STUDIES OF THE DOUBLE-WEDGE AND BICONVEX AIRFOILS

IN HYPERSONIC FLOW

Thesis by

William Stuart Wunch

In Partial Fulfillment of the Requirements
For the Degree of

Aeronautical Engineer

California Institute of Technolegy
Pgsadena, Californla

1948



i

ACKNOWLEDGMENT

The author 1is deeply appreciative of the asslistance
that he hys been privileged to receive during this past
year from NMr,. Allen E, Puckett in the preparation of this
thesis, To his countless valuable suggestions and unstinting
sacrifice of time, the author shall be forever indebted.
He would also like to thank Dr. Homer J, Stewart for his

many helpful words of advice.



i1

INTRODUGTION AND SUMMARY

Through the development of the high altitude rocket
interest has turned to the investigation of aerodynsunic
problems beyond the supersonic regime., This domain of
gspeed has beep termed hypersonic, meaning high Mach number
flight in a homogeneous medium whose moleéules describe
negligible mean free paths with respect to a chosen
characteristic dimension. The thesis presented glven an
extension of two-dimensional supersonic airfoil theory to
attack the problem of getting aerodynamic coefficients for
the double-wedge and bilconvex sairfoils.

The shock wave equations along with those for Prandtl-
Meyer flow have been modified by making approximatibns based
on the hypersonic Mech numbers. These equations have been used
to trest the following three. cases:

(A) The Mach angle is much less than the deflection

angle.

(B) The Mach angle 1s ruch greater than the deflection

angle,

(C) The Mach angle is of the same order of magnltude

as the deflection angle.‘
A brief discussion 1s made of the assumptions involved in the
development of eachlof these flows to show that.they do not
violéte basic principles. The hypersonic approximations alresdy
mentioned are then apprlied to these equations. In'case (A)

formulas are derived giving a quick spproximation to the
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1ift, drag, and moment coefficients. In case (B) formulas
are found to be similar to those already obtained by the

small perturbastion method for supersonic flow. The results of
I

&

case (C) show that & singular investigation must be mede of
each airfoil. The results of each of these cases are presented
in the section titled "Applications to the Double-wedge and
Biconvex Airfoils."™ Results for symmetricel double-wedge
airfoils, whose maximum thicknesses sre 10 per cent of the
chord and afe locsted at 25, 50, snd 75 per cent of the chord,

are plotted in the appendix.
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I. AERODYNAMIC COEFFICIENTS

The 1ift, drag, and moment coefficients of the double-
wedge alirfoil are obtained in the following analysis by
consideration of the static pressures acting over the airfoll
(for the notation used, see Fig. 1l). Separating the pressure
force into components acting parallel and perpendicular to
the velocity from infinity, one obtains the 1ift and drag

forces per unit span as the following:

L= oo [-Cp, ¢, €058, - Cp,Cyc056;

#+Cpy€5€056; * Cgy Gy €056, ) (1)
D= Elx,fl:;gca.iﬂ7€% ~ Cp,Cp 51116,
+Cp, €3N ;7 Cpp Gy 510 O | (2)

where cy denotes the chord section over which the Cpi acts.

Making the small angle approximations
sme = & cos @ =/
the 1ift and drag forces per unit span may be expressed
in coefficient form
- - ' _ 4 / /
C"gl;?c =~Cp ¢ -~ Cp,C tCpy &G #CpCy (3)
, - - ‘p _ / / /
Co= L. <Cq6'4-Cp 167G G 6 (1)
where ¢j 1s ¢y/c. The pitching moment with respect to
the leading edge may readily be obtained by a simple con-
sideration of the airfoil geometry
Me = G [Co g,’zcos 6, = CpaCaf€; + L) c056;
2 )
# Gy 552 €056;7Cpy G (G +g,)cose4} (5)
Using the approximations made in equations (3) and (4),

one obtains the pitching moment coefficlent per unit span
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Com £ 'M£2'=’C,a,% - Cf’zcx‘:’(q/*%)
* Cpy 2? '* C;Q 4L(¢} zf) (6)
The 1ift and drag coefficients for the biconvex airfoll
may be expressed in similar form to that for the double-
wedge airfoil, The 1lift and drag forces per unit span,

considering only the pressure forces, are the following:

£ T Jeo {4:20,04 cos G, o —/C/%C,oa case, Q/).’} (7)
: e
D= Geo [[;f Crp 1€ QA -[‘Z" Ca, J//?@u,a/l} (8)

The subscript notation u denotes the upper surface; 1, the

lower surface. For small 6, i.e., small perturbation

analysis, one obtains for the 1ift and drag coefficients

L 2 Y2

Q-?j;c -/,/z Cee o’); / Cay o’L (9)
LD . [ 7

Con e < [ Cor @0 M - [ CouOu )

The moment of the biconvex airfoll acting about the leading

edge, neglecting pressure drag effects, 1s the following:

_ <2
Me = S { /c/ Cop ét’fC/z)cose o/l
-c//z G (X + %) cos6, o’,(f (11)

Expressed in coefficient form, one obtains

Yo %

Cone " Lt [, Cor Q1) [ G ) a2

where the same approximations as previously used are applied.
Tn order to determine the aerodynamlc coefficients

of these airfoils it 1s therefore necessary to determine

their respective pressure coefficients, Owing to the nature

of the flow over the surfaces of the double-wedge airfoil,

its pressure coefficients may readlly be determined. 1In



particular the pressure coefficients are constant along
each surface owing to the continuity condition of parallel
flow. Agein using the notation of Fig. 1, one has
Co. = R=A /" iy (13)
_‘___.90

2
/oo

These pressure ratids, which are related to the aerodynamic
coefficients in a manner already shown, are functions of
the Mach number, the type of flow described, and the
geometric characteristics of the airfbil.

The local pressure coefficient for the blconvex airfoil
is defined similarly. These are related to the aerodynsamic
coefficlients by means of equations (9), (10) and (12).
Letting the primes indicate conditions behind the leading
edge disturbance, one has

Cpu * j 2/,/; /go-/) C/‘j’g a/ﬁ —/) (14)

The one assumption made at this point is that the flow
is irrotational throughout the region near the airfoil.

This fact means that Mach waves origlnating at the surface
are reflected from the shock wave in a manner so as not

to strike the airfoil. In the case of the biconvex airfoil
this assumption is not valid, so that the results obtained
for it are incorrect to that extent, assumed small, Teo
epproach‘the problem considering this rotationality condition
would complicate the problem considerably. Results of
supersonic airfoil theory show that the effect of this
rotationality on the aerodynamicicoefficients is negligible;

this assumption is carried throughout this thesis.



II. HYPERSONIC APPROXIMATION OF FLOW WITH SHOCK WAVES

Let us consider the equations of motion of flow through
an oblique shock wave; these may be summarized by the following

four equations:

PinYn = P Yon (15)

P Un Ut = Peo Yon Ut (16)
2

2
P,f PLYn = P * Peo Uaon (17)

,_/-/,5 g +-U1t~‘y’o"°f&ﬁf-a‘°f (18)

The nomenclature used here is described in Fig. 2. Equation
(15) is the continuity equation expressing the constancy of
mass flow existing on bqth sides of the shock wave. Equation
(16) expresses the conservation of tangential momentum across
the shock wave; equation (17) expresses’the conservation of
momentum normal to the shock wave. Equation (18) states the
energy relationship valid in the adiabatic flow through the
shock wave., Two basic assumptlions made at this polint are
the following:

(3}) There is no dissociation of the gas.

(2) A perfect gas with constant specific heats is used.
It is from these equations one wishes to obtain a solution
of the hypersonic flow conditions existing behind the shock
wave creéted at the leading edge of the asirfolls. In
particular relationships between the statlc pressures, the
Mach numbers, snd the deflection angles through the shock
wave are desired.

A fifth equation, the boundary condition to be met



at the surface of the alrfoll, and for reasons of continuity

throughout the region in the viecinity of a diamond (double-

wedge) airfoil, is that
Cor 6,

Reference 1 gives a complete development of these equations

(19)

&l\

of motion, p. 52, using the shock wave angle as the principal

flow parsmter. The results of this analysis are the

following:
I = Y
= 20
4 /# fon,é;{ toné (20)
V = an S, o1
’ /+ &n 8, tons, (=)
which yield the deflection angle relationship
/ 2,0 — J#/ S8, S/nE
a2 = SIN“A /28, 5/,
Mes / 2 COS(B," 3/) (22)
The static pressure rise is given by
A-Fo = fo U SinB, sm GL (23)
Co5(3,-6,)
and the nressure ratio across the shock wave by
29 p1.%5m%8 4
/?ao T ier % / J’f/ ' (24)

The relationship between the Mach number before the shock

wave to that after it is

ya 1t Mt apicosts,
" IMePsinB, - ‘%‘/ 7 {er./ M58, (é)

As the gnalysis 1is made for a perfect fluid, i.e., non-
viscous, compressible, under atmospheric conditions, the
low temperature problem encountered in the hypersonic wind
tunnel 1s not faced.

Proceeding further, one may impose the following

conditions regarding ﬂ% and &, , since for this analysis



these angles are considered to be smell:
SnB, = B, Sine =6,
Cosp, = —_@2 co56 =/~ %
Equations (22)---(25) then become

.l—zzﬁg_ + ﬁ,@/
o )

(26)

yr 7= B oy : (22a)
2
/(7 =Fo = [P Us B8, 2 (23a)
&y 2 z/‘(@":z—@) ~ |
7 = ﬁ—-/— /”w 6, - d/"‘l (244%)
/R - JF ’/Még 2 /" ) '

The assumptions just made are regarde as valid throughout
this paper.

From equation (22a) a relationship of /hﬁo s ﬁb, and

6%Inay be found to be (neglecting third and fourth order

terms)

MoB, = {{—/Mw e,f//(g;/,ﬂ.,;@)‘f/ (27)
where the minus (=) sign before the square root sign-is voided
because there is no physical meaniﬁg ﬁo it.

Tt 1s now convenient to introduce the hypersonic
approximations as noted inAthe Introduction. These may be
classified in the‘three categories

(A)// <L 8, <</
(B) &, <<% <</ (28)
(c) 6/:0(/’—,2) «/
Physically, case (284) is that for which the Mach angle 1is
less than the'deflection angle; case (28B), that for which

the reverse is true; case (288), that for which the Mach



angle 1is of the same order of megnitude as the deflection
gngle, In each case the angles involved are muéh.less than
one radian,

From condition (28A) equations (23a)-==(27) become

g %e, (29)
Fi-R = Celle (118, (30)
/ﬂ; . %(Jf/)@,zﬁ/; (31)
M= %7452‘ (32)

These then are the shock wave relatlionships to be used
when the condition & <<& <</ exists,
Meo /

From condition (28B) a similar set of equations arise
giving the conditions through the shock wave. It may be
noted that should equation (27) be approximated by

- Moo /3/ =/
in order to make this analysis, that this step would be
equivalent to assuming only Mach waves exist, or that the
shock wave lles along the Mach wave. The other relatlionshilps
would verify this conclusion. In this analysis then equation
(27) is not modified from its stated form. Equations (23a)

--=(258) yield the following results with this appfoximation:
- L2
F-fa= Lol (36, (33)

L - Mot +/ | (34)
M‘g-‘-/’/: (/f(f"/)_ﬁ@) = Mo (35)

These then are the shock wave relastionships to be used when

the condition Q K<_L <</ exists.
) .



The most interesting of the three cases to be studied
is that stated by (28C). From the four shock wave relation-
ships formulated with this assumption, equétions (29)===(35)
may readily be obtained. Agasin equation (27) is not modified.
The other relationships become somewhat more difficult to

handle; expressed by the function 444563 » they are

7=F = Poo Uss B 6, (36)
/+ I M6, 8, (37)

2 M
M 4‘—'3:’/”4»26 2 /9 /l"//@/ﬁ (38)

Equations (27), (36)=--=(38) complete the relationships to
be derived for the shock wave for hypersonlc flow for the
original assumptions (28).

Several interesting conclusions may be drawn from
equations (29)--=(38). Equation (32) states that the Mach
number followlng the shock is dependent énly on the deflection
angle for/’?l. <<6 </ , which means, considering the order
of magnitude, that /Mc is much less than Aﬂ,. Equations
(30) and (31) show that the increase in static pressure
through the shock wave to be proportional to the'square
of the deflection angle and independent of the Mach number
in the form of & pressure coefficient. Equation (29) shows
that in the 1limit the shock ﬁave angle is dependent only
on the déflection angle; this fact might have been surmised
from equation (32).

Replacing/ﬂwwith V/}Z}Zﬁ.t may be noted that the functions
given by equations (33)=-=-=(35) reduce to those obtained in

the small pertufbation analysls of supersonic flow. Thils



result, too, might have been expected from the order of
mggnitude analysis made.

Equations (36)-=-(38) form the combination of these
other approximations. From the nature of the approximation
it may be seen that on application to airfoil‘problems that
for positive increasing angles of attack the solution on
the upper surface will converge to case (28B) and on the
lower surface will converge to case (28A). These relation-
ships are seen to be more exact in a mathematical sense
since all the principal terms have been retained.‘,In
general it may be sald that they do not handle well anelytically
and that & singular investigation must be made of each

airfolil.
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III. HYPERSONIC APPROXIMATION TO PRANDTL-~-MEYER FLOW

To obtain flow relationships in continuous shock-free
streams, one might first investigate the equations of
motion in the physical plane using the hypersonic approx-
imation (large Mach number) and using a thin body. As
seen in Reference 4, there results the following non-

linear partial differential equation:

M Pus 2 By By + 16D B - L9y 0
Failing to establish a linear differential equation
for hypersonic flow in this manner, one resorts to the use
of the hodograph plane by means of which non-linear equations
become linearized without the introduction of approximations.
The problem introduced in this simplificetion is that of
satisfying the boundary condltions. From thls investigation
there results the relationship
oH . o6 (40)
where W = the ag;olute ﬁ”g.gn-i/tude of the velocity
€@ = the inclination of the velocity vector from
the reference axis of polar coordinates in
the hodograph plane
As yet no restrictions other than steady, irrotational
motion have been placed on this equation, especially that
large deflection angles are permitted. In its development
’V‘ﬂﬂza)was an essential element as well as the restriction
to Mach numbers greater than one. In short equation (40)
describes Prandtl-Meyer flow, or expansion flow, in

which the expansion 1s accomplished by Mach waves. One
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has already seen that a shock wave accompanies a compressive
flow, so that now the complete flow pattern may be described.
In particular it may be thought that an infinitesimally
weak oblique shock wave is a Mach wave., Conversely one

may imagine, in & very loose fashion, a shock wave as the
superposition of infinitely many Mach waves along one line.
Iif hqwever,Athe lMach weves are not superimposed, but spread
out over a region, the resulting overall compression 1s
isentropic (owing to the fact that the entropy change
across a weak shock is a small quantity of higher orger
than the pressure change.) The reverse moticn, expansion,
is possible to a limited extent as shown by equaticn (40)
to bend the flow around a corner by means of an infinite
number of Mach waves. If this equatlion were applied to a
compression process of large magnitude on the other hand,
one would be neglecting a large increase in entropy, the
resulting analysis being that much in error. This equation
then relates the velocity vectors on the two sides of the
expansion Mach waves in accordance with the equations of
moticn for irrotational flow. However, 1t is restated,

no specifications have been made with respect to the
pattern of the Mach waves in the physical plane.

The flow field described by equation (40) then essen-
tially consists of two regions separated by a Mach wave, the
downstream region being entirely dependent upon the upstream
conditions. The velocity is constant in each region, the
velocity discontinuity tﬁrough the Mach wave being described
by equation (40). This change in speed causes & change in

Mach number; the dependence of the velocity upon the lMach
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number is expressed by means of the energy equation

W ( + = -/
(c) / a’—/ /;1 (41)
where c¢ = the maximum velocity when the absolute temperature

1s zero. Using the notation of Reference 1, one obtains

2w 4 IH -2
20/W = _/ MJ (/f—Me) %‘%/41_/ %ﬂé’

Making the hypersonic approximation, M 1is large, one

obtains from equation (40)

oo = L2 odM
| &~/ M
Integration yields

6 ~6Cw =d7—%(/7/{;—/7¢{_) (42)

Letting the curved wall or corner become continuous, so
that one may describe 1t as an infinite number of straight
line segments in the case of the wall, leads us to the
integration performed. Tt may be visualized that successive
changes may occur about the curved surface, the flow
conditions being prescribed by equation (42).

The relationship between the Mach number and the
amount of turning expressed 1n equation (42) presupposes
that both A%b and‘ﬂﬁ are of the order of hypersonic mag-
nitudes. Although this fact certainly is valid iIn expanding
flow only, it does not nedessarily apply with a‘preceding
intense shock wave, such as may occur when the airfoil is
at & positive angle of attack along the under surface, Wilth
initial hypersonic flow equatiocn (42) is valid without
qualificetion when the upper surface has only Prandtl-Meyer
flow along its entire length, no leading edge shock wave
occurring.

For the sake of completemess the next section 1s included
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here. With a heavy oblique shock wave occurring at the
leading edge so that ﬁﬂ is not to be considered hypersonic,
this last analysis must be modifiled to take supersonic Mach
numbers into account. On finding the conditions existing
directly behind the shock wave, one may modify the malysis
accordingly. Starting with the conditions existing behind
the shock wave, the Prandtl-lMeyer flow behind it may be
exactly expressed on integration of equation (40) to yield
2(6-0,) =}/§_5m"/ RYIi-] .
(2+@-1)ME)(2 +(¥~1) M?)
LRI~ (-))MAIVAET ~ (240NN =]}
» s B LM NI ~WE T f5)

The Mach number at which one enters the hypersonic regime

may arbitrarily be established, from which it is possible
to determine whether equation (42) or (43) is to be used
for determining the Mach number in the event of a heavy
shock wave preceding the Prandtl-Meyer expansion. From
the Mach number relationship, the pressure ratios and hence
the pressure coefficient may be determined.

3ince the flow through a Prandtl-Meyer expansion 1is
isentropic, it is possible to reiate the »nressure after
expansion to the »nressure before expansion in the following
manner:

The energy equation yields

Vit GT <G Ts
5. /4 dé’-/Mz‘
4

Using isentropic flow relationships, one finds

or
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4. £ Lo
A7 7
g @ 5"
% 755

///*’"’M«f)///f )
A

Making the hypersonic approximation after expanding in

.series form, equatton (44) becomes

/&“’/ °’/ /*a*— 1 5 o) 40 = /ﬂ”/‘ymm

Thus for Prandtl-Meyer hypersonic flow the dependency of
the pressure ratio on the Mach number 1is found;
Algebréically mahipulating equation (42) to
/hi = Moo
/=Moo (6,-6x) T’

one sees several very important conclusions to be drawn

considering the conditions,of7félétion (28). Specifically
when MJ@‘@»}T{.@ the following Mach number, ,4// , is seen

to be infinite. /This situation may occur with the restrictim
of (28C), would more frequently occur with that of (284),

and would not occur with that of (28B). These facts will

be further emphasized in the section‘on the applicstion of

this work to alrfoil theory.
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IV. APPLICATIONS TO THE DOUBLE-WEDGE AND BICONVEX ATIRFOILS

A. The double-wedge airfoll.
Let us specify that the airfoils investigated will
be symmetrical with respect to the chord line. Hence, it
will be necesssry only to evaluate positive angles of
attack. The principal parameters involved will then be
‘the position and the value of the maximum thickness as
those affecting the serodynamic coefficlents from a geometric
viewpoint.
The first analysis will be made assuming condition

(284) is vd id:

/
£ < @</ (284
72 )
Also, one must specify that

oC < §, (46)

Condition (46) states that shock waves exlist, starting
at both the upper and lower surface leading edges. Again
adonting the notation of Fig. 1, one obtains the following
from equations‘(lS)‘and (31):
Cp = (0#1) 6,‘2 (47)
Coy = (¥+1) €5 (48)
Since Prandtl-ileyer expansion occurs to turn the flow
prior to regiohs @ and @ , one uses equation (42) in

conjunction with equation (32) E% obtain from equation (45)

g [-/g %762}?:/ =5 (49)

2
P4_ 83+ % )71 -
{/ V& 7 F3 (50)

Relatwons (49) md (50) are plotted in Fig, 3, where for

values of (%75.) 2265 , F is zero. However, for 31—-;—?7/65—

(
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or §7—J;~/6‘5' both /Q and /A are less than ,00l, or

8/ -3 V]
zero for this analysls. Manipulating these conditions, one has
G+ X > E5 (6, -<) (51)
& ~X 2 65 (8;7x) (52)

Condition (51) holds for the upper surface; condition (52),
the lower surface. At zero degrees angle of attack there
results the following condition for which ;? zquals zero.
62 2. 656, ’ (53)
Using a thin alirfoil so that CE and Eéqnay be approximaeted

/ V4
by £ and __t;_, respectively, (similarly for the lower

2 2/-C)
surface owing to the symmetry), one obtains the condition
for which the maximum “hickness point vosition must not be
forward for é to be zero,
7
/

Clx». 065G or G’ 394 (53a)
It may now be noted that a'conditiOn on the angle of attack
variation for which this approximation is valid may be
gained from equations (51) and (52), or just (52) since the
airfoil goes through positive angles of attack only.

XL, BHL (/54 &, - 85) (54)

Since Q;GVLQ},relatimn (54) becomes

/
$.394(154 2" _ Z) (54a)
' /- <G
Equations (46) and (54a) are shov%'%s the limiting lines
of region @ in Fig. 4. Hence within region @ one obtairs

the following:

z(O __/):‘O (55)
Cﬂf % (0% -1) 2 (56)

Practically speaking, one may interpret conditions (5% and

(56) as mesning that the rear surfaces of the airfoil de not
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contribute to the aerodynamlc properties of the airfoil when
the maximum thiékness point as a function of the thickness
is grezter than the values illustrated in Fig., 4.

The aerodynamic coefficients then become, on substitution
of equations (47), (48), (55), and (56) into equations (3),

(4), and (6),
C = 2(d+1) ¢’

Co= (F2)? [?"2 # Fo*f (57)
. Gy = ﬂ’ )z‘ ‘c’oC
where C;’:C;’:C" , and §,= 'é/' These functions form
part of the graph in Fig., 5 where the maximum thickness
point position Iis used as ﬁhe principal parameter for three
ten per cent thick airfoils. In Fig. 6 one finds the dreg
coef“iclient for zero degrees angies of attack as a function
of the maximum thickness point and its vslue. From the
standpoint of the performance characteristics it is readily
seen that the thinnest airfoil with the maximum thickness
at the trailing edge would be the most suitable for the
flight condition

/7/_ << O <</ (284)
In Fig. 7 one findsbthe 1lift and pitch'ng moment derivatives
at zero degrees angle of attack as functions of the maximum
thickness and its position, the values for e¢' < .394 being
obtained from equations (62), From relations (57) one may
see that the center of pressure position is located half way
to the maximum thickness point from the ieading edge.

From equation (51) one obtains similar equations to

(54) and (54a).

374({’_ /524 Z") (58)
/-’



18

7.394 ( & ~/54 &) (58a)

Equations (46), (54a), and (58a) are shown as the limith g
lines of region.(i) in Fig. 4. Since in this reglion one
has no longer 2 negligible value for 42, one uses equations
(55) and (50), which yields

Cpy =z (J __...// EC,’%, A Ca, (59)
Therefore, in addition to the values of the aerodynamic

coefficients given by equations (57) one has

ac, = (J’f/)(/—c’)(éf-té")zf'
Aac, “‘(/f/)(o‘tlf’/l/g c((/~c))/" (60)
AG,, . = (¢#/) Le (o(f_t ) “Fs

where the following restrlctions are met:

2
e & e<</ (284)
o< §, (46)
>, 39¢ (/5% 8 - 8,) (54a)
X2 394(8 -/545,) (588)

If relatioﬁé(SSa) and (58a) are violated, i.e., the
maximum thickness point is too forward at too small an
angle of attack, region dﬁj shown in Fig. 4, one must make
a further revision of equations (57) similar to that taken
for equations (60). This modification would account for
a very heavy shock wave that would result in the existence
of a good amount of static pressure on the aft surfaces.
The limiting lines of this regilon have already been described.
In region@ one uses equation (49) and (50) to yield equation

(59) and
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Cpo,= 2 éﬁ_ = 2 7 = C 51
re e (A1) e B - ACn

Again, in sddition to the values of the aerodynamic coefficients

given by equations (57) one has
V4 ’
AC, =) (1-c) [(x+2])75 (2, _o<)2€}
AC, = (o t! VP (octr-c) - 2 Err ¢ - o¢) 2 sk - W
b = (ot )( /(—/cf) 2 3),/{1(3_5-&) /Q_f,zac?(/c)g/gg/)
ACry =) [t L) - (-0

where the following restrictions are met

/-,,/ﬁ << O <</ (284)
X< &, (46)
X €328 (S, - /5% 5,) (58a)

Equations (60) and (62) show a much greater increase
in drag for the additional amount of L11ft obtained. The
net effect on the pitching moment is to put the center of
pressure further aft. This is seen in Fig., 5.

The condition of@-‘%)or o~ 6, is discussed later
in this section on dbuble-wedge airfoils.

In contrast to condition (46) let us examine now the
flow conditions that will occur when

x> 8, (63)
One notes thet Prandtl-Meyer flow will occur at the
leading edge over the uppver surface. Thus the previous
analysis 1s modified in regions @ and @ of Fig. 1.
The lower éurface is the same as that already discussed,
its conditions being analyzed from Fig. 4. If in region
@ , one uses equations (48) and (56)

Co, = (W41 657 (48)
Cop =0 (56)
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If in region (:) , one uses equations (48) and (59)

Cpy =F Cpy (59)
. For the upper surface (D combining equations (42)
and (45), one obtains
{I— g_':l/me,] # , (64)
which 1s always seen to be less than the value one. In
terms of the pressure coefficient it is seen that this
term is of higher order in comparison‘with equation (48).
The same concluslion is reached for surface (:). Hence

one obtains for the two upper surfaces

Cp, =0 (65)
Cp, =0 | (66)
and the serodynamic coefficients become
| , -G g!)t e
& = (J/ﬁ)(oc?‘_i) c’ (67)

Grue - (J’f/)(ocft )? c

for the conditions

.-’-w < © <</ (284)

X> 9 (63)

X$.394 (/542" £7) (548)
Padd /_Cl

or they become in addition to the values of (67)
G- @)
A6, =(yf/)(o(f_z“)2/ (oca—cj—_é)  (e8)
AC,,, (a’f/) z_—_c' ‘(oL )ff

ec’
for the conditions

/é—a K B/ (28A)
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> § (63)
X2. 394 (/.54 &~ &) (54e)
X2.3%( 8 /54 6,) (58a)

Hence it is seen that a variety of formulas may be
developed to ccpe with the particular example. The gener al
formulas for the 1lift, drag, and moment coefflicients are
expressed by equations (57) and (67) to which various terms
are added to take pressure recovery terms into account.
Obviously from the drag coefficient curves, Fig. 6, the
best airfoil would have its maximum thickness point et the
trailing edge, being as thin as possible, and operated
below the leading edge sngle §, .,

V The second major analysis will be made for the
condiﬁions stated by relation (28B)
O<<t </ (28B)
| Moo -
These formules are shown to be identical with those obtained
from two-dimensional airfoil theory, except that /%p is
repk ced bykgzg?. Accordingly from equations (13) and (34)

one obtains for

X< g (46)

Cp, = ~RE /Mo (69)

and C/’,y = ée_g//%, | ('70)
In sections @ and @ of Fig. 1, separated from sections
C) and C) respectively by Prandtl-Meyer flow, one gets

from equations (13), (34), (42), and (45)



p Cre =2 (77?;"/;{
Cra = M2 {(/" %/%:(5,7‘%) (/- ¢m6) -/j
Co. 22 9 (71)
2" Mo
Similarly : C& = _g_ 94 (72)
The aerodynamic coefficients then become the following:

G
o P - S
e Mo C/(/-C7) (73)
20C

UE [ ‘
Without going into the details it may easily be deter=

minéd that the same coefficient formulas are developed when
K> &, From the isentropic Prandtl-Meyer flow formulas

and with due constderation of sign conventions, these are
obtained from equations (13), (42), and (45), the values
ofC}z ade;éé being the same as those expressed in equations
(69) and (71). |

Accordingly the double-wedge airfoils‘all~have the same
characteristics for the initial assumption (28B)

o << A_,/i <</ | (28B)
except for the drag, from which i1t is immediately apparent
that § &or CtS is a necessary condition for minimum |
drag. The center of pressure is accordingly located at
the fifty per éent chord point. Teoo, flat plate formulas
may be derived resdily by modifying equation (73) only. Fig.
8 shows the additional drag due to thickness plotted against
the maximﬁm thicknéss position.

The third case to be investigated, stated by condition
(28C) ‘
9.-0(/;7{;’) <</ (28C)
for X< & | (74)
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shows that 2 singular analysis must be made of every airfoil
whose aerodynamic coefficients are desired. From equations

(13), (37), and (38) one has

CP/ dzz(/a /)
o &/92[/7"///-#(5;: 7%a)* Vi
GM.E)= /+//+[f”9)

Cp J’f/ 8% G(M,6) (75)
where G%@)is plotted = Fig. 9. Similarly
- 8626 (me) (76)

From equations (13), (42), and (45), as well as (75) and

(g; /%, )”/‘2
fuc 5 - va
¥ #y o 3)) 416 M) * o (4 ,503)~)

(76) one obtsins

C;o = d’(:k; # );;AZ(;/'-/;)

('77)
where J, ,578) = // f-//p/,(a +6)}%t
or J Mo, 5+) = [/-— L///Mm(éwz)jf’/ (78)
and H= A_{, — / - (79)

VT % & [Tz 6,27 2 &
The function /Vnﬂzy is evaluated(;r6§ equatfsnd (27) and

(38) and is plotted in Fig. 9. Accordingly

"l = LGy # Zf/— (% -1) (80)
The values of the pressure coefficients so obtained were
then pleed in equations (3)---(6) for O(<6, and 9=0%1-)<</
for the following three airfoils: v
Pos'n Max. Thickness

10% thick (a) .25¢
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(b) .50¢
10% thick
(c) .75¢
In the event condition (74) is violated, or
oo 6, (81)
one sees that the flow, as previously, changes charsacter

over the upper surfaces from the initial shock wave to an

initial Prandtl-Meyer flow expansion. From ea stirns (42),
(45), snd (13) there results

e 0 e {em® 1)
g (/- & M6 o) ¥ ]
/({Az,e) (/- U,%e) i
<k, Jﬂz/ K, (#,6) - /} (82)

where, as discussed previously, lz approaches zero when

@© .
A%uéz > 240. This condition may be rewritten

‘
Ne Mo 2C
Since the flow is considered to be isentropic,one has

similar expressions for Z? .

Cos = 7oz / A (Mat)) —// (84)
/
> 240 _ 5 = 240 _ L (85)

Moo 2 A 2(/-¢)

The. limiting lines described by equations (83) and (85) are
plotted in Fig. 10. It is seen that operation in region
di) means tﬁat a signifigant static pressure does not
exist on surfaces G) and @ « If in region @
signifigant statlic pressure exists over region (D s but
not @Dv, i.e., flow separation takes place before surface

@ is reached, If in region @ signifigant static pressures

exist over both upper surfaces. The ordinate origin
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R.AO
Mo In Fig. 10 primarily establishes the region in which

the airfoil is situated. In general 1t may be noted that
surface @ has no serodynamic value or very little for
positive angles of attack.

It is seen that a variety of formulas may be developed
to handle the particular exaempk . The gereral formulas for
the 1ift, drag, and moment coefficients are stated in equations
(86) and (87), where various parts will drop out depending

upon the existing conditions., For ®&K4&E;  there results
C, = - J’+/@£66££,6){c +(/‘C)‘/f ,37/5 (-< )4 -4)
65 G(Mu&s) [+ U-c) ]
- L/a fe(/%e)/c g + -c), ezj,‘;/;zz(/—c'/eg-@)
* %’ &5 G (Me6y) (l c'6; (/- @ ), j (86)
z(/‘C)/J@ J, 6;)
o 11 0200.8) [ 54 5574 + o6
* GGG [T, ety

12

(%-4)

For &7 6“ , these become
Cue-fe o (€K, €K 1) * 4/ 6,26(1.8)|c# 4 -Clf
/!/‘g (\/ "/j(/~C")
CoZl, (K6, + (1-c)H6 ~ 2x) -fﬂ%b (4-1)0-c)g,

’mﬁ
&.’6&%8)((?6 (/-6)464]63 (87)

Coa™Fis (€% # 5% 1) + loy) 0"
+ 1y 02 G(M=6,) J<'7 z//__;_‘”
Gnbh s given by equation (75); J , by equation (78);

A by equation (82). -
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The results of this investigation are shown in Fig.
11 for the aforementioned airfoils., It is seen that for
a Mach number of ten, corresponding to the Mach wave lying
along the surface of the sirfoil with the maximum thickness
at .50¢, that the minimum drag is accomplished by the
airfoil with the maximum thickness at .75c¢, or the one
whose leading edge lies within the Mach cone. Owing to
the intense shock wave that exlsts for the alrfoil hesving
the maximum thickness st .25c, and owing to the more continuous
flow of case (c¢) (the maximum thickness at .75¢), the slope
of the 1ift curve for the foil with the maximum thickness
at .50c 1s the least of the three. The visible bresk in
the slope of the 1ift curve of this airfoil occurs as the
Prandtl-Meyer‘flow starts over the upver surface. As for
the moment coefficient about the leading edge, it seems
quite reasonable to expect thet alrfoil (b) has the minimum
amount of unstable pitching moment owing to the small recovery
of pressure along the aft portions of its surfuce: l.e.,
the center of pressure position is further fcrward. Too,
the airfoll whose leading surfaées are within the Mach cone
shows the grestest moment about the leading edge because
the increased static oressure due to the shock wave acts
over & greater portion of its surface than the others; i.
e., the center of pressure is further aft, half way or more
to the maximum thickness voint. Since the center of pressure
position is nearly constant in each case, 1t seems thst the
most favorable airfoil, as before, would be the one with its
maximum tﬁickness position at the trailing edge, and as

thin as structurally possible.
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B. The biconvex airfoil.

Owing to the geomebric nature of this type of airfoil,
1t is readily seen that Mach waves are generated along its
entire surface to turn the flow continuously. These waves
are reflected by the leading edge shock wave, causing this
shock wave to turn about the airfoil and causing the flow
in the neighborhood of the airfoill to become rotationsal.

In this analysis these effects will Dbe neglecfed so thsat
'simple' expressions may be derived for the aerodynamic
chgracteristics. The principal effort will be to determine
basic factors affecting the aerodynamic characteristics

under conditions (28), rather than to compute the coefficients.
A more exact method, but somewhat more tedlous, would be

the method of characteristics.

Let us aporoximate the circular arc alrfoill by means

of the differential equation

c/%? = é?‘oéa (88)
where the nomenclature is described 1in Fig. 12, Integration
ylelds

ousS( L+ 1) (39)
where the condition is imposed that é% is zero at x/c =
- 1/2. It is apnarent that this airfoill is symmetrical
about bothimajor and minor axes, that the principal parsmeters
involved are the chord length and the radius of curvature,
or the leading edge angle and the curvature,

Tn the case given by condition (28A)

/ i
£ 28A
| 7 << e <</ (284)
one has from equations (9) and (14)
%
C =— A 9
““ Sy CPu Q/C o)
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where w“ 4
CH‘Y—(@-E /) (14)

the primed quantities denoting the conditions existing just

after the leading edge disturbance. From equations (31)

and (45) one obtains

/2 - ‘y(%‘/) é. 2Mw (31)

/2
_/_Z: = (&é‘) 7/ (45)
/
On substitution of these equctions and (42), equation (9)
becomes
2 2 L 2]
G =~ oz /,/z [E(-Eme.) " )dy o
or with the variable /\C/Creplqccd by @ from equation (88)
- - L g % L/ ’ TL

Presently the 1ntegrat10n is carried over the entire airfoil,
However, owing to the very high Mach number, separation may
occur before thst is reached. This effect is discussed

later. Eliminating higher order terms, one obtains

-4/ (%_os_c);/'—}’ )[ -y )37"] (91)

444. 3/—/

A simllar expression 1s easily derived for the 1ift coefficient

of the lower surface.

44 }%j/ 87‘0() [ (/- //—Zd;- jgla

The 1ift coefficient for the alrfoll becomes
— -

.- 5 VT (e 1101 £2077
L7028 YT [ o2

where 0C < 8.

In the same way the dreg coefficient 1is obtained from

equations (10), (14), (31), (42), (45), and (88)
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’4
t _ Y- / 5% ¢
Con mzc/ g (/-4 ma)(a, +8,) o6, (95)
Integration and an order of magnitude analysis yield
C,, = 2 - N IMEYER NV AN
% 30y 2 /25;8 )[ ( )//977—)
-{)/- 23 2 2 3/ 285
-1 £2) " (1 i By o) o
A similar expression is derived in the ssme manner for the

drag coefficient of the lower surface, resulting in the

following expression for the total drag coefflcient:

Co= 2 L] 2(—/+(24’/)// L o 6x25%57)

Jye) 21 2
4 5o 2
5o/ £2. ) (/+aex lg(;; .___(/ )sfi)

-(61‘0()4(/ 27 S+o0u ) /(/f@’//)hmn )} (95)

In an analogous manner one also obtains the moment

coefficient of the alirfoil about the leading edge to be
= I+ J-
C’”’L&’ 3/../ 2/./ 452 /2(d4+6bczé + f)

# 2 ¥ =4
~(6 (V5 § "y (14 By 52
- 25 ) - d-
L =4 w() 7 (/+ 3,4 g_a)f (96)

Let us now examine the term 3
/- 26 |/ H) 7 (97)
51X ¥ 2
which occurs frequently enough to cause some thought ss to
simplification. 4&s with the double-wedge -airfoil, it may
be readily determined tnat for
O<oC<./286 (98)
term (97) becomes less than .0l and can be neglected. Too,

since the Lterm

£é

8 -0C (99)
is always greater or equal to thet of term (98), it is seen
that 39~/

-2 Vg™

(978)
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becomes negligible for the condition (98). Accordingly the

1ift coefficient is modified

//z",é""' @L) (<34 3¢ 6°) (100)
for the condition
OLX L, 72 & (98)

A similar examination of the terms

(/- //g/.. 25)7_(/7‘-(2//)4(;— -/)ei'é:é (101)

shows that for

OLKXK <K ,6656 (102)
these terms too may be neglected. Since the term
) v BN gy 238 5
( I/ZJ’ 5 —oC ) // ¢ /)/(J/*-/) VETTT) o (101s)

is always less than (101) for positive angles of attack,
this term may always be neglected. The drag~coefficient

then becomes

Co - rr/ 4=/ {(-/,c(g/—/ ‘m,/)é(‘* 0(26+6)(103)

3~/ 21/
for the condition »
O XK .668 (102)

The terms

yTT 28, -/
(//;Zi_//—g‘f'.‘é (///13;/(7761-@)

appearing in the moment equation yileld te a similar analysis

39-1
(104)

the following ‘nformatior

I+ &=l 252
Come= 555 253 26,_ (ot G628 +5} (105)

for the condition
O<KXKL. 38 & (106)
In the event thet the restrictions imposed upon equations
 (100), (103), and (108) by (98 ), (102), and (106),

respectively, are not valid for the positive angles of
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attack, one obtains the following increments for the coefficients

-/
3
AC, = 33’,*// / Ji?—/J(ou-é) (/ ‘?5 [/3 7)3?— (107)
for the condition

R2ELK K S (108)

=/ o
f / — ‘. i
5 A v er T 8 Flemtrg o B
for the condition

66 §<KLS | (110)

B! 4 X -
A =45 S, S5 (8+) K /T 25 ) /(,,3;//5%( (111)

FBELXXLS . (112)

for the condition

It may now be observed that should flow sepnaration take
place before the tralling edge of the airfoil hsas been reached
that the limits imposed on equations (100), (103), and (105)
are lowered., As a function of the angle of separation, these
limits are shown in Fig, 13 for the 1ift, drag, and moment
coefficients. If these limits are exceeded, formulas (107),
(109), and (111) are added to (100), (103), and (105),
respectively, where 25 is replaced by 6%5p. The separstion
angle is determined from condition (97) set equal to .0Ol.

One may next wish to investigate the conditions
A <« 64(/ (284)
2
x> & (63)
A brief analysis of the 1ift coefficient for the upper
surface will show that only highér order terms are involved,
Again this amounts to a great simplification of the coefficients.

From equations (9), (14) and (45) one has

- 7/%2 ” {(/%)m /2! _/}70/_;:

Substituting equrtions (42) and (88), and integrating, one
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obtains
,}KJ

Cu s 55 (550 B a1 - - S MB)T)-28) 1)

Because of the Prandtl- Meyer expansion at the leading edge,
/
135 is less than unity. But the principal factor leading

to the higher order of magnitude of equation (113) is ZéV ,
w
which has a smaller value than £ due to flow expansion.
[- ]

This makes equation (113) a full order of approximation

higher than those of equation (94), so that we may conclude

Cr, =0 (114)
for X286 (63)
A similar analysis will yield the facts that

Cbu =0 (1 5)

C',,,,“LEO (116)
for condition (63), Therefore the aerodynamic coefficients
become

~1
C = 41 Vz?(x 7) (<+ 6) J /-(/-23 VT-/‘ );f?"}
34-/ . 5+’ 2%

PIAN oC+ 8 2
Co = 57 zr/ 25( #6)” R o 75

- 55 WY #, 25
4 33-1
= W)y w+8)? (/- ()-yET Zajr
Corse 3y z;r’/ 462 ¢ (1 V-V G Fa
r‘/
(/7‘ ) 6+oc)/2
for the condition

s P 4.) (63)

A short investigetion of equafions (103), (109), and
(117) yields the fact that the main parsmeter affecting the
quality of the airfoill will be & , the ovening angle of

the airfoill. Translated into terms of thickness, one
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deduces the expected result that the airfoil should be as
thin as possible for mgpximum performance, i.e., minimum
drag. In particular it may be derived that

Ld=C = 4 7-‘/5 (118)
which may be substit;z;d in previous expression if so desired.

Tn the case glven by condition (28B)
o<< L « / (28B)
oo

one obtains a similar analysis as that just presented.

From equstions (9), (14), (42), (35), and (45) there comes

G, M—/z/ /ﬁ‘(/~f/%u'9«) ‘/} 4 ' (119)

where the spproximation has been made

2 ‘
Xl asln VO 2 /
(~Lmia)’'= (/- m'é.) (120)
Substituting equatlon (88), one gets
7
q 2 __,/ (’/a(/ - 94..) -/] o’@a (119a)
“« /M
As the Mach number is much lower than that discussed in the
last section, the possibility of separation is not discussed

here. Fliminating higher order terms, integration ylelds
C =2 (121)
@ s :
‘A similar expression is derived for the 1ift coefflcient of
the lower surface, so thast as with the double-wedge alrfoil,
one obtsains
C, = £ (122)
: @
The analysis for the drag coefficient 18 conducted

in the scme menner. Similar to equstion (119a) there is

for the drag coefficient the following integral:

C;a ‘2 Q/ /%l(/“//%clea) "/j(@u‘f'éu,) 0/6« (123) |
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and & similar integral for the drag coefficients of the lower

surface. These yield the well-known result for biconvex

airfoils
Cp = 4x? , 45° (124)
or /h&o ¢3/”Zo

| 2
'4
Co = #x2 , (6 L (124a)
y 77 I Moo
The integration of the moment coefficlent equation for
the upver surface
C, = 2 02/‘3_5 g"(/,,y;g,e)g /6, (125)
“ JIMs: C2 4 ( Po
obtained in the same manner as equations (119a) and (123),
is readily performed. Added to the moment coefficlent derlved
for the lower surface, one obtains the expected result
G, = &X (126)
m M
The formulss (122), (124), and (126) may be obtained
from the small perturbation analysis of supersonic flow,

Mo veing replaced by P%a-/ . These formulas are not

modified for the condition

ox>d

Again the importance of using & thin airfoll 1s apparent.
The 1ift coefficlent and the moment céefficient are seen to
be independent of the shape of the airfoll.
The pfoblem of the biconvex airfoil in the flow glven
by conditicn (28C)
6:0%}<</‘ (28C)

may also be solved by the equations derived in thils report.
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