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ABSTRACT

A new analytic theory is presented for predicting certain
characteristics of the plane potential flow through a cascade. The
analysis is based on the assumption that the airfoils of the cascade
deviate only slightly from straight lines. |

The theory provides a means for obtaining higher order
approximations than have beeﬁ found heretofore. As a result it has
been possible to evaluate the accuracy of existing first-order approxi-
mations.

In addition the first-order theory has been extended by the
addition of a means forl obtaining the variation of flow velocity and

preséure at the airfoils, and the removal of certain restrictions on

angle of attack.
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REVIEW AND SUMMARY

This investigation is concerned with plane potential flow through
a cascade of airfoils. A new analytic theory is presented, by ﬁeans of
which one can predict certain characteristics of the flow and obt._ain in-
sight into the effect of some of the many variables involved.

A sizable literature exists on this subject, though v_ery little of
it is actually useful. The work of Weinig, Pistolesi, Klingeménn, and
Garrick deserves mention, however.

The first comprehensive treatise on plane potential flow through
cascades is "Die Stromung um die Schaufeln von Turbomaschinen",
published by Weinig(l) in 1935. This work deserves considerable praise
for thé wealth of information it contains and the care with which it is
presented. The book has become a standard reference in ;its field and
subsequent work has often verified its conclusions. In addition to
discussions of a large number of special cases, a method is outlined for
treating cascades with arbitrary éirfoils. Actually the special cases are
of value principally for insight into the problem, and little use has been
made of the method for arbitrary cascades. For the designer of an axial
flox;r compressor, the useful items in Weinig's book are some relations
for flow with smooth entry at the leading edges of the airfoils of one type
of cascade. The camber and airfoil orientation are givén for the smooth
'entry condition for cascades with zero-thickness circular arc airfoils.
Though the airfoils in an actual cas'cé.de must have some thickness, the
Weinig relations are nevertheless used if the camber line (or mean line)
has the form of a circular arc. |

In 1937 Pistolesi(z) published an approximate solution of the
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cascade problem in the form of an involved extension of the Birnbaum-
Glauert thin airfoil theory for a single airfoil with small angie of attack(3).
His equations have had virtually no practical use because of their com-
plexity. Furthermore the assumptions of Birnbaum and Glauert, which
Pistolesi used, introduce greater errors in the cascade theory than in
the original application to single airfoils as is shown for the first time
in the present paper. For example his results for the simiale flat plate
cascade do not agree with the known exact solution. Thus this frequent-
ly-quoted work represents no improvement over the results of Weinig.

Another analytic approximate solution of the cascade problem
was published by Klingemann(4) in 1940. This ingenious theory com-
bined the use of conformal transformation, which was the principal tool
of Weinig, with the use of the Birnbaum model for the flow field, used
in the Pistolesi theory. Since the exact flat plate cascade solution was
used as a starting point, the results are more accurate than 'ﬁhose- of
Pistolesi. Klingemann obtained a simple equation for the lift coefficient
for a cascade of zero-thickness circular arc airfoils with small angle
of attack. Actually the same equation can be obtained from Weinig's
results for the same type of cascade; hence Klingémann‘s equafion was
esseﬁtially a verification of the work of Weinig. Klingemann also.
obtained.an expression for the lift coefficient for the case of zero-thick-
ness S-shaped airfoils, but this is much less tractable,. being in the
form of a séries which is impractical to compute for low airfoil spacing.
The treatment of S-shaped airfoils did, however, represent an advance
beyond the work of Weinig.

The work of Garrick(E) published in 1944 is exeinplary of a large

number of solutions of the cascade problem which are essentially



numerical methods similar to the early method of Weinig. Applicable
to any cascade geometry, the Garrick method enables the complete
solution to be found. Several successive conformal transformations
are involved, one of which is performed i)y the iterative numerical

(6).

procedure of the single airfoil method of Theodorsen However the
entire solution is very lengthy and laborious, particularly if reasonable
accuracy is required. Furthermore each new cascade geofneti'y must
be treated individually.

In a sense the complete solution of the flow through an arbitrary
cascade has therefore been obtained: the methods of Garrick and other
recent i'nves!tigators - or the original method developed by Weinig - can
.be used with any cascade geometry. The reasons for sustaine& interest
in the problem are the shortcomings of these methods with regard to
flexibility, simplicity, and accuracy. The relations of Weinig for smooth
entry, and the results of Klingemann are more simple to use Abut are
limited in range of application. The restriction to circular arc and S-
shaped camber lines and combinations of these is not ser-ious_in view of
present day praétice, but the absence of any information ahout the
influence of airfoil thickness is more important, éince the flow velocity
and sfatic p:;.'essure at the airfoil are decidedly dependent vupon thickness.
Furthermore there is no information as to accuracy of the existing -
approximate theories.

This investigation was prompted by the need for a theory which
would be less restrictive than the existing analytical theories, yet with-

out the disadvantages of numerical methods. The resulting analysis

differs from previous work in several important respects:
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(1) The theory is based upon certain approximations and there-
fore differs from numerical methods such as that of Garrick.
Even if the iterative numerical process of the Garrick method
is simplified by using only the first approximation, there is
still little resemblence to the present theory; the effecté of
thickness and camber line shape are treated separately in

the latter, and only one conformal transformation is used.

(2) The present theory can be used to obtain second and higher
order approximations, which were not obtained in the

approxirnate theories of Pistolesi and Klingemann.

(3) The theory also differs from those of Pistolesi and
Klingemann in that the Birnbaum model for the flow field is

not used, and that no restriction is assumed on angle of attack.

The approximations of the present theory amount essentially to the
assumption that the cascade airfoils differ little from straight lines. The
flat plate cascade, for which the exact solution is known, is used as the
zeroth approximation to the arbitrary cascade. Though _applied in an
entirely different manner, this is also the assumption uéed by Klingemann.
In the present theory this assumption is used to obtain first-order terms
in a transformation equation relating the cascade plane and a circle plane.
Then these terms are used to obtain second-order terms, and so on.

The results of the present theory are equations for overall flow ‘
characteristics (such as lift coefficient and downstream flow direction)
and the variation of velocity and pressure at the cascade airfoils. Two
types of airfoil camber line are considered: circular arc {(or symmetric

parabola), and S-shaped. Combinations of these plus an arbitrary thick-
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ness distribution are sufficiently general for the theory to be described
as applicable to arbitrary cascades within the limits of the approxi-
mations involved.

An original objective of doing extensive work on the higher order
approximations was curtailed when the complexity of the expreséions
involved was recognized. Certain untabulated functions of the complex
variable (or equivalent complex integrals) were encounterea. This
was recognized as a limitation to the usefulness of the higher order
results.

However some success was obtained when certain additional
approximations were applied to what were considered to be the most
important higher order terms, namely, second-order term.s due to
airfoil camber.  The resulting expressions were used in an error
anglysis and led to a simple expression for maximum error of the first-
order approximations to certain flow characteristics. It_wa.s--_also found
from the ée’cond-order terms that the first-order equation for flow

characteristics giving downstream flow angle were numerically more

accurate than the first-order equations for other flow characteristics
such as lift coefficient. |

Thus the majority of equations derived in this thesisare first-
order approximations and frequently duplicate the earlier results of’
‘Weinig and Klingemann. However certain improvemenfs of the exist-

ing first-order theories have been made:

(1) The restrictions on é.ngle of attack have been removed.
(2) The results for S-shaped camber lines are in more tractable

form than those of Klingemann.



{(3) The inaccuracy of Pistolesi's equations have been pointed
out and analysed.

(4) The effect of thickness on velocity distribution has been
éstablished.

(5) The accuracy of first-order equations has been determined.

The last two are, of course, the most important.

One final interesting point deserves mention‘ here. IA com-
parison with a well-known empirical formula indicated that the present
first-order results for zero-thickness airfoil cascades are in fair
agreement with results for actual test cascades having normal airfoil
thickness. There are also indications that the new analytical.ly ‘flerived

formula may be an improvement over existing empirical rules.



I. INTRODUCTION

The design of a turbomachine and the prediction of its perform-
ance require knowledge of the internal fluid flow. Current design trends
indicate that turbomachines of the future will be smaller than present
machines.. This means higher energy transfer and greater turning of the
flow, and provides an incentive for more research on the flow pi‘oblem.

For axial flow machines it is frequently assumed for simplicity
that the stream surfaces are cylindrical. Since a cascade is an infinite
row of airfoils, circumferential sections of the flow through a row of
rotor or stator blades can then be considered as plane cascade flow. For
design purposes cascades are considered at several radial stations; the
resulting airfoil sections are used to construct the blades. With the blade
geometry fixed the off-design performance can also be predicted {to a
more limited extent) from cascade performance.

It has been found in practice that two-dimensional cascade flow
represents a good approximation to the actual flow at all radii except at
the blade extremities, where boundary layer and secondary flow phenomena
are important. The latter influences are not yet fully un&erstood, hence
most compressoi‘s are still designed ignofing these three-dimensional
effects. Because the theory of the two-dimensional cascade ‘is.fa.r from
compiete, many designers use only experimental data from cascade
tests. The object of the present investigation is to improve the usefulness
of the cascade theory, both for design purposes and to é,id interpretation
of cascade tests.

A cascade is a row of equally spaced airfoils. A typical com-
pressor cascade is shown in Figure 1. Also shown are. some stream-

lines of the flow and the chord and camber lines.
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Differences exist as to the precise meaning of the terms chord,
camber line and airfoil thickness. This will be illustrated by a descrip-
tion of several ways an airfoil shape may be constructed. The chord
line is sti'aight and of length equal to the chord; its ends are called the
leading edge and the trailing edge (Figure 1). The camber line is (in
general} curved and also connects the leading and trailing edges. The
profile of the airfoil may be obtained by adding a thickness Idistribution
to the camber line in either of two ways: normal to the chord line(7),

(8)49)

or normal to the camber line The thickness distribution is zero
at the leading and trailing edges and may be a function of position on
the chord line or on the camber line. Thus if the airfoil profile is '
given, and used to find the chord and the camber line, the results will
depend on the method of construction assumed. Fortunately the
differences are usually small and in any approximate theory, such as
that to be described here, can be neglected.

The most useful characteristics of flow in a cascade are: (1)
those which describe the overall effect of the cascade on é.n approaching
uniform flow, and (2) those which describe in more detail the flow at
the 'surface of each airfoil. Examples of the first type are circulation,
lift coefficient, deviatioﬁ angle, downstream flow direction, and flow
turning angle; all of these are a measure of the same effect and are
therefore related. The second type of flow characteris"cic, generally
more difficult to determine, is exemplified by velocity and pressure
distribution on the airfoils.

Cascade problems are usually classified according to two types:

the direct problem and the inverse problem. The direct problem
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consists of determining the flow characteristics of a given cascade;
the inverse problem consists of determining the cascade geometry
from certain given flow characteristics. This thesis is primarily con-
cerned with the former problem, although the results can also be used
for an important example of the latter.

A considerable amount of work has been done on direct cascade
problems in the past. A detailed account of each method of solution
would be out of place here. However a brief indication of the basic
principles will be given, since the points of departure of the present

work . can then be seen. (

A. The Single Airfoil Problem

The cascade problem is directly related to the single airfoil
problem of aeronautics. In fact the latter can be regarded. as a limiting
.case of the former (that of infinite airfoil spacing). Also some of the
methods of solving the cascade problem are extensions of sinéle airfoil
methods. Thus a discussion of methods of solution of the. single airfoil
problem is appropriate.

Complete exact sblutions of the flow problem have been obtained
in certain special cases with the use of conformal transformation.
Briefly the method consists of considering the physical problem in the
plane of one complex variable (where the solution is readily dbtained),
followed by interpretation of the results in the original plane(lo)’ (1), (12).
The two planes are related by a trans;forrna.tion equation, which must
be determined for each problem. The simplest case is_the flat plate

airfoil, which is transformed into a circle. The transformation for

this case is an important one called the Joukowski transformation. If w
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is the physical plane (the plane of the airfoil) and 3 is the circle plane,

the equation relating the w and 3 planes is
\ \
Wy = 2 (S*‘g) (1)

which connects a unit circle in the M plane and a flat plate of unit
chord in the w plane. Equation (1) can also be used for elliptic air-

foils and a family called Joukowski airfoils(l3)’ (14)

if other circles
are chosen in the M plane. Relatively simple exact equations have
been obtained in these cases for such flow characteristics as lift
coefficient and velocity distribution on the airfoils.

For the single airfoil of arbitrary shape no complete analytical
solution of the flow problem exists, though numerous numerical methods
are available. One of the earliest attempts to obtain analytical results

{

by an approximate method is that of Birnbaum 15), for airfoils of zero
thickness, The method does not involve conformal transformation;
instead a model is established to represent the airfoil in .the flow field.
The model consists of a vortex distribution on the airfoil chord line,
and the complete flow field is approximated by adding the contribution

due to this vortex distribution to a uniform flow. A rnethod of determin-

ing the vortex distribution for a given camber line was subsequently

given by Glauert(a) who used the approximate relation:
V,
-slope of the camber line = o + —X-\E/Er-_-e-’i (2)

where « is the angle of attack, V is the velocity at and normal

vortex
to the chord line due to the vortex distribution, and V_o is the
velocity far from the airfoil.

Birnbaum made no attempt to consider airfoil thickness.

Actually if the effect of thickness is accounted for by adding a source-
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sink distribution on the chord line, it is found that his first approxima-
tion to the overall flow characteristics is unchanged, due to the
assumption of small angle of attack., Hence the Birnbaum theory is
frequentlir regarded as a theory of airfoils of small thickness, a"‘thiri
airfoil" theory. However it is actually for airfoils of zero thickﬁess,

and gives infinite velocity at the leading edge(l())’ (17)

, an impossibil-
ity for an airfoil with a rounded nose.

Essentially the Birnbaum theory is a first order approximation
to the exact solution of the single airfoil problem under the assump-
tions that airfoil thickness is zero, and that camber and angle of
attack are smali.

Another solution for the single airfoil of zero thickness is due
to Rannie. Discussion of this method will be found in the last section
of this Introduction since it has direct bearing on the method to be
deécribed in this paper.

Recently Lighthill(”) has published a refinement of the Birnbaum
theory in which the difficulties with velocity at the leading edge have
been overcome by properly accounting for thickness. Furthermore his
technique can be used for second and higher order approximations.
Limitations of small thickness, camber, and angle of attack remain,
however.

In contrast to the Birnbaum theory in which no conformal
transformations occur, there are other methods in which it is essential.
One of these, due to Munk(18), leads to the same final relationships as
the Birnbaum-Glauert theory. The latter theory is stressed here

because the extensions to cascades have been based on the Birnbaum
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(6),(11)

model of the flow. Another well known method is due to Theodorsen
and has been used with considerable success; it will now be described
briefly.

The Joukowski transformation, Equation (1), can be used to
transform a flat plate, an ellipse, or a Joukowski airfoil into a éircle,
about wlﬁch the corresponding flow is easily established. If properly
applied to an arbitrary airfoil, the resulting figure is neariy circular.
In the Theodorsen method the nearly circular figure (in the 3 plane) is

transformed into a circle (in the z plane) by a second transformation,

given by
o A\n
@)= = ot (3)
n-=o S0

where the complex coefficients A~ must be determined, and are usually
found by iterative numerical methods. The treatment of the flow
problem after the circle has been obtained resembles that used for the
simpler airfoils.

The Theodorsen theory is usually considered an exact numerical
method for arbitrary airfoils. It is possible to simplify it somewhat by
certain approximations. Goldstein(7)’ (19) has derived several formulas
for ‘velocity on an arbitrary airfoil, by linearizing the Theodorsen theory.
His approximations lead to equations resembling those obtained later by
Lighthill. The results are more simple than the exact ;‘esults of
Theodorsen, and do not have the leading edge difficulties of early thin
airfoil theory. However the 1imitat‘i;)ns of small thickness and small
camber are present. The Goldstein method has not generally replaced
the method of Theodorsen, possibly because the most accurate Goldstein

equation is fairly complicated, and that computing machines have been
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adapted to handle the numerical part of the Theodorsen method.

B. The Cascade Problem

The cascade problem is made more complicated than the single
airfoil problem by the additional parameters airfoil spacing and stagger.
Howevelj certain exact solutions are available, although as in thé case
of single airfoils they are generally of little interest except as a basis
for an extension. The most familiar exact solution is that of the flat

(1), (5), (14)

plate cascade which uses the transformation equation

i = 2 e Pl « P Eulne)]. @

-

This equation relates a unit circle in the z plane and a flat plate'cascade
of chord unity, spacing o (solidity -é_- ), and stagger angle B in the w
plane (see Figure 2). Choice of B and the real parameter bo

determine ¢ through the equation

i‘_: m%w“(z—%ﬁﬁ) +M€,W' (z—b‘g‘—“—“%)

(5)

where

Q___,,\r\«-\n:'-n.\,:-m'z_% _ (6)

It is obvious that this transformation is considerably more complex
than the Joukowski transformation, Equation (1).
The flat plate transformation equation given above has been

(1)

used by Weinig to derive Joukowski-like cascade airfoils, in an
exact theory paralleling the Joukowski airfoil theory. The analysis is

quite involved and the cascades have little practical significance,
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though the results afford considerable insight into cascade flow.

A more important contribution by Weinig is his work on cascades
with zero-thickness circular arc airfoils. Weinig determined the
conditioné under which the flow enters the cascade smoothly without
infinite velocity at the leading edges. His results were used
extensively in Germany for designing early axial flow compressors.

Another exact solution to be briefly mentioned here is the zero-
spacing, zero-thickness cascade, which will be hereinafter referred to
as the infinite solidity cascade. Here continuity considerations alone
enable the solution to be obtained readily for any stagger or zero-thick-
ness airfoil shape. Again the results are trivial, but they \&ill be used
here as an important limiting case for checking purposes. |

For cascades with arbitrary airfoil shapes, various extensions
of single airfoil theory have been devised. Analytical thin.airfoil
théories have been devised by several authors, and in each case a model
similar to that of Birnbaum has been employed. Pistoles{i(z) deri'ved
integral equations similar to those of Glauert for determining_ chordwise
vortex distributions for a given camber line. He also considered the
effect of small thickness. His equations are considerably more complex
than those for single airfoils largely because of the introduction of
spacing and stagger. Scholz(zo) interpreted the results of Pistolesi,
but added nothing new to the theory. Lieblein(21) extended the Pistolesi
theory to include airfoils of small thickness with finite trailing edge angle.

(22)

Hudimoto conformally transformed the chord lines into a circle and

(4) also

considered the vortices to be located on the circle. Klingemann
used the circle plane but considered a potential flow which crosses the

circle.
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All of the foregoing thin airfoil theories have limitations of
small (or zero) thickness, small camber, and small angle of attack.
For cascades these limitations are more serious than for the single
airfoil: |

{1) Though airfoil thickness has no effect on the first or~der

‘épproximation for lift coefficient of the single airfoil at small

angle of attack, this is not true in general for the clascé.de, as

(2)

shown by Pistolesi

(2) The maximum camber encountered in a compressor
cascade may be twice as large as for a single airfoil, while the

ratio may be as high as four for a turbine cascade.

(3) Even for small angles of attack greater error is introduced
b}lr approximations similar to Equation (2), because in the
cascade there is an additional component of velocity parallel to
the chord due to the vortex distributions on the chord lines of

neighboring airfoils.

In short the assumption that the airfoil deviates but little from a
flat plate is much less adequate for the cascade, and the errors intro-
duced by assuming singularities on the chord line (which may actually
lie partly outside the airfoil as in Figure 1) can be considerably greater
‘;han for the single airfoil. These errors have never been systematically
studied.

The innovation of Theodorseﬁ, that of transforming the arbitrary
‘airfoil into a near-circle by a flat plate transformation, followed by a

transformation into a circle, has been applied to cascades by a number
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of authors. One of the best known methods is that of Garrick(E), which
will now be described.

In the Garrick method, Equation (4) is used to transform the
airfoils iﬁto a single nearly circular curve. Then Equation (3) and the
Theodorsen method are used to obtain a circle. In the first transform-
ation the‘ points at infinity in the physical plane are taken into the
singular points z =+ 1/b, . In the second transformation the ’singuiar
points are transformed into, in general, two unsymmetrically placed
singular points. A third and final transformation (which is not necessary
for the single airfoil) restores the symmetry of the singular points
while retaining the circular form for what were the original airfoils.
The flow problem is easily solved in the final circle plane and the
numerical transformation relations are used to give the flow character-
istics in the original physical plane. The labor involved cé.n be reduced

by the use of various numerical techniques(23)’ (24)

or automa&_tic com-
puting machines.
Similar methods involving several successive conformal trans-
. . (25) (26)
formations to a circle have been devised by Howell , Traupel ,

(28)

Weinig(l), Kamimoto(zz), Abe(27), Merchant s Lighthill(zg),

(30) (31), and others. These methods are all extensions

Hirose , Moriya
of the Theodorsen numerical method to the cascade problem, and the
apparently undiminishing production of such extensions Surely indicates
that the methods lack something.

The main reason for dissatisfaction with the Garrick method and

other extensions of the Theodorsen method is simple. Even if airfoils

were used of the same shape as are generally used as single airfoils,
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the first transformation in the Garrick method gives a curve much less
circle-like, especially for small spacing, than the correspoﬁding
transformation of Theodorsen for single airfoils - and as Theodorsen
pointed oﬁt, nearness to a circle is important for minimizing the
number of iterations necessary in the numerical process.

Numerical methods involving conformal transformation in which

the final plane is not a single circle have also been devised. Mutterper1(32)

transformed the arbitrary cascade into a flat plate cascade, for which

(33)

the solution is well known. Shirakura used four transformafions to
arrive at an annular region of flow, in which the airfoils have been
transformed into both the inner and outer circles.

The simplest example of a numerical method in which the cascade
is not conformally transformed into another figure is the "“interference"

method of Betz( 34) .

Here the properties of the isolated airfoil are
assumed to be known (if not, they may be determined by Theodorsen's
method) and the effect of the neighboring airfoils is assumed to be that
of vortices, each placed at the location of another airfoiljin the cascade.
Betz outlined an iterative procedure which results finally in a.. dis-
tribution of singularities for each neighboring airfoil. \}ariatio_ns of
this technique have been devised by Weine1(35), Katzoff et 31(36),
Woolard(37), Hutton(38), and others. The fact that these methods also
become more cumbersome and less accurate as airfoil spacing de-
creases suggests that the difficulties, of the previously described methods
still have not been entirely eliminat.ed.

One technique has been used which does become more simple

and accurate as airfoil spacing decreases. This is the "stream
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filament" method which is based on the older channel theory of steam
turbines (reference 39, p. 992). If the airfoil spacing is sufficiently
small, approximate streamlines and potential lines of the flow between
the airfoils can easily be sketched freehand. Then from continuity
considerations and an assumption as to the variation of velocity across
the chanﬁel, the velocity on the airfoils may be determined. Huppert
and MacGregor(40) have outlined such a procedure based upbn lineaf
variation of streamline curvature along potential lines. These methods
are quite useful for spacing less than about half the chord, but are too
inaccurate for most practical cascades. Finally there is the disadvant-
age that the velocity cannot be obtained for portions of the airfoil near
the leading and trailing edges, especially for large stagger. |
Summarizing, one may state that two general methods of
approach to the arbitrary cascade problem have been used:. In one case
the Birnbaum model is used in a theory leading to equations g'_iving flow
characteristics in terms of cascade parameters. In the other case
some kind of numerical method is devised, which must bé applied to

each cascade individually.

C. Rannie's Method and its Extension to the Cascade

Generally speaking, analytical methods have the advantage of
giving greater insight into a solution than numerical methods, but it was
pointed out above that results from the available thin airfoil theories
can be considerably in error if the déviation of the airfoil from a flat
plate is large. The flow characteristics which are particularly
sensitive in this respect are velocity and pressure distribution, which

are known to be given incorrectly near the leading edge in certain cases
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by the foregoing thin airfoil theories. The importance of boundary
layers in turbomachines and the intimate connection between boundary
layer characteristics and pressure distribution provide the incentive

for devising an analytic cascade theory which predicts realistic pressure
distributions.

Following the example of Goldstein, who devised an analytic
approximation to Theodorsen's method for single airfoils, W. D. Rannie
has recently envisaged a similar approach to the Garrick method. His
initial work (unpublished) was restricted to the single zero-thickness
airfoil. Rannie was unable to discard the assumption of small camber,
but departed from the Goldstein approach as follows: Goldstein utilized
the smallness of certain quantities in the near-circle plane, whiie
Rannie chose not to consider this plane, realizing that Goldstein's
assumptions would not be as good for a cascade. Instead he assumed
th;;t the physical plane and the final circle plane could be related through
a single transformation equation which could be determined. Rannie
found the proper form of the overall transformation equafion by combin-
ing the successive transformations (Equations 1 and 3) into a single
equation and grouping unknown constants.

Rannie's equation for the overall transformation from the

physical plane of a single airfoil to the circle plane is

W@ X ()i = L (e k)(ea) + 3 (M
. nro =

where A and the Bn must be determined. Applying this equation to
zero-thickness parabolic and S-shaped airfoils, Rannie found that A and

the Bn could be evaluated quite simply if they were assumed to be given
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by power series in a linearization parameter. Substitution of x and y
from Equation (7) into the equation of the airfoil shape, and equating
coefficients of like powers of the linearization parameter led to simple
equations. for the unknown coefficients.

Though Rannie was unable to include the important effect of air-
foil thickness in his theory, there was still an important improvement
over the work of Birnbaum and Glauert. Rannie was able to find
approximations of higher order than the first approximation which
results from the earlier theory. The determination of first-order
accuracy, for which the higher order terms are useful, provided an
incentive for an extension to cascades of the work of Rannie plus the
addition of the effect of thickness.

At the suggestion of Dr. Rannie, the author has attempted the
extension of this work to the cascade problem. As might have been
ex.pec‘ted, the extension presented considerable difficulty. It was the
original intention to follow Rannie's example and simply gombine the
successive transformations of the Garrick method, grouﬁing_unknown
constants. Actually it was found that this approach was completely
impractical for several reasons. For example it was found that the
"additive function", 2 :B-:“ , in Equation (7) is rapidly convergent
compared to a similar series for a cascade, and it was found necessary
to replace the series by an (initially unknown) function in closed form.
The unknown function was determined by an auxiliary boundary value
problem, for which a new method of solution was devised. This and
other considerations (which will be omitted here) ﬁnally led to a form

for the assumed overall cascade transformation equation which could
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not have been obtained by the obvious extension of the work of Rannie,
as first attempted.

In the following section the present theory will be presented for
casc‘ades.with airfoils of the following shapes: (1) zero-thickness
circular arc, (2) zero-thickness symmetric parabola, (3) zero~—thick-
ness S-éhape, (4) symmetric airfoil with arbitrary thickness distribu-
tion, and (5) combinations of the previous shapes. Strictl;lr speaking,
the last and most general of these is not an arbitrary airfoil, but it is
considered to be sufficiently general for most practical uses.

- Following the analysis a section will be found devoted to a com-
parison with the results of previous investigations mentioned in“this.
Introduction. A final section contains a discussion of the present

results, including an error analysis.
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II. ANALYSIS

As mentioned in the Introduction, in the method of solution used
here a conformal transformation of the airfoils of the cascade into a
unit circle is effected. Before the complicated details of this trans-
formation are presented below, there will be found discussion of> what
is actually the final part of the problem - namely, the solution of the
equivalent flow problem in the circle plane, plus interpreta.tioﬁ in the
physical plane.

Notation is listed in Appendix A.

A. The Solution of the Flow Problem

The w = x + iy plane has already been selected as the physica.l
plane. - that is, the plane of the airfoils, and the =z = reicP plane as the
circle plane. Figure 3a shows the assumed orientation in the w plane
of a cascade with stagger angle p and spacing-chord ratio o . One
airfoil has its downstream end, or trailing edge, at the point w =i
and its upstream end, or leading edge, at the point w = -j-‘z- . Corres-
ponding points on all the airfoils in the w plane are represented by a
single point on the unit circle with center at the origin of the z plane
(Fiéure 3b). For example the trailing edges labeled T in Figure 3a
are represented by the point < “ on the circle in Figure 3b. The
argument (value of C? ) of the point T is ¢ and is called thé trailing
édge argument (not to be confused with the trailing edge angle of an air~
foil with a sharp trailing edge). Similarly the leading edges L are
represented by the point A whose argument is X . The region outside
the airfoils is transformed into the region exterior to the circle. In

particular the point at infinity to the right of the cascade in the w plane
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corresponds to the point z = + Lb , where b is a real number less than
unity. The point z = - i- and the point at infinity to the left of the
cascade in the w plane similarly correspond.

It .has been assumed above that the transformation from the
arbitrary airfoil of Figure 3a to the circle plane of Figure 3b is ~possible.
The det#ils of the transformation depend upon the cascade geometry,
and will be discussed later in this section on Analysis. For the moment
attention is directed only to the fact that though the values of quantities
like b and ¢ depend upon the original cascade geometry, the general
appearance of the circle plane is the same for all cascades.’

The flow in the physical plane w originates as a uniform flow
of specified direction far to the left of the cascade. The fluid is deflected
by the cascade, eventually becoming another uniform flow (with, in
general, a new direction) far to the right of the cascade. The velocity
vector diagram is shown in Figure 3c. The vectors v, and VD
are the upstream and downstream vectors respectively. The vector
Voo is the average of V,, and VD’ and is commonly ‘empl_oyed in
the analysis of cascades because of the property that the force on an
airfoil is perpendicular to Vg , similar to the case of a single airfoil.
The angle of attack o gives the direction of this vector.with respect
to the airfoil chord line.

The corresponding flow in the circle plane is that from a source-
vortex at z = - -\:: , around the circle to a sink-vortex at z = -t . The
complex velocity potential P(z) can be shown to be given by

¥ - Y { +bv)(z-%
Pa) - %Vw[e towh () 4e M(b:g)].‘.;‘} L‘&@ Y- 1) "

G 5YE-1)
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where [ is the circulation about one airfoil, and y = « + B.
The circulation [ in Equation (8) can be established by the
Kutta condition, which states that the flow velocity must be finite at a

sharp trailing edge. Stated mathematically,

w[RPEN] -e o

If the trailing edge is not sharp, but rounded, the Kutta condition has
no meaning. In this thesis Equation (9) shall be used to fix the circula-
tion anyway; it must be borne in mind that for the airfoil with rounded
trailing edge, this is arbitrary.

If Equation {8) is substituted into Equation (9}, the resulting

equation for circulation is

M= 4vaVy,

- . (10)

i+ b T

Equation (10) gives one of the flow characteristics (see
Introduction) in terms of three cascade parameters { o, y, and Vg, )
and two parameters from the circle plane (b and ). Hence if b and LP
are determined from the properties of the conformal transformation,
the equation can be used to evaluate | . Similar equations will now
be found for other flow characteristics.

The coefficient of lift, a quantity frequently used in aeronautics,

is defined by the equation

force exerted on an airfoil by the flow (11)
L p Vvt
7 § Voo

C.=

where ? is the fluid density. It can be shown (see reference 1, p. 5)

that the numerator of Equation {11) is equal to QVI_' for a cascade.
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Thus

C. = T (12)

and from Equation (10)

Coe B[ Shm b bt oS- =il

Ay -t bt s

(13)

Because its value depends greatly on upstream flow direction,
the lift coefficient is less convenient to use in the design of axial flow
compressors than a quantity called deviation angle, which may Be
defined as the angle between the downstream flow direction and the
direction of a line tangent to the airfoil camber line at the trailing edge.

The angle is illustrated in Figure 4, from which
= % + _‘)T ' (14)

An expression for § similar to Equations (10) and (13) is

b ainy + (- \wcmp)tm\’

\-51

§=Ttom "%-t-‘\)T (15)

Another quantity which gives the downstream flow direction is

the angle vy, Using Equations (14) and (15) gives
4b b
\~ \,1 A \y V= bt WQLP
T X, - + G Xy (16)
L+ 22 L 2 “N‘P :
t+ o (B

which shows that for a given cascade geometry there is a linear re-
lationship between the tangents of the upstream and downstream flow

angles.
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The final overall flow characteristic to be considered here is

the turning angle . = Y, -Yp ¢ which is given by

% o b +(l-%tw¢)ﬁ«\(\,
e X, -t = , (17)

|-+

\+b\— Coa Lp

It was stated in the Introduction that the overall flow character-
istics (such as [, CL’ S , fL ) are essentially equivalent.. This is
illustrated by the equations just obtained, since all are dependent upon
the same parameters. The velocity and pressure distributions require
additional variables, however, and will now be obtained.

The complex velocity (a vector conjugate to the velocity vector)

is given in the z plane by

complex velocity in z plane = %i P@&) = P (2). (18)

The corresponding complex velocity in the physical plane may be

obtained from this expression and the transformation equation through

’
complex velocity in w plane = :l(;:) (19)

which indicates the importance of the transformation equation w = w{(z).
When z = eup , the modulus of this expression is the velocity

distribution V. Using Equation (8), the velocity distribution is

v % l*\»"-hzumup [(tﬂt)(dmc?-mMm\f- (\-ut\(m‘()-mq,)@,\(]
_— ~ ;.‘9 (20)
Vao w’(e'")

Finally using the Bernoulli relationship between velocity and

pressure, the pressure distribution is obtained as
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P- Ro vy
= 1= (V“}. (21)

Equations (20) and (21) give velocity and pressure distribution
in terms of c? , whereas it is usually desirable to know its variation
with x, the position along the chord line. The required relation

between x and cP must come from the transformation equation using

x = Refw ()], (22)

From the foregoing it is apparent that for any given cascade
geometry, certain details of the conformal transformation relating the
cascade plane and the circle plane are required. In particular.the
quantities b and Y are needed to find the overall flow characteristics.
Furthermore the transformation equation must be determined if the
veiocity distribution is desired. Actually in the method used-here b
and LP are found with the transformation equation; hence determination

of the equation is the principal object of the analysis.

B. Technique for Determining the Conformal Transformation

The known exact solution to the flat plate cascade problem is the
starting point of the present solution for the arbitrary cascade. The
transformation equation for this special case, Equation .(4), is repeated

below in slightly different form:

W@ = Fo ey + m(d) (23)

where

Fo @) = uo e, ) +ive (¢, @) = = et (%3 (24)
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and FO (%-) is the conjugate complex function (see reference 12, p.119)
of Fo(z). As shown in Figure 2b, the trailing edge argument is called
LP 0’ the leading edge argument is IO’ and the value of b is bO' The
trailing edges T and the leading edges L are represented on the circle
by the points t and | respectively, and are shown located diamétrically
opposite‘ each other as dictated by symmetry considerations. The
gquantities ¢, B, and bO’ are related through Equation (5); If Equation
(23) is used to find the trailing edge argument L‘JO, the result may be

expressed in the form

T s S T p (25)

l+by

Further details on this special case may be obtained from references
1, 5 or 14.

The arbitrary cascade shown in Figure 3a is assumed to
coﬁsiét of airfoils whose shape represents a small perturbati(‘_)n about
a straight line. The equation for the shape of the particular airfoil
located near the origin of the w = x + iy plane of Figure 3a is assumed

to have the form-

\3: \%(X)YL) (—--‘:._&x i‘—;—.x (26)
where 1 is a parameter expressing the deviation from the straight
line; that is,

e, 0) =0 GLex%3) (27)

* The parameter v'( can have simple physical significance, as will be
shown later by examples. The further assumption is made that

Equation {26) can be expanded in a power series of the form
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<

). (28)

i

472 (a0 e

Then the first-order (or linearized) form of Equation (26) is

YRR (29)
The qualification -4 ¢ x % -}l has been omitted for brevity in
Eﬁuation (29), but will be assumed here to apply to all equaﬁon’s of
airfoil shape.
Equation (29) is the form in which the airfoil shape equation
will be used most frequently in this thesis. Hence v will be assumed
to be small. The function g, (x) is single valued when the airfoils

have zero thickness and double valued otherwise. Since the leading and

trailing edges are at the points w and w =

—%_— -‘?: respgctively, it

follows that

g\(-i\ = 4. = o. (30)

Certain mathematical conditions are imposed on the transform-

ation equation, w = w(z). They are:

(1) w(z) must be a regular function of z in the region |z| > 1.0,
except for two singular points which correspond to the points

far upstream and downstream of the cascade.

{(2) w(z) must be periodic of period e;({-%\ .

(3) vv(eLCP } must correspbngl to the closed figure described

by Equation (26).

The basic technique used here for the determination of the

transformation equation consists of two parts:
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(1) Establishing a suitable form for the equation involving
initially unknown functions and constants.
(2) Determining the functions and constants from the

conditions imposed on the transformation equations.

In the first part of the technique the transformation equation
must be obtained by suitably generalizing Equation (23). As mentioned
in the Introduction, an extensive preliminary study led to the adoption

of the following form:

w@) = F@ + F(3) +:7;‘ Vl" Fn (&) (31)

where
FRY s wlod\rivind) s € P lamk (X)) (32)
b *"’*é T ba (33)

and the functions Fn(z) = un(r, Q) + ivn(r, 4)) are regular in the region
{z| 2 1.0, including the point at infinity. |

The first two of the three mathematical conditions imposed on
w(z) are obviously satisfied in the same way as in Equation (23). The
initially unknbwn functions Fn(z) and constants bn are determined by
the third condition, through the equation of the airfoil shape, Equation (26).
In addition Equation (26) can be used to find the trailing'edge argument

and the leading edge argument X , which are assumed to have the forms
RS S | (o4

x = wed, + i vl" X, (35)
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where the constants \J, and X, are initially unknown.

It will be seen that the first-order quantities F, (z), b, , {,,
and xu , must be found before the higher order terms can be evaluated.
Hence terms of order VE' and higher will be neglected initially. Foi‘
example the first-order equation for b is

b= b, + vl\p\ , (36)

Taking real and imaginary parts of Equation (31) gives, after some

manipulation

4
A ) = 2 o @) e [ )2 8 o v & ] (37)

b%(v,cQ\ z vlv, (r, @) . (38)

These are to be considered now for r = 1. Adopting the notation

x=x (, ) wo =Ef—c?u-o(‘:‘93
Uoz Ue (1) ) v/ = ‘L‘Q v, (1, @) (39)

makes it possible to write Equations (37) and (38) (with r = 1) in shorter

form:

X = LU, -«-vl(u‘-?_b V')

b, ° (40)

W | (41)

Since these refer to the unit circle in the z plane, they can be sub-

stituted into Equation (29), leading to

v, = 3| (2w,). (42)
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Thus an expression has been obtained for the imaginary part (on
the unit circle) of the initially unknown function ¥, {z). Determination
of F, (z) from this information is a standard mathematical problem,
which herein shall be called the auxiliary boundary value problem, of
for convenience, simply "BVP", A special technique for solviné the
BVP was devised here and is illustrated for a particular case in
Appendix B. The solution of the BVP involves an arbitrar? real
constant which for convenience is established by the following final

condition to be met by the BVP solution:
Uy * Uy = O ‘ (43)

where the subscripts t and | signify evaluation at the values of

corresponding to the points t and £ on the unit circle of Figure 2b.

That is,

e = uw, (1) o) (44)
Uy = w,(l,x,‘)zu.‘(l,w-\-ﬂja). (45)

Since F| (z) can now be considered as known, the evaluation of
b, ‘ will complete the determination of the first ofder transformation
equation. Equation (40) can be used for this purpose. It should be
emphasized that Equation (40) is an equation for x in terms of independ-
ent argument CP , selection of which determines a point on the unit

circle in the z plane. Ewvaluation at the point T gives

x’t = ?,(,\ot +Vl(u‘-c "’L—t-'— V;T) . (46)

Since 1t is the point on the circle corresponding to the trailing edges

T, x, must be unity, Equation (46) could now be used to evaluate b,
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except that the trailing edge argument Y is not known, hence u,, ,

U , and v, cannot be determined. However these can be evaluated

by means of Taylor's theorem. For instance

Uor =T Wt *(‘("'%\ V-/ot'f"" = MU +qu)‘u-;t (47)

with similar expressions for u, . and v, . Thus Equation (46)

can be written

\"u 7 14
Xe 2 TUge TVK(u,t“"’- 3 Vot +?'L{)'u’°t3' (48)
In a similar manner one can find x 5 in the form
- b, ’ 4
Xx= Zugy +q (ugy - LR v v wo, ). (49)

From Equation (24) one can show that

Uog & <|T- = = Mo (50)
Uog = © = Wy (51)
LL” = - U.”
ot T (52)
Vog = =Vioy # O (53)
" I
Vor = “Voq - (54)

Furthermore it is obvious from Figure 3 that

Xe = 3 = =X, (55)

-
-~

Xgp = 0 = X, . (56}
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Substitution of Equations (43), (50), (51), (53), and (55) into either

Equation {48) or (49) leads to an equation for b, , namely:

b = b Wi

- T (57)
(A%

The first-order transformation equation is now complete, but
the constants Y, and X, are yet to be found. Differentiation with

respect to c? of Equations (48) and (49) gives, using Equation (57),

. « . 58
X “zu‘z’c*"l(“/lt'i‘/gt *ZLP'“-WS (58)
/ — / / _ u 14 P

AT Tu T (u"k -v_‘:i Vog *TX, Uiy ). (59)

Substitutions similar to those used in the equations for X, and x,

lead to
Wiy V /
w "+ ot WU, e 00)
| v \
2"*’:& Vot Tu'e
7
W Vv /
xl . 2% ot + u.\ﬂ_
?-\4./:* Vl/?f 'Lu.';t (61)

This completes the analysis of the first order transformation properties.

Higher order terms in the transformation equation can also be
obtained in the same way. The procedure for second order terms will
be briefly outlined. Equations for x'and y are again written, this

time including terms of order v{'

X = 7—%"”’[ (u,—Z‘T’: v{)-c-»{‘(ux-—z%’i vo’-t-b?' R4 Fo”) .(62)
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\3: V{V‘ ‘i'\'l:LV-L. (63)

Substitution into Equation {28) leads to the following second order BVP:

Find F, (z) if

(u,-2 %v,'\;i;x 4 (2u,) +q. (2uo) (64)

LA..,_*_ -+ u.zﬂ = Q. (65)

2 ?

Then evaluation of x., x, , X% , and x; leads to equations for b

$, ., and X,, namely

b “u bo blz

. o bo Wot | o
by s Y - g = R F,, (66)
Vct zvot ZVW
= \;'i v:* - ‘)—_....
w?' by - 2 n 2 (R‘Q F ) (67)
—_ U*?.t -~ \v “ -
2w 2w, ( e N:)
- be vy 7-(““/9,;
Xam Y, w ‘\Tut, \‘) 2w (R e
ot whe (68)
Wog DC, / ”
" Tuge  Twg <“‘1 ~ Y%y

provided that X, = * {,.

The application of these equations to several cases will now be

shown.

C. Cascade with Zero-Thickness Circular Arc Airfoils

In this case, which can also be called the 'Y'circular arc cascade",
the airfoil coincides with its camber line. The camber angle is the

angle between the tangents at the leading and trailing edges of one air-
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foil. (A more general definition is given later when the S-shape angle
is introduced). The equation of the circular arc airfoil with camber

angle b , located at the origin of the w plane is

A TR E R ol (69)

1. Characteristics of the Conformal Transformation
The linearization parameter 1 of the previous equations, can
be conveniently taken here as 8, since =10 signifies a flat plate

cascade. The power series expansion for Equation (69) is

Y = L6 (—4x™) + B(8*), (70)
Since- V( = @ here it is evident from Equation (29) that
(8)
%. (x) = {S (1—4x™) (71)

‘where the superscript ( ® ) is used to distinguish this case from
others to follow. The first-order BVP for this case can be solved
by means of a special technique; details of the solution are given in
Appendix B. The result is F\(e) (z), which can be used in Equations (57)

and (60) to find the following expressions for b|(°\ and q)fe) .

b, =o (72)

() |—\°:' =t T
W, =__;_-;1_5__M vy, : (73)

Second-order terms will be discussed later.

2. Overall Flow Characteristics
The first two terms in the power series for b and

constitute first-order approximations to these quantities. Hence they
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can now be computed and substituted into the previous equations for
overall flow characteristics. An alternative procedure is to substitute
b =b,+ 8{ 6" ) and P = LPO + 8 LP‘LM+ 8 (8%), and use Equations {25)
and (73) to obtain the flow characteristics themselves in series forrn..
Thus for lift coefficient we obtain, using Equation (13), and neglécting

terms of order B and higher,

. ® . a
CL= Ay aim ot +6(A{ewo¢ -t—B,Q\c,o.aa() (74)
where
® e T
Ao = a (75)

B(@\ ) :b_vj‘ w"' (\a:/
™

T (76)
o g A°)1%4;M1 |
Ay T8 @« ' % (77)
From Equation (15),
3-35 + 835" (78)
where
4(‘5“ M% (\ 2%’ m%\y —’;w\(u
8°: |+ ke um@, _
)
G be lm@ 4 ke (‘“b}?w%t«\(u
3. . -« R (h),  (80)
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And in place of Equation (16)

-tdm\(b: C-\-D—&«\(U

(81)
where
C= o +0c® (82)
D = Do +B B\(Q) (83)
sl i,
Co = & % (84)
\+ 22 eeo b
-
Po = 2b (83)
|+ Q" m%
4T w\* -1
C‘(0\= s [(\'Hao\ LOQ% . ZZ"_E] m (L;L\ (86)
Qr Q
- \93'3
ap S5
D(e\_ M (LL\)
v 7 2 (87)
(e c«;@}

In all of these equations ¢, $, -and bO are related through Equation (5)

Similar expressions for [ and fL can also be found
3. Approximate Formulas for Coefficients in the Equation for

Deviation Angle

The formulas for the coefficients gO and Sl(e) in Equation (78)
are somewhat complicated in the exact forms given in Equations (79)
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and (80). More convenient approximate expressions can be obtained in
various ways. The method to be used here is to linearize the quantity
b0 about the points b0 =1 and b0 =0 . This has an added advantage,
it will be.seen, of eliminating b0 from the equations, leaving th§m
entirely in terms of geometrical quantities. For example, if it is
assumed that

b~ 1-& - (88)

and this is substituted into Equation (80), a power series in the quantity

A is obtained:

R e e T 0N ey (o =4 woa’p ) + 6(e2) (89)

4

provided that |B| # Z“{' .
Next expressions must be found for A and log A which involve
only the geometrical parameters ¢ and B . If Equation (88) is sub-

stituted into Equation (5), the following equation is obtained: -

%:—Zm%%a +Zm%(f«-§2m€+€t‘1%§—bm&_él :':Zé + 9(¢3\. (90)

Thus

=R L N R~ L

& g b
from which
BTomp ~ T

7-wa%

&:2umpe + &La"'\, (92)

Substitution of Equations (91) and (92) into Equation {89) gives

S N N
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where

A = ,&hzc«% + %um%

(94)
ZQ,U‘«E’ -5
€= € f (95)
In a similar manner
5, = emze, (mxu-u«@ + G ey, (96)

Assuming that bo is a small quantity gives two more approximate

)
equations for SO and Sn)

Soz & =T coop oo Xy (¥, ~Tomp) + 8(F) (97)
gfa: L - 43'%— c«% m’“‘(u (\+‘¢Z~\? GA’U\ + 5(‘:?? (98)

Equations (93) and (96) are easily recognized as being valid for o

small, while Equations (97) and (98) are valid for ¢ large. A partial
check on the present theory is the agreement with the limiting values

5= 0 when ©=0 (infinite solidity cascade)

(99)

S = o+ % when <= oo (single airfoil). (100)

. ) ) .
The exact equations for SO' and 8f and the approximations

for © small, were plotted versus < for various values of § and Yy

to find the range of o for which the approximate equations are
reasonably accurate. The results indicate that Equations (93) and {96)
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are quite good in the range < 1.25, except for stagger angle B near
90°, where the range is o< 1,00. In mathematical language the re-
strictions on ¢ can be expressed as:

o< 1.25 and €<0.4. (101)

4. Terms of Higher Order in Camber Angle

The method used here is not limited to finding firs’g-drder terms
in camber angle. Second-order and higher (nth-order) terms .can also
be found. The significance of the higher order terms in this analysis was
discussed in Part I. Unfortunately the higher order éxpressions were
found to be quite complicated, involving untabulated functioﬁ_s similar
to those to be described presently in the treatment of S-shaped airfoils.
Furthermore no general equations were found for nth-order terms. In-
stead each order had to be treated individually, with complexity increas-
ing as the order increased.

.The solution for the second-order auxiliary boundary value

problem is

(=) = - LF (2) Lr—.w\m + E.(e)(-‘{»)] - R E G [FO & ®)]

N \’-: - a : b} - o
-S;:k,[e-‘(,% g (Tonk ) 95 "’E-'(SS Ctnh 5 &g ] (102)
" R A S

() G}

from which expressions for b, , W, , and X?) can be found

using equations given earlier. The results are much more involved
. {6\ (0 : (C))
than the equations for b, » , and )(_l . It was found that

some simplification could be obtained using the methods of the preced-

ing section - i.e., if the range of o were restricted. For example
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the second-order coefficient in the following equation for deviation angle,

S. 05, « 85 4 g7 ® (103)

5 (6)

is X b for small o the second-order theory indicates that it is given

by
() T . ot oo %
81 = R(AM%—Z‘%%)—;;—\_ (Q%%“lgo%ms c!g

_?A—A"“wtwop + 6(ey . (104)

This is much more complex than the corresponding approximate equation

for 8?93, which from Egquation (93) is

(®)
S -

\ < Am(\s + B(e) . (105)
If higher order terms are sufficiently large, computation of flow
characteristics from first-order results will be in error. The mag-
nitude of higher order terms in the deviation angle equation is detérmined
by the values of €, Y, S and B . A plot of higher order terms
versus these four variables is obviously impractical, but considerable
infqrmation can be gained from a plot of S,ES\/ Slce) , which eliminates
the variable 6 . Furthermore inspection of Equations (104) and (105)
indicates that Y, has no effect on S_:& or X]m if ¢ is sufficiently
small. The ratio 32@ /51(5) is plotted in Figure 5 as a function of the

remaining variables o and 8 . Further reference is made to this

figure in a subsequent section on error analysis.

5. Smooth Entry
The term smooth entry will be used to describe the flow con-

dition such that the fluid enters the cascade smoothly at the leading edge
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of each airfoil. It obviously has meaning only for zero-thickness air-
foils. There is but one upstream flow direction for which the condition
is attained.

.In-tu:rbomachinery design, smooth entry is sometimes taken as
design condition even for airfoils with thickness, by assuming for this
purpose’that the thickness is zero. In this case the flow angles and
approximate spacing are given and the problem is to find the camber
angle and blade setting for smooth entry.

Equation 69 indicates that a circular arc Acascad.e which differs
from another only in the sign of © will coincide with the second if it
is rotated about an appropriate axis perpendicular to the caséade plane.
If the Kutta condition is applied simultaneously to the two cascad‘es., the
smooth entry condition must result. To arrive at equations valid for
this condition, the expression for downstream flow angle is the most
convénient to use. Equation (81) written for the two cascades is

Gam Xy = C+ D Wa ¥, ' | {106)
tn X0 = '+ Y (107)
where primed quantities refer to the second, or rotated cascade. At
the smooth entry condition these must be simultaneous equations, and
furthermore

X, = ¥, , (108)

Xy =X, | (109)

so that Equation {107) can be written
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Gm X, = '+ 0 tn X, (110)

Now Equations (106) and (110) can be solved for tany and tany_

from which can easily be found the turning angle .n. , given by :
=X, -X (111)

The result appears in the form

n-8 jﬂf\ + &(8*) (112)
where
-1
__Q_fe\ - 4;-:“ cos b b (bo), o (113)
The corresponding equation for stagger angle is
=g + 6007 . (114)
where
_ Xu +Yb ’
Bo = —— N (115)

Particularly simple first-order expressions can be obtained
for velocity distribution and pressure distribution in the case of smooth

enti'y. Use of the above results and Equations (20) and (21) leads to

N
V. s ey (116)
P-B
X = f4av
%ev’; ° (117)

where

v 4%, [;%W"uog“?)]_ | (118)
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Finally use of Equation (22) leads to
s
x='2u°+e(2“°v° L Ut Vot _%1 L+ 1f) (119)

*~ “'L

where

19

RY [t Bk Lkoém)] (120)

z

b, -
o gk 5 &g
1= 2b, am2d PR : {121)
o B ¥ 1 "1‘°o§ chQ
D. Cascade with Zero-Thickness Symmetric Parabolic Airfoils
The airfoil shape equation in this case is
\A_: 4—-‘- ("‘4%1\-&“ Q‘?— (122)
and in series form is
4 § 6 (1-4xt) + 6(e?) . ' (123)

Comparison with Equation (70) indicates that this shape and the circular
arc differ only iq terms of order 63 at most. Hence the circular arc
results in series férm can also be used in this case up to terms of order
e® .

E. Cascade with Zero-Thickness S-Shapted Airfoils

For this case the camber angle is zero and it is necessary to
define a new parameter M, called the S-shape angle. Figure 6 shows
an arbitrary airfoil, and illustrates the angles -J.r and -J,_ used in
the following definition of JIE

= Jo -, . (124)
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A similar definition for camber angle also involves ~J_ and -\)L:
the camber angle for the arbitrary airfoil of Figure 6 is

8 = Uy ), . (125)

The S-shaped airfoil is defined here as having the shape ex-

pressed by

«.% - '\ix Q=4x*\ G l;:_— . (126)
Here ={1u and OLz-ii/J..
1. .Characteristics of the Conformal Transformation

The first order transformation equation can be found as before by

lettin = . The solution of the auxiliary boundary value problem is
g = y y °

W - =
@ = 16@ [Pe- 8% - 2 me) B [mw- Fo(a)]

T

. \’t -t _\* . bo ~t \1
—etih‘,[?f"zg E.___.Q_‘Qf - e‘PS (k™)' dy ]
n v e ot

3
' ‘;’.

" b:'-'e}—g (127)

]

which can be used with previous equations to find b and" LJ,J .

2. Complexity of the Results

It is possible to write exact expressions for the coefficients of o
in equations (in series form) for overall flow characteristics as was
done for the circular arc cascade. However the exact expressions
contain integrals which cannot be e);pressed in terms of the same func-
tions as before. .One can express some of the integrals in terms of
either of two known transcendental functions, called the dilogarithm

(see reference 41, p. 31, or reference 42) and Spence's ,Integral(43),
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but these functions are required for complex arguments and are not
tabulated in the literature except for real arguments(44). Thus the exact
equations in terms of these functions will not be useful ﬁntil they are
tabulated-completely and will not be given here.

Fortunately approximate expressions for coefficients of /u.
(derived‘ from the exact equations by the same methods used for the
circular arc cascade) are in terms of simple functions. Hence in what

follows the approximate expressions will be given.

3. Deviation Angle
The equation for deviation angle, obtained in the same way as

was used for the circular arc cascade, is

§- 5, + }‘Sf"\ - 8 (pm) (128)
where & 0 is already known and if o is small,
). Wawmep -3 (T +atees'p)

refar e Fame s L e
-2 A«-{Y‘Lm? ~+ (l-!-L}Zm%—-é‘ﬁ“ @ wd'ng‘]
= (Bm ¥, —am 9 [%-3'54_.%1%7_”0(,-\- %W (A‘—@,"),;;\,.%

~ 3
R )
(129)

Here A and ¢ are again given by Equations (94) and (95). One may
reasonably expect Equation (129) to be sufficiently accurate for o< 1. 25,

€ < (0.4, as for the circular arc cascade.
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4. Smooth Entry
The two equations for smooth entry corresponding to Equations

(112) and (114) are

- G(}u"\ (130)

0 - ?”W?t oy (131)

where ﬁo is already known and for << 1.25, ¢<0.4,

%?“:%~¥Am% +_?‘;£: :—‘_’-:-4-Almz?>

3 bo™ 2 : =
e[ Eawpts (g omadp -t byt 66 (13

F. . Cascade with Symmetric Airfoils of Arbitrary Thickness Distribution

In this case the equation of the airfoil is

4= g0 | (133)

-—

where the + sign refers to the two surfaces of the airfoil (usually
called upper and lower surfaces) and 1t is the maximum thickness
expressed as a fraction of the chord. Thus the arbitrary thickness

function f(x) has a maximum value of 0.5.

1. Characteristics of the Conformal Transformation

The treatment here resembles that of the pr_evio'us cases with
=T and g‘m(x) =*+$(x). However the resulting auxiliary bound-
ary value problem (BVP) does not lend itself to the method of Appendix
B, because of the more general form of Equation (133).' Instead the

BVP must be solved by one of the Poisson formulas. Since in most

cases the function sought is to be evaluated only on the unit circle, the
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problem is one of conjugation and the techniques developed for the
Theodorsen method for single airfoils can be used(ll)’ (23), (24). The
advantages of the present theory are: (1) no iteration is required, and
(2) one cdnjugation suffices for all values of maximum thickness .(which
of course is assumed to be small). |

The BVP statement itself is; Find F\(ﬂ(z) =u™(r,d) +iv(m(r,<()),
regular everywhere in |z} 2 1, if vfﬂ =+ f(ZuO) and uﬁ\ + uf? = 0.

The plus sign applies to the range Lpoﬁx?s ¢ +w and the minus sign

elsewhere.

G. Cascade with Airfoils Derived From Combinations of the

Previous Cases

This is the most general case considered here and is sufficiently
‘arbitrary for most practical purposes. For example consjder an air-
foil of maximum thickness T witha cubic camber line of camber angle
© and S-shape angle A Assuming the thickness is measufed normal
to the chord line and is a function of position on the chord line, the

equation of the airfoil is

g [ (30 8y B (2]

+ix (=¥ [t« (2« &)-Tn (2~ Ai._ﬂ s ’C.-Q GeY . (134)

It is obvious that the exact form of the airfoil equation can be quite
‘complicated, depending upon the method of construction (see Introduction).
Fortunately the first-order equation for any combination of the
four previous cases has a simple form regardless of the method of add-
ing thickness, because the differences are of second order. In general

this equation is
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4= : 6 (1-4x) + 4 px (4™ 2 2 L(x) . (135)

1. Overall Flow Characteristics
The principle of superposition of linearized solutions makes it
possiblé to immediately write expressions for various quantities. For

example the first approximations for b and \p are

6

b - \Do+eu“+/; b e L (136)

(M) @)
W= W +86 LU@"’/““’! +T \p:t (137)

wheré the coefficients of e, /u. ,-and T have already been given.
These equations-can be used in Equations (10), (13), (15), (16), and (17)

to.find the various overall flow characteristics.

2. .Velocity and Pressure Distribution

‘Without higher order terms the transformation equation for this

case is

Wi s F@ 4R + 0RO + pFwy «x PG, | (138)

Substitution into Equation (20) yields the velocity distribution

20y, i -0 ) 0¥ = (=) oo ~con ) ain ¥

N bt -2 b 02 d
A\ . (139)
Voo 0"“““““% W@"(\-\'V\LMPM& 4 ) I'4 /-L ’ 7 , rd i
Wy, % f ® W @ ) » @ 1
{_“ b TR eeid +8u, Ty ]-{6\4 Y Y, ]

Using Equation (22) gives the auxiliary relation between x and <{) :
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1 .

X = Zfr-‘r" m[giew"(bpéw)}*eﬁ%ﬂ u&ﬂ\+1-u@5 (140)

The pressure distribution may be obtained using Equation (21).
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III. COMPARISON WITH PREVIOUS INVESTIGATIONS

In this section results are compared with the work of some of the
authors mentioned in the Introduction. Notation of this thesis is

used throughout for convenience.

{
A. .Lift Coefficient

The following equation for lift coefficient was obtained by

Klingemann( 4) (22)

and later by Hudimoto ; it applies to cascades of zero-
thickness parabolic airfoils with restrictions of small camber and small
angle of attack. Actually the equation can also be obtained from the

early results of Weinig(l) for circular arc cascades.

2 -/ n
C, - vl et + § 2 [M (b )]Ceoo{. (141)
Q m

For ot of the order of O this agrees with Equation (74) to order ©

Thus the results of early theory have been improved upon sinée the

restriction of small é,ngle of attack has been removed, resulting in the

appearance of the term involving coefficient A, (see quuation (74)}).
The cascé,de of zero-thickness S-shaped airfoils has been treated

preifiously only by Klingemann for the case where the flow vector V,

is approximately parallel to a line tangent to the camber line at the

midpoint. Klingemann obtained a series solution for the ratio

CL/(CL) o = oo his series converges less rapidly as ¢ becomes

smaller. If the present theory is ap;;lied to this special case, the result

valid for o large is

Co _ _ 17' A
e &) & wrp w8 (142)
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Figure 7 shows the comparison for one value of stagger angle, of
Equation (142) and the results of Klingemann. The good agreement in
the range of ¢ where Equation {142) is accurate can be taken as a con-
firmation of the present theory. Again former restrictions on the angle
of attack have been removed.

The theories used by Klingemann and Hudimoto to arrive at the
results above, were mentioned in the Introduction, where if was pointed
out that both incorporated conformal transformation. However the
theory of Pistolesi(z) does not utilize conformal transformation. A
comparison with his work is thus of independent interest. .Pistolesi did
not use the exact flat plate cascade solution as a basis, since it involves
conformal transformation. Thus his solution for this simplified case is
already an approximation. His result for 1lift coefficient of a flat plate

cascade is

29
= C -
(CJG__ - R4 [e;geq.%) B (%- c:.(aafp)] (143)

whereas the exact solution is

o
Ck 41“.‘.Lo

= 44
CE ez m QT+L:+'L\°:'¢,°4’L$> (144)

Pistolesi's equation is in terms of geometrical parameters only - that
is, it does not involve bO' This is a convenience provided Equation
(143) is accurate. But Equation (143) implies a dependence upon
which is not shown by Equation (144). Thus Pistolesi's results are
obviously incorrect. Computation shows Pistolesi's equation gives a

value 8 0/o too high for the case «=1, B = 450, = (.
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Since Pistolesi's results for the flat plate are incorrect, it is
quite unlikely that his treatment of the arbitrary airfoil is better. His
equations are not in a form suitable for comparison by inspection - in-
stead computations must be made. Thus no comparison with his _moré
general case will be attempted here. .Instead this discussion of t.he
Pistolesi theory will be concluded with a discussion of the source of
error. |

The Birnbaum-Glauert theory for the single airfoil gives the

following equation for CL at small o for the flat plate airfoil:
C_ = 2me<. _ (145)

If terms of order " and higher are neglected the exact theory gives
the same equation. However it was shown above that no such agreement
occurs for the extension to the cascade by Pistolesi. Part of the reason
.foi' this is the introduction of étagger angle and spacing, parameters not
found in the case of the single airfoil. As Pistolesi pointed out, for a
cascade the velocity induced at the chord line by the vorféx distribution
is not necessarily perpendicular to the chord line as in the case of a
single airfoil. The component of induced velocity parallel to the chord
line was neglected by Pistolesi. This is part of the reason for the
discrepancy.

Another source of error can be seen in the Pistolesi theory. For
the single airfoil, only the first two coefficients in Glauert's Fourier
series contribute to the circulation - the rest can be neglected without
introducing error. On the other hand Pistolesi showed that all
coefficients affect the circulation in the case of the cascade. Yet he

neglected all but the first two or three.
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Thus there are at least two sources of error in the Pistolesi

cascade theory which do not occur in single airfoil theory,

B. Deviation Angle

Weinig(l) lists a deviation angle formula for zero-thickness
cascades with two restrictions:
(1) o< 0.7
(2) curvature of the camber line at the trailing edge of the
order of « .
His formula is

& = (curvature at the trailing edge) _% A cm% .
For the cubic camber line of this paper the formula reduces to
g; (e+3/A\%Aw%. (147)

The same equation can be obtained from the present theory (Equations
(78), (93) and (96)) if terms of order 0’1—, €, ).LL, 8%, and high_er are
neglected; _ The equations of present theory are therefore a considerable
extension of the previous analytical equation for deviation ahgle_.

{

Shirakura 33) has used his exact numerical method to calculate
flow characteristics for four zero-stagger, zero-thickness circular axrc
cascades. His results for deviation angle are compared in Table I with
Equation (78). The agreement is excellent, despite the large camber
angles.

In an actual cascade the assumptions of the present theory are
invalid to various degrees - the flow is not strictly two-dimensional and

does not satisfy the criteria of potential flow; the same is true in an

actual turbomachine. A comparison of experimental results with those
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Table I. Deviation Angle Comparison

Deviation Angle

Case s 8] Y, Shirakura Equation (78)
la 0.5 87° 12° -34° 15’ 9° 217 9° 27’
1b n " 34° 11/ 9° 25’ 9° 37’
2a 0.7 n ~31° 19’ 12° 17 12° 32’
2b " " 30° 527 12° 44’ 13° 19’
3a 1.0 n -28° g’ 15° 287 '15° 40’
3b " " 26° 17’ 17° 19’ 18° 17’
4a 0.5 123° 52"  -48° 58" 12° s8’ 13° 24’
4b " " 0 13° 13° 32°
4c " " 48° 55’ 13° 1’ 13° 40’

of the present theory would be of considerable interest, but will not be
attempted here because of its scope. However mention will be made

of a comparison with a well-known empirical deviation angle formula
based on experimental cascade data. This comparison was made before
the portion of the theory dealing with thickness was contrived, hence the
airfoils were assumed to be of zero thickness. It was found that for
0.83< ¢ < 1.4, Equation (78) gives 'values in fair agreement with the rule
of Constant, devised for use under certain restricted conditions(g), but

(45)

now used in the simple form
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$= 0.26 6\¢ (148)

The discrepancies were of the order of magnitude of those between
various empirical rules, such as Constant's rule and one used by
Messrs. Power Jets (reference 46, Figure 26). It therefore appe>a.rs
that the combined influence of thickness, viscosity, compressibility,
etc., on deviation angle may be small, at least in the experifnerital
cascades which were used to devise the empirical rules. The work of
Bowen, Sabersky, and Ra.nnie(45) also tends to indicate this. A more
extensive comparison with experiments is necess‘ai‘y for determination
of the limits of this correlation, but it seems reasonable at the present
state of knowledge of turbomachines to conclude that:

If zero thickness is assumed the present first-

order theory gives overall flow characteristics in fair

agreement with experimental values for compres sor

cascades.

This is very fortunate because Equation (78) is éasy to use,
particularly if the approximate formulas (Equations (93) and (96)) are
used for coefficients, whereas including the effect of thickness is a
relatively lengthy procedure. For values of ¢ outside the range in

which agreement with Constant's rule is obtained, Equation (78) un-

doubtedly gives better values than the empirical rule.

C. Smooth Entry

Weinig(l) has derived the following equations for smooth entry

condition for a circular arc cascade:

= e:.gm%w“u:) (149)
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8- Bor ¥y {150)
4
The first of these agrees with Equation (112) to order 93; the second
agrees with Equation (114) to order 6"
The upstream flow angle for smooth entry was calculated by
Shirakura(33) for the four cascades of Table I. Table II shows a com-
parison of his results with those obtained from the present theo.ry.

Again there is good agreement.

Table II. Smooth Entry Comparison

Y, for Smooth Entry

Case 0 o Shirakura Present
1 87° 12’ 0.5 34° 117 34° 17
2 " 0.7 30° 52’ 36° 24/
3 o 1.0 26° 17/ - 259 427
4 123° 52° 0.5 48° 557 48° 20’

D. Velocity and Pressure Distribution

Apparently there are no explicit analytical solutions in the
literature for velocity or pressure distribution in an arbitrary cascade.
A comparison must therefore be restricted to specific cases for which
numerical methods have been used.

Two cases are available for zero-thickness airfoil cascades, both
with circular arc airfoils: Weinig(l) has calculated the velocity dis-
tribution for smooth entry for the case o =07, pB= 450, B = 600;

Shirakura(33) has calculated pressure distribution for smooth entry for
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case 4 of Tables 1 and II. Comparison of the present first order theory
(Equajcions (116) and (119)) with the computations of Weinig is shown in
Figure 8. The agreement is only fair due to the large camber angle.
Since the carﬁber angle of the Shirakura case is even greater, a com-
parison is not given here.

To tést the portion of the présent theory dealing with airfoil
thickness, the ideal example for comparison is a cascade of airfoils having
straight camber lines. No such example has been found in the literature.
The next best alternatives are cascades with circular arc, parabolic, or
cubic camber lines. Here again no reliable computation is available.
Instead two examples have been selected: the first is not a cascade but
does have a straight camber line, and the second is a cascade with a:
camber line which differs from the three types of this paper.

The first example is the NACA 0010 single airfoil at zero angle

)

of attack. This case was calculated by Ga.rrick(47 in 1933 and apparent-

ly done again (the results are slightly different) by Abbott, von Doenhoff,
(48

and Stivers ) in 1945, In each case the results were listed ‘by the
authors in tabular form. Figure 9 shows a comparison with present
theory; the agreement is excellent.

The second example chosen has a camber line composed of
portions of two parabolas. Notching this camber line with a cubic is, of
course, approximate and introduces additional errors into the solution.
This example was originally calculated by Garrick(s) and has been
verified by other methods by Katzoff et a1(36) and Woolard(37). The

comparison is shown in Figure 10. The discrepancies can probably be

assumed to be due to the difficulties in matching the camber line.
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IV, DISCUSSION
In this section the solution is first examined for what it discloses
about the flow. Next an attempt is made to evaluate the accuracy of the
present first-order solution. Finally some aspects of the practical uée

of the results are discussed.

A. Insight Afforded by the Solution

The agreement with the analytical results of Weinig, Klingemann,
- and Hudimoto confirms to some extent the validity of the present results
as formal power series expansions. Further confirmation awaits an
exact solution, or approximations obtained in other ways. Thé_solution
will now be assumed to be correct and examined for the information it
discloses.

The greatei' complexity of the cascade flow compared to that
about a single airfoil is certainly well borne out by the results.  The two
additional parameters o and 8 appear in the equations as well as the
quantity bO' Though b0 is a function of ¢ and B it cannot be elinﬁna.ted
from the results without approximation because of the form of Equation
(5). This is true even in the exact solution of the flat plate cascade, and
is unfértunate because it makes it difficult to see easily from the
equations the influence of spacing or stagger alone. In the approximate
formulas for certain coefficients (such as Equation (93)) fhis difficulty is
not present since the parameter b0 does not appear. In the case of air -
foils with thickness, the separate influé;nces of spacing and stagger are
even more obscure, since the present special technique of solving the
BVP (see Appendix B) could not be used. It appears therefore that spac -

ing and stagger are very closely related in the theory of cascades.
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In one sense the solution has welcome simplicity. Various com--
plicated equations for airfoil shape can all be put in the simple form of
Equation (135), due to the linearizing assumptions and the fact that the
differencés in airfoil construction are of second order. Thus flow
characteristics for different cascades are seen to be equivalent, to the
order of approximation used here, if the cascades differ only in the
method of construction discussed in the Introduction.

Deviation angle is frequently used in axial-flow compressor
design and theory in preference to lift coefficient, because the former is
relatively independent of upstream conditions. In the case of circular
arc airfoils, Equations (79) and (80) show that in general 6 is dependent
upon vy, and Equations (97) and (98) show that for large & (tﬁat is,
for conditions approximating the single airfoil), it is influenced markedly
by upstream conditions. However most axial flow compressor designs
in\}olx;e high enough solidities for @ to be in the range expressed by
Equatioh (101). In this case Equations (93) and (96) indicéte 6 is
relatively insensitive to y, . Infactif o isless than about 0.7 (i.e.,
if solidity is greater than about 1.4) terms of order € and higher can

be neglected and the present theory gives
< g
&= 8 = A mF (151)

which is completely independent of Y, - This is easily explained
i)hysically: if spacing is sufficiently small, the exit flow direction is
influenced primarily by the geometry of the airfoils near the trailing
edge and conditions upstream are unimportant.

The present first-order results for smooth entry conditions are

interesting. From Equations (112), (115), (130), and (131),
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o= e, (152)

o= = % (153)

Thus turning angle is influenced only by the amount of camber and is
independent of the amount of S-shape. Furthermore airfoil orientation
is unaffected by camber angle, but is dependent upon S-angle. Thus if
upstream and downstream conditions are given, the camber angle
required for smooth entry is fixed, whereas the S-angle ma{r be
.established by other considerations, such as pressure distributipn.
Final choice of S-angle then determines the actual airfoil orientation to
assure smooth entry. It should be emphasized that these conclusions
are based only on first-order results.

For the single airfoil with small angle of attack, the thickness
does not enter into the first-order expression for circulation. However
in the case of a cascade, Equations (57) and (60) indicate that thickness
can have an effec"t on b and \.p and hence, theoretically, on circulation
and other overall flow characteristics. The theory of Pistolesi(z)
indicates the same conclusion. Actually the agreement between deviation
angles predicted by the present theory for zero-thickness airfoil
cascades with those predicted by empirical formulas for actual cascades
suggests that the net effect of thickness plus all variables neglected in
the present theory, is small. Thus for best practical results thickness
should be ignored in the determination of overall flow characteristics.

Of course this is not valid for velocity and pressure distribution, where
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thickness plays an important role.

It is interesting to compare the present analysis with former
theories on the basis of the model established to approximate the airfoil.
In generai the approximation used here consists of neglecting higher
powers of the linearization parameters. Thus the transformatio“n
equation w = w(z), without higher order terms, relates the unit circle
and an airfoil with a shape which approximates the given shﬁpe'. The
approximate contour is a line which deviates from the given contour,
probably crossing it in a number of places. This is obviously an entirely
different model than a distribution of singularities on the chord line, as
used in former theories.

The remainder of this discussion on the insight afforded ;by the
solution will be devoted to the velocity distribution.

It is significant that the velocity distribution was left in terms of
b and ( (see Equation (139)), while other flow chara;cteristiC‘s (such as
§ ) were reduced to simple series form by means of substitutions for b
and \.\J . The reason is that velocity distribution, cons idered as a
function of 0, )*; ~, and CP , has certain non-linearities which make
it irmpossible to write a uniformly convergent series of the ty_pé found
for 8, except in the special case of smooth entry {(see Equation (116)).
These non-linearities in the velocity occur at the leading edge, and are
not difficult to illustrate by examples.

As a simple example of a leading edge non-linearity, consider
the case of a cascade of flat plate airfoils with upstream velocity vector
parallel to the chord. The velocity is a constant everWhere in the flow

field. Now if the airfoil shape is changed to a circular arc and the up-
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stream flow direction is left unchanged, the velocity at the leading edge
becomes infinite, regardless of how small the camber angle, provided
it is not zero. Because of this singularity, velocity at the leading edge
is certainiy a non-linear function of camber angle.

Similarly the velocity at the leading edge is a non-linear function
of thickﬁess because if thickness is added to the flat plates in the pre-
vious case, this velocity becomes zero regardless of how small the
maximum thickness, provided it is not zero. This is non-linearity in
the form of a discontinuity, in contrast to the singularity above.

Non-linearities at the leading edge are also present in single air-
foil theory, and are the primary reason for the frequent failure of early
theories to correctly predict velocity. In the more recent and v;ery
elegant theory of Lighthill(17) a non-linear equation for velocity is given.

The present theory has a decided advantage over former theories
in thaf leading edge difficulties do not arise. This is because the

solution is derived from conformal transformation, and velocity is ex-

pressed as the absolute value of the ratio of -:%5 to (-f—‘i’ . For the first
2 .

case above (flat plates) the ratio for the velocity at the leading edge is
the 'indeterminate form 0/0 , which can be shown By L'Hospita.l"s rule
to have the proper limiting value. The change to a circulé,r arc changes
the numerator to a small but finite number, giving the required sing-
ularity in velocity. Similarly the change to finite thickness changes the
denominator, giving the proper discontinuity. Thusthe present theory,
though based on linearization, is capable of correctly describing these
distinctly non-linear relationships.

It can be seen from Equation (139) that variations of the slope of
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the airfoil contour influence the velocity distribution, since the

Ve
v 2

etc., occur in the denominator. This is also
(5)

derivatives u/ , v
shown by the equations of Garric , although somewhat less clearly.
Thus an #irfoil contour may be continuous, but if the slope is dis-
continuous, there will (theoretically) be discontinuities in velociiéy dis -
tributioﬁ. Apparently the curvature may be discontinuous without pro-
ducing a velocity discontinuity, but a sudden change will occur in the
velocity.gradien’c along the airfoil surface. The latter effect is known
to influence boundary layer performance.

It was stated in the Introduction that velocity and pressure dis-
tribution were more difficult to determine accurately than overall flow
characteristics. This was evident in the previous section, whelie the
results of Shirakura were very closely matched for deviation angle
{Table I) but poorly matched for pressure distribution. The reason for
this ié quite simple: the overall flow characteristics are not as sen-
sitive to airfoil contour as are velocity and pressure dist;ibution. This
is quite obvious since the lift is essentially an average of the pressure

distribution.

B. Accuracy of the Present First-Order Solution

(4)

(22)

The approximate theories of Klingemann and Hudimoto were
based on the assumption that the cascade airfoils deviate little from
straight lines, but no indication was given by these authors of the amount
of efror involved in this assumption./ The present theory is based on

the same premise and the first-order approximation gives the same

results for overall flow characteristics, aside from a removal of

restrictions on angle of attack. However the present theory differs from
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the earlier theories in several important respects, not the least of
which is its usefulness for finding higher order approximations. These
are useful for evaluation of the ac'curacy of the first-ordér solution. By
- way of exé,mple, the deviation angle will be considered in the following.
It is believed that the higher order terms due to camber are the
most important, and that those due to thickness and S-shape need not be
considered for axial flow compressors. As pointed out in Part II the
higher order terms are relatively difficult to obtain and interpret. How-
~ ever a simplified expression, valid only for high solidity, (Equation (104))
was obtained for the second-order coefficient 61‘_9) in the equation for
deviation angle of a circular arc cascade (Equation (103)). A plot of the
ratio . 6.&_9) /ﬁfa) computed from this equation is shown in Figuré 5. The
limitations of this figure are discussed in the Analysis and should be
kept in mind. For constant B, the absolute value of the ratio is seen to
be'hig>hest at o = 0 (zero spacing or infinite solidity), decreasing with
increasing g . The plot is discontinued at values of o somewhat less

than 1.0, since the equation for 6f8) /6\(9)

is invalid for-large o
The exact equation for deviation angle at ¢ = co (single airfoil) is known,

namely

d & o + for o = co. (154)

plo

(8 s
Here obviously & /5(9\ = O, indicating that the curves of Figure 5
\
approach the value zero as o increases. Thus from Figure 5 one can
state that:

‘ (®
(1) Except for p large, &

is less in absolute value than 6‘“).
(2) If B is positive, 6?\ and ﬁ‘m are of opposite sign.

ein SO/ 0 . .
(3) The ratio o /3“ ) decreases in absolute value with < .
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(4) For fixed B, the ratio 63)/65’) is about half as large at
0 =0.5asat T=0.
The following assumptions enable an error analysis to be
made:
(I}) The errors due to thickness and S-shape can be neglécted.
(II} The error in & resulting from the use of first-order terms
alone is less in absolute value than ' o° S.,_(m \ .
(II1) The value of o is greater than 0.5 (solidity < 2.0).
The first assumption follows from a statement above about the import-
ance of higher order terms due to camber. The second follb_ws from the
first two statements made regarding Figure 5 and the indication that the
coefficients alternate in sign. The third assumption follows from
present éxial flow compressor practice.
Under these assumptions an approximate equation for the max-

imum error can be written:

. . ) |
maximum error in § & (8, )
= | = )
2 3 ( /g‘ o | - (155)
Substitutions from Equations (104) and (105) lead to
maximum error in & _ |8 [V—\Q_______ -t } 156
5 4 (Xqﬁlm%-r%tq%}“}% % oo . )

Thus a relatively simple expression has been obtained for the
maximum error introduced by using the present first-order equation
for deviation angle. Refinements of this formula are possible, of
course, but will not be attempted here.

Equation (156} implies that error increases with B . This is

reasonable since the distance between airfoils decreases with g, if o
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remains constant. (See Figure 3). Equation (156) also implies that
error is zero if f = 0. The comparison with the numerical results of
Shirakura in Table I indicates the error is, of course, ﬁot zero when

B = 0, but is very small, not exceeding one percent of the camber angle.
The maximum stagger angle ﬁ encountered in axial flow compreésors

is about 70°. If the maximum error in deviation angle must be less than,
say, five percent of the deviation angle, the camber angle éhould not

© the

exceed about 15° as can be shown using Equation (156). For B = 30
camber angle can be as large as 45° without the error exceeding five
percent of 6. For cases where Equation (156) indicates more error
than is allowable, higher order terms cannot be neglected. |

The foregoing error analysis was concerned with the deviation
angle equation. It might be supposed that the same conclusions would
be. reached from a similar analysis for other flow characteristics. Act-
ually this does not occur; the linearized equations for CL’ r, anﬁ tanyD
are not as accurate as the equation for 6. (Since = Y, ~0+PB - ~Jr,
the linearized equation for turning angle has the same eri‘or, as the
& equation). This apparent paradox can be explained by the fact that &
and fL are apparently very nearly linear functions of 8 , while the
other overall flow characteristics are not. This is shown clearly for a
particular case by the curves of Figure 11 which were constructed not
from the results of the present theory, but from the numerical results
of Shirakura in Table I. The curve for & is much more nearly linear
than that for CL . Hence the linearized formula for 6 is more accurate
than that for CL' The physical reason for this situatioﬁ is not entirely

clear. However for maximum numerical accuracy, the deviation angle
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should be computed from an equation such as Equation (78), and if CL
is required,. this number should be used to compute CL’ rather than
a direct linearized formula, such as Equation (74).

‘No error analysis has been attempted with regard to the present
results for velocity distribution. However the range of permissible
camber ange {(for a given error) is probably less than in the case of

deviation angle, as indicated by the example in’Figure 8.

C. Practical Use of the Results

Axial flow compressors are usually designed for efficient and
stable operation at'a given set of conditions, norrﬁally calle&_the
"design point''. Potential flow is frequently assumed first, neceséary
corre.ctions being applied at subsequent points in the design procedure.
An initial three-dimensional treatment of the problem has the object of
fixing the conditions ahead and behind each row of blades. When the
number of blades in each row is fixed, each circumiferential section of
blading can be regarded as a two-dimensional cascade in which upstream
and downstream conditions are specified, and the cascade geometry
must be determined. This is an example of the inverse cascade problem
meﬁtipned in the Introduction.

This design point cascade problem is readily solved using the
results of the present theory. In Part IIl it was shown that overall flow
characteristics of an actual compressor cascade can apparently be
approximated sufficiently well by as‘s;uming the airfoils have zero-thick-
ness and using the present equations. Thus only the shape of the camber
line and its orientation in the cascade must be determined. The use of
smooth entry as design condition is particularly convenient, and results

in the following procedure:



-64-

Using Equation (153), a first approximation for B can be

written

p= (157)

The airfoil spacing is known, hence ¢ can now be easily
found. With the values of ¢ and B, camber angle can be
found from Equation (152) in the form

. YooY

B S S (158)
4q- coa Tl (b

It is convenient to plot the reciprocal of the coefficient of

Y, - Y, in Equation (158) as a function of ¢ and B, thus

[ %]

avoiding the computation each time of bo from EQua.tion (5).
Weinig has constructed such a graph (Reference 1, .Figure 81).
If no S-shape is to be included in the camber line, this com-
pletes the procedure. If a non-zero value of S--sh;,pe»angle Jois
.selected, the camber angle is unchanged, but a second ainproxi—
mation to the stagger angle must be found. For axial flow com-
pressors where the conditions

-
t b~ vep

€ = <o_4) ao<l.ry

are usually fulfilled, Equation (131) can be used in the form

¥+ ¥ _ 3@ 4 3¢t/ T 12

i {31_‘: Am%+‘°T[~":(m"¢-Ang>—zml%vamé)] {(159)
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where from Equation (94),

A = %Zm%—i—%u»v\?, (160)

Here again the coefficient of M should be plotted for con-

venience.

When the design point of the compressor has been treated, off-
design conditions are usually studied. The present solution of the direct
cascade problem ié convenient to use for off-design conditions, but it is
important to note that the assumptions of the present theory may be
invalid if, for example, flow separation occurs. Thus good judgment is
required in determining how far from design conditions the results may
be used.

With cascade geometry fixed (as when studying off-design
characteristics) the overall effect of the cascade is best expressed as
deviation angle, using the equation

S 5, + 857 +ud® (161)

where from Equations (93), (96), and (129)

go: c C/BQQ% (ti—v\ \(U_W%S (162)
>& < Thwop-e(f+g wob- T AL (163)
S?‘“\: B%r me_?#":({ +Am€,)

—7_,&.%2“6% + (HH} m%_%{;‘® mz%]
,(fz@(u-m?§[€-3m%ﬂ,1ézm%+g(Az_ﬁmé
+ 4 J; - A finp east '

R (&, - % o )]

A
{ o2 a0 p = W pcon 2[4 (F ey

(164)
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Again here graphical representations are very convenient.

Presumably the foregoing formulas are applicable to some extent
to axial flow turb_ines, but no evaluation has been made in this regard.

For axial flow turbomachinery with blading having solidities
generally less than 0.,8 (o> 1.25), such as fans, the approximations
based on small o are not sufficiently accurate, and the formulas involv-
ing bO , such as Equation (79), should be used instead.

For more detailed studies of the performance of an axial-flow
turbomachine either at design or off-design conditions, velocity (or
pressure) distribution is frequently required. The computations a.re more
complex than those just described and will not be given in detail here.
The velocity distribution can be computed from Equation (139), taking
into account the airfoil thickness, which was deliberately neglected
abpve. The pressure distribution can be found using Equation (21).

For mixed flow turbomachines and other instances. where stream
surfaces are not even approximately bylindrical, it is doubtful that the
present results are useful except qualitatively. |

For cases where the value of b0 is frequently required, a plot of
b0 versus g for various P is convenient and can be computed from
Eqﬁation (5). Rannie gives a plot of 1og(1/b0), which he obtained in this
way (Reference 45, Figure 82), and other similar curves can be found(l)’ (5?

When flow characteristics are required for a given cascade
which has a camber line differing from any of the cases considered
here, a nearly equivalent cubic camber line can be used. There are
numerous ways such a camber line can be chosen, and probably the

differences are of minor importance. However one method - matching

tangents at leading and trailing edges - is obviously not feasible with
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NACA 65 series camber lines because these have infinite slopes at
the leading and trailing edges. Instead an equivalent circular arc may
be defined as having, say, the same maximum distance from the chord
line.

The inverse hyperbolic tangent function occurs at several points
in the present solution to the cascade problem. (See Equations (76) and
(140) for example). Though it is not difficult to locate tables for real
arguments, the function is also needed for complex arguments. The
most readily available table is by Jahnke and Emade {Reference (49),
Addenda, p. 72) but a much more extensive table occurs in a.book by
Hawelka ( Reference 50, p. 55). Use can also be made of the following

relation:

-1 \ %
w z = + T . (165)

z i-%=

To account for airfoil thickness a '"conjugation' must be per-

)

) as a function of

formed. Though one conjugation (to determine u
4) ) suffices for any set of values of thickness, camber an:g.le, and
S-shape angle, a change in stagger angle or spacing requires a new
conjugation. Curves or tables can be devised for each airfoil shape
equation giving u(\t) ir; terms of the three parameters c@ ., 9 , and
B .

If more than one airfoil shape equation is used, the number of

curves or tables required can be diminished in some cases. For

example the family of airfoil shape equations expressed by

n
Z

Wy = T Z A, (x+L) (166)

e

can be reduced to no more than m-1 cases, which can be used for all
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sets of the A . From Egquation (166), y(-+) = 0 and since y{4) = ©

also, it follows that

™
Z A,= O. (167)
Nn=\
Thus one can write
m b
NS
‘BM - x 2 A“[Q**x\ - (k“z\] ) (168)
=y

Then one may individually solve the set of m-1 BVP's whose equations,

which are independent of the An’ are

AN [uu”g\’l SECINESY (169)
and add the solutions using
i 49!
Ve S AV (170

LR

The NACA four digit airfoil series has a thickness distribution
similar to Equation (166), if some arbitrary rounding of the trailing
edge is assumed. Other schemes can be devised for other thickness
families,

The number of "points'' (values of CP) used in a numerical
method of conjugation influences the accuracy of the soluﬁon. Eighty
points were 'used in the two examples with thickness given hei‘e, the
conjugations being performed on a punch-card calculator.

To calculate velocity distribution on airfoils with thickness the

is required, This can be obtained from the

/ ()
derivative ut” = ‘i“‘

[y

solution for u®) , but an alternative direct procedure is also possible.

The function izf‘lml(z) =iz % FF")(Z) is regular in the same region as
2

FO (2). If lz] = 1,

RES T WD wilvT (171)
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/
. <9
is known. Hence u\( > can be found

@)

«y’
\ \

Since v is known, v

7/
by conjugation of v?‘)/ . If bothu® and u®  are needed, but

7/
only one conjugation is desirable, perhaps the one for u\@) is the

N ) . .
better one to perform, because u,@ can be found by integration,

a more accurate numerical process than differentiation. The function

u \tﬂ found in this way must, of course, satisfy the BVP conditions.
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APPENDIX A - NOTATION

(z), F;"(z)

Laurent coefficient {see Appendix B)

log 2cos B +p tan B

Coefficients in equation for CL

Complex coefficients in Theodorsen .method
Real coefficient in conjugation discussion
Parameter locating singularitiés near circle
Coefficients in equation for b

Coefficient in equation for C_

Complex coefficients in Rannie method
Coefficient in the equation for tan Yp
Coefficients in the equation for C

Lift coefficient

Laurent coefficient (see Appendix B)
Coefficient in the equation for ta.ﬁ Yp
Coefficients in the equation for D

Thickness function

e P et (b/2)

419

e tak (L /a)

Function in equation for w(z)

Solutions of auxiliary boundary value problems
Airfoil shape functions

Point on circle corresponding to leading edge
Leading edge of airfoil

Index

Static pressure
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uo(r,<9 ), ul(r,c()), etc.

VO(I’Q ), vl(r, ), etc.
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vortex
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x + iy

w

w(z)

w
x(r, §)
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Static pressure corresponding to Vg,

Complex velocity potential

\J\‘\-\o,‘ +2 %y m:&-%
Modulus of =z

Point on circle corresponding to trailing
edge

Trailing edge of airfoil

Real parts of Fo(z), Fl(z), etc.
Imaginary part of Fo(z), .Fl(z), etc.
Flow velocity on airfoils

Flow velocity far downstream of cascade
Flow velocity far upstream of cascade
Velacity due to vortex distribution
Vectorv average of V, and VD

Complex variable in physical {(cascade) plane
Transformation equation |

Real part of w{z)

Imaginary part of w(z)

Airfoil shape function

Complex variable in circle plane

Angle of attack

Stagger angle

Coefficients in equation for stagger angle
Angle giving dire.ction of Voo

Flow direction angles far up- and downstream

Circulation about one airfoil
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b Deviation angle

60, 6;95, 62[09\ s 6(1'“) Coefficients in equations for b

Jay Real quantity used in Rannie's method
A Linearizatig_n parameter

¢ E'Z‘%t"‘g’ T T

Complex variable

Linearization parametex

Camber angle

Point on circle corresponding to leading edge

S-shape angle

¢\;>’<D,:~/s

L,'L)T Geometrical angles (see Figure 6)
5 Integration variable
p Fluid density
a Spacing-chord ratio (note solidity = 1/a)
T | Point on circle corresponding to frailing edge
T Maximum thickness-chord ratio
9 Argument of z
g Trailing edge argument
\po, \_p(lo) s w({/-) , \p(;) Coefficients in equations for LP
L=y u - YD Flow turning angle
—Q-(;) Coefficient in equation for S
( Do { )ps € )X AN Evaluation at points t, t, {, and X
( )G_: o Single airfoil case
{ )W‘ o Infinite solidity case
é’i Complex derivative with respect to z
P

3¢ Partial derivative with respect to 4
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& oo}
Rotated cascade {see smooth entry)
Complex conjugate
Imaginary part of
Real part of
Terms of the order of

Modulus of

L.ess than
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APPENDIX B

DERIVATION OF THE FUNCTION F * (z)

® (z) = ul(e) (r,cP) + ivlw) (r,d), as used in the.

The function F 1

text is defined by three conditions:

(1) F m(z) is regular everywhere in the region |z\ > 1.
1 g g
(2) vlm( 1, d) = -é -2 [uo (1 ,<P)] 2 , where u, (I‘,LP) is known.
(®) ; 4q (B = ’
(3) ul (lalpo)'*-'ul)(l:v'!‘ LPo)’ o .

These conditions indicate that Fl(e) (z} is the solution of a familiar type

of potential theory problem: Find a function regular without and on a
boundary, given its imaginary part on the boundary. The problem may
be solved by using one of the Poisson formulas. In this case, however,
a method is adopted which utilizes Laurent .expansion coefficients.

The known function Fo(z) follows, along with its Laurent ex-

pansion, valid in |z| > 1:

. N . .'1»\1-\
£, (a) = %C‘F’M“(ii) - o't s G _. (B1)

w:o 2wty

For convenience, the following form will be used for the expansion:

O a . -
F)= 2 ot (B2)
nego 2"
where
bl
o N ° n
C'k'l-\w-v. = 1T b'ln-t-\ € F go g Dg : (33)

[
From Equation (B2) and the definition of a conjugate complex function

Zn+)

.F—o (%!\ = Z a'—)_“_,‘_‘ z . _ (B4)

n= o
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If one defines a'—(Zn-t—l} by the equation

>
. . - _ (e ""é Tw (Q
a.—un-i-l\ N ‘Ll“*‘ - T xb:n-\-\ € o { g (BS)
then from Equation (B4),
-— . \ _ i a %1K-t-|
Fo (% - no ~(in+y . (Bﬁ)
Now u, (1,9) can be expressed in the form
Wo (4, @) = & IFO €9+ & (543] , (B7)

C
Using a similar expression for vy e)( \,J) condition (2) may be
written

. ; - - B =, - i@y = , -i
SR F®e'?y = -4 - ARG U s 2rtdQ EED (B8)

The product in the last term in Equation (B8) may be expressed as the

expansion
. . - _('Zuu? oo L2 ‘P
‘(Q fd —|g0 W
Fol(e 51:0(6 )= Z dzu\ € * Z J_-L“ e (B9)
n=o M
where
o0
- a
dlv\ - 'LZ'-O a"(l‘t-&h 'LV\-\-Z-EA\—‘ (BlO)
oQ
Substituting Equation (B9) into Equation (B8) results in
LB e oy, s L\t & ilw
cF DB OER 2 ~L AR (D] Hdor2 2 diye ? (B12)
h=

%+ [ @] +d, 2 :Zj A—uen“cp
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Thus by inspection

LDy = -5 [Fo (e:"h]z tdo * 2 g da éizm() + L (constant) (B13)

Therefore

. 2 oo
© L . : d |
FP s £ - r@y] -id, —i2 3 -—-%1‘; + constant, (Bl4)

"ei
Conditions (1) and {2) define Fl(e) (z) to within a real constant,
which is fixed by condition (3).

By inspection of Equation (B2),
F, (etV0) = - Fye T

hence from Equation (Bl4),
Flm (e iuyo ) = Flte)(e 1(“%))’ and

‘*‘W\ () o) — Uk\(m (Lw+d) = 0. ' - (B15}

From this equation and condition (3), the constant in Equation (B14) can

be evaluated, so that Equation ({Bl14) becomes

(® v T LR 4,
oo = T —L[Fo(%)] -l.~::l‘> ‘szg,l e

0 —i2n Y,
2w, (L) o (L, ) -2 Y, 2 4o, . (B16)

(

To put Fla)(z) in final form the terms in Equation (B16) involving

coefficient dZn are modified. From Equations (B3}, (B5), and (B11},

b Y&‘Q % \;tg
o6 _ ot oo -ﬁ—i ———3

The interchange of summation and integral signs is permissible since

power series are uniformly convergent in any closed region within the

circle of convergence. Thus
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b b
o > oo 1 1t
Lz (24 4.0 (B18
R g ( z 3 4 dy )
° o
Summing the series and performing one integration give
LL
< fod'e %8
Ao: - g —_— (B19)
R o g

By a similar process one can show that
ke ohte 4
g le‘ - 9_1 g : ? f g

2 T ’
n=\

kS kR
2" ), krt- g

(B20)

Substitution of Equations (B19) and (B20) into Equation (B16) gives the

final result:

.' .
FP @y - 5 -L[FoLz)ll_L st S tanh T 4

wt o g

- 2u°_t Vo i

(B21)
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FIGURE 1

A TYPICAL COMPRESSOR CASCADE
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FLAT PLATE CASCADE TRANSFORMATION
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FIGURE 3

ARBITRARY CAGSCADE TRANSFORMATION
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FIGURE 4
DEVIATION ANGLE B
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FiIGURE 5

SECOND ORDER COEFFICIENT IN. THE

- FORMULA FOR DEVIATION ANGLE
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PERCENT OF CHORD ERom
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NACA 44(2 A|RFOIL CASCADE
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CIRCULAR ARC CASCADE
§=o C=20.5
BASED ON COMPUTATIONS
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