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SUMMARY

Dr. Lagerstrom's development of the conical flow theory
to apply to upwash andfsidewash problems (see reference 1)
has been applied to the case of a deflected roll control
surface., The upwash behind, and in the plane of, the de-
flected control surface at 0, 1, L, and 9 chord lengths be-
hind the wing is calculated, The whole upwash-sidewash
field, an infinite distance downstream of the control sur-
face, (in the Trefftz plane), is also calculated., It is
shown that a rolling moment is induced on any aerodynamic
surface - vertical, horizontal, or oblique - that lies in
the wake of the deflected control surface, This induced
rolling moment is in the reverse direction of that pre-
seribed by the deflection of the roll controllsurface. One
simplg case is cited where the magnitude of the induced
rolling moment is larger than that produced directly by
the roll control surface, thus causing a reversal of the
roll direction. An induced yswing mcmeht may also be encount-
ered if a vertical gserodynamic surface, not symmetrical with
respect to the plane of the wing, is present in the wake

of the deflected control surface,
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NOTATION

The coordinates used are illustrated j?
on the right. x,, x;, 1is the plane in U
which the wing is considered to be lo- ’J;>c4
cated in the linearized conical flow “

ﬁ/ﬁ
theory. X, lies in the direction of ,e/////

s
the velocity from infinity. u,, u,,

and u; are the perturbation velocities in the x,, X, and x,
directions respectively.

Other symbols are:

b = Fé? (denotes position of side edge of wing)

s (s
B = —m————

b
¢ = chord of the wing
. P=~fo

¢, = pressure coefficient =

P ﬁE'U;‘

2

[

T =———— = tan
M- -4
M = free stream Mach number

Q - denotes a point in the wake of the wing

t S, Y usual conical flow coordinate in the plane of

mXs the wing
L
P o L= -t
t
X
t* = ne ~b
-1
C
T* - |- l"'t‘z
t-i.
Us = free stream velocity
u, = sidewash



u, = upwash
u, = perturbation velocity in the free stream direction
z2 =x, + ix, = r el® = complex variable in Trefftz plane

< = angle of attack

E=x + iy = Re'® = complex variable in the & plane

A= Mach angle = arc tan m



A. INTRODUCTION

The work in this thesis was done jointly by Mr., Welko
E, Gasich and myself. The results are being reported in-
dividually as required by the California Institute of Tech-
nology.

Missiles flying at supersonic speeds have been observed
to roll in the opposite direction from that prescribed by
the deflection of the roll control surfaces. The cause of
this roll reversal was unknown., One possible explanation
was the effect that the upwash-sidewash field would have
on the aerodynamic surfaces downstresm of the roll control
surface. This effect was unknown and it is the purpose of
this report to present the upwash and sidewash deta neces-
sary for calculating this induced rolling moment for any
given configuration., These data are also useful for sta-
bility calculations.

The linearized conical flow methods of reference (1)
are directly applicable to the problem at hand. The method
makes use of the linearizing approximations of the small
pertﬁrbation theory. Therefore, the results are applicable
only for small angles of attack and the usual Mach number
limitations., These limitations are determined by the ac-
curacy desired in the results. The methods used in this
thesis apply only to control surfaces which have no twist
and whose profiles are symmetrical about a straight mean
camber line, No attempt has been made in this report to

take into account the presence of a fuselage or other body.
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The amount of error in assuming no wing body interference
is not known.,

As in all applications of the linearized theory, the
problem may be divided into the thickness case and the case
of the flat plate at an angle of attack., The solutions to
these two cases are then superimposed., It is obvious that
the thickness case does not contribute to the upwash-sidewsash
field behind the control surface., Therefore, only the case
of the flat plate at an angle of attack is considered here.
In the derivation of the formulas used, the wing, or con-
trol surface is considered to lie in a horizontal plane.

The boundary conditions on the wing are applied in this
horizontal plane in the usual manner for the linearized
theory, This horizontal plane is sometimes referred to as
the plane of the wing,

The derivation of the basic methods used in this thesis
are found in reference (1) and not repeated here. The ap-
plication of these formulas to this particular upwash and
sidewash problem are discussed, and the results presented
in graphical form at the end of the thesis.

The upwash~sidewash field downstream of finite deflected
control surfaces, such as are pictured in Figure (I), is ob-
talned by the principle of superposition., It is well known
that in first order theory there is no sidewash or downwash
(reference 2) behind a two dimensional wing in a supersonic
stream, Therefore, sections II and IV of the wing in Figure
(I) do not contribute to the downstream sidewash-upwash

field. The solutions for the upwash in the plane of .the
wing at finite distances behind it and in the Trefftz plane
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are plotted for rectangular and trapezoidal wing tips (sec-
tion I and V) in reference (1), Formulas for the sidewash
behind the wing due to sections I and V are also given,
but the calculations have not been carried out to the au-
thor's knowledge. Thus the only unknown contribution to
the trailing upwash-sidewash field comes from the Mach cone
arising from the discontinuity in angle of attack, which is
section III in Figure (I). This discontinuity in angle of
attack also arises in the case where the roll control sur-
face is a section of a fixed wing. The solution may be
superimposed in this case or any other, where a disconti- |
nuity in angle of attack is involved, within the restrictions
of the theory. The leakage of air through the wing at the
discontinuity will be neglected., There is a certain
amount of justification for this, since control surface
slits are often sealed,

Thus the problem is reduced to finding the downstream
sidewash-upwash field behind a wing of infinite span with
a discontinuity in angle of attack of 2&, (see Figure II).
We again remind the reader that a two dimensional wing makes
no contribution to the trailing upwash and sidewash., If a
two dimensional wing of angle of attack -«, Wwere superim-
posed on the deflected control surface of infinite span
pictured in Figure (II), the trailing upwash-sidewash field
would not be affected, The discontinuity in angle of attack
for the combination would remain the same, but the angle of
attack of the left half would now be «,, and the angle of
attack of the right half =-ec,. It is thus clear that the



- k-
value of the discontinuity in angle of attack (e,~oc, = Rac,)
is the only factor contributing to the trailing upwash and
sidewash in Figure (II)., o, and o, may take on any val-
ues within the limitations of the theory.

The methods of calculation are presented in two parts.
The first part is the calculation of the upwash in the plane
of the wing at 0, 1, L, and 9 chord lengths behind it. The
second part is the calculation of the whole upwash-sidewash

field in the Trefftz plane.
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B. ANALYTICAL PROCEDURE FOR UPWASH AND SIDEWASH CALCULATIONS.
1. In the plane of the wing at finite distances behind it.

The method used in this part of the calculations is iden-
tical to that used in Chapter 7 of reference (1) to evaluéte
the upwash behind a rectangular wing. The detailed descrip-
tion of the method will not be repeated here., The general
procedure is to start with a

deflected control surface of
—-X,

infinite span and semi-infin-
ite chord, such as is pictured
here. As is described in ref-

erence (1), wings of constant

differential strength with

gside edges along t = constant

and with leading edges along the line x; = ¢, x, = 0, are
superimposed, The strength of these superimposed wings is
chosen so that the 1ift behind x; = ¢ due to the original
Wingvis canceled. It is evident that in the limit an infin-
ite number of these wings must be superimposed and their ef-
fect summed through integration. The strength of the super-

imposed wings is determined i \LL*

by the function describing § 2_ <=2, /
/

/
L0777 777 777787477

the pressure distribution
‘ SUPERIMPOLE D

over the original wing,

= Ldecom Ue
mw

page 9, reference (3),

u, cos™' (t) from

u; = u,(b) is thus u, =

Y¥s

3&;%?9&; cos™ (b). This procedure yields a solution which
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satisfies the boundary conditions for a wing of infinite
span and a finite chord, c.

The upwash at any point where x;>c¢, -1€£t<1 1is ob-
téined by subtracting the upwash, at that point, due to the
superimposed wings, from the upwash; at that point, due to
the original wing. The upwash due to the original wing may

be expressed as:

-—[G(b t) 3 —1 db

)
where from the equation for u,,

L1 B" !

G =l T+ 2 arctan T+ Bl T8 T

The upwash due to the superimposed wings may be expressed as:
- ’

uz"“‘f (btt)]—z

l
where

G(bt‘)——( ln\T‘\+2mt'an T*+ '\n\T BT&‘ 2)

Thus the upwash at any point Q = (cm, ,53 ) where 1:.:?->l,
-1t <1 is:

-
el -6(0.7) 42 b

|
Thus this integral must be evaluated at each point in the

wake, where the value of the upwash is to be found.

The integrand in the above expression becomes infinite

at certain points in the interval of integration. The



-7 -
ingenious methods of Lagerstrom and Graham for dealing with
these infinities are described below for the three cases

encountered in this problem,

CASE I
The function [G(b,t) - G(b,t*)] %‘-‘f , hereafter called
G(b,Q) 4% | is inrinite

when %“g is infinite,

that is, b = £1, and is
infinite when Q lies on the
axis of a Mach cone from
the tip of a superimposed
conical wing as shown in

the sketch.

Part A: ‘% infinity:

The infinity due to %ﬂ? can be integrated in the fol-

lowing manner:

at b = =1:

-1
fc,(b Q) 4 4 ﬁeu 0)-R) 4 ab +fR dus g
b, b,
where ‘

R=%ﬂﬂ%w+20mhnT-2anhnTﬂ

at b = +1:
¢

ﬁ@(b,a)] i—‘;é db ﬁG(b Q)- 5) du db +[ dus 4
2

where _

5=;:;-[|n|::-., + Rarctan T - 2arctan T')
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Part B: G(b,Q) infinity:
For the case when G(b,Q) is infinite, that is, when
b = Z’Sr—‘n (T* = 0), the removal of the ‘infinity is made in the
same menner as for the case of a rectangular wing tip as

developed in reference (1), in the following manner:

bu by
fG(hQ)d“’db ﬁG(bQ i“—’—h(b)]defjh(b)db
Wl':ere ”3
hib) = 2 "“‘)4_”.,[ ~b) tn| 2 - b) ~(2 b)]
and

G(b Q) dlh__h(b) (%‘.‘E’) {x' (lnT+ln 2_()‘; —l))

cm

+ ';(:_'L") [ln’BI-ln,?—-_--E-@r-,J-i-Zarcfan T}

CASE II: ’:;< -1

G(b,Q) St 1s infinite when

du;
db

shown in Case I. G(b,Q) is inde-

is infinite (b = *1) as was

terminate, that is, both G&(b,Q)

and G(b,t) become infinite when

b =t = t*, This occurs when ¢

X
lies on the edge of a superimposed conical wingsand an orig-
inal wing, each of which produces a line of infinite upwash

along its edge. Evaluating G(b,Q) at b = t = t*:

f - T -l I~ BT
G(b'Q)'i'?['T: "7l ‘”ln BT -T'i'L ”
= _\ B*l, |7-8

E’s(f‘.%'ﬂ 2B l"\f*..
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Taking the limit of the argument of the logarithm:

20 —d
lim (ra) af-ab __-db_ . aﬁgp =
T8 \T_ 4T dT*- = *
T8/ dT°-dB T*-dB T n-4
since
8 __ B dT* T*
db " bVi-br 1 dt* T Picee
and
dt'_ dfem-b)_ ~I
db db\X_ /7 X_
3 c
then:
. N X1 _|
lim [T=B ) = bVi‘—bi I
T+8\7T*-p/) > - B LE!
\ .toiF‘_ftL %—l bvl_—_l?i- [
hence:
—}2 X3
O PR [ S -
betstt, Ut X3 _
c‘ A
c al
ASE III: e -1

For this case G(b A T d“’ becomes infinite at b = -1
due to the infinite upwash along the axis of the Mach cone
from the superimposed wing, as in Case I,‘and because %ﬁf
becomes infinite at this same point, b = -1, Thus we have a
double infinity when b = -1, In order to subtract out this

double infinity, 53(b,Q) and Ls are introduced as follows:

In the interval b, to -1,

_[G(bﬁ)d“’db- 2"-”“[[,-—6(\:@- 7 n|1+b]- Ls}——

~ -
_ Rexco\Uoe Ln (1+b) Zoc.U-o Ls db
R S R
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Let:

Gs(b Q)"’ ln'l-‘-b'

2 500
and

Ls = 65(";Q)=Tg-ﬁl—ln|ﬂ+2ard‘an T-l—b'_‘_,"‘, ln ' IHJ}
as b- -1, T*——}%-—-) 0, where t* = =
~|=b

2(!:"' =

& lim
b‘:—l l"lub‘ =ln 3 oy

Therefore:

L.ST”'—’F {-ln|T| +2 arctan T - |n 2(—?-—{)}

Although _Q,ilg__Q__)_______ is indeterminate for b = -1,

Ti+b

it may be shown‘, by expanding it in a power series, that

llm EL(bIQ) - LS
N Ty

Since it is finite for b = -1,- 4&“7@;—-6@0) ln|l+b| L]}T_‘)_—

is integrated graphically.

=0

-4
~ 2V [lalibl gy gyl fer bas

Y2 T | yi*b
b,
-I
- 2'°C°U°° db ( ClOO)ac,U,o LS ‘Fol" b,“‘ —.5

Y"'
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Now we can write:

(uz)c%: fG(bQ)d“’ fG(b Q)Tldb

- - -}

_ 2= Ve Recs\ke tnh+bl _ U
[[Gs(bQ) Ls]m_b S mdb Y—_-_.Lb-db
-5

-5

5
/[G(I:Q) 5]‘*‘“ db 4|5 i db
[

|
where, as before:

5-—-[lnl \+ darctan T —Rarctan T ] (be1)

and
1

5
%\_/5%%_3= .&ﬁ;‘gr;r.ﬂ_s._[urcos (b)]:.bbhc,U;S
: (]
|

The first, second and fifth terms of the above expression

are integrated graphically.

The upwash immediately behind the trailing edge may

be obtained as an analytical funetion. ' As before:
)

|
=;"ﬁﬁ6(bi) —G(b,t')]‘i‘di; db= - fG(b t S dus 4
)

f(,(bt)d“’dw /G(bt)d“’db

From b =1 to b =0, G(b,t) = 0, since the original wing
was at zero angle of attack here,
From b =0 to b= -1, G(b,t) = -1 so that:

|
/ j) S dy, db-—[U,(-l)-u,(o)Jz — Rec, Us

[}
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gince

Us = i‘ﬁ%gim arcos (1)

Likewise:
G(b,t*)=~|

giving:

t
%j—%%’ db = -————-—-2";_;_1}"’ arcos (t)
The upper fimit here is t, since the wings for b<t can
not contribute to the upwash at t just behind the trailing

edge. Therefore, for O0<t<1l:

U, = &51?}-3- arcos (t)

and for =1<t<0:

Up= gj_‘:;y_i‘; arcos (t) -2 Voo = ~Rec o Uoo (' _‘TTL Qrcos (t))

2. In the Trefftz plane (at x; =)

The problem of computing the upwash-sidewash field in
the Trefftz plane is shown in reference (1) to be the same
as that in incompressible flow, and the methods of complex
variables may be used.

The vortex sheet trailing back from the wing is un-
altered, in the first approximation, from the t;ailing edge
to x3=e, and remains in the plane of the wing. Thus the
sidewash is a known function all along the x, axis in the
Trefftz plane. u,= 0 for 2 <-| and for X 5| , since

there is no sidewash coming from the two dimensional part
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" of the wing. Behind the region where the Mach cone intersects

[P
the trailing edge of the wing ¢ & ¢ X
/N ]
(-1 Xt < 1), u, = F(&5) at wmza AP <m0 g
X; - b X ,// A
L= 04§ and u, = -F(= P N
cm S ' cm + A \ Tra.iling
at X = 0 - § where § is an eI Vortex
em Sheet
infinitesimal distance and €
In the Plane of the Wing
~ 0. This furnishes one Xz
<m
boundary condition for the
problem in the Trefftz plane. U=o _ U=|Flts) —U=o X

U =0 a,:_-.-f‘(é!‘l_") u,=o cm
The other boundary condition

is that wu, vanish at r, =
J(&) 4+ (&) =oo, In the Trefftz Plane
The function F(é%‘) is
evaluated at the trailing edge of the wing by use of the well

Known formula derived from conditions of irrotational flow:

ﬂ.\.=.—_’- dus (1)

U= ug(t) is assumed known, For the justification for this
procedure, see reference (1),

It was noticed by Df. Lagerstrom that thé same boundary
conditions are satisfied when a solution that vanishes on
the Mach cone in the & plane is transformed to the physical

(2) plane by the inverted Joukowski transformation:

I - VL-Z'

&= =

2 _ A
z = &+¢

where ¢ and g are complex variables,
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The g plane here referred to is that perpendicular to the
-é}- axis at %} = 1, and is the one encountered in conical
flow problems described in reference (4). In the &£ plane,

the coordinates have been transformed from the physical plane

l=-V-n" to allow

T
the use of the solutions to Laplace's equation.

through the Chaplygin transformation R =

It may be seen that in applying the inverted Joukowski
transformation, the unit circle in the & plane transforms
into the portion of the x, axis in the physical plane where
|x]>1. It is also seen that the point R= 1, @ =%': in the
& plane transforms to §%==a7 in the physical plane., Thus
the boundary conditions in the & plane for wu,- iu,= U(g,)
become w,= O on the unit circle, u,= 0 at R=1, 0 =4
and U(x) = F(%% ) on the x axis, where, by the Chaplygin

transformation:

X«
NI €. (2)

<m

Now the procedure outlined above will be applied to

the problem at hand. From reference (3):

Rocs m Uss (os_'(‘*t)

U3-= _l_\,

and by formula (1):

1+)1-1*
t

ul = -2“01};0 l.h
w

At the trailing edge t =-5L s therefore:

us Zo |l =) - )
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Now using formula (2) in the &£ plane:

u, = és%l’z_ln (x)

The boundary conditions on wu, are obviously satisfied for:

- s = 22V 1o (e) - L T
u, = 2xeUss
"
o RecoVeo (W
Uz = ‘?"‘(z 6)

Thus in the & plane, R = constant represents lines of con-
stant sidewash, and © = constant represents lines of con-
stant upwash,

It is easiest to think of the transformation -1',— =%(6+-€L/-)
in two steps: %(5"'"5;)"' &, and g, =L. The first step is
the well known Joukowski transformation, and the second is
the ordinary inversion about the unit circle. From this,
the formulas for the lines of constant sidewash and upwash
in the physical plane turn out to be:

A= [———h")lz Sin* 6, + l]_iiis)f_
(cs*~1) (e +1)*
where: ¢;= ef =W

r, and 8, are the polar coordinates in. the
g (physical) plane,

= (\—c¢*) -5int0,

rﬁ

' ('—cli) C|z

where: ¢,= co -2 a
' S [(l U=/ 2

These are plotted in Figures (V) and (VI), Figures (VII)

and (VIII) are crossplotted from Figures (V) and (VI).



- 16 -

C. RESULTS AND DISCUSSION

Figure (III) presents the data for upwash in the plane of
the wing at 0, 1, 4, and 9 chord lengths behind the trailing
edge of a deflected control surface of infinite span. The
- method of calculating the points on this plot was that de-
scribed in Part B-1, VIt is noted that downwash is found in
the wake of the section of the control surface at the greater
angle of attack., Similarly, upwash is associated with the
surface at the smaller angle of attack, Since the plot is
symmetrical with respect to the origin, there is no net up-

wash. It may be seen that this must be the case by studying

Us
the symmetry properties of L74m55
the problem. The pressure m
distribution on the wing \ x=wf%49 fA=—ole 4 oy
-/ i

(as shown in the sketech

- AU s 1
(cp —U_j) ) in region L

III, Figure (I), is anti-
Pressure Distribution on
symmetriec with respect to the Wing Inside Mach Cone
IIT of Figure (I).
the x,,x; plane. The :
strength of the compression or expansion wave at the trailing
edge 1s determined by the pressure change across the wave
which is necessary tovequalize the pressure in the flow be-
hind the top and bottom of the wing, and to make these flows
vertically parallel. Thus it is clear that, to the first
approximation, the pressure distribution on the wing deter-

mines the strength of the shock or expansion wave at the

trailing edge. The strength of these waves at the trailing
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edge in turn determines the vertical angle through which the
flow passing over the wing is turned as 1t passes by the
trailing edge. On the top of the wing w,= -«.Us 1in sec-
tion IITa, and W,= + .U~ in section IIIb, and is thus
also antisymmetric with respect to the x,,x; plane. Now,
since both the upwash on the wing and the strength of the
wave at the trailing edge are antisymmetric with respect to
the x,,%X; plane, the upwash directly behind the trailing
edge must be antisymmetric with respect to the x,,x; plane.
It is easy to show that the upwash field must continue to

be antisymmetric in this way as the flow continues downstream.

Consider wing I in the sketech, l lLl
At point (a, o, b) in the Y
71~ —>X,
. N
wake, the upwash is equal ; <=, // s/ﬂ<\ (= ~of, %
to n, At the image of this Z AN
7 \\ T
point in the x,,X; plane, ,’/ Caob) | @ob) N
¢ E PN
point (-a, o, b), the up- z/g=ﬂ7/ A
v Y X3
wash is equal to m. Now
consider wing II, where t ] U;L
the angle of attack dis- N =X
0(="°(n // 9/‘ d;q/a
tribution has been reversed. / AN
The values of the upwash /// NI
/7 C-q o/b) (a/Ob) \\
'Y - / » L 4
at the same points con Ufhv’/ Nya=n’
sidered above will be re-
Y X3

versed, In a flow de-
scribed by superimposing wing I on wing II, there will be no
disturbances, since this results in a flat plate at zero

angle of attack, Therefore, adding the upwashes at the
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point (a, o, b) in the flow for the flat plate at zero angle
of attack, gives m' + n'= 0, or m = -n, Thus the upwash
field is antisymmetric with respect to the x,,x; plane
everywhere in the flow. By a similar argument, the sidewash
may be shown to be symmetric with respect to the x,,x; plane,

The break in the curve where the upwash becomes nearly
constant as one approaches the origin from either side in
the flow of the wing is directly behind the point where the
lach cone intersects}the trailing edges of the control sur-
face,

Figure (IV) shows the lines of constant upwash in the
plane of the Wiﬁg behind a deflected control surface of in-
finite span. The data in this Figure, at finite distances
behind the wing, were obtained by cross-plotting Figure (III);
The data at infinity were obtained by cross-plotting the up-
wash, in the plane of the wing, from Figure (VII). This
plot clearly shows that the solution for the upwash at finite
distaﬁces behind the wing approaches the solution‘in the
Trefftz plane satisfactorily. From this Figure, it is seen
that the distribution»of upwash at about four chord lengths
behind the wing is very nearly the same as that in the Trefftz
plane in the range -24;’:—;,42. It follows then, that the
distribution of upwash and sidewash in the plane perpendic-
ular to the x; axis at %? 25 1is very nearly the samé as

~in the Trefftz plane, especially in the vicinity of the X,

axis.

Figure (V) shows the upwash-sidewash field in the Trefftz



- 19 -
plane for a wing made up of a deflected control surface of
infinite span. The data for this Figure were calculated by
the method described in Part B-2. The lines of constant
upwash and sidewash are described by formulas of that part.
The upwash has a maximum positive value equal to that in
section IV of Figure (I). This value extends from §%==O
to %% = 1 in the plane of the wing. The maximum downwash
(negative upwash) has the same absolute value and extends
from Xt =0 to X = -1, The upwash is zero along the x,
axis and at infinity. The curves of constant upwash are
modified lemniscates with xtih» positive in the first and
fourth quadrants, and negative in the second and third quad-

rants. Thus upwash is symmetrical with respect to the %%

axis, and antisymmetrical with respect to the .2% axis.

The sidewash has a logarithmic singularity at the ori-
gin., It is zero along the 5% axis for k%%l>l and at in-
finity. The curves of constant sidewash are orthogonal to
the curves of constant upwash. The values of the sidewash
are symmetrical with respect to the %% axis, and antisym-
metrical with respect to the S axis,

Figure (VI) presents the curves of constant upwash and
sidewash in the first gquadrant of the Trefftz plane, plotted
to a larger scale, with the addition of more curves of con-
stant upwash to make interpolation easier. This Figure is
meant to furnish an accurate plot from which the value of
the sidewash or upwash at any point in its extent may be

determined.

The data from Figure (VI) have been cross-plotted in
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Figures (VII) and (VIII). Figure (VII) shows the variation of
upwash with X at % =0, %,5, and ¥1.0. Figure (VIII)
shows the variation of sidewash with .%% at %%5 =0, £,5,
and $1,0. ‘“These two graphs show clearly that adverse induced
rolling moments are experienced by both the horizontal and
vertical aerodynamic surfaces placed in the wake of a de-
flected control surface of infinite span. The upwash on the
horizontal tail gives it an effective angle of attack which
is opposite in sign to that of the roll control surface,
The exact value of the induced rolling moment depends on the
chord of the rear aerodynamic surface and its span., The in-
duced angle of attack varies across the span of the rear
aerodynamic surface., The exact value of the induced rolling
moment would have to be calculated using a method which
gives the distribution of pressure over a wing with any
arbitrary aerodynamic twist.

Figure (IX) shows the very simple case of a canard con-
figuration whose roll control surface has an effective aspect
ratio of 2.0, and whose wing has a chord equal to, or greater
than, and a span equal to that of the roll control surface,
This configuration is for illustration, and no vertical sur-
faces are considered here. The accompanying graph shows the
upwash distribution on the wing, The upwash due to the tips
on the roll control surface (reference 1) is superimposed on

the upwash due to the discontinuity of angle of attack to

get the final distribution., Since lxuﬁk >1 all along the

span on the rear wing, the induced rolling moment is such that

strong roll reversal would be encountered.
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A vertical tail symmetrical about the x,,x; plane would
have a similarly induced adverse rolling moment. If the tail
were not symmetrical with respect to the x,,x; plane, a yaw-
ing moment would also be induced.

Viscosity effects would modify the upwash-sidewash dis-
tribution somewhat, particularly in the immediate viecinity of
the origin, where the discontinuities in both upwash and side-
wash would be smoothed out. It is believed that the essential
features of these induced trailing velocities would not be
altered,

The values of the induced velocities in this analysis
are a whole order of magnitude higher than those encountered
in subsonic flow. Therefore, if it were possible to calculate
the second order effect of having the free vortices which
trail back from the wing follow the streamlines of the flow
calculated in this paper, rather than the free stream direc-
tion, the upwagh-sidewash field}could conceivably be altered
to a considerable extent.

Reliable experimental data are urgently needed to check
the assumptions made in the theory used to obtain the results

presented in this report,
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