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I. FLAT AND SLIGHTLY CURVED PANELS

AT MACH NUMBER 2, 81



ABSTRACT

Two series of panel flutter tests were carried out in the
Jet Propulsion Laboratory's 12 inch supersonic wind tunnel. Flat and
slightly curved panels were tested at Mach number 2, 81,

The flat, rectangular panels were designed to study two-
dimensional flutter, They were clamped at front and rear with free
sides which extended into the boundary layer at the sides of the tunnel,
These panels fluttered in a two-dimensional mode which occurred at a
thickness ratio approximately 15 per cent different from the predictions
of existing theory. One of the panels exhibited a three-dimensional
"rocking" flutter which has not been observed or discussed before. A
theory is developed for this type of flutter.

The slightly curved panels were shallow circular cylindrical
shells with the generators perpendicular to the flow direction. These
panels were all of aspect ratio one. It was found that the effect of
curvature was destabilizing and that the effect of internal pressurization

was stabilizing.
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INTRODUCTION

Fanel flutter is the self-excited oscillation of a thin shell or a
membrane which is exposed to a flow nearly parallel to its surface.

It hag become important in the past few years because missiles and
spacecraft require very thin coverings., Flutter of the various
geometrical shapes involved, under the various loading and thermal
effects, becomes a complex problerm,

A great deal of theoretical work has ﬁeen done for panel {lutter,
but there has been relatively little experimental work. The flutter of
buckled flat panels has been studied experimentally by Eisley (Ref. 1)

“and Sylvester {Ref. 2). Tests have been carried out on a variety of
flat panels by Greenspon and Goldman {(Ref. 3), Sylvester and Baker
{(Ref. 4), Loock and Fung {(Ref. 3), and Tuovila and Presnell {Ref, 6).
A comprehensive review of theoretical and experimental progress in
the field of panel flutter is given by Fung in veference 7,

Two series of wind tunnel tests were carried out at the
California Institute of Technology's Jet Propulsion Laboratory to study
two specific types of panel {flutter. The testing was done at a Mach
number of 2, 81 in the 12" supersonic Winfi tunnel, One series dealt
with flat, rectangular panels which were mounted in such a way as to
allow two-dimensional flutter, i.e. flutter with constant displacement
across the span., 4 flexure arrangement was used to minimize mid-
plane stress. The other series dealt with the flutter of slightly curved
panels, as shown in figures 19 and 20, Note that the generators of the

cylinder are perpendicular to the flow,
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Of primary interest in the tests were the flutter boundaries,
the flutter meodes involved, and whether or not there was a form of

frequency coalescence.

1. Flat Panels

3

gned to study the two-

The first series of tests was desig
dimensional flutter of {lat panels with clamped edges and zero membrane
stress {see figure 1), 7This is one of the siraplest types of panel flutter,
and provides a case where experiment can be compared with existing
theory. The theorstical side is well understood for Mach numbers be-
tween 4 and 5 because linear piston theory can be applied.

The experimental panels were rectangular in shape and were
clamped at the leading edge, free at the sides and attached to a flexure
at the rear. The flexure was designed to allow neither deflection nor
rotation of the trailing edge, but allowed it to translate so as to reduce
the merbrane ttress, In essence, this flexure acted as a weak linear
spring in resisting translation,

The theory for this case has been worked out in detail by
Houbolt {(Ref. &) and Movchan {(Ref, 9). Both used linear piston theory
for the aerodynamic forces and were able to find exact solutions to the
stability problem:. Linear piston theory vields an aerodynamic pressure

of the form

- - eU* awhkt) | ey dwld
F(x’t> M dx * M a3t ?

where wix,t) is the panel displacement.



Houbolt finds that, for zero membrane stress, flutter is

controlled by two variables A and B They are defined as
A = eaUL? ,

D

2
0.7ozﬂlu*va € o L
€ as h* 7

where O is the xﬁ anel density and a_ is the speed of sound in the
8 8

9o

panel material. The critical value of A at flutter is plotted in figure

A
. N Fh,
4. Decause ga is genevally very srall at flutter, the value of ——
o

ig ueually talken to be 6, 52 for clawmped panels and 3. 52 for ploned

pansla, IHoubolt points out that setting g = 0 is equivalent to

i?a
e U (-_, L1

N OBE {sz,t) in the aero-

neglecting the "aerodynamic damping’ term
dynamic force.

In addition to the two-dimensional flutter discussed above, one
of the panels exhibited a three-dimensional type of flutter. This {lutter
was chavacterized by a rocking ruotion with 2 nodal line down the center
of the panel, Theory for this type of flutter is developed in section 1.5,
using linear supersonic aecrodynamic theory.

1. 1. Description of hodel

The panels were mounted in a wedge~shaped aerodynamic frame

rnade of aluminum {figure 3). The model was positioned across the

center of the test section {figure 4) and was isolated against vibration

fromn the tunnel walls by “'floating” it on rubber miounts. The model was
designed so that no reflected shocik waves hit it,

ental panel was rmounted over a 1/2' deep cavity in

ofed

the frame, thus exposing the panel to supersonic {low on one side and

stasnant air on the other. 7The panel extended to within 1/2" of the wind
bl Fa

tunnel walls, which was approxin:ately the displacemient boundary layer
b4
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thickness on the walls, It was hoped that this would give an approxima-
tion to twu-dimemsional flow over the panel. A 3/32" venting gap
extended along each edge of the mounting panel, serving to equalize the
static pressure between the cavity and the free stream.

Each of the panels was soldered into a three-pisce assembly
including a panel, a front mounting bar, and a flexure - all made of half~
hard yellow brass {figure 5). The flexure was machined from a solid bar.

A surface plate was used to join the panel assemibly and the aero-
dynamic frame, 7This was done by inverting the components, placing them
on the plate and bolting the mounting bar and the flexure to the model.

Vibration tests were carried out to deterinine the lower natural
frequencies of the panels. The results are given in Table I, along with
theoretical values from Warburton (Ref, 14). Fair agreement was found
between the experimental and theoretical values for the two-dimensional
modes. The second frequency listed {the three-dimensional "rocking"
mode) was higher experimentally than predicted by theory. This may
have been due to an initial "droop' in the panels, which was a two-~
dimensional deflection with a value of about 0. 015" at the center of the
panels, A deflection of this type can stiffen the panel with respect to
bending in the spanwise direction.

Some bench testing was also done to determine the effect of the
presence of a finite cavity under the panel on the natural frequencies of
the panel., Using a bench model {not the actual wind tunnel model} it was
found that a 1/2" deep vented charaber on one side of a panel did have an
effect on the order of one or two cycles per second.

it was necessary to add a mechanical stop in the model to limit

the translation of the flexures to 0, 004", This was done after several
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runs in the tunnel had damiaged a flexure due to the starting shock loads
on the panel. The stop system consisted df two eccentric cams and an
electric light system. The stops were rotated until contact was mads
with the flexures, closing an electrical circuit and lighting a bulb. Each
cam was then backed off until 0. 004" clearance was obtained. This stop
system worked very well throughout the testing and prevented further
damage to the flexures. The electric light system was connected during
the running of the tests to insure that the stops were not hitting the
flexures,

1,2, Instrumentation

Panel displacements were measured with three inductance pick-
ups equally spaced along the centerline of the model. The pickups were
manufactured by Electroproducts, Inc. of Chicago, and the carrier
system: was especially developed for panel flutter testing by the
electronics laboratory at GALGIT*. A 100 kilocycle carrier was used.
The pickups were mounted 0.13" from the botton: surface of the panels
and the motion of the brass panels in the field generated by the pickup
caused a change in signal. INo mechanical contact with the panel was
necessary.

The signals from the pickups in the mmodel were recorded using
an Ampex model FR-100A tape recorder. An FM system: was used so
that both static deflection {due to a possible pressure differential
between cavity and free stream) and dynamic deflections could be
recorded. Also, a Technical Products harmonic analyzer with plotter
was used to prepare plots of the power spectral density of the panel's

vibration,

® 1 ; . : . . -
Graduate Aeronautical Laboratories, California Institute of Technology.
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An Ad-Yu phase meter was used to determine the phase shift
between the three pickup signals during flutter. This meter works on
the mero-crossing principle.

Four ‘electrmz’sagne:ts were mounted in the cavity of the frame.
Using these magnets, it was possible to find the resonant frequencies
of the panels during the preflutter analysis. In order to excite the brass
panels this way, it was necessary to glue small strips of 0. 012" soft
iron on the underside of each panel.

Pressure taps were installed in the bottom of the cavity and on
the forward upper surface of the aerodynamic frame, These taps
allowed the monitoring of the static pressure differential between cavity
and free stream. This pressure differential is designated by the symbol
AP in the following discussions.

One thermocouple was mouunted in the cavity bottorn and another
on the underside of one of the panels. It was found that the frame and
the panel reached the same operating temperature, with the temperature
on the frame lagging by about five minutes because of the larger mass
involved.

1. 3. Test Procedure.

The Jet Propulsion Laboratory's 12" supersonic wind tunnel was
a continuous flow tunnel with variable geometry throat calibrated for
discrete dMach numbers., The test section was 9" high and 127 wide.
Total pressure and total temperature were the easily varied parameters.

All testing was carvied out at Mach number 2. 81,
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The tests were run by holding the temperature on the model
constant and by raising the total pressure in increments, The following
procedure was used:

1. A panel of desired thickness was chozen,

2. The panel assembly was bolted to the aerodynamic frame.

3. The temperature at mounting was noted.

4, The amount of droop at the center of the panel was
measured., {(This was a good mieasure of panel imper-
fection. }

5. The flexure stops were set to allow onl}.y G. 004" deflection.

6. The assembled model was put in the tunnel,

7. The natural frequencies of the panel were measured {no

flow).
8. Flow was established and stabilized at the lowest Pfc
desired for the particular sequence of runs,

9. The stagnation temperature was adjusted so that the model
temperature was within + 1 degree ¥, of that at which the
model was assembled.

10. The root-mean-square voltage of the signal from each
pickup was measured,

11. The resonant frequencies were found using the magnets.

12. Five minutes of signals {rom the pickups were recorded.

13. The total pressure was ralsed to the next value and steps

9 through 12 repeated.
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Eventually a Pt setting was found where the amplitude of vibra-
tion started to increase suddenly. Data points were then taken at closer
increments in this region, The exact point of sharp rise in response
was noted.

After the panel had started to flutter, Fastax moving pictures
were taken, These pictures helped in the identification of the flutter
mode,

1.4, Ezperimental Results

Two types of flutter were encountered during the tests. One was
two-dimensional and the other was a three-dimensional type of {lutter
with a nodal line down the center of the panel. The latter type was not
considered before, but it occurred at a lower value of the parameter A
than the two-dirmensional flutter,

Every panel which was tested exhibited flutter. Amplitudes of
panel motion as functions of the total pressure of the wind tunnel are
shown in figure 6 for both types of flutter and also for a case where
three-dimensional flutter gradually faded into two-dimensional flutter,

The test results are shown in Table II. Each flutter point was
obtained by increasing Pt in the manner outlined in the previous
section. Each point represents the flutter of a particular panel as
mounted on a particular déy of running and is taken as the average of
three or more sweeps through the {lutter boundary. The spread of Pﬁ
at flutter for these sweeps was usually about 2 per cent. Vhen total
pressure was lowered in the tunnel, flutter subsided at the same point

at which it had started.
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The last case given, for the 0, 0190" panel, is not to be trusted
as highly as the other cases. A static pressure differential sufficient
to bow the panel in about 0. 060" existed at the high value of Pt needed
to flutter this panel,

The two-dirmensional flutter occurred at values of % which
were about 35 per cent lower than those predicted for ciazzsged two-
dimensional panels by Houbolt, Figure 7 shows the thickness ratio
required to prevent flutter as a function of wind tunnel static pressure.
It is seen that these flutter points lie between the theoretical curves for
clamped and simply supported end conditions., The three-~dimensional
flutter occurred at values of -—%% in the neighborhood of 2. 0.

Frequency surveys du;;ng fhe approach of flutter failed to turn
up any frequency coalescence for either kind of flutter. It was possible
to follow the resonant frequencies in the preflutter region by using the
magnet excitation system or by a harmonic analysis of the panel's
response (see figures & through 11). In some cases it was possible to
follow these frequencies through the onset of flutter. In each case, it
was easy to see that the flutter occurred at one of the resonant frequen-~
cies. The amplitude of the response at this frequency grew rapidly as
flutter started, completely dwarfing the response at the other frequencies.

Some phase angle data were obtained, although not as much as
desired {only one pickup carrier system was available for part of the

test). The phase lag WY ({x) will be defined by writing the displacement

wix, t) in the following way:
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{W‘(x) + i wz(x)} e“‘)Jc
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w(x,t)

i ot + Y&

1

\} w2 () + wf(x)j e

Figure 12 shows the phase lag Y(x) for two-dimensional flutter. All
points are for the 0. 0151" and 0. 0153" panels. The theoretical curve
is taken from work by Houbolt (Ref, 2). Experimentally, the first pick-
up {farthest upstream) is arbitrarily given a phase lag to {it the
theoretical curve. The large change in phase lag occurs farther to the
rear of the panel than expected, but the total phase lag agrees well.

A Fastax camera was used in several runs, and was actually the
means by which the three~dimensional flutter was first identified,

The static pressure differential between the cavity and the free
stream was measured for each run, Thére was nearly a linear relation-
ship between this pressure differential and the total pressure at which
the tunnel was run {see figure 13). The differential was guite small in
the Pt range where flutter was initiated for the panels of 0. 015"
thickness., ©Other panel mountings produced somewhat different pressure
relationships, but generally of the same type as shown in this figure,

All runs were made with close control on the model temperature
in order to minimize mounting effects. An allowance of + 1 degree F.
was made. & check on the temperature effect proved that the flexure
relieved thermal stress so effectively that a 15 degree change in
temperature only changed the frequencies by 2 per cent. This survey
wag rmade with the tunnel running at slightly less than the flutter Pt“

Hence, temperature effects were virtually elimminated.
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The effect of the boundary layver on the panel has always been of
some concern. In this testing, the transition from laminar to turbulent
boundary layer occurred on the panel. In’ order to check this efiect,
identical runs were made with {a) no boundary layer trip, (b) with a trip
of No, 220 grit, and {c) with a trip made of a single strand of 0. 050"
wire running across the nose of the model. It was found that although
the Mo, 220 grit moved the transition point forward on the panel, three-
dirnensional flutter occurred at precisely the same Pt as with no trip.
The 0. 050" wire trip was then used to give a greater amount of disturb-
ance and did cause a very thick turbulent boundary layer to be initiated
immediately behind the wire. This did have an effect on the panel,
delaying flutter until the two-dirmensional type occurred at 2 higher Pt"

1.

131

. Theoretical Prediction of Three-Dimensional Flutter

Theoretical flutter boundaries for the three-dimensional case
will be calculated using Lagrange's equations and linear supersonic
acrodynamic theory. Ackeret guasi-static aerodynamic theory will
also be usged for comparison.

An attempt was made to solve the problem with clamped edge
conditions but the aerodynamic forces became very involved algebrai-
cally. Hence it was decided to use simply-supported edge conditions,
and to concentrate attention on the differences between two-~dimensional
and three-dimensional flutter for the simply-supported case as shown
schematically in figure 14. The vertical displacement wix, z,t) is
positive in the upward direction,

From Fastax pictures taken during the flutter tests, it was

observed that there was a nodal line down the center of the panel at
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z = --=§- . For an approximate solution, the deflection will be taken

N
wxzt) = Z o, £,60 9 (1)
n=l
where
£ = sin "Ex 0= x = &
and
qk®) = [l——z-i] o=z = 4,

These functions do not satisfy the plate free-edge bhoundary conditions
at z = 0 and z = Q?. put they do satisfy the simply-supported edge
conditions at x =0 and x = 11.

The kinetic energy of the plate is

£ 9

2w 2
//esh [at (x,z,t)} dx dz
o D

N
Osh Jéef2 )b
n=1

[ 5]

) =

N

B LI P 2w 2w _ (2w Y] 4,
V = ED// <—BF+'%—‘ZT>"'2(I"V)[BXZ azl - (3)(32)] X 2

of [ b+ (8]

n=i

N~
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The generalized forces are

Qmm

n

Using Lagrange's equations

d 3L _ oL = Q

dt dd, dby m
where

L = 7TV,

we obtain

e b 5o [ 4 w0

Asgsuming that am(t) ~ e CM".

{D[(—%jl)‘f_ue&_mo-v) @Tﬂ)z(* )] o ho 2l ez}

mux

£ 1
—// F(x,z,{) sin )

where

P
_// pix.zt) —————2W(X‘z't) dx dz
O‘m

()

g(z) dx dz

_] = —//F(xzt)SInm"x 9@ dxdz

2, . . . N)

W may be complex, we have

//P(xzt)51nm"* (2)dxdz {3)

L2, . . .N)
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We will first solve the set of equations 3 using Ackeret quasi-
static theory for the aerodynamic pressure, just to get a feeling for
the problem. The pressure is

2
F(x,z,t) = I%ﬂ g‘)’(—“ (x,2%)

This will give no three-dimensional aerodynamic effects; however, as
shown for two-dimensional flutter, Ackeret theory can give good
results at the relatively low {requencies and high Mach numbers we are

a

considering, The set of equations 3 become

2 N .
{(mn)‘+ 24(-v) %;—)(mﬂ)‘—?\} 0y, + 32 w3Z ')mnan=0 (m=12...N), {(4)
=l

where

esh(*)zgl4
D

TpN\Z'Q|3
88D

even

4] when m+n

T = nm 0dd

— m+n
o T when

W

- . ] . oppEe .
For the panels which were tested, %T = {,8555 and 4 =0.3.
2
Equations 4 are a set of linear homogeneous algebraic equations. For

a nontrivial solution for the a, to exist, the determinant of the



15
coefficients of a =~ must vanish., This leads to an eigenvalue problem
of the form
Det (P~ AI) = ©

where P is a real matrix,

Experience with the case of two-dimensional flutter of flat
panels has shown that a four-mode solution yields an eigenvalue only 1
per cent different from the exact value. Hence, a four-mode solution
(N =4) was carried out for this case. The Burroughs 220 digital
computer was used.

It was found that for low values of the dynamic pressure para-
meter W the eigenvalues A are real. As W is raised, a critical
value is obtained where a pair of conjugate complex eigenvalues appear,

indicating flutter. Three-dimensional flutter occurs at

This compares with the two-dimensional flutter boundary {obtained
using Ackeret theory) at Wy = 42.9. The use of Ackeret theory hence
provides no insight as to why the experimental three-dimensional flutter
occurred at a lower value of W than the two-dimensional flutter.

Let us now devote our attention to a solution of the flutter equa-
tions 4 using linearized supersonic aerodynamics. Any realistic study
of this flutter should include a three-dimensional aerodynamic theory
because the panel's aspect ratio is so small that rnost of the panel lies
in the tip Mach cones. The basic ideas for potential supersonic flow
over an oscillating thin wing were set down by Garrick and Rubinow

{(Ref, 11). Luke and 5t. John {(Ref. 12) developed the forces on a panel
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of finite =pan and infinite chord oscillatirg in a periodic spanwise
displacement. We will use the work of Luke and S¢t, John and hence
incur all of the assumptions of linearized potential flow theory, i.e.
that the fluid is inviscid and irrotational, and that disturbances at the
panel are very small.

The upper and lower walls of the test section were sufficiently
far from the model that no reflected waves hit it. However, the sids
walls do affect the panel. We will agsuimne that they prevent cross
flow at the edges of the panel. If, for the solution of the velocity
potential, the panel is assurmed to be extended outside the tunnel as
shown in figure 15, the symumnetry is such that this wall condition is
satisfied {as in the method of irmages for subsonic flow). This leads
naturally to the use of 2 superposition of solutions for sinuscidal g(z)
as developed by Luke and 5t. John.

Let us define one period of g{z) as

|- 28 0=z=d,
4, ’
g = : (5)
|+?__Z_ —22£E<0
€,

We then have the Fourier cosine series

BDecause of the complexity of the aerodynamic forces and because of
the very rapid convergence of this series, only two termis are retained,
The two termn representation of g(z) is shown in figure 16, and it

appears satisfactory for our purposes. The set of equations 3 become
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{D[(“;‘:)UGQ +4(-v) ("‘") (2 )] -6 hwzuz} = ——fﬁ; (1,21 sm'“"" [cos"* ;coszl“] dxdz {6)

ILuke and St. John's work shows that for gfz) =

cos E%% the

o]

ressure on the surface is of the form

Pluzt) = Py (X) cos Bz gt

Furthermore, because the problem is linear, for glz) =

} s we have

IEHE % [F.(") cos 1’— ;— 5y (x) cos %i] giwt

Lak?

fhe =z dependence in the set of equations 6 can be integrated

out to give

]

o @t sc g ] e o 28 [ [ o] s 4

4]

(m= 1,2 .. .N).
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. TIITWX
. _ \ . ,
The expression / pﬁ(x. t) sin - dx can be found in reference 9.
(]
It is a little difficult to extract from this work, being involved in a
Galerkin process and because of the use of non-dimensional coordinates.

However, one can arrive at the result that, for a displacement

N -
- . mmx Bz
wix, z,t) nzz'i an(t) sin 7 cos ‘22'

- mnx N 40 kN\z—z [ a _F\E = m an fo
/ Falisin B e = 54D w [(A SE QU= LGSR (anﬁ+cmnﬁ)-omna} 56)
) n=i
where 203

We = 1MW an
3 8Dp
and
k = <k

The remaining constants are defined in the Appendix.

The set of eguations 7 become

N
“Z:‘:ﬂ(““ )+ 24(- V)( )(“") N+ &l k(’“pz)w3+'536 " (Aut g7 Ans)

4 -
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where .
A= esha) £‘.

Again we have a system of homogeneous linear algebraic equa-
tions which can be cast into an eigenvalue problem with eigenvalue A .

The problen: is of the forma
Det (P-AI) = 0 ,

where the complex matrix P is a function of M, k, Was and

"'fg'
J .

A foure-mode solution was carried out on the IBM 7090 digital

computer for

j}‘l-"a = 2-81
)

—1 = 0.855
L

Jo= 0.3

In order to find neutrally stable solutions, i.e. where d ({and
hence A )is real, the following procedure is used. Values of k

and w; are asgumed and the eigenvalues A are calculated. In
general, the A are comnplex, so w, is raised until a real A is
found. This yields a point on the flutter boundary which has values of
k, Was and A associated with it. The results are shown in figure .
17. It is interesting that for k < 0.3 there is little variation in A
and wj. Flutter occurs at W, = 54.& + C.2 over the range

0<k <0, 3.
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For panels of the type used in the wind tunnel tests, we have

15.0 x 106 pel

] 2
@ = 0.0007971 12-88C
in
T = 210°R
T = 1.4

The values of {—i—}'—) and p at flutter for this special case can be found
1

5y using the definitions of A and W3 We have

(%) = \}—e-‘-g-z—l?_(l—*\)z) —,’;;

. 8EP h_a Wy
P = (-9.) 12 (1-v?)

_h
£,

boundary with the results shown in figure 18, Zven at sea level

Values of { } and p are calculated for each point on the flutter

pressures, flutter occurs at k < 0. 32.

The test panel which exhibited three-dimensional flutter in the
wind tunnel had a value of {*—;%—) = 0.00163, A simply-supported
panel of this thickness ratio would flutter at k = 0.10 and w, = 54, 65.

We can now compare our results:

a) Two~dimensional Ackeret theory W, = 42.9
b) Three-dimensional Ackeret theory Wy = 55,1
¢) Three-dimensional linear supersonic theory w, = 54, 65

These theoretical values are all for siraply-supported ends. Fluiter

was found experimentally at w = 39.0.



Vhen case a) is also worked out using Lagrange's eguations (not
included in this work), it is found that the basic difference between a)
and b) is the twisting energy involved in the three-dirmensional flutter.
This is seen to raise the flutter boundary. The difference between b)
and c¢) lies only in the aerodynamnics, Linear supersania theory
lowers the three-dimensional flutter boundary only slightly compared
with Ackeret theory.

We have not explained the occurrence of three-dirensional

fe
ki

flutter at a lower dynamic pressure than two-dimensional flutter.
happened for only one of the three panels tested. It is possible that
gome imperfection in this panel assembly, coupled with unknown cavity

and wall effects, made this panel niore susceptible to rocking flutter.

By

1.6, Conclusionsz and Discussion of Results

The thickness ratio reguired to prevent two-dimensional flutter
of flat, unstressed panels at Mach number 2. 21 was found by experiment
to be 15 per cent higher than the prediction of Houbolt's theory., The
phase lag of the panels during two-dirnensional flutter agrsed fairly well
with this theory. No coalescence of {reguencies was obsgerved, however,

A three-dircensional type of flutter cccurred on one of the
panels. The theory which was developed for this type of flutter indicates
that it can appear only at dynariic pressures 27 per cent hi
that needed to precipitate two-dimensional flutter.

The differences between experiment and theory might have been
due to a) imperfectly clammped end conditions b) the slight initial
curvature in the panels ¢} the small static pressure differential

between cavity and {ree stream, or d) the complicated flow conditions
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at the edges of the panel. The clamping support at the ends was rela-
tively rigid, however, as shown by the agreement befween the
two~-dimensional natural frequencies and the theorstical results of

Warburton {(Ref, 14). The initial curvature might have had an effect

24
similar to the initial curvature which is studied in section 2 and is
shown to be destabilizing, The effect of a small static pressure
differential was studied by Lock and Fung {Ref, 5) {for the casecof n
two-dimensional panel with a different type of flexure than that used
here. They found that small pressure differentials had little effect on
the flutter boundaries. The flexure support reliesved the membrane
stress which would ordinarily have been induced by the loading.
Because the pressure differential was small during the current tests,
the effect was probably small, also. The flow conditions at the edge of
the panel present an unknown factor in the experiments. The inter-
action between boundary layer, model cavity and moving panel edge is
difficult to analyze. It is possible that these edge conditions were
responsible for the appearance of the three-dimensional flutter at a
low dynamic pressure.

2. Sl

ohily Curved Panels

Ry

The second series of wind tunnel tests dealt with the {lutter of
initially curved panels. The panels were unstressed, very shallow,
and of aspect ratio one,

The purpose of the tests was {o find the eifect of curvature on
flutter boundaries, flutter modes and frequency coalescence, Data were

also taken on the effect of pressurizing the cavity under the panel
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Some interesting theoretical results have been given for slightly
curved panels by Yates and Zeijdel {(Ref. 13), Using linear shallow
shell theory and quasi-steady aerodynamics, they find that certain
values of curvature are very destabilizing. A typical flutter boundary
is shown in figure 23, It was not possible to obtain experimental data
in the same form as presented in this figure, so comparison with this
theory is difficult,

2.1. Description of Model

The raodel (figures 19, 21, and 22) was almost identical to the
one used for flat panels, Again, the design was such that no reflected
shock waves would hit the panel or model.

Four panel curvatures were tested. If we define W, as the
deflection at the center of the panel and L as the length of the panel,

W
the four curvatures were -1:9 = ( {nominally flat), ©.007, 0.013, and
w
0,020, It was felt that "E:Q = 0,007 was the smallest nonzero curvature
that could be manufactured with precision. Each of the panels had an
unsupported length of 9'', an unsupported width of 9" and a thickness of
approxirnately 0. 008",

Decause the panels were to pe {irmly attached to a supporting
fram.e, all materials had to be identical to prevent trouble with thermal
expansion. It was decided to use spring cartridge brass for the panels;
therefore hali-hard cartridge brass was used for the rest of the model.

The square frames used to support the panels (figure 20) were
built up from bar stock. They were machined into the proper radii of
curvature by a contour milling process. In addition, solid blocks of
alurninurm were rnachined into female molds of the same radii as the

frames. These blocks served as forms for shaping the flat sheet.



The panels were attached to the frames by an oven soldering
process. Lhey were pretinned around the edges by electroplating
solder onto the surface., 7Then they were placed in the female molds
and held to the curvature by a sm:all quantity of steel shot., A coating
of solder 0. 005" thick was built up on the frames by heating them in
an oven and flowing the solder onto the hot surface, After cooling, the
frames were placed over the panels and the assembly was baked in an
oven for several hours at 450° ¥, A good joint was obtained.

The cavity under the panel was made air iigh’tlfar the tests
merely by sealing around the edges of the panel with wind tunnel wasx,
The pressure differential 4F was controlled during the tests with the
usre of a vacuum pursp.

The natural [requencies of the four panels were studied on the
bench., In order to check the effect of the model cavity, the panel
assenblies were tested while installed in the model and aleo out in
open air. The model cavity was not made air tight for this testing,
it was found that the cavity had no significant effect on any of the
natural frequencies except those of the simplest rnode for each panel
{the :uode with nodal lines around the sdges of the panel only). This
frequency could not be found when the panel assembly was installed in
the model. The resulis of the vibration tests are presented in Table
If, The frequencies listed were taken with the panel assembly resting
in the model cavity, except those given for the simplest mode of each
panel. These were taken with the panel assembly out in open air.

Some simple calculations were done in order to clear up the

effect of the cavity on the panel. This work is presented in section 2. 5,
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It is shown that cavity under the pancl can greatly increase the simplest
frequency, “The higher ynodes are not afiected as much,

it is desirable to have some theoretical frequencies to compare
with the experimental values given in Table IIl. These can be calculated
from the work in section 2.5, Table IV lists the frequencies for the
curved panels under the assumption of {reely-supported edges and no
cavity effect. Decause of the freely-supported edge conditions, these
theoretical frequencies are all somewhat lower than the experimental
values,

The vibration tests for the curved panels were done before the
full significance of the cavity effect was known. The panels were
disassembled before a full experimental study of the effect of a sealed
cavity could be carried out.

2.2, Instrumentation

The instrumentation was identical to that used foy the flat panel
tests, Because the pickups were locateci slightly closer to cach other
than in the flat panel model, a slight "beat" due to interference was
noticed in the pickup signal. This noise was only several millivolts
rme and was elinninated by the use of small brass @hiald%s around the

pickups {see figure 22).

2. 3. Test Procedure

The test procedure was similar to that for flat panels; however,
there were no stops to adjust or droop to measure in this case. The
static pressure differential AP had to be rmonitored continuously. A

tolerance of + 0,001 psi was allowed for all AF settings.
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3

2.4, Experimental Results

Each of the four panels fluttered. The flutter points are given in
Table V., Curves of the panel response at the center pickup are given
in figures 24 and 25, In general, the panels were alrnost rnotionless up
to the flutter boundary, where large amplitude {lutter occurred. This
was not true for the one f{lat panel tested, however. The designation of
a flutter boundary was somewhat arbitrary for this panel. It was
decided to define flutter ag motion for which the deflection at the center
of the panel had an rias value equal to the thickness of the plate,

The flutter for these curved panels was rmuch more violent than
the flutter of the flat panels. Also, when panels 3 and 4 were internally
pressurized to 4P = 0,050 psi, the static airloads became sufficiently
high before flutter occurred to cause a static deflection. The front
surface of the panel was pushed in and to the rear, while the back part
of the pan;al was drawn ocutward toward the airstreamn,

A S‘Pt was lowered, it was noticed that there was a tendency
for the flutter to persist at slightly lower values of Pt than at which it
had started. No data were taken on this phenomenon., All results given
here were taken as F’ﬁ was being raised.

The flutter boundaries are shown in figures 26 and 27. The
initial curvature is destabilizing. Even a slight amount of initial

curvature has a significant effect. There appears to be little difference

W w
« : ° . . 9 .
caused by the increase in curvature from -y = 0,013 to - = 0.020.

This is particularly evident in figure 27. The internal pressurization
iz stabilizing and appears to have a similar efiect on each of the panels

9

(i. e., the slopes of the curves in figure 27 are approximately the same).
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Decause of the large number of closely spaced frequencies, it
was found almost impossible to follow the resonant frequencies of the
curved panels, The magnetic excitation system did not work well and
the harmonic analysis of turbulence response was difficult to interpret.
These two methods complement each other and both are needed to
gather any significant frequency data. None will be presented.

Phase angle data were obtained for panels 1, 3, and 4. Figure
28 shows the phase lag VY {x) for these panels just after the initiation
of flutter. The panels with greater curvature have a greater amount
of phase lag. Figures 29 through 31 give the remainder of the phase
lag data which was taken at higher values of Pt than at the {lutter
boundary. Here it is seen that raising Pt {and hence raising the
flutter frequency) lowers the amount of phase lag for panels 3 and 4.
During the run of panel 2 Q-‘::-? = 0, 007), one of the pickup lines was cut
and all pha.sé angle data were lost for that panel.

The use of spring ?3?&53 for the panel material was fortunate.
The panels were violently fluttered for hours without any noticeable
damage.

2. 5. Theoretical Eifect of the Cavity

A simple calculation can be carried out to determine the effect
of the closed cavity on the natural frequencies of the curved panels,
Consider the case. where the edges of the panel are "ireely-supported".
The cylindrical coordinate system is shown in figure 32. The angular
variable is & and the circular panel covers an arc of angle ¢.

Decause of the relatively low frequency of panel vibration and

the srmall size of the cavity, it can be assumed that the air trapped in
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the cavity is in equilibriuwm at all times., The cavity volume and
pressure when the panel is undeflected will be called V@ and Pye
respactively. After the panel has deflected to a position wix, 0,t),
these guantitiecs will be denoted by "VO + &Va and Py + B {see
figure 33). Let us assume that the thermodynamic process which takes
place in the air is adiabatic and reversible., The pressures for the un-

deflected and the deflected panel are then related by

o = (VY (10)

For infinitesimal vibrations,

N

L
\o

The right hand side of equation 10 can be expanded to give

F = TPOAV (AV) éil)

It can be shown that for l“ﬁ%ﬂ' {{1, the change in volume is given

by
L &

N //w(x,@,t)R 16 dx

o ©
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Retaining only the linear termn in equation 11, we have

L &
) = — T /fw(x.e,f) R d0dx . (12)

The equation of motion which will be used for the shell is the
modified Donnell equation, which is particularly useful for this type of
loading. {See reference 15 for a discussion of this eguation.) The
deflection pattern of this shell segment corresponds to that of a cylinder
with many circurnferential waves. Therefore, the use of 2 Donnell type

of equation is justified,

_ 2
Dv4w+%v ‘fg“g +eh%-"zl -Blt)y = 0 . {137

The synmibol V™% is defined by VJ V4f€x. 6,t) = f{x,0,t). The boundary

conditions on wix, 8,t) are

2 2,
w(.68) = w(h,64) = 2::(0,9,&) = Zijuhg,f) =0
dw AW _
W(X,o,t) = W(X,&,‘t) = —a—é?(xno:{') aez (X,Cb,’l') =0

Consider a vibration mode of the form

mrtrx n 6

sin T sin '—4—9—
2

w(xgt) = et
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This deflection satisfies the boundary conditions, If either m or n
is even, the pressure Pt} = 0 and there is no cavity effect. In this
case, wix,8,t) satisfies eguation 13 and is an eigenfunction of the
problem., However, when m and n are both odd, there is a cavity
effect.

If a general displacement of the form
mirx

w88 = e“* sin T Z a, sin 252 (14)

n=l

is assumed, an approximate solution for the natural frequencies can be
obtained by using Galerkin's method. The following set of equations

resulés:

E.; {[(“'Q‘>+m‘]l'rr“+lz(l—vz)(ﬁ &Y Ty [(“n, A ‘%l} S

{15)

768 ¥ (- (p\ (4N 2R
T ¥ minp (ﬁ( ) , Frmnp =0 (p=12,.. .N>

where

a4
f)\’ = eshk) ’ez
D

i iF m,n and p are all even

Fimnp = i# m,n orp is odd
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For a shallow shell, we may assume that R¢ = [1,. Equation

1
15 then reduces to
> an | {088, ] e (Y e AL s
n <T)+m 4 20V g (R e = A -
ne | [(Tz— +m;]
1

{16)

768 0-vd b (9, (824, i
N T m*np E—(_\r%) (ZV,, ) Hmnp =0 (p = 1,2, ...N)

The condition for existence of a nontrivial displacement is that the
determinant of the coefficients must vanish:

A two-mode solution was carried out using the modes m =1,
n=1, and m =1, n =3, The following average values, corresponding

to the test panels, were used:

Lo

Vo = 48.6 in°

E = 18= ,1(36 pei
v o= 0.3

Tt = 1.4

h = 0,008 inch

The results are shown in figures 34 and 35, Curves are drawn for

Pe =1 atmosphere {corresponding to the bench tests) and P, = 1/20



atmosphere. All of the wind tunnel teste were run at Py < 1/20
atmosphere. It is apparent that the closed cavity greatly increases
the frequency of the simplest mode, especially for panels with small
curvature. 7The effect on the mode for m = i, »n = 3 is much
smaller,

Themode m = 3, n = 1 and higher modes could be
investigated for cavity effect; however, it can be seen from the set of
equatione 15 that the cavity term: becomes smaller compared to the
bending and stretching termns for these modes,

It can be concluded that the simplest mode is greatly affected
by the cavity, higher odd modes are affected only slightly and higher
even imodes are not affected at all. The important parameters for the
cavity effect are the cavity static pressure and volume., 7The force
which results from the presence of the cavity varies as ;5‘,‘; . Ifitis
desired to reduce the cavity effect, then it is necessary t@oﬁuzsa a large
volurme under the test panel. The pressure p o usually must be adjusted
to closely match the {ree stream static pressure of the wind tunnel (to
avoid a large static pressure differential across the panel) and so it
can not be reduced for the purpose of minimizing the cavity effect.

No flutter calculations were carried out using the simple cavity
theory developed here. It might be expected, however, that the
presence of the closed cavity would tend to stabilize a panel. This is
because the pressure loading acts as a restoring spring force.

Tuovila and Presnell {(Ref. 6) experimentally investigated the
effect of changing the cavity size in a series of flat panel tests, They

tested fiber~pglass sandwich panels with foamed cores in the Mach
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nurnber range of 1. 76 to 2, 87. Three cavity depths were tried for a
series of flat panels which were approximately 20" wide and 33" long.
A 1/2" deep cavity was found to give a critical flutter dynaraic
pressure 40 per cent lower than that obtained with a 1 1/2'" deep cavity.
On the other hand, when the cavity depth was reduced to zero {with the
panel touching the cavity bottom), ne flutter was found.

The theory discussed above does not explain the decrease in
critical dynamic pressure found by Tuovila and Presnell as their cavity
depth decreased from 1 1/2" to 1/2". However, the asgumption that
the air in the cavity is in equilibrium is not valid if the chamber size
is large enough for resonance phenomena to occcur.

2. 6. Conclusions for Curved Panels

The curved panels exhibited large amplitude flutter, the ampli-
tude of which was of the order of the arch rise WO/L. Several of the
panels deflected visibly under the static airloads before flutter occurred.
It was found that small amounts of initial curvature were destabilizing
and that internal pressurization was stabilizing.

It was also found that the clesed cavity under the panel can
affect the natural frequencies of the panel, particularly that of the
simplest mode., An expression was developed for the pressure in the
cavity which can be easily included in flutter calculations. ZEnlarging
the cavity size appears to be a way of r@ciucing the effect of the cavity.
The model used in the present tests was limited in size because of the
possibility of blecking the {low in the wind tunnel. Decause of the very
low static pressure in the cavity during the tests, the three curved
panels were probably not greatly affected; however, the flat panel with

a closed cavity may have been stabilized somewhat.
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The panels which were tested were very shallow, but it would
be desirable to test even shallower panels., It will take extreme care

to make shallower panels because of the close tolerances required.
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APPENDIX

The following definitions are necessary for the determination
of the linear supersonic alr forces in section 1. 5. They are essen-
tially those defined by Luke and 5t. John (Ref. 10). The subscripts @

have been added for clarity.

Kk 2 2 -
a("n = -—;— {(KN\'Z) + Pﬁa coS ('?‘—%l)'ﬂ'}
I & K 2r-1
brn = /322 cos ( 5 )TT
T = (KM

(As + nT4) (v - rm/z

T3+ (g + np)° T+ (Ag - ML)

T +(Aps + n4)’ i I +O‘H’\ - nm4)* }

o= 1 +
row 2 | 72 +(7‘rn + nmp) IZ*”‘H\ - nmf,)*
CPr-n?'\ N {

7t mT/Z) + (Arn - h’\'f/z.)
T2+ (?\,‘n + nry,)? T34 (Arq - PR3
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Two termes have been taken in the Dessel function expansion
used by Luke and St. John {i.e. g = 2 in their notation). This is
consistent with our useof B = 1,3 and does not introduce much

error, Taking another term in the expansion (setting g = 3) would

have increased the amount of work greatly.
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TABLE I

NATURAL FREQUENCIES OF FLAT PANELS MOUNTED IN MODEL

(NO FLOW)
Flow - N 1T
— -,
Direction
Panel No. 1, 0.0151"
Exper. 25.9 cps 490. 6 cps 67.5 cpa 69.0 cps
Theor. 26,2 cps 29.7 cps .- 71.9 cps
Panel No. 2, 0.0153"
Exper. | 31.0 cps 44.2 cps 77.0 cps 72.4 cps
Theor. 26.5 cps 30.1 cps - 72.7 cps
Panel No. 3, 0.0193"
Exper. 27.5 cps 39.0 cps 66.0 cps 87.0 cps
Theor. 32.9 cps 37.4 cps .- 90.0 cps
Flesure stiffnesses: No. 1: 3,410 ib/in
No. 2: 3,410 1b/in
No. 3: 6,000 1b/in
The theoretical values are taken from Warburton (Ref. 14).
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TABLE 111

NATURAL FREQUENCIES OF CURVED PANELS, BENCH TEST.

PANEL ORIENTATION .

! FRONT REAR
37.0 45.3 59.2 88.6 E:::j

2 >~ S
49.2 76.8 86.2 88.4 116 121 127 130 155

3
85 = 96 136 148 152 i57 196 202 210

4

3 15 (72 182 208 209 232 240 257
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Fig, 1. Two-Dimensional, Flat, Clamped Panel.
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6 — _—
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SIMPLY-SUPPORTED —
4 f'_' /i
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Fig, 2. Flutter Poundaries for Two-Dimensional, Flat Panels
with Zero Membrane Stress, (Hounolt, Ref, 8).
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Fig. 3. Wind Tunnel Model for the Flat Panel Test.
(Shown During Vibration Tests on the Bench. )

Fig. 4. Installation of Model in Wind Tunnel.
(Flow from Left to Right.)
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Flat Panel Assembly,

Fig. 5.
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Fig. 6. Flutter Amplitudes for 0. 015" Flat Panels.
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0.004 l [
— THEORY
o EXPERIMENT ol
~ ~ R
0.003 = — STABLE —
T
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A =352
m
0.002 — ]
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0.001 ~! | 1 |- —
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Fig. 7. Thickness Ratio Required to Prevent Flutter Versus
Wind Tunnel Free-Stream Static Pressure. Two-
Dimensional Flutter of Flat Panels, M = 2,81,
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Fig. & Resonant Frequencies for a Flat Panel 0.0151" Thick.
Two-Dimensional Flutter. 0. 050" Diameter Wire
Boundary Layer Trip.
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Fig. 9. Resonant Frequencies for a Flat Panel 0. 0153" Thick.
Two-Dimensional Flutter.
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Fig. 10. Resonant Frequencies for a Flat Panel 0. 0193" Thick.
Two-Dimensional Flutter,
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Fig. 11, Resonant Frequencies for a Flat Panel 0, 0151" Thick.
Three-Dimensional Flutter.
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Fig. 12, Phase Lag for Two-Dimensional Flutter of Flat,
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Clamped Panels.
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003 | T | | | |
POSITIVE AP INDICATES MODEL CAVITY
002 — PRESSURE 1S GREATER THAN FREE-
’ STREAM STATIC PRESSURE
00! —
A P, psi
0
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. .0.02 | l l | | |
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Pt’ cm Hg

Fig. 13, Static Pressure Differential Between Model Cavity
and Free Stream,
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; 4
Fig, 14,

-4
Fig, 15

Fig. 16.

Coordinate Systera for Three-Dimensional Flutter
of a Simply-Supported Panel.

£
Method of Images.
+1 :
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o) ﬁz/z £

z

Two-Term Fourier Series Representation of g{z).
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Fig. 17. Three-Dimensional Flutter Solution,

M = 2.81, -%—‘- = 0,8555, V= 0,3,
2
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Fig. 19. Wind Tunnel Model for Curved Panel Test.
{(Panel No. 3 is Installed. The Discoloration
on the Panel is from the Baking Process
Used in Mounting the Panel.)

Fig. 20. Curved Panel Assembly, Inverted.
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Fig. 21. Bottom View of Model.

Fig. 22. View of Model Cavity. (Only One Pickup Installed)
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Fig. 23. Typical Theoretical Flutter Boundary for Curved Panels.

Yates and Zeijdel (Ref. 13).
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Fig, 24, Flutter Amplitudes for Slightly Curved Panels,
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Fig. 26. Experimental Flutter Boundaries for Slightly
Curved Panels.
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Fig. 27, Eifect of Static Pressure Differential on the Flutter

of Slightly Curved Panels.
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Fig. 28. Phase Lag at Initiation of Flutter, Curved Panels,
AP =0.
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Fig, 29. Phase Lag for Curved Panel No. 1, -If—)
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Fig. 30. Phase Lag for Curved Panel No. 3, - = 0.013
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Fig. 31. Phase Lag for Curved Panel No.

4W°
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Fig. 32, Curved Panel over A Closed Cavity.
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Fig. 33. Curved Panel in Initial and Deflected Positions.
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I, CYLINDRICAL SHELLS WITH BOUNDARY LAYER
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ABETRACT

The effect of a boundary layer on the flutter of a ¢ylindrical
shell is studied. The aerodynamic forces are developed for a shell
of infinite length. The boundary layer is idealized as an annular
region of uniform subsonic flow surrounding the shell. This boundary
layer is of constant thickness along the shell and has a constant
velocity distribution through its thickness. The external supersonic
flow is also taken to be of uniform velocity, resuliting in a ""stepped"
velocity profile through the boundary layer., Small perturbation theory
is used in the boundary layer region and linear piston theory is used
for the supersonic flow.

In order to replace a physical boundary layer with an idealiza-~
tion for calculations, a procedure is developed for choosing the
boundary layer parameters of velocity, pressure, etc., in a consistent
way.

The forces which are found through this boundary layer theory
are compared with those obtained using piston theory directly., It is
found that the forces on a mode with many circumferential waves are
much smaller than the forces given by piston theory -- a reduction in
amplitude of 95 per cent is possible., Phase changes also occur. The
effect of the boundary layer on axisymmetric modes is not so great.

Flutter boundaries are obtained for axisymmetric flutter under
several conditions and illustrate the effect of boundary layer thickness

and structural damping.
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Force amplitudes, see equation 36
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Constants, see page 82
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INTRODUCTION

Cne of the most interesting and current topics in the field of
panel flutter is the {lutter of cylindrical shells, It has been found
that the thin outer skin of a missile will flutter when subjected to a
super sonic flow of sufficient speed directed along the cylinder axis.

A nurmber of theories have been advanced for cylinder f{lutter,
but recent wind tunnel tests have shown that they are too concservative;
i. e., they require that a cylinder be made stiffer than is actually
necessary to prevent flutter.

One possible cause for the difference vetween experiment and
theory is the viscous boundary layer, which has been neglected in the
past, except for the work by bhiiles (Ref. 1), He considered the case
of small wave length traveling waves on an infinite cylinder. Another
possible source of error has been the omission of menibrane inertia
forces in the cylinder equations., Voss (Ref. 2) has studied the
membrane inertia forces. He indicates that they may have a significant
effect.

it was decided to investigate the effect of the boundary layer by
starting with a simple theory. In this way it is possible to carry the
probléxn through to the point where flutter boundaries are obtained.
More refined theories may be developed in the future,

The boundary layer is idealized as an annular region of uniform
subsonic flow surrounding the cylinder. Furthermore, it is assumed
that the cylinder is infinitely long. In this way, the aerodynamic
forces resulting fromm a system of standing waves on the cylinder sur-

face can be found. Also, a procedure is developed for choosing the
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the parameters Mg , @ , Ug , which characterize the idealized
boundary layer.

Once the aerodynamic forces are obtained for an infinite
cylinder, these results are a;pplied as an approximation to the forces
on a cylinder of finite length, Galerkin's method is used to set up the
eigenvalue problem for the case of axisymmetric flutter. The eifects
of membrane inertia, membrane stresses, and structural damping
are included.

Flutter boundaries are presented for the axisymmetric flutter
‘of a cylinder with boundary layer and structural damping, but no
numerical work is done on the effect of membrane inertia and membrane

stresses,

1. Aerodynamic Forces on a Cylinder with an Idealized Boundary Layer

Consider an infinitely long cylinder of radius R immersed ina
uniform supersonic flow along the cylinder axis, The boundary layer on
the cylinder will be idealized as a subsonic layer of constant thickness

8  and uniform velocity Us;, as shown in figure 1.

A similar case has been worked out for the steady flow along an
infinite axisymumetric body by Des Clers and Chang (Ref. 3). We will
consider the more general case where the cylinder surface oscillates
harmonically in a sinusoidal standing wave pattern, with waves in both
the axial and circumiferential directions,

The fluid flow in the boundary layer is assumed to be inviscid

and irrotational. Small perturbation theory will be used in this region.
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With the restriction that disturbances at the cylinder wall must be
small, the linearized equation for the velocity potential within the

boundary layer is

0.52 3‘tz Og 2xot

| adeG MS d d)s ﬁ’-ad’s z¢s (l)

4O ]
where 3~ = 1 - Mg,

Linear piston theory will be used for the aerodynamic force on
the outer surface of the interface at r = R+ 90,

1.1. Surface Pressure for a Sinusoidal Downwash Distribution

We will solve the problem corresponding to the upwash

w(x,R,8,t) = w, sm'“T""‘ cos n 6 et ) (2)

When the aerodynamic force corresponding to this upwash is found, the

force resulting from a cylinder oscillation of the form

a0

(x,6t) = sin mﬁx b cos MX) o5 n B et
2 (x, Z{ Z (mn + 0 ) )

can be found by superposition.

Using the transformation

=

2

Q§_ ai =M_§_-’—‘— =__Ms" =
T = Lt+ T £ L " 6 = 6

W

equation 1 becomes



Bzd>5 _ 32‘1)5 + az¢'5

3%s , 1
2

| P
272 oE ' aw | M @m 7 - (3)

262

This equation has solutions of the form

Tn (pm)
T ikgT *idE
Pg (E,n,01) = et e cos n 8 Y, (o

. 2 2 '}\Z ,
where p- = ko = - and where J'n (pn) and Yn(p n) are Bessel
functione of the 1st and 2nd kind.

It will be =shown that the boundary conditions for the probler: can

be satisfied by the following choice of &g

$g(€,n,6,7) = e o5 n 6 Jlte'w\'g [C,J’n Cum + BY, (rm))]

- e‘t]zg [Cz_‘]—n () + By Yy ('&27))”

where A, and )\3 are constanis to be determined later and

1
P = \lksZ - Ha = \lk62 -2

Returning to physical coordinates,



bgx.vOt) = ¢a<§ (x), 'f)(r) 8,7l x)) = e%os n e{e“’“ k‘Ms)P"— [C.J'n(}*-r%sfr)* ann(r«N_P\%)}

{4)
kgt [ [J (i) B2, hM")H

We will use the physical variables x,r,8,t for the remainder of the
problera.

1.1.1., Boundary Conditions

There are three boundary conditions., They will be applied at
the mean positions of the cylinder wall and the interface. At the wall,

the upwash condition is

(4R.84) = wosin T2 wt (5)

cosn G e

ad>5
ar

The assumption of the existence of an interface implies the

separation of the fluid particles in the two flow regions,

24:5 (xR#5,08) = DEOWOD |y REKOH (6)

ot X

it is also necessary that the pressure be continuous across the

interface. Linear piston theory is used at the outer surface of the

interface.

-6, a¢s

9% (x,R+5,6,t) + usa% R+ Bt)] [az(x 8.8\ 2264

ey
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Equations 5, 6, and 7 constitute the boundary conditions. They
can be written in more usable form if equation é is used to eliminate
z from equation 7. We will then have two equations expressing bound-

ary conditions on ¢ and one equation giving % as a function of ¢g.

If 2~ e“‘)t, then equation é becomes
2Ps ( Re8,08) = LWE(GY+ U 2EXED (s)
dr oX
We may solve for Z to get
AL xad> (W
26,00 = L €% /-371(41 R+6,00) el dy . (9)
5

3

The integral is to be viewed as an integral of the complex variable Y ,

with a complex constant Y, which will be determined later. Since
8¢,
the explicit form of fé}i is known from: equation 4, it can be seen that

the integrand is an analytic function of V¥ on the entire Y plane.

Inserting equation 9 into equation 7, we have

adg

™ (x,R+8,6,¢)

%Qi(x,ms.e,t) + bP (X ,R+8,6t) + ¢
r

(10)

X
LR LY
+d el /-‘g—?ié(mma,e,ﬂe‘“’us v
¥

"
(&
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where
- g Us\ k
b = ‘(T)M(U)JL' )
e Ug \?
¢ = —é’-—(—\j—)N\ 5
and
d =

The problerm: has been resolved io the solution of the differen-

tial equation ! under the boundary conditions 5 and 10.
displacement is given by equation 9.

1.1.,2. Solution
Boundary condition 5 requires that

Mgx
gt o '“[(‘_‘]h'(ﬁ%%ﬁ B.Ynl(rn%{ﬁ)]

_ei(7\1+ksMQ%:—|\_"_ " [CJ,: (T‘*r%() +Ber:(Pz'(Y\£)j! - ‘."h.[\ef%_ [ei'ﬂé'-‘ . ézﬂ‘%ﬂ
This is satisfied if we take
I L L
A, = m;fz - kg Mg
LT

The interiace

{(11)



and

¢, = — .‘ - BY, (0|

We may now rewrite ¢, , redefining the arbitrary constants

}31 and Bg.

. MK
. L—
bg(x,1,6t) = w"g\l‘t eteosn g€~

( v jo
sl 3 1)

6 P8 o)
(12)
i Mer) Yolpalo) - ( M
- [= 5r 2 134
Py (t‘l‘)) P (F?- )*BQ z pL X (g0 n( sz))J
Boundary condition 10 may now be applied. Substituting ¢,

from equation 12 into equation 10, and cancelling a common factor
Wy s

—%@%‘l ,1 ¢ cos n &, we obtain

wi"f&-b
_ 1

_,'..'ﬂ‘l'. Fu Yn(Pmo) U b- lm ( __\(n(l‘ "lo) ) [
et J“—K(H-no b (9,11)+B(Y (Inﬂ T( n)| + /N (F‘W T pmd+ BAY, (un) T( 1]\

mex [ p T, (o) Ya (o) 1, 1. peitre ( (f‘l"lo) > ]
o L\'(;ﬂw I"(V‘T‘J+B‘(Y“(""\) f'(ﬁﬁ I"(M3> " s (pana | H""\HB Y(f‘z’p In(pay
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Mg (R +8)
where W TI T Because of the linear independence of the

\ %
functions e“i T, et T s and &-10.) Us , each of the coefficients of

these functions must vanish., Hence

8- _ RRGm)+x (b= E9) Ry ‘ , (14)
Y Yo (Fl'lo) Bunfd _h (pl Ma)
F l:Yh(FJ\)'J.n,(H‘T‘ ({A. D] +F (b -t—— L [Y"(F,V)') T (p'qo T ( 7‘\

s . _ ARG +A (+iTET Guy)
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These expressions for

B
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(KS - mTr)

B2

U
ms <—U—8 ks+ mrr)
BL (kg +mm)

1 Ez and LPO

expanding the Dessel functions in Taylor series and keeping only the

linear terms., To do this, it is

|pE] <
| M8 <K
MS 5
where S When
become

Il

KZNZ - mindB2 4 2me kaw\;]

necessary to assume that

written out in full, these inequalities

[ksa N\sz - m"ﬂ'@z —E.mﬂkSM;]i(_s[) l << '

<<

®

This puts a condition on the boundary layer thickness ratio, reduced

freguency and number of axial waves allowed,
&l Y

After expanding the Bessel functions, recurrence relations

among the functions and their derivatives are used,

We obtain

can be simplified by



o9

[ ] o R [ o),

B=-
[( (40, 0)-( -Gty g f:;ii’;ti%} PG )w}
o[Fond-Tund] [R5 i S [Tt [ (8- 6) o o "2, (18)
By=—
I ‘1 0! T Inei- 2 °)
[(Ymmo“ e m) ( {pano~ .mMD) é ‘::‘:Im‘g:“;) (““'/‘z Eno)+ b+t——)w}
g ) [ o8- S 265 ] G5 pe80) e 70 (1o}

G+ 75 [ g-8'- 20428, [F82- 280672 ]

1. 1.3, Surface Pressure

The pressure at the cylinder wall is given by

P(LR.OY) = - & |3 ad"' =2 (x,R,0,4) + u8 & (x,R Gt)]
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and

[ (-5) b6 |
[ (-4 1) 23)

[“Z],,m (kg+rw

1.1.4, Interface Displacement

I.et us now calculate the interface displacement Z(x,8,t) using

eguation 9. After integration and much simplification, we have

mwx m‘h’X

I(4t) = ‘glu% e“tcos n o {[,B] [Pz]

..[ ﬂ»] e—i[Ks‘t -(Kg-mm) ".’E] + [ /52.] gl[Kﬁ!C (kg +m) YLB]}
ma mn

where

(b-i mt‘rc) [\-]o- % - 8'2,{; + 8';1.27101

[ﬂ']mn - (Ks-mm) [F. Sl('?\’: ‘Pﬁﬂ*’)*‘\o(b-imfc)] {24)
) o6 5 i,
[ﬂ}mn— <+L )[q ! - /J “] (Zé)

(Kg+mm) [ES -~ M q°)+q°(b+tm“°>]
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Fquation 16, which defines Y, , can be written as

eizm"'l:').g . [’E'] rﬁn

ﬁa]mn

The last two terms in 2(x, 8,t) cancel when this expression for VY,

is used, leaving

; arex . mux

E(x,0t) = \:‘G: ¢teosng {[p,]m‘f‘—r- [ﬁz} i e t } . (26)

n

This completes the problem for the case of a sinucoidal upwash distri-
bution,

1.2. Surface Pressures for a Systern of Standing Waves

We will now find the surface pressure pix,R, 8,t) at the cylinder
wall for a general system of standing waves by using superposition. In

the preceding sections it was shown that an upwash w(x,R,8,t) =

id
w e ¢

. IR _
o cosn B sm‘—fﬂ——- caused a pressure plx,r,8,t) = p*{x,r,8,t).

Bacause of the physical nature of the problem, shifting the upwash by an

x distance of 2—?—-:; merely shifts the pressure field by the same amount,

it mw

cos n 8 sin-z-(x-’r—i'—

Hence an upwash w(x,R,6,t}] = w e 5=

generates a pressure pix,r,8,t) = p*(x+ -2%—, r,6,%t).

i

If the deflection pattern is given as

[~ -} 00
; . miX
Z(x,6t) = Z Z: amne“‘)f cos n @ sin——

m=l n=0



93

the upwash at the surface of the shell is

w(xR 6t = %"-9@. + Ug 2z (x.0t)

ax
{(27)
© oo : : U
= Z Zam [% (woe“"tcos n6 sin"’t" Sm (w “osn sm~—(x+ ))]

m=1 n:=0

""XHTX

The identity cos T = sin ( -?-}) was used in the last equation,

The pressure corresponding to the upwash of equation 27 is

therefore

PR Ot) = ziam [‘“’ QDT 6"‘“ *( +2-0R,84)

mz\ n=0

Introducing the expression for p*{x,R,8,t) from equation Z1, we have

QUZ m1x .
x (R.6,6)= teosn @ {I"mhcos—-\:— t By sin ﬂ:—’-‘-] , {28)

Ma
Ma

3

=\

H

‘O

where

o [t lelens] @RE e
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and

A, = [a,]mckb-m)+[«z]mnmbm)} BE G2 . (30)

Eguation 28 will provide the aerodynamic loading to be used in
the cylinder flutter equations of Part 4.
The dimensionless variables r‘mn and &, Bre functions of

U 2¥4)
. ) R
m, 1y M, b”is W& % 0 (‘ﬁ")n (""g‘"ﬁ: (%)o and (‘%).

2. Choice of Parameters for the Idealized Boundary Laver

In order to make use of the aerodynamic forces of the previous
section, it is necessary to develop a scheme for replacing a physical
boundary layer with an appropriate idealized boundary layer. At first -
glance it might appear that this would be a hopelessly arbitrary
procedure. In addition to the fact that an idealized boundary layer of
constant thickness has been chosen to represent a growing boundary
layer, a number of pararmeters rnust be chosen. Although nothing can
be dene in this theory to allow boundary layer growth, it is possible to
choose the idealized boundary layer parameters in a consistent way
which helps to minimige arbitrariness,

All of the following work iz based on steady, flat plate boundary
layer theory. The small perturbations of Mg, €5 ,75 , Us and pg
are negligible in comparison with the quantities themselves,

For clarity, assume that the physical problem: has been defined,

A cylinder of finite length and fixed geornetry is exposed to a supersonic
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flow of given M,U,e,T and p. Consider the case where the boundary
layer is turbulent and where the ratio of boundary layer thickness to
cylinder radius is small enough that flat plate boundary layer theory
can be used. A typical cross section of the cylinder is chosen to
represent the physical case, IL.et the boundary layer thickness at this
cross section be called T , where § is defined as the distance from
the cylinder surface at which the flow is 99 per cent of {ree stream
velocity.

For the idealized boundary layer, the parameters g, Ug, €5,
Tgs pgs and 8 must be found. Five relations among the six vari-
ables can be prescribed using various physical arguments, leaving only
one independent variable. It is convenient to let Mg be the independent
variable and solve for the others as functions of Mg,

First of all, the equation of state and the isentropic speed of

sound will be used in both regions

eRT (31)

B
1]

and

o
[

—% = \I‘X‘ RT ] (32)

For a steady boundary layer which is thin and growing slowly we

may take, according to reference 4,

Ps = P . {33)
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A condition on Ug can be found by requiring that the loss in
volume flow thraugh the idealized boundary layer be the same as the
loss in volume {low through the actual boundary layer. If we define y
as the distance from the wall and let v{y) be the velocity distribution

in the actual boundary layer, then

&
(U-Ug) & = f [U-v(q)] dy . (34)
[-]
It should be noted that for the special case Ug = 0 and € =
constant, O becomes the familiar displacement boundary layer thick-
ness. Xor a turbulent boundary layer on a flat plate, the velocity

profile can be taken, according to reference 5, as
g\ ¥
7
@ =)
so that equation 34 becomes

Ug

L8
- = 34a
U B & (34a)
Prescribing a condition on the temperature in the boundary
layer is difficult. There seems to be no "averaging'' law applicable to
this case. Letus take Tg to be equal to the adiabatic wall tempera-
ture, the hottest temperature obtained in the physical boundary layer.

For a turbulent boundary layer with recovery factor of 0. &9,

aw

Tg = Tow © T[x +o.e9(l”2=‘—)mz] . (35)
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Taking ¥ = 1.4, this gives

1—:-[—‘5— = [|+ 0.178 N\‘]

Also,

<l

-
1]

I

_ L i) B R
8 8 \l|+ 0.178 \?
Solving for —%— » We have

5 - -_‘ﬂé.i z
__85__ 8[! - |+0.|78N\]

Knowing —2—— as a function of M and Ms , we can rewrite

b

equation 34a as

C

8 Mg

b5 . Ib A2
5 " \]!+ 0.178 W .

The equation of state gives

€ _ KT _ T . |

e pTs Ts [1+0.178 m*]

All parameters have been determined as functions of M and Mg,

In sumimary, given a turbulent, thin, slowly growing boundary
layer on a cylinder in a supersonic flow of Mach number M, we may
construct an idealized boundary layer through the following steps:

a) Arbitrarily choose a subsonic Mg

b)

Ps
P
Ts 2
T |+ 0.178 W

H

c)
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Q . .t
d o 77 078 W

US MB 2
@) "U— = ™ '\ll + 0478 W\
2 = !

8

Mg 0
B[u— M '\!\‘\' 0.178 M ]

The effect of the choice of kg can be studied by comstructing
several different idealized boundary layers to represent the same
physical case. This will be done in the next section.

As soon as big is chosen, the representation scheme is fixed,
When data are given in the following sections, for instance the flutiter
boundary curves, the value Mg is held constant for all data points,

This is only one possible way to compare data at different M and %

More generally, Mg might be taken as a function of ¥ and "

3. Comparison of Forces with Linear Piston Theory

Before using the boundary layer theory in flutter squations, it
ig of interest to study the forces generated by this theory and to
compare ther with linear piston theory. This comparison is particu-
larly useful because much of the research on cylinder flutter has been
carried out using linear piston theory. It also provides a check on the
present results due to the use of linear piston theory as the force at the

interface,
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Given a cylinder wall displacement

mirx

¢t os n 6 sin=y— )

: = g,

boundary layer theory gives a surface pressure as in equation 28, This

may be rewritten as

2 f .
Bx.64) = zﬁLU cos n 6 [A.e‘(w“d)')cos'—'—“f—‘— + Aze‘(")“cb‘)sinﬂ%"‘_] , (3¢6)
where r*"rn and Amn have been written in polar form as
= (b,
T = Ae
- i
D= R 7?

For a cylinder with no boundary layer and the same wall displacement

as above, piston theory gives

2

pix.6t) = Z;A—QLU— cos n & mne

ot T
wt ——m:x + ke‘(“’“*)sin——mrx . {37)

S

We can now compare the surface forces on a cylinder with and without
a boundary layer, using equations 36 and 37.
The constants A AZ,' @1, and «:ﬁ)z could be written as

1'
R 65 Y

) e : ) e R ,
functions of my,n, M, M, ,k, - and -—eé—-; however, using the

resulis of the idealization scheme, we can express them as functions of
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. This is still such an

o

the seven variables w:,n,M,Mg,k, T, and
imposing list of variables that we will restrict ourselves to the case

where

M= 3.5,
Mg = 0.5,
R =

E - D- S-

(Let us observe at this tirne that we are actually carrving one redundant
variable. The axial wave length of the cylinder deflection pattern could
have been fully defined by using L as the wave length. In this way, m
would not have been needed. However, for convenience, we will consider
L to be a fixed length and use the index in to indicate the number of
axial half waves contained in that length, This approach is advantageous
in the formulation of the flutter problem to be carried out later,)

We will now look at the changes in the forces on the shell as the
parameters m,n,k, and -g: are varied, The effect of the circumfer-
ential wave nuirber n is perhaps the simplest. Figures 2, 3, and 4
show that increasing the number of circumferential waves essentially
intensifies the boundary layer thickness efiect, causing the same
results for a thinner boundary layer. These figuresz are given for
m = 1, When m is higher, increasing the number of circumferential
waves has a similar effect. The reduction in amplitude of the forces is

very apparent for the case n = 22,
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Increasing the axial wave pumber m: also tends to increase
the boundary layer effect, as is seen in figures 5 and 6. Again, a
large reduction in forces is possible. The case shown is for n = 0,
i. e. an axisymmetric mode.

The role played by frequency is rather complicated., Figures
7, &, 9, and 10 show that the boundary layer effect is not as large at
higher frequencies as it is at low frequencies. For this reason, the
boundary layer will probably have less effect on axisymmetric flutter
than on flutter with many circumferential waves, the 15.&1:631' usually
oceurring at a lower freqguency.

In all cases above, it should be noted that as -g—- — 0, the
foreces become identical with linear piston theory. Since piston theory
was used at the outer surface of the interface, this is a reasonable
result. It is also possible to see that the piston theory forces are
recovered as % — 0 directly from equation 36 and the definitions

of r and AH . These constants are continuous functions of '?EX

Inn in

i %——-}G for a given idealization scheme, then %_————)@ also, and

lim _

$ — 0 rlmn - mT K
R

lim .

%__)0 A“\I\ = Lk .

As a result, equation 36 becomnes identical with equation 37,

Finally, let us consider the effect of the arbitrary choice of
Mg. Forces for several diiferent inodes are plotted in figures 11 and
12, Unfortunately, varying Mg causes large changes in the forces
for the eases where m = 10. It was hoped that the boundary layer

idealization scheme would prevent this., For m = 1 the results look
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better, however. In the next section, flutter work will be done for the
axisyminetric case, n = 0. Ten modes will be used, i.e. m = 1
through 10. KHence, it is expected that the flutter results will depend

on the choice of Mg,

4, Azxisymmetric Flutter of a Finite Cylinder with Boundary Lavyer

The aerodynamic forces developed in the previous sections are
for an infinitely long cylinder. Let us consider the flutter of an un-
stiffened cylinder of constant thickness and finite length L and use
the boundary layer theory as an approximation to the aerodynamic
forces,

There are several possible ways in which a cylinder may flutter.
Let us consider only axisymmetric flutter. The case of axisyrometric
flutter of a cylinder with no boundary layer has been solved by
Krumhaar {Ref, 6). He uses linear piston theory for aerodynamics
and finds an exact solution of the stability problem, Iis work provides
reliable flutter boundaries for comparison and his comuments on the
number of modes necessary for convergence are useful for the applica~

tion of Galerkin's method.

ey
k2

e will use Timoshenko's equations of equilibrium {Ref. 7).
These equations are specialized to the case of axisymmetric displace-
ments and inertial, aerodynamic, and structural damping forces are

added. Since harmonic osciliations are considered, the structural

damping force is taken as ig times the elastic restoring force,



103

2 2
S o Tu (38)

vy, 2, RR* 3% RG-vM, 3z R(1-v?) ¥E - - .

The cylinder will be assumed to be freely supported at x = O
and = = L, For an axisyminetric displacerment, the boundary

conditions are
- - _ sz _
200 = z(Ly) = SH(a9 = S0 =0 (40)

and

ou - ou = 4
ox (0t) = o (L) 0 . {41)

at

i id .
Agsurne that z ~ ¢ and u~e' t and let a prime denote

differentiation with respect to x. Eguations 38 and 39 become

Ku' + Ku + Kyz' = 0 {42)
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and
KQEm r Kge" + Kgz + Kpu' + KBF(’(’{) = 0 , {43
where
K, = 1+ig
K, = h?
N v Ne (1-v)
K3 = (‘+L3)(E - —W )
- - R(l )
Ks (H-lg) th N
Ke = O+igk - ehet 8L Ré‘h"”
K;y = 9(i+ig
- RO
Ke Eh

Equations 42 and 43 with the boundary conditions «( and 41
define the eigenvalue problem. An approximate solution will be done
using Galerkin's nmethod,

We will search for a neutrally stable solution, i.e., a displace-

ment which has a harmonic time dependence. Assume

N ,
z(xt) = Z ame“‘){ sin MIX . {44)
mz\

This series satisfies the boundary conditions for =z{x,t). “When it is

substituted into the equation of equilibrium in the x direction, we

have
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N
R i A I LU (45)

The particular solution to this equation is

.. N ! mTix
U(X,{) - eu.)tZ ( U )KaﬂmCOS T (46)

S CoNY

For the homogeneous solution to equation 45, there are two cases

resulting from the inclusion or exclusion of membrane inertia effects:

K, # 0 u= G6,/t)sin '\‘ E‘ x + G,(t) cos 4 —%— X {47y
t $

and

K= 0 u= G6®Hx + G& . {42)

It is easily seen that the particular solution satisfies the boundary
conditions and the homogeneous solutions do not; therefore, equation
46 gives the proper solution for u{x,t).

e now have functions z(x,t) and u(x,t) which satisfy all
boundary conditions and satisfy the equation of equilibrium in the x

direction. The eqguation of equilibriurm in the radial direction, equation
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43, will now be satisfied approximately. Inserting the series represen-
tations for z and u into equation 43, and using the aerodynamic

force as developed in equation 28, we have

N mir )
PR ———K3K7( o) + Ko K*(m'—ﬂ)4' K5(%z+ Ka[i\fz Bro| sin ™0
mz| [Kz_(ﬂ“.ﬂ)zk
{49)
2
+ Kes\g Mo cos™ = EWX

The function E{x) is merely the error involved in the approximation

of the displacements and is minimized by requiring that

L
/6(x)sinq'ﬂTx dx = 0 ((l= L2 .. . N).

[}

This vields the equations

i Ay | () (14ig) { [tz(l-V‘)(wig)(%)z(%Y + V019 Ty (%Y+ () G+ig)
mz|

+(mﬂ)z(|+ig)Tx + A Amo] 6%"\ + A [:no ?}Qm}

{50)

ﬂ« 0 (S8 (@ SR e+ @)+ (L)‘Am} o

e

)‘“mo*\a,m} ) {1'? @1%} =0



where " . I 2
e e
N, L2 '
To-
: NeL®
T = 5
) qy#:m
w277
| g=m
o if (q+m) is even
flgm =
¥ o (q+m) is odd

¥ iq- m)(g+m)

G

For the case where membrane inertia is ignored, the equations

simplify to

2,\_1“ ap, {(I +iq) I:IZ (l-w)‘)(%z(%z+ (e +vTg (TLQ: (mry Tx] +AD-A sa,m

m=l

(51)

+Ar'm°ﬁ$m =0 (qr= ,2, .. .N)

We are now at a point where we can proceed with numerical
work. lLet us neglect membrane inertia and use equations 51. There
are several ways that the eigenvalue probler: can be formulated; how-

ever, we will define the eigenvalue ¢\ as



A = tz(l-V‘)EMzes‘f (%)2(%2}(’-(1“9) [\2(!—0‘)(—%}1(%4«\ vig (—%ﬂ . {52)

Egquation 51 becomes

N
Zam {(Hiq) [(mn)‘w(mm‘Tx] +A Amo-A} 8%,,,+Arr'n°ﬁ$m =0 (q=12,...N)  {53)

msi

If the coefficients of the a = are arrangedina matrix P, the condition

&

that a non-trivial solution exists for the a., is that

Det (P-/VE) = 0 A (54)

Searching for eigenvalues is somewhat cumbersome when flutter
points for a specific shell at a standard altitude are desired. There are
14 independent variables in the problem, Five of these, M,y , Kk, (%),
and (%—). rust be specified in ovder to calculate the aerodynamic terms.
Values for three more, g, TX, and A, must be chosen in order to
form the rnatrix P. Standard altitude conditions set the values for €
and a, and the choice of a copper shell with given internal pressuriza-
tion sets the values for 4, E, s, and Ty, Therefore, all variables
are specified, and a sclution for N from equation 54 is not a true
eigenvalue unless it also satisfies equation 52. DBecause equation 52 is
complex, there are actually two constraining conditions. If we write

J\' = AR + iAI. %h.en
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Oq = S (e @l o

>

-q [ 12 (1-v2) (%)2(%)4 + vy (‘}'—S] . (56)

In actual practice, the constraining equations were rewritten,

If ¥ and 8, 2re defined as

e+ |2 G e 0

and

AR = - e
T e PR T @]
then equations 55 and 56 become

F(Rky = 0 {57}

g, (AK)

"
O

(58)

For a given selection of the other 12 variables, k and A are varied

until one of the eigenvalues from equation 54 also satisfies equations
- : : : . I

57 and 5&¢. This establishes a flutter point. The critical value of (’f‘i)

is found through the definition of A as
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wi-

@ e

Calculations were carried out on the IBM 7090 digital computer

for unpressurized copper cylinders with % = 0.5, The following

constants were used:

Mg = 0.5
E = 1.3x10 Ib/in®
o) = 0, 33
' b seca
ea = (., 000%3333——-';;5-*‘-

All flutter boundaries were calculated using 10 modes, It was felt

that 10 modes was the maxirmum number allowable becauss of the
round~off error inherent in currently available eigenvalue subroutines
for complex matrices. The expansion of the Bessel functions used
earlier also becomes poorer as more modes are taken {as 1 becomes
larger).

The curves of thickness ratio required to prevent flutter at sea
level and 50,000 feet (figures 13 and 14) indicate that the boundary
layer is slightly destabilizing, Even a very thin boundary layer has an
effect; however, raising the thickness from % = (,0625 to -:gf = §,128
causes little change. The convergence is only fair at low values of %
as can be seen in comparison with the exact work of Krumhaar, It is
necessary to have such a co iparison available because of the lack of
convergence theorems for Galerkin's method when applied to a

non-self-adjoint problem such as this,
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Figure 15 shows the effect of structural damping in addition to
a typical boundary layer. It is interesting to m;te that the boundary
layer is stabilizing when structural damping is present. It is realized
that the {lutter boundaries for % < 0.001 are not accurate because of
poor convergence; however, they still reveal trends.

The effect of the choice of Mg is shown.in figure 16. The
choice of Mg = 0.5 for the calculation of the flutter boundaries
appears to have led to a slightly higher thickness ratios than mnight
obtained with a different choice,

Some of the flutter points are given in Table . The values of

A and k at flutter can be found in this table,

5, Conclusions

it has been found that a simplified boundary layer has a signifi-
cant effect on the forces developed on an oscillating cylinder, This
effect is especially pronounced for modes with many circumferential
waves and at low frequencies. A case was given where the force
amplitudes were only 5 per cent as large as those given by linear
piston theory. This may mean that {flutter with many circumfierential
waves will occur at higher dynamic pressures than current theories
indicate.

The flutter boundaries which were calculated for axisymmetric

flutter are not greatly different from the flutter boundaries obtained

with no boundary layer. The results indicate that when structural

damping is present, the boundary layer is stabilizing.
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It is possible that the choice of Mg for this simplified theory
could be fixed by a matching process with a more exact boundary layer
theory.

It should be mentioned that the case of a two-dimensional flat
plate with boundary layer has also been worked out. The results are
similar to those presented here. The equations for pressure and inter~
face displacement for the two-dimensional flat plate may be obtained
from: the cylinder equations by taking n = 0 and letting ?% —> 0.

Cylinder flutter with many circumferential waves is of sufficient
interest that flutter boundaries will be calculated for this case in the

near future,
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TABLE 1

AXISYMMETRIC FLUTTER POINTS

Altitude M Mg -% A k -}}{?—

feet

0 2.0 0.5 0 0 11, 620 9.34 0.00285
0 3.5 0.5 0 0 3,910 5.33 0.00494
0 5.0 0.5 0 ¥ 1,895 3.73  0.00709
0 2.0 0.5 0 0.0100 6, 200 9.36 0.00353
0 3.5 0.5 0 0.0100 2, 540 5.33 0.00574
0 5,0 0.5 0 0.0100 1,175 3.73  0.00823
0 2.0 0.5 0 0. 0625 5, 840 9.33 0.00360
0 3.8 0.5 0 0.0625 1, 906 5.33 0.006206
0 5.0 0.5 0 0. 0625 1, 005 3.74 0.00877
0 2.0 0.5 + 0.1250 5, 993 9.33 0.00355
0 3.5 0.5 0 0.1250 1, 908 5,33 0.00628
0 5.0 0.5 0 0.1250 1, 168 3.78  0.00837
50, 000 2.0 0.5 0 0 12, 200 10.75 0.00136
50, 000 3.5 0.5 0 0 5, 250 6.14 0.00218
50, 000 5.0 0.5 0 0 2,601 4.29 0.00310
50, 000 2.0 0.5 0 0.0100 9, 850 10.74 0,00146
50, 000 3.5 0.5 0 0.0100 3, 600 6.14 0.00248
50, 0@9 5.0 0.5 0 0. 0100 1,680 4.29 0.00357
50, 000 2.0 0.5 0 0. 0625 7, 915 10.74 0.00158
50, 000 3.5 0.5 0 0. 0625 2, 562 6.13

0. 00277
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TABLE I {(contd.)

AXISYMMETRIC FLUTTER POINTS

Altitude M Mg g -%- A k KE}'

feet

50, 000 5.0 0.5 0 0. 0625 1, 252 4.29 0.00396
50, 000 | 2.0 0.5 0 0.1250 8,108 10.73  0.00156
50, 000 3.5 0.5 0 0. 1250 2,482 6,13  0.00279
50, 000 - 5.0 0.5 Y 0.1250 1,295 4,29 0.00391
50, 000 2.0 0.5 0.001 0.0625 59, 500 10.74 0.000805
50, 000 3.5 0.5 0.001 0.0625 44, 000 6.13 0.00107
50, 000 5.0 0.5 0.001 0.0625 66, 200 4,30 0.00105
50, 000 2.0 0.5 0.002 0.0625 640, 000 10.72  0.000364
50, 000 3.5 0.8 0.002 0.0625 405, 000 6.12 0.000516
50, 000 5,0 0.5 0.002 0.0625 582,000 4.27 0.000510
50, 000 3.5 0.1 0 0. 0625 6, 500 6.13 0.00205
50, 000 3.5 0.25 0O 0. 0625 3,790 6.14 0.00243
50, 000 3.5 0.8 0 0. 0625 3, 078 6.13  0.00261
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