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Summary:

The purpose of this thesis is to determine the effect of yaw on
the rolling moment charscteristics of rectangular and trapezocidal
planforme of zero thickness. The method used is that of applying
the superpoesition of solutions of linearized conical flow to the
problem of the yawed wing. The solutions particularly applicable
are those where W = €2%% ig symmetrieal with respect to the plane
of the wing. 1i.e. (i?%ting cmse). For the wings considered in this
report it was necessary to determime uniquely W = Wb, T, t) in the
following regions: 1) subsonic lesding edge, 2)‘§ubsonic trailing
edge, 3) infinitely swept wing, 4) supersonic leading edges. The
rolling moment and lift coefficiente were calculated and the effect
of varying the angle of side edge and yaw engle of the wing in re-
spect to these parameters can be computed. The rolling moment
coefficient for a rectangular wing of different aspect ratios was
computed and it was found that the variation of rolling moment with
angle of yawd/l incresses almost limesrly %y a meximum and then
fa1150ﬂrThere is also an incresse in‘ifgﬁzwith increasing aspect

e g asp

ratio..
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SYMBOLS

angle of attack
2 a
aspect ratio (O}SS :;/Rf(c") for rectengular wing
chord
span |
L

1ift coefficient 5’3
rolling moment coefficient {ﬁé)

p= (%)
Tan O = 7‘3 Side edge of wing
Ten ¢ = (_1’-) In plane of wing

x3

-
Tan ¥ Angle of yaw
3d perturbation velocity in X direction

/
axg
free stream velocity

area
2 W) pressure coefficient
,&Woo o
/ ‘
Re f=/ze‘: X, +4 X

[-/_/22 —-1"/"2 =~ (R
LEE e TP, TR,

2 2
Vo 2ex;

Mach number (for convenience M =¥ 2 throughout report



USEFUL_FORMULAE

1) B+L _ 1
28 b
1-8° _ V-5
Nz T,
5 (1-bl1+6)° 1¢b [1-b

4y = bV b
4) Z*— _t_:—é—-

S I-bf
5) A(F+ L) =1 RE6N11E)
) e >
HOMOGRAPHIC TRANSFORMATIONS
x* - X-bx £ X _ t-b
[-b X 1-p¢
%
X = %
X3-bX
X = 22
Vi b2
% = ® = WTMA"]’ ()* b=0
cos(’/ am'l{ 1-5b Tan /. Side edge parallel to stream

coslyyf = Tan_/l
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INTRODUCTION

The first planform considered is shown in(Fig. 1(&)} as wing A,
The wing has parallel leading and trailving edges and side edges which
may be set at some arbitrary angleﬂ with the Xz direction; the
only restriction being that in region 1 (4>,3> O, and in region 2
-(t({ﬂ {QO . The wing shown in Fig. 1(b) is similar to wing A
except now in addition to the three regions considered there is the
region where the leading edges are both supersonice

In Part I of this paper the values of W(b, ¥ ) and the corres-
pbnding Gp(b’t} are derived for the four principal regiocns, In Part
I1 the rolling moment and 1ift coefficlents are determined for arbe
itrary b and ¥, 2nd the C.P. of each region determined sbout some
sultable velue X; = constant.

In all cases considered M '-"‘ﬁfcsr ease in calculation, and
AR, was tzken large enough so that the regions where the Mach waves
from the tips intersect are off the wing, Conical flow methods con=

sidered here are restricted to the plane of the wing ({%37%) plane)..
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PART 11, CALCULATION OF Cp(b,s ) (PRESSURE COEFFICIENT)

Region 1. Subsonic leading edge inside Mach cone (u.>/3 O

In this region Cp(b, ¥) is calctﬁ.éted for an erbitrary angle
of yaw, A , (’i’anA = W) and side edge angle )3 (Tanﬂ = b). See
(Fige 1.)

From methods of conical flow (Ref. 1, 2) it is known that the
raye from the side edge inside the Mach cone on the wing are isobars,
lines of constant pressure, These lines are characterized by ranl = €
- X

Xs From this fact it follows that if we pass a plane through
3

the Mach cone at any X32 constant, we can completely describe the

t

pressure field in terms of the cne parsmeter (é). The projection

of the Mach cone and the trace of the wing are shown in( Fige Z}for
' : _ 46
Xa:]_' and );:7(,+4XZ~/ZE .

%z

y PLANE
Xa-—i
Ko+ %1
s>
""b"* %,

Figo 2

The. ¢4 plane now may be irans formed
by a suitable one to one mepping as described in{‘Ref. 1} where unii

circle maps into the unit circle and where everything is regular )
£
inside the unit circle., Such a transformation is ;-9’ €E=Re

where R = {_—_____,,__ “’/Z » We may now construct solutions that are
~C
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analytic for R{1l and have a great number of functions at our dis-
posal. The boundmry conditions inside the unit circle are similar
to those in subsonic potential thecry while for R, 1 solutions ave
gotvten by method of characteristics. See(Ref. 2 .) The boundary
conditions in the € plane are gn:lven for Wi€ ) = WHAW ' where W'
is the harmonic conjugate snd ':i.ﬁ is introduced to show that the
Cauchy Riemann Equations are satisfied, The proper boundary cone-

ditions are shown in (Fig. 3.)

€ -PLANE
E2
€=Re"
%: coT A = Cos&

B= 1-V1-b?
b

R= 1-Y7-r%

Z

Frée 3

From subsonic potentisl theory it is known that W(B) = @0 or

mes continuously to zero. In this case W(B) = ©@ and W~ LoGR.

|~

However by placing an infinity (pole) of the same strength at

W is made completely regular for RL1l and the {M;; O for this

gingularity., However we mast alsc take care of the jump condition

at the side edge. First by a linear fraction transformation, B is
Now

mapped into the origin. We Ahave the condition of 2 side edge parallel
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to the flow, and solutions of this problem ave kunown. With suf-
ficient menipulation we get the valuve of W(b,t) to be (for complete

solution see Appendix A) The LoZLOW NG

2Wo (1+3)-ab)(1+£) -1 -t M1ry, f)ﬁﬂ)}
(bH)“ [bﬂ (b-¢) T (1+t)(-2b)
bst<1

_ -4 / (H{ “/K(6~t)
g(,#}- ]7}//:;5‘ b+[ [/ (6-¢) +Z;~m

N 1)-at) K= (F52

lel

Region 2, Subsonic trziling edge. O)ﬁ)-(u

The vaiue for ‘ib,bjf ) is essentially the same as that for
Region 1 except that now the Xutita condition must be imposed. That
is that W(B) = O and must go to zero continuously. The solution in

this cage is

b&« -/ k(l) f) - ] b
. w,at) - 77 ENI/(]”) /<t

) _ -1 (Kb-t)
é’:(b'a;t/ 77,~ > Jaw (1+8)

Region 3, 2=dimensional sweep back.

In this region we apply the 2-dimensional sweep back theory

1.8 N:Wa:’M
Vi-¥2
S Lol
G = - 2

1-¥
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Region 4. Supersonic leading edges,

Wity &)= 2y Tan [0+ D) N )
& | ”WM%« (1-t)(r-%;) # wglin (74)1-2,)

(‘([Jaf -- £ _1___ [ e N1rd)) 1 -1 (,_0(,,52)4
fod 0’12) 7 I'__—_‘]-bjz YA‘W M("H(Z'UJ + —._-—['——_3—3% 721&/ m(lf«{)(l-b“

A three dimensional sketch of Cp in regions 1 and 2 are shown in

{Fig;s, 4 and 5.,
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PART ‘111, CALCULATICON OF C. AND GMR

L

Regien 1. -/< b<oO -bst <t

The region of integration is shown in Fig. 6.

FrG ©
2e1
G -
//c/x, 0’X3
Since Cp is constant along rays from the origin, 7WE numerator
of Bq, 211 BECOMES
ffe Cody % = 2//5' 7 Hdt = 2/5' gfz
Subs‘cltutlng X, = < i__...
cos/l[f t?f]
. B2
G = C' (56 t) =2
< 5% [r-¢5] / ]

Substituting Cp of Eq. l.1 we get that
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/
- [k(b-t)
Taw (/+t)/

‘:~ - 4(0(7(3 b
Z - ir}'/-aZ‘cos/[S b1
6
. 2ed
¥ + (b 3]]
ST &5' Cos/lcf /'[[b /I
The above integrals are evaluated in Appendix B. The solutiocn of
C;, becomes:
- G = Lo b(/_d)f V4 -1<b<o
‘ L " yrar | her T 2 1>9 30
2.7 (;/ - %/‘PQ,OX/ dx, di g
“ /&S
e
The integration of GMR is carried out over the sanme regicn as
that for Cp. Cyp is found around the Xs 8xis as shown in Fig, 6,
The evaluation of CMR is also given in Appendix B. The solution for
(CMR) is as follows:
X5 G - cof 5(16)(¢b2) bZ(_/, 63)-7b
- B8 Ye = "6 cosfrdiablfia?)  (1-3) ,
The distance to C,P. becomes
j c | S0 +6) kD) _bfb+6b¥+ 7}
X, = j2 0SAG-26)Gb-2by +D)( (1-2 |

\?
. el //Region 2. The renge of integration is shown in Fig, 7,



Fig, 7.

G - Jocc?Z f —/k/b-f) 7t

2.0 Ty e}‘z"‘ébas/t #E) [[-£4]?
This integral is eveluated in Appe gmz Be
. 212 [L = 2‘£
Vr-3%
- 8¢’ -1 /K (b- z‘) tdt
QA R ITCOSAYL-57 A T it [1-2y]3
The distance to the C.P. for tui: rogion becouos v
. 2.14 X = — ]
, J2cos 7- bJ Hr
WHERE -
- (' 3b
<, b _s

"R "6 Vr-92 [ Tbs " Tta



Region 3.
Woo
———— ..
. Fig, 8
2,15 Q = 4oC ™
}, o \
2,16 =
¢ Xf = __._1 Xb r - g 0"”
59 [coet = & P+ o] /

2.17 G, - 2o ¢ cos/

¥
2 (7-53)7% 6?3572ﬁ i /gj‘?gi/_—@) -'4?6.{2)/
- /
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PART IV. CALCULATIONS FOR ROLLING MOMENT COEFFICIENT FOR A REC TANGULAR
WING (¥ =-b)

The rolling moment will be compu“bed about an axis passing through
the geometric center of the wing and parsllel to the direction of
motion of the wing. See (Fig. 9). The distznces to the G.F.'s of

the respective regions are indicated as ‘211, X12° and 9413 respective~
1ye / X
A

Fig, 9

THE ('OZRESPOND/NG AMomenr &Eff/C/EN M) 62(1{65)'%]

2a<'c b(rd), -
3.1 C{(’/; — y¥y, gl/cosA(f GC'OSA W(b*l){l‘a/b)

_ o« C os, 4 (s &) 36 _ 5]
G, 7 V722 A1) *5@71/?;! b5 T 748

_ 2aCdcosyl { 1 ( ,_. +a*?~)
G5~ =2 L 3(1“5)(”"% =
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The rolling moment coefficient for rectangular wing about the

Xz axis as shown in Fig. 9 becomes

Cl‘?q,[,: szz + Gy ™ Ce,s

/3

3.2 (1 = 215——4 za’(z 25+ R)+ (¥~ ’C”’Z)) G- 33
Vri-r ) [ (/- 32)7_ 7‘(/—x)(/—:)@) az /5

The relling moment computed from Eq, 3.1 is taken about an axis
passing through the geomeiric center of the wing and parallgl to the
free stream velocitly Wg » GMR for R = 2,34,86 egainst yaw angleA
is shown in Fig. 10, Positive rolling moment is defined as a counter—
clockwise rotation in the xg-xi planes X2 directed upward. ZEquations
3.1 are derived for a general wing plan-form where the leading and
trailing edges are parallel, and the rectangular wing is merely a
special case of this family of trapezoidal wings. By varying the side

edge, b = Tan j3 we can get the rolling moment for any trapezoidel wing

of this category,
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CONCLUDING REMARKS

1o GMR for various aspeét retios indicgtas that the rolling moment
inereases almost linearly with angle of yawdA_.
2. 'Trapezoidal wings with parsllel leeding and trailing edges may
be caleculated in a manner similar to that of the rectangular wing
using equationg derived in this thesis,
3. By superimposing a poinbted leading edge on the trapezoidal .
plane forms another family of planforms may be examined, The Gp
for this region has been calculated in this peper.
4, The equations derived here remain valid only within the restric-

tions of the linearized theory.
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W oo APPENDIX A

Region 1 Subsonic Leading Edge

> Xg FOR A COoMPLETE DESCRIPTION
OF TRESE MApPINGS SEE

(Rer: 1)

Xy Physical Plane — ;"
AE ‘ .
;:ﬁ e = X3 t« Yz

|

mapped into

Y

e Plane

172
€= Bel

R= I-Vin*®

/T
Coses = C‘O’Z‘./l

cosy, = C’OS’W{ zan ™
T = B Ak
1-1;72/»//1




15,

?)‘ Bane V/
[ 4
Y=@)'% M /
= ‘U
H2 -/l e
W= =wo
Evaluating W(r ) on the wing by means of Polsson's integral
27 ,
N(Ja w) = __1. 7-r? /‘(/z, w) dw
z- 2n, cos(9-w) |
u}qﬁz (*{) We W, s WE W,
f(aw)——% wp cwsy e
_ onv The Wine
= / EVA{(Q/;’!TE w s |
w,w)= Wo M /f j dw “
/ - 22, S/A/w /- ZA, )
I

W(Qw o (7 /[ 1t 2, [1 Taw E] 4[//2,7[/ Tan Z ]
) /A” [1‘%][1%71#‘”] Z;N[[+ﬂ][l+72m

Adding up the angles we get

w) = zwq [Z‘4N" ?,:QCOS@}]

‘ _ 2w [ f2li] Fa
W) = 2%/ I L2 /lzosz)/

&Wo TAN‘/ /~5€, ]
B-€ /

/ "56

W (€)

]
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cos & ’/ 1+ coS (1-p)(1+ Cosy)
€  f 2(-bcosy)

AND NG WE GET
SUBSTITUTY z/ ;q/ m
W(g) = 2k Tan™ l-zsﬁ 0B

7 el
: —ER

and in the physical plane

1.2 w(ba t) = 2nWe 77 A (bJﬂ-f&)
= TN (14 8)(1- b?)

We must add o this sclution the infinity at the side edge which is

e leading edge, such that the function is zerc on the Mach cone, Such

a solution iss

_ ‘. 1Y = o XD
w = C’{ (]j‘/' }/) | 7 b"‘t

¢, = Wob 1| 2G/+9X1-63) "
(b1 7-b)

2nob [(1+8) -2 X0+ )
TV G-BG-D

- Wb 71fiX7fJb)(lft)\
m(b+1) (b-¢)

and THE zomplete sclution is

| 2k 1+3N-8X1+t)" | 7ty [6-DG el
o wbly)s /;,+1 e *ﬁ“"m]

Care must be taken as t0 the range of bawct in Eqe 1.2 which satis-

h

fies the Kutta condition; t is less than b and grester than «l, while

in Eq. 1.1 b<t<K1
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Supsrsonic Leading BEdges. Region 4

c - PLang
W,
= 1
-W
&2
W@ =L (1 -/Z.) _da
1422 1— Z/Z cas'q + he ﬂ Z/anyq

2
14 EVALUAT/NG' we GET 7t

W, 3)=2 [w 1, /#)(/faf) ]/(1-1)(/ %) |
| ‘2 77[ ' Jar l0-60i-3) HV]ZW (1+t)(14arz)
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APPENDIX B

Evaluation of Integrals in Part II .

A(b ?)= s/ﬁ” (1+t-) [I—éarjz

Integrating by parts

A= -1/ K@ -t) ~
A= gt Ton ,/;:)‘/ S /[a 404 (- ooz 4

TanN© = I/m"ﬂ (¢ = 6’—0 “

{2- —1 6,-= 5
= _L T _ 1 J(I+K)e + k-1 S'N.?G/
A ¥ (1+3)2 26(/4-69 [ 'z ’ ]
=L/ [y _ 24+3(F-b)
O(1+3) 2 2(1-6y)
= 7 (b+71)

U(i+0’) 4 (“m
B -7 /k(b‘f) ¢ df
%) / @+d) ﬁ (]?

Integrating ‘by parts
g = L 2t / /21‘&—/
32 2(r-t3)°l;, 232 (7 /g)z
Using the ssme substitution of -
7ane = YKwb-4)
1+¢
A sl & [/a zzwe] _ 2(143)seck
T -5 2
B 2¥% (]fJ)Z L) zaa (/*J)ZJ'EC? Ez);‘s;‘?‘g]dg

__ m(1+6)(8bs 4 (31»—5)]
I (1 +¥)* (1- ba)2




——-—

c. ](b ¥)= b //Vﬂ dlL

1 bﬂf [/ ta]®

Making the substitution

, N(1-D | _
‘f (b+t}

dat Jds% —/V//%b) .
d; 7= (/w; 9z ;

[0 g dg*

T (t# Hb)z ['/V/(,‘;%/z

__ 2/ g ¢ ’
ﬁ*‘”’] Iz V’“ (K~+;’z)]

':—._é_/! ]” A
7 B 2[ g

[123b]% ]/,17,(‘ Z

I [bﬂ] Ay Same typs 2e inbegral in 4

bl-aN1e3b)

(r+26)(1-5) 2

(A,®)
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N _ (Y.
[(6@)= b+1 Y(b:[) (1-at)’

Meking the seme substitution of 4 (_C//_!;_
‘ )

[’[-b, 6‘) becomes

/
s -znb_ [ EW-65)d?
/ (/+<Yb)3‘b (WK+ ;2}3

Break the integral down 1nto partial fractions; we et

-_ 2ZNb (/wzb/w(uf TNKDNK AE

/ (55 3[ [//k+ £ ] [NK+ {2]2 INk+ £%]3

¢
f( WK-¢2)3 = 4(/-6)2[(/ 2P ;Z] g7z JIZ/ ) Z(”’i)”z ;/7/7

co2m [ b gty iezbk) 1 BNTE | 1(+2bKE
/, (/wb)3{ﬁ-—a) /‘.é 2Kk /= » " ZWWK+22)

_ NK(1+bK) / ., 37
4(7-3)2 [[(~3) +f j 2/\//((/V/<+ fT

*

I/ b4 3 (/#Zb pI) _ 3G+h)
T 803)

=

l (/+ Jb)z

voye b (4by ~3b +1)
162 8(1-3) (1 +ap) ?



