earliest

work on transient ordering of driven alloys was done on driven bcc alloys of ABj3
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stoichiometry. With positive 1nn and 2nn pair interaction potentials (V1 and V3), these bee
alloys have the DO3 ordered structure in thermodynamic equilibrium. However, strong
transient B32 ordering was observed during disorder — DOj5 order transformations. The
transient B32 order in the thermodynamic case (without ballistic atom movements) was
found to be strongly stabilized by the ballistic atom movements of driven alloys. Ibelieve
that similar phenomena can also exist in fcc alloys. Due to the complexity of defect
generation and annihilation in driven alloys, however, the changes of transient ordering and
relative stabilities induced by ballistic atom movements can not be known in detail until a
systematic study has been performed . Such a study can also provide useful information

on diffusion in various ordered bcc and fcc phases.

Some experimental evidence of transient ordering has been found previously and in
my thesis research. Transient DO3 ordering was observed during annealing of a disordered
nanocrystalline Fe3Ge alloy prepared by mechanical alloying [Chapter 7]. During disorder
—> DO3 order transformations, a transient state with excess B2 order was observed in a
ball-milled nanocrystalline Fe3Si alloy [Chapter 6], while transient B32 order was observed

in a piston-anvil quenched Fe3Al alloy. More experimental evidence could emerge after

further kinetics studies.

The formation of transient states in a thermodynamic alloy and the two-phase
coexistence (or stabilization of transient states) in a driven alloy are closely related. I
propose that the microstructure inhomogeneity, i.e., the distribution of local environments
in a alloy, is the common root cause for both phenomena. To elaborate on this point, let us
consider an alloy whose thermodynamic equilibrium state is B2 order and in which B32
order appears transiently in the thermodynamic case and coexists with B2 order in the
driven alloy case. The local environments of the alloy have a large distribution, especially
at the early stages of ordering transformation when it is highly disordered. Some local

regions of the alloy are closer to B32 order while others closer to B2 order. At the early
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stages of the transformation, these local regions will most easily evolve to their respective
closest structures with only a few atom movements. These will result in rapid reduction of
the free energy of the alloy as both the B32 and B2 structures have much lower free energy
than the disordered structure. The free energy difference between the B32 and B2
structures is typically much smaller and not as important at these stages. The B32 local
regions that are formed earlier will make their adjacent local areas come closer to B32 than
B2 and therefore easily transfer to the B32 structure later on. So forms and grows the
transient B32 order. In the thermodynamic case, however, the B32 order with the higher
free energy will eventually give way to the B2 order with the lower free energy after long
times. After the transient B32 order vanishes, the total free energy of the alloy is
minimized and the thermodynamic equilibrium state is reached. On the other hand in the
driven alloy case, the continuous ballistic atom jumps will counteract the thermodynamic
atom jumps, which drive the alloy toward B2 order. At favorable conditions such as small
free energy difference between B32 and B2 orders, the external driving can balance the
small thermodynamic driving force and sustain those local B32 regions. This will result in
the B32/B2 two-phase coexistence. This argument based on the microstructure
inhomogeneity of the alloys is consistent with the facts that transient states are stronger
when closer to the thermodynamic phase boundaries and the two-phase coexistence exists

only near the phase boundaries [Chapter 4].

8.2 Nanocrystalline Materials and Mechanical Alloying

Mechanical alloying is now one of the most commonly used methods to synthesize
nanocrystalline materials. The experimental part of this thesis research was to study
systematically how the various parameters, such as intensity, temperature, and chemical

composition, would affect the end products or the process itself. Although this type of
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study is important for scaling up of mechanical alloying process and comparing different

ball mills or alloy systems, not much has been done previously.

Our experiments on mechanical alloying of nanocrystalline Fe-Ni alloys of various
compositions and at two intensities provided rich results. Although the average grain size
or strain did not change with either intensity or composition, the phase boundaries changed
strongly with milling intensity. The bcc phase was destablized against the fcc phase at
higher milling intensity, and the bee/fee two-phase region shifted asymmetrically to the bcc
phase region. I proposed that spatial heterogeneities in the defect enthalpy of the bec and
fcc phases were responsible for the bee/fee two-phase region, and the shift of phase
boundaries with milling intensity. A similar phenomenon was observed in our on-going

study of nanocrystalline Fe-Cu alloys.

Mechanical alloying of Fe3X alloys at various ambient temperatures showed that the
average grain size was slightly larger for higher milling temperature, while the strain was
lower. These were just the same as expected from temperature alone without milling. The
subsequent thermal stability of the as-milled nanocrystalline alloys against grain growth,
strain release, or equilibrium phase formation was not affected much by the milling

temperature.

There were many previous reports of extended solid solubility in mechanically
alloyed nanocrystalline alloys, and our study on Fe3X in Chapter 7 was planned as a
systematic study of this subject. The phases of as-milled alloys changed with increasing
metallic radii difference between Fe and the solutes, from becc solid solutions for Ge, Si,
Al, and Zn, to B2 order for Sn, to two-phase coexistence of As, Sb, and In. The 25%
solubility of mechanically alloyed nanocrystalline alloys could be explained by the Hume-

Rothery rules for solid solubility.
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The systematic approach taken in these experiments should be useful for other
related studies of broader scope. Here I just illustrate one example. Most materials
prepared by mechanical alloying are either disordered nanocrystalline solid solutions or
amorphous materials. A systematic study of milling intensity, temperature, and
composition (I, T, c) on glass-forming alloy systems such as Zr-Al and Ti-Cu should be
useful for mapping out the phase regions and boundaries between nanocrystalline and
amorphous microstructures of the as-milled products. It would be interesting to see how
the change of one or more process parameters leads to the change from one microstructure
to the other. Especially if nanocrystalline materials with only 2-3 nm crystal size could be
obtained, a study on them can provide insights on how microstructures change from

amorphous to nanocrystalline.



