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ABSTRACT

The steady flow of a viscous, incompressgible and
electrically conducting fluid over a solid, in the presence
of an applied magnetic field parallel to the main flow, is
considered. The eguations of magnetohydrodynamics (MHD) are
linearized by assuming that the solld only slightly perturbs
the velocity and magnetic field. Fundamental solutions of
the linearized egquations are derived, and they are used to
construct MHD flows over solids. The MHD drag formulas for
the finite flat plate and the sphere are derived. The special
cases of zero viscosity and infinite conductivity are studied,
and general formulas for MHD forces on a solid are presented.
The problem is generalized to include an electrical generator
in the body.

Steady flow over a flat, circular, broadside-on
disk in the presence of a parallel magnetic field is solved
as a boundary value problem. The flow sclution and drag
formulas are valid for all values of the three parameters,
Reynolds number, Magnetic Reynolds number, and Alfven number.
The drag is calculated for large and small magnetic infer-
action; in the latter case the drag is proportional To the
Alfven number. A special diffusion model applicable for

large Hartmann number flows is also presented.
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SUMMARY

A general class of problems in magnefohydrodynamics
(MHD) is considered: the steady flow of a viscous, incom-
pregsible and electrically conducting fluid over a solid, in
the presence of an applied magnetic field parallel to the
main flow. The equations of MHD are linearized by assuming
that the solid only slightly perturbs the'velociby and
magnetic fields. There are only three independent dimension-
less parameters in'the equations: Reynolds number /£ ,

Magnetic Reynolds number S s and Alfvén number «

A. General Solution

The general solution of the linearized equations is
found by splitting the fields into their longitudinal (irro-
tational) and transverse (rotational) parts; the transverse
fields split further into two modes. Both of these trans-
verse modes satisfy equations of the Oseen type whose solu-
tions are well known. Therefore, the general solutlons are
expressable in terms of Oseen's hydrodynamic solutions. The
splitting of the transverse velocity mode into two parts is
due to magnetic interaction; the extent of the interaction is
determined by the MHD Reynolds numbers 2/ and XZ which are
combinations of Reynolds number, Magnetic Reynolds number

and Alfvén number -
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In each transverse mode there is a magnetic field proportional

to the velocity field through the parameters Kl and KZ’ where

[

/f, /
/
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Thus, the general solution for the perturbation velocity and

magnetic fields have the form:
u - 4

#n=0

i 2- -
o Z K G4

70

where /4 =/ , and the mode strengths £ , 4 and V)_ must

be determined by boundary conditions. The functions

“ (n= 0 ¢ z‘/ satisfy Oseen's equations
D
ys » ;:Zj =0 7w =0
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where /Q =0 . The two transverse modes represent parabolic
wakes: the firstvmode wake 1s always downstream; the second
mode wake is downstream when g</ , and upstream when or >/
The net pressure in the fluid--hydrostatic plus magnetic pres-
sure--is proportional to the x-component of the longitudinal

velocity field, that is,

-

P (- 4

B. FPFundamental Solutions

The mode cénstants are evaluated for two tTypes of
singularities in the fluid: the velocity singularity, and
the magnetic singularity. The velocity singularity generates
velocity disturbances at a point in the fluid, but far from
the singularity there is also a magnetic disturbance caused
by MHD coupling. The mode strengths for the veloclity sin-

gularity are:

A A
’ 27 /’/z - 4:
(%) _ 4@ .

The magnetic singularity generates magnetic alsturbances at
a point in the fluid, but far from the singularity there is
also a velocity disturbance caused by MHD coupling. The mode
strengths for the magnetic singularity are:

ix
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where /ivs 57aﬂ is the magnetic Prandtl number. The current
density in the vicinity of a velocity singularity is zero,
while the vorticity in the vicinity of a magnetic singularity
is zero. Therefore, the boundary condition that current
density must vanish on a body which does not carry on elec-~
trical generator is automatically satisfied by superimposing

velocity singularities.

C. Infinite Conductivity and Zero Viscosity

Hasimoto (5) has studied the MHD equations in the
limit of infinite conductivity. His solution indicates that
a single wake exists which is upstream if &« >/, and down-
stream if & </ . Passing formally to the limit ¢~ — o=
in the fundamental solution shows that the Iirst mode wake
vanishes; and the second mode wake is upstream for o>/
and downstream for o</ (figure 2). In this limiting case,
a magnetic singularity has a large effect on the flow because
the magnetic Prandtl number is large.

Lary (4) has studied the MHD equations in the limit
of zero viscosity. He finds a single wake having the above

X



mentioned property. Passing formally to the limit

shows that the first mode wake degenerates to a singularity
along the x-axis, (figure 1). It is the irrotational flow
associated with this degenerate wake and the sgecond mode
wake that is responsible for the force on a solid: 1ift

is due to potential vortices, and drag is due to potential
sources, Jjust as it 1s in hydrodynamics. In this limiting
case a magnetic sgingularity has no effect on the flow be;

cause

D. Flow Over Solids

As examples of the use of the fundamental solutions
of MHD, flow over a f{inite flat plate and flow over a gphere
are constructed. The procedure is analogous to that used in
hydrodynamics, and requires the additional assumption that
the MHD Reynolds numbers are small; that is, the magnetic
interaction must be weak and the Reynolds number low.

The drag coefficient formula for the finite flat

A 2
C=(p//+ el 1_0( #F o )
c (- %)
where ¢ is the hydrodynamic drag coefficlent. Therefore

%

plate is:

£/

I

the correction to drag due to weak magnetic interaction is
second order in the Alfven number, and usually negligible
because ,ﬁi << / for laboratory flows.
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The drag coefficlent for the sphere is calculated

up to terms of order A , or terms of order 4 ; the result

i ¢ = . 2 .
is S 2 (/ Z H - // where
Ho= e (<)
P b o 2 e
= = - {a{>/}
JR-1,) s n
_— o+, 1o, £, >

These results are in agreement with those of Chester

(7) and Iudford (9).

E. MHD Forcesg on Solids

Some general formulas for the forces on a solid, 1n-
cluding those due to Maxwell stresses, are derived. The 1ift
per unit length of a flat plate is

c “/dg‘j{”%* é%»:;{/
i 4 6
e / <
where ¢ is a large contour around the body. The drag per

unit length of a flat plate 1is

; /ﬁ// o pH G

where © is a large surface enclosing the body. Since the
longitudinal fields are parallel, the 1lift and drag coef-

ficients are
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where 47 is the circulation of the potential vortices, and

1

S

JZ is the strength of the potential sources. The forces
on the body do not vanish as a4 -+, , because as a =/ the
strengths of/the potential singularities become infinite
like (/- 47.

Another formula for the drag of a solid in terms

of vorticity and current density is presented:

g e ] of

where #/ is the entire volume (infinite) of the fluid. This
formula states that the rate at which mechanical energy is
put into the fluid equals the rate of viscous and ohmic

dissipation.

F. Some Comments on the Linearized Equations of MHD

Oseen's hydrodynamic solutions may be generalized
to include the effects of a parallel magnetic field in a
formal way. The Oseen linearization procedure ylelds a
symmetric set of coupled equations for the perturbation veloc-
| ity and magnetic fields. The symmetry in the equations goes

xiidi



deeper, as the formulas for 1ift and drag show. In this class
of problems there seems to be an advantage in working with the
full set of MHD equations, rather than part of the equations,
because the symmetry in the equations helps to simplify the

task of finding the solution.

G. MHD Flow over a Disk

In some cases 1t is more convenient to solve problems
of this class as boundary value problems; this is true for the
broadside-~on disk. The flow solution 1s found in terms of an
axi-symmetric stream'function, and drag formulas are derived
in terms of the stream function. The development of upstream
and downstream wakes as the Alfven number goes from zero to
infinity is clearly shown in the solution (figures 6 and 7).

The drag of the disk for small &« is D = 0.85D ,
where ZZ is Stokeg' drag for a sphere of the same radius.
There 1s no first order drag correction when o is less than
unity. When & is large, the drag formula is &= *77&2: a ,
where f%1 is the magnetic Prandtl number.

A useful approximation for large Hartmann number
flows 1s devéioped: Vorticity diffuses frbm the body like
heat; .« 1s analogous to time, and vorticity 1s analogous

to temperature. This approach also ylelds the same expres-

sion for the drag of the disk for A - e,

xiv



INTRODUCTION

The class of problems in which an incompressible,
viscous and electrically conducting fluld flows steadily over
a solid, in the presence of a parallel applied magnetic field,
has been considered by several authors. Chester (7) considers
low Reynolds number flow over a sphere with small Hartmann
number, while Stewartson (8) considers infinite Reynolds
number flow (» o ) with infinite Hartmann number (4, = o).
Hasimoto (5) finds solutions of the MHD equations in the limit
of infinite conductivity, while Lary (4) finds solutions in
the limit of zero viscosity. The purpose of this thesis is
to present a technique for constructing solutions for this
class of problems which have no restriction on the value of
the parameters.

The basic assumption underlying this technigue is
that the body only slightly perturbs the velocity and mag-
netic field; this allows the MHD equations to be linearized.
No further assumptions are necessary. Criticisms of this
assumption are well known, and are discussed. It is also
assumed that the fluid is infinite in extent.

The class of problems considered here is generalized
to include a solid which carries an electrical generator. In
this case, current may flow in the body and induce fields in

the fluid.



ITI. BASIC EQUATIONS AND BOUNDARY CONDITIONS

A, Basic Eguations

The basic equations of MHD are well known for an
incompressible, viscous fluid with a simple scalar conduc~
tivity (3). They are the equations of Navier-Stokes, Maxwell,

and Chm, and are summarized below:

- - . _ s - Z—J,,__{ g /97
(U 7)U = /;7/;@ Yy V- (T A~ / (1)

/o =e (2)
pXE =0 (3)
ke =T (%)
& =0 (5)
oo (6)

- - % 7)
u;d’/g-}ﬂX/«/// (

The flow is assumed to be steady, and without excess charge.
Equations 3 and 5 show that the electric field is derivable

from a potential which satisfies LaPlace's equation; that is,



£ v pid = o (8)

Using Equation 4 in Equations 1 and 7 eliminates the current
density. Taking the curl of Equation 7, and using certain
well known vector identities yields the following equations

for the velocity and magnetic fields:
(v-7)¢ ~» 7Y "/é/“/d’ 7y - */:’V/: (9a)

(9p)

it
Q

(&7'7//;~ S AN Y

#

y,i:y,/ = O (9@)

where;% ig the net pressure--the sum of magnetic and hydro-

static pressure -

/zf - +’/a'£? (10)
2
It is convenient to introduce the following dimension-
— - _.,.-/ — -y
less variables: v =0, #- ///‘{4 , £ =£/4Z0w ,

Vs /é‘/” Y, where Ais an arbitrary length. The resulting
#*

dimensionless equations are:

%
The primes are suppressed for convenience, dimengionless
“quantities are to be understood except when stated otherwlse.
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_(;-7);*;{ 72‘;"“7’;'7/’;1"‘7% (11a)
(@7.7}47 *éé; yh - (Céi//z7 -0 (115)
o = pA =0 (120)

£ - -vd, r g - o (12)

There are three independent dimensionless parameters:

(1) the Reynolds number A2 - @é!l (2) the magnetic Reynolds

v s oy
number ii=77?€£'/ , (3) the Alfven number o = ‘/;;z)/

Sometimes it is useful to replace one or more of these para-
meters by other related parameters such ag the Hartmann number

2%
( # :/E/ﬁ,ﬁ_/) or the magnetic Prandtl number
(/’ﬁ=/f”/4§=a/‘«ﬂ ).

B. Linegrization

Equations 11 can be linearized by assuming that the
body slightly perturbs the velocity and magnetic fields by

the amounts & and 4 , respectively. Then substituting

U =i+ u and # = ;. +4 into Equations 11, and
neglecting second order terms like “ {‘2 P ;ﬁ 3‘; , ete.,
QX P

the followlng linearized equations of MHD are obtained:



2/; -/ 27 _ ZJZ -
o TR TY g (132)
2 Y
=4 =0 (130)

| This is the linearization procedure used by Oseen
in ordinary hydrodynamic problems of this type (ref. 2). The
main criticism of this procedure is that the convection terms
é&i Zyé; and (é;i/j/ﬁj actually vanish at the body because
Z7 vanishes; however, the terms 24 and é!f retained in

24 X

this approximation do not vanish at the body. Therefore the
flow field in the vicinibty of the body is not expected to be
correct; however the fields computgd far from the body should
closely approximate the physical situation. There can be no
criticism of this linearization procedure for the operator
59253) except when the conductivity is very large. In
this extreme case the flow lines and the magnetic lines are
almost frozen, hence the magnetic field also vanishes at the
body. The perturbation in both the fields is therefore 100%,
and the linearization assumptions are violated; nevertheless,

the solutions are still qualitatively correct, and for small

*
Az and ﬁi they are also guantitatively correct.

#*
For a more detailled discussion of this linearization pro-
cedure see reference 2.



c. %ovhdarv Conditions
- -
At dinfinity, Lo i, H=H ¢ ana A<
The electric field £ and potential éﬁ—is zero at infinity.

Assuming there is no excess charge in the fluid or on the
body,* then the electric potential satisfies Laplace's equa-
tion and must be zero everywhere. Hence, the electric field
ig identically zero.

At the body, the velocity vanisghes due to the
"no-slip" condition. However, the magnetic field penetrates
the body and is continuous at the body since there are no
surface currents. In general, the solution for the magnetic
field inside the body must be matched at the body surface
with the solution for the magnetic field in the fluid. This
complicated procedure may be avoided by solving for the
current density instead. The currént density jf satisfies
the simple boundary condition J = @ at the body, and it is
shown in the Appendix that this boundary condition defines
the solution uniguely.

It is also interesting to consider a body which
containg an electrical generator that induces currents in
itself, In thisg case the electric field is not identically
zero, but it must be continuous at the interface. The cur-
rent density at the interface is u;:a“é?, and it is dis-
continuous if the conductivity of the body differs from
that of the fluid. The power output of the generator is

eventually dissipated as heat in the fluid.

XIt can be shown from Maxwell's equations that the excess
charge in a medium of conductivity ¢ and permittivity ¢ dies
out exponentially with the time constant &4 --a very small
duration for good conductors,
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IIT. SOLUTION OF THE LINEARIZED EQUATIONS

The general solution of Equations 13 can be
written in terms of three modes: one longitudinal, and
two transverse. The magnetic and velocity flelds are

parallel in each mode.

A, Field Splitting

The perturbation fields may be split into two
parts: the longitudinal part (< ) is irrotational, and

the transverse part (7 ) is rotational. That is,

-

2= u° + o

P

i =4
where,
;‘:"7/1 /7j/:0

;‘= “7//) 7 =

(14a)

(14p)

(15a)

(15b)

Substitution of these equations into Eguations 13 shows that

the following is a particular solutlon for the longitudinal

fields;
./" —
74 = é = [g

- - //—n’L)‘ﬁ

X A A
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The transverse fields satisfy the following homogeneous

eguations:

207 72”’— > 4 S (172)
ox  Afe 2
247 2 opyT o 24T ., (170)
22 S 24
4 «” = 7- ;,7 =0
(17¢)

By substituting 47; 43%7 into Equations 1l7a and 17b it can

be shown that the transverse fields split into two independent

%
modes as Tollows:

2a 277
B (- na’ 2z Vs o =o (18a)
B (/= F M’ -y T o (18b)
This substitution is valid only if,
B ae) - 4 (- %) (29)

or, when A has the following two values:

,,(;/ “/ﬁ‘jv‘fm/Lw LEL /_d/‘/ (20a)

/

el f}*//;?*f»/ srs (<)) (200)

*
See Appendix.
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The corresponding values of the coefficients in Equations 18a

and 18b are:

4= jLZ1C@ %f;/)’LV/}ﬁ?*f;}z ‘f4@/ﬁ,(/~zj£/

(21a)
2 2
/ _ £ L, ~;/,€/ff»(/~o<j]

,zf‘q[/{;%f»] /(e % (21b)

Hence, the transverse fields may be written as the sum of

two modes,

T " - 22a
“ = Gu o+ L4 (22a)
47 = KL 2 A G4 (22b)

and the total perturbation fields can be written as sums of

three modes,

™

; = 4 [/») (238’)
g 77
j -z K4« (230)

720

The constant é{ is the strength of the nth velocity mode,

and {;éé is the strength of the nth magnetic mode, where

A, = 1. The nth velocity mode satisfies the following
equations:
2= Q;
= A -
v u Y- (2ba)

(24D)

N
NI
Q
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where A =0©

B. MHD Reynolds Numbers

The A 's may be thought of as generalized Reynolds
numbers, or as MHD Reynolds numbers, since they are combina-
tions of 4 and A» . The parameter a/zj/uééifﬁ?e;¢ is
the ratio of magnetic to dynamic pressure. When this quantity
is larger than unity, dZ"/ s it is convenient to introduce

the Hartmann number - ﬁ’ =

A,:
/y

C. Generalization of Oseen's Solutions to MHD

Solutions of 24 were obtained by Oseen in connection
with perturbation flow over bodies in ordinary hydrodynamics.

His solution for a singular flat plate with unit drag

(7;’=.—j)isﬂ

*¥

;’//[5/7&{'%/ ’/;/ (25)

where, (/= Me/27 and 4= fe. The function,‘/¢?5/=‘4af

is the potential of a two-dimensional source; it is the
longitudinal part of the solution, and is chosen such that
the flow is divergence free near the origin. The Oseen
function in two-dimensions is,//ZW=344€2T(?7/{] ; where, A
is the modified Bessel function of the second kind. At

large distances from the orlgln,l/zlhas the asymptotic be-
CA(r-X,
havior, /}’ﬁ:e //4/;t/ . Near the origin ‘//( v Al

+*
See, for example, Reference 3, page 14.

P
See Reference 2.
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Therefiore, /// behaves like a potential source near the
origin; but for large positive X, it is essentially zero
outside of a parabolic region bounded by éf::c/%{//i'
The strenggh of inside the parabola vanishes slowly,
like (}é/’é. However, for negative x’;//{’vanishes ex-
ponentially. Thus, Oseen's solution contains a parabolic
wake extending downstream from the body.

According to Equations 24 there are two wakes i
this problem. If A, > & , there is a second wake down-
gtream; and if A, <o , there is a second wake upstrean.
Equation 21 shows that A, <o , if «>/ ;and A >o0,
1if e«s</ . The mode strengths ég/and 4; are determined by

the boundary conditions.
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IV. FUNDAMENTAL SOLUTIONS OF MHD

Let z{],( o7 3 £, 7, %) be the 4 th component

th

of velocity at P(,l,’%, ¥) due to the j~ component of a

unit singularity at Q(;ﬂ,7, £ ), then the velocity at
Pla, ;, 7 ) due to a distribution of singularities of
strength {.Lf, 7,5%5) ¢3'17 4% is given by the funda-

mental integral, (tensor notation)

a‘,(z//,J/=///6{‘./.(X,/,;,~3/'?§7)9;/3',7}}'//5174(; (26)

where %. is the fundamental solution.

In MHD there are two types of singularities and
two corresponding fundamental solutions: (1) the velocity
singularity, or singular body, (2) the magnetic singularity,

or singular current element. The fundamental solutions
corresponding to these singularities are denoted by ﬁbfv
and ?7) , respectively. The tensor ?fq is the soluEion
of Equations 17 with the singular driving function & (r)/

on the right hand side of Equation 1T7a; while ?fv is the

solution of Equations 17 with 4 (r)g on the right hand side

of Egquation 17b. Where [ and g are unit vectors, and J(?)

is the Dirac delta function.
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A, Velocity Singularities

The physical meaning of the velocity singularity
§(r)f is obvious; it is an infinite body-force at the
origin and equals the rate of change of momentum of the

fluid per unit volume i.e. p 2; jéﬁ) . Integra-
3 )t‘

oy

tion of this body-force over a small finite volume surround-

ing the origin yields, £ =J§§(noy/:d%’:/[ . Therefore,
4

this singular body-force generates a flow which, far from
the origin, approximates the flow that would be generated
by a finite body exerting the same net force .5. on the
fluid. Due to the coupling of the fields there is alsoc an
induced magnetic field assoclated with the velocity singular-
ity.

As an example of how Oseen's solutions can be used
to express fundamental solutions of MHD, consilder the Singular
MHD flate plate with unit drag (§¥~£). Equations 23 and 25

show that the solution is

R P A P AN NCS

,?/

" q(“’[; v (% - £)-A ;]“ ”Z”;M[i 7 (- #) A "] (27b)

a,

b =
{ ) («/

The mode strengths ¢ and q/ are found as follows: substi-

tute these solutions into Eguations 17, integrate the equa-
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’ /
tions over / , then let # —+*C | The only non-zero
contributions come from the Laplacian terms in the x-

components of the equations; the result is,

(l() - (ll/
de 7 /Te
_ (u) {u) o
/:%i Ky - % £ Y =0 (28b)
() ()
Now solve for é{ and 4{ to get,
(e
A N (29a)
/ 27 /i:-' 4/[
LR L (290)
2 KA

In a similar manner, Oseen's scolution for a singular
flat plate with unit 1ift (£ =-j) can be used to write the
sclution for a singular MHD flat plate with unit 1ift

()

7 = ﬂ,(“)VX///{—p’//{/,L _ﬂj_ 7/‘////{; -,d)AZ/ (302)

2

b - ‘/ W/(/ PIk] ”“» VX/V /5/”4/ (30b)

J

Y

Again, substituting these equations into Eguations 17 and
performing the same limiting process, Eguations 29 are ob-

tained. This time the non-zero contributions come from the
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laplacian terms in the y-components of the equations.

Generalization of this technique to three-dimensions
is straightforward. The only change in Equations 27 is that
27 is replaced by 47 . For example, Oseen's solution for
the singular needle with unit drag immediately gives the

following solution for the singular MHD needle with unit drag:

- {“}f 7[ —,Z (r- X/A‘ / / -2, 0‘-2’//2.//
V74 = ——
w ~A,br-z)fe A lr-Dfe
A /ZV/ r -//—/ ’ /‘/ (31a)
- (w2) A (r-El ~A(r-%e .
el il =]
() -4 O R,/
Al )
(31b)

where

@ L s - (32a)
g a K-«
y@ .7 (32p)
2 T g -

There is one additional rule which must be remembered
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when employing this technique; that is, as £ becomes greater
than one and,g becomeg negative, the sign of 2z and the

sign of A, in the exponent must be changed. This procedure
assures that the second mode represents an upstream wake and
vanishes at infinity.

The fundamental solutions due to velocity singular-
ities have one other important property: at the singularity
the current density vanishes, therefore the current density
is zero on finite bodiegs made up of these singularities. This
statement can be proven in each case by considering J;zccurlé 5

letting //(-»)5' and then using Equation 27b.

B. Magnetic Singularities

The physical meaning of the magnetic singularity
cf(r%; is also obvious; it is the rate at which magnetic

lines of force are being produced at the origin, i.e.

,f ét: . By analogy with the velocity singularity,

-~ 7
an integration of 45@r£/ over a small finite volume # yields

the vector G :Mé;7gz29;ﬂﬁ/::7é . This means that the
‘//

magnetic singularity is a singular current element that gen-
erates a magnetic field which, far from the origin, approximates

the field that would be generated by a distribution of current
e

/
over the finite volume # having the same vector & . But

=3

what is & ¢ Consider Equation 1lb which states that
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3 =///Mjw -—-/////J-r//?—f;’ P~ (50 )H [V
v’ v’
:xé§[lfjé, AT - pav/27x434/40/
V/

- /// ?X[f-/l’m /V_JX;’//‘{/

_ < corl & AV
: [t

7

But according to Maxwell's equation, curl E = - g{f ;5 There-

fore,

‘=_¢// ;(//// = /%/0 =/f

This is analogous to the force F equaling the rate bf change
of momentum of the fluid, or

/2Ly () S

4/ (4/

The mode strengths é/ and é/ are determined in

the same way as before; and it can be shown that they satisfy

the following equations:

7 (4/
ar Yy L AT y =0 (332)
e A 2

4/ 4/ (33b)
a7 7 = /
4 -4
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The solution is

S A (3ha)
7 T oqr ”;__,(,

Y.ooR A (340)
* =7 /(z“’(/

where éa =:$7*’: f;/dé is the magnetic Prandtl number. Hence,
if /%-«7 1, current elemerts in the body have very little
effect on the flow.

The magnetic singularity has the important property
that vorticity vanishes at the singularity. Again, this can
be shown by considering _J; = curlaf » letting //Z-*/{,
and using Eguation 35a.

It has already been mentioned that the laplacian

terms balance the singular body-force; this means that

- ,7"; s -4 cwt L2 is singular at the origin. In the
3 fe

case of the magnetic singularity, again the laplacian fterms
balance the singular driving force; therefore the terms

/}/; Vz; N ',E/”M;: _/_éwg are singular. It may be
concluded that the velocity singularity generates vorticity
and transverse velocity fields directly, and through coupling
of the fields it also generates current density and transverse

magnetic fields; however, at the singularity the current
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densitégis zero. The magnetic singularity generates current
density and transverse magnetic fields directly, and through
coupling of the fields it also generates vorticity and trans-
verse Velocity fields; however at the singularity the vor-

ticity is zero.
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V. ON THE ROLE OF CONDUCTIVITY AND VISCOSITY IN MHD

Sears and Lary (4) have investigated these equations
in the limit of zero viscosity. They report the existence of
an upstream wake-but no downstream wake--when &« >/, Hasimoto
(5) also finds the same phenomena in his study of the equations
for the special case of infinite conductivity. These two ex-
treme cases are also considered here as limits of the funda-
mental sclutions. It ig shown that when a > 1, and either
resistivity or viscosity vanlishes, the downstream wake van-
ishes. Actually, in the case of vanishing viscosity, the
dovnstream wake becomes very intense but is confined to the

+X-aX18.

A. PFundamental Solutiong in the Limit of Infinfe Conductivity

Consider a velocity singularity in the 1limit of in-

finite conductivity. As conductivity tends to infinity;

,z/-,/f’meoo A GV A A R I

7

(aj
; N f - L A—
q’ o 4 g ? ﬂ /?l o ’ and /,22 T (/ /

Therefore, the perturbation fields for the singular flat plate

with drag (f = -i) are:

- = fe =
[l:/=’mp//{z_-p//'—;;;ﬂ‘ (36)

ai=Tk s - £ pxlA 7% (37)
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The perturbation fields for the lifting singular flat plate

@?T: “~Z;/are:

iod e s R[N ()
ad ok o g Pl AR (39

Figure 1 shows the location and relative sizes of the wakes.
The net pressure in the 1ift and drag case, respec-

tively, is

- _ . 2 (Lo)
- . oz o (41)

Since the effect of a magnetic singularity is pro-

portional to £, it has a large effect on the mode strengths.
() . (4/ .
As fim = 0o 5 Ve 4?7 and &%’—>— 42:(; therefore,
/ o7 77 -y
for example, with o = 1 a magnetic singularity can entirely

cancel out the second mode of a corresponding veloclty

singularity.

B. Comparison with the Work of Hasimoto

The present results are in agreement with those of
Hasimoto (5). Actually, Hasimoto's work is more general be-

cause 1t deals with a compressible fluid. Notice that for
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g~ ¢  the entire first mode vanishes, leaving only the
second mode in which the fields are "frozen" together
(parallel). It is interesting to note that in this special
case the magnetic field vanishes at a finite body because
the velocity vanishes; and the vorticity vanishes at the

body because the current density vanishes.

C. PFundamental Scolutions in the Limit of Zero Viscosity

Consider a velocity singularity in the 1imit of

zero viscosity. As viscosity tends to zero; /@'4‘4i - 2,
]

b3
R A o N A AR B
s * Z i)
/"/-» A & , 4o , and 4 ., _ o
- <7 A, 7 A 7~

The perturbation fields, for the singular flat plate with

drag (f = -i), are: (except on + x axils)

D I /A /Ao (42)

T F7(7 -

> . } 7N 4
4 = df’(/_d‘y 7% s é,?_/{ (43)

The vorticity and current density, is given by,

o R = px& :—{g’; V/%z‘/ (i)
IR A - o (u5)
75 (46)
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Note that the irrotational fields are parallel as they should
be. In general, the current density and vorticlty are propor-
tional in each mode. ﬁowever, in this limiting case, the first
mode degenerates to a singularity along the + x-axis (see
Figure 2). |

It is also important to note that for V—+¢ a mag-
netic singularity has no effect on the mode strengths because

2 =o
In the same limit, the perturbation fields for the

lifting singular flat plate (7;: —f?) are:
Dol k)T p e )
G )T LA (u7)

4 Ty P[] (43)

2

d = oy A (19)

Pr(r-oc?)

A s p‘ﬂi/g/ (50)

AT 1~ oY

VAR R v (51)

Note that none of these equations are singular at o = 1; be-

cause as o> 1, /‘?L—» O,/{—»/,andﬁ}ﬂ/mc.

The net pressure in the 1ift and drag case, respec-

tively, is,
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AR j—ﬁi (52)
7; : qqﬁ; s; (53)

It is interesting to note that these are the same expressions

obtained by Oseen for fluid pfessure in ordinary hydrodynamics.

D. Comparison with the Work of Lary

This analysis shows that Lary, by neglecting vis-
cosity in his initial formulation of the problem, obtains only
the second transverse mode as a solution. Since the "no slip"
condition on a finite body doesg not apply for an inviscid
fluid; the body cannot have viscous drag. However, a finite
body can have 1ift, and the 1ift is due to the potential
vortices which must be added to satisfy boundary conditions.

Lary neglects viscosity for laboratory type problems
on the grounds that viscous dissipation is only important in
a "poundary layer" that is much thinner than the so-called,
"magnetic boundary layer."” He uses the following concept of

the "magnetic Prandtl number™:

(viscous diffusion 1ength)2
= o ad (54)
m 5 5
(magnetic diffusion length)

where, 947 depends only on fluid properties, and is usually

a very small number. According to this analysis, the ratio of



- 25 -
the square of the wake sizes, is,

(wake size of mode 1)2

= //-A/‘/;?'" (55)

(wake size of mode 2)2

Thus, the first mode wake is usually small compared to the

second mode wake, except when QLE is very large. It is

important to note that in each wake current density and vor-
ticity exist together; in fact, due to coupling they produce
each other.

The present results agree with Lary except in one

respect. Lary gives for the fluid pressure,
‘ 0

f -4 . (56)

-— {¢) &)
This analysis shows that the net pressure is, /5 = - # w‘f/ 5

where the netl pressure is defined by, /g.iﬁ # «zéz . There-

fore, the fluld pressure is,

f"'”z -—ﬁx (57.)

Since the force on a finite body equals the integral of the
net stresses (including Maxwell stresses) over the surface;
it is convenient To work with ggg_pressure rather than fluid
pressure. It i1s important to remember that the Maxwell
stresses on the body contribute nothing to the force uﬁless

there are currents within the body.
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VI. SOME SIMPLE FIOW CONSTRUCTIONS WITH
FUNDAMENTAL SOLUTIONS

Finding the distribution of magnetic and velocity
singularities that satisfies the boundary conditions on a
solid requires solving an integral equation whose kernel is
quite complicated. In hydrodynamics the kernel can be sim-
plified if the Reynolds number is small. In MHD the kernel
can also be gimplified if both MHD Reynolds numbers are
small. As examples of MHD flow constructions with the funda-
mental solutions the following problems are solved: (1)

drag of a finite flat plate, (2) drag of a sphere.

A. MID Drag of a Finite Flat Plate

- oo

Let 7/AE/¢¢<§' be the strength of the velocity
singularity in the range F <A< -4, and let M/ 14743
be the strength of the magnetic singularity in the same
range. This is a special case in which the distribution of
magnetic singularities is assumed to be proportional to the
distribution of velocity singularities in order to demonstrate
in a simple way the effects of currents in the body. The
fundamental solution for this case can be written immediately
in terms of Oseen's solution, that is

4y L05y) e L5002 g/ (58)
where Oseen's solution for the flat plate with drag is,
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AZ/2 Az/2 .
P4 v - - K [R2) ¢ =
{}T//?,j’// - ;7/»' 4/,/,#/;) /44/ [27/5) (59)
and the mode strengths are given by

() Y/ 4/ (60a)

(4)
V ; ﬂ(l{/ . Mq (60'b)

The distribution function 7[@5/16 such that the x-component of

velocity on the plate vanisheg; that is,

4o =0 [yrfi e, of 4L [0 05 of frects (o0

On the plate, the argument /%ﬂfié/ﬁd </, therefore

rlAe-sl o)z /- L ﬂ/:';/ (62)

e
where 2 = € and 7= .577 (Buler's constant). Substitu-

(-4

tion of this into Equation 61 yields

Wy =/;f/y[¢; s ta-s)]+ Y [, -A/z-f/////f//! (63)

-/

where

/- /gt }:/// (6}48.)

N
W
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& -, g XA, (64b)
}{

, %
The solution of Equation 81 is

/ /
. = —  (65)
7/‘/5/ 7 /ﬂ/f/-f/éa?/'*[é/(l’f/ﬁ’z/ //_5—?.
The drag coefficient per unit length is therefore,
2 ’ (662)
o= ; g :/ /j a
/] z—‘/¢g /’?4} v 7[/;/
- ‘ (66b)
Y(Grls) + Y (¢ b2/
= 2 A (66¢)
e <AL A
where
c- 4 TG4 (664)
Al

In the limit of zero magnetic interaction ¢ approaches the

P
s 3 **
classical hydrodynamic value,

< = i;r:_ \__,:.__,‘_,M.m_“__ ~

=3

:}(g
See, for example, Reference 6.

%%
- See, for example, Reference 2.
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where f2 = b =
P

If the magnetic interaction is small, and

4 <<(R-£); then

L 68a)

A 2 £ - - e A, (68a

’ e k) "’ o

a2 = A - LE (68b)
a4

Substituting this into Equation 66b and expanding the logarithms

gives,
a7 4+ 4
27 2 LA a4t U)ok o, - ) (69)
[ - /e e ) — o lne s/ S
24 “%5 »@/vf:-x:,//* 2// g . 4;—4:./)
If, furthermore, A-0 and b{/@’ </,
c = 2Z s> 4 ~>) Oa
2 fe  /-tn %k 4 " (70a)
g 7
~ Y 71
Ag;//}:,w) (70b)

ce' //-r‘ fi‘z o /) 7 F (70c)

57"5i//1 )

Consider the effect of the magnetic singularities

on the mode strengths éf and 4{



y - 2L M (71a)
' e w -

BT =M e M
£ & — (71p)

z

The effect of a posgitive M is To decrease ‘Z and increase 5
and vice versa for a negative #/. In fact if M2 =/, the
first mode is cancelled out entirely, and if ﬂfﬁa = /A, s

the second mode is cancelled out. In the former case, with

only tThe second mode remaining,

a7 Z - = RZ
S - /?c ('2_ vl 2 V3 /-/Z'~ ,:’,_;::’- (72)

and in the latter case, with only the first mode remaining,

27 ; 27 (73)
e — 27 — e =2*Z
Q2 Foe €;-f/4¢2- Ae s~ A )E?:-E'

Notice, that the effect of currents in the body is propor-

tional to the magnetic Prandt number ﬁz

B. VMHD Drag of a Sphere
In ordinary hydrodynamics, low Reynolds number

flow over a sphere is constructed approximately by super-

imposging a uniform flow, the flow of a singular needle, and

*
the flow of a potential dipole; therefore, it is reasonable

#*
See, for example, Reference 2.
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to expect ’phai: low MHD Reynolds number f{low over a sphere can

be approximated by replacing the singular needle by a singular

MHD needle as follows: Al _a, (r-x)/2 _‘/
K

;:= £l+ 0’/ j{ /-8 ///* < %
2, (% //,_ e'-' -2, (r-)e -
szf',z'/V/e ’ —//’L, 7 6/

(74)

where the ratio of mode strengths for the singular MHD needle
is

% (75)
yA

\&‘&

and }z > ¢ YDecause o</ . The mode strengths 4 and

Vz are determined by the ‘boundary condition on the sphere
which demands that ¢ =9,

Following the procedure used in ordinary hydro-

dynamics, an expansion of the exponential terms in Equation

74 yields,

- ~ z . A A, X ;LA A
y:‘:d*////‘;;z }“*}‘,»/‘”"ﬂr /‘//
b ..'2?_ /2;_ 1
K Z -4 f?z£j7r+ 7, * -/‘
'U//Jr‘ 57 r vE T

g 76
+V{—{-2//7/‘;/31/ ( )
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The y-component of the velocity on the sphere (r = 1) must

vanish, therefore

fLE-2 %" Jyf
S IE A R 2/

*‘3//("7’7/2 (77)

Matching odd terms in ¢ yields,

O
g =20 %)y (78)

The Jj-component is zero by symmetry. The & ~component of

velocity must alsc vanish at the sphere, therefore

X _ 4, A, e » /T - Aa di y /;
2 A //7
£, /) 7T == —
—/FV'/;/Z ’5”/7”/1 [i %%
P

&

7 [ £ )y fort-if

Matching the even terms in £ , and solving for t? gives

(79)

*

*
This is the same procedure followed in hydrodynamics.
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o ” / (80a)
g = @_@ ‘/_ﬁ/ﬁjg-/caj
Cf’(f
J . , , (80b)
R N VR A
£ 4~k
where, from Equations 42 and 43,
H- B4 e (80c)
-4
Therefore,
- —l/ —‘z/

- %r/ _3_/1’/4// ~ /#fi)a(

Uei 2G5 G EE (81)
where & is the flow due to a singular MHD needle of unit
strength,

Rl A -4 e
’{I e - f .
Megs Jirf [ — /
L7 /(;—&j 7 r .
e o A E]
: c - ¢ {
’fi “ [',—{J 7/ r //*/ /e /
- € Z ’ ;
Tk (82)

and « is the longitudinal flow due to a potential dipole

of unit strength,

[ 2 (7)) (83)
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The drag of the sphere is due to a singular MHD

needle of strength 3/’////"-/@ , therefore the drag is

5 /ya/ / ///+9,€/

52//4 “ (175 ’ﬁ/
(84)

This is precisely the same drag obtained without magnetic

interaction. It appears that, up to terms of order .4 ,

the magnetic interaction has no effect on drag.

It is easy to obtain the solution for o >/ gimply
by changing the sign of & and 4, in equation 92 and repeat-

ing the above procedure to obtain

ye -3 K ‘ L
/ 4 'ﬁ"'(/, /- 3/ (/? -K/Z / (85&)
“, - 1
Y - £ / (85b)
4 ’( 7 - —J/-mx‘—‘I(?,j
TR
where
— NMd, =K A, A&~ A - o . (50)
-£ T 5¢
5L SR ) e A

Now the second mode wake is upstream and the drag is

< irpr i = (v ZE ) (86)
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provided that 4 , £ , 7/ are all less than unity. In
the limit fe, £ =0 yith o« — o , such that #a = & /£
is finite but less than unity, Chester's (7) result is ob-

tained:

ﬁ:é7’ﬁ“ /“‘5’1) (87)
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VII. MAGNETOHYDRODYNAMIC FORCES ON A SOLID

A body in a MHD flow is subjected to Maxwell
stresses as well as ordinary fluld stresses. The forces
on the body depend on tEe applied magnetic fieid as well
a8 the applied velocity field. The following derivations
yield approximate expresSions for MHD forces on a body in

termg of the fields at large distances from the body.

A. Momentum Balance

Consider the situation shown in figure 3. For
steady flow, the momentum law for the fluid in volume g~

states: (in cartesian tensor rotation)

///z‘/[//// //r”/J /r”"“
— J///,ﬂ‘/ n.As5 - / £ v -

V. 4
The volume integral of the Iorentz body-force 7(' can be

[4

written as a surface integral of Maxwell stresses:

///W /r g s ~/§m7/5 (89)

The net force on the body is, therefore,

- o . ~ , (90)
Y g Sely Tre
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Where, the fluid stress tensor ig given by

g = . - }- /‘/ s ’?/ /5/ 9l
2 7 f/ / / (on)
and the Maxwell stress tensor by

Lad

a4

/ o A (92)
Z

It is important to note that the contribution of Maxwell

NOX

stresses to the net force on the body is zero unless there

are currents in the body; i.e.

;//oyjmjf,/; —V////{ ”;////// /fxé{_ AV = o (93)

4
because the Lorentz force in the body ( # ) is identically zero.

B. Two Dimensional Drag Formula

The drag of a two-dimensional body is defined by
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For large&" we can neglect the contribution of shear stresses

Z,;» . Also, since the fields have zero divergence,
= ol Un AS =© |
//////”/5 PL Gnd (95)
2
Then, neglecting squares of the perturbation quantities, we
get
Yoy 7 A5
. // Sged n ds ,/ A4 ds //
7% g & (96)

z

£
L4

Finally, noting that / y/f,/,, é, and f /ﬁf{, ; we have,

p=//[//4”,7'/€1é7/@‘/’ (57)
A .

Since the transverse fields are confined to parabolic wakes,
the only contribution to these surface integrals are found
in planes normal to the x-axis; say, at # =2 % , where

A 1is large; thus,
>+ // [Ly - plh /7 ////zgryfzéyfj(ga
(x:4) (¥=-%)

C. Two Dimensional Lift Formula

The 1ift of a two-dimensional body is defined by

// /ﬂ/” AS (99)
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=

7

Expanding <, »~ /? ;7 , and /V/V:/f , i1t can be shown that,

x | :
LG iy PGS G AT S

Jlsris 74155 1l P-L5 Py o

Where the surfaces A, B, Cl and C2 are shown in Figure 4. If

we make the same assumptions that we made for the drag formula,

the resgult is

‘ .~.4//[/r§,{; i e ,(////,/%{}
42(/[/&?—/4?/}’7»§ fc///%f/'yzx{; (101)

Substituting for p and p', yields

iG] b hg) S foth - plin )
- A ©
[ 44 ~/45/? ,‘{///.44, YL ) (102)

g

and :/ﬂéﬁ‘ﬂ to the in-

>

Note that we have added /,¢A£ 4,

-

tegrals along Cl and 02. This is Jjustified since 4; and
7

4  are both zeroc on C, and C, if the contour is large.

Hence,

copt) 7Y ) (203)
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where /77 is the velocity circulation and 777 is the magnetic

circulation defined by

;e ol //ﬂéé/ (104)
/w;//‘-c/{‘ ’//rd«? - (105)

and C is any large contour encircling the body; while S is

the surface area enclosed by C.

D. Generalization to Three-Dimensions

For further details on the assumptions used in
the derivation of these formulas see reference 2 chapter 7.
This reference also shows that generalization to three di-
mensions is straightforward. In general the force formula

may be written

- ~ &

Jrgpitg s
The drag formula for three-~dimensions is the same as the one
for two-dimensions (98). The 1ift formula for three-dimensions
is somewhat nore complicatéd. The net force normal to the

drag is given by,

P A (ixez) W /;"f/ (107)
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E. Drag Formula in Terms of Vorticity and Current Density

The rate at which energy is dissipated in the fluid
by viscous and ohmic heating must equal the rate at which

energy is put into the fluid;

W pra W L - ol ///';X/;),/; (108)
¥ Vv ,)’/

where ‘-34i is the rate at which the solid delivers mechan-
ical energy to the fluid, and jéﬁéémiﬂ‘ff is the rate at

which the body delivers electfg;magnetic energy to the fluid.
(5" is the surface area of the body, # is the volume of the

fluid). Therefore, the drag is given by

p=2 /{/// /_e’;”_{*L//,/ -//;X;/,/f*/ (109)

F. Contributions of the Fundamental Modes to Lift and Drag

The following formula for the 1lift force per unit

length is obtained by introducing dimensionless notation:

/ ‘ 2 a2 - - 2 hud ;
L 5 </,y a = - /4 -/0//4'4‘/ (110)
e ? re

where ¢ is a large contour around the body. Since the ftrans-
verse fields are confined to parabolas, their contribution
to the circulation integrals can be neglected; so Eguation 110,

becomes,
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¢ = _/{ ;".ﬂd ~ 0(2_/4..“4[_. (111)
‘ ¢

But, jf w' equals the stzéggth of the potential vortex
(4
filament at the origin, 47674, +12F4;/§L (see Equation 30a).

Therefore,
e N YV AR LA VLN (112)

The following formula for drag per unit length is

also derived by introducing dimensionless notation:

05 o -/-/**“”/4‘577
Cx»-=)
..” -
- _,fo/(, / T 7
’ - (113)
[x->ﬂg)

Figure 5 serves as a gulde in evaluating these integrals. The
transverse flow in the downstream wake is due to an Oseen sink
at the origin which is Jjust balanced by a potential source of
strength 27 4'//2/ (see Equation 28a). The transverse
flow in the upstream wake is due to an Oséen source at the
origin which is Jjust balanced by a potential sink of strength

or //QL . Therefore, the drag formula can be written,

e nr le S AT S
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Substituting for Z;A% and %x/QP in 114 gives, after some
algebra, L = D Qg”l’ as 1t should. The first term in Egua-
tions 112 and 114 is the direct contribution from the first
mode to the 1ift and drag of the singular flat plate. The
second term is the contribution from the second mode. In
the first mode, the relative contribution to 1ift and drag
from Maxwell stresses is af‘k} ; in the second mode it is
arzﬁL . In general, 1lift is due to potential vortices,
and drag is due to potential sources, Jjust as in ordinary

hydrodynamics.
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IX. CONCLUSIONS ABOUT THE FUNDAMENTAL SOLUTIONS OF MHD

The existence of an upstream wake when « > 1 has
been predicted before and is predicted again by this analysis
(experimental evidence is still lacking). A downstream wake
also exists when the viscosity and resistivity of the fluid
are finite. The zero viscosity approximation of lLary is
valid when j%" =gw” << 1; in this case, the first mode
wake (downstream) vanishes. The infinite conductivity ap-
proximation of Hasimoto is valid when /2 sgm¥ >> 15 in
this case, the first mode wake (downstream) also vanishes.
Hasimoto's case is of great academic interest, but of little
interest experimentally; in the laboratory 35":7 10"6.

The approach of Lary should be useful for construct-
ing low'magnetic Prandtl number flows over bodies. Since the
"no-slip" condition must be abandoned, only one boundary con-
dition must be satisfied: the normal component of velocity
must vanish on thexbody. This is sufficient to determine the
potential flow that goes with the second mode wake. When the
fluid has finite viscosity, there are two boundary conditions
to be satisfied on a finite body: (1) the velocity must
vanish on the body, (2) the current'density must vanish on
the body--a consequence of (1). Note that condition (2) is
automatically satisfied by the singular flat plate solutions

for 1ift and drag if there is no generator in the body (g = 0).
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The expressions for current density in the 1ift and drag

CéS@S are:
Th = -« % V'//f;/ -k 4 17&%'6/ (115)
iy e (L) a4 e (A (116)

These vanish as r — O because///é'jjﬂ ‘*;5’; and since

-4Y MY =° (equation 49b), Jl/= 0 Thus, in con-
structing flows over a finite body, a distribution of singular
bodies must be found such that the velocity Vanishgs on the
body; the current density on the body will automatically be
zero unless there is an electric generator in the body. In
the Lary approximation, the current density on the body need
not be zeroc even if fhere is no generator because the velocity

doeg not vanish.
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¥. MHD FLOW OVER A DISK (BROADSIDE-ON)

Some MHD flow solutions in this class can be found
more oonvenienﬁly'by treating the problem as a boundary value
problem instead of using the fundamental solutlon approach.

MHD flow over a disk is a good ekample,

A. History and Description of the Problem

Three authors have considered thé problem of steady
flow over a sphere in the presence of a magnetic field paral-
lel to the main motion: (1) Chester (7) finds the perturba-
tion on Stokes' flow over a sphere due to weak magnetic inter-
gction; this is a special limiting case in which fe = =2,

Jon+0 , of*+see |, and 4 < 1. (2) Iudford (9) finds
the perturbation on Oseen's flow over a sphere due to weak
magnetic interaction; this solution is valid when Ae </ ,
APy, , M </ , but & can be either less than or greater
than unity. (3) Stewartson (8) gives a solution for the spec-
ial case in which the applied magnetic field is infinite and
the viscosity is zero; that is, Az > oo fa —> o° , and & >,

If the sphere is at rest at the center of a cylin-
drical coordinate system (x’,ir,ea), then Chester's solution
is symmetric about the plane & <o, and his drag formula 1s

2= 4 /3"'25”41/) ; where 4 = Kﬁ?¢“€:“ -~Stokes classical
drag formula for the sphere. ILudford's solution is not sym-

metric about the plane 4£=2 ; it contains the classical
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downstream parabolic wake of Oseen. However, in addition,
there is a second parabolic wake due to magnetic interaction
which is downstream when o</ and upstream when « >/
Ludford's drag formula is 2 = 42-(”C§ Zi/, where

K = Re (o <7/

24 2 R o
= o s
VEZ T YA (x>

= A [ oo, Le>2 2, »0)
Stewartson's solution shows that an infinite magnetic fleld
prevents radial mo#ion of the fluid; therefore, the flulid in
the cylindrical column upstream and downstream of the sphere
remaing at rest. Only the fluid outside this cylinder can
move in the axial direction. The velocity at the edge of the
cylinder is singular, but thisbis probably due to neglecting
viscosity. No drag formula can be derived for the same
reason. Thus, in the limit of = > the two wakes become
cylinders which are symmetric about the plane ~ = o .
It would be useful to have an analytic solution
valid over the entire range of the three parameters Ae
A and « . ILudford points out that such a solution exists
for the sphere, but it is not obtainable without overcoming
great mathematicai difficulties. However, these mathematical
difficulties are removed if a broadside-on, flat circular
disk is considered instead of the sphere. Certainly in

Stewartson's problem (&~ =)} the shape of the body is
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immaterial; and it is/well—known that the shape of the body
has a relatively small effect on Stokes' or Oseen's solutions.
For example, Stokes' drag of a broadside-on disk is 0.85 that
of a sphere having the same diameter. The qualitative fea-
tures of the flow are certainly the same. Thus, MHD flow

over a disk is worthy of consideration.

B. Solution

A solution of Equations 44 for those modes » = 0,1,2

) -

may be obtained conveniently by expressing g’ and é, in terms

of the curl of vector potentials / and f’; that is, let

g ¢ et f (1172)
4 = et E (117b)

By considering the vorticity ( <2, T Coleg - Car(2§5 and the
current density (g?=-aw«ﬁ{ = a«w’2§ ), 1t is easy to show

that f’ and 45 like Jé‘and f? have only one component in the
azimuthal direction (E). This is a consequence of the axial
symmetry of the problem. Substitution of Equation 1l7a into

Equation 22 yields

27 - 4 2F - o (118)
” 22

&
where the operators 4 and ¥ are defined as follows:
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n )/,_,_,_.u _ﬁ)“
4 aa:/ & 2z Ja~ (119a)

rre JEZ //5,,/ = (1190)

Thus, the total vector potentials are:

A = /%; < (120a)
o = o (120b)

The velocity vector potential /~ is related to Stokes' streanm

function /%ﬁ, because

27
) > X - -~ ZZ (121a)
2z Zi'zr = 2
v o 27 y - 22 (1210)
A 23"25-\ v & )1

ey

Therefore, }[=— & ” .
The solution of Equation 118 may be found by taking

the Hankelvtransform of order one to obtain

_— —

f’_fz 2% 2-/”'; N (122)

where the transform is defined by

bz
Sty [2ig) Fom e o

&
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The solution of Eguation 122 is

A ()
A / T (12ke)
_ £ (m)
e o (2280)
/

This assures that £ and 4’ vanish as & 2 ¢° -.a sufficient
condition which assures that z; and 4 vanish as & + 7 o
Since /ﬁ and 45- are not necesgsarily equal, 4§:A§‘3/remains
undefined. The exponential damping coefficients é; and<{ are

given by

A (m) = J(An /2D ™ = A (125a)
,3:(»,/ = /Z?—,/a,/"v = e (125b)

Taking the inverse Hankel transform of first order

of Eguation 124 yields the solution

e o A, (m) X
Pl [ 5 gy T om e s
s w0 ‘ 7 (126a.)
. b (m) %
:/Z A () € ;/"/»z;‘/ m/”'/ <o (126b)

a9 2o

2

where the inverse transform is defined by

- i~ éh"“'
/”//t; «J/ ‘—/{;3//;»7/ ‘/7"/,,,2:,\/’»/»4 (127)
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C. Boundary Conditions

There are three conditions to be satisfied at the
disk: (1) the total axial component of velocity must vanish,
(2) the total radial component of velocity must vanish, (3)
the current density must vanish. These conditions are satis-

fied on the downstream side of the disk (Zz0# ) if,

w) __/_é =/ = =/ = Jz/; vZ-/""‘“‘\//"éﬂ/M

4=l T om J | (1282)
Azor -
; . > 4 A ..7/»"—7/”’/»7
g/o;a/.--fz”(m -O'a/ﬁ:"”’ | (128b)
Jler, =/ = /(7 ?/ o /éa 2.4 44 //”;/”/”(1280)

These conditions are also satisfied on the upstream side of

the disk ( ¥=o-) if,

wloy=/) =~ - _-/z” ,{J:/ma/m‘a/f» (1292)
‘{_./o; =/ = O / Z 4‘ /«{’/MZT/”"/’” (129p)

e« g -
7/0‘/ =/ = ° =/ = -/{n’(ﬂé’ ’Z 7«::;/ sl (129¢)
o #Fe

*
Equations 128 and 129 are all satisfied if

*
See Appendix for derivation.



” - e [m = _:2_MM
z—o 2 h’é/‘{ J[ / o oy 3
2 2 -
& AA 2 5 kA =0
P ] “ PR
& 2 - —
R T T e A

Or, solving these equations simultaneously,

b (A m 0

A > _plws)
2. K, 4
A = = L e E
y
4 e plm) L
and
~ 4 (A Ly - K
g LR
A /)
A = fm) 4
Al

(130a)

(1300)

(130c¢)

(131a)

(131b)

(131c)

(132a)

{132p)

(132¢)
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where

Aln) = i 44 A k) 44 (14 -2 £ ) (133a)

/

Jin) s Al k) 4k -2, £ ) (1330)

These results imply that the radial velocity and current density
vanish in the plane of the disk (x = 0). This is shown to be
true in the Appendix where 7047/13 derived from matching con-

ditions off the disk, and in the plane x = 0.

D. Physical Interpretation of the Solution

Tt can be shown that the fundamental solution of

the equation

429 —,Z” %f =90 7 =0/, 2 (134)

is the velocity potential of a ring of simple sources of the

/ +*
Oseen type (,1,/0 ) at @ =&, The fundamental solution is

() R ,
//e ‘7@ahﬂ%aj%k 2 >0 (135)
) 4 S

The vector potential due to a source distribution affb-’over
”

3L

"See, for example, Reference 10, page 138.
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the downstream side of the disk (& =o«) is

/
../6” (o0 , o _‘/
2sw) ) simlfe " Llman g rlmn)tn 77 A (136)

cx>o/

Upon interchanging the order of integration,

“r : R
o /
5”/5 =/ =///,);/::/4/M¢:/¢?WD‘J(%J/C’ ‘//’/,;;z://w (137)
’ ’ lx>o0/
Therefore, the mode strength 4fﬂ€/ and the distribution func-

tion L;‘/ZT;/ are related by the integral equation
7
s 7, _\//___/
w A () /5 (') ] (we=) a7 & T (138)
o

There is a different distribution of these singularities on

the other side of the disk ( £=0-), given by

— /_~ , _ ’ Y,
o A o)+ | L ()T = AT A (139)

A distribution of simple sources on the disk cahnot

b %
produce an axial velocity in the plane of the disk for € >/,

They do produce a radial velocity in the plane of the disk for

=" >/ ; however, the three types of singularities are dis-

tributed in such a way that the net radial velocity vanishes

*The small axial velocity in the plane x = O for 2/ isg due
“to higher order singularities. These are unimportant in our
discussion since they do not affect the flow far from the
disk, or the drag cof the disk.
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in the plane of the disk for & >/,

The perturbation flow downstream is dﬁe to Oseen
sinks of type one (,ﬁ );'Oseen gources of type two (RL s
and potential sources (4:9 distributed over the downstream
side of the disk. Since the damping coefficients of the
three modes are unequal (é ¢ <4£), the first mode persists
farther downstream; 1t is responsible for the downstream wake
(region of high vorticity) and its flow is opposed to the
free stream flow. (See figure 7). This is true when &« >/ ;
but when a</ , £ <4, < o, and there is another wake
downstream due to magne@ic interaction. (See figure 6).

The perturbation flow upstream is due to Oseen
sinks of type one ( A ), Oseen sources of type two (2; )
and potential sources ( A0 distributed over the upstream
side of the disk. For e« >/ the second mode persists farther
upstream beczuse % < <'€; it is resgponsible for the up-
stream wake, and its flow is opposed to the free stream flow.
However for &</, »'<‘€ <€ , and neither of the transverse

modes persists far upstream; therefore there is no upstream

wake for o« </ . (See flgures 6 & 7).

E. Drag Formulas

It is shown in section VII that the MHD drag of a
solid can be written in terms of the transverse fields at

infinity, i.e. (in dimensionless notation)



w
4 ‘/ﬂ// //_”z ,‘q,‘jv,;)?&\a/z::r
P ol
rad R
= 7 >
fions & :
L [ s e

c-/.m/ ///dd’//ﬂ,?p‘zz’d‘“ //,(4///;( .a//wa/z.\/

z* - o

> -y
/"""/ // d‘/(/&’ 27 Z:."/ZZ"' // a//(//[/ ,z/?'a"‘/a‘/
o / (140)

Since the flow at infinity comes from singularities on the

disk, (figures 6 & T)

Ny /ﬁxk///a?‘m/u - a’»(/z/ 2/7‘?4.\/«/
xso-

3
Z >/
- /’;’" - 77, /Z‘T —a’n" é/ Jm:r‘/zr
X vo¥ /),// d(/u 2= / ‘/ (241)
z/
But,

T~
_ VN Y Ay
s



Therefore,

= .;f”‘[~(/—t(z-’f;///9/0-) I‘/" //l-—“’ff;)/f/o'/ ///

<
2

ey 1oy D )R]

(143)
And finally after substituting for 49 agd /i R
- w(/w«‘/r,/‘/;zw/-ZW/J,’Y"/m/«
%-?”'//—«a'ﬁ///;;/"/‘“ 4:/”//‘3‘/"/“ alor (144)
0

Another formula for drag can be written by noting
that the net force on the disk equals the integral of the net

5%
pressure over the two sides of the disk; that is,

/ /
s =//£/a; =) 27 o A —//»Z/o-/ =) AT e (145)
[ 2

o

/ ’
=//,_a‘/z;(a; ) armde —//,__,("/yx (o %/ e Ao
’4
o 4}

- arli-wt) [ £ Con =) - £y [ (146)
¢ - .;77(/-«7/[/, () _{/,.,//Jlf/,,,/,,,/m (147)
&

*
Shear stresses contribute nothing to the drag.



- 58 -

Equations 144 and 147 can be shown to be equivalent by direct
use of Equations 131 and 132.

In principle, at least, the drag of the disk can be
calculated from Equation 1%4 or 147 by integration; however,
in general the integration cannot be performed analytically
because of the complex form of the /{'s and lé‘s. Neverthe-
less, in certain specilal cases, the ,{}s and /{‘s may be
approximated by simple algebraic expressions and analytic
integration becomes possible.

The following cases are considered in the Appendix

and elsewhere, and the results are summarized below:

A
o =0 d-/ /12 <</} (; = o,gj’cbo = 0,85'/;:
“/ /fe >>/ ¢ = 7
/ 2
o =/ o e <</ Coxora'{%a
i) Ko 7 c = a
3
Pt - / +* -
A S a.//a_. <</ [/.4_(/) ¢ = 0 &5 c‘;Jo ( 3///

‘//d »>/ ///a>>// g = .?77';;‘} . _?77'/?;:— &

It is also interesting to note that the flow field
far from the disk and the drag of the disk, are relatively in-
sensitive to the function 7n4y, or the axial velocity in the

plane x = 0. For example, the same values of drag are obtained
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1f the function fl)s -2 #=ig replaced bY _raw/: - ()
7w e
This corresponds to approximating # /0, &/ by a step function,

and ﬁ/o/za-*/ by a delta function.

F., The Diffusion Approximation for Hp —> ©°

In general the vorticity and current density are

given by
-2 = 2, - <2, (148)
T e g2, s M (149)
where,
42, - 4 %; - (150a)
452, - A, 95%_ -0 (150b)

../9/ 2
However, when 4 —+°= , /?,,z* FHa , and A, 2 HaS e

Eguations 157 may then be approximated by

e (151)

is
\

/)_2 }/1 Zrzr/)@ - M P42, .

=/l = Sz

These are analogous to heat diffusion equations where _Z’is
a

temperature and 2 ig time. The term j“; has been neglected

X
on the grounds that x -derivatives must be small if fThe term

A 242, is to be of order unity. Furthermore, since
I2X
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4 (2 =)=~/ for = g, , and approximately zero for

<2 (o, =) 3 f)—?—" i’j = - 85 - (152)
,=¢
That is, the vorticity distribution in the plane x = 0 is a
dirac delta function infinite at the edge of the disk, and
7 diffuses like heat away from the cylinder & =/ as /&/
increases. The current density is zero in the plane x =0
because {f:‘ﬁc

The solution of Equations 151 are easily shown to be

-m
A
= / J (m/[/majﬂf/m/ zz 0 (153a)
/ 3 ¥ Jlon) Tw /X5 (1530)
*
Or,
L (T ) e “
Pz =
2l =) = e Vi) *;;;;/‘ (154)

where Z, is the modified Bessel function.
For &< éé , and @=/, the asymptotic expansion
2

for Z can be used, ‘and

%
See, for example, Reference 11, page 51.



G, )
2(z &) = { e e
/ 7 o Jx/ | (155a)
-'#.”/é.s (e =1/ *
I~ sl
= = - = % b
1z / Ata T 2t (50 (1550)
St (@)
_ S py sy
-~ . T © (x< o/

The drag of the disk in this special case can be

calculated using Equation 109; in dimensionless notation,

: - E/ﬂ‘// ) }EL‘////J:// (156)

- 2
It is difficult to integrate these expressions for 2 and Vv

but it is easy to show how the integral depends on the para-
meters, and the relative effects of obmic and viscous dis-

gipation. Since the flow 1s symmetric in x,

~ P
2
- A 7 VS E ) amEm e X
¢ 4

(157)

Now let 5’=;§ , and notice that
-
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& 2 z
/ o 2 / A 2
= —_ M z /"'— a 4__,———————-/ = —
/4’.-, - / A o B e ¥ B (158)
ohmic and viscous dissgipation rates are equal, and

Therefore

- %//ﬂ, LK{W/ S ket (159)

4
o

Since the integral is independent of the parameters,

¢ o /ﬂL//QQ , which agrees with the previous result.
2
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X. CONCLUDING REMARKS

A, Comparison with other Work

The main results of the MHD disk problem are:

1. Magnetic interaction has little effect on
drag until « exceeds unity.

2. When a is large, there is an upstream and
downstream wake in which ohmic and viscous
dissipation occur at the same rate.

3. The drag coefficient of the disk is (“4 >R )

g = aiﬂﬁﬁ/%z =~ai‘/¢§5ﬂ «

4, The diffusion model shows that vorticity and
current density are concentrated on the sur-
face of the cylinder generated by the disk.

It spreads out parabolically at large dis-
tances from the disk.

Stewartson (8) obtained some of these qualitative
resulﬁs, but did not give the drag because he considered
inviscid flow. There is nothing in the literature, at
present, on high Hartmann number drag.

The results mentioned in this thesis are in general
agreement,‘with the work of other researchers in this field
(references 4,5,7,8,9,14 and 15). Although, in most cases

different technigues are used to obtain the results.
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B. Experiments

Chester (7) points out that a one millimeter sphere
in Hg subjected to a magnetic field of 100 gauss results in a
Hartmann number of O.l. Attempts by the suthor and others to
check Chester's drag formula in the laboratory have not been

successful because of the following restrictions:

2 Magnetic Forces y
I < (1)

Viscoug Forces

Inertia Forces
fe

Q
A
N

(2)

Viscous Forces

s &
Y Magnetic Forces _ fé s
He

t

(3)

—~

Inertia Forces

Since Chester's drag formula 2= & [”‘j? "”4/ is only
valid for A4 < 0.1, flows with /Ae € 001 must be produced
in the laboratory. This is almost impossible. If restric-
tion (1) is removed,band high Hartmann number flows are con-
sidered, then reasonable Reynolds number flows can be studied
without violating restriction (3).

The author proposes the use of sodium rather than
mercury as'the fluid because higher Reynolds number flows
can be studied with reasonable magnetic fields, without
violating restriction (3). For example, if the flow is

&
£ = 103, then #Aa 2 103, If a lem. sphere 1s used a magnetic
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field of 10,000 gauss is required with Hg, while a magnetic
field of 1,000 gsuss is required with Na. There are other
advantages and disadvantages to be weighed of course; but Na
looks attractive because a column of it can be suspended
between two oils, and the pellet can be seen entering and
leaving. The wakes may also be visible at the interface.

Tt has been shown experimentally ( /7 ) that the
parameter N 1s important in controlling turbulence in a pipe
flow of a conducting fluid with a parallel magnetic field.
Undoubtedly the same effects exist in the trailing fturbulent
wake of a high Reynolds number flow. The interaction between
the turbulent wake and the magnetic field should result in

a change in drag and time of flight through a column of Na.
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APPENDIX

I. Boundary Conditions for the Disk

Consider first the problem without magnetic inter-
action. Since separate representations of the solution are
given for the »2Z -half plane and the -x-half plane, the
boundary conditions must be satisfied on both sides of the

disk, and the flow fields must be matched off the digk in

the plane X =o , Those conditions are summarized below:
w s/
~/ = QQ/bj‘a%} = @%(07‘2ﬁ/ (160a)
0z w low T/ = -, =/ (160D)
o>/
QQ/bjz?/ =« (o-, T (160c)
%/,;;« a:-/ 4 o = ) (1604)
2_ t{,/a)fW/ = —)—— ‘ﬁ"é"/ =/ (160e)
X 4 X
) 2 w (o= (1607)
& 4 (005 = 5, = Z

4

The corresponding integral equations are:
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Zr </ ”
-/ A T () Sor ‘//25,4 T (e & oo s
A #
) /J ,é A, J (m?i?/m/»r ‘/5};/; ’””/m Aw
et >/ 2

§

u//éS 4, %:ﬂwﬂafariibi=u//;§ 4{'Q§pw4§/ P

§

|

/“‘2 ,é/’;’J:ﬁyw/n‘/»r:/;;/{{/”'w/”’z/m
P L4 ¢

]

%[ 55 4;LAL~ZZ&A§/An(Q {{/EZ éT ";rﬁvavL"‘A”

Equations 16l1a, b, ¢, and d show that

4 = ¢§'AE E7Iﬂ"/

R

fa, = Z 44 g

”

My

(161a)
(161b)
(161c)
(1614)
(161e)

(161r)

(1622a)

(162b)

Furthermore, since Equation 16le is obtained from 161d by the

&
operation (/;i jﬂ;-w// ; they are satisfied simultaneously.

It can be shown by the following arguments that

&;ﬁﬁf =0 ; which means that the radial velocity in the

plane of the disk is zero, “, (13 ag/ = @ : The

divergence eguation states that

(‘2{:‘_‘. +/J§ wdﬂr/ = &
22 ¥ co & = rero
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24
2}-’/;(:0
there is no physical reason to suspect otherwise —-then

Assuming is an analytic function of & —- and
i;/%ra5/ mist also be an analytic function of %~ . TFor
=</, ﬁ;~ﬁ3£§/ o , and 1t may be analytically continued

to &2/ . Therefore, %/o}a/ =0 for all @7, and//fw/= o,

Q.E.D.

Using Equations 162; A ; /5 , A and A , may be

expressed in terms of 7[51/ as follows:

y 9
A= X a A = Z Lm/ (163a)
g é_d’yﬁ'/ / 4 -
/4 = :-“/_" /" ’4 = — 7// /
& /{/ - 7( / 4 ‘é’ - 537

Substitution of 163 into 161f the remaining condition to be

satisfied yields the following set of dual integral equatilons

for fﬂh/ :
<t = [ pt) [l 7 Ao e (164a)
o2 ) mfie) ) *or D>/ (160)

%
The solution of 164 is well known,

+*
See, for example, Reference 13, p. 179.



2 o (165)

' #
The axial velocity in the plane of the disk is
B>
P - e 2 'm
1=/ = 7;‘/”“*‘7-—-, T (res) oo
(4

zo- Sy

%5 =) -/
(166)

i

N /
g, VREPRy =
> i

o

Z
-
The drag of the disk may be calculated by inte-

grating the net pressure over both sides of the disk; that is,

/ /
- yor e Ao i//f”‘ - = 7 e Al
H _//;g/%/ayex d/z/b/ ) 2 (167)
g

/ /
:/({:, /o-,} w/.?ix-l/a' -/4% A;./z:—/,zf"“/z:“
& ]
Thus, the drag is given in terms of the irrotational stream

functions,
s carlits ) D)) (168)
sar | [ A (n)- /{“””//7’/‘"/”"‘/”’ (169)

Using Equations 163 and 158, it can be shown that

# >/

4-A = S
] 0 2. oy - (),/‘/’-_/_”z_

%%
See, for example, Reference 6, p. 36.
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In the limit of small Reynolds number ( 4, — o ),

A —A = - ¥ @y{(&/

o ;2
Ana,” .
A O A

= (Q7(&.35/
Thus, the low Reynolds gﬁmber drag of a disk is just 0.85
times the drag of a sphere having the same radius,%*

The generalization of the boundary conditions to
include magnetic interaction is straightforward. Since two
additional unknown functions ( 'i and 'iﬂ} have entered the
problem, two new boundary conditions must be employed. They

are:;

o= Jlor w) = .7‘/0> =/ & 7 (170a)

o</

(170D)

These conditions state that the current density vanishes on

the disk, and is continuous across the plane A = Q.

*
See, for example, Reference 6, p. 36.

WS
This checks precisely with Reference 10, p. 605.
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Therefore, the integral equations corresponding to conditions

167 are:
o— - “5' %’"
0‘/23 LA, T ) e Ao ’/f,g’nn,,n“c/ o T (111a)

/Z ,Zn,(;,é”/ﬁ {(m)m/m :/;/Z’,{; é{f/’”‘/”’/‘; 2>/ (171b)
> ~ A

This means that

L

Zak A = SAEEA S te) r2)

It can be shown that _Z (m) is identically zero as follows:

The linearized form of Ohm's law, Equation 7, is

T fm (< —4 ) (173)

o~ kel
Since it has been shown that « (0, &) =0, and it can be
shown by precisely the same arguments that é\( O,&) = 0;

then 7 ( 0, =) =0 and £(~) =0. Q.E.D.

Corresponding to Equations 123, the following six

simuiltaneous equations determine A, ,ﬂ s A, /{., ,é’ and
4 in terms O€/7ﬁ/=

ZA = Za =F (174a)

son - 244 e (i7to)
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SANAA = =24 hAA = o (17he)

The solution of these equations is:

4 lo) e pim) oF B (1752)
' Alm)
- e A P ¢ »é,_
A () = Sfon) 2 7= (175b)
g At/
Ak £ L
A (m) = L] 2l (175¢)
s Al )/

where
Ain) ~ (4 Kk -4 K4 ) -4 & (2 -4 ) (175)
It follows from the form of 174 that
A (m &) = A (74 ) (176)

The dual integral equations for‘fﬁg/are again obtained by
substituting Equations 175 into Equations 12la and 121f.
This is a very involved algebraic procedure, but it can, in
principle, be carried out and can be determined just as be-
fore. However, a simple physical argument suggests that

muist be the same as it is in the Oseen problem without



- 73 -

magnetic interaction: The axial component of the velocity
in the plane % =0 determines A (#7); and vice vefsa
(see Equation 126). Since the current density and Lorentz
force vanishes in the plane <= 0, it is reasonable to
assume that the flow field in the plane X = 0 is the same
with or withou’c magnetic interaction elsewhere in the fluid.
This assumption can be checked by obtaining the integral
equation for /( #7 ) in the limit of large magnetic inter-
action ( « ~*), where the algebra is less complicated.

In the limit of & —» oo,

/{/L—»_v‘//,._ . L (e L) T
- L - A,
R &
é - »°
/ /2/
£ — /2,/
& — A
— Ml
_.+ e
él—



- T4 -

Z Af’ /; -—»Mj[/m/ f_z'/lz‘/ ’zz./e' 7 ~ 'f 'nﬁ../
’ / 4, by L) = 3 e 2 1a,)
— -M;//m/
- A
Z £ o mpn) A 2 A Rond, = 2 (Ko )1
# //2/ m?
4 A, Ko /;;//?, -4 /‘/‘7»1//? /-’”/

Therefore, the dual integral equation for /(n) in the limit

of o = a0 gre:

o RS ) i | =
/]

0 :/m;[/”/./:/mk)/#z/”'/ “T >/
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The second integral may be transformed into

&n
o)t Fim) i, T
because the original integral is obtained from this by
the operation //;_ ED/ This integral may now be trans-
e

e

formed into
oo Ca
=¢//~T%/ﬂﬂ/ T () s 4‘1/ &~ >/
]

by integrating with respect to % . IHence, again

7[/»-/ = - = /w;«-”? Q.E.D.

PRI S

7 ,”3

II. Drag Formulas

The basic formulas for drag are equations 144 and
147. Equation 144 is more convenient for handling flows with
low magnetic Prandtl number which are the most common type
in laboratory experiments ( ﬁi: 5”’ N 10—6 for Hg). The
important approximation for these flows is,
A M, =A, N,
because the equations for the mode strengths Al, Ag, Kl’ and

Ké simplify to

A = 2 7 ’él
/ s 2

4 -4
A =- puem 4

F
N
Y
W
a
|
ES



’ /e 3 =_ 7
m "2. A
I oz -z pmm A
: v m? -k
2 ¢

One case of interest that can be handled analytically

is high Hartmann number flow, or o’ 0= with Ae and 4 finite.

In this case,

/2/ 2 = : :‘/a_ /‘/a. >/
/ / .
£ = 7 e SR
/
b, = S T
é/,z = f(//a/‘/’}m‘ z Mo/~
Therefore,
- [ ) 2 2 st 2 ’/;—JT—”:
(A:’A//='(41’Aa-) = 7 _i;‘} Ao Aafs) o+ 0
2 2
and since o K = -« K = - VLT
e ~ T 2 /(-/—/7-"“;’_"'7 STpeer j‘(m//m
P)
For fl —+ &=
o
# .2 J -
R U T Cm)
e 27
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C = 24 fa_ *
= o?F//%:. & (177)

Thus, for large Hartmann number flows the drag is proportional

%0 A/a//\%, or to the Alfvén number o

Another case of interest which can be handled

analytically is #= 1, where

~ O
/s:z(’g - Ko A, =

[4

/(7""'"/; 2

”~n

b = SEAT e A A

;— = /2’7,’/’-/;?’”;7‘ ’7'/2' >

*
‘See, for example, Reference 6, p. 36.
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2 - ”__
;- i —_— .
T W oSS e - RS

Svp ﬂ)'/i-/;"""'z' - RIA-

A= 5T —

mf JlA, Sy e m?t fﬁ/z/
A = X Fam ””
/ 7/" ”’3 -

#? - (/('A/ —n +’l:/2_)
A =-2572 JALA)T + m? - A/
2 bl 3

p (@z/a/ a7 a’,ﬁ')
The integration is simple in the two extreme cases, /Z/ -0

and A/ —» &,

- - A _ & Sim
4 4 = —/ﬂz v - ”’;?l Ma—
= A
C[):,z/]'/——,('/"‘;// 4 _yﬂvM(/,/-(/l
y A
(p'//f (/"’?’/ = 085 ¢
:5; s o

Thus, when o = 1 in low R, low /E flows, the drag is un-

affected by the magnetic interaction.



Thus, for large Re and e« = 1, the change to the high Re drag
coefficient 1is proportional to .Aﬁt , & very small number in
most cases. It may be conéluded that magnetic interaction

in low /% flows has negligible effect on the drag when o </

ITIT. Unigueness Proof

Equations:
2{“: 4 VL; - ﬂfz é_{ = - V/'
o Ae 2%
- - -
.__)_é_ e -p"/ - P« = 2

Boundary Conditions:

- - - —
/"-}0‘; &« o, 4_)03 f - O
o - Y

-
on body: &« =*-¢ , U=:curld =o

Suppose there are two solutions of the above equa-

- - —

w—t — —
tions and boundary conditions, 4 , « , /’é and 4, 4, % )
PA .
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then the following functions must also satisfy the equations:

- 4
4

/4

’

However, these functions satisfy the following boundary

conditions:

W&L (\axl«

—
*0:@*037&"0
—
4
3

on body; =0 i?s curl

Furthermore, since %‘ré = o everywhere, on the body é O,
- - - )

Hence, 4 , 4, z? all vanish at the boundaries of the

-t

——h
fluid. ©Now it can be shown that 4, /é mist vanish

everywhere in the fluid, so thatz% =%?, %.= :, /é /f and
therefore the solution is unique. Proof:
The divergence of the momentum equation shows that
V;Z_ o Slnce//'~ vanishes on the boundaries it must
vanish everywhere within the boundarles, 510) /5 =0,
The functions A’ and 4 satisfy the following

homogeneous equations:

Eﬁ _Z v 2'4/—‘ - ,,),é. s o
OX e J oX
2X s 22X
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—

" 4

Multiply the first by & and the second by 4, , add, and

integrate over the volume to get

//f;f/ 5. fé}%dj x/w//g <3 {/&fﬁ
—//M%’ : /7’{{74«? “ *«i‘&//“,{- /7‘,5‘//;4?74,

Now, integrate by parts and use the fact that g’ and ‘é

vanish at the boundaries of the fluid to get

oo fferi)agy <l 650 %3

This means that P4 =0 and ;7é =0 , or that « =4 =0
everywhere. Q.E.D.
IV, Splitting Theorem
The eqguations to be considered are:

25_.!pf—x&éf=_7;f-F

ox  Ke Py

24‘_ 4 1—[ - 24 = &

S R P >x

g w = P 4 =0

where # and G represent the effects of a finite body

and current elements in the body on the fluid, respectively

Any vector field may be split into a longitudinal

(1) and transverse (T) part, that is,
-3 — - -

7 - « 7 = -

- ~ = r

i = A -;‘4/ y

- -’G j—y
w T H v
/

¢ - — "‘

-7
G
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where,

—l‘ - 7-
curlu =o div #¢ =0
JL "’7—
curl 4 =o div 4 L
= e g
curl # = o div ~7 =0
- e ' . - g
curl & =z o div ¢ =0

The longitudinal fields may be written as gradients of a
scaler potential, and the transverse fields as curls of &

vector potential,

-~ ¢ -

“ = _prad @i «’ = _curld,
~ e . —r

b = —grad‘gi 4 = ~cur1,/z
A - -prad Q,/. A7 = —curl /4,,
c* - ~grad { 67 = -curl /;

If it is assumed that 7'/':= }”f:o in choosing
the fields /; and é? that represent the effects of the body;
then it follows that
and that the longitudinal functions are irrotational and
solenoidal (harmonic). Therefore,

re - V‘;f/ - PrE =P o

- -

-
-
Substituting for 4 , « , /«g , # and 6 in the

original equations and collecting terms yilelds,
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>4 zaﬁ{_--a/ ALy a4
Vv/lga; “’2§j f %)X >z < F

' 2 _69/44 e
Py EYS ¢ ox T

It can be shown that the fterms in brackets must vanish by
taking the divergence of the equations. This results in
VZZ— j’: © ; but at infinity the term in brackets vanishes,
so it must be zero everywhere inside. By the same argument,
a &

2_{ z%/-_o because Vg_/—l’}i/—o and /%/ =Q6/=c> at infinity.
Hence, ‘

é :és@

- >
f .-(/‘A’yf
=¥ 1

The curl terms in the equation are the equations

for the transverse fields, that is,

- g —’7-
2_‘: —E/ P‘I; r- af"é‘ _ ;7
OX e 4 -
- - _‘7' -~
7 r I74
24 - < P4 - %‘j’( = G
22X ad . .
V'ar = P4 7 =o

Tt is clear from the above analysis that this
- -
gplitting is unique. Even making £ and 6 dilvergence free
was not arbitrary as can be seen by taking the divergence

of the original equations.
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L-— -
2= —7/ - e~

o V22

7]

Sinceig’ is harmonic and continuous in the fluid, it follows

-

that veF o= 0.

Splitting into Iodes

The homogeneous equations for the transverse fields

o _ 2 p bt
ox )/ /
-7 -Z 7
Py 4 )I ﬁm

-
The equations for # and 4 are therefore identical; that is,

//ax‘zy/m ,’e,,V/ ﬂ’;i “ 4 -z o

The fourth order operator factors into two second

are

order operators

[reaglra ] e

This suggests solutions of the type

n

- - ;
174 :‘f"z_
...»r - Z K‘/“r( -
é .‘-4{*) = ¢t ¢ 2 &
where o
2 - >0
[P 5[4 = re
Pe, =0

[.7&‘ 2 9(/7‘/ =

This justifies the substitution used on page 8

°
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FIGURES

Qualitative behavior of the wakes in the limit of zero
viscosity.

Qualitative behavior of the wakes in the limit of infinite
conductivity.

Momentum balance diagram.

Circulation diagram.

Qualitative behavior of the perturbation velocity field.
MHD Flow over a Disk &# <7/

MHD Flow over a Disk xS/

Oseen Flow over a Disk.
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Qualitative behavior of the wakes
in the 1limit of zero viscosity
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Qualitative behavior of the wakes in
the 1limit of infinite conductivity
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Circulation diagram
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Figure 5

Qualitative behavior of the perturbation velocity field
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