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l. INTRODUCTION

The stimulus for the research contained in this thesis was initiated
because of a specifiec problem encountered by the armed forces in the field
of guidsed missiles of the canard type. The supersonic flow field behind the
missile control surfaces is investigated in order to evaluate the dovmwash
at the lifting surfaces. This type of problem is amenable to the conicel
flow~theory as conceived by Busemann and later extended and applied by
legerstrom. Lagerstrom's successful extension of this theory to the
downwash problem in a supersonic flow field is utilized in this thesis,

Although it is possible to develop expressions for the downwash at
all points in the wake of the control surfaces, the calculations were
carried out only for the downwash field in the plene of the control

surfaces,
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IT SUMMARY

Investigation of the downwash field behind a wing with an angle of
attack discontinuity at supersonic speeds by use of linearized coniezl flow
theory has shown the downwash to be of finite msgnitude et 21l points in and
behind the plane of the wing. The downwash st more than five chord lengths
behind the wing was found to asymptotically spproach the value of downwash
calculeted in the Trefftz plene. Behind the wing and within the span that is
determined by the intersection of the Maeh cones from the leeding edge with
the trailing edge, an unexplicable action of the downwash was found to exist.
It wes found thét &t the treiling edge the downwash was = 100 percent of that
on the wing surfesce, &t two chord lengths, the downwash was 83 percent. Upon
moving aft, it wes found thet the downwash increesed in megnitude end that at
10 chord lengths, it esymptotically approached the value at the Treffitz plane,
namely 100 percent again,

By considering an ideslized missile configuration, it was found thet roll
reversal was possible. The possibility of reversal was found to be almost
entirely dependent upon the location of the conmtrol lifting surfaces with
respect to one another,

A brief reference to the sidewash field was mede, since the values of
sidewash were = netursal outgfowth of the solution of the downwash field in
the Trefftz plane. An elementesry consideration of the sidewash field also
showed e contribution to an induced rolling moment thet tends to produce

roll reverssal,
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TIT NOTATION.

The system of coordinates and symbols is to be the same as that used
in Reference 1 wherever possible. As pointed out in Reference 1, this
system was chosen because of its adaptability to conical flow problems,

It can be seen in Figure 1 that the rectangular wing, defined by

lU° x,and x, 8xes , lies in the
> X, X, x4~ plane, and that the free stream
velocity, 1is directed along the x,=-exis.
/K = The x,-axis is vertically upwards from the
/ T— X, Xy ~-plane. The semi-vertex anglew is the
, // { Mech angle, and the angle? is the angle of
y X 5

en arbitrary ray emanating from the vertex
and lying in the plene of the wing.

Basic Coordinate System

In the theory, the wing is actually at an angle of attack and could
not lie in the x, xyplane; but as linearization holds throughout, this
difference is negligible,

The following is a list of symbols used:
~tan B = X (denotes side edge of wing)

b - tanec Xy

g l=VEEE
B b
C *® Wing chord

G ® Downwash function
ta.n/u, = —-—,-—-—-
Vi-m=
Free¢ stream Mach number
X1
mXs
- / - t B
ahm~b
Nje =T
U,® Free stream velocity

m =

1"

M
t=
T

tx * ¥

u, ® Perturbation velocity in x, - direction



Te

u,= Perturbation velocity in x,~- direction (upwash)
u,® Perturbation velocity in x, -direction

4 = Angle of attack

@ = Arctan x (angle of side edge of eny superimposed wing
X3 with x3;~ sxis).

€ = « Uy = Downward deflection angle of flow

d Vo
Arctan X
Az

M = Mach angle®™ arctan m

T

1"
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1V. BASIC PROBLEM. (\
(e)
Consider the cenard type missile which is shown E:::':fé]
schemetically in figure 1. to be composed of three #;;(ad

b)
major components: (a) missile body (b) lifting f(

surfaces and (¢) roll control surfaces which operate

differentially with respect to one another, ie.,when

right hand surface is at+d the left hand side is at-& .

Free~flight tests of a self-propelled missile‘af this type hsave shown
that when the roll control surfeces are deflected to roll the missile in
an arbitrary direction, say clockwise about its longitudinal axis, thet
due to some phenomenon the missile rolls in the opposite direction,
(counter-clockwise¥, This reversal of contrel may be due to the fact that
the dowvmwesh &t the lifting surfaces causes an asymmetrical loading on
them which produces a rolling moment of greater magnitude and opposite
direction to that produced by the rolle-control surfaces. The resulting
notion is then opposite to that which is desired,

It is the intent of this thesis to investigate this problem from
 the theoretical standpoint. It will be nﬁce;sary to make a further
simplification in the configuration of the missile by considering the
body diameter to be venishingly small since it is beyond the scope of
this paper to consider interference effects between the body and the two
surfaces., The problem then resolves itself into one in which we have a
wing with & discontinuous angle of attack at its midspan with a lifting

wing several chord lengths behind it.
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¥  GENERAL THEORY

In building up the theory for downwash in a supersonic flow field
Lagerstrom has not used any of the concepts upon which subsonic theory
is based, eg., lifting line, vortex system etc. A new approsch is mede
to the problem by using the pressure distribution over the body as
derived by linsarized supersoni¢ theory in conical flow. Since all
solutions arise from a linearized theory it is evident thaet individual
solutions to simple problems may be added in order to build up compli-
cated flow problems, The restricting element placed upon the superposition
of solutions will be met only by satisfying the boundary conditions in the
flow field. It is upon this basic idea that the complete downwash theory
is based. The one boundary condition that must be met at all times is that
the 1lift is zero everywhere outside of the lifting surface. From the
linearized theory considerations this implies that the velocity pertur-
betion, uz , in the free stream direction is also zero. The perturbation

- u,, on the wing is constant end is equal to -dUvhile off the wing it

is completely unrestricted and it is the object of this investigation to
determine the downwash distribution behind and in the plane of the wing.

As in reference 1, this will be done by the superposition of en
infinite number of auxillary wings of constant 1lift distribution to
satisfy the boundary conditions. These auxillary wings will be formed
by the superposition of two basic types of wings.

The first basic type is the infinite flat plate of zero thickness.
From small perturbation theory, on the upper surface of the wing and

outside of the Mach cone from the leading edge:

b(.;: OLUooVV\—
(m
WL:—dUw



Inside the Mach cone the values are given by}

Woazd Uy m areoa (142t) (@)
V~7_ = -dl er (b) (2) /<
A always positive / T
T negative on the wing Mach cone

X3

Figure l. Lifting Quadrant

The second besic type is the conical wing of constant 1lift distribution

es shown in figure 2. This wing is also of

T T T T T T

zero thickness; but it is not completely Filat part

flat. The section of the wing which is

outside the lMach cons from apex A behaves \/Ctamd
Mach Part

cont

exactly as the two dimensional wing, ie.,

' (<
the induced velocities are determined by /

e

equations (1a) and (1b). For eny point in

A

 Xs

Figure2., Wing of constant 1lift

the x, x_- plane not within the Mach cone from A and not on the wing

u, 0 and ugo. Since by definition this is a wing of constant 1lift
distribution then u, must be constent inside the Mech cone and equel to
dlUm , Tpis necessitates that u, beccme a complicated function of the
wing geometry end Mach number and as pointed out in reference 1 the basic

expression for the vertical velocity perturbetion within the Mach cone is

as follows
Uy = M3 |1 b T + BEI T-B 7
2 mﬂ[blnmu ol T + BEL 4| T8 ) Z] (3)
= Y3 ¢ (bt)
m
where
b = Taw 2 B:I-V1~b"~ T = 1= Vi—zx
faw/,u_ n b ) - t

It is thus seen that since u, is not constant on the surface of the wing
within the Mach cone, the local angle of attack must vary and thus the

surface must be curved in order that equaetions (1b) and (3) are compatible,
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EI_T__. CONSIDERATION OF THE SPECIFIC PROBLEM
We turn now to the problem of evaluating the flow field behind a
finite wing with & discontinuity in angle of attack at its midspan.

In general this wing will be built up in the following menmer:

A
We will just take a flat plate lifting quadrant o= 24
of half infinite spa.ny to the right, Adjacent to wing I /
this surface we will place a surface that will B

D
Flgure 3. Sugerposltlon \
not violate the imposed boundary conditions set by wing I,

fugure (5), next we will subtract wings of constant 1lift distribution
with their leading edges at the trailing edge of the lifting quadrant
in order to obtain a two dimensional wing with a discontinuity in angle

of attack at midspan equal to 24, , as shown in figurs 4.

From this solubion we will subtrac’c & wing /
I
of infinitesspan at d=+d . . This leaves us d:za(.// \ dro
& wing of infinite span with a wing I at 7 \\
A=cdo and wing II atd:=-d,. To obtain the Figure 43
Iwo dimensional wing with
final result we need only to cut off the discontinuity in angle of attack,

span at the desired point and superimpose upon our last solution the effect
of a rectangular wing tip as given in reference 1. We then have the flow
field for finite span wing with a discontinuity d-2d. in angle of attack
at midspen.

Consider now each stepr of the above mentiomed procedure in detail, It
is seen on figure 3 that the Busemann solution for pressure on wing IL
(Mach cone ABC) doss not apply because it could cause an upwash in the
Mach cone from A in region ACD. This violates the boundary condition that
the downwash in this region should bedU,. What is required here is the
solution for a wing at an angle of attack 24. in the presence of a flat

plate at zero angle of attack. The solution for tip AC is obtained by
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considering the solution for the tip of a non-lifting rectangular
wing with a symmetrical wedge-shaped profile of half engle A , where
W, = ..ﬂf%b: arees(t)

A consideration of the boundary conditions finds that they are
satisfied in the following manner: +the non~lifting quadrant induces
no downwash in region ACD because of anti-symmetry considerations of
u, (reference 1). Since u, is symmetrical on wing IL, u, need not be
zero, consequently because of the condition of no downwash in region ACD,
& flat plate at 4=0 may be introduced here without changing the flow
characteristies., Since this plate prevents any flow through it, the
upper surface of the wedge may be modified without altering the flow on
the lower side., In particular the top side of the wedge may be removed
thus leaving 2 lifting quadrant at o =2%c in the presence of a flat
plate at d= 0, hence our spanwise distribution of pressure across the Mach

cone from A mey be expressed as followss

W, = 55_‘:7.1;'52_’_"1 ancos (t) (4)

We must now operate upon this lifting quadrant in a satisfactory

menner, such thet we will obtain & wing of finite chord as shown in

figure 5., Comparing the wing, (figurs 5) VYU > X,
with the lifting quadrant, (figure 3) we d\”‘*} N\ %o |
see that the latter does not satisfy the // N

boundary conditions for the former bohind Q- P Yy R

the trailing edge QPR. For the wing, behind Figure 5,Wing of finite chord.

QFR the streamwise velocity perturbation Uy = O since there is no lifting
surface to sustain a pressure differential, This boundary condition is
violated by the lifting gquadrant where u - is given by formula 5. In order
to cancel this 1ift we superpose wings of constant 1lift distribution

with their leading edges along the trailing edge QRP., These wings have

no effect upstream of QRP since we are dealing with a supersonic flowfield,
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hence formula: (5) is valid across the wing between Mach cones emanating
from O, Since the lift varies as an arcosine function in the Mach cone,
infinitely many wings of constant 1ift distribution are needed for
cancelling the lift behind the trailing edge. As pointed out in reference
1, omne first has to determine the strength, position and shaps of the

wings to be superimposed. Since the pressure along any ray from O,
®)

y ANV S Sl S SR S /////////+>X\
A =
o =24, / ° c
s N Mach cone

Lifting quadrant Mach cone 5

' Al P A

S W N N N AN

/ q;

N

Superimposed wing of
constant 1lift distribution

Figure 6. Superposition of wings
of constant 1lift.

240 Uy

~1
say OPF is given by W, = poey ™ ¢ (b) then the differential strength

of any superimposed conical wing should be given by the functiont

é_‘_‘g_db: -2doUp m ! db
o T Vicer ®)

The supsrposition of these infinitely many wings of differential strength
will cancel the 1lift of the lifting quedrant behind the chosen trailing
edge of the wing and thus satisfy the boundary condition that u;= 0
except on the wing itself, Hence the contribution to the dowmwash at a
point Q(X,, 0 , X;) due to a differential vh‘.ng of constant 1lift will be
given by the following formulas

u, (Q) due to wing at P = -l 6(b,t*):lT%3 db (8)

where G(b,t*) 1s given by (3) with t* substitubed for t
X

and where t* = C:’ l since the apex of the superimposed
_e’z -

wing is at point P and not point O from which t is measured, hence t*

is #mp used, To this contribution must be added the dowmwash due to
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the original lifting quadrant which is given bYIJA(Q) due to lifting
quadrant :.%F(b,t)%gl db. The total downwash et poinmt Q(X,, 0, X,)

b
is given by the sum of the above two contributions and then intsgrating

the expression from b=+! to bz=-| 3
b=~

Up = 35 [G(b,t)-ecb,f*)J%%db (7)
bz

Since the integrend as given by G(b,t) is of such complicated form
that it does not allow the integration to be carried out in closed form,
graphical integration was used. To expedite the calculations a basic chart
was used giving G(b,t) vs. t with b as a parametsr. The chart, as
prepared, was for values of -1<t<1 and =1<b<0), Since the rangs of the
variable of integration, b, used in this problem varied between the values
of =1< b<1l the value of G(b,t) for positive values of b may be determined
by consideration of the superposition prineiple to give G(b,t):l:-l—G(b;ti].
By choosing a given point Q(é;,0,éf ) at which the downwash was to be

obtained and knowing t and t* both G(b,t) and G(b,t*) could

be found directly on the chart for various values of b, Hence a plot

could be made of lg(b,t) - B(b,t*)]%;i for various values of b from
do Ko
+1 to -1, and the area under this curve was the required downwash given

-k

v o As pointed out in reference 1, the curve of the plotted

by
integrand is infinite at various points and special means (as developed
by Lagerstrom) were used to nullify thess infinities,

The subterfuge used in the cencellation of the infinities is based
upon the fact that the strength of an infinitesimal conical wing will not
cause an infinite downwash; hence at any point at which the dowmwash function
approashes an infinite value a simple rule of elementary calculus is
resorﬁed to. The following example will be used:

Consider a function f(x) which has an integrable infinity between the

limits of integration. Subtract from this function & new funetion ~g(x)
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which has a singézlarity of the same ordzr at the point at which f(x) is

singular, ie f[f(ﬂ—j(x)]cix + fgffxidx

(=9

It is obvious thet the value of the total integral is still equal to the
value of the original integral and at the same time the integral under
the first integral sign is finite. The method of choosing the funotion
g(x) is done (1) by inspection or (2) by expanding the originel function
£(x) about the point at which the singularity ocours in a Taylor series,
being careful that the function itself does not become infinite.

The function [G(b,t) - G( ;l;t*)]dZ!: hes singularities and indeter-

minacies depending upon the position Q(-c’-‘;'n,o, % ), hence the method of

c
treating the singularities may be divided into three different cases:
(1) o> cﬁi’ >~ , (2) _’é‘.'m<- | (3) g.:n: -1, (Ceses for positive values
of -C’i:h were not calculated because the downwash was found to be an odd

function with respect to the x| - axis as will be pointed out later by

considerations at the trailing edge).

CASE 1 | N N

The function [G (b, ¢t} - G(b,t“)] d—-“—z) , ""'7//4# sl

hersafter called G (b, &) 94 o \ ;
db \

is infinite when 447 is infinite /

db
ie b=%4 and is infinite when e
Q@ lies on the axis of a Mach cone Figure 7. Superimposed

conical wing,.
from the tip of the superimposed

conical wing as shown in figure 7.
Part A: 943 infinity:
db

the infinity due %o c_lgtg can be nullified in the following
b

pANNO TS
at b = -13
Pl ‘ . “1
j[é—(b.&‘)—;—géb = f[@(b,@_)-p?]%%zéb + fRi“_: db
45
b b, b
where

R = —'-[J/w/;/ + 2 anelom T - 2 anedowe T“}
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at b= +1:

fé(b, c‘uagb /[G(b R) - 5 &”?db +/S d"’Je (10)
where *

S= '7"7'[’()’“’,?[‘,*2“"3”7‘ R ""JM’T*] (11)

Part B: G(b,Q) infinity:

For the case when G(b,Q) is infinite, ie when b= E’-(-;;n (T *% o)
the removal of the infinity is made in the same manner as for
the case of a rectangular wing fip as developed in reference 1,

in the following manner:

be
f@u, Qb - f[ecb Q)35 - hee]as 4 [hwwat
by b
*ﬂhere
= _.L.. A‘MB - .).(_‘ -
o) = o (2] [(m b) L |22 - b -(2, b)] 2
Chu bz X
and m .
du = u I - 1\
& (b, Q)40 - hib) (%E’) , %L i (,amm A 2oy e VT B [
5.67'»‘ . x'/crn
X - B~ T-B ol v
CASE IT: It < -1 Ao 18] ,awl,_m_]+ 2 anclow T (13)
&(b,q) gfﬁ is infinite when%ﬁé is infinite
(b==1 ) as was shown in Case 1.6(,Q) j . ;
is indeterminate, that is both (G(b,3) and / \ '&
, e
&(b,t) become infinite vhen b= t = t, 7 wm,.k(,
This occurs when § lies on the edge of a Figure 8. Point Q on edge

, of conical wing.
superimposed conical wing and en original

wing, each of which produces a line of infinite downwash along its edge.

Evalueting &(b,Q) at b = t = t* Bl o T-8__ |-Br* }
G(bla):#L%%|£,+Z@1@T~M&IA~T*)+{§" I-BT T*.g
ks
G(bl ) = & 2=

sex T 2wn *-B
Taking the limit of the argument of the logerithm

| [T B ) . —-dB/4}
tlm

wp LT B dr*dt” dB
Since dt* dp  db 48 . _B dT* e
X\ . db b‘ l"b" J ;l—-z;" —t‘V'_"—_;,‘_
end  dt* _ 4 [m b)) -1 -t
dp  db{ &. 2
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then B
Ll.Wl[T—B - bV/1-b* :_.__%i___\.._-
Fab TR T | B X3/c
~ -
hence tVi-e2 Lo bVi-4*

G(b,Q) = _____,WM] /e

X;/C- ,

CASE 111 (£ =-1 )

This casse is similar to Case 1 except that the‘tarm<%%: also bscomss
infinite when G(b,Q) becomes infinite, that is G(b,Q) is infinite when
b= :LLY‘ = =1 which is one of the roots at which ‘%‘ig is infinite: Thus we
have a double infinity when b= -1, In order to subtract out this double
infinity, @ (%,Q) and L are introduced as follows:

In the interval b, to -1,

N __ 24U R NP P =18
fc;u, R) 4w “f[v-—— (6:0) - o ] 17
-1
_ .zit.\');fi%(ub)ojb - 2doUws [ Ls Jdp
TVZ2 ) Vi A Vite
Lets b
 (b.O) = -l
G}(b Q) — G(b,Q) =7 Al 1461
and
- - |
LS_ G, (-, R) -V-;_— {M'Tl&ZQAJMTb* l’l:_‘;“’, l»+b -b
x _—."‘ — 7 ﬁ~ i
as b"*"",T—"g —_— O where t's Ysfe=1 ) ll;/—v::l H-b, —%ﬁmz;:"!/: i
- X
= _J/wz(g-:)
Therefores
L,S: IV-Z‘ _/Q/W,T'I“’ 2 ando~w T -/e/vuz.(!c—‘f—-l)}
Although & (b@)~L; is indeterminant for b= -1, it may be
Vite

showm by expending it in a power series, that

A Gs(b,a)-Ls =0

b>»-1 Vi+b
S8inee it is finite for b = .1,

2d Ve [T €(b,g)- —— ibl - L]
= = )= Al bl - Ls]
is integrated graphically.
_ZJQUW .‘J[/"\'I"b’ db: - 0.541¢ Aou.oa I'FOV‘ Ea:-'b-o
vz 7t J, Vive

~}

_ 2do U Ls d b = 0-%00ds U p Ly 'FOV L, ==. 50
7, Vv
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Now we can wrlte- du du
(u'l)f—'--l :""f G (b, Q)G db = m[(y(b,&)wJ - 2 u/[@;(b, )~ Ls ]\,--—-Hb

—ﬁou» M'H-Hdb Zdou i d
VT 7 f Vire fmb b5 /["“"‘” 3% *7"/5 4 gy

Whers, as before:

S = #{,e,w_r],LzaAa”amT -2 wza?wT]b::

Mfs clu,: Qdﬁ:ms[a/zm(b)] T oy UeS
The first, sscond and fifth terms of the above expression are integrated
graphically,

Fi‘gure 9 shows a typical case in which sinpgularities are encountered
three times in the range of integration of G(b,Q) across the Mach cone.
The chart of G(b,t) vs t with b as a parameter was used. Calculations were
then completed by means of tables, see Tebls 1, By plotting the final value
obtained vs b and integrating by using a planimeter the integral for a
specific ray angle, t = - 0.2 in this case, may be obtained. Figure 9
shows how the artifice of subtracting a suitable fimetion from G(b,Q)%—'—"f
is used atrb =41 and b = «1 where %‘_‘.b.’ is infinite, which was explained
for part A, Case 1, At b==-.4 = 'c&":., an example of Part B, Case 1 is
illustrated as discussed in Case II, Adding to the plenimetered arsa, the
integrated value of the subtracted functions gives the downwash equal to
0.836 for this point Q(-0.4, 0, 2). Calcubations were carried out in this
manner for points at 2, 5 and 10 chord lengths behind the wing and are
presented in figure 10. Figure 1l is a cross-plot of figure 10.

DOWNWASH AT THE TRAILING EDGE
The downwash at the trailing edge may be determined analytically in

the following mannerz the downwash velocity is given by expression (7) as?
_ du
W, = M/[G(b t) - G (b, t")] ;db
which is equivalent to

-1 ~ 1
4 xydus g L1 du; [ N :
mfG(bt) b +- eru:t il +~an6(b,'é)£elb
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The- second integral is zero since G(b,t)= O for a wing at o = 0 ,

while the third integral gives the two dimensional value: G (b,t)= -1.Hence

for 0<t<]|

¢ .
2ely U
Wq =L “'“3 db = 23:Ua [Uslt) —u;(i)] e anco(t)

7l
end for-|<t <o

ch=—f 4“»45-*f d“’db

z 2XolUo phemt - 2odols = = Rdo ue[l - Mmt]

These values ar7eT plotted on figure 10 with the downwash for several
other finite chord lengths behind the wing.
DOWNWASH AT INFINITY:

The problem of computing the downwash-sidewash field in the Trefftz’
plane is shown in reference (1) to be the same as that in incompressible
flow, and the methods of complex veriables may be used.

The vortex sheet trailing back from the wing is unalbersd, in the
Pirst approximati’on, from the trailing edge to X,- 2, and remains in
the plene of the wing. Thus the sidewash is a kmown function all along

the x, axis in the Trefftz plane. u,=0 for <~ 1 and for Xr ~' > 1 since there

!
is no sidewash coming from the two dimensional part of the wing. Behind
ths region where the Mach cone intersects the trailing edge of the wing
(~I< E&L\ < | ) u, = F(éﬁ,)a‘bé’%: O+E and u,= -F(&)) atg’i: 0-E whers

€ is an infinitesimal distance and+Q). This furnishes one boundary

condition for the problem in the Trefftz planse. The other boundary

condition is that u, vanish at r, = ‘/(CL;)"_, X )1= o o

cm

The function F(X)is evaluated at the traililng edge of the wing by

use of the wsll known formuls derived from conditions of irrotational flow:

da Ll dus
dt mt 4t (17)

U, T uy (t) is assumed known. For the justification for this procedure,

see reference (1).

(5)

(16)
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It was noticed by Dr.lagerstrom that the same boundary conditions
are satisfied when & solution that vanisheés on the Mach cone in the £ plane
is transformed to the physical plane by the iﬁverted Joukowski
transformetions £ = |—-VT:7§?T
?

2 L
?=€ +€ (18)

vhere B and Z are complei variables,

The & plene here referred to is that perpendicular to the X3 exis at X3 _ _|
(oA
end is the ons sncountered in conical flow problems deseribed in

reference 3, In the B plane, the coordinates have besen transformed from

the physical plane through the Chaplygin transformation R==1ZLJ%;11—-to

allow ths uss of the solubiocns to lLaplace's squation.

It may be seen that iﬁ applying the transformetion (18), the unit
circle in the E plane trensforms into the portion of the X, exis in the
physical plane where |[X.|2 1 . It is also seen that the point r= 1, e=:§{

in the E plene transforms to Xl - oo in the physical plane, Thus the

S
boundary conditions in the E plane for u, - i u,=U(g) become u,=0 on

the unit cirele, u, = 0 at r:1, 6=Z and U(x) - F(?L)on the x exis,

weres  x = 1=V~ (Ko~

XI/CM

Now the procedure outlined above will be applied to the problem at

hand. From reference (2):
Wy = 2domUa aps'(t)
77
and by formula (17):
2 oo U |+l""‘(“
wy = A te | L

At the trailing edge t=X%, therefore:
w, = 2dsbs g, r—V:—(x'/mP} = F( X Yem)

¥ /CW\
Now using formula (18) in the & plane:

Ww, = 2'*°u°’,b«(X)
m
The boundary conditions on u are obviously satisfied for:
wy g = 29U [ b (6) <1 L]
Tl 2

W, = Zdo u-°‘ /(/Vl, r
' ~T1

al
(-L'L: z‘e
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Thus in the E plane, r = constant represents lines of constant sidewash,
and © - constent represents lines of constant upwash,.
—é— = ;i‘_ (e+ EL) in

two s’ceps:-i_'-(cf\‘é-):é,an@ §, = 'z% + The first step is the well known

It is easiest to think of the transformation

Joukowski transformation, and the second is the ordinary inversion about
the unit cirecle, From this, the formulas for the lines of constant

sidewash snd upwash in the physical plane turn out to be:
RC
Z_ E._C}_)._ S5m0, + _L]é )
1
where: ¢, = &% d.la
r, eand ©, ars the polar coordinates in the
Z (physical) plane.
L (I—C ) - Sint e,
V] " ('—C—T)Cu _
where: ¢, = cos | (| - ]
;L.

These are plotted in Figures (12) end 13. Figures (14) and (15), are

crossplotted from Figures (12) and (13).
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DISCUSSION AND RESULTS VIL

The reéults of the graphical integretion for obtaining the downwash
at finite chord lengths are shown on figure 10. It is apperent that behind
wing 1 (4=44) that we have a downwash fhsld while behind wing 11 [@=-d.) we
have an upwash field., It is interesting to note that at the discontinuity
in angle of attaekvthat we have a finite breek in downwash. Since the
upwash curves are odd functions of the parameter t for any given distance
behind the wing it is apparent that we have no net downwash, thus
- indicating no net 1dft produced by the wing. This is to be expected since
the angles of attack are opposite iﬁ sense. At 2,6 and 10 chord lengths
behind the wing the downwash (upwash) inereases in megnitude to a given
value of t and then remains constant. The point at which this break in
variation occurs is dirsctly bshind the point at which the Mach cone
intersectsrthe trailing edge of the wing ie, at X! =f1 ., For values
of ¥ corresponding to 1) g£1? =1 it is seen that the downwgsh is
approximetely «1.0 at one chord length, At two_chérd lengths iﬁ haé_
decreased to -.82 end then it graduelly inereases again to approach -1,0
at 10 chord lengths and atteins exacfly -1,0 at infinity. The reason for
the peculiar dction of the downwash field is not fully understood; It
may be due teo an interchange of energy in the wake as the weke proceeds
downstream,

The values of downwash of figure 10 heve been cross plotted to show
the positions of lines of constant downwash in figure 11. It is obvious
that the major strength of the field occurs within the region directly
behind the intersection of the Mach cones with the trailing edge. For
the values of.%i;l Y 30 it is seen that the lines of constant
dovmwash repidly approach the asymptotic value that is calculated in

the Trefftz plane (figure 12); hence for design purposes where the tailplane
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is located at.)g > 5 we mey use the values of %’&Q at infinity.

Tﬁe downwash and sidewash field in the Trefftz plane is presented
in figﬁre 12, Figure 13 is a magnificetion of the first quadrant of
figure 12, The lines of constant downwash are lemniscates, while lines
of constant sidewash are ovals . For values of —2)73%} 2 the downmwesh
field decays rapidly in the plane of the wing (x,= 0), end when out of
the plane of the wing the initial values of downwash deerease repidly.
Inspection of figure 14, which is & oross plot of figure 12, bears this
point out very strongly. At gilz * 5 we see that the meximum downwash
hes dropped to fifty percent of the velue in the plane of the wing.

At §%1= + 1.0 the meximum has dropped to thirty percent. These facts
show good cause to the designer for placing the tail plene surfaces out
of the plene of the wing.

Figure 15, which is a cross plot of 12, shows variation of sidewash
in the Trefftz plane for various gﬁw ie out of the vertical plene., It is
interesting to note that for é)-(_r‘n = &b fhat the sidewash does not dscreese
to zero at the origin @s the downwash did when out of the plans symmetry.
It is apparent that if a missile were of such & configuretion that it
had two vertical tail surfaces at the extremity of its horizontal
surfaces that a rolling moment would be acting upon the midsile due to
the sidewash distribution as shown by figure 15.

Consider now the downwash field for & specific configuration of a
canard-type missile, to illustrate the possibility for obtaining roll
reversel as was discussed in section 1V. A missile configuration as
shown in figure 16 was chosen, with control surface span equal to lifting
wing span with the wing located five and ome third chord lengths behind
the control surface. The wing chord is 25 percent grester than the control
surface chord. It is importemt to point out that the induced rolling mcment

is directly proportional to the wing chord. The downwash field as deduced
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in the Trefftz plene waes used since it was pointed out earlier that for

)-‘C—f > 5, the values of %—‘2-“ at x, = could be used‘ to a very good
approximetion. The downwash values from Mach cone B were those obtained

in this thesis, The downwash values due to the %ip Mach cones, A and C,
were obtained from reference 1, By superposing the solutions we arrive at

e result which shows the presence of an extremely strong upwash field
behind the wing for whichd=-d,and a strong downwash field behind the

wing for which d=+d, « The magnitudes of upwash and downwash ere both
greater than 100 percent of the downwash on the conbtrol surface itself.

The rolling moment &ue to the discontinuity in angle of atteck is

clockwise (missile viewed from rear) while the induced rolling moment

duse to thd downwash fiseld is counter=-clockwise, and of greater magnitude
then that produced by the control surface because of the fact thazgim> 1l
at eny point along the span of the wing. Thus & possibility of obtaining
roll revérsal is shown. The configuration used in this case was chosen so
that the roll reversal would be obviousyWithout integrating the lift across
the half spen of the lifting wing due to the continuously varying serodynamic

angle of attack, In general, whether roll reversal is obtained depends

entirely upon the missile configurebion.
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IX TABIES AND GRAPHS
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TABLE I

Downwash at point Q(-.4,0,2)

b G(b,t) te G(b,tx) G(b,Q) du, G(b,Q)%ﬂf
G(b,t) chart same a8 2 db b
0 -2.11 -.40 -1.38 -.75 -+ 636 « &7
-.10 -2.,70 -¢30 -1.81 -.89 -. 639 « 569
-.15 -3.38 -.25 -2.40 -.98 -, 644 631
-.20 (Indeterminate: ) -1.08 -.650 .702
-.25 -2e11 -.15 -.89 -1.22 -.658 .804
-+ 30 -1.09 -.10 TS ~-1l.44 - . 667 . 960
-.55 -+ 62 -.05 1.25 -1.,87 -. 680 1.270 o)
A - - I > - . ’c
t the indeterminacy G(b,Q) is given by: & (b, @) ::% Vito 4, 57”7
b e

—— e eewkees seweeew eemasew eemdet e mewam cemess e ——— —

X
At b= -.40 ® “lem G(b,qQ) is infinite, hence part B of Case I
is used to eliminate the infinity where the expression in given
by equation (13):

du
b T B 2 arctan T - X7 G(b,Q)zp -h(b)
¢ equation (13)
-e 30 -.10 -+ 183 - 20" : 2 -e 45D
- .40 -«10 -«210 -.20 2 -e D31
—.45 "'.lO ".239 ".20 2 —.581

Integrating the subtracted function h(b), the following
expression is obtained:
-85

bl B
| d \ LAY g LA
Jrodan - 2z ) [ 1Eee] ()

oy Cm -35

o

= —=.221dolUem

|
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Between b = -.45 and b = -1.0, the funtion G(b,Q) -R was
used because of the infinity at b = -1.0 due to the infinity
dus/, as explained in Case I, part A:

b G{b,t)  tx G(b,t%) T«  T/Ts J%”r%*l B arctg Ts

T=‘o lO

- .45 -.185 .05 1,305 .026 -3.85 1.348 -.239 026
-+920 ~-.078 .10 . 300 .050 -2,00 . 693 -.268 . 050
-. 60 + 000 .20 .410 .100 -1,00 0] -. 333 . 100
~.80 .140 «40 .150 .210 -.476 -.743 -.500 . 210
-.90 .158 « 50 .092 «268 -.375 -.986 -+ 627 262
-.95 165 .55 .075 300 -,334 -1.097 -.731 « 202

b 2(arctan T-arctan T+#) R G(b,Q)-R du,/db G(b,d)-R

-.45 -.152 -.477 -1.013 -.714 724
"O5O _OSOO "0516 "‘.562 ’-756 04:15
—.60 —0400 —.127 -0255 —.797 '186
"080 - 620 .039 -004:9 ’15061 0052
-.90 L =724 .084 ~-.018 -1.460 0286
-.95 -.784 . 099 -.009 -2.040 .018
R =Zo0.114
-p-l.o
fR%”—;db = R.?o{Umancm-b = 4+0.08I5doUp m
77

P yy

D —— v PR B mou — g v — it P oi—

Starting with b = O and calculating G(b,Q) 57 d“’ for positive
values of b:

b &(b,t) t%  G(b,tx) G(b,q) dUYs/db &(p,q)%%y,
0  -2,11  -.40  -1,36  -.75  -.636 477

025  -1.6845  -.865 -1.078 -.567  -.658 374

.40  -1.531  -.80 -1.023 -.508  -.G95 .354

L60  -1,413 -1.00  -1.00 -.413  -.m97 . 330

.80  -1.350 -.350  -1.06 .371

.85  -1.325 -.325  -1.21 .394

.90  -1.317 ~o317  -1.46  .462

.95 ~-1,3086 ~-+3505 -2.04 « 621
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Between b = 0.85 and b = 1,00, the function G(b,Q)-8
was used as explained in Case I, part A where S is given
by expression (11):

. duz
b T 2 arctan T T 2 arctg Tx S  G(b,Q)-S [G(b,q)-S|36
«85 ~+10 -« 20 ~-1.0 -1.57 - 296 -.029 .04
.90 -.lO "‘20 -ltO "1057 ’|296 —Q021 .03
.95 -.10 -.20 "'l‘o -105‘7 —,296 "'0009 302
S = -0.29¢
b-4l.0

+.0

Lf's 3%}d!>= - 010354, U, m

+-85

e e s eemees S essees
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