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ABSTRACT 

Incorporation of non-natural amino acids into proteins in vivo can provide 

biological materials with new chemical functions and improved physical properties. 

Examples include new posttranslational modification chemistry by introducing azide and 

ketone moieties into recombinant proteins, and novel strategies for engineering hyper-

stable proteins by incorporating fluorinated side chains. Implementing such methods 

requires manipulation of protein biosynthesis to specifically alter the genetic code.  The 

rules of the genetic code are established by theaminoacylation reaction, where the 

aminoacyl-tRNA synthetases (aaRS) catalyze the attachment of the amino acids to 

theircognate tRNAs.  Thus manipulation of cellular aminoacylation reactions could 

potentially expand the available set of amino acid building blocks for protein engineering 

and biomaterials engineering.   

 By simple depletion of the cellular pool of isoleucine and utilization of isoleucine 

auxotrophic hosts, we were able to force the endogenous isoleucyl-tRNA synthetase to 

join 5,5,5-trifluoroisoleucine (5TFI) to tRNAIle and assign it to isoleucine codons in vivo.  

Murine interleukin 2 containing 5TFI retains its biological activity.  We showed that 

engineering of bacterial expression hosts can allow a single RNA message to be read in 

different ways, depending on the relative rates of competing aminoacylation reactions.  

Specifically, we showed that the 2S,3R-form of 4,4,4-trifluorovaline can be assigned 

either to isoleucine or to valine codons, depending on whether the bacterial host 

overexpresses the isoleucyl- or the valyl-tRNA synthetase.   When anamino acid analog 

of interest is not recognizedby the corresponding wild-type aaRS, we can either identify 

the appropriate modification of the amino acid as a promising ligand or design new 
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synthetase activity.  We describe an attempt to develop a virtual ligand screening method 

to find non-natural amino acids that can serve as ligands for the phenylalanyl-tRNA 

synthetase and our computational results correlate well with experimental results in vitro 

and in vivo.  We also present a computational method for identifying the sites of 

mutations to relax the substrate specificity of the E. coli phenylalanyl-tRNA synthetase 

(ePheRS).  One designed variant of ePheRS allows the efficient in vivo incorporation of 

aryl ketone functionality into proteins in vivo.  Proteins outfitted with ketone 

functionality can be chemoselectively ligated with hydrazide reagents under mild 

conditions.  Three designed mutants of ePheRS were subjected to extensive examination, 

and a broad activation profile toward many non-natural aromatic amino acids was 

observed. E. coli host strains were established to over-express these mutant ePheRSs, 

enabling the re-assignment of the Phe codons to many non-natural amino acids.  By 

rational attenuation of the editing function of a leucyl-tRNA synthetase, oxonorvaline 

was incorporated into a recombinant protein in Escherichia coli. 

 The work described above addresses the multi-site incorporation of new amino 

acids into proteins in vivo, which can be utilized to engineer the overall properties of 

biomacromolecules such as protein stability.  The second component of this thesis 

focused on the site-specific incorporation of novel amino acids into proteins in vivo, 

which can be applied to problems that require local change of protein behavior.  We have 

refined a previously described system, where we introduce a mutant form of yeast PheRS 

co-transformed with a cognate suppressor tRNA, allowing incorporation of several 

aromatic amino acids into proteins in response to an amber codon.  The results firmly 
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demonstrate the general strategy of importing an exogenous synthetase/tRNA pair to 

achieve site-specific incorporation of non-natural amino acids into proteins in vivo.    
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