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Chapter 3.  Functional analysis of five CLE proteins by reverse genetics

3.1  Introduction

A major class of transmembrane receptors in plants is made up of receptor-like

kinases, or RLKs.  The Arabidopsis thaliana genome contains over 400 genes

encoding these receptors, which are subdivided into smaller groups based on

motifs in the extracellular domain.  Slightly over half of the RLK family is made

up of receptors with leucine-rich repeats (LRRs) in their extracellular portion

(Shiu and Bleecker, 2001).  LRR-RLKs have been shown to be instrumental in a

number of developmental processes, including hormone response, shoot

architecture, and floral organ abscission (Jinn et al., 2000; Li and Chory, 1997;

Torii et al., 1996).

One of the first LRR-RLKs to be functionally characterized was

CLAVATA1 (CLV1), a receptor required to control cell proliferation in shoot and

floral meristems (Clark et al., 1993; Clark et al., 1997; Jinn et al., 2000).  Loss-of-

function clv1 alleles give rise to plants with enlarged, fasciated shoot meristems

and flowers with increased organ number (Clark et al., 1993).  Similar

phenotypes are observable in clv3 loss-of-function mutants (Figure 3.1, B).  Since

CLV3 encodes small secreted protein of 96 amino acids (Fletcher et al., 1999; Rojo

et al., 2002), it is considered a likely candidate for the CLV1 ligand.  The

predicted ligand-receptor relationship is supported by several pieces of genetic

data.  First, plants trans-heterozygous for mutant alleles of clv1 and clv3 show a

clv phenotype, a result which in some situations points to physical interaction

(direct or indirect) between the two proteins (Clark et al., 1995).  Second,
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constitutive overexpression of CLV3 causes meristem termination in wild-type

plants (Figure 3.1, C), but not in the absence of CLV1 activity, suggesting that

CLV1 functions downstream of CLV3 (Fletcher et al., 1999).  Third, C L V 3

expression in the stem cells partially overlaps with CLV1 expression.  Fourth,

CLV3 can act non-cell-autonomously in the floral meristem (Fletcher et al., 1999;

Lenhard and Laux, 2003; Rojo et al., 2002).

In addition to CLV1 and CLV3, a third protein may function as part of this

signaling complex.  Loss-of-function mutations in CLV2 give rise to a weak

clavata-like phenotype (Kayes and Clark, 1998).  CLV2  encodes an LRR-

containing receptor-like protein, which lacks the kinase domain present in LRR-

RLKs (Jeong et al., 1999).  Although there is no biochemical evidence for the

presence of CLV2 in this complex, work on the brassinolide (BL) receptor BRI1

has indicated that LRR-RLKs can indeed function as heterodimers. BRI1 is

known to bind BAK1; both are RLKs and contain 25 and 5 LRRs, respectively (Li

et al., 2002; Li and Chory, 1997).

There are very few known ligands that act on LRR-RLKs (all but five of

the LRR-RLKs which have been functionally characterized are “orphan”

receptors).  They include hormones (BL, systemin [in tomato], and

phytosulfokine) and exogenous proteins found in pathogens (flagellin, and an

epitope from the rice pathogen Xanthomonas oryzae) (Gomez-Gomez and Boller,

2000; He et al., 2000; Matsubayashi et al., 2002; Montoya et al., 2002; Song et al.,

1995).  Phytosulfokine and systemin are small peptides (5 and 18 amino acids,

respectively). CLV3 is therefore the largest endogenous protein believed to signal

through an LRR-RLK.



64
Work in the McCormick lab has resulted in the characterization of a

family of genes similar to CLV3, termed the CLV3/ESR (CLE) genes.  There are

26 such genes in Arabidopsis (including CLV3), and additional genes have been

identified in other plant species (maize, rice, soybean, tomato) but not in animals.

Each of the CLE genes encodes a small protein predicted to be secreted or

membrane-bound.  All of these proteins also share a small C-terminal conserved

domain of 15 amino acids, including an invariant histidine and arginine and a

highly conserved glycine (Cock and McCormick, 2001).  Subsequent work by

Sharma and Fletcher has indicated that all but one of the 26 CLE genes in

Arabidopsis are expressed at sufficient levels for detection by RT-PCR.  In

addition, their expression is tissue-specific.  When fused with GFP and

transiently expressed in leek epidermal cells, all three CLE genes tested were

localized to the membrane or extracellular space, as predicted by their protein

sequences (Sharma et al., 2003).

Recent studies of CLE19 and CLE40 have indicated that multiple CLE

proteins may be capable of activating a restricted number of pathways, notably

the CLV1 pathway in the shoot, and a potentially related (but not identical)

pathway in the root.  For example, root-specific overexpression of CLE19 leads to

a gradual reduction in cell number in the root meristem, and an extragenic

suppressor of this phenotype has a clv-like effect on carpel number (Casamitjana-

Martinez et al., 2003).  No loss-of-function phenotype has been reported for

CLE19, however.  Also, mention of the widespread CLE19 expression pattern and

unpublished data alluding to additional, non-root phenotypes in 35S::BnLLP1

(the tomato ortholog of CLE19) would imply that CLE19 is just as likely to

function in other tissues besides the root (Casamitjana-Martinez et al., 2003).
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The data for CLE40 suggest that this protein is able to act both in the shoot

and the root to limit cell division, and that its signaling capabilities in the shoot

are CLV1-dependent.  It was also noted in this study that CLV3, while not

normally expressed in the root, can cause the same root meristem defect (when

overexpressed) as CLE40.  The only phenotype in the single loss-of-function

allele of CLE40 is a increased waving of the primary root, with no observable

defect in the structure of the root meristem itself (Hobe et al., 2003).

These experimental data for CLE19 and CLE40 point to the possibility that

multiple CLE proteins may be able to bind CLV1 and/or a CLV1-like receptor in

the root meristem.   A lack of meristematic phenotypes (in the shoot or the root)

in cle40 loss-of-function mutants indicates that a) the overexpression phenotype

does not represent the endogenous function of CLE40 or that b) loss of CLE40

activity in the shoot and/or root may be more than adequately compensated for

by CLV3.  This second possibility has been tested: the cle40; clv3-2 double mutant

is indistinguishable from clv3-2 (Hobe et al., 2003).

In this study, we have used reverse genetics to investigate the functions of

five additional CLE genes: CLE11, 12, 13, 16, and 17.  CLE11, 12, and 13 are of

particular interest because their sequences align closely with that of CLV3 (see

Figure 1D and Sharma et al., 2003).  We show that CLE11 and CLE12 are capable

of signaling through CLV1/CLV2 when overexpressed.  Expression analysis and

double-stranded RNA interference (dsRNAi) experiments indicate, however, that

this phenomenon is likely not representative of the endogenous function of

CLE11 and CLE12.
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3.2  Results

The overexpression of CLE genes results in specific developmental defects

To begin to understand the possible functions for the CLE  genes, we

overexpressed CLE11-13, 16, 17, and CLV3, under the control of the constitutive

CaMV 35S promoter.  As has already been published, plants carrying 35S::CLV3

have early-terminating meristems, both apically and axially.  Since each

meristem only gives rise to 1–3 leaves, this lends the plant a bushy appearance.

The rare flowers produced by 35S::CLV3 have a reduced number of stamens and

no central gynoecium (Fletcher et al., 1999).  The phenotype of 35S::CLE12

(Figure 3.2, B and F) is remarkably similar, except that a greater proportion of the

T1 plants produce flowers.  Transgenic lines of intermediate strength are able to

recover sufficiently from meristem termination to set seed, albeit at reduced

yields compared to wild type.  These plants are shorter in stature than wild type

(data not shown).  All of the misexpression experiments which include CLE12

were also performed with CLE11, with identical results.  For the sake of brevity,

only the results from CLE12 are shown.

CLE13, though grouped tightly with CLV3, CLE11, and CLE12 (Sharma et

al., 2003), does not cause a discernible phenotype when overexpressed (Figure

3.2, C and G).  We confirmed that CLE13 is transcribed at high levels in these

lines, but we cannot determine the level of CLE13 protein in the absence of an

antibody or tagged CLE13.  The CLE13  transcript may be under strict

translational control, such that overexpressing the gene does not actually lead to

higher abundance of protein.  Alternatively, the CLE13 protein may require post-

translational modification.  It is also possible that CLE13 is unable to bind and/or
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activate the CLV1 receptor.  If this last option were true, it would suggest that

either the binding specificity of the CLE proteins does not reside in the conserved

C-terminal domain, or that unique sequences in the non-conserved portion of the

protein actually inhibit or repress the binding of CLE13 to CLV1.

CLE17 (data not shown) and CLE16 (Figure 3.2, D and H) do not affect

either shoot or floral meristems when overexpressed.  The only defects are in leaf

shape (slightly smaller and narrower than wild type) and stature (as in

35S::CLE11 and 35S::CLE12).  As of this writing, there is no receptor-like kinase

which is known to be involved in leaf size, with the exception of BRI1 (Li and

Chory, 1997).  Neither loss-of-function mutants in BRI1 nor overexpression lines

cause a phenotype that resembles 35S::CLE16 and 35S::CLE17.  Instead, decreases

and increases in BRI1 activity cause severe dwarfing and greatly increased cell

elongation, respectively (Li and Chory, 1997; Wang et al., 2001).

CLE12 overexpression phenotype requires CLV1 and CLV2, but not CLV3

Since CLE12 has a similar overexpression phenotype to CLV3, we investigated

whether CLE12, like CLV3, acts through the CLV1/CLV2 receptor complex.

Plants homozygous for loss-of-function mutations in clv1, clv2, and clv3 and

transgenic for 35S::CLE12 demonstrate that this is in fact the case.  clv1 and clv2

mutations are epistatic to 35S::CLE12 (as they are to 35S::CLV3), suggesting that

the wild-type function of these genes is required for the overexpression

phenotype (Figure 3.3, A-C).  35S::CLE12 is epistatic to the clv3-2 mutant

phenotype (Figure 3.3, D), implying that CLE12 does not need to form a

heterodimer or multimer with CLV3 in order to bind the CLV1 receptor.



69



70



71
There is a curious allele-specific effect of 35S::CLE12 on clv1 mutants: the

overexpression of CLE12 enhances clv1-6 dramatically in the flower (Figure 3.3, G

and H), but has little influence on clv1-1 and clv1-4 (Figure 3.3, E and F). The clv1-

6 mutation is a one-base pair deletion which causes a frameshift and an early

stop (causing much of the CLV1 kinase domain to be missing as a result), while

the clv1-1 and clv1-4 alleles have missense mutations in the kinase domain and

extracellular domain, respectively (Clark et al., 1997).

Physiological levels of CLE12 can substitute for CLV3

To determine whether the apparent function of these proteins was an artificial

by-product of their overabundance, we set out to determine whether they could

functionally replace CLV3 at physiologically relevant levels.  For this experiment,

we used the CLV3 promoter to drive expression of CLV3, CLE12, and CLE13 in a

clv3-2 mutant background.  CLV3 rescues the clv3-2 phenotype completely, while

CLE12 shows nearly complete rescue (Figure 3.4, B and C, respectively).  CLE13

has no effect.

The CLE genes are expressed in diverse but overlapping patterns in the

inflorescence

To gain a better understanding of the endogenous functions of these proteins, we

analyzed their expression patterns by generating beta-glucuronidase (GUS – EC#

3.2.1.31) reporter lines for each gene.  We subcloned a given length of 5’ sequence

for each gene (between 1.3 and 3.0 kb, depending on the proximity and

orientation of the nearest 5’ gene).  Transformants were stained for GUS activity

to determine where each gene was expressed.
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None of the five genes tested are expressed in the inflorescence meristem

or floral meristems, suggesting that the overexpression phenotypes of CLE11 and

CLE12 do not represent their true role in vivo.  However, there are some specific

yet overlapping expression patterns.  In particular, CLE11, 12 , and 13  are

expressed in stamens (Figure 3.5, B, C, and D), whereas CLE11 and CLE17 signal

is found in stylar and early stigmatic tissue (Figure 3.5, B and F).  pCLE17::GUS

also shows temporally restricted but robust staining in ovules (Figure 3.5, F).

RNA interference of the CLE genes

We next set out to investigate whether these overexpression phenotypes (for

CLE11, 12, 16, and 17) represented the endogenous function of these genes.  Since

there are no known point mutations or T-DNA insertions in any of these genes,

we decided to use double-stranded RNA interference (dsRNAi).  The constructs

used contained the specific gene in the sense and antisense orientation, so that

the resulting RNA would form a double-stranded structure.  Such structures are

known to be processed into siRNAs, which can destabilize the mRNA of the

endogenous gene.

Plants carrying a CLV3 dsRNAi construct had phenotypes similar to those

of clv3 and clv1 loss-of-function mutants (Figure 3.6, A).  Similar constructs made

for the CLE genes had no visible effect under normal growing conditions (data

not shown).



75



76
3.3  Discussion

In the course of these experiments, we have gained insight the functions some of

these CLE proteins are capable of performing.  In particular, CLE11 and CLE12

can mimic CLV3 when overexpressed, and ectopic CLE16 and 17 activity can

alter leaf shape.  However, the total absence of RNA interference phenotypes

leaves their true in vivo function a mystery.  The failure of dsRNAi to cause

mutant phenotypes for the CLE genes could suggest at least two possible

scenarios.  First, the reduction of function in one CLE protein could be

compensated for by another.  This is conceivable because (a) more than one CLE

gene is expressed in a given tissue type (stamens, style) and (b) it is clear from

this and other published work that many CLE proteins are capable of

substituting for CLV3.  A second scenario assumes that these five proteins are

kept inactive under normal conditions, by mechanisms affecting such processes

as post-translational modification, sub-cellular localization, or abundance of a co-

factor and/or receptor.

Another intriguing aspect of this set of results is that the plants

overexpressing these genes did not show defects in the tissues in which the genes

are actually expressed.  This phenomenon can be accounted for by at least two

possible explanations.  First, the CLE proteins may act under normal growth

conditions to repress responses to external stimuli, such as heat, cold, salinity, or

pathogen attack.  In this situation, overexpression of a CLE gene will cause a

phenotype (suppressed response) only in the presence of the appropriate

external stimulus.  Another explanation is similar to the second scenario

described above for  understanding the lack of RNAi phenotypes; namely, that
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the activity of the CLE proteins is heavily regulated and restricted at the protein

level, rather than at the level of transcription.  One caveat is that this regulation,

if at the level of protein stability or general receptor-binding activity, would have

to be restricted to the tissues in which each gene is normally expressed;

otherwise, there would be no overexpression phenotype at all.  Stringent

receptor-specific regulation would not necessarily have to be restricted to the

tissues expressing each gene.  If it was, however, aspects of the overexpression

phenotype elsewhere in the plant could be explained by activation of the proper

receptor in the wrong places.  In other words, the effects of 35S::CLE16 and

35S::CLE17 on leaf shape may occur because the proper receptor(s) for these

proteins are not under as tight regulation in leaves as they are in the tissues

where CLE16 and CLE17 are normally expressed.  The more conservative

explanation for all of the overexpression phenotypes, however, is that the CLE

proteins are binding receptors with which they do not interact under normal

conditions—either because they are expressed ectopically, or because they are

accumulating at such high levels that variables such as low binding affinity

become irrelevant.

Although we have not deciphered much about the in vivo functions of

these five proteins, the overexpression results may provide insight into the

structural or sequence-level basis for the specificity of this family of genes.

Particularly powerful analysis can be performed on the sequence requirements

for successful activation of the CLV1 receptor.  We know (from published work,

as mentioned above) that CLE19 and 40 can activate CLV1, and now CLE11 and

12 can be added to the list.  The overexpression phenotypes of CLE16 and 17 may

represent useful negative results.  Computational analysis, followed by judicious
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domain-swapping and site-directed mutagenesis, should allow identification of

exact domains or even residues required for binding to and activating CLV1.

One surprising result to emerge from these experiments is the curious

enhancing effect of 35S::CLE11 and 35S::CLE12 on clv1-6, and the lack of an effect

on the other alleles tested, including clv1-1 and clv1-4.  It has been suggested that

although clv1-6 is weaker than these other two alleles, it is closest to a true null

allele, whereas the others are more complicated, possibly compromising the

function of related receptors (Clark et al., 1997; Dievart et al., 2003).  This would

be particularly relevant if there is another LRR-RLK which can form functional

heterodimers with CLV1, and which can also form homodimers with at least a

limited CLV3-binding capability.  For example, if region(s) missing in the clv1-6

allele are required for robust dimerization, then the primary opportunity for

CLV3 signaling would be through the homodimer of the other RLK.  If the clv1-1

and clv1-4  versions of the protein are still able to form CLV3-binding

heterodimers, but can transduce only a fraction of the normal signal, then the

phenotype may be more severe.

It is not yet known whether 35S::CLV3 has the same effect on clv1-6 (this

experiment is underway), but if it does not (particularly if 35S::CLV3; clv1-6

resembles 35S::CLV3 in L-er), then the following model is possible, given the

scenario described above: 1) CLE11 and CLE12 can bind both CLV1 and the other

RLK, but can only produce signal through CLV1; 2) the overexpression of CLE11

or CLE12 in the clv1-1 or clv1-4 meristem has little effect on the CLV1/RLK

heterodimers (particularly if the problem is in the propagation of the signal,

rather than ligand binding); and 3) high levels of CLE11 or CLE12 in the clv1-6

meristem bind the homodimers of the other RLK non-productively, out-
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competing (by greater abundance) the endogenous, functional CLV3.  This might

be tested by co-overexpressing CLV3 and CLE12 (or C L E 1 1) in clv1-6 ; if

overexpressed CLE12 is drowning out effective signal from CLV3, adding high

levels of CLV3 should negate the enhancing effect of 35S::CLE12 on clv1-6.

If, on the other hand, 35S::CLV3; clv1-6 resembles 35S::CLE12; clv1-6, then

the picture gets even more complicated.  This result would raise the possibility

that there are two opposing pathways, both of which can receive the CLV3 signal

(and, in artificial situations, CLE11 or CLE12).

3.4  Materials and Methods

Plant growth conditions

Seeds were sown on a 4:3:2 mixture of potting soil, vermiculite, and perlite.  Each

flat was given sufficient water and kept at 4°C for 4 days for seed stratification.

Plants were grown under 600 ft-candles of continuous cool white fluorescent

light at a temperature varying between 17 and 21°C.  Pests such as fungus gnats

and aphids were kept under control by treatment with Gnatrol (20 ml in water)

and granular Marathon (~ 4 g, post-germination).

Constructing vectors for transgenics – starting materials

PCR-amplified CLE11-13, 16, and 17 products were cloned into pCR2.1 in at least

one of three sets: complete coding sequence (plasmids A-E), coding sequence

without stop codon (plasmids A’, B’, D’, and E’ – not done for CLE13), and

complete coding sequence with an extra BamHI site added at the 5’ end, for

greater cloning flexibility (plasmids F-I; CLE13 not included).  A clone containing
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the coding sequence of CLV3 in the BamHI site of pBS–SK was provided by F.

Wellmer (plasmid J, orientation T7 5’ 3’ T3).

The CLE coding sequences were moved into pBS-SK to generate more

restriction site options: plasmid K – BamHI fragment from F, orientation T7 5’ 3’

T3; plasmid L  – EcoRV/HindIII fragment from B’, orientation T7 5’ 3’ T3;

plasmid M1 – EcoRI fragment from C, orientation T7 3’ 5’ T3; plasmid M2 –

EcoRI fragment from C, orientation T7 5’ 3’ T3; plasmid N – HindIII fragment

from D’, orientation T7 5’ 3’ T3; plasmid O – EcoRV/HindIII fragment from E’,

orientation T7 3’ 5’ T3; plasmid P – EcoRV/SpeI fragment from E’ into pBS-SK,

orientation T7 5’ 3’ T3.

Some of the shuttle vectors included a modified pBJ36 (BaR), containing

the 35S promoter from pHANNIBAL as well as the octopine synthase (OCS)

terminator (plasmid Q, from J. Long), pBJ36 with the CLV3 5’ and 3’ sequences

flanking the multiple cloning site (MCS) (plasmid R, from J. Long), and pRITA,

which contains the GUS coding sequence following the MCS (plasmid S, from J.

Long).  Plasmid Q was modified for use as a basic RNAi vector by adding in the

catalase intron (from pCATIN, J. Long) into the XbaI/BamHI site, to generate

plasmid T.

We used pMLBART as a binary vector in all cases.  Fragments were

cloned into the NotI site of pMLBART; this is the last step for making all of the

finished products detailed below.

Overexpression constructs

For 35S overexpression constructs, we used pBJ36/35S (plasmid Q).  The digests

and source plasmids for each coding sequence are as follows: CLE11, BamHI, F;
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CLE12, EcoRI, B; CLE13, SmaI/ClaI, M1; CLE16, EcoRI, D; CLE17, EcoRI, E; and

CLV3, BamHI, J.

Expression from CLV3 promoter

All constructs with the CLV3 promoter made use of plasmid R, one of the

modified versions of pBJ36 (see above).  The pCLV3::CLE11, 16, 17, and

pCLV3::CLV3 constructs were made with the BamHI fragment of plasmids F, H,

I, and J, respectively.  For pCLV3::CLE13, the SmaI/ClaI fragment from plasmid

M1 was used, and for pCLV3::CLE12, we used the SmaI/XhoI fragment from the

35S::CLE12 construct.

dsRNA interference lines

For the CLE11, 12, 16, and CLV3 dsRNAi lines, we ligated the BamHI fragment

from plasmids F, G, H, and J (respectively) into plasmid T.  Resulting clones with

the correct orientation were subsequently linearized with XbaI and SalI.  The

XbaI/SalI fragments from plasmids K, L, N, and J were ligated into these vectors,

to create antisense-linker-sense constructs.

For the CLE13  and 17 dsRNAi lines, the SalI/SmaI fragments from

plasmids M1 and O, respectively, were ligated into the XhoI/SmaI sites of

plasmid T.  The resulting clones were linearized with XbaI and SalI, and the

XbaI/SalI fragment from plasmid M2 and P (respectively) were ligated into these

vectors, again creating antisense-linker-sense constructs.
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GUS reporter constructs

The 5’ upstream region of each CLE gene was PCR-amplified and ligated into

pCR2.1.  For pCLV3::CLE11, the EcoRI fragment from the pCR2.1 clone was

ligated into plasmid S, and resulting clones were checked for proper orientation.

For pCLV3::CLE12, 1 3 , 1 6 , and 1 7 , the KpnI/XhoI fragment from the

corresponding pCR2.1 clone was ligated into plasmid S.

Plant transformations

Plasmids were transformed into the ASE strain of Agrobacterium tumefaciens (kan

chlor), and L-er plants were transformed by the floral dip method (Clough and

Bent, 1998).  Seeds were sown directly on soil, and T1 plants were sprayed with

BASTA several times, starting about 6 days after germination.

GUS staining

Tissues were fixed in ice-cold 90% acetone for 30 minutes, then washed with

rinse solution (34 mM Na2HPO4, 15.8 mM NaH2PO4, 0.5 mM K3Fe(CN)6, 0.5 mM

K4FE(CN)6, 0.5% Triton X-100).  Rinse solution was replaced with a small amount

of fresh solution (just enough to cover tissues) to which X-Gluc was added to a

concentration of 2 mM (X-Gluc can be purchased as a powder and dissolved in

DMF—100 mg in 1.92 ml to make a 100 mM stock solution).  Tissues were

vacuum infiltrated to draw solution into cells, then incubated in the dark at 37°C

overnight, or until strong staining appeared.  Tissues were then washed in 50%

ethanol and cleared in 75% ethanol.  Individual inflorescences and seedlings

were mounted in single-depression slides in 50% glycerol, then photographed.
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