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ABSTRACT

This thesis 1svconmerned with functions and grﬁup homo~
morphisms. The tobl system employed is the dicategory, an algebra of
mappings with operation that of composition and in which decomposition
into 6oﬁposite§ of mappings onto, isomorphisms into, identities into,
and so on, isg possible. The dicategory axioms are abstractions of
certain properties common to functions, group and ring homomorphisms,
continuous functions between topoleglioal spaces, and so on. The
problems solved are those of faithful representations of abstract
dicategoriee‘by particular dicategories,

Chapter I reviews the notion of category and defines the
dicategory. By additién of one further axiom, a reprssentation by
classes and functions is obtained, The connections between thia
representation and two well=known ones, one for groups and one for
partially ordered sets, are noted.

Chapte: I1 presents axioms for a system which is shown to
be representable as & dloategory of ebelian semigroup homomorphisms.

Chapter III exhibits axioms for an abelian dicategory and

shows that each such dicategory is isomorphic to a dicategory of
abellan group homomorphisms, The availability of a second representa-
tion and its connection with %hat of Chapter II are noted,

Chapter IV studies homomorphisms of arbitrary groups. After
developing & theorem on assoclative operations in groups, axioms are
preseﬁted which allow represemtation for certain dicategories by
varticular ones consisting of group homomorphisms., The representation
iz not faithful, but 2 remedy which will achieve faithfulness is
indicated.



CHAFTER 1

A REPRESENTATION BY CLASSE

1, Preliminarvy Remarks. In this chapber we begin a sequence

of four representation theorems, Their purpose 1s to show that the
axioms upon which they are built completely characterize certain
properties of functions and of homomorphisms between groups, abelian in
the case of the second and third representations, arbitrary in the
fourth. The basic axioms are those for a dicategory and are modelled
after those of a bicategofy (Maclane [BJ)E. Underlying both these
systems is the category, originally announced in liaclane [77 and
Eilenberg and lMaclane [4], but revised in [8]. These axioms are,

for completeness, reproduced in Section 2, The genesis of our
problem is found in thess latber two papers, in which representg-
tions are given for a category, one by sebts and functions, the
other by abelian semigroups and their homomorphisms (after addition
of further axioms). Our first two representation theorems extend
those of the category by allowing not only for composition of homo=-
morphisms but also for special kinds of homomorphisms such as iso=

- morphisms into and homomorphisms onto and for the dscomposition of
mappings into composites of thése particular ones. Our last two
represenﬁation theorems concern groups, abelian and general,

In Section 2 we select from [8] the properties of categories

2 Numbers in brackets refer to the list of references at the
end of the paper.
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2
most useful for this paper; the repetition 1s made only for ﬁhe sake
of ccmpleﬁenessa

In Section 3 we defing a dicategory and derive some slemen-
tary resul’cg concefning partival order, zero objects, and zero maps,
lost of these results are stated, though not generally proved, in [8],

In Sections 4 and 5 we deal with dicategories satisfying one
additional axiom, The first of these sections includes the preliminary
results which find their application in the representation given in
the latter section, -

Finally, in the Appendix, we note a connection between our
representation and well-known representations for groups and for
partially ordered sets and indisate an application to lattices.

2. Categories. The concepts of cabtegory and dicabtegory
arise from the formal properties of the class of all transformations
&3 X ===> 7 of any set X into another set Y, of homomorphisms of one

group into another, of continuous mappings of one topological space

into another, and so on. By a transformation on sets we mean an

ordered triple o= (cc'f_, X, Y) composed of a functioﬁ X and two sets
X and Y such that the function maps all of X into Y, Similarly a
transformation on groups (spaces) is a triple & in which X and Y

are groups (spaces) and &, is a homomorvhism (continuous mepping) on
X into Y. Two transformations o = (c<f, X, ¥) and &' = (& F XN Tt)
are equal if and only if corresponding components are equal. The
product oa! is defined just in case the domain X of « is the range Y'
of «'; when defined, «a! = (chot%, X', ¥).

Some of the formal properties of transformations which refer

to equality and products are listed below as axioms for a category.
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DEFINITION 1,1, A category 6 is a class of elements &, &,

Vi +ss , called "maps" in which certain pairs have a product age 4

~defined, subject to axioms C-0 to C-4,

C-0. (Bquality axiom). If o = &', @ = @', and the product

B is defined, then the product o' B' is defined and &8 = o' g8',

———-  So—————————— e — S———————

product A7,

C-1', If the products B and a (B7) are defined, so is the

—— A ——————— — ———— oo————

produch «B,

C=2., {Associative law). If the products «8 and B are defined,

then the products (xp)” and &« (R7”) are defined and are equal,

Amap I of & is called an identity of & if (i) II is
defined, (ii) I& = & whenever I« is defined, and (iii) 8I =g
whenever 81 is defined,

C=3. (Zxistence of domain I and range I'). For each & ¢ &

there exist identitises I and I' such that both «I and I'a are defined,

C~4, For sach pair of identitlies, T and I', the class _r.ni'_ all maps

o E @ such that both o« and I'e are defined is a se‘bE,

—— ——————— VY—— — ——

We note that for each map & ¢ @, the identities I and T!
guch that I'e¢ = «I = o are ﬁnique.

Vie define the objects of the category to be any class of
eiements A, B, C, . » » in one~to=one correspondence A <w-=> I with

A
 the class of identity maps of &, Also if Igx snd oI, are defined,

27he disbtinction between "set" and "class" made hers and
throughout this paper is that of the von Neumann-Bernays-G8del axiomatic
set theory [2; 5], For a discussion of foundations appropriate to
categories we refer the reader to (4, §6] and [8, §81].
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we teke the domain of o to be D(x ) = A, the range of « %o be
R(x) = B, and we write x : A ===>B, Then for any maps o, 8 € Kf,
o8 is defined 1f and only if D(et) = R(B); in this case, D(«p) =D(8)
and R(ap) = R(a),
A map 6 € ‘Zf is an equivalence in '[5 if there exist maps p’
and ‘7" such thet y{O and 0¥ are defined end are identities; in such

1

cases g = ¥ and each is the unique inverse & ~ of ©, If © is an

squivalence in ‘g, then so is 0-1, and

R(e™) = p(e), (oY) = r(e), (eH™F = o,

Also if 91 and 02 are equivalences in £ and QIG is defined, then

2
6.6, is ival in € and (0.8,)"% = aoig7t
19, an equivalence in an 19 = Gz h . If there is an

equivalence mep 8: A =~=> B, we call the objects A and B equivalent,

3. Dicategories, In the applications each function

(homomorphism, continuous mapping, etc,) & can be expressed uniquely
as a composite mapping K’P in which P is a mapping onto and W an

identity mepping into. Turning to transformations, we say that

x = (o e X, Y) is an injection transformation if o, is the idemtity

T
function on X and if X is a subset (subgroup, subspace) of Y, We call
o & supermap transformation if | X o is a mapping of X onto Y, Thus,

for example, each subgroup H of a group G determines a unique injection
transformation of H into G and each homomorphic image X ¥ G/N determines
at least one supsrmap transfomatién of G onto K, We now formalize
 these special transformations and adopt some of their properties as

axioms for a dicategory.

DEFINITICN 1.2. A dicategory 'ﬁ is = category with two given

subclasses of maps, the class of "injections" (K ) and the class of
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"aﬁparmap,s” ( ,o) sabisfying axloms D=l to D=7,

D=1, Every idén‘tity is an injection and svery equivalence

[
£

supermap.

D-2. If el and o, are injections (supermaps) and gy is

" definsd, then °'1°'2 _3;5; an injection (supermap).

D-3. (Canoniocal decomposition). Each map o € € has 2 unique

ropresontation o = Kp as & product of an injection KX and a supermap P

D=4, If Kl and Ky are injections having the same domain and the

same range, then Kl = Kz.

D=5, Let P Pz /O.SE?- supermaps, If PPz = P23 ‘then
,01 = ﬁz; if /01 L3 is an identity, then P is an equivalance,

D-6. If ® is an injeotiom aml o & supermap for which R(x) =R(p),

then an injection ¥ and a supermap o exist so that oK = Kp .

D=7, For each object A, the class of all Injections with range A

is = set.

For groups, axiom D=6 asserts that if K is a subgroup of G/fN,
then X = H/N Vfor 2 suitable subgroup H of G, |

The axloms D=1 to D=7 are modifications of those for a
bicategory [8]., Our axioms hold for groups and their homomorphisms
without the speocial precautions‘ for egquality required in the in‘b’er-
pretations of bilcategories and demanded for the explanation of duality
phenomena for groups. Our concern is not with duality; the diocategory
axioms are thersfore somewhat more natural, We may, for example,
i:;terpre*b our axloms in the category of all topologioal spaces by
taking the maps & 3 A ==ap B t0 be the continuous transformations of
space A into space B, the injection K : C «w-> D the ldentity mapping

of C into D for C a subspace of D under the usual relative topology,
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and the sufermaps ,O 32 P w==> § the continuous mappings of P onto Q.
In such an interpreté,tion an anelysis of equality is not required.

Any map A€ ‘g having the canonical decomposition A= K 9,
e} an Qquivalenca, is ocalled a submap. In the interpretations, submaps
"are the isomorphismé into; for them we have a result analogous to

axiom D=2,

Pttt

1EMMA 1.1, It 21 and ;\2 are submaps and 11 12 is defined
then Al XZ is a submg.g.

Proof, It is sufficlent to establish the special case in
which ;\1 = 0 is an squivalence, )2 = K is an injection, and 6K

is defined., By D=3 and category axioms we have the canonical decom=

positions
ek = Mfy
K = Ky Py
OKy = HKzfg

Let D(¥ ) = A and D( xl) = B, Then

1 1

8K = 87K Py = Hypopy = KI,
1

o0 Kl = QKZF2 = ?(3‘(03}02 = KllB.

Ga-

Since the canonical decompositions }(2( ,02 )01) = KI,& and

KS(IDSﬁz) = KIIB are each unique, [02 .lol = IA and /DS/OZ = IB'
Hence 102’ having both a left and a right inverse, is an equivalence,
- But /Ol = ﬁ ;1 is also an equivalence and 86K = X 1 /Jl, establishing

the lemmsa.,

The injections serve to introduce naturally a partial
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orders for the objects of a dica:tegory. We write A . B provided there
is an injeotion K1 'A p—— and, in this case, call A a subobject of B.
Tie prove first a lemma sufficient to insure anti-symmetry of the

inclusion relation "c,”

e 1.2, If Kl and M2 are injections and I an identity,

then Kl K2 = 1 implies Kl ] Kz =71,

Proof. K K, = T and R(K,) = R(I) = D(I) = D( K,). Thus

Kz K, is defined and R( Mz Kl) = D Ka Kl). By D=4, ’fz Kl is an

identity. Hence X 1 and ¥ o 8T equivalences and, by D-3, identities,

From the definition of an identity, X, = Kz =1,

THEOREM 1.1, The class of objects in a dicategory is

partially ordered by the inclusion relation " < ."

Proof. A c A since IA ig an injeotion, If A ¢ B and B € A,

then there exist injections K: A ===> B and k': B =«=> A; hence

oK' =1, K= K =1, =1,

injections Hy: A ===> B and K,: B «=w> C have a product Kz Klz A «ws>C

A=B., If AcBand BcC, the

whieh is an injection, whence A C C,

For an injection K : A --=> B it is convenient, and justifiable
by axiom D=4, to write K = [B D A], With this notation, [ADB][B >¢C] =
(A>C]and [A>4]=1,. |

We shall at various tlmes assume the presence of objects which
behave as do one-element groups., Formally we say with [8] that a

category A has a zero if it satisfies the following axiom.

Z. There is an object Z such that for all objects A of 6 there

2The results stated here for partial order are given withoub
proof in [8, §117. '



exists a unique map ;'z‘;k =~w> % and a unique map 73 L mme> A,

We call Z = zero object. For a category with gero one shows easily
that an object is a zero object if and only if it is eqﬁivalent to a
zero object, that for each pair of objects A and B there exists =

e 8 f A e o .
unn‘.q'ue Zero map— OB 1A > B, that OCBOB.A OCA,’

zero map, then any product having &« as a factor is also & zero map.

and that if ¢ is &

For a dicategory with zero one also prove‘sx that for any zero object Z

and any object A, OAZ is a submap and OZA

A has & unique zero subobjeet Z. ., that S(A), the set of all subobjects

a supermap, bthat each objsct

of A, is = partially ordered set having "unit" A and "zero" Zy and that

OBA = [B > ZA]OZAA is a canonical decomposition for all A and B.

4, Special Dicategories. If P1 and P o BTre supermaps

heving a common domain and o and 0‘2 are supermaps such that

1
TP T Py then the ordered pair (07, 0'2) is called a lower
bound for the ordered pair (ﬁl, !°2> . If( 1, 0'2) is a lower bound

, 1 1} 4g |
for (aplﬁ pz) and if, whenever (o’l, o’z) is a lower bound for

‘ ! i = T i =
(fl’ 1"2)’ there exists a supermap 7 such that 6‘3 U'i, i=1, 2,

then (a“l, 0‘2) is called a maximal lower bound for the pair ({3:Lﬂ pz)
of supermaps having common domain, With this terminology we may state
the following axiom SD.

sD. If pq and P 2re supermaps and D( 'Pl) = D(pz), there exists

2 maximal lower bound for (/01, ’02).

COROLLARY. If both (o’l, a-z) and ( a!, o‘é) are maximal

lower bounds for (P, PZ)’ the supermap 7" such that o} = 7o,

2 « is & zero map if there exist maps B and » and a zero
object Z such that o« =p> and R(») =D(8) = Z,



i=1, 2, 1s unique and is an equivalence,

Froof, 1If g} = T7, = ?ﬂ'i_, i=1,2, then 7 = T by axiom

D=5, Since (0-1’ 0‘2) is a maximal lower bound, there exists a super-

map T such that O‘i = T O'f'L, i=1,2, Thus 77 a‘i = O’i,
' T'70o) = 0, and, by axiom D=5, both 7' and 7'7 are identities.

Te shall call a dicategory satisfying also axiom 8D a

special dicategory. For the remainder of this chapter the only

dicategories we consider are speclal dicategories. Note that axiom
Z is not assumed for the present,

e now derive some results for special dicategories which
rrove useful for the representation in Section 5 below, It is cone
venient to consider first an equivalence relation defined for any
categorya.

Let (otl, of 2) and (ﬁl, ﬁz) be ordered pairs of maps of a
category G such that R(e ) = R(a,) and R(8.) = R(A,). Ve writs
(ctl, 0(2) ~( B ,62) Just in case there exists an equivalence
8¢ 6 such that c(l = 9{:’»1 and 0(2 = Q,Ez. Since an identity, the
inverse of an equivalence, and the product of equivalences are each
equivalences, it follows readily that ~~ is é.n equivalence relation in
the class of all ordered pairs (‘0(1, 0(2) of maps of a category G for

which R(o(l) = R(olz). Tie denote by [« 0(2] the equivalence class

13
. N ~
of all pairs ({91. pz) for which (0(1_., Otz) (ﬁl, /92).
Tie note that for & special dicategory g any lower bound
(0"1, 6‘2) for a pair (f’l,‘ ,D 2) of supermaps having common domain

belongs to the class of all pairs (O(l, 0(2) of € having R(“'L) = R(ﬂz).

Hence we may legitimately speak of the squivalence class [ ¢ a

1:9 2]

determined by such & lower bound,
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LEINA 1.3, (SD)= Ir f’l’ ;Dz) is & pair of supermaps with

common domain and ( T c‘z) is a maximal lower bound for (fl,, P 2),

'then ( LEES 0'2) is a maximal loxjter bound for (fl” pz) if and only if

(o

Proof, Throughout this argument let i range over the set

Al

{frl,,

5]

o s 3 s 3 s T ~ o
E] 2]3 that _:‘;E' JuSt i‘}}_ case (Ela cz) (c-lﬂ a'g)

-~ o ) v T =
1, 2, Suppose (0'13 0'2) (0'1, 0'2), Then O"i & tJ":,L for an

. s 3
squivalence 8. But ( c'l_, 0‘2) is a maximal lower bound for (fl"’ PZ'

so that 0"1 P = 0'2 102' Hence chlﬁl =g =, fz = o—lfl = 0'2 }oz

o o . 1a ? 1 3
and (0‘1, 0"2) is a lower bound for (fl, fz)‘, If (0'1, a-z) is also
a lower bound for (pl, fz), then there exists a (unique) supermap 7

such that (r_.’L = 70, by the assumption for (o 0'2) . Because T 7.

1’ 1
and 8 u‘l are defined, so is T = ’F’Q"l, Also, by D=2, T is a EUPET -

map, Bub ;&_'i = (’7'9"1) (o O'i) = T'U'i = ﬂ'i. These latter equations

and the fact that ( &, ?2} is a lower bound for (fl-* Pg) show that
(5"1, 5:2) is a maximal lower bound for (fl, pz) . Conversely,
suppose (3‘1, '6"2) and (0'1, 0‘2) are each meximal lower bounds for
(Fl, pz) « By the Corollary to axicm SD, there is an equivalence &
such that CI"i =G rri. Thus ( crl, 0‘2) ~ (o, 0'2).

By agreeing %o call [rl, 0-2] a2 pgreatest lower bound for

‘ Y a ‘ . » -l
(lpl’ po) Just in case (o, ,0‘2) is a maximal lower bound for
(f)l" Pz), we have lmmediately from axiom SD and Lemma 1.3 the

following result,

LEMMA 1.4, (SD) For each pair (.Pl’ Pz) of supermaps with

common domain there exists a unique greatest lower bound [G‘l, 0‘2],

EThe initials SD indicate that the result is valid under the
sxioms for a special dicategory, Other initials elsewhsre are to be
gimilarly interpreted.
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‘We may thus speak of [ Ty 0‘2'] a8 the greatest lower bound
for (p, ',o ,) and shall write [y, 0,]= py M Py Note that the
existence of fl N Pa implles the existence of /02 b-/‘ Py but thab
these 1o§rer bounds are not generally equal, The following three lemmas
state some useful results concerning greatest lower bounds,

IEMMA 1.5. (SD) Let f1 8nd P, be supermaps having =

cormmon domain and Ql and Gz eguivalsnces such that Gl /Ol and Gz /02
are defined, Then [ 2F 0'2] = ,01 N Ps if and only if
[0-191 s Ugp8, ] = (91,01) N (Qz,f’z)'

Proof, Assume first [0‘1_, 0‘2] = P N Pae Then

TIPS To Py and ( 0‘19;1) (Gl Pl) a 0'2951) (92 pz); whence
(o,07% 0,001 is & lower bownd for (8, Py, &, Pp). If (T3, o)
is also a lower bound for (Gl P1- ,02), then 016, P, = T8, P,
and (u’iel, 0‘%92) is a lower bound for (,01, /)2). Hence there is a

-l
= 3 ] =
supsrmap 7T such that 0.33.95. ’T‘a‘i, that is, T} T{ O‘iOi ),

1 =1, 2. By definition (07, T,9;") is a maximal lower bound for

-1 -1
(Ol P1 S5 /)2) and {0‘191 s T8, 1= (91/01) n (92 /Jz). The converse
follows directly from the preceding argument.
1EMMA 1.6, (SD) 1If L1 2ad p, are supermaps and 1P 1s
defined, [In(fl)-* Pl = P1P2 O P2

Proof, Lebting I = IR(I’:L) we have I(!Olloz) = (,01) Pos 5°

that (I, ,01) is s lower bound for (,01102., pz). For any lower bound

(0], 03) of (PP, Po), TPy Py = T4 Py and, by D=5, 01 p, =0};

thus with T = 01, we have 71 = T} and TP, = ¢}, Henoce (1, P 1) is

- a maximal lower bound for () P,, p,) and [I, P11 = PP, N p,.

COROLLARY 1, [IR(f’)’ pl= pn ID(IO) for all supermaps 0.
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- CORCLLARY 2. For sany supermap P and identity I with Ip

defined, [I, I] = P NP,

Proofs, For the first corollary, take Po = )3 for
' 1

I, (p

the second, let £y IR(P )
: 2

LEWMA 1.7. (SD) Let pPq. p,. pg be supermaps and

suppose p, p, is defined and D(/.ol) = D(,ozj . Then [Vl-‘ 5-2] =P NP,

and [a’l, 0'2] = 0, NP, imply [c-l Ty a‘z] = PN Prpos
Proof, Since D( fil) = D( Fg) = D( Ps 152), we conclude from
Lemma. 1.4 that @, N py P, exists. Also ( T Ty 0'2) is a lower bound

H = {r T = hesi
for (Pq. Py py)s for o po o £, 8nd & @, = T, p, by hypothesis,

o = (o = T 3 1 [ "
so that (o-lcrl),ol *”1”'2)!"2 2(’%1"2)' I (a?, "2) is any
lower bound for ( Pis Pz /32), then o-i P (a-é /OS)PZ and
1 E -1 ¥y =
(o2, T} ,03) is o lower bound for (/01_, pz). Since [0‘1, !3‘2] Py N Fo
is the greatest lower bound for (/011. ,02), there exists & supermap 7T

with the properties
(1.1) g! = To Tl Py = T, .

By the second of equations (1.1), (T, a‘%) is a lower bound for

(o-z, ,0.5),: this result and the hypothesis concerning 0-2 N IDB imply

the existence of a supermap T for which

- T = a’-—- 1 = F.- .
(1.2} . o T,

From (1.1) and (1.2) 3t follows that (¢

= ? rT = Cl'”",
1 0'1) g! and 'r¢ 2

1 2
Hence [ o) Ty G’g] A Ps Poe

5. A Representation for Special Dicategories. If ¢ is a

dicategory, we undsrstand a representation for £ by classes to be a
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function 2. which assigns to each object A of € = class ZA and to

each map & 1 A ===> B g transformation Zy= (O(f,, ZA’ ZB) in such
a way that
(1) op defined implies 2o Zs is defined and Zup = ZouLps

(2) if X is the injection [B o A], then 1s the identity

“p
o T ? C- f;1
mapping on &, and.IA = ZB 3

(3) if p3 A =-=>C is a supermap, then A, maps ZA

A representation 2 is called faithful if it has the additional

onto ZC »

property
(4) an E‘e implies « = B8, for all maps o, B € .

For any representstion Z of t by classes, & = I  Implies

A
o(f is the identity function on ZA and §: A ~==> B an equivalence

impliss @f is a one~to~one mapping of EA onto ZB" For a faithful

representation, ZA = 2 implies A = B, for all objects A and 3B,

B

To obtain a representation for a special dicategory we con-

struct for each object A a corresponding class S, and for each map

A
% : A === B g function ocf mapping S.A into SB. Following these

constructions we prove the requisite properties for a representation,

We take SA to be the class of all eguivalence classes

[Pl"' 'pa] for which (i) ,,01 a'ndv‘pz are supermapns having a common

range and (ii) the domain of £ is & subobject of A, Clearly SA is
' i I £ »

nonsmpty since [I.é.’ A] SA

In order to avoid numerous references to axiom D=3, we denots

f’-By the definition of a transformation the condition imposed
- on K, guarantees Z, & Z_.. Ve retain the two conditions on injections
for clarity. Note %hat i? representations were defined so as to send
objects inbo classes and maps into functions, the added condition
mould be needed,
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by inj(x) and sup(d), respeoctively, the injection and supermap
factors in the canon.ic;s.l decomposition of ® , Thus & = inj(o )sup(e)
is canonical for all maps & , Note that R(sup(a )) CR(«) and
D(sup(e¢)) = D(x ),

Suppose now o 1 A =~=> B and x = [/31, /02] € SA' Then
PN sup(o [A DD(/OZ) 1) exists since D(sup(¥)) =D(7) = D(Ie'r)

whenever I-Q‘/ is defined, With this notation we let

Loy, o) = ponsup(afacDn(p)]),
(1.3)

Aplx) = [0y Py, 0yl

The accompanying diagram indicates the maps which entsr in the des~
eription of o £° Constructions such as this and subsequent proofs may

be visuallged readily by drawing the appropriate diagrams,

A o B
] K = [A:D(PB)],

P’ AK = xipt,

- To verify that %p is a function we may proceed as follows,

[ Ty a"z] = Pzﬂ sup{o [A DD(/OE) 1) exists uniquely for each

ol 3 A ===>B and for each choice of "representative” (/01, ’o ?) in
x = {!01, f’g] € SA' Therefore, for each choice of a ropresentative

' (,ol, /02) of x and a representative (crl, 0-2) of [0'1, q*z] there
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is a unique 7 = [0"1{313, 0'2] corresponding (under O(f) to x,

Suppose possibly different representatives (f:‘[, Fé) and (a’ia a‘é)

are chosen; let x' = {foi. Fé]“ s0 that the correspondent of x' is
y'= Lol Pl c'é]o Clearly x' = x; we show y' = y, Since x' = x,

there is an equivalence @ such that Ipi = Q,ol and pé = Q,O?@ Buk

£

Loy, o3l = pi nsup(ax[a oD(p)])
= 8p, N sup(o [A o D( pz) D
= {O‘lgmls 0'2] »

the last equation by Lemma 1.,5. Thus for some squivalence ,zf,
m ”1 - ""1\
O‘i ,50‘19 and o} = p’d‘z. Hence y' ¢ 0'1‘9 )9 Py 2(0'2 =

= a ! = <« s .
[5(6‘1101’ ﬁ("z] {0'1 101’ 0‘2]. Thus y y. and X is = function

defined on SA" e see also thatl X, maps S‘:& into SB" For with x

and v as above, x may be considered as arbitrary in SA and

y = otf(x) = [a-lpl, 0-2]. Bridently o, p, and 07, are supermaps.

2
Since, by (1.3), (o, 0'2.) is a lower bound, @ P, = zsup(o(.[A:'D(/og) )

and R( o) = R( 0'2),. Finally, since R(sup(p)) ¢ R(B) for every map

P2
£, (o) = R(sup(x [A 2D(p,)])) € R(x [A2D(p,)]) = R(e) =B,

Thus y = [rl P c‘z] e 5,, and o, is a function mapping 8, into 5

B A B”

For each map of 3 A =-«> B let S, be the transformation

S = (qf, 8, SB>" Here, as in the following theoren, §, and «

A £

denots the class and function previously specified.

THEOREM 1.2, If ‘é is a special dicategory, then the mapping

A=,
2

& —> S,
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is a faithful representation for £ by classes,

Proof, MWe establish, in order, the conditions (1) = (4)
lisﬁed at the begiﬁning of this section,

First, suppose G{ﬁ is defined, Then for appropriate objects
A, B, and C, P: A «~=>B and & : B ===>C, Lot x = [/31, pz] be an

arbltrary element of S Then by (1.3),

A,
[o, o, = ponsup(Bla=D(p)]),

Bolx) = [0, p, o],

L}

(ol o3l o, N sup(e [B2D(0o,)]) ,
(1.4)

%l Be(x)) = Loy aypy ol

[oy, 5] = p,0n sup(epla>D(p,))),
(c(p)f(x) = [73'." Py ag] .

Consider now the following canonical decompositions,

pla>n(p)] = [BoR(p)Ip, .,
(1.5) |

x[B2aR(p)] = [C2R(p)Ip, .

The following diagram illustrates some of the maps involved in this

part of the proof,

A B C
A * x, = (A>D(p,)],
/7;(2 K3 Xy 2 Fe
\ 5! — (5 = [B2R(pg],
/ P Py
A2 - y -k, = [CoRr(p)].
\ o \\ a.'l R
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From (1.5) thers fonows'apu > D( ,oz)} = o [B 5 R( ,05)],05 =

(¢ or( /)4) ] P, Pze By this last result, (1.4), and (1.5),

(o o] = PN Py,

' (IL.‘6) (o], 03] T, 0Ly

Lo agl = Py 0 PP

By (1.8) and Lemma 1.7, [} oy, ol]l = p, N p p. =y, o3l

Thus there is an equivalsnce & such that O'i 0'1 = g O'ik and oié = Qa'ék,

BV (1*4'-) a

x(Bo(x) = (8o p,, 80y]

= Lot py ol
- (ap) ()

Since x was arbitrary in SA’ (up)f = o ,Bf and S, = S,8

[ o

Secondly, let againx = [ p., ] € 3, and suppose
P1 F2

A

K3 A =--«> 3B is an injection, Since D( ,02) CACB, x¢g8 Thus

BQ
< K | = s P +h ~ o =
8, &Sy. By (1.3), Kf(x) [a-l,olf, 0-2] , where [ P 0'_2]
po nsup(ka=>D(p)]) = p,n ID(P y» 3y Corollary 1, Lemma 1.6,
. Foi

[ L d‘z] = [IR(Pn)’ pz].‘ Thus there exists an equivalence g for

which @, = p/IR(Pg) = d, T, = }Z{fza Hence Kf(x) = U{pl, ,efpz] =

[‘Pl’ pz] = x; Ky is the identity function on Sy
Thi'rdly, suppose £ 3 A ===>C 1is a supermap, Since Pg MAPS

8, imto S,, 1t suffices to show p. is onto. ILet y = [ . 'r:?] & Sp»

By axiom SD and the fact that R(P) = C, there is an injection ¥ and

a supermap @ such that
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(.7 . PHE= [CoD(TIP .
Consider now x = [ 7, P ]o Since vy & 8 R( 'r'l) = R( ’?"2,0)5 also by
(1,7)‘, D( 7o) € D(P) =4, Temce x & §,. Now pu(x) =[o, 7, &1,

~where [ T, 7,1 = 7,6 n sup(p[a> D( ,p) 1. But pla>D(7,5)] =
f'? ’ e 2 Tz) 1p 3 whenoe 1:31’ 8"2] = ’I'ZF n F » By Lemma 1,6,
fIR(’r}: 7"2] = ""zﬁ J\F » Thus, for soms equivalence ¥, ?1 =
and 52 = 71’7’2. Therefore lof(x) = [qb,‘..l’ .f,qé] e 7‘2] .

Next we prove the representation faithful. Suppose SA = SB’

Then A = B, For [IN :[A] e S IA] e S_, and D(IA) = A ¢ B by the

A LIA’
Similarly [IB' IB] e S

B:ﬁ

definition of § B ¢ A, and, by Theorsm 1,1,

B* A

A =B, Finally suppose S5, = SP’ where o : A =m=> B, B81 A’ ==->3B7,
Since Su = S, we have («, S,, S;) = (8., Sy 1 Sgi)s o, = B

S, ® 84, 85 =55, A=A' and B =B', lLet p =sup(x), p' = sup(g),

and I = IR(P). Then x = {I, p ] e sA. Now by (1.3), and recalling that
U 7 P

(1.8) *(x) = [T1, 5,1 = [T, 5,1 = pnsu(a(asD(p)]),
and

(1.9) gl = [&, 7] = pn sup(pla>D(p)]) .

Since sup(o[A 2D(p)]) = sup(,DIA) = p and sup(B{A>D(p)]) =

~sup( p') = p', we have from (1.8) and (1.9),

(1.10) - [ﬁl, ?2] =pnp = pnp,

But, by Corollary 2, Lemma 1.6, [I, I]= p np . By (1.10),
(I, I)= Pnp'and Ip =Ip', Hemee p = p'. Thus inj(o) and

inj(ﬁ) are coterminal, that is, have the same range and the same
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domein, and therefore are squal., Consequently, inj(Ct}sup(ad =
inj(p) supv(p ), that is, o = B » The proof of Theorem 1,2, is complete,
o 6, Aprendix, The representation given by Theoren 1,2
“constitutes essentially 2. simultansous generalization of the Cayley
‘representabion for groups and the represenbation for partially ordersd
sets given by Birkhoff [3]s For a group G is a special dicategory in
which the maps are elements of G, all maps are equivalences, and only
the identity element of G iz an'idanﬁity map., Also, a éet P partially
ordered by " < " determines a special dicategory é}" if we take as
objects the elements of P, as maps those ordered pairs (x, v) for which
x <y, and if we consider each map (x, y) an injection with domein x
and range y. In the category 1gP the product of two maps (when defined)
is therefore given by (y, z,(x, y) = (%, 2z), x €y < z. Conversely,
for every special dicategory 15 all of whose maps are injections and
having the class of identities a set there i1s a partially ordersd set P
such that fg is isomorphic (in the sense of preservation of products
and injections) to ﬁgp as constructed above,
In the case of a group G with identity element I, our
representation yields S = {[I, e]) e ¢ G} and, for d ¢ G and
[1, o] = S1s SP/[I, a] = [1, 9{‘1]. Since [I, @] = [I, '] implies
e =9, SI T ¢ and Sﬂ is essentially the permubtation 8 w=m=> %fgh
In the case of a partially ordered set P, we have I = {x, x)
and find that the only equivalence classes cccurring in the represent=
ing sets are of the form [Iy’ Iy] and that {Iy, Iy] consists of the

single pair (Iy’ Iy). Thus the representation reduces %o

sx = {(Iw’ Iw)‘ s K'} *
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3

S(K’y)(Izﬂ Iz) = (Iz” Iz) for each z < x

gnd is therefore essentially that which sends x ¢ P into»(x*)*ﬂ the
princival ideal of all w < x, Both representations send greatest
‘1ower‘bounds (in the lattice~theoretic sense), when they exist, into
intersections., If P is a complemented lattice L, then the representing
sets form a complemented lattice S(L); if L has unigue complements, so
does S(L).
lattices, bub not partially ordered sets generally, may also

be interprﬁtéd as speclal dicategories in which all maps are supermaps,
pP: x ===>y if and only if y £ x. Our theorem provides in this case

a reprssentation by sets and by funchbions mapping Sx onto Sy whenever

¥ < x. This representation is somewhat more complicated than that by

principal ideals in the "injection" interpretation.



CHAFTER II

A REPRESENTATION BY ABELIAN SEMIGROUFS

1. Preliminary Remarks, In this and subssequent chapters we

prosuppose a familiarity on the part of the reader with the Theorsm 1,1
and the sections 14, 17, 18, and 19 of [8], We shall define an abelian

semigroup dicategory (ASD) and show that any ASD is isomorphic to a

dicategory of abelian semigroups, thereby extending (8, Th, 20,1] from
a category to a dicategory and, incidentally, justifying our terminology.
Befors stating our definition, we find it convenisnt to repsat certaln
definitions and observations from [8]., These are included in the
following paragrapha

let & be a dicategory and of : A =-=> B a map (slement) of €.
Then & has the canonical decomposition & = [B 2 C]f for a uniquely
determined object C. Ve call C the image of o and write Im(a) = C<R(x),
Yote that Im{oat) = R{sup({ex))s IP K3 A ===>B and T € A, then T has an
"image" o (1) = Im(ex [A DT, o is order preserving in the sense
that T; € T, € A implies us(tpl')' c “s(Tz) < B. For each object A we
denote by S(A) the set of all subobjects T € A, Evidently, by our

Thsorem 1.1, S(A} is partially ordered by the inclusion relation,

Finally, an object J is said to be an intsgral object if it has the

. following thres propsriies:

(1) TFor two distinet maps &y, 53 G ~m=>H of ¥ with the same
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domain G and the same ranga H there exists a map P: J =e=> G such that
o p Ao, p.
(11)  If J' is another object of £ with the property (i), there
exists in 5 B map O 3 J' ===> J such that og! = IJ for some o' € G,
(ii3) 1f oy X, =1,

and «, are equivalences.,
L .

for two maps o of,: J =wee> J, then

1 2

1

These properties are seen to characterize, up to isomorphism, both the
object J in the category A and the additive group of integers in the
dicategory of a1l abelian groups. Certain other properties of the group
of integers are noted in Definitions 2.1 and 2,2 beslow,

2, Abelian Semigroup Dicategoriss, The following definition

is based on [8, Th. 1.1].

DEFINITION 2,1. An object F of a dicategory ﬁ is a free

object if, whensver P B ww=> A is @ supermap and o2 F ===> A is 2

mep of {, there exists a map B: F —=«>B such that pg = «,

Ve now shbate as axioms for an abslian semigroup dicategory
certain propertiss which can be verified in the dicatsgory of all
abelian groups,

DEFINITION 2.2. An sbelian semigroup dicategory & is a

dicategory satisfying axiom Z (existence of zero) and the following

additional axioms.

ASD=1, There exists an object in -6 which is both an integral

object and a fres objecta

ASD=2, There exists _:51_ 6 a free=and=dirsct product diagram for

- any two objects of ‘.

ASD=3, For each object A and every pair of subobjects B, C, of
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A there exists & least ﬁgper bound B Uy C in the partially ordered
set S(4).

ASD=-4, If o: A ==-> B, then, for any two subobjects C, D, of A,
(2.1) o (c Uy D) € w (6) Uy o (D) .

As in [8], it may be noted that equality holds in (2,1) since
g is an order preserving operation. Also our axioms ASD=l, =2, =3, =4
correspond, respectively, to Maclane's axioms AC-l, AC-2, IC-l, and 1C-2,
In ASD=2 we have sdded the word "diagram" to his AC=-2 simply for the

purpose of clarifications in the others we have considersbly weaker

statements,

Let € be an abelian semigroup dicategory and consider two

maps with common domain, oy A mem> Bl and oyt A === B, having

2’

ranges included in a common objeect; that is, B, € T and B, < T for

1 2

some T, Then B = B, U, B, exists uniguely in S(T) and the maps

[B > Bl] «, and (8> Bz] , are coterminal., Using the addition of

(8B, [BD Bl]ql +[B> Bz]fx2 exists uniquely. Hence the operation

(2.2) ~, ®

1 Je

«, = [BOB

T % 1 + [B2B,1%,

1

is well-defined, This operation generalizes slightly the notion of
addition of maps to what we shall call T-addition of maps. We conm=
clude this section with a result stabing properties of T-addition

which will emerge as tools for the representation argument to follow,

2prom this paper it 1s apparent that the operation + ,
which is not primitive in the notion of a dicategory, may be defined
in any dicategory which assumes axiom ASD=-Z2,
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Throughout we use freely facts from [8] concerning addition (+).

0(33 A weud B'S’ and T is an object conbaining each of Bl-" Bz, B5 as

subobject, then

(A) gtl@Tot = o @Ta

2 2 1

(B) (o) @y o)) @,y oty = oy, B, (o, B, %p) ,
(U) 0(1 @T OZTA = dl -

Proof, {A) follows directly from (2.2) and the commutative
property of addition (+), (B) follows from (2,2) and the assooiative
property of addition by a rather lengthy but completely straight-

forward argument, To prove (C), we observe first that ZB = Z’I' since
1

each is the "zero" of the partially ordered set S (T) whose "unit" is
T. Henoce ZT Up Bl = ZB]_ UT Bl = Bl and otl @‘I’ OZTA =

[B, 2 B,]lx, + [B. 2 Z_]0 = of + 0 = o,
1 1°71 1 TZTA 1 BlA 1 .

3+ A Representation for Abelian Semigroup Dicategories, For

an ASD A we understand a representation for 4 by abelian semigroups

to be first a representation Z by classes such that, for each object
A, )3 A is an abellan semigroup in the sense that z A is olosed relative
to asome commutative and assoociative operation and contains a zero for
thlis operation and, for each map &, Zu is & btransformation whose
functional component is a semigroup homomorphism; secondly we require

- that for each injection K : A =-=> B, )2 A is a subsemigroup of ZB'

Our representatioﬁ is obtained by constructing for each
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abject A a- set G,, btaking A-addition as the operation, and dé‘temin-
ing for each map o : A ==->B a homomorphism of G, (considered as a
sot ﬁi*bh an operation) into Ggs
Let F be any one integral and free object, Since all such
‘objects are categorically equivalent, we may interpret F as the group
of integers. The sot GA we construct ls, in the case of groups, the
set of homomorphisms of the integers into (a subgroup of) the group A.
Each such homomorphism % has as image a cyclic subgroup of A so that
% may be identified with the pair (a, C), where %7(1) = a ¢ A and
R(7) = C. We take, then, G, to be the following set of maps of the

A
dicategory ﬁ 3

(2.3) G, = ffﬂoy: F mwa> C for somaCC.&}.

Note thab GA is nonempty since OAF € GA‘ Now for sach of 1 A === B

and each 7% & G,, the map sup(« (A D R(%) ]}% is uniguely determined.

Tie may take, then, G, to be the function such that
(2.4) Gy (%) = sup(x[D(a) DR(%)]7% for all « ¢ z, %€ GD(«) .

The behavior of G4 may be visualized as in the accompanying diagram.

K = [D(«)>R(%)],

A o \3
F A
K X, -
V / oH 1Py
A

Gu("?) = /014?'

IEMMA 2.2, (ASD) The set G A _5;§_ closad under the commutative

a8 the unique zero for

and agssoclative opsration @ 4 2nd contains O,

AF
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thias operation,

1c A and

Nyt F===>C, A of GA. Then.c =Cq v, C, C A. By (2.2),

71 @A g} F ===> C; hence GA is closed, By Lemma 2,1, the

operation ® A is commutative and associative and OZ F
A

clearly a member of GA’ serves as zero, By a standard argument,

Prnof. ﬁohaider elemen’ts ”7 1: F wmap»

whioch 1s

the zero element is unique.,

LEMMA 2.3, (ASD) If ot A =-=> B, the function Gy is a

homomorphism on the abelian semigroup EA = [GA’ @ A] o the sbelian

gemigroup GB "

Proof, Let Ny} P o> Cl, 422: F «ww>» 0, be arbitrary

2
elements of G,. By (2.4),

Go( %)t F ==> R {sup(« (A > R(7) 1} € Rla [4 > R(%,)] = R(x ),

Hence G, is & mapping into G,. Taking C = C

5 C,, Wwe have from (2.2),

1 Ya

(2.8) 7, &, My, = (€201 + [62C,]n,: F=-=>C.

1st P = sup{( ), By D=3, we may assume the canonical deoompos;itions
plascl = xp ,

(2.6) plascl = ®p,
f[ADCz] = K pPg .

Also let D =R(F), Dy =R(p,), Dy =R(pP,), E=R(p). We show

D = D, Up Dy. By axiom ASD=4 and (2.8),
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Ps'% QA Op) = pslC)) v p,(Cp)

m(pla0,]) g In(plas cy)

(2.7)

R(py) Ug R(p,)

- DIUBDZ'

But Ps(cl Uy Cz) = ,ps(c) = Im(lo [A>cC) -R(/?) = D, Hence
(2.8) - D = Dy UpD

1 r

Now by (2.4), (2.5), and the distributive property for additionm,

G (my @, 7)) = supla(aoC](yn, &, 7»,)

sup(pla2CD(n, &, n,)
(2.9)
= P’([C Dcl]oil + {0302]472)

= ,‘5{0301]471 + plc 302]422‘.

But G(7,) = sup(x [ADR(7)DN, =sup(p[a>C D7y = py7mq 3
similarly, Go(%,) = P,7,« By (2.2) and (2.8),

(2.10) €. (7y) @58, (m,) = [(52D1p ) + [53D,1p,7, -

Wg shall show p[C :ci] = [D > Di]lDi’ i =1, 2; the lemma then
 follows from (2.9) and (2.10).

By (2.8),
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RF[C :Ci] = pla>c]lc> 31]
(2.11) ' = pla> Ci]

= Ky Py i= 1 2.

Using the canonical decompositions

- * %
(2.12) ple>c,1 = K, p., i = 1, 2,
we have
- = * % R
(2.13) Kf{C :’ci] = KK Py i = 1,2,
- K - * *
By (2.11) and (2.18), K = KK;, Ky = KK,, P = P1, Po= Py A
consideration of ranges and domeins shows K; =[D> Dl], K; =[D> Dzj .

= - * ok
By (2.12), plc>cy]= x]py =[D>D,1p and pleoc,] = ujp, =
D> D,]p,, as we wished to show.

We have already used the notation EA to denote the abelian

semigroup [G,, @® A]' For each map o : A ===> B let 'é,( be the “Erans-

formation (G, EA, EB).

THEOREM 2.1, If A is an abelian semigroup dicategory, the

maggigg
Z A —> G.A

is a faithful representation for ‘(f by abelian semigroups.
Proof, In the previous two lemmas we have proved that EA
is an abelian semigroup and that G, is a homomorphism. For the mapping

2 we demonstrate in order the preservation of products, of injections,
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and of sﬁparmps, and the property of faithfulness,

First suppose o(,@ is defined; then P: A «==> B and
o 2 B ===> C for appropriate objects A, B, and C, ILetting M e GA’
e have N: F me=> D for some D ¢ A, For appropriate supermaps 1

and ﬁz there exist canonical decompositions,
pla>0] = [B2R(p)DIP,.,
«[B2R(P)] = [coRrR(p,)]1P,,
and, consequently,‘ the further decomposition,

vgla>D] = o[BDR(PIIL, = [C2R(LIIP, P, .

Thus -
Gg(n) = sup(pla=>R(n)D7n = pi7%,
6tp(7) = sup(ot[BOR(PID P17 = Pypr7 s
Gupl2) = sup(aplaoR(y)Dn = p,L7% .

Since % was arbitrary, G “p = G, G and G " E,"p.

Secondly, suppose K : P =-=> Q is an injection and ¥ ¢ GP’

¥: F =wew> M ¢ P, Then GK(Y) =sup(N [PDO M]D)Y = Iy = Y . Also,

for any two elements of G Y P F mw> M1 Y F oawne> Mz we have

P’
Ny Up My =2 Uy M, (since P C Q) and, by the definition (2.2),

7, @P ’/2 = 7 @® 7’2'. Thus P-addition agrees with Q-addition

1 78

on GP‘ By lerma 2.2, G, and G, have the same zeroc element since

P Q

In summary, G.

P is @ subgemigroup of G,

2, =% Q

P Q°
identity homomorphism on EP"

and G, is the
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.Thirdly, suppose P K ===> L is & supermap and Fe GL’
¥: F -=w> N C L. By axiom D=6, there is an injection K, and &

supermap £, such that
(2.14) pr = [LoWlp, .

Letting D( k) = 4, K, = (K > J]. Since F is a fres object and L.

o supermap, plz J «==> N, there is & map % : F =w==> J such that

P = §. We show Go(7) = . Note first that % ¢ Ggs for

R(%) = J c K, Then by (2.4) and (2.14), Gf,('»?) = sup(p [K D R(~m) D =
sup(f)l(l)?g = py% o= 5. Hence Go is omto G.

Finally, suppose «.: A, ===>B

1t A 10 %g? Az ===> Bg. We wish to
show G, =0 implies «, = &«,, Hence we may assume G, =G, and
% 1o &

G, =G .Bu‘thﬂG

Bl Bg 1

GX = GY’ then OXF € Gy, OYF € GX’ XcCcYcX, and X = ¥, It suffices,

implies X = Y for all objects X and ¥, For if

then, to consider o and ¥, coterminal, This we do and write
¥1, %t A ==->B, We now show o, # &, implies G""l £ qu.
Suppose o ; A o . By property (i) of the integral object F, there
exists a map @: F =-=> A such that %P # YR Clearly B¢ GA;
by (2.4), Gdl('p) = sup(o 1),5 and G"z("’ﬂ) = sup(o(z)p . If
R(sup(dl)) ;‘R(sup(o{z)), then & (B) # Gy (F)g in this case

1! 2
the proof would be complete, Assume, then, R(sup(c(l)) = R{sup( Ng)),
that is, Im(«,) = Im(olg). We have inj(o(l) = ing(az) and con=
sequently, since ozlp # Py sup(otl)ﬁ F sup(dz)ﬁ. Again

G (B) #6 (B). Therefore G, #G and G, G, .
o« f 2 P “T % Q%



CHAPTER III

A REPRESENTATION BY ABELIAN GROUPS

l, Preliminary Remarks, In this chapter we define an

abealian diéatsgory (AD) and show that every abelian dicategory ls
isomorphic to a dicategory of abelian groups, Only one of the AD
axioms 1s n§W; 1t reflects a simple property of groups, namely, that
groups which ars distinct have either distinct sets of elements or
distinet group operations, Of the remaining axioms all but one have
been used previously and that one has been borrowed from [8]. Each
axiom is valld in the dicategory of all abelian groups,

The constructions and arguments for the repressntation
rogemble those of Chapter II, In the appendix to this chapter we
indicate how a representation sven more like that of the preoe@ing
chapter can be obbained; for thess, an exact relationship can be
formulated., Roughly speaking, the representation of Theorem 2,1
yields semigroups rather than groups because the sets are too "big"
and because the opsration of A=-addition is dependent upon joins, One
may obtain groups by "cutting down" the sets and foregoing use of l,u.b.

2, Abelian Dicategories.

DEFINITION 3,1. An sbelian dicategory & is a dicategory

satisfying axioms 2, ASD=1l, ASD=2, and two further axioms:

31
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AD-lf‘f. For sach objec‘b A there exists & map VA: A ===> A such

A A AA

that V, + I, = 0 3
AD=2, If J is an inbtegral and free objeot and if the objects

Al and Az are distinct, then there exist maps oyt JXJ mm- Al and
o,: JXJ === A, such that sup( o(l) # sup( o(z) .

The only consequences of exiom AD=-l which we shall need
are given in the first sentence of the paragraph following the state-

ment of axiom ABC-l in [8, p. 513]. For simplicity of reference we

guote this sentences:

(3.1) It follows readily that VA is unique, and that VAVA = IA'

The object J XJ involved in axiom AD=2 is the object in a
free=and=direct product diagram constructed on J., For groups, J is
the additive group of integers and J XJ the usual carteslan product.

Lot € be an abelian dicategory and T, F wwnd Al’
Tyt F mue> Az two supermaps of ¥ with common domain F and with

ranges Al’ Az c T for some object T, We define for such supermaps

the opesration F:T-addition by
(3.2) oy ey o, = omup{lToale + [To4]0) .

We use the symbol "F" in the nemes of the operation both to remind
ourselves that D( o) = D(,) = F and to make easy the transition
to the application of FiT-addition in which F is a free object, For

the moment, F is an arbitrary object., We note 0‘1 F+T Tyt P owa> A3 <7

2rhis is the axiom ABC=1 of [8].
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for some 13.5. For if g = [T :>A1] oy [T :Azjo- , then B: F «nw> T
and sup(p ): F ===> R(sup(8)) < T. Also, it is convenient in the
following lemma to note that for any maps Ry, Al F «==>» T  there is

the oanonical decomposition

. F
(3;3} oy A, = K(sup(o'«l) *n sup(otz)) .

1EMMA 3.1, For any two objects F and T and for any three

supermaps o : F wna> Ai cT i=1, 2, 3,

(A)o-F+ a-ach—t- T,

1 v T 2 "p T1-
o F F - F F, o
(B o T (0 T T (o) Trgp T T Ty

(C) a. F-a-‘ 0 = q

1 " %p 1
F
@) o T4 ol OZTF .

Proof. let K, = [T >A;], 1 =1, 2, 5. (4) follows directly

= M '
from (3.2) and the fact that Ky Ty * K, 0, g Ty * My To

prove (B), we consider the canonical decompositions

F

Kpop * Ko = Koy ey o),
(3.4) :

K, o, + HK,0, = Ko F, o)

272 373 s\%2 *p T3) e

Then by (3.3) (or (3.2)), (3.4), and the associative property of

addition (+), there exist injections X 6 and K7, each having range T,

such that



| F F F
| . -
Koy Ty T+ Koy ke 30Ty T PY 5}
= 1(1 0"1 + KZ 0-2 + KS (T'B
(3.5)
= X o, o+ K (T, T+ o))
171 5172 r T3

The assocliativity of F:T-addition follows by uniqueness of canonioal
decompositions from the first and last of the equations (3.5).

To prove (C), we observe first that Y F+T 0; » makes sense
T

since O, ; is a supermap. Next we use [8, eq. (19.2)] to obtain
T R

= - n oa
¥, 97 ¢ OTZTOZTF 17 * Op 171 ¢

By definition (3.2), o ‘4 OZTF - 7.
Finally, to prove (D) we rely on (3.1) to see that Ve ls an

equivalence and hence a supermap. Thus T F+T O‘lVF is meaningful,

By the distributive property of addition (+) and axiom AD=-1,

e, + oV, = (I,  + V) = ¢,0., = 0 = 0, , 0,
1l 1F 1'F F) 1°FF AIF AIZT.ZTF

F .
By (3.3), T (o‘lvp) QZTF .
It is convenient to note here the following result which will
be used in establishing our representation.

LEMMA 3.2, If J is a free object, then JXJ is a free object.

Proof, e make use of results provable from axiom ASD-2 and
stated in [8: eq., (18,5'), Th, 18,5, eqg. (18.8) 1.
Suppose there is a map o 3 JXJ =m=> A and s supermap

p: B ===> A, We wish to find a map [ J XJ ===> B such that f’/s =X
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But & = . AA(Y Xd) for some ¥, & 1+ J ===> A, Since J is free,

there exist maps f,, 8,3 J -=-> B such that pg, = ¥, pPs, = d.

Hence

1]
]

AA(YxJ)

D, PPy X ppg)

BpPxPIpy xpy)

PAOLRL XA, »

Thus, for (8 = AB(ﬁl ng), f3 JXJ —==>B and pB = %, Therefore
J XJ is fres,

3. A Representation for Abelian Dicategories., If % is an

abelian dicategory, a representation for A by asbelian groups is &

repregentation 3 by abelian semigroups in which each ZA is an abelian
group.

Cur repreéen‘bation is obtained, in part, by cons’cructing
within 4 a get GA for each object A which, for the partioular
dicategory 5G 4 of all sbelian groups, is just the set of homomor phisms
of ‘the cartesian product of the integers with themselves onto subgroups
of the group A. The operation of F:A-addition already described and
the hoemomorphism G'q we shall construet for the representation are
similarly abstracted from properties of this free abslian group built
from the integers and the dicategory gG +°

Let, then, J be any one integral and free object of ‘g and
seleot some fixed fres-and=direct product object F = JXJ, Consider
the set
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,v GA a {a"' ]U‘a sup{o-), D(o) = P, R(e) c A}.
We have immediately, for each object A, the group properties for Gr A

IEMMA 3.3, G is an abelian group relative to the operation

A

Fi:A~addition having the map OZ F 88 zero element,
A

We have also a one-~to-one correspondence A <e—=> G A between

the objects of 5 and the groups counstructed within "g.

IEWA 3.4, If G““l = Grlg12 , then A = A,.

Proof., Suppose A 7 Ay. By axiom AD-2, there exist maps

Ky? Fomem> Ay and Ap: F === A, such that sujp(dl) # sup(o(z). Since

1 1 2
sup(o,) ¢ GAI and sup(ot,) & GA?, GAI # GAZ-

For each map &4 : A =-~> B and each supermap ¢ & G p Ve take

G, to be the function such that
(3.8) G o) = sup(«[D(a) D R(c)]0) .

The following diagram illustrates (g for the dicategory T .

A o B ¥ = [D(«)> R(e)],
F 3
- K Ky XK = Klépl’
p,' > GlT) = LT

For groups, the action of G,‘ may be seen as follows, Teking J to be
the integers and ¢ a mapping of IxXJ onto a subgroup of A, (1, 0) = &y
and 0(0, 1) = 8, for some s, &, € A, If o (al) = b, and o((az) = by,
then () sends (m, n) & JxJ imto o (< (m, n)) = ub, + ndb,, Thus

G (7)) = T, where T is the homomorphism of JXJ onto the subgroup
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of B gem}‘_ated by 7°(1, 0) =b, and 7°(0, 1) = b

1 2°
LEMMA 3.5, For each map Xt A === B, Gu _:}._é&_ 2 homomorphism
of Gr " into G-

5*

Proof, Consider 'any T e GA' Then A [A 2 R(o) ] : F =w=> B,
Hence, by (3.8), G.,(U') is a supermap with damain F and ranges a sub-
object of B. Thus G«(U‘ ) & GB’ and Ga (which is clearly defined on
Gr A) has valuesg in G’B’ Consider next any two maps T, Ty € IG'A.

Then there are supermaps P P2 which yisld the canonical decompositions

x[A>R(ey)] = [BoR(p)]p,,
(3.7)

u[A:R(a‘z)] = [B:R(ﬁz)]fz .

By (3.3) there is the additional decomposition

(3.8) (A>R(o)]oy + [AoR(ay)]e, = K,(0y F"A o) .

By (3.7), (8.8), and the distributive property of +,
(3oR(p) 1G5y + [35R(p,) 1GL(wy) = [BoR(py) 17y * (B3RP, 1T
= a[a oR(ay) Jog + «[ADR(w) Jop

(3.9) = a([AoR(0y) Joy + [A2R(0y) Ioy)

F
1 s )

F F
- lasr(ey Ty 1oy Ty )

Taking the supermap factors of the first and last members of equation

(3.9), we have, by (3.2) and (3.8), the desired result,
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Gy Ty Gulep) s Gl Ty Ty

If of: A ===> B, we denote by é,‘ the transformation
( G—ﬁ Ed GA& GB} *

| THEOREM 3.1, If G is sn abelian diostegory, the mapping

A——-»GA

«—>F,

is & faithful representation for ‘5 by abelian groups.

> .

Proof., Suppose df is defined, with £: A =->B,
o 3+ B === (, and suppose T & G IS For appropriate supermaps /pl

and ,oz there are the canonlcal decompositions

pla>r(c)]le = [BoRrR(pPII1P, .,
(3.10)

2[BoR(pIpy = [62R(p)Ip,,

from which there follows
(8.11) wp[a>R(e)]o = «(B2>R(p)Ip, = [62R(p,IP, .

From (3.10) and (3.6), Grp(o) = p, ama  GGu(@) = GLP)) = pye
But, by (3.11) and (3.8), G“P( o) = fo» Hence G“‘P = G'“ GP’ and
ﬁu; = ;2( 5@ »

Next, consider any injection K = [E > D], and suppose
o ¢ GD" Then GK(G') = sup{X [D DR(v)]o) = sup(o) = 0,
Thug, under the identity homomorphism GK , the group GD ig its own
image. Therefore GD is a subgroup of GE’

Next, suppose [ P =~e> §Q is & supermap and T ¢ GQ‘ By
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axiom D=8, there exlsts an injection K and & supsrmap /3 such that
(3.12) pH = [Q>R(M)IF .

let D{(K) = N; then K = [P 5 N] and F: N w=e> R(7). But T is a
map, P is & supermap, and F is (by Lemma 3.2) a free object such that
Tt F ==e>R(T"), £ N ===>R(7T), Hence, by definition, there exists

a map B3 F «=e® N such that
(2,13) - Fle = T,

Consider now 0 = sup(pB), end note that inj(g) = [N > R(o)]. We shall
ghow Gf(a‘) = T, Now O ¢ G?; for 03 F === R(sup(f )) c R(,G) =
Nc?P, By (3.12 ) and (3,13),

plPoR(r) ] plP21]¥ > R(o) ]

PN DR(T) ]

Q DR('r)]ﬁ (Nor(e) ]
(3.14)

(@ >R(7)1F1n3(p Jeup(p)

lasR(T)Ipp

(Qa ar(m) 1T

By (3.6) and (3,14), Gp(c-) = T ; therefore GP is & homomorphism

onto Grq. » |

Finally, suppose oy, Oy & z N 0(17! 0(2, We wish to

prove ﬁo( ,v{ ﬁa » If 1.9‘“ = :‘9
» 1 2 1

°‘2’ then the group components of
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1 2
- — = _ .
o, A B and o # 5

ﬁdl émd:éz are egual; hence, vb;v Lemme 3.4, ., and o aré
cctemiml. We may vassume, then, O‘l’
By property (i) of the integral object J (stated in Chapter II), there
exists & map B: J ==-> A such that o, p # o, B . Then, using the
maps which enter in the definition [8, 18] of the free-and-direct
produ_ct diagram for F = JXJ, .8 1;,1 # “,p l;l. For let
% = otiﬁ l;,l , 1i=1, 2, and suppose 71 = 7’2 ;s ‘then
1A= AR G FTTAL = wpTIAL = wip =g
Now let 0 = sup(g I—FI). Since f r?‘: Foowa>d, 0 ¢ GA' Also
G;al(v') = sup( O(l[A >R(o)]0o) = sup( ctlﬁ {;,1) = gup( 'Vl); similsrly
Gdz(c‘) = gup( Vz) » TWe may assume R(sup( 71)) = E(sup( 72)); for
otherviise G“l(o_) # Gi«z(o“), and the proof would be complete, But
with this assumption, D(inj( '/1)) = D{inj( 72)), inj{( 71) and inj( 72)
are coterminel, and inj( Yl) = inj( 7’2). Since sup{ Yl) = gup( 72}
would imply )’1 = 7’2, we must have sup( Yl) # sup( )’2); that is
Gdl(a‘) # G[az(ﬂ‘). Therefore Gdl # G“z and ﬁdl # ﬁ,z.

’ 4., Appendix, The representation 2 of Theorem 3,1 can, of
course, be applied to the particular ebelian dieategory of all abelian
groups, Since every infinite cyolic group is sn "integral and free
object™ there are many ways in vmich the application oan be made, but
no generality 1s lost in interpreting J as the group of integers., Then
it is easily shown that for each abelian group G the representing group
EG is isomorphic to the cartesian product GXG,

The constructions and arguments used in the proof of

~ Theorem 3,1 may be generalized in the following way.



41

Let & be = dicategory and P any object of . TIn the definition
of the set &3 A given in Section 3, replace "F" by "P" and call the
resﬁl‘hing set Gfi. Then

Gri = {o*l o= sﬁp(a'), D(o) =P R(o) < Al.
Por each o €& € 1let G’f be defined by the formula of (3.6); that is,
| Gie) = sup(w [D() > R(e)]7)
for each 0T ¢ G:§ («)* Then, by arguments like those of Section 3,
with "P" replacing "F", Gf ig, for each map o : A ==--> B, a function
defined on Gz having values in G§ such that
(4) op defined implies Gﬁ, - G Gﬁ ;
(B) for each injection K 3 A ===> B, Gf is the identity function
on Giﬂ, e set which, consequently, is a subset of G; .
If P is a free object, then
(C) for each supermap p: C =--> D, the function G /:f mApS G?;
onto GI}; N
Also, if P has property (i) of an integral object (regardless of whether
or not P is free), then '
(D) if =, o, are cobermimal, o F o, implies Gfl 4 sz )
Now if € satisfies also axioms Z, ASD-1, and ASD-2, the
operation of P:A-addition is »déi‘ina’ble as in Section 2 and converts
Gz into an abelian senﬁ.grcup.v Furthermors Gi is & homomorphism
which, if P is selected as a fixed free and integral object, has the
properties (A) - (D) listed directly above,
1f we require further that & satisfies axiom AD-1, and
therefore all axioms for AD?-dicategoriss except possibly AD=2, then

L
there is & representation 2. for ff by abelian groups in which
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' P ! P ~P P
2yt Gy Zaom (G G Gy

' 1
whenever o 1 A =--> B, Applied %o f’ p2 preserves direct products

1

AxB
o : .
to the dicategory ZfG of all abelian groups, Z is object-faithful

’ ~ 1 1
in the sense that 2 = 2 N b3 g for all objects 4 and B; applied

*
(Z(; = ?;{ implies G = H for all groups G and H) and 2-(; < @, Z' is
not genarally faithful, bub becomes so under the hypothesis of object
faithfulness, This deficiency may be removed by the assumption of the
following a,x‘;om for 3

AD=2', If J is an integral and free object and if A. and A, are

1 2 —
objects, Al ;/Az, then there exist maps oy J men> Al and Ayt J e A2
with canonical decompositions Nl = Xli’ol’ “2 = Kz /02 such that whene

ever 'rl = sup(dl + {AID R(/az)]ﬂz) and ""2 - 8“P([A2 > R(/"l) ]P;" dz)

exist as maps of Z, then T, # Toe
This axiom, like AD-Z, is valid for gG-& and has an interpretation
stating that disbinct groups differ either in their elements or in
their operations.

let ‘f be called an AD'~-dicategory if it satisfies axiom AD=-2?
and those axioms for an AD=dicategory other than AD=2, Then the
representation }Z' is a2 faithful representation by abelian groups for
any AD'-dicategory which, as ﬁoted above, preserves direct products,
Counterexamples show that this property does not generally hold for
faithful representations of AD'~dicategories.

Finally, we note briefly the decomposebility of the
representation given by Theorem 2,1, If ﬁ is an ASD=-dicategory
satisfying axiom AD=2' but not necessarily axiom AD-=l, then the

) 1
representation 2. cen be "out down" to provide for A a falthful
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representation Z(z) by abelien semigroups. Also there is a somewhat
trivial (n'on-fai'!:hfﬁl) representation Z(l) for & by abelian semi=
groupe in which E J§‘1> has as sefs all subobjects C € A such that
(with J a fixed integral and free object) there is a map % : J ==e> C
"and in which the functional component of Z‘(j) is the function o
cited in Section 1 of Chapter 1I, If wé denote the representation
for T of Theorem 2.1 by 2.0, then 1t may be shown that 2.0 is
s subdirect sum of 2—(1) and 2(2) in the sense thst Zég) is
isomorphic to & subdireoct sum of Eél) and Z§2} and thet 2(09)
has functional component which is the cartesian product of the
functional components of Z(O:(L) and Z(,,,Z) on its domain., Furthermore
Sém is isomorphic to the particular subdirect sum of Eil) and
Séz) consisting of all ordered pairs (C, ¢~ ) for which ¢ is a

supermap such that ¢ : J ===> R(0") € C € A,



CHAFTER IV
A REFPRESENTATION BY GROUPS

1, Preliminary Remarks. For each of the particular types

of dicategories discussed in the previous chapters, the verification
of axioms within the dicategory>of all abelian groups proceeds by
standard and often routine arguments, In this chapter we present a
set of axioms velid in the dicategory of all groups., With one
exception the verification of axioms seems to involve no new result
or method, The exception is axiom DFP=-3 below, an assertion whose

interpretation for groups implies that if the formula

x0y = <1 &bl <2 ypz ...xn fbn R
with integral exponents and finite n, ylelds an associative operation
z = xo0y in every group G, then for each g, h ¢ G, goh is either g,
h, gh, hg, or the identity elemsnt of G, We belisve this implicatilon
for groups is a new result; its proof is given in Section 3 following
the preliminaries on free groups needed in the proof and presented in
Section 2., The remainder of the chapter concerns so-called dicate=

gories with free products and concludes with a representation for

such dicategories by groups,
2. The Group FS‘ We consider certain features of a free

group with three generators, For the general case see Kurosch [6],

44



45

Reidemeister [9], Schreier [10], van der Waerden [11], and, particu~
larly, Artin [1]. We first review certain well-known facts and then
introduce a notation appropriate to subsequent arguments,

et FS be the free group with the three free generators

*] 1 4]

x 'y* , 2 » The elements w € F; are sequences, or words, ordinarily

taken tc be formal products of a finite, possibly zero, number of
factors, sach of which is a generator, If the word w is empbty, we
denote 1t by 2., A word is said to be in reduced form if it contains

L or t67t (t =x, v, or z).

no pairs of‘adjacen't factors of the type t~
Morsover each word w has & unique reduced form W 2 1t w is 4, so is
W; if w is not reduced, then W is obtained by removing pairs of
adjacent factors of the types cited and iterating this process until
no such pairs remain, Consider now two elements Wi, W € F:,J. We
reoall that ;1 71?2 asserts the typographical identity of the reduced
forms: each is & or each is nonempby and is the same sequence of
symbols, We shall say w, is congruent to , (wl—:—. wz) in case |

?ii = 52. Also the product w,W, is the word obtained by juxtaposition
of its two factors snd the inverse wzl is the sequence for w, put in
reverse order with each exponent changed in sign,

It is convenient to h#ve a notation which indicetes, for any
nonempty word w, the initial and final generators in its reduced form,
¥e shall, for example, use the symbol [x,w,y] both to stand for W
and to indicate further that w, when put in reduced form, begins with

x’kl and ends with y*l. Cther typical symbols used in other cases

25ee, for example, Reldemeister [9, pp. 29-34].
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for W are the following:

1 1

but does not begin with x* 3

1 but does not end with yﬂ':

[%,,5] if ¥ neither begins with x*1 nor ends with y*I.

(%,w,y] if ¥ ends with y~

[x,%,5] if ¥ begins with x

' The notion of congruence and the bracket symbols apply, of course, to
any free group,.

3. Associative Operations in Groups. For any natural number

n and any integers 245 b,j (1 <i, < n) there is in all groups G an

operation o defined by

1

goh = TT gai hb" = gal hbl gaz hbz - .gan hbn , g hedg,
i=l

Clearly we need consider only those exponents for which 8, = 0 implies
i=1s8and bj = 0 implies j = n, Henceforth in speaking of the
operation o, we understand these restrictions to hold on the exponents.

THECREM 4,1 The operation o is an associative operation in

2
1

evezgggroupj_i_‘_andonlyj_f_‘_nﬁlandai-alsb - b

1 = 0, ormn =2,
a; =b, =0, and a; = by = 1. |
Proof. The solutions 8y and bl of the equations given for
n = 1 yield for goh either gh, g, h, or the identity. For the second
slternative, goh = hg. |
Conversely, suppose o is associative in all groups, hence in
FS’ We consider two cases: n =1l and n > 1, For mn = 1 a straight-
‘fomrd computation shows, with subscripts of &y and 'bl omitted for
notational simplicity,
Y

(4.1)  =o(xox” £20(e) o (rox)ex™! = £8(8%D)=b .
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(4’2}. xo(xox) - xﬂ*‘n(a*'b) - xa(a*b)*a

(xox)ox =

Equating the exponén‘l:s in each of (4.1) and (4.2) yields 2’ - a =
'b2 - b = 0, proving the first #lternative of the theorem,
~ Before investigating n » 1 we state several lemmas which
are useful for the remsinder of the proof and which concern free groups
and fhe operation o, To avold repetition we state as General Hypotheses

the assumpbtions common to the four results,

GENERAL HYPCTHESES. F 1s & free group with at least two

free generators Kﬂ' and Yﬂ'. XoY is an element of F such that

8¢ _b a, b
X¥oY=x1vl,, « X2 YN where n £ 2 and the exponents are

integers restricted as sbove., The exponent k is a positive integer.

IENMA 4,1, If a, = 0 and bn = O, then for some W W, € F,

1’
k bl a9 5
(XoY)™ = Y X 4, ifn = 2aendk = 1,

ba & b 8,
xoD)* = Y1 X2 [Y,w,X] = [¥,%,X]¥ 21X 1, othernise.

LEMMA 4.2, If &, = Oand b # 0, then for some w, W, € F,

b, Xa, b
o)X = y1x 2Y2, ifn=2eandby +b, =0,

ba 8y a. b
(Xol')k =Ylx? [Y,wl,'i'] = [Y,WE,Y]X nyR otherwise.

IEMVA 4,3, If a. # O and b_ = 0, then for some W., W
—" —_—n *

4 zaF,

8, kb
(KoY)k‘—:KlYlXaz, ifn=2anda +a, =0,

" @, b b 8
ZeD¥ = x 1y [xw . x]=[X,w ,X]T *1 X, otherwise.
1 2 s CEOSTIESS
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< LEMMA 4.4, If s, # 0 and b, # 0, then for some W, W, ¢ T,
a, b a_ b
o) ¥ = x1y1 (Xw,¥] = [(Xw,YX2y"

Proofs of lLemmss, We exhibit a proof only for lemme 4.2,
The remaining proofs proceed by either parallel or considerably sasier
arguments. We verify directly the case n = 2 and then use induction on
n for n > 3.
b1 422 401
IfnGZandbld-'bz*O,thenXoY'—:—_Y Xex » Thus XoY
a
is conjugete to X 2 and a triviel induction on k shows the first case
of the Lemms.,
- by 8 b2
If n =2 and b1+b2/o, then XoY =Y + X ¢ (Y ) and
b 8g _D
XoY =(Y 1 )X 2 Y2 , Thus the "otherwise" case of the Lemma holds
b ba+by 8, Db
for k = 1. Also (Xxo¥)% = 7°1 x72 ¥'17°2 x*2 v°2 | Hence the following

stetement holds for k = 2 and mey serve as inductive hypothesis for

2 <k<r:
= =
Db b .
(4.3) (XoY)k =yl X2 [Y,w,ﬂxaz Y 2 for some w ¢ F ,

: by = 8 bDatb, 8, b
But (Xo¥)™ 7 = (XoV)T(XoY) =Y 1 X2 [T, WYX 2 YL 2 X2 Y2 ; whence,

»

2y 01*by
by teking [Y,w,YIX “ ¥ as the word w',
b b
Xo¥)™ = v1 32 [yw YR2 Y2,

b, _a |
Then (4.%) is valid for k > 2, Since Y + X 2 [Y,w,Y] = [t,m,,

8, b. v
[v,wYIX 2 Y 2 = [Y,m,,Y] for some w,, W, & F, the "otherwise" case

Y] and

holds for k 2 2 and, from before, for k = 1, Thus Lemms 4.2 is proved

for n = 2.

For n > 2 it is convenient to replace Lemma 4,2 by the
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following stetement,

: : | by a, b a_ b
LEMMA 4,2', Ifn>2 WePF, andW=Y1+x2Y2,, x2yn

for nonzero intege?s bl’ %5 bz,, o 0wy B, bn’ then for each positive

integer k there exists w & F such that

b a 8 b
(4.4) ™ =ylx2(Lwyx®Y B,

We prove. Lemma 4,2' by induction onn., If n = 3 and

b, + b, ¥ 0, then a straightforward induction on k proves (4.4).

If =3, b +b, =0, and a, *a.s;lo, then for k » 0,

by L85 b, 8 b
W=yl (Xx®y2x3d)ys,
b a b
WkEYl(Xaz {Y,w,Y]xs)st, for some w e F ,

a a a a
By an easy induction on k, (X ¢ [Y,w,Y]X © )k =X 2 [Y,-wl,Y]X 8 for
some w, ¢ F. Again (4.4) holds for all k> 0., If n = 3 and

‘ol-i'bs’e.z*asﬂo, then
b, & b =8, b
W=(rlx2)yd(x 2y 1),

by . kb -
W= (12 )rT2 2y

2

and (4.4) is valid., Thus lemma 4,2' holds for n = 3,
Assume (4.4) for 3 <n < s and consider the case n = s + 1,

Since n = g + 1 > 3, any word W' guch that

W= Y28, ., s y's

has the further properties W' £ &, W' = {Y,w,Y)] for some w ¢ F, and
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' ' b ’ b
(4.5) W=yt xtw X0 yn

Also W' (in place of XoY) satisfies lemmam 4,2 if s = 3, and W'

satisfies both the hypotheses of Lemma 4.2' and the induotive

hypothesis if s » 3, Hence, for s = 3, there exist Wi W, € F
such that
k bo kas b
W) =y2x 2y°, 1f by # b = 0,

by 8 | az b
(H‘E')k = y2x2 {Y,wl,Y] = {Y,wz,Y}X 8y'3 , otherwise ;

and, for s > 3, there exists w ¢ F such that

b

& g, b
(”sz’)k = X% [Y,wYXx®YS,

Thus, in any case, there exists, for each k > 0O, an element w ¢ F

such that

(4.6) @)¥ = [v,w71].

Return now to a conslderation of W, If bl + ‘on 7( 0 or if

8, + 8 # 0, then by (4,5), the fact that M = [Y,w,Y], and straight-

forward induction on k not involving powers of W' higher than the

first, we obtein (4.4). Unless b

+ b =
lbna

+ 8 , the induction
2 n

on n is ocomplete,

Assume, finelly, by +b =48, +a_ = 0. By (4.5) and (4.6),

1

' by & =g =D
o=yl gk x 2y L
=Y 1x? [T,w,¥X 2Y '  forsmeweTF.

Since (4,4) is valid for n = s + 1, Lemma 4,2', and hence Lemma 4.2,
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is proved.

By taking inverses results similar to those of Lemmas 4,1 =
4,4 are seen to hold for k < 0, It is also useful to observe that the
first congruence in each of Lemmas 4,2 and 4.3 is valid as it stands
vfor 21l inbegers k ;‘ O. |

To continue with the proof of Theorem 4.1, we suppose n 2 2.

Let P and Q be elements of F_ such that P = xo(yoz) and Q = (xoy)oz,

3
Then
| aq by - 2y by
(4.7) P =x - (yoz) TT (= * (yoz) *)
o1 $u2
E( TT ™ (ron) ™ )) =2 (yoz) B ,
i=1
n
(4.8) Q= (xoy)’1 22 ( TT (rop™ 2™ ))
o i
= (1T (s 2 ) (xoy)™n 22
i=1

By the assumption of associativity, P = Q; since the exponents are
restricted, none is zero except possidbly 8y and b n® We consider three

main cases: ocase 1, 31<“0; case 2, a1»> 0; case 3, a, = 0, Subosses

1
are indicated by decimal numbers. In each case but the last we derive

the contradiction P % Q.

Cese 1, &, <0, If b #£ 0, then by lemma 4.4, (4.7),

and (4.8),
3.1 -b
(xoy) =y ® [x,wl,x] ’ for some W, ¢ Fg »
— B2 a 2
P =x [x,wz,x] , for some W, ¢ Fy ,
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- =by
Q =¥ [Iﬂ"s,!] s for some wz € Fg .

Thus b = 0; for octherwise P # Q. Now for b = 0, by lemma 4.3,

a -8,
Cxoy) ¥ = x B [y,w.,x], for some W, € F, ,
1 1 3
al A
P = x {x,wz,x] , for some w, € F, ,
Q = . [y,ws,'z\] . for some W, ¢ Fy .

Hence bn =0 gnd a, = -5 . We consider now two suboases, bn-l <0

and bn~1 > 0.

Case l.1. b < 0 (and &, < Q, bn = 0, -2

n-l 1 1
= i = = L]
By Lemme 4.3, letting b anbn-l ifn=2and b b'nul if n > 2,

=an:>0).

(yoz)bn‘l = {y,wl,z]y’al s for some W, & Fy ,
(4.9) (xoy)an = {z,wz,x]ybxan s for some W, ¢ F, .
Butb
(4,10} P o= (ﬁ (:'ca"’L (yon)bi )) x n=l (yoz)bn'l s L2

®n

=81 & -2,
P = (xwexlly,m,zly =2 = [nwgzly fx2,

w,, W_. & F

for some W 50 Vg o

1’

By (4.8) and (4.9),

3‘-1'1; is understood that for a2ll words w ¢ F5 and all integers
m
o, k, m, (k >0, myp 0}, T7 wilaziftm<k,
i=k
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. A ' | b a A b a
(4‘11) ) Q = {3_,"?4,8]{1,“2a1]1‘7 x a = {Z,WG,XJY x n 2

W, € F

for some Wos Wy, W 5

Since P #* Q, we must have b1 >0

Case 1,2, bn—-l

> 0 (and 2, <0, b =0 -e.lﬂan>0).

Congruences (4.9) and (4,11) remain unchanged. By Lemma 4.3 and (4,10),

b a
(yoz) B=l — [y,wl,z]y n for some w,

(4.12)

P= [x,w7,x][y,wl,z]yanxa'n = [x,ws,z]yanxan , for some w., W

1> Wgs Tgoe

By (4.11) and (4.12), P#Q. Case 1 is impossible,

Case 2,

8, * 0, Suppose bn 7‘ O, Then there exist elements

Wy o o oy Wg € F5 such that

a, b
b ylzl[y,wl,z}, ifbv, >0,
(yoz) 1 =
z By n{z,wz,y], if v, <0,
21 _ 21,01
(zoy) * ==+ 32 [x,w,y],
1 y*1 g1 ly,m,, 2], b, >0,
P =
| -b
1 nyTn (g,w, 2], £, <0,

b
Q =x1y1 [x,wg,2] .

Thus PFQ and b = O,
Suppose, then, aq > 0 and bn = 0, Then there are slements

Wis o s ey Wg € F3 such that
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(yal lz,%,,5], if b, > 0,
(you)°1 = 1 o |
v  —y
y 2 [B,"‘z,y} s if v, <0,
: (<1 yalbl x 2 R ifn=2and a; +8, =0,
(xoy)al = 5
[ x*1 41 [x,wg,x] , otherwise ,
P = x1 ya [z,w4,x] s . for some integer a ¥ 0,
Q = x1 ;}b [x,ws,?] . for soms integer b # 0 ,

Thus P # Q. Case 2 is impossible,
Case 3, 8y = 0. Suppose 'bn 7( 0 and 'bl » 0, Then thers are

olements Wy, Wo, Wg € F3 such that

by bia, b
zlylazz, ifn=2andb1+'b2-0,
bl )
(4.13) (yoz) 1 = .
{ z 1 yaz [z,wl,z] , otherwiss ,
bl . !
Y [x;wz.’:’f] » if ) >0,
B2
(4,14) (xoy) ¢ =
{ =b
v n {1,“'5,'3'] » if az < 0 s
But since a); = 0, we may write
by e b = b
a a
(4.15) Q=2 Ixoy) ¢z 2 ( I 8I ((xoy) * 2 1 )) .
i=
By (4.7) and (4.13), there exists w ¢ Fz such that
bl a A »
P=zty [z,wx], for some integer a ¥ 0 .

By (4.14) and (4.15), we have for some w,
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(4.18) . Q= 1 yb {x,w,2] , for some integer b # 0 ,

Again P#Q. Thus b # 0 implies by <O,
Suppose, then, &, = 0, bn 71 0, and ’ol < 0. The congruences

(4.14), (£.15), and (4,16) remain valid, but for some w,
'zblyblazzbz, ifn=2 anddb, +o, =0,

by _ 1" P2
(yoz) * =
{2700 v R [z2,w,2], otherwiss .

Thus, for some w € Fq and nonzero integers a and o,
(4.17) P = 2%z, w,%] .

By (4.16) and (4.17), P #£ Q. Hence b =0,
Suppose next a, < 0. Then by lemma 4,1 there exist

W, s o 8, W, £ FS such that

i 4

(xoy)*2 = [x,w,y],
A
P E [X,'Wz,X] ’
Q = [Z,W3,Z][X,W1,y] = [Z,Wé,Y] .

Since in this case P ':;é Q, we have a, > 0 and, from before, ‘bn = 0,

Suppose now 'bl < 0, Then there exist Wi, W, Vg such that
b
(yo2) 1 = [y, w21,
P = [yswgﬁx] 3

Q= {zpw3ag} »
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> 0, We have, then, a > 0,

Thus, P Q and =='bn=O, 8, >0, b

1 1 1
Suppose g < 0. There must exist W, Vp, Vg, Wy such that

(x0y) 2 = [x,m,¥],

| b b
(yoz) 1 = 21 [y,m,y],

Hy
It

21 [y,mg,x] ,
b A

Again P ¥ Q. Summarizing, we have a, = bn = 0 and bl’ 8y, 8, positive,

1 2
We consider now two suboases, n> 2 and n = 2,
Case 3,1. n > 2, By Lemma 4,1, (4,7), and (4.8), there exist

Wis W, Wg, W, € FS such that
b b
(yor) ! =21 y2 [g,m,y],

by =
{xoy)az =7v 1 X 2 [y’wzsx] s

v
il

by &
z 1y 2 [g,w,x],
by b
Q = z1lyl (x2 ly,%,,2]) .

Thus n > 2 implies P 2 Q, & comtradiction,
Case 3,2, n =2, Since 85 > 0 and bl > 0, there exist

Wy, Wo, Wg & Fy such that

. 21 y%2 b, =1,

(yoz) 1 =
b, =

zlyziz,wl,y], ifbv, >1,



B7

b 8
yixe,

» if ay = 1,
. . az -
(xoy) ¢ =
b1 %2
J X {y’wgax] L ir az >1 s
zbl yaz x 2 » ir bl =1,
P =
‘ zbl yaz [z,ws,x] . if v, >1,
b, b ‘
zlylxs‘z, ii’a2=1,
W= by b
21y lx2 [y.mwy,x] , if a, > 1

Hence P Q unless a, = b, = 1, Since all cases but the last are
impossible, the proof is complete,

4, Free Products., A categorical description by mapping

diagrams which characterize the free product of two groups has been
given in [8, §3]., Our purposes require somewhat more elaborate

diagrems similar to those given in [8, §18] for the free-and~direct
products of ebelian groups. We now state the definition of a free

product diagram in terms of an axiom and indicate some simple results

as a matter of convenience in writing the further axioms required for
the representation by groups. The definition, axiom, results, and
proofs parallel thoss for freé-and-dirag‘t products, We give, there-
fore, only one proof; it is typical of those not presented,

Let € be a dicategory with zero satisfying the following
axiom,

DFP-1, For each two objects A and B there exists a free product

(£.p.) diagram on A with B; that is, an object A*B and four maps
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1, » ' 2
‘f‘ A%B ° A -f-.r> A*B , *}‘ asg ° B =-ei A¥B
1 | 2 |

such that (omitting for simplicity the subsoripts A%B)
1 31 152 2 2
(1 3 -1, 2'F-0,, ¥ -0q,, $°¥E-1;

(i1) for each object C and each pair of maps pyt A —==>C,

,Gzz B ===> C there exists a unique map ¥ : A*B =w==> C such that
1 2
y& = pand vES = B,

For groups A and B the homomorphism ‘_1{-; *B* for example, sends
the element a & A into the word "a" [8]; +the mapping éiﬂB sends the
i n
woxrd alblaz‘oz. . .an‘bn, where a

£ A, 'bi € B, into the element

i
81850 o o8 € A, and ¥ sends this word into the element

Ar(a) Boloy) Pylag) Bp(bp)e v fyla)) Bo(b).

Two free product disgrams on A with B having objects A*B and
AeB are called equivalent if there exists an equivalence map
©: A#B ==w> AeB such that @ ‘Z‘i*s = ‘I‘i.B and éi-BO = @z@ »
i=1, 2, It is easily shown that any two free product diagrams on
A with B are equivalent and, conversely, that for any object C
equivalent to A#B there is an f.p. diagram with object C equivalent
to that with object A+B, Even more easily one may show that the
objeets of € have 8 zero under the operation of free product formation
in the following sense,

1EMMA 4.5. (DFP) For any object A and any zero object Z,

is_h_g diagra:m

A=Az,
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in which the maps on the left are identities and those on the right

are zero maps, is a frée product diagrem on A with Z having object

A%Z = A,

LEMMA 4,6. (DFF) If ot A ===> A' and o,: B ===> B',

1 2
there is, for each free product diagrem on A with B and on A' with B,

£ unigue map c(l* o 2: AFB === AVHB' guch that
(4.18) (q*“)‘}A*B ?At*Bt‘ 410 i=1,2.

This map has the further property

(4.19) él\'*B' az) = o §MB . i=1 2,

Proof. Since for C = A'#B', ¥ T 1} A ===>C and

‘Al *:81

'? Arapr Xg? B ===, rroperty (1i) of axiom DFP-l yields a unique map

i
Y= &% dy: A¥B ==w> ATAB' such that Y{‘A*B ‘I‘A'*B' .
i=1, 2, Also

éﬁ,*B.(d a)‘I’A*B = é.é.‘*B‘?A'*B'O(' = @, Arje1,

=0, irj=2
But
°‘1§Lﬁ?3\3 "N i£g=1,
= Op if j =2
Thus (éA‘*B’ Oiz) ) ?A*B ( éA*B) ?A*B , 3 =1, 2; hence,

by the uniqueness proper‘l;y (11), (4.,19) is valid for 4 = 1, A similar

argument for 1 = 2 completes the argument,

For groups, otl* ola is the homomorphism which sends a word
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) #n ' n n
a,by8,bgs o wa b " of AXB into the word c(l(al) o, (bl)" .o dl(an)o(z (bn)
of At'aBt,

IEMMA 4.7, (DFP) For each object A and each free product

diagram on A with A, there exists a unique map EAz A%A ==m=> A guch that

N i = i =
AA?A*A I, . i=1, 2.

5. Dicategories with Free Products.

DEFINITION 4,1, A dicategory with free products (DFF) & is

a dicategory satisfying axioms Z (existence of gero), ASD-1 (on the

existence of integral and free objects), and DFP-1 subject to the

additional requirements listed below.,

DFP=2, If J is an integral (and free) object, there exists a

unique equivalence @J

As for groups, O ; bas period two and generates the "auto-

t J ==e> J such that @ # 1

morphism" group of J.

DFP=-3, If J is an integral (and free) object and A is any object,

there exist free product diagrams on J with J and on A with A for which

there are exsotly two maps 6‘31, 57}2: J ==«> J*J having the properties:

i =1 1 =2 ]
W 5% = 2,V =1 i=1, 2

. A Sk = =
(11) AJ(IJ* SJ) VJ 'OJJ’ k=1, 2;

(i1i) for all maps Xgs Ay KXg3 J === A,

- ¢, = =k Sk_ A ~ =k =k
8, { B, (yxa) T)xug } T 4, {"‘1”'( &, (etgx xg) Vg } Vs s
k=1, 2.

For groups we intend J to be the (additive) group of imtegers
and J*J the usual free product, hence a free (non-abelian) group on

two generstors, Now the reduced words of J#J may be taken to be jJust
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those formsl products

n

R I I L B b bl SR A 220,

in which 8y and bi are integers, such that w 1s the empty word if n = O,
‘and 1o a,, b; is gero except possibly a, and b if n > 0. Tith this

notation we may describe, for groups, the mps .‘71}1 and ?}2. If
. : — n
V.t J =~e> JxJ, then V,(1) = TT a,b, for some integers a,, b, and
J dJ i=1 i1 i* "1
some non=-negative integer n. Part (i) of axiom DFP=3 is satisfied with

'ﬁJ only if g 8 = ’% b, = 1; part (ii1) is satisfied only if, in
the notation of Section 3 and with g = Ni(l) for i =1, 2, 3,
(g;logz)cg5 = glo(gzogs). By Theorem 4,1, both parts (i) and (iii)
are satlsfied only in case —6"](1) is either the word "11" or the word
"0110"; these words are le(l) and —V—Jz(l).

Before discussing = représen‘cation for DFP-dicategories, we
note several useful results,

1EMMA 4.8, (DFP) If o, fq and o, /32 are defined, j;han
(otyx ) (Byx ) = (g p)x( ey Br).

Proof, We may suppose A, Bi, Ci are objects such that

;3 By ===>Cy, Pi: Ai --=> B,, i =1, 2, For notational simplicibty

we write Ti: for Til*Az’ and so on, Then, by Lemma 4.6,
: i . i
(paxpp) T ¥; 8

1 3
(apre) g = Tooy,

T py o 121, 2.

(o) By oy p) F 3
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i i i
(s o) (o3 ) T a (2o ) B o = Flor = (o pyooty )L,
{ =1, 2, By the uniqueness asser‘bion (i1) for the f,p. diagram on Ay

with 'Az, the conclusion holds,

LEMA 4.9, (DFF) If of: A =-->B, then 2B (x#«) = uZA

Proof, let i have range 1, 2 throughout. By Lemmas 4.6 and

4:.7’
= i = =
A (um)«}MA A EC Igx =&,
x A, ¥t = xI, = o
A T AXA A *
< i i
m X A ,
Thus AB(c& * X) ?A*A A ?.&*A The desired result follows by

uniqueness (ii) for the f.p, diagram on A with A,
LEMMA 4,10, (DFP) If ® 3 J ===> A, then

.—&A(o(* «GJ).?]k = 0

N k=1, 2,

Proof, let k have rangs 1, 2, Then, by Lemmas 4,8 and 4,9
and axiom DFP=3, (ii),

Z\:A(oc* %8) \'ﬁJk ZA(«*«)(IJ* H :‘7"Jk

— =x
x A (1% €)) V;

= %05

= O

6. A Representation for Dicategories with Free Produots,

We taks as the definition of a representation of a DFP-dicategory ﬁ by
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groups the statement which results from the definition in Chép‘ber I1I
by d‘eletin‘g ”abelia.ﬁ” and replacing "AD-dicategory" by "DFP-dicategory.”
Also we take unaltered the definition of the function G,‘ and a simple
modification of the definition of G‘ A from the preceding chapter,
Explicitly we select any'one integral and free object J € % and take,

for each object A and each map &,

(420 G = {ole= sup(e), D) = 4 R(e)cal,

(4.21)  Gfr) = sup(a [D(st) > R(e)]c), for each T & Gy

In several cases, therefore, the previous proofs may be carried over,

The new arguments concern the operation which converts G A into a

group and which arises from the properties of free products of

arbitrary groups rather than from the direct product of abelian groups,
To obbain a group operation for Gr a e select for each

object B any one f,p. diagram appropriate to axiom DFP-3 and further

fix _‘7-:7 as one of the two maps '.5‘11, 62. We define first an operation

J
applicable to any two coterminal maps LT PY J == A having domain J by

— ———

(4.22) oy X oty = AA(o(lm NZ)V:J .

Then, for any 0'1, 0‘2 € G Ar Ve define

(4.28) @ 0 0, = sup(la>R(e)]oy %, [A2R(T,)]0,) .

Clearly (4.22) and (4.23) define binary operations, Note that for any
maps X,, &y1 J ==-> A there is, for some injection K, the canonical

decomposition
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(4,24) Xy X X, = K aup(cxl) o, sup(o(z)} .

1EMMA 4.11. (DFP) G A is a group relative to the operation

A and has E“P(OAJ) a8 unit element,

Proof., Closure is immediate from definitions (4.20) and

(4.23), Suppose o, & GA and let o, = [A > R( U"i)]a‘i, i=1, 2, 3,

Thén,‘ by definition (4.22) and axiom DFP-3, (iii), oty XA( oy X, 015) =
(o(l Xy o(z) X, ™g. Hence, by (4.24), there exist injections Ky Kgs
K6’ and K7 such that
I PR A ERC NV
%3 % g = Kglay 9 oy,
{"4("'1 o, )} X, Xz = K {(e) 0 o) o oy}

= (g %y o) X, oy
= %y xy (& Xy otg)

= oy % K (T, 0 0

Ke {"'1 0o (03 0, fs)} .

The assoclative property for @A follows from the two canonical decompo-
sitions above whose injection factors are K6 and K 7

Next, let Z be any zero object, By lemma 4,8,
U K O = B0 )V

D, (&1#0, ) (120, )77
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But, by lemma 4.5, there ls an f.p., diagram in which J*Z = J and

‘-I’ Tag 31 Jag = Ige TWith these results and Lemmas 4.6 and 4.7,

2
-
b
o
|}

' Oag {A(“ 00 T *z} géJ*z 1,0, 7, |

1 —
STV SWERICHE WL 5

(1, %) (1, §J,,J ) .

By axiom DFP=3, (i), %MJ I;3 henoo oy X, O, = T o I, =

Thus, by definition (4,23), T, 9 aup( ) = sup(otl A AJ)

10

sup( 'o(l) = ¢,. Therafore sup(0 J) is a right unit element in G
Consider now 0'1 @J_, where @J is the unique equivalence

desoribed in axiom DFP-2, By appropriate definitions and lerms 4,10,
739 70 = supleg %, 4 6
= gup( ZSA(O(l* *y @J) ‘-?J)
- aup(OAJ).

By a standard argument, sup(0 ) is the unique twow=gsided unit of G

and oy ‘@J is the unique inverse of O 1° GA is a group.

IEMMA 4.12. (DFP) For cachmap o : A ——=>B, Oy is &

homomorphism of the group GA into the group GB'

Proof, It is clear that Grq is a function defined on G’ A
and that ’Gl‘q has values in GB’ Supposa T Tp € G A and let
Ay " (A2 R( U-i) lJo., 1 =1, 2, We may assume the oanonical decompo-

sitions
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ala>R(T)] = [B2R(p)1p, , i=1,2.

thus G (@) = sup((BoR(p)lp,0y) = py oy, i =1, 2, By
appropriats definitions and Lemmas 4.8 and 4,9,

(BoR(P )]G (a x5 [B2R(PIGr, (o)
| = ((BoR(py)]p, o) Ay (B3 R(p1p, o)
e (s R(r) T A (x[aDR(0)] )

(4.285) = K, X Ao,

= ZB(“ Ap* X)) Vg

— —

= AB(cx x o) (ot % o) Vo

=« B, (e gx o)

X (o 1 % o{z) .
By (4.25) and definition,

(4.28) Gd( o*l) oy G“("'z) = au;p(o((o(l Xy otz)) .

= of 4
But @, ©, O, sup( 1% otz)_. Hence, by definitions and (4.24),

there is an injection X such that

(4.27) Gy 9 @) = sup(ak(oy & )

= sup(e () X, otp)) .

' The Lemms follows from (£,26) and (4.27).
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-For each map of'3 A =~==> B, let ;g'u be the transformation
( an GAa GB)*'

THEOREM 4.2, For any DFP-dicategory &, the funchion

5 . A —> G,

o -->ﬁq

is a faithful representation for { by groups provided it is object«

faithful; that is, provided G s = GB implies A = B for all objects

A and B,
Proof, Consider the statements:
(a) op defined implies G’qﬁ = G’« GP 3
(B) for each injection K: A ===> B, GK is the identity
funotion on G‘ A’
(€) for each supermap p:C--=>D0, Gf’ maps GC onto GD;
(D) if o, and o, are coterminal, then o, # «, implies
G, # Gy -
As was noted in the Appendix to Chapter III, these statements are walid
for the functions ’G,,, and the sets GA’ For J is an integral and
fres object and, in the notation of that appendix, these functions and
sets are Gi and Gg, respeétively. Finally, it is easily shown that
these statements extend to sufficient conditions for a representation;
for, by lemmas 4,11 and 4,12, each GA is a group and each G,,, is a
homomorphism,
‘T« Appendix., The axioms for DFP-dicategories have been
obtained by abstracting certain properties of the dicategory gG of

all gro‘ups’. In the absence of any other criterion for the selection
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of axioms one may atfbemp'h to remove the restrictive hypothesis of
Theorem 4.2 by adding as axiom a statement whose inberpretation for
groups is 'v#lid and which implies object=faithfulness for the
representing function Z » Since the rapresan‘hatioﬁ of Theoren 4,2
is in fact object=faithful when applied to gG’ such a statement is
available, We have chosen not to include an axiom of this sort
because the phrasings which we have been able to achieve entail
awkwerdness: if stated in the language of the other axioms, clarity
is lacking; fput in simplest form, none of the terms primitive in a
dicategory are used.

Finally, we note that the representation of Theorem 4.2
applies to the dicategory ;‘gG of all groups to yield for each group

A an isomorphism ﬁ)'A mapping A onto G A for one choice of VJ and an

anti=isomorphism for the other choice of VJ. In the first case,

there is for each homomorphism o of the group A into the group B,

the commutativity relation ﬁBO‘ = G« ¢A‘
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