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SUMMARY

A theoretical invegtigatlon has been made relative to
the adaptation of the simple Prandtl wing theory to wings
with highly swept 1ifting lines for ﬁurposes of computing
downwash., Equations have been developed relating the character-
istic geometry of this type of wing to the agsoclated vortex
pattern and the Biot-Savart Equation has been integrated in
such a way as to most facilitate englneering calculations.

The asgsumption is made that the distribution of circulation
about the wing hag been predetermined by one of the recently
developed span-loading theories.

The general method of approach as has been used by Silver-
stein, Katzoff and Bullivant in Reference (1) is used herein.
The primary deviation from the prbcedure outlined by these
authors is the extension of computational methods from the
two dimensional plane-of-symmetry analysis to three dimensions.
Though it is not always stated impliclitly, some of thelr devices
are employed unchanged and others are altered to fit different
conditions.

Calculations have been made (see Appéndix A) for a wing
for which experimental data on downwash are available. The
comparison between theory and experiment 1s found to be rela-
tively good. Charts and tabular forms have been presented
which are expected to be of use to designers interested in tail
loads on swept-winged ailrcraft whose landings and take-offs

take place at high angles of attack.
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INTRODUCTION

Post-war improvements in jet power plants have extended
the maxlmum speeds at which piloted alrplanes may fly.
Attempts to push through the so-called "sonic barrier” have
recently led aerodynamiclsts to design wings with radical
amounts of gweepback. Much information has been disseminated
on the high speed characteristics of these wings but the pub-
lighed literature to date includes very little dealing with
the low speed problems aggocliated with their uge. These
problems, of course, refer to stability and control of the
alrplane at landing and take-off. A few reports give wind
tunnel data of a quallitative nature only on the downwash
behind swept wings, but none are known to this writer which
correlate these data with theoretical calculations. It is
sought with this thesls to fulfill this need for a computa-
tional procedure.

Reference (1) sets forth a method, based on the Blot-
Savart Law, for finding downwash behind straight wings, with
and without flaps, in the region of the tallplane. Application
of the Bilot-Savart Equation is made comparatively simple by
treating the flow as a quasl-two-dimensional problem, that is,
the downwash is computed only in the plane‘corresponding to
the wing's plane of symmetry. It ignores the spanwlse varla-
tion of downwash along the tail, an effect which, as will be
shown herein, may be quite pronounced for the new type of wing.

This thesis proposes to adapt to the swept wing the
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general methods of these N.A.C.A. authors by assuming the
lifting surface to be replaced by a Vee-shaped 1lifting line.
The concept of a vortex pattern composed of a finlte number
of horsgesghoe vortices, each of finlte strength, ig carried
over. Conslderation is given to those highly complex three
dimengional effects which are associated specifically with
angle of attack change, effects not present 1f the 1ifting
line 1ig unbent. The excellent new methods of Welssinger and
Falkner (Reference 3) for computing circulation distributions
over wings with arbitrary planforms are used for estimating
the strengths of the elements of the assumed vortex pattern.

Throﬁghout the preliminary study for the preparation of
this paper, consideration was given to various graphical
procedures t0 evaluate thelr utility in decreasing the tedlious-
ness of stralght-forward calculations. It was found that in
most instances, direct calculations (in tabular form) gave
better results at no penalty in time consumption. It appears
quite clear that the preparation of downwash charts for wings
of various pianforms is not amenable to the swept wing.
Reference (2), which appeared as & sequel to ﬁeference (1),
presented charts for a wide range of planforms but all were
of the straight lifting-line varlety.

As mentioned in a previous paragraph, for current pur-
poses the spanwige circulation distribution i1s presumed to
be known. However, the methods of Reference (3) are not
strictly applicable to wings which have marked discontinul-

ties (such as flaps) in airfoll section or in planform.
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Nevertheless, an understanding of the essentials of the ‘
problem of flapped airfoils given on page 13, Reference (1),.
will allow the engineer to make a gufficlently accurate estl-

mate for a swept wing with extended flgps.
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NOTATION AND SYMBOLS

X, ¥, 2 Space coordinates measured relative to wind direction
with origin at point where quarter-chord lines
intersect plane of sgymmetry of wing

b Wing span, measured perpendicular to plane of
symmetry

c Wing chord, measured parallel to plane of symmetry

h Distance from vortex core, meagured in the horizontal

plane perpendicular to the vortex

m Linear distance to a point in the flow from the origin
of a tralling vortex (at the quarter.chord line),
meagured parallel to the vortex

mac Mean aerodynamic chord

n Length of a given bound vortex fllament: s secd

P Digtance of a point in the flow from the apex of
bound vortex fillament, measured parallel to the
vortex

r Radial distance of a point in the flow from a given

vortex core

a Digtance between wing center plane of gymmetry and
the parallel plane passing through a given
trailing vortex

Av Increment of induced veloclity at a point in the flow
due to the influence of a single vortex filament
w Downwash velocity
4w Increment of downwash velocity due to a single
vortex filament
w/V Downwagh angle, radians A
' 2
AR Agpect ratio 9f the wing; b~/8 or b/caverage
Cq Local 1ift Coefficient; (Lift per unit span)/%Pé%
c, Wing 11ft Coefficlent; (Total 1ift)/LP¥°S
S Wing Area
v Velocity of the flow in the undisturbed free strean
a Angle of attack of wing root chord-line relative to

undistrubed free stream dlrectlion
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V.Ya4

(™)
()
(),
()

(g

Angle between (1) the line perpendicular to and
Joining a given vortex filament drawn from a given
point in the flow and (2) the horizontal (xy) plane

Downwash angle, degrees

tip/croot

gtrength of circulation about an individual horseshoe
fllament

Taper ratio; c

Angle of sweep, measured between the perpendicular to
the plane of symmetry and the dquarter-chord line,
positive if the wing is swept back

Air density

Dimensgion expressed as ratio of semi-gpan
length; ( )/(b/2)

Dimension expressed as a ratio of bound vortex
length; ( )/(s secq)

Refers to left-hand element of a left-hand, right-
hand combination

Refers to right-hand element of a left-hand, right-
hand combination

Quantity considered with reference to bound vortices

Quantity considered with reference to tralling
vortices
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THEORY
PRANDTL SIMPLE WING THECRY:

It is the sgimple Prandtl wing theory from which have
arisen the varlous methods for calculating spanwlse cilrculation
distribution and downwash (as developed by Trefftz, Lotz,
Glauert and the more recent authors). This theory visualizes
the wing as a straight line in a perfect (non-vigcous) fluid
coincident with which there 1s a vortex of varying strength.
Since 1t is known that a vortex fllament in a perfect fluid
must cirecle arcund and close upon 1ltself, 1t 1s vigualized
that vorticity ie shed continuously from this "bound® vortex,
and that 1t trails off downstream slong those paths that
coincide with the streamlines passing through the origins of
this vorticity. These tralling filaments ultimately close
upon themselves at a great dlstance downstream, but this disé
tance 1s so great that the only contributions to the induced
field of flow near the wing are (1) from the bound vortex
contained in the quarter chord line of the wing and (2) from
the trailing vortices which are shed at various spanwlse inter-
vals and which trail off past the tail along the paths of the
streamlines. The surface containing these infinitesimal shed
filaments is known as the "trailing vortex sheet". For purposes
of estimating wing load distribution, 1t is consldered that this
sheet extends behind thé wing and remains as a plane surface
which is parallel to the rectilinear flow from infinity.

It is unfortunate that the spanwise circulation distribu-
tion (excepting the case of elliptic loading) cannot be represented
by a simple analytical expression. This makes 1t necessary to
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employ graphlical integrations and stepwlse approximations to
the circulation curve. For this reason, the concept of "horse-~
shoe! vortices has arisen to enable the aerodynamicist to make
calculations for determining downwash. The crogs-leg of each
horgeshoe lies in the quarter-chord of the wing, and the two
trailing filaments complete the *"UY. The loading curve 1is
vigualized as & serlies of finite steps, the one at the tip
starting from zero strength. The magnitude of each of these
steps 1s equal to the amount of vorticity shed from the wing
within the region extending outboard and inboard midway to the
next steps, and it is this amount of vorticity which is the
strength of the U filament whose tralling legs originate from
their respective sides of the wing at the point.

In the older theories which have been used to find this
clrculation distribution, 1t has been found necessary to consider
the bound vortex straight and at right angles to the windstreamn.
The reasgon lles in the fact that infinite velocities theoretic-
ally are induced along the lifting line, should 1t not be
perpendicular to the wind. For purposes of computing downwash,
however, this consideration does not enter the problem}and~a
swept wing can be congldered as a Vee-ghaped 1ifting line in a
vortex pattern which is otherwise identical with that which has
already been described for the straight wing.

In this thesls, therefore, 1% will be assumed that the
downwash at any position in the flow will be induced (1) by a
finite number of coincident bent filaments lying in the quarter-
chord of the wing, and (2) by a set of trailing vortices, all
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1ying in the surface which originates at the 1lifting line.
Attention will be given to the effect of reorienting this
pattern (as the wing changes angle of attack) upon the down-

wagh.
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DEVELOPMENT OF THE EQUATIONS FOR DOWNWASH:
The velocity induced at a point in the fleld of flow due
to an infinitesimal length of vortex filament,dw , is expressed

by means of the Blot-Savart Law as

— _ / dixd
I =t 1z (1)

The quantities appearing herein are defined:
W ~ induced veloclty vector at the given point
o~ streﬁgth of circulation about the vortex

dl ~ direction vector of the small length of
vortex filament

a ~ vector from the filament to the given point

This equation will be integrated (1) to obtain the field of
induced velocities due to a single leg of the Vee portion of
the horseshoe vortex emanating from a swept-wing, and (2) to
find the induced fleld due to the singly-infinite tralling
portions of the horseshoe. The vectors representing the velo-
cities obtained from the procedure will lie in the plane normal
to that part of the filament from which they were derived. By
sultable geometrical methods the vertical components of these
induced velocitieg will be extracted, and a method willl be glven
to compute and to sum all the contributions from the several
vortices of the vortex system.

See Figure (1) for a sketch defining quantities involved
in the integration procedure.

To find the induced velocity, Av, occuring at polnt P
due to the vortex of length n (= s secq ) depleted above, we

write olxd = asmn® dl , substitute into the Biot-Savart
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Equation and integrate between the limits os<khgsn.

AV(4”) /a.am edf _ ’Z[[r; ffo-l)’]m

- %] - L r

(2)

By & similar procedure, the incremental induced veloclty from
the tralling vortices at a point whoge dlstance normal to the
vortex 1is re and which is distant m units downstream from the
vortex corner 1is

)=+ lml, - el (3)

A semi-graphical solution wlll be followed in determining
the vertical component of the induced flow, i.e., the downwagh.
To do this, a system of coordinates 1s established as shown in
Figure (2).

Conecerning ourselves again with the bound vortlces, if
each of thé distances involved 1s expressed dimensionlessly in
terms of the bound vortex length,3secq, then a single graph may
be prepared from which the quantity Av(f/-.,lr) may be found for all
values of r} (= r /s gecg ) and of p' (= p/s sec§ ). Making
thege substituticns in Equation (2)

(¥ = il * (4)

The vertical component of Av may be determined by multiplying
this Av by the cogine of the angle between the horlzontal and

the radius from the vortex to the point P. This cosine 1is
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invariant with the length of the Vee leg of the vortex. There-

fore,

/)y = <038, |65 NE7 N5 sfecQX?:i{'@;%ﬁ%? * ﬁ] ) (

+ c0s88, 3 kel Nz secol: (o + rd%epl)]

5)

where the terms 2/7/bV represent the strengths of the sghed
aﬁd bound vortices as determined from the spanwise circulation
‘distribution.

A graph of the function

=L B
'L' 'B" *.(p"/)a W

1s presented as Figure (8).
Regarding the tralling vortices, the distances are expreased

as ratios of the wing semi-sgpan distance b/2. This puts Equation

(3) in the form

av( @) = gl vl (6)
As in the previous case, to éonvert this velocity to 1ts vertical
component one must multiply it by the cosine of the angle which
the radius through point P normal to the vortex makes with the
horizontal. This cosine will not in general be the same for

various‘trailing vortex positions. Hence,
()= S lNer)cossen b (1 + rterel]
*COS‘B;L{';-::‘{I + %7‘)}] (7)

The funection | J =——"i‘:{, +7-ft=@*=%-,) appears as Figure (9).
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GEOMETRICAL COMPLICATION

The downwash theory used with straight 1ifting lines need
give no consideration to changes in the vortex pattern which
result solely from changes in angle of attack. But whenever
the attitude of a swept wing 1is changed, each component vortex
of the pattern 1s translated and the 1lifting vortex 1s rotated
about the pitching axis. Much complication arises from rotation
of the "Wee!" vortex since the calculation of downwash induced
by 1t involves computing the length of the normal to a line in
space which 1s neither parallel to any of the established axes
nor to any of the x = constant, y = constant, or z = congtant
planes; and 1t involves in addition finding the cosine of the
angle this normal makes with the horizontal.

To find relationships giving the radii, Py of a point in
space from elther leg of the "Vee!" vortex, one must consgider
the geometry of a given plane. It rotates about the y axis and
makes an angle & with the x axis. The #Vee" 1ifting line is
contained in this plane and its legs form the angle @ with the
positive and negative branches of the y axis.

The desired relations for the radil are found to be expressed

by

(8)

lop= l(Kcos@ ~VsingP + /*
s = W(H0SQ +VSINQGJF+ |?

where
XSina +Zcosal

Xcosa - Z SinoL
¥ Z ~ coordinates of the point.

i

J
K
X,
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Theycorresponding dimensionless quantities giving the longitudi-
nal distances of the point from the origin (measured parallel
to the two legs of the "ee®) are
53 = k&/n¢ -+ 700847 (9)
B = KSing — Y Cos ¢
It B is the angle that the horizontal through the point makes
with the radius, then

Cos B, = 72.:—‘?/(? = PR C0S @)% + (X - poinqg COSl)

(10)
€05 By, = /7 +P,C050F + (X-P,5irrg Co5a)*
L
Thus, to find the downwash at the polnt, knowing the
magnitude of the total induced velocity at that point, one
employs the expresgsion
AW, , = BY,, COSB,,, (11)

which is to be compared to Equation (5).
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DISTORTION OF THE VORTEX SHEET -~ GENERAL DISCUSSION

One of the more important of the deviations of the down-
wagsh picture from the initial assumptions 1s the phenomenon
of "rolling-up" of the vortex sheet. Were there to be no
bound vortex and but a single trailing vortex filament shed
from the l1ifting line, it would trail'off downstream following
the rectilinear flow streamline passing through its point of
inception. Other streamlines in the region would be bent from
parallel paths due to its influence but this one vortex would
remaln straight. However, since not just one but an entire sheet
made up of these vortices exigts, the mutual induced veloclties
acting upon one another cause the paths of all of them to be
changed. Each vortex path coincides with that of a streamline,
80 i1t can be gseen that as the streamlines bend under the influence
of the induced velocitles, the entire sheet must become warped.

Consider a gstrailght 1ifting line from which just two
trailing vortices are shed near each tip. The vortex sheet (of
four vortices) must roll up, concave upward. The velocities
from the outboard cores force the paths of the inner cores down-
ward; those from the inner cores dlsplace the outer ones upward.
Refer to Figure (3), which illustrates the fact that the inner
cores are forced downward and outboard a distance which exceeds
the upward and inward motion of the others. This 1s the result
of the greater magnitude of vorticity which exists at the tips
of a swept-back wing relative to that shed nearer the center of
the wing.

We next consider a swept 1ifting line at some angle of
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attackrto'the free stream. With no vorticity emanating from
this line, the sheet of streamlines passing the line will appear
downgtream as an inverted trough-shaped surface. The apex of
the trough for a swept-back line will be directed‘upward, and
were the angle of attack to be increased to 902, the trough half-
angle would correspond to the sweep angle. For a swept-forward
line, the apex would point downward.

The addition of circulation to the elements of the trough
will once again superimpose a rolling-up upon the outer edges.
of its surface. For the two-horseshoe pattern previously dis-
cussed, the more inward streamlines are displsced downward a
distance relatively greater than they are in the straight 1ifting
line case. This ariges from two phenomena assoclated only with
sweepback. First, the tip vortices from swept-back wings have
abnormally high values of circulation. The relative strengths
of the induced velocities in the reglon of the cores located a
small distance inboard from the tips are, therefore, greater than
thoge further outboard. Becond, since the downward displacement
of any streamline which passes through the 1ifting line 1s a
funetion (a) of the downwash acting élong its length and (b)
of the distance along its path, the longer the path, the greater
the digplecement. But the outer streamllnes must traverse a
shorter path to their intersgection with any x = constant plane
since thelr point of origin on the swept-back 1lifting line is
farther downstream. See Figure (4). These two phenomena
combine to displace the inboard elements of the vortex sheet
further from the line paralleling the free-stream direction.
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This rolling-up is then superimposed upon the inverted trough
pattern to give the configuration of the intersection of the
wake with any plane normal to the free flow.

The same type of reasoning may be applied to the swept-
forward 1ifting line, remembering that for this case the vortic-
1ty shed ﬁear the center of the Vee, rather than that near the
tips, 1is stronger and that the tip vortlices travel a longer,
rather than sghorter, path to the plane of interest.

It is of importance to consider the treatment of the
problem of vortex sheet distortion given in Reference (1). Figure
(12) of this reference is roughly reproduced in Figure (5) of this
report, in which the variation of downwash with vertlcal dlgtance
from the wing quarter-chord point for a straight USA 45 airfoll
is plotted at the plane of gymmetry for three cases. Curve (b)
of this figure gives the downwash computed on the assumptlon that
the trailing vortex sheet remains plane as the flow progresses
downstream to infinity. Curve (a) is computed on the basis of
& distorted vortex sheet; concave upward (see the auxiliary figure).
Notiecing that for this case the two curves were geometrically
similar, the authors 1mpiicit1y concluded that satisfactory com-
putational accuracy could be obtained for the type of wing they
were considering if the downwash pattern existing in any plane
downstream from the wing perpendicular to the rectilinear flow
were shifted downward by the distance "z shgwn in the auxiliary
figure. This reference mekes the assumption that the downwash
(for a straight wing) is nearly constant across the tail span.

Actually, a procedure having common use in the industry makes
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use. of the downwash data of References (1) and (2) by assuming
the effective downwash acting at the elevator hinge line to be
nine tenths of that computed to exist at the center of the tail.
This procedure yields results which are approximately correct

. in the plane of symmetry, but large dlscrepancies may result

from applying it to the flow near the horizontal stablilizer tips.
This 1s 1llustrated in Figure (6). If CDE represents the elev-
ator hinge line of a horizontal tall in the flow deplcted, then
it is seen that at point C at the stabllizer tip the downwash
induced by the vortex at A is (in this case) more than double

the magnitude of that from the vortex of equal strength at B.
But at point D, the downwash increments from the two tip vortlces
at A and B are sbout equal. Relative to those vortices located
at points approaching point F along each of the two sheets, 1t

is seen that the downwash increments approach each other in
magnitude. Assuming that in the more conventional type of
aircraft the horizontal tail will lie above the vertical positilon
of the tip vortices, the greater the distortion of the vortex
sheet, the greater will be the error made 1in assuming a flat

vortex sheet passing through point F.
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DETERMINING THE SHAPE OF THE VORTEX SHEET:

For reasoﬁs Just described 1t becomes necessary to know
the positionsg of the various elements of the vortex pattern
relative to the points at which downwash 1ls belng computed.

This requires a knowledge of the distorted shape of the vortex
sheet, a shape which generally will vary a great deal from that
of a plane area. Because of inherent difficulties arising from
the three dimensional geometry involved, no precise mathematical
analysls of the problem can be made. Certain simplifying
assumptlions, however, allow an approximate procedure which is
Justified by various experimental investigations.

Briefly, the process 1nvolves‘comput1ng the downwagh
induced by the entlire system along two or three of the finite
trailling vortices which were taken to replace the continuous
distribution. Thils establishes the paths of these fllaments;
each must follow the course of the streamline through its
origin, and the inclinatlion of the streamline at any point is
determined by the direction of the vector-sum of the free
stream veloclity plus the local induced velocity. The assumption
is made that sidewash 1s negligible so that the path of the
vortex remaing always within the plane y = s.

The first approximation to the vertical location of the
vortex sheet is the basic one, 1l.e., that the trailing vortices
remain parallel to the free stream velocity. Integration of the
downwash angle along a vortex from its origin to any value of
X gives the vertical displacement of the streamline containing

that vortex, i.e.,
X
F _ W — —
z = [ de * Eyortex origin (12)
From the sbove equation the positions of all points through
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which the particular vortices pass can be found, and 1t 1g then
possible to plot the intersection of each with any plane perpen-
dlcular to the free stream direction downstream from the wing.

The best assumption as to the vertical position of the
trailing vortex origin must be largely a matter of Judgment. It
depends upon angle of sweep, angle of attack, extension of flaps,
separation of flow along the wing's upper surface, and upon the
distance of the trailing edge from the 1ifting line. Reference
(1), page 17, contains an excellent procedure for locating thisg
point.‘ In general, the vortex origin will be in the neighborhood
of the median between the upper surface of the laminar flow

separation region and the trailing edge of the flap or wing.
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CALCULATION OF DOWNWASH:

The mathematical process leading to the determination of
downwash at a point behind a wing having a swept 1ifting line
takes place in three distinct steps. The first is that of finding
the distribution of circulation along the span of the wing.
Methods for carrying thig out are beyond the gcope of this paper.
The next step includes the approximation to the actual continuous
distribution of vorticity by a pattern of Vee sghaped horsgesghoe
vortices, and the determination to the first order of accuracy
of the distortion of that pattern under the influence of its own
induced veloclties. In the final step, having assumed a voriex
pattern whoge shape is similar to that found by the latter part
of step two, the downwash is calculated at the desired points
in the field of flow.

1. Compute for the given wing at the given 1ift coefficient
the circulation distribution about the quarter chord line. Use
eilther the Welssinger 1lifting line method or the Falkner 1lifting
surface method. The former is much the preferable for downwash
purposes since the results are obtained with considerably less
effort and, for general gpanwlse circulation distribution, are

just as accurate, Determine dGL/dﬁi and the angle of attack

L
2. Agsume a vortex pattern and compute the distortion of the

corresponding to the given GC_.
trailing vortex sheet to the firet order approximation.
a. Replace the continuous vorticity dlstribution by a
finite number of horgeshoe filaments. The strength of

each filament i1s given by the difference in circulations
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around the 1ifting line between (1) the point at which its
trailing leg leaves the wing and (2) the point on the wing
where the next inboard filament is shed. The sum total of
the strengths of the individual vortices must equal the
total quantity of vorticity under the spanwise distribution
curve. See Figure (7).

b. Assume the vortex sheet to be undistorted. That is,
agsume that there are no induced veloclty effects acting
on the component tralling vortices of the assumed pattern.
The sheet will appear as an inverted trough (for a wing with
positive angles of attack and sweep).

c. Locate the origins of the trailing vortices. The
section entitled "Location of the Wake", Page 17, Reference
(1), presents a semi-empirical approach to this problem.
(Thé vortex sheet and the center of the wake are coincident;
they have a common origin and are equally free to move in
the induced veloclty field behind the wing). If the wing
has a trapezoidal planform with only moderately rounded tips,
the location of the point at which the trailing edge of the
wing intersects the vertical plane containing any given

trailing vortex filament is given by
3 cosc
SCOSd{fﬂﬂQ-*A‘%{,*A)}-* AR T + A

_=-S'.smoc{ran¢ r (52 - Ak (13)

d. An element of the vortex sheet follows a path whose

tangent at any point takesg the direction of the vector sum

of the induced and the free stream velocities. S0 in this
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step, compute the downwagh due to the field assumed in

Step b along three or four points on certain of the stream-
lines which lie within the vortex sheet. Inasmuch as the
curvature of the sgheet will be greatest near the tipsg, 1t
wlll be satisfactory to make these calculations for only
two or three of the gtreamlinesg near the tip and for the
single gtreamline lying in the pléne of symmetry of the
wing. Normally, one ls not 1nterested in the field of flow
further downstream than the vertlcal plane through the
elevator hinge line. Therefore, the three or four points
on the individual streamlines should include (1) the origin
of the vortex (at or near the wing trailing edge), (2) the
point where the streamline intersects the plane of interest
(elevator hinge line plane) and (3) a point or two spaced
nearer to the origin than to the tall, for 1t is in this
region that the greatest curvature of the streamlines willl
occur.

e. Prepare a plot of downwash angle vergus linear distance
downstream from the vortex origin for each of the gtream-
lines of Step 4. The displacement vertiéally downward of
any point on a streamline 1s given by Equation (12). This
integral may be evaluated by Simpson'g rule or by other
approximate methods. Carry out the integration downstream
as far ag the elevator hinge plane. From the results of
this step, prepare another plot of z versus B in the
elevator hinge plane. The curve through the points of this
plot repregents to a first approximation the intersection

of the distorted vortex sheet with the plane of interest.
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3. - Finally, we may calculate the downwash in the plane of
interest along the elevator hinge line (if, as is ordinarily the
cage, downwash at the horizontal tail is of primary interest to
the aerodynamicigt). The vortex pattern lg now composed of the
bound vortlces, located as before in the wing quarter chord line,
plue the spanwise distribution of tralling vortices. FEach of
these lies in the same spanwise plane as before, but ils agsumed
to have been tranglated downward parallel to the x axis to a
positlon passing through the curve computed by Step 2(e).

Judgment must be exerciged when making a cholce of points
along the tailspan for finding the downward flow. In the vortex
sheet behind an actual w;ng the vortices afe all of infinitesimal
strength (wlth the exception of‘the tip vortex of a sgheet which
has undergone complete rolling up). But under our agsumption of
finite-strength filaments, veloclities bordering on the infinite
can exlist at very small distanceg from the vortex. For this
reason it 1s necessary to avoid making calculations at any point
close to one of these, If the downwash 1s desired in the region
of the vortex sheet, a gatisfactory cholce of polnts 1s elther
(1) midway between two adjacent cores, or (2) along the vertical
line drawn through any one of them. The latter choice has the
virtue that no matter where the polnt may be up or down along the
line, that particular core contributes nothing to the downward
induced velocity there and can be neglected.

Two simplifying procedures may sometimes be employed for
calculating the effect of the bound vortex in the plane of interest.
Firgt, the downwash induced by it at any spanwlse point on the

sheet may be assumed to remain constant for small dlstances
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above and below the sheet. This makes certain of the wB data
computed in Step 2(d4) available for use in this step. Second,
1f the vertical dimension between a given point and the mean
height of the Vee filaments 1s small, the cosine of the angle
can be taken as unity. Both of thege simplifications owe thelr
validity to the magnitude, usually small, of the dowhwash coming
from the 1ifting line in the region of the tail. Thelr use 1s
the more justified, the further back 1s the plane of interest

from the wing.

(25)



RESULTS AND DISCUSSION:

The methods of the foregoing analysis have been applied to
a wing for which experimental data are avallable, the calculations
having been included in Appendix A. The wing, a full scale alr-
foll, was of low aspect ratio (3.64) and was highly swept
(@ = 45°)., The downwash surveys were made in a full scale
tunnel, the Reynolds Numbers of the tests comparing closely with
thoge likely to be encountered in actual flight.

Unfortunately, since the experimental data appear in a
report having a government security clasgification, they cannot
be reproduced in this thesis.

The final results of the procedure, i.e., the calculated
downwash in a plane 2.75 semispans downstream from the 25% point
on the m.a.c., appear in Figure (15). The computed values are
few in number since time prevented a more exhaustive study. In
order to approach the problem from the deslgner's viewpoint, the
calculations were carried out at the same CL ag for the experi-
mental surveys but at an angle of attack of 15.1 degrees as,
computed from fhe theoretical dGL/dcl (.047 per degree).

This angle exceeded by two or three degrees the experimental
value, the theoretical being lower than the experimental 1lift
curve slope. The errors introduced into the method herein show
up as a slight overdigtortion of the vortex sheet,

The comparigon between theoretical and experimental results
may be taken as justification of the use of the method, and can
be stated to be:

(a) The prediction of the wake centerline for thls case 1is

nearly perfect.
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(b) Above and below the wake centerline, the computed down-
wash 1s somewhat low (roughly, ten to twenty percent).

(c) The predicted values of downwagh along the wake center-
line are close to the experimental values.

Result (a) of the above comparigon leads to the conclusglon
that the posgition of the wake may be located theoretically with
good accuracy. It is seen that a two or three degree error in
angle of attack prediction probably does not introduce overly
adverse results.

It is thought that result (b) can be attributed to the
differences between the actual span load distribution and the
theoretical value taken from Reference (3). The theoretical
methodg for computling circulation are all based on a procedure
which presumes that the slopes of the airfoil surface at certain
specifled points are equal to the inclinationg of the velocity
vectors lying in the plane 2 = O but at the same valueg of the
X and § coordinates of the points. The valldity of this assump-
tion cannot be challenged if all the points in the alrfoll gurface
are close to the horizentel plane through the origin (i.e,, if
the wing is at small angle of attack). It will be true, however,
that at fairly large o® (barring the occurence of flow separation)
the tangent to the wing at any given point (especially if the
point is near the tip) may exceed by a finlte amount the downwash
angle at the corresponding point in the horizontal plane. This
line of reasgoning infers that the load distribﬁtion ag computed.
by the methods of Weisgsinger, Falkner and Mutterperl will under-

estimate the true magnitude of the circulation about a highly
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swept wing at large o/, It ig borne out by the greater 1ift
curve slope exhibited by the experimental wing.

Result (e) 1is in & sense migunderstood. Discussed on page
9 of Reference (1) is an effect which causes some différences
between theoretical and experimental values of downwash., This
1s the effect of decreased dynamic pressure in the wake. Within
the wake the longltudinal veloclty increases as one travels down.
stream. This requires a vertical flow 1nto}the wake, The down-
wash immediately above 1s supposedly increased thereby, while
below the wake.it ig decreased. It would, therefore, be expected
that for a comparison in which there was agreement between theory
and experiment everywhere else, in the region of the wake the
experimentally determined downwagh would be greater. But in
the present case, even though the calculated values cutside the
wake are gomewhat smaller the calculated values within the wake
are actually about equal. Further study 1is requlred to find
the explanation for this. It would seem, however, that silnce
the prediction of the position of the wake depends upon the
calculated downwash values along the surface through the center
of the wake, and gince that in this case thig prediction proved
to be correct, that these wake values of downwash were actually

correct.
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CONCLUSIONS

The foregoing analysis shows:

(1) that the Prandtl 1ifting line theory together with the
stepwlse circulation approximation to the circulation distribu-
tion provides an adequate means for computing the flelds of

flow behind highly swept wings.

(2) that by taking into consideration the actual orientation

of the 1ifting line (which encloses the trailing vortex origins)
and the geometrical displacement.of the tralling vortices, 1t

1s possible to predict accurately the center of the vortex

sheet (and wake) for regions extending reasonably far downstream.
(3) that downwash may be computed over a wide area in the
locality of the tail with only a moderate amount of effort, thus
avolding large errors which are the congequence of assuming the
downwash to be constant along the horizontal stabilizer span

equal to the value at the center.
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APPENDIX A
EXAMPLE IN THE USE OF THE METHOD

The following description of a computation ls presented to
11lustrate the method uéed for finding the downwash behind a
given swept wing at moderately high angle of attack.
Description of the Wing:

The following data give the necessary information relative

to the wing investigated:

¢ = a5°
G, = 0.71
a¢y/ael = 0.047 (theoretical)
AR = 3.64
A = 0.418

mac = 0.592 b/2
o = 15.1° (from theoretical dC; /ael )

Approximation to Circulation Distribution:

Figure (10) shows the theoretical span loading as computed
by the Weissinger Method and reproduced from Figure (2), Reference
(3). Superimposed upon the theoretical curve is the stepwise
approximétion made for the purposes of this investigation.

The values of the functlon

k = k(8) = (37)A(2//0V) = G /4TAR) A (Cye/Crcyy)
are tabulated below.

) (chE/CLcaV) k
0.500 .10 .001554
0.654 .13 .002015
0.73 .21 .003265
0.92 .29 . 00451
1-.00 .44 .00683
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Determinatlion of Vortex Sheet Digtortion:

~In this step the downwash 1s computed along the streamlines
lying in the planes Yy = O, ¥ = 0.83, and ¥ = 0.86. These
planes are chosen to lie midway between the planesg containing
the adjacent trailing vortices. Along each of the streamlines,
the values of w exlsting at the trailling edge (see Equations 13),
at the plane X = 2.75 and at one point mldway between are
found. The height of each vortex 1s assumed to be given by the
expression for z of the filament coming off the tralling edge.
Thils gives nine points, designated (:), (:), - - (:).

Downweash X y z
Points

0.576 0 -0.155
1.66 0 -.155

2.75 0 =0.155
1.098 .83 -0.298
1.975 .83 -0.298
2.75 .83 -0.208
1,181 .96 -.319

1.870 .96 -0.319

OICIOIOICICICICIC,

2.70 .96 -0.319
Next are determined the radial'and longitudinal distances
Fb and p and the values of cosf@, for each of the points by
the use of Equationsg (8) through (10). Computing Form A is
ugseful for this purpose.

Then, using these geometrical data, 1% 1s necessary to
calculate separately the contributions at each of the polnts
from the bound Vee vortex and from the tralling vortices to the

downwash. Computing Form B provides for the tabular solution

of Equation (5). In this solution use 1s made of the curves of
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Fb,.Figure (8). Similarly, Computing Form C éerves as a tabular

solution of Equation (7) in which values of F_ from Figure (9)

t
must be entered. On Figure (9) is plotted an auxillliary dla-

gram by which the cosine of the angle /St and the radius Fi

downwash
point

may be read directly, using as arguments m and A4z (=

zvortex core
€  and € are added at each of the nine chosen points in the

). Fihally, the downwash angles

vortex sheet.

Next, a plot of € versus X for each of the three streamlines
is prepared. According to Equation (12) the verticallposition
of any point along a streamline 1s given by the algebralc sum
of the position of the vortex origin plus the integral of the.
downwash angle from the vortex origin to that point. For pur-
poses of finding induced velocitles, the "origin' of a trailing
vortex is assumed to extend all the way up to the quarter chord
line, but for finding the shape of this fllament, the term
Horigin® refers to the point at which the astreamline contalning
the filament leaves the wing. Therefore, the integration of
Equation (12) is started at the trailing edge. An approximate

integration formula is given by

["ﬂx)a/x =4(h+1)+ 45%

¥zl
where there are n equally spaced intervals of length A vetween

X =0 and X = X,. Figure (11) shows the plots of downwash
along the three streamlines. The lntegration procedure for
this example yeilds the following values of z at the plane

X = 2.08 (the plane in which experimental data were taken):

@F = 0.83, Z = =.,208 -.106 = -.403

These values of Z are plotted in Figure (12), and define the
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intersection of the vortex sheet with the plane X = 2.08.

Final Computation of Downwash in Plane of Interesgt:

The final shave of the vortex patiern ls as assumed in
Figure (13). Use is again made of Computing Forms A, B and C,
For this example the plane of interest is far enough behind the
lifting line that the latter's downwash contribution isg small
compared to that from the tralling vorticity; wy, 18 therefore
assuned to be a function only of ¥y (independent of z) and 1is
obtained by interpolating between values already computed 1in
the preceding step. This distribution of Wy, 1s shown in
Figure (14).

In this last step the #alueS'of‘wt are computed in the
plane of interest along the lines z = - 0.2, =~ 0.4 and - 0.6.
This provides a straddle of the vortex sheet. Wp 1s found by
the method described above. 'Finally, the sgeparate contributions
to the total dowpwash strengths at points along these llnes are

added. They have been plotted in Figure (15).
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Vertical Displacement of
Vortex Sheet from % Chord
Line (mac)

' ¢
F.;
‘\\\\\\_» 4 _‘—,///zt::::yortex Sht, (b)
Vortex Sht. (a)
l 42 l Vortex Sht., (c)

vertical displacement from
quarter chord point

Figure (5) - Calculated downwash for
the plane of symmetry, l.l5 semispans
behind the guarter-chord line of a *
2:1 tapered airfoil of aspect ratio 6,
Cry 1.35, a, Vortex sheet distorted
as found for the U.S.A, 40 tapered
airfoil; b, Vortex sheet assumed to
extend unchanged straight behind the
guarter-chord line to infinity; c,
same as b, but displaced vertically
by an amount egual to tue displace-
ment at the middle of the distorted
sheet., (Figure 12 from Ref. 1)

ortex Sht. (a)
Vortex Sht, (c)

/
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]

Figure (6) - Comparison of downwash induced along the

horizontal tail by a plane vortex sheet (vortex sht. c)
and by a curved vortex sheet (vortex sht. a) behind a
fictitious wing., Induced tangential velocities plotted
inversely proportional to distance from vortices.
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DOWNWASH DUE TO THE BOUND VORTE X

DOWNWASH POINT Q A= (1/4m)er/by)
OO ® 0,
5 || 00\ Paose [ | oSS\ passe| fo /rmw@ @@
Von | 0n |Fr68 || v, | 0. | FiG8 0P ba | AW
22

(W/V)b = COSﬁbRZA(W/WbR + COSIBbLZA(W/I/}b‘ =

Computing Form B - Solution of Eguation (5) for Downwash
Induced at a Given Point by the Bound Vortex
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DOWNWASH A v

Ny ~! x|

n a s«

Z

DOWNWASH DUE TO TRAILING VORTICES
A = (lfamNeriby)

—

- £

AZ =Z orumunsh pt vortex core

OO ® Q| 0|00 | ®|e|®|®

az | § |37N9IX-O|5-7 |cosa,, fp |©X@| 5+7 |cosa, | £, |@@|®-@| 4 |@x®
m | h, |F169| FI169 be, |F169 | Fl69 A%,

(A =D0(0w), =

Solution of Eguation (7) for Downwash

t a Given Point by the Trailing Vortices

nduceg a

Computing Form C
1
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