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ABSTRACT 

Two s e r i e s  of panel flutter t e s t s  were  ca r r i ed  out in  the 

Je t  Propulsion Laboratory 's  12 inch super sonic wind tunnel, F la t  and 

slightly curved panels were  tested a t  Mach number 2. 81. 

The flat, rectangular panels were  designed to study two- 

dimensional flutter. They were  clamped a t  front and r e a r  with f r e e  

s ides  which extended into the boundary layer  a t  the s ides  of the tunnel. 

These panels fluttered in a two-dimensional mode which occurred  a t  a 

thickness rat io  approximately 1 5 pe r  cent different f rom the predictions 

of existing theory. One of the panels exhibited a three-dimensional 

"rocking" flutter which has not been observed o r  discussed before. A 

theory i s  developed for this  type of flutter. 

The slightly curved panels were  shallow circular  cylindrical 

shells with the generators  perpendicular to the flow direction. These  

panels were  a l l  of aspect  ra t io  one. It was found that the effect of 

curvature was destabilizing and that the effect of internal  pressurizat ion 

was stabilizing. 



Section 

Pz~tr~duetian 

I .  Flat Panels 

9. 1. Deocriptiazi of Pvi-ode1 

1. 2 ,  Irastrumerntatiian 

1 . 3 .  T e s t  Procedure 

l. 4. EqerZn-~ental Results 

5. Theor~ticaB Prediction of Three-Di~iearaeicpx~al 

Flutter 

1 .  Conclwsiaska and Discussion of Flat Pans1 Results 

2 ,  5ligh%;ly Cua.ved Panels 

2. 4.. Bescriptiom of 2va.odeL 

2. 3. Instrux~i@ntatio~k 

2. 3 .  Teat  Procaduse 

2 . ~ ; .  Zh~erimenta&Re;suSt~ 

2. 5. Theoretical %if ect ol the Cavity 

2 .  6. GoncSusionsr for Curved Panels 

References 

hppendH3c 

Tables 



Two -Dib-rcea%aiox~aa18 Flat, Clacrapcd Panel. 

Paga 

44 

FPt%$ter Boundaasies for Two-Dinzensio~aP, Flat P a n a I ~ .  44 

- 
vfind Tuwnal &tiadel for the Flat Panel Teat, .a s 

Flutter Arl~plPtudas for 0. OE 5" Flat Panels. 47 

?besonant Frequencies for a Flak Panel  6.8 153'' Thick. 5 0 

Rcsn~ung  Frequencies far a Flat Panel 0.0193" "Tk~ick. 5 1 

Xieso~and: Freq~eneie9 POF a Flat Panel Q. 0 % 51. " Thick. 5 2 

Phase Lag for Two-Dk~iensiona1. PPuO;%;er of Zdat, 53 
Clamped Panels. 

StaUc Pr ee sure DiffCorential Batween iviodal GadOy 54 
and Free Strearii. 

Gaordimee Systei~., lor TB~ree-Dkl~easfranaP Flutter of 5 5  
a Si"a1pPy - &uPpoktd~ Pa,-< :* 

"IC't~lba-Tcr~ Fourier Series Representation of g(z). 55 

3 l h r  ee-Dizxansisna1 &*1ueter Solution. 56 

kTju&er 9sundar y for ~h.s°es-Di~1zexa~if8na1 Case. 5 7 

4Y-iad T.tsm'~eB X'"ode% lor Curved Paanek Test. 5 9 

Curved PanaB, Asse~~ab ly ,  Inverted. 5"t. 



LIST G F  FIGURES Qcontd, ) 

Figure 

22 View of B/lodel Cavity, 

2 3  Typical Theoretical Flutter Boundary for GurveG 
Pawels. 

24 Fhtter -&mpUtudes %OF Slightly Curved Pazaale. 

26 E6veri-m&ea$a1 Flauttes- Bouwda~ie s for Slightly 
Curved Panels. 

27 Effect of Static Pressure Differential on the Flutter 
oP l-jlghtly Curved Panels. 

dl? Phase Lag  at Pdtialiora a;rP Flutter, Curved Paaaele. 

29 Phase Lag for Curved Pane1 %30. 1. 

30 Phase Lag for Curved Bane% No. 3. 

3 B P~zae7,e Lag for Curved Panel No. 4. 

32 Curved Panel Over a Closed Cavity. 

3 3 Curvad Panel in Initial and Deflected Positions. 

Page 

a 9 

60 

3 4 Cavity Effect on $ja&ural Frequencies of Curved Panels. T O  

35 Cavity Effect on Natural Frequencies of Curved Panale. 70 



~ E P u L , ~  
B y n a a i c  pressure pasxi-sieter , - - 
Speed sf so~snd in the fluid 

Speed of sound in the panel r J A a t s x i a l  

332 
Sending rigidity, "-- 

12(2 - d")  

i3;odulus of e*%asticiV of panel ~~aLeriaB. 

Frequency, cps 

See equation B 

See equation 1 

Panel t h i ~ b e s ~  

Identity rnagrix 

3 k  
Reduced freqtrency. 

Panel lens&; a l a ~  T - V  (in Lagrange's equations, 9nl.y) 

Panel length and width, see figures I 4  and 32. 

Alach  nun-A h e r  

Flutter ~ ~ ~ a t r i x  

Total ps e c s w  e sf iflow 

Static preaaurc sf flow 

Perturbation pre  &sure  

Generalized forces 



Kinetic ensr gy  

" IirZe 

Velocity in the fluid 

Potential energy 

'86oluir:s of the cavity under the panel 

Dyn5sfirfs pressure pssar~zeter, 8 $35 

Panel deflection, psr?itive in positive -gr directi~n 

Coordinate En s t r e a ~ ~ \ ~ d s e  diraction 

Cosrdiaaate nornial to plane 0% plate 

Coordinate in span~&se direction 

2ati.o of sgeciiic heats 

Static pressure differential asro s s  the panel, positive 
when the cavity is at a highel- greesure than free :,trearx 

Change in cavity voluri~e caused ay panel. deflection 

See equation I 

See equation 1 5  

Poiasan% ratio 

-9 - r nuid density 

-- 
2alazl density 

Phase hag 

,-- 
e'reqleenc y, radians per stxornld 



Panel blu%&en* is the self-excited oae i l l a t i~n  of a thin @hell at B 

rrteralarane v~thieh Is exposed to a flaw nearly parallel to if s surface. 

h has t~ecox~~e ixnportant in the past few years becaues missiles and 

spacecraft requir a ves y thin coverings. P'Euttar of the various 

gesaretricaf! shapeo invslared, under the various Loading and Ph@rj~;-~ah, 

effects, Seco~r,es a cox-qd.ex pro blaski. 

X gr @at deal of theoretical %vork has been done for panel PButter , 

but there; has been re'hstivsBy little aqa3simentsP worlr. The Elutter of 

buckled flat panels has been studied experiariealally by @isley (Ref, E l )  

and Sylve s t ep  (Ref. 2). Tests have been carried out; on a variety of 

Rat panel8 by Greenapon and Ccald~i-nam [Ref. 39, Sylvester and B&ez 

(Saf. 41, T~oclc and Fung (Ref. 51, and Tusvila and Presmekl (Ref. 6 ) .  

A cor~:prehensi.ora review of tlaesseetical and eqerinlsntal progsess in 

the field of panel flutter is given by Tung in referance Y e  

Two series of wind tunnel t e ~ t c  were carried out at the 

GaEbfornia Inotkttzta of %echnoPogy8s Jet Propulsion Laboratory 80 study 

two ~pecffic t y p e s  of panel flutter, The eesting was dons at a 2vfach 

n u ~ ~ i b e r  of 2. E k in the 12" supersonic  ad tunnel. e n s  series dealt 

d t b  flat, rectangular p;swel~ w11ich were rsseunted in such s way a9: to 

allow tw-&n:cn s % o d  flutter, id e.  flutter ~ e h  constant displac e r~en t  

acroes th.e span, X flexure arrangemcM was uoad to  rilinin~iza -mid- 

plane stress. The sther series dealt d t h  the ilutter of slightly curved 

panelo, as slmm in figures 19 and 213. 2 b t e  that t h e  gesnexa6:o.s~ of the 

cylinder are perpendicular to the flow. 



2 

Of grhniary interest in the t e s t s  were  the flutter boundaries, 

the fluttez. ~-~;odci; ixxvolwed, and. whether or mot there vraS 3 iors;? ol 

frequancy cuale sccnce, 

I .  Flat  Panebs 

T h e  f i r s t  szriee ol t e s t s  e m a  designed "L ostuC:,y t i e  two- 

di12~ensional flutter of flat paizels with cl;ax;?~ped edges and zero r:,er.-~Srane 

r4 stress (set; f igure  I ) ,  13.265 is ~ n e  af the sirnplie8t I -ypes of panel flt~tter, 

and provide.; a ease %&),era ex~er i r r~ent  can be compared with existing 

theory. The tBeora"%icaP side is well iznd@rstoo$ for 2~~rnck n u ~ n b e r s  ba- 

tween 2 anzd 5 because linear piston theory can be applied. 

pk 
.L he experiri.enta9 panels wer c rectangafas in  shape and were  

clamped at the leading edge, f ree  at t h e  sides and attached tee a flexus-e 

at the roar. The flexure V J ~ B  d e s i ~ n e d  to allsw ne?i"L%~er deflection k g o r  

rotatiiala off "e~a trailing edge, out allowed it to translate so as  to  reduce 

the nlel.Lb-s%ne :tress,  In essence, this flexuse actad a c  a weak linear 

spring in resisting transfation. 

Tks theory for this case has been worked out in d ~ $ a i l  by 

HoubssPt (Ref. E )  and h~ovcharn. (Wel.  9). 30th U B B ~  Linear piston theory 

far the a;lerodmaxnic forces and were able  to find exact solutions to the 

8taMIity problerz. Linear pistan tlxeorjr yields ari aerodpan~ig: pressure 

sf the form 

where wdx, t) i s  &ha panel displacead. u ? i ~ k t t .  



Woubisolt finds tlnat, for zero a-rie~nbrakie E$X-@ME,  flutter is 

controlled uy two variables A and gp. They are defined as 

~ j : l ega  
es is th~; panel, density and a, i s  the ?peed oi sepuad in $he 

fS 

i m  * pans1 rAiatcrial, 2 na critical value of .a at flutter is plotted in  Pigurs 
:I 

2 Because is g e n ~ r a U y  very  sr all at iluttcr, the value of I t 
B 

is ;2eually eaL<.,en $0 ae 6. "". i$or cla:;;pe& panels :%,a& :P, 52 $J s pi*~zit3d 

 pane?^. .*i3ii~olf points oust ti~st settinil [:a = 3 is rr;ivalent to 

" ''JJ (x. t )  in the aevo- r,egieetfng the "aerody~.sasr:ir, ~ r ~ p i n ~ ; ' '  t erm - - M 8$ 

dgnalr ic farce. 

& aad.i$ion. $O 'ch:: tv~s-dixl,ea::iorxa3 flutter & E ~ ; . c B ~ : ; u ~ ~  ~ Q ~ V C ,  m e  

of thr par.seL:; esd~ioited s G1re~-dit7~8~,~2101"na1 $yye of flatter. This flutter 

was ckarac3f.erized ay s rockiag r,,otion with a rlodal Hlse dowu; zhe center 

usi:lg l inear super sonic aersdynaiiaia: the0r;r. 

5- 1 

A $ C  panels were c-~sunted in a weage-shaped aeradyna:rshe frai:.e 

- - 
i.la$e of aPua;!in.iaaa~l (figurr, 3 ) .  iae fi:odel waa positkoncd acro 3s the 

canter sf Uxe re st saction (Pic;uro 4) and w a s  iso%a%ed against vibration 

-2-1 4"rs.i- -ght: pjJnst,eE ~,iiafl~ by '$"loatingH it on ruobezl ..;onat$. &he sr,odel was 

dezigi?ed s s  ?;hat, no reflected ~ " d % a c ~ ~  -$:raves bit it. 

F- 
k h e  cxperi:.- entzl panel wPao  ~ ~ ~ o w a t c d  aver a 3.12'' deep cavity in 

the frm:~e, tlm25 exposing $kc panel Po supersonic faow oa one a i d s  and 

y- . 
s t s p a n k  air on the other. h e  pa7i'leB extandad to -&thin 1 /2" of the wina 

tunnel P J ~ P P Y ,  which v ~ a s  appr~k~in?ate-'-ly the di spllacasis~t ;muadary layer 



t'Lzfeknass on &he walllo. Ee was hoped elhat this would give an a p p r ~ x i p ~ ~ a ~  

tion %s tw-dlrnernsfo~al flow e~vetr panel. A 3/32" 'venting gap 

@&ended along each edge csL the nasualing p a e l ,  se rdng  to eqana%bee the 

staeic pressure bstwsen the; cavfty aa~d the free S~X~E(~EUX-I. 

Each of ti?%@ pane18 was soldered iato a &re@-piace assembly 

including a p a e l ,  a front xn-nountiamg bask, axid a flamse - a11 inads: of half- 

hard ~ P ~ P S Q W  bras$ (figure 5). The flexure was EX-~achinsd from a solid bar. 

A saxface plate waa used trs join the pmeP asser).ib%y as-nd the aerss- 

d.ynax~~lc frijilria. This V J ~ B  done by inverting %he cos-cpponents, placing thein 

on the plate and k1hfwg the razounting tar and the a e x c t ~ e  to the riiodel. 

Vfbgatloa te3~t$ were carried out to detariziine the Is%~/saer natural 

fr@q~xeneias of the pa~xelhs. The resdte are given in Table 1, along ~ t h  

theoretical vahea from !Varbutft~a (Rd .  .I 4). Fair a g s e ~ x ~ ~ e a t  was f~ugld 

between the eqerirnantal and theoretical values for the tkvo-dixzewsicsm3. 

,modes. The eeccrnci frequency listed (the three-diirrensioz~aH "rockingtq 

mode) was higher everimantally than predicted by e&aeory. ThSe rll̂ say 

have been due to an initial 'Qd.s.~op'~ in Lkae panels, tibEcfP was a two- 

dfr~iensies~al deflection wl& a value of about $). OB Yg at kh8  center of &he 

pme%s. A deflection of .&ME; type can stifferil the panel ~ 4 t h  respect to 

8sme bench testing waa also done ts deterxzrfns the effect of the 

preseace of a finite cavity under the panel on the natural f r e q ~ e n c i e ~  af 

the paad. baing a bench &model (mt fie: ac4uaS1 d n d  turner 3zodel) it was 

found that a 1 /2" deep vented chamber on one side of a panel did have an 

effect an the order of one sr two cycles par ~dacond. 

1% was necessary to add a r~xechaieal stop fin the.? :no6e2 to  Bknit 

the translagion sf the flexures to 0, 0384"8. This  as done aNer several 
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runs in  the tunnel Bad aanbagad a flexure &te 2s the starting shock loads 

on the panel. The stop system C Q M S ~ S ~ ~ ~  bf two eccentric cams and an 

electric light system. The stops w@re rotated until contact was I K ~ I S L ~ B  

with $he flexuareu, closing an afectsira% circuit and lighting a bulb. Each 

ca m  was then backed of% until 0.004" clearance was obtained. This stop 

systei-n worked very well tCrourgkBout tho testing and prevented further 

damage to &he flexures. The electric light system was ~ a ~ n e c e e d  during 

the realzning of the t e s t s  to insure that the stoprs were not hitting the 

flexures. 

'4. 2. Pnstrurzzentatis~~a 

Pas~el di~placea~ents were raleaeured ~4th three inductance pick- 

ups equally ;t;paced along the centarkirre of the I-asdel. The pickups were 

marnPafactua.cd by Electroproducto, Ins. ob Chicago, and the carrier 

systean was especially developed for panel flutter testing by the 
r6e 

electronics laboratory at GALCIT . -4- 1'30 kilocycle carrier was used. 

The pickups were x~-iountad 0. 1 3 '! froxrz the hotton; surface of the panels 

and the is,otion of the braes panels in t%xa dield generated ay the! pickup 

caused a change in signal. No mechanical contact with the  panel was  

necessary. 

The signals f rom the pickups in  the ;TI.Q~B% were recorded tzsiag 

an Ar~zpex model EFR- I OOA tape recorder. An rBvl systexli was used SO 

that both static deflection (due to a pCi69ib16 pressure differential 

between cavity and free stream) and dynamic: deflections could be 

recorded. Also, a Technical Products harax-mazic analyzer with plotter 

w a s  used to prepare plots of the power spectral density of the panel's 

vibration, 

rot 
Graduate Aersnauti cal Lakmratebatf as, California Institute of Technology. 



3-nz Ad-Yes phase ix~eter was used to determine the phase shift 

between %ha three? pickup signale during r"Peo9ter. This  teet tar works oaa 

the aers-crss ging principle. 

Four e l e ~ t ~ ~ ~ , > * r a g i ~ e t ~  were s~iounted in the cavity 01: the Erame. 

U ~ i n a g  these ixnagnets, kt was gss eible to find ths resomnt lrequencies 

sf the panels during the prelluttar analysis, 1x1 order %a excile the bras@ 

panels this way, it was necessary to glua S S % ~ P B %  strips of 0.8 12" eoft 

iron on %he underside of each paxi~l. 

Pre8 8u$6 taps wehe installed il3 the ;sot&o;rx"a sf tihe; codty and on 

tha forward upper ~tzrface of the aerodymn;.i6 frwr1s, These tape 

allowad the n~csrni&oring 0oE the static pr e@ sur e diff exantial Setaveen rovit y 

and free streaz31. T h i ~  presrsure diffarantial is des ig~a t ed  by the s ~ I T A ~ ~ ~ P B ,  

A P  in t i ~ e  follow5ng discuooisars. 

One &hesa~,sesuple was mounted in the cavity nottonl and anoaer  

on $he underside of one oi t i h e  panels. ]It was isund %ha% the fro-?la and 

the panel reached the eanae operatirzg te~ngarature, d t l a  the  tertlgerature 

on ttze ira-na Zagsing by a b u t  five iA2inutes becaueje of the larger maos 

involved, 

1. 3,  Te s t  Procadurc. 

The Je$ PrspuEsion Laboratory' B 12'' super staxti c d n d  tuaqef woa  

a contfnucauss flow ttaanzsf witk vsriat3le geori~.etry aroa t  calibrated for 

discrete hcach nurnasrs. The t e s t  sec&fom$ %q!:.pas 9" high and 12" wide. 

Totah pressure and total tell-&peratuse: were the easily varied psrwz7-eters. 

A.IP QeotPwg was carried out a& ibiach rauxfiber 2. b l .  



The t es ta  were run by holding t h e  tsn~pesature on the rrwdeP 

constant and by raising the  total pressure in inclrewnents. The fol ladng 

gracedure was used: 

1. A panel of desired thichess vvae chosen. 

2. The panel assembly was bolted to the aaroclysra~~ic f r a ~ ~ i e .  

3.  The texr2pe;ratazrs st -~iounting was noted, 

1. The amount of droop a8 the center of the panel p m e  

maeasurad. (Thia was a good nxesjbezara of panell imper- 

fection. ) 

5. The flemre stops were set l t r ~  &flow only 0. 004'' deflection. 
I 

6. The skssw~bled a~-mdel was gut in the tunnel. 

3. The natural frequsmci.srj of the pa~l~3i ware n;casured [no 

flaw). 

8. Flow was established and stabilixod a$ "re lowest P t 

desired for the particular sequaDce 0% runs. 

9. The stagnation tefi-iperature was adjusted so that the nzodeE 

Oeiuperature was within - 4- h degree F, of &at at which the 

r~~aadel was assex-xibled. 

P 0. The root-mean- square voltage of the signal frcarxil each 

pick~p was *measured. 

kR 13.. ahe resonantlreque~~cieewelpefcisalndusin~khe~~~agmets. 

12. Five A*~linutes of signals frori~ the pickups were recorded. 

13. The total pjras sure was raised to the next valao and steps 

9 through 12 repeated. 
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Eventually a Pt setting was found where the amplitude of vibra- 

tion startad to incrsase suddenly. Data points were then taken at closer 

fncrers~ento in this region, The exact psE~at of  harp rise in response 

was noted. 

Alter %he panel? had started $0 fluttcr, Fastax moving pictures 

were iZ?&cen. These pictures helped in the identification of the flutter 

r11sdet. 

1.4. 

TWO tmsa of flutter were encountered during the tests. One wa@ 

-@;.so- din?ea~;i,og~ikI and the other was a three-dirrnensional type sf 12uttar 

with a nodal line down the center of the panel. The Patter type: was not 

considered before, beat P$ oecurred a$ a lower value of the parameter A 

than the two-~rtzensicsnsrl flutter, 

Every  panel which was t a  s%ed exhf bikd  Quttc:~. hn~plttudea sf 

pansf, motion as functions sf: the total presBure of the wind tunnel are 

shorn 6ri. figure 6 for both types of flutter and also Por a case where 

three -dknien@i.or~al flutter gradually faded into tw-dlz~enzsional ZPuttes, 

The test  reaults are shot-m in Tabla IL Each flutter point was 

obtaiiled by increasing Pt in the rnanner outlined in fne previous 

section, Each point represents the flutter of a particular panel as 

rrmunted on a particular day of running and is taken as the average of 

three or more sweeps through the flutter boundary. The spread of Pt 

at flutter for these sweeps was usually about 2 per cent. ViEaan total 

pressure was lowered in the tunnel, fPlztter subsided at the same point 

at which it had started. 
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The last case given, for Lh'z 0, 0'193" panel, is not to be trusted 

a s  highly as tha other cases, A s t a ~ c  pressure differential sufiiciant 

to L ~ J W  the panel in about 0.060" existed at the high value of Pt needed 

to flattar this panel, 

A The txvs-dimensional flutter occurred at values of --- 
4 

which 
a 

were about 35 per cent lower than those predicted for clarx:.ped two- 

di~eensional panels by Woubolt, lyigure '? shows the thicbeas ~ a t i o  

requijr~~6 to pr avant flutter a s  a function o.f d n d  tunnel static pressure, 

It is seen that these flutter pojilxts lie between the theoretical curve8 f o ~  

clamped and sinAp1.y. supported end cos%ditions. The f i r  ee-dlri~ensional 

A 
nutter occurred at values of in  the neighborhood of 3.0. 

3- 

Fraquency Eanrveye during, the approach 31: flutter failed to turn 

up any frequency coalescence3. for  either kind of flutter. 1s: cvaa p ~ % ~ i h ] i ~  

to folloas; the resonant frequencies in the p--ePlut%er region by using the 

magnet excitation system os by a harfi~eanic analysis of the panells 

response (sea Pigurea E; through 18). En sansc cases it was possible to 

fo12ow these Proqzzencies through the onset of flutter. In each canz, it 

w a s  easy  to see that the flutter occurred at one of the resonallb$ f reqen-  

eies. The ac:pliitudc of t h e  response a$ ithie frequency grew rapidly as 

But te r  started, coa~pjle%ePy dwarfing the  r ecpnse at the other Preqtenciea. 

Some phase angle data were obtained, although not as much as 

deeireti (only one pickup carrier sys t c~x  v~as  available for part of the  

test). The plaase Pay W (x) will be defincd 3y writing the ~llaplac~,;r~~,nt 

w(x, t] i n  the follow6ng way: 



Figure 12 F J ~ Q W S  the phase Pag W k %  for two-di~~ensiornal flutte?r. ,"ti$ 

points are for the 0.01 51 " and 0.01 5.3" panels. The thssretical curve 

is taken frts~la work iay Houbolt {Ref. 2 ) .  E s ~ e r i ~ q e n t a l l y ,  $h@ first pick- 

up (farthest eeps$r@=:) i~ rsrbitrariiiy given a phiha@ lag to f i t  the 

theoreticail curve. The largs change in phase lag occurs farther to the 

rear of the panel Ohan ea~esc t~d ,  bat the tedtali phase fag agrees we11. 

1% Fastax camera was used in several runs, and w a s  actually $be 

by vdhizh the three-dinaensiom1 flutter was first identified. 

The static pressure diElarentiaP between the cavity and the free 

stream xneasured for each run. There T U ~ S  nearly a lineax rebation- 

ship between this pressure differential and the total prss3snra at d i c b  

&a tunnel was run (as@ figure 13). The differential was quite anrall  in 

the PI range where ilutte;r was initiated lor the panela of 0.0 1 5" 

thicknag s. Other panel. ~1ountingz;e produced ~0~~3ewhat differeat gsre EZ sure 

relationships, l3ut general1h.g of the same type as shown in  thia figure. 

All runs were nzade with close control on &e nlodel tca~per&ea~e 

ira order to n ~ i ~ x i c ~ f z e  ~r~ounting effects. An d l s w n c a  of - + 1 degree I?. 

was made. X c%-nesk on the tempsrature effect prcavsd that the flaxpsre 

relieved thernxal stress so cffi%et=tively that a 1 5  degree change Pm 

ton;perafurs only chaaged the frequencies by 2 per cent. This survey 

was r-cade with the turnel running a% slightly lese than the nutter Pt. 

Hence, tea~iparaf;ur e eff ecto were virtually e%in;imated, 
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The effect of the ktsundary layes on ;the pans1 ha5 always Sean 08: 

some concern. In this tasting, the transition f r o i ~ ~  I=l;inar to "cu-buleat 

:munda~gr. Payer ~ce t l r r ed  on the panel, En order to check this effect, 

identical runs were made with (a) no *wundary layer trip, (5) with a trig 

sf No. 2 2 0  grit, and ( c )  ~ 5 t h  a trip made of ie single strand of 0. 050'' 

wire running a ~ r 0 8 8  the nose of the :-z!sde%, I$. was found that althseagh 

the No. 220 grit  snavad %he transition point forward on the psnef, three- 

dir12ensiaml f l u t t e r  occurred at przcisa;Ly the same P a s  wrBth no t r i p .  t 

The 0.050" wire trip was then used to give a greater aiiszouat caf disturb- 

ance and did cause a very thiclr, tur bufent boundary Layer to '3e initiated 

inArncdiately beknirld the wise. This did have an effect on the panel, 

delaying f l u a c r  until the tw-diniensional type occurred at a Bizher Ptw 

1,  5. - Theoretical Prediction sf Three-Dixxx@nslonaB, Flutter 

Theoretical flutter botandarir?~ for the thsee-dl;me~siomL case 

will be calculated using Lagranget s equatiosts and linear super ssnf c 

s r r o d p a ~ i i c  theory. Ackerat quasi- statis: aeradpanxlc theory will 

also b e  used for cor:;-:.parisow. 

-3.n atter~ript wan rLada  to solve the pr~tallen~ vhth clamped edge 

 ont ti lit ions inpZ; tihe aerod>inan;ic farces uecazie: very fnvoPved al~ebraf-  

cafPy. He:lce i t  -wda decided to use sir:rp%y- supportad edge con&%ions, 

and to concentrate attentlor+ on the cliff erenres ~e tween  twa-dfl~:ensianal 

and three-dlx-ensioilzal flluttor for tbs sh~-~-pEy- supported case as sho't-m 

schcniatically ina lirare 114, The vertical displacement w(x, z ,  t) is 

p08lkive in the u p m ~ d  direction, 

Fro.>-L Fastax pictures talcen during the flutter t e s t s ,  it was 

observed that "&@re was s nodal line dowg $ha, center of the panel at 
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I s  = --- 
2 " 

Far an a,pr~~~iz-&ate salution, the dcfltgceiom v&l% 'we taken 

6 8  

where 

nv x 
+,(x) = sin o r  x r 4, 

and 

Thsac functfon~ do no$ satisfy $ha plate $re@-edge Imcstandha~~.y conditions 

at z C and z 12, but they do satisfy the sinig%y+aupported ~ d g e  

conditions at x = O and x = * 

The kinetic ens,er gy of the plate is 

"4 

LI rorn su;a%l deflection plate ~ e o r y  [Ref. 10), the potential 
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The generalized forces are 

U sing Lagranget s equations 

d aL - - - -  J L  = Q, 
d t  ah ,  aa, 

where 

L T - V ,  

we obtaizx 

.is suniing that afi2(t) N ei ' t, wl~ere 3 n:ay be coxplex, we have 
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W e  wfPb k'irst solve the set  of aquzztions 3 using Ackeret quasi- 

static .kl%asry fa$ the aerodynar:.sic: pressear@, iust Oa get a feeling for 

the  problem. The pressure i s 

This will give no area-dimensional aerodynaaa-ic efiecte; however, as 

sfhoxm $02 tv~o~dix~x8hensioi2aB flutter, A c k ~ r e t  @X&QT y can give good 

reeualts at the rehtively ;Bow $requencies and high .Mach nurnbats w e  are 

csnrjide~.fng. %ha set of equations 5 becoras 

T 0 when m+n = even] 

-el 
2or the panels which were tested, (---I = 0.0555 and ?I = 0, 3. 

I, 
fj 

Equations -i are a set of linear homogerzesus alger~raic equations. For 

a noTt$tiviEbl solution for the an to exist, the deternzirasnt of the 



coefficierSs of an n-ust vanish. This leads to an eigenvaluz problem 

sf the for~'dl 

Det ( P -  AI) = 0 

where: P is a real  matrix. 

Experience with the case s f  two-dirnensiond flutter of flat 

panels Emaa shown that a iitur-mode solution yields an eigenvaleae only 1 

per cent different from the exact value. Hence, a four-mode ~olution 

(N = 4) was carried out for e h i ~  case. The 3urrougho 220 digital 

c o ~ ~ p u t e r  was used. 

It; was f ~ u n d  that for lov~ values of tho dynamic pressure para- 

rsieter w the eigenvalrte s \ are real. s . is raised, a critical 3' 3 

value i s  obtained where a pair of conjugate eorrxplax eigenvalues appear, 

indicatillg flutter. Three-din-11eszsiorraP flutter occur 8 at 

This cornpas e s  with the two-dinzensional ilutter boundary (obtained 

using Ackeret; theory) at w = 4.2. 9. The use of Ackeret theory hence 3 

provides no insight a s  to why the eqerix~xemtak three-dimensional flutter 

occurred at a lower value of w- than the tesro-din~ensional flutter. 
3. 

Let us now devote sear attention to a solution of the llutter equa- 

tions [i using linearized suporsonic aasodyna~~~ics. Any realistic study 

of this flutter should include a three -dir~kezm~isnaP aberodynzalrlic theory 

because the panel's aspect ratio is so srnaPS that r-~ioet of the panel lieu 

in the tip &~ach cones. The basic ideas for potential supersonic flow 

over an oscillating thin wing were set down by GarricEc and Rubinow 

(Zef, 1 5 1. Luke and St. John (Ref, 12) developed the forces OP). a pane]. 
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of finite -?an and infinite chord osciPParix7g ir: a periodic :panwi5e 

di  place-man&. W e  will u s e  the work of Luke and St. John and hence 

incur all of the assun~sptions sf linearized potential flow theory, 1. e. 

that the fluid is inviscid and irrowtional, and that disturbances at the 

panel are very s1xa.11. 

The upper and lower w a l s  of the test sectioal evere sufficiently 

fa-  Ers~n  the model that om ?*ef lec ted  waves hit it. EIowever, the side 

waP$a d o  affect the panel. T:e wi31 assume that they prevent C P O S ~  

flow at the edges of the panel. If, for the solution of the velocity 

potential, the partell is as~wnled to be extended outside the tunnel as 

~hrsvm in figure I 5 ,  the s y~-irnats?p is such ?hat thf ~3 wall condition i s  

sati.;fied (as in the *method sf i9s:agar; for subsonic flow). This leads 

naturally to the u s e  of a su~erpasiticpn of solutisrao for sinusaidal g(e) 

as developed by Luke and 5%. John. 

Let us define one period sf g$z) as 

W e  then have the Fourier cosine series 

Because of the c~nipla~ty 0% the aerodynamic forces and beeauee of 

the very rapid c~nvergence of this series, only twa term~-a~e are retained, 

The two Berm representation of g ( z )  is shorn in figure 16,  and it 

appears eatisfactory far our: purposes. The sat of equations 3 becorx-ie 



4 ?, 
mn 'P_ p(x,r,t)sinm c o s ~ + L  C O S ~  dxda ( 6 )  f ~ ~ 4 + + 4 ~ ~ - ~ ( ~ ~ ; ) ] - e s h r i 2 ~ } . m = - ~ / /  o o 1 2 ]  

5va Luke and St.  Johnq s work shows that for g(z) = cos the 

praesrare on the surface 1s of the P O ~ ~ P T L  

- 
j5 (*,t,t) = pfi (x) C O S  -- eiu)t 

L 

1 

3 urtherrriore, !x?.cause the problem is  linear, fiar ggz) a 

-7 L ene e dependence in the set  of equations 6 can bc integrated 

out $0 give 



f13% 
The: aqsess ion  / p,(x. ti oin T dx can be found in reference 9. 

1% is a little difficult 80 earact from t h i ~  work, ooing involvad in a 

Calerkin pracess and because of the US@ of non-din-:ensfona1 coordinates. 

However, one can arrive at the result that, for a displiracenten%t - - 
a1 W X  

w b ,  z ,  t )  = axJt) sin - Aaz 
C81- 

1 gisl 42 

where 

The rsm~aining constants are defimd irn t h s  Appesnax, 

The set  of equations '9 becsrxa 



where 

.%gain we have a systew~ of hoalogeneoias linear algebraic equa- 

tions which can be cast into an eigenvalaze problem with eigenvalue rh . 
The probleri~ is of the %orrn 

Det (P -A I )  = 0 , 

$1 
whare ekae cosaiplsx matrix P is a functioai of At, k, .jar - 

3' -e2 and 

2 1 .  

A dour-rnode solution was carried out on the IBWi. 7090 digital 

con-&puter for 

a?$ = 2.81 

In order to find neutrally stable solutions, i. e.  where d (and 

hence ) is real, the following -pr~)cedure is rased. Values of k 

and wi are aseuilied and the aigenvaluea 1 a r e  calculated. In 

geweral, the h are ( C C B ~ T A ~ ~ @ X ,  6 0  w is raised until a real h is 3 

found. This yields a point on the flutter boundary kvhich has values of 

k. w3, and associated with it. The results are !:hov,rn in  f igure  

17, Ht i s  interesting that for k 4 0. 3 there is; little variation in A 

and wj. Flutter occurs at wg = 5-1. G - 9 C. 2 over the range 

O k 4 0 . 3 .  
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For panels of the t y p e  used in the vdnd tunnel  test^, we have 

6 z = C5.0x20 psi 

Ib . sec 
2 

es = o. sss.i97a 
in 4 

T = 2110" R 

Ik. The values of (--) and p at flutter ior this special caoe can bc found 
4 1 
I 

*>y using the definitions oi h and w3. \ i /e have 

h 
Values of [---) and p are calculated for each point st-1 the flutter 

49 
bo~tlddtry with the r e s u l t s  shown in figure 18. Even at sea level 

pressures, flutter occurs at k 4 0. 32. 

The t e s t  panel which eAi5ited &%lree-din;es?sioaaH flutter in the 

h 
wind tunnel had a value of (-q) = 0.001 63. A simply- supported 

panel csE this ~ i e h e s s  ratio would flutter at k = 0. 10 and w = 54.65. 3 

.We can now cornpar e our r esralts: 

a) %wo-dirl;s.lansiod Acleeret theory 

b) Three-dik~lg3nsfonA Ackeset theory 

c) Three-dfnzaensionzal Pinear supsrsomic theory w- = 54. 65 
3 

These theorstfcol values are all for siniplgr- support@$ ends. Flutter 

was found experirjg~antally at w % 39. 0. 
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T:%en case a) i a  also worked out using Lagrangets equations f~ lut  

iplazluded in this work), 412 is fourz& that t h d  . ~ % I c  d i f f ~ r e n c ~  between a) 

orad b) is the t~stisrrg energy iravolved in the three-&rA-ieasional flutter. 

T h i ~  is seela to raise the flutter owf~ndary. The dir"ls;rearcc Setwacn 3 )  

and 6) lies only in the aerodynailiicu. Linear supersonic theory 

lower s the thr~e-dii~censiona1 ifaxtte-6. aolkmdary only slgklt ly P Y , o I ~ ~ ~ . ~ F ~ Z  

wigh Acker et theory. 

'I-a, e have not eqlained t he  occurrenca sf thraa-dir .eneioma% 

Iltmtha art a lower d-ynaa~~ic pressure than two-dir,,eneioual fBu%"c&r. This 

happened for only one of the three panels toatad. Ht i& poesfble that 

sonic imperf e e t i ~ n  $.a Bhi s p a ~ ~ e l  a;-; $@::-. sly, couple& \with U ~ C ~ O V J ? , @  cav i ty  

and .e~aPl effects, m-ade this panel n;orPe susceptible to rocking Iluttsr, 

1. 6. GsncPusions and Discussicen sf Resulk.; 

e-- a 
i ne Lhickx;es 6 z a t b  required to ?.reven$ two-dir tcnc;io-,all blutter 

of flat, u~astreased pamelis a$ Xscb ~rdrmz~-her 2 .  21 vms found. ajr e~zperiai-*sat 

to bc 15 par  cant higher than the prcdictiaan of ?-Jouboltgs thcosy. The 

phage ]lag 0% ~~~ panels during t~ipe9-dill~eurl.iiionah fkutte:~ asreed Pairly well 

v&%h $h%s t b o r y .  E o  coaleuc@nca of Irequencies u ~ a s  sk2seuved, l:ov.iegser, 

~ree-dixxiew~ionak type 5:Of flutter occurred us one of the 

panels. Thc a ~ e s r y  svhich was developed for this type of flutter  indicates 

tI1a.t it car- agpsar only at dyna~.~ic  press'c~re3 23: per cent I ~ i ~ h e r  than 

that needed to precipitate tqiio--aicAensiomaP f l u e t ~ r .  

The diff ercnces between exper fa..-ant and theory 12 ti$.-& have i3ecsa 

duc to a) $~.parfectlly clazz-ped e ~ d  csizditisn:, b)  the s l i $ ~ t  initial 

curvature in tbae panels c )  %He qi3.a%l staeic grss su re  dibfe~cntiial 

between cavity &rand free strexxr*, or d) the coxA-plica.e;s;d flow conditions 
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at %he. edges of the ganef. Th3 ckax~*~piny support EI% the ends was .i.eBa- 

tivary rf gid, howover, as ahstm by the ngrecn~ent uetwesn $he 

4wo-dr~aerasiozxaI xzatut-al frequencies and the thaoroticaf results of 

ilJarburtcan (Ref ,  14). The initial curvature ~-ziigAt have had am eflect 

similar to the 1niQfal curvat.ase which is studied in section 2 and is 

sh~gm'~ to u e  destabilizing. 6 ise afgect of a salaU atatis: presstare 

diiferesleid was r;tudied .;sy Eoek and E L  ng flXef. 5) for %he case oaf a 

%w~-d%~-r:en~iaaa8 pale1 wit31 a di$i@~ei,'st type oh illemre than that used 

laere. %bey found that snlal~ proesura dilfereneitals laad little sffact on 

the f1uteer boundaries. The faiemra @upport r@lii.veG tfGSae .x.aAnu?Sranc 

atsass wkich would ordinarily have been induced 22y the loading. 

Because %he psasBu-sPa differential was amaU during the ccrrrent teats, 

th9r effect %was prsbably sr'~^sal, also. The flow conditioxa at t h  edge of 

the panel pr e ~ e n t  an u&iown 'Lactor kin the e~~@ri rz ; an t s .  The inter - 
action 3etwean kmu~ldary Payer, r~zsdel. cavity and ~~ lov i i ng  panel edse is 

difficult to analyze. It is posaible that these edge conditions were 

responeible for the appearasace of the three-dinnIea2t;ional flutter at a 

d6UTe. low dpa ix~ lc  pree 

2. - Slightly Curved Panelis; 

Ths second series of wind tunnel. tests dealt witla the flutter of 

iaaltialry curved panelo. The panels were unstressed, v e r y  shaPlow, 

and of aspect ratio one. 

The purpose sf the tat;ts was to find the effect of c~rvatua'e OD 

flutter imundaries, 2P~~tPer ahodes and fsequerzcy coalcocencs. Data were  

also taken on the elfeet sf presourizinx the cavity under the panel. 



Soaxe irateresting aeorelicd results have heen given far slightly 

curved panells by Y a k s  and Xeijdell {Ref. 1 3). Using llineaa- skaallsw 

she91 theory and quasi- steady aerodyna~l-iics, they find that certain 

values of cuxtva%ur e are very destabilizing. A typical flutter boundary 

is s h o w  in figure 23. Lt was not pafssible to obtain cqerin~~satsl data 

in the sarxe farim as presented in this figure, so coi-apariacsn d t h  this 

theory 15 di$ficu%t, 

E ,  1. Description of %.~odef 

x~rode1 (figures 19, 21, and 1 2 )  was afrx-iast ideH;iQicaP to the 

snh; used ior flat panels. Again, the design was such that no reflected 

shock waves would hit the pailel or ~~aodcl .  

-1 

k our panel cur vat use^; were tested. Lz' we. define i v  as the 
0 

deflection at tZxe center of the panel ;jll~d E as the length s f  thc panel, 
W 

0 
the four curvatures were T; = O (noii.:inally flat), 0. 00'1, 0.0 1 3 .  and 

w . . 

0.020. It was felt that < = 0.007 was t h e  smallest nonzero curvature 

that could be rx~a~nufactzlred with precisian. Each of the paaneks had aD 

unsupported 1engtl-n of 9'" an nneupport;cd width of 9" a32 a thickzlass oi 

appraxi~liatel;r 9. 008". 

Jec,a-cae~ %kc pavsels weye to A e  f i rmly attached to a su-pportiag 

fra~x-e, all nnaterlals had to be identical to prevent tro~kbla ~ d t h  t h e s ~ m a l  

eqansion. h was decided to use spring cartridge brass fur the  panels; 

therefore ha l f -hrd  cartridge brass was used for the rest of t?ae sisdel .  

The square frames used to s q p o r t  the panels (tigure 20) were 

!>uilE; up froarl 5ar stock. They were ri-~achined into the proper radii sf 

curvature by a corrtotcls =iLliaag process. %n addition, 5301id. ;alock.e?: of 

a l u ~ m i n u ~ ~  were rr~achined into female s;;olds of the sarile radii. as the 

frames. Theae blocks served as i i o r ~ ~ s  for shaping the flat, sheete 
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The panels w(are attached to the fram@a by an oven soldering 

pmce ss. Tbay were pretinned araumrl the edges by electroplating 

asfdar onto the surface. Zhen they were placed in the hxiabc i,~ebds 

and bald to the curvature by a azzlafl quantity sf steel shot. A coating 

06 solder 0. 005" thick was built up on the frazi~8s by ixeati~lg therid in 

aa ovaa and f"bodng the solder on&o the hot ~ u ~ l a c e .  -4d%es cooling, the 

$rr%rzses were placed over the! panels ;a,rd t3-m as sembly  l3aked in an 

oven far several hours at r 5 0 O  3. A good joint was obtained. 

The cavity under thc pane% was r_iLade ai; tight f3;. the t e s t s  

:xz~z+eiy I J ~  seal in^., .ar+~an-i,' the edge:; i l E  th panel with wixso tunna4. wax. 

Tbz pyer sur L. diPfers~-itiai &P was csal~%rolled <luring 6hc. t e s t s  with the 

u: c o i  a vacr-iuri: P I J A J . ~ .  

F- k%ae na tura l  iraq'lenzcrec; od tha four par:dc were  :O~died urn the 

beach, En order to check the effect of the s,lodel cavity, the panel 

asaeniblies $?rere tested while inetalled h a  the rLrodel and alr,rs out k x l  

open air. The xirodel cavity was not made air tight for chi: te:;t.ing. 

lt was found tinat the cavity bad no significant effect orr any o i  the 

mttaral freguanciac except those oi the sln~plr;et i.raode for tach panel 

(the ..i:~d& wlt.!i ~ ~ d a P  lines around the adges of the panel anly]. This 

freqcency c3ulid not oe Esund when the panel n r  saxx'sly v a s  installed in 

v- 3 $he -~-~-rodeli. I ~ a e  rssufts of trse -vi!.n-a&ion essts are  presimtee? irk T'a2~le 

UI, T h e  freqt~eracies listed were  taken vdth the parL& asac?,rr bky renting 

in the model cavity, except those given Sox the  bilrh-,gle!jt ~ i i%dc of each 

m* panel. Inese were take:? v~itll the panel.af,se~:aly out in open air. 

Sonic sin-~p%e calculations v j s r s  dorm in order to clear up the 

eifect sf the cavity on the penck. This ivoxk is presurall;ed in tection 2. 5. 



X% $8 @$own that cavity under the parpol can greatly i n ~ ~ * e a ~ ~  the sirdiplest 

frequency. The higher x-~iode%; are not aflectad as xnueh. 

3[lt f e  desirable to h a w  same tl%aoreticoP frequencies to cgaxxlpare 

d~ the awerf~;32snta%. values given in Tabla IU. Thase caa be cePcu1ated 

deroim the V++QS& in ~ e c t i o n  2 .  5. ToMe XV PSt~3%0 the frequ~neies Par the 

ca~rved panels under the %s@u~~~ptiosm sf fa-eely-supported edges m d  m 

cavity ebf act. Because af t h ~  freely-supported edge conditions, tilase 

aticaP f requenacies aze all sa9:ewhat 1~weg: than tha eqeri~r~&ntaP 

value s. 

The vibration tests  far the curved panels ware done before ~S'PB 

f~xB1 ~lgnIfi:je~an~e sf % h ~  c a ~ t y  effect was kno%m. The panel?; wsre 

disoe se~~r~b led  begore a full e,qarixxhea%ak study of &he ES~SE?C% of a sealed 

c a d t y  could r)e carried out. 

The inr;$ruri~smta~on was identical t s  that used for the flat panel 

test@, Dseause the pickups were Iscated slightly clseer ta each other 

&an in the f lat panel rr~odel, a slight "beat" due bs interference was 

noticed in the pickup signal. This noise was only several 1 2 i t l U ~ 0 % t ~  

B"EIB and was eunainated Sy the xma of GEXB;%~P bra81 ~hie1ds 8r0t9ad the 

pickups Qsse figure 22%. 

2. 3. Te& Procadure 

The teeat procedure wa8 sixxiilar 80 t h 8  for flat panels; however, 

there were ns stops to adjust sr droop to rcieaacrre in .&%is case. The 

static pressure cfiffe~eatial aP had to be3 modtored continuously, A 

tebla~aiilce of - + 0.001 psi was allsvzed for all A P  settings. 
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2, 4. Eqerin13entaT. X e s d t s  

Each of the four panels fluttered. The flutter points are? given in  

Table V, Curves of the panel response at the center pichE1Bp are given 

$81 figures 24 and 25. In general, the panels were ahszcsstr r~:stionPess wp 

lo the f l u ~ e r  bozu~dary, where large amplibdo Butter occu~red, This 

was X X O ~  true for &ha on8 flat panel tested, hawever. The designation of 

a flutter 5sean2kry was ssrflewi,~a$ ar MLrary for this panel. h waB 

decided to define flutter a s  rk>otion for which the def%ec$i@rn at the ceuter 

of the panel had an pans value equal ts the thichess 0% the pBatc. 

The flutter fur these curved panels was rrauch xrxore viballerlt than. 

the flutter of the flat p a n ~ l s .  Also, evhen panels 3 and 8': were iriternaEBy 

presmriaed $0 &P = 0. 650 psi, the statkc airloads beca~i.e sufficiently 

high before flutter a~curred to cause a static dcacctisn. The front 

surface si t h e  panel woe pashed fn and to tfna rear, while the! back part 

of the parsel was d r a w  ~utxvard tav,'iprd the sir stream. 

A s  It was lowered, it was noticed that there wae a tendency 

Ias %he fl~l%;%er to persist at slightly lower values of P t1m.n at psA-fck it t 

had started. No data -were taken? on this phensn~enor*. A11 r e  suiats given 

here were taken a s  P was being raised. t 

The flutter boundaries are shown in figures 26 and 2.2. The 

initial curvature is destabilizing. Even a slight a~z~srzat sf initial 

curvature has a significant effect. There appears to be little difference 
W w 

caused by tile increase in curvature from 2 = 0.31 3 to 7-0 = 0-  520. 
L 

TFds Is particularly svidenf; in  figure 25.  The internal prassaricatisn 

is stabilizing and appeazs to %-eve a sirriilar efi'ect on each ol the panels 

Qi. e .  , the ,lopas of the curves i2 i igura LIT are app~ogr,ix::ate%-~~ the sadna). 



8acause of the large nurnbar .of closely spaced frequencies, it 

was found almost in~possibfe to follow the reaonaant frequenrciee sf the 

curvsd panels. The rx~agaeri;ic excitation system did not wark well and 

the brnriodc: analysis af turbulence rssponse was difiicult t~ss interprest. 

These two rneaods  carp-~pler;.:em%: each other and bath are needed 8;s 

gather aszy ~igsziffcaa frequency data. None will ;3a ~ e s e n t e d .  

P h a ~ e  angla data were obtained for panells 1, 3,  and 4. Figure 

28 akows the phase Bag 41 (x) far thase, panels just after the initiation 

of flutter, The panels ~ 4 t h  greater curvatu~t; have a greater arnount 

sf phaoe lag. Figures 29 through 39 give the ramairnder of t h e  phase 

b g  6a&a whiclri was taken at higher values au" P than at the flutter e 
boundary. Here  it is seen that raising Pt (and hence raising tl%e 

nioeter frequency) lowers the amlorunt of p h a s ~  lag for panela 3 and 4. 
w 

During the run of panel 2 (9 = 0.007). one of the pickup lines was cut L 

and aX% pkaea angla dab were Bast for that panel. 

'I'he u s e  sf spring brass for the panel rilateapial was forfunatas. 

The  panels were desle9lely fluttered far hours without any azsticeable 

dax-1-&age. 

3 .  5. Theoretical Efisct of the Cavity 

A sin-i~plc calculatian can be carried out to  detarrnlne the eflect 

of the closed cavity on the natural drequerrcies sf the curved panels. 

Consider the case where: the edges of the painel are "freely-suppor&ed". 

The cylindrical eoor&natc; system. is shsvax in ligrare 3 2 ,  The angular 

variable is 6 and the circular patlei covers an arc 0% angle 0. 

Gecause CPP the ralativeky low freyuenc y of panel vibration and 

the aa.i~al.1 ~ i z e  of the cavity, it can 'la@ assumed that the air trapped in 
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the cadty is in equibibriuxr~ at &"a tfcirs.ies. Tha cavity voPu-sr~a and 

pressure when the panel i e  undonected will be called V and pa, 
0 

saspe~ttvely. .After ~ H I B  panel b o  deflected Eo a pcagitfon w(x, 8, t ) ,  

these quantities uill be denoted by 5 9 &Yo and p + @ (see  
0 

figure 33). k cg us assume that $.he Q21arr::zcrdps11-ii~ process ~~1"sfch takes 

place in the air is adiabatic and raversfole. The preaseares for %he un- 

deflected an& tho deflacted panel are t h c ~  related by 

For irrsfiniteak~id vibrations, 

A'.' I I a 

The right baad side of equation 8 0 clan be expax::;ded to give 

It can be sh0.m &a% 10 t I ( (1,  the enange in voluriie is given 
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Retaining only the linear t e r m  in sciusfion 1 5 ,  we have 

The equation of ~.a-,otiesa which will be used Io r  the  shell is the? 

insdibsled Dsmel3a sqx~ation, wIxfc,Iz i a  particularly useful for this t y p e  of 

loading. (See reference I S  for a discussion of &his equation. 1 The 

deflection pattern sf this s ~ a s l l  segr~ient corrretjponde 80  that aE a cylinder 

with rilalxy ezir~~xr~farenti;af ~5-aves. T~BFB%OTB,  the use of a Donx~elbl tyrge 

of eq~xatfon is justffiod. 

4 
The syiilbol V-a i s  defined hy v - ~  V f ( x .  8.1) = I(x. 8.  t). The boundary 

conditions srr wfx, 9, ti) are 

w(x,O,+) = e ntr 9 i d  mnx sin - 
sin -x- 4' 



Tki3 deflection sat% d i e s  the Psrmdary conditioaa. @ ei$i-~er En or a 

is even, the pressure st&) = O and there is no cavity affect. In $his 

case, w(x, 8,  t) aatiafices equation 1 3 and is 8.n eigedtanctior, of the 

proble;n. Mowever, when n~ and n are both odd, there is a cavity 

effect. 

If a geaelral dEspbce~2a;ert of the  form 

- ,id+ mnx ' 
w ( x , ~ , * )  - sin - nn 8 

G C a,, sin - 9 

is asaurt-~ed, an approxir;~ake solution for the? natural breq~~encies can be 

obtained by using Galeskin's mefiod. The foBlsdng se t  sb equations 

ra;su1ta: 

I i C  m, n, and p ace all even 

0 if m , n ,  ov p i s  odd 
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E'or a shallow shell, we ziay assur~ie that R$ = jl. Equation 

15 &an  reduce^ to 

The condition adstemce of a nontrivial d i sp lace~~~en t  i a  &at the 

determimnt of' the s30efficke~ts must ara~d~h; 

A t ~ g ~ * n * r ~ d @  solution was carried sat using the =ode@ 1x1 = 1 ,  

n = 1, and rn = 1, m = 3, The: foUs\-dng avorage value$, corresponding 

ts the t es t  pasels, were used: 

The rssu8ts are shown in figures 34 and 35, Gurvas are dram for 

kfeo = 'i a$n%~~phere (corresponding to the bench tests)  and p = 9 / 2 0  
8 



atmosphere. MU1 cf the wind tun?el t es ts  were run at po < 1 / 2 0  

~%nloslpksa~e. 1% 68 appibr~nB: that f i e  a=lias@d cavity greatly fncreasao 

$he freqency of 8lu"l~pfeat z130do, B B P ~ C I B ~ % ~ ~ C B P  panels 'is"~it"sn ~ a ~ - i d %  

c.corvaS:ute. The effect on tihe ai~P;qe ior tl i  = 1 ,  = 3 is ~x~ueb  

~ ~ a 8 1 e r .  

The mode ci: = 3,  1% = 1 and Mgkez: rnsdea could be 

investigated for cavity effect; howevar, I t  can be seen %FB)ZZ the set  of 

equations 15 &at the cavity terxx bacon~2es omalllele colnrpared to the 

bending and stretching terrae far these nisdes. 

X t  can be esncBudsd that the s i ~ a p l a ~ t  r~;ode i e  greatly dfactad 

by &he c a ~ $ y ,  ht@xer odd ~ i o d s a  are &acted only sligbay and higher 

even a-xu;odes are not dfectad at all. The impartant pars.>~ieter s for the 

cavity efie3ct ars ths cavity static prensure and volurna. The force 

Po which results iron; the presence of the cavity varies a s  . Xf it is 
0 

desired to raduce the cavity 6;rg@ct, then it is necas@arg7 $0 u s e  a large 

f l . 5  volume 3~11der the t eoe  panel. ~ B P @ E ~ ~ J U I @  p OBIUE?~~~ 121~8% be adjusted 
0 

to ckosoly A~latch the free B ~ X B ~ X P I  static prg?~ ~ u r e  OP aE2e 1xint-a tmnea {to 

avoid a large otartfc P S ~ B B  sure differential acrasa the pwel) and so 3 t  

can not ba reduced for %he p u r p ~ ~ e  af rninin~iaing &he cavity effect. 

2% flutter celclalatfons bvcre carried aut using L%e ci:xipk cavity 

tl~eorgt developad here, It Z Y E % ~ ~ I ~  bs eqscted,  however, tihat %.he 

presence sf closed cavity vgoufd tend to etaabilfzbe a panel. This is 

Secaurse the pressuze Boading acts as a restoring spring force. 

Tu~viPa and PmresnelP (Ref. 6 )  eqerixx:alsatak%y invesG3ated the 

effect of clanging tho cavity size in a, series of flat panel tests. They 

tested flbsr-glass sanddeb panels witl. feawrhed cores Ha the 2>.4ach 
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n~-i*Abes range of 5 .  76 to 2,8'9. Three cavity depths wars; tried for a 

series of fiat panels which were a~psro&~-iaak@ly 2Qtp wide and 33" lsnz. 

A 1 /Z'l deep cavity was 90wd  to give a critical fBu1ta;er dyaaiiic 

pressure 40 per cent lower than that obtained with a 1 Ik2"  daep cavity. 

On the o ~ ~ e r  'mad, when tha cavity depth was 2erSucad to %ore% ( d t i ~  the 

panel touching the cavity bottorri), ns flutter was found, 

The theory diseuaged above does not @-lain the decrease in 

critical dyszr%l-ie preseure found by Tuovilga and Presnell as  their cavity 

dsplra decreased isom k 1/22" $0 f /2". H~wevar,  $he asg310nlpt%~n   at 

the air in, &he cavity 5s in eqasi13_oriuA is not valid i f  t l e  ~l%attcbe~r. eiee 

is ]Large enough for ~680nai~a~e phenox~~em to occur. 

2,6, ConcI~~logls f01 G U P V B ~  Panels 

The curved pansBe ahibi tad Barge a1ng1fituds flutter, tha onip8S- 

Nde  of which was of the order of the arch rise wo/L. Sew~ral  of the 

p;awePs deflected visibly under the static airloads before flutter occur red, 

1% was found that omall snic3uata OP initial curvature wQipa destabilizing 

and that fatesml pres suarization tvas stabilizing. 

Et was aLao l'owrd that &he c l e ~ e d  cavity under the panel. can 

afiect the natural freeqtmasacies of the pane%, particularly %hat of t&s 

sixnplest msds, -An ~ x p r e s  IICPII wad developed for the prezsure in %ha 

cavity which can be: aaeily included in f1utt.e~ ~alctzgations. Enlarging 

the cavity wise appeazs to be: a way sf raducing the sf%act of the cavity. 

The D-icadeil w e d  in the present t e a t s  was limited in a h @  becau@e sf the 

pcsesibility of bkockhng &ha flow in t?-e w+ad bprannet. Becatns&s! sf the very 

low static pressure in thc cavity duriag $ha t e ~ t s ,  the &lx=em curved 

panels were probably not greatly aflectsd; hawever, the flat panel with 

a closed cavity may have bean stabilized sorm;re%wkbat. 



The panels which were testsd were very shallow, but it. would 

be desiraS9e to test even sha9ilcrwer palzePs. It will  take eerar~xe care 

to make skzallowar panale because sf the close tolerances required. 
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The Poffs~ng definitions are necescsaary for the cJeterxi%imti~ra 

of the hinear ~ u p a r s o ~ G c  air icsrees in section 1. 5. They are essena- 

tially those defined by Luke and St. John (Ref. 10). The arzbecripts Fi 

have besa added for clarity. 



if (m +h) i s  odd 

t J  s - 1 s i o  2~~~ Ei,,.., = f r  , , ,  , ,  - ) r ( r m  r n  + r n  rnn 
r = I 

'rnnii = t [ - a r r ; { €  rmn c rnn --8 rmn -6 mn )+$i,(crmn4ni+'rs6r,d 
r = l  1 

r-3 ~ w o  ber~m5 have been taken in the GesseE functis~i, cxpansi~n 

usad by Luke and St. John (i. e. q = 2 in their naotatioxi). This is 

consistent with our use  sf I;;, = 1 , 3  and does not introduce .n~\acln 

;1 error. I aking anotlker herax in  the e ~ a n a i o n  (setting q e 3 )  would 

have increased the a::iount of 'work greatly. 
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TABLE f 

FREQUENCIES OF FLAT PANELS MOUNTED PN A4ODEL 

(No FLOv;) 

Eve*. E S , 9  cpa 48. b cpa 67.5  cps 69.0  cps 

Thsor. 26.2 c p ~  29. '7 ep" -*I "9 .6  cpo 

PmeB Na. 2, 0,831 539T 

Expe r . 311.0 c p ~  44.2 cpe 97,O cps 72.4 epe 

~ % l a t a ~ ~ ,  26.5 CPS ao. n cpB ...... 19.2, ag @pi3 

Pas1  No. 3, 0. 019334 

Z q e r .  27.5 cps 39.0 c p ~  66.0 cpa 87 .0  egs 

Theor. 32.9 cps 399.4 cpsji ..-a 9 0 . 0  cps 

The theoreticd value~s ape tdoen frcsrn %Va~buztoa (Ref. 14). 
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Fig, 1. Two-Dimensional, F la t ,  Clan-~ped Panel .  

F 2 Flu t te r  Boundaries for  Two -Dimensional, F l a t  Pane l s  
with Zero  bierAL1~rane S t r e s s ,  (Hou 3olt, Ref. 8 ) -  
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Fig. 3. Wind Tunnel Model for  the F la t  Pane l  Test.  
(Shown During Vibration Tes t s  on the Bench. ) 

Fig. 4. Installation of Model in  Wind Tunnel. 
(Flow f r o m  Left to Right. ) 



Fig. 5. Flat Panel Assembly. 
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Fig. 6. Flutter Amplitudes for 0.01 5" Flat Panels. 
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Fig. 7. Thickness Ratio Required to Prevent Flutter Versus 
W i n d  Tunnel Free-Stream Static Pressure .  Two- 
Dimensional Flutter of Flat  Panels, M = 2. 8 1 .  
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Fig. 8. Resonant Frequencies  for a Flat Panel  0. 0 1 5 1" Thick. 
Two-Dimensional Flutter.  0. 050" Diameter W i r e  
Boundary Layer  Trip. 



Fig. 9. Resonant Frequencies for a Flat Panel 0.0153" Thick. 
Two-Dimensional Flutter. 
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Fig. 10. Resonant Frequencies fof a Flat Panel 0.0193" Thick, 
Two-Dimensional Flutter. 



Fig. 1 1 .  Resonant Frequencies for a Flat Panel 0. 01 51" Thick. 
Three-Dimensional Flutter. 
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Fig. 12. Phase Lag for Two-Dimensional Flutter of Flat, 
Clamped Panels. 
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Fig. 1 3. Static Pressure Differential Between Model Cavity 
and Free Str earn. 
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F i g  1 - 2  Coordinate Systeri? fo r  Three-Diimensional F lu t te r  
of a Simply-Supported Panel.  

Fig. 15. Method ol Images. 

Fig. 16. Two-Terr~^11 F o u r i e r  Se r i e s  Representat ion of ~(z), 



Dynamic 
Pressure 54.9 

Parameter, 
W3 54.8 

Fig. 17. Three-Dimensional Flutter Solution. 
8, M r 2.81, - E 0.8555, 3 s  0 . 3 ,  
1 2  





Fig. 19. Wind Tunnel Model for  Curved Panel  Test .  
(Panel  No. 3 i s  Installed. The Discoloration 
on the Pane l  is f rom the Baking P r o c e s s  
Used in Mounting the Panel.  ) 

Fig. 20. Curved Panel  Assembly, Inverted. 



Fig.  2 1. Bottom View of Model. 

F ig .  22. View of Model Cavity. (Only One Pickup ~ n s t a l l e d )  
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Fig. 23. Typical Theoretical Flut ter  Youndary for Curved Panels.  
Yates and Zeijdel (Ref. 13 ). 
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F i g .  24, Flutter Amplitudes for Slightly Curved Panels. 
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Fig. 25. Flutter Amplitudes for Slightly Curved Panels, 



Fig. 26. Experimental Flutter Boundaries for Slightly 
Curved Panels. 



Fig .  27, Effect of Static Pressure  Differential on the Flutter 
of Slightly Curved Panels. 
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Fig. 28. Phase Lag at Initiation of Flutter, Curved Panels, 
A P  = 0, 
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Fig. 29. Phase Lag for Curved Panel No. 1, 2 0. 
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Fig.  30. Phase Lag for Curved Panel No. 3, 0.013 
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Fiz. 32. Curved  P a n e l  over  A Closed Cavity, 

Fig .  3 3 ,  Curved  P a n e l  i n  Init ial  and Deflected Posi t ions .  
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Fig. 3.3. Cavity Efi'ect on Natural  F r equenc i e s  of Curved 
Panels .  "SiLmplestl' Mode, (Predominant  T e r r , :  
- - 
L L I  - 1 , ?I = 1.  ) 

Tig. 35. Cavi ty  Effect  on Natural  Frequenc ies  of Curved 
Pane ls .  Mode with Predominant  T errAA: 1-c = 1 ,  n = 3 -  
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XI. GYkWDRPGU SWELLS WITH B O U N D M Y  LAYER 



The efiect of a boundary layem: on the f1ueees of a cylindrical 

&ell is satadied. The aeradymafc forces are devalarged fair .a ahell 

of idid&e lenga. The Muoadary Payer i a  idealized as an annular 

region of unilorm ~ubsoraic.: flow surrounding the ahafl. This bcaunhrgr 

Peysr f e of constarm& tEcknese, along the shell and has a constaaarl 

velocity di~tributiogl thr~ugh i f $  tb iche  s s. The ex&e?rnak Ejuper sonic 

flow i s  also taken ts be of miform vel~~bcity, ]resul$ing in a, '%tsppse3dH 

vslocity profile &rough f i s  boundary layar. Sssxiafl psrturbatlon theory 

is used in Cte: baund~ary Payer region and kinpar piston theory is used 

for the supersonic flow. 

3en order to replace za, physical borandary layer with an ideakisa- 

tion far  calculations* a procsdrnr~ is developed for choosing the 

bundzlr y layw parsn3eters of vslscity, pressure, etc. in a conaf sitennt 

way. 

The? forces which are found through this boundary Payer theory 

are c s ~ ~ p s r e d  witla tihow obtains8 using piston theory directly, h is 

found that the farces on a r ~ ~ s d e  &%& nxarty cfrcu12~ferentiaB waves are 

nnuch smallar than the forces given Sy piston theory - - a reduction in 

arnplitande of 95 per cent is possible. Phase changes also occur, The 

effect ob the Wunsd;ary layer on axis'$""a~matric modas is no% so great. 

Flutter bumrclaries are obtained ?Ear axis yrnrnetri6: flutter under 

several conditioi.88 and illustrate %Be effect sf bundary  Eayss thickness 

and structurd damping. 
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Pertkerbaticrr~ pressure, see equation 21 

Static pres aur es 

Cylinder radius 

Gas constant 

Radial coordinate 

Ternpsrabree 

mmens ion le~~  stresses ,  sacl? aquation 50 

Shell displacenzant in the x direction 

Velocity in the phy ktical boundary layer 

Upwash 

&;oaetant 

Axial coordinate 

Bassel function of %be second P&rmd 

r - R, distance from cylinder surface 

Shell displacement in the r &sectionb positive 
outward 

Interface dispPac ement. in the .S direction 

Constants, see equations 22 and 2 3 



Constants, sea eqivsations 29 and 2 5  
rnn 
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One of the masit lnterre8tirag az-id current topics in the field of 

panel n"luttas i s  the flutter sf cylindrical. r;hel%s, It has been found 

that the thin outer skin oB a niiscile will flutter when subjected to a 

super sonic flow sf sufficiant speed directed along the cylinder axis. 

A naz~i:bes of theories have been advanced for cylinder flutter, 

but recent wind tunnel t e s t s  have shovm 'tkaat they are too conservative; 

i. e .  , they require that ;;a cylirmder oe nlsds ttiffer than is actually 

nace s a a r  y to prevent flatter. 

Osre possible cause for the difference between a q ~ r i a !  ent and 

theory is the viscous uoundary layer, which has been neglected in the 

past, except for ths; work lsy 2v:iLes (Ref. 1). 1-Ie considered the case 

of ~ ~ a s a b l B  wave length traveling waves an an infinite cylinder. >'another 

po8 8ihhe source of error has bean the oux-~fs sion of zTkealbrane inertia 

forces in the cylinder eqbsaticsn~, Voss (Reg. 2 )  has studied the 

rAernDrana inertia  force^. W e  indicates that they sriay have a significant 

effect. 

P t  was decided to investigate the effect of the boundary layer by 

starting witls a simple theory. En this way it is possible to carry the 

paro'uler~i tlarough to the point where flutter boundaries are sbhined.  

&%ore refined theoris s rnay be dsveloped in "Lks iut:\g-rc;, 

The boundary layer is idealized as an annular regtoat of uraiforn 

subsonic flow surrounding the cylinder. Further~x~ora, it i a  assuxraed 

that the cylinder is infinitely long. In this way, the aer~dy~ibrnic 

forces resulting froirl a systea11 of standing wave3 on the cylinder aur- 

face can be found. .%lss, a procedure is developed for choosing the 



the paPametar s hi , q, TJ6 , which characterize the idealiaed 

boundary layer. 

Once the aerodynaxixie forces are obtained for an id ini te  

cylinder, these results are applied as an approximation to the forces 

on a cylinder of finite length. Galierkints method is used to set up the 

eigenvalue problem for the case ~f arxis1~"~~xr~etric flutter, The eibects 

sf ~~iasllbsane inertia, rriembrane stresses,  and structu1-a1 dankping 

are included. 

Flutter boundaries are presented for t h e  axisyrrtmetrfc flutter 

of a cylinder witla botaaadary Payer and structural dari"~piszg, aut no 

n ~ n ~ e r i c a l  vmrk is done on $ha effect of mieinbrane inertia and rrkernbrane 

stresses. 

1. Aerody~aax~~ic Forces a m  a Cylinder with an Idealisad Boundary Layer 

Consider an infinitely long cylinder of radius It ia~nsersed in a 

uniform supersonic flow along the cylinder axis. The boundary layer on 

the cylinder wil l  b~3 idealized as a subsonic layer of constant thickness 

8 and u n i f o r ~ ~  velocity U6, as shown in figure I .  

A sirrii1a.r case has been worked O U ~  for the steady Slow along an 

infinite axisyxnrnetrk 1mdy fry Dees Glenrs and Chang (Ref. 3 ) .  N e  d l 1  

consider the more general case ~ ~ h e f  e the cyPimder surface oscil%ates 

harrm.oaaically in  a ~inusoidal  standing wave pattern, with waves in both 

the axial and circundersntial directiono. 

The fluid flow in the boundary layer i s  assui-ned to be inviscid 

and i~arotatioaal. Srslarll perturbation theory will be used in &his region. 
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W i t h  $ha restriction that f i8btbance  s 510 &be cylinder wall must be 

small, t h e  linearized equation for the velocity potential within the 

boundary layer is 

3 
where >2 = l - MC. 

Linear piston theory will Ise used for the aesodpsrfiis. force on 

ehs outer surltaee of interface at r = R + 6 . 
1. 1. Surface Pressure! for a Sinusoidal Domwash Distribution - 
$"9s PKrilP ~ d v e  the proble~l  corresponding to the rtyswrasb 

When tihe aerodynanrric force corresponding to this upwash is found, the 

force resulting from a cylinder oscillcheion of the form 

m n x  
z (x, ~ , t )  = 2 (a,, sin - L 

+ b,, C05 n) cos n e eiut 
L 

m=l n=o 

caw be found by auperpooition. 

Using the tr;~nsforn~a&ion 

equation I becomes 



This equation has solutioras of the form 

where p2 = kg - 1' and where Jn(pq) and Y,(prl) are 33nnoi 

functions of the I s t  and 2nd kind. 

1% will. be ~ksown that the boundary conditions for the psobles;: can 

be satisfied '3gr the fol%ow-inz choice 0% +6 : 

where ?I1 and hz are constants %o be deterslined later and 

Returning to phy aical csordiakatee, 



W e  will use the physical variables x, r,  $, t fox the sen~aindes of the 

I. I . 1. Boundary @ondikiwns 

There are three banmdary conditions. They e l l  be applied at 

the nrrean positions of the cylinder wall  and the interface, At the wall, 

The as~urmgtioan of the existence of an intarlace i-inplies the 

separatiors of the fluid particles in the two flow regionis, 

It is also necessary that the presauxe be continuous across the 

interface. Linear piston theory is used at f i e  outer surface of the 

interface. 



Equations 5, 6, and 7 constitute the boundary conc3itiorns. They 

can be wit ten  in n-lore usable iisrn2 if equation 6 i s  used to eli~xinate 

Z frosxz equation "i W e  will then have two equations aqress ing bound- 

ary conations on +, and O P ~ B  equation giving 5 as a function of +, , 
If B ei t, than equation 6 becomes 

We rizay ~ollve E m  3? to get 

The integral is to be viewed as an integral of the csniplex variable W , 
with a complex constant yo which anrill be deterrzii~ned later. Since 

the eql ic i t  form of - 8'6 is known from equation 4, it can be seen that 4r 

the integrand is an atnal9ic function of liJ on the entire 4.' plane. 



The problem has been resolved to the solution c4P the dfiferen- 

tial equation 1 under the bnnda ry  conditions 5 and 'b 0. The interface 

displacement is given by equatfom 9. 

1. 3 . 2 .  Solution 

Boundary condition 5 requires that 

This is satisfied i f  we take 



and 

- - 
894~~ a 

where qo = 

Wa may now rewrite $ , ~edef ia ing the arbitrary cox%atan&s 

ill and B2. 

. mnx 
- L  7 Y,'(~;?J 

wo@Li e~dt cos 0 {e , [ J ~  (?, + 6, kn (py)- J-l J,, (yl $$)I $(x,r,e,t) = - 
M6 P I  Jn (pya) 

. mnx 
-eLL 

PzJ"' (pyo) 

Boundary condition 10 nlay now he applied. Subsfitutir~g +6  

fro~za eguagion 12 into aquaUr=~n 10, and cancelling a eoa:moe factor 

&V o$kf 
2 392, e cos n 8 ,  we obtain 



ha, {R + 6 )  
w1a.ere q = P 3%. . Seealrse of the Pinear independence of the 

*li X 
functions e 

-id- , axad B Us each sf the coefficients of 



These ~xprescfons for B1, D and can 5s simplified by 2 

eqa?it&ng $ha Bsssel Junctions in Taylor sar iaa  and keeping only BPae 

lainear terms. To do this, it is necessary to atsstnxrle &at 

nail;, S 
where S 3 7. Vqhen written out in fulh, these inequafitias 

Th i s  puts a csnditican an the boundary layer thickness ratis, reduced 

frequency and mrri5er 01 axial waver: aBLowad. 

After eqanding %he Bes se'd. functions;, recurrence ralatisns 

ar;rrong the Pdaactions and their derivatives are used. .Vie obtain 



1.1.. 3. Surface Pressure 

The pressure at the? cylinder walk is given by 



'O - 0 

'I" 
4- ' 

;oJp 

&- 

- 7 -  

g1-J f, 

I - 3% 
" -  
25 
;o 
LC- -- 



and 

1. 1.4, Interfacs DispBacenlent 

Let we now callculats the interface displcemsnt Efx, 8, t )  using 

aquation 9. Meer integration and much sHn1p2ificallosp, we have 

where 
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Sva t ion  16, which defines yo , can. be vgrittek~ as 

The East two Lern~s in S(x, 8,t) cancel when this oxpression for W, 

is used, leaving 

. mnx 

zfi,e,t) = "o' - eidi c0, 0 {[p,l mn w mn (26 )  2 us 

This eor~ipPatas the problem for the ease of s sfnezsoidal upwash dietri-  

bution. 

1. 2. Surface Pressures for a Systsr~i,.of StaadHng Vgaves 

We will. now find the surface grasoure $(x, R, 8, "6 at the cylinder 

wall for general systerci sf standing waves by using .;uqespssiticbn. 1x1 

the preceding sections it was shown that an upwash %v(x, 2 , 6 ,  t) = 

i 3 t  c o s n e s i a  xs-'VX 
%%lo e caused a presarare pgx, P, 8 ,  t]a = p*(x, r, 8, t). 

Because of the physical nature 0% the problerx, shifting "&a upwash by an 

L 
x distance of z;;; nisrely shifts Ule pressure field by the s a n e  amount. 

xa ;37P 
Wanca an upwash w(x,R, 6, t) = w e 

L i d t c o s n ~  ~ i n ~ ( x + ~ )  
0 

L 
generates a pressure ${ace r ,  8, t) = p*(x + - 2 ' r, e r  fil* 

If the deflection pattern is given as 

aD 8 rnn x 
t ( x , ~ , - i )  = C C a,, eidt cos n 9 sin 7 , 

me1 n=o 
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the upwash at the surface sf the shell is 

m m  aim IT The identity css = sin (- C Z) was used in the last equation. L 

The pressure corresponding to the upwash OF equation 27 f s 

therefore 

Xntsoducing the sxprearsisn for p*(w, R, e, t) f z ~ ~ i ,  equation 2 1, we have 

m 00 mrr x p(r,~,elt) = a,, eLdt eos n 0 t A, sin - L 
mnx I , ( 2 6 )  

m=\ n-.o ML 



and 

Equation 28 dltl provide tfse aersdgmanaic Eaa&ng to be used ia  

the cylinder flutter equations of Part i. 

The dirnenasionll; ss variables PmPl and Bnln are functions sf 

u6 es R 8 
in .n ,M,Mb.kt  . (-O-), and 

2. Choice of Parmetera for the 1deraliz~;ed Boundary Layer 

la order ta make use of the aerodymr~~ic forces of ths previous 

section, it i s  naces eary to develop a oche~na for replacing a physical 

bourtdar y layer with an appropriate idealized 'muaadargr layer.  At fir a t  

glance it might appear that this would be a hopelessly arbitrary 

procedura. h addition to the  fact that an idealized iaszxndary layer sE 

constant tkicIwess has been chosen to represent a gaoc-svhng boundas y 

Isyes,  a nuru~ber of paramegers must ba ch~sen, Although noelling can 

be done ia tihis thecar y to alluw boundary layer g r a d ,  it is possible to 

choose the idea1Hz;ed boundary layer parae~~.a&tsrs in a c s n s i ~ t e n t  way 

w&ch helps to ififmzimiee arebitrabrlmea s, 

Ail  016 the iolfowring work. i~ based on steady, flat plate Wundasy- 

layer theory. The small perturbations of kS, es , T6 , Us and pg 

are negligible in cofi~pariaon with the quaYikitie8 t h e ~ ~ ~ s e l v e s .  

For claritys assume that the physical problem has ;seer?, defined. 

A cylinder oi finite Pangth and fixed gaorr-etry is expessd to a supersta~c 
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Pkow of given kt, U, e , T and p. Consider the case where the ioundasy 

layer is turbulent: and where the ratio of boundary layer thickness to 

cybinder radius is amall enough that flat plate bokandarry layer theory 

can. oa used. A typical c r o s s  section of the cylinder is chosen ts 

represent the physical case. Let the boundary layer tkickstea~ at this 

cross section be called 'i, , Yvhere % is defined as the distance from 

&a cylinder surface at which fie flow is 99 per cent of free stream 

velocity, 

Far $he idealized boundary layer, the parralr,etsrs 6 U6 a es , 
9% , p6 , and 6 Y ~ U S ~  be found. Five relations arnong the six vari- 

ables can Sc; prescribed ueing various physical a r g u n ~ e n b ~  leaving only 

one independent variable. It is convenient to let be the independent 

variable and solve for the ofhers as functions of pi6. 

First of all, the equation of state and the isantropic speed of 

sound wi1X be uaed in both regions 

and 

For a steady soundary layer Yvhfich is thin and growing alowly we 

may take, according to reference 4, 
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A condition on U6 can be found by requiring $&a& the loss in 

volu~~e flow &rough the idealized boundary kayet be the same as the 

loss in volwxke flow through the actual boundary layer. 1l ws define: y 

as the disgance from the wislil and 16% v(y) be the ve1aciity distribution 

in the actual baundary layer, then 

It shsuld be noted that far the special ease U6 = 0 and e = 

eonatant, 6 becon-ies the fasiiliar &spbcenmanl boundary Payer thick- 

nsss. F o x  a turbulent; boundary layer on a flat plate, the velocity 

profile can be taken, according to reference 5, a a  

Prescribing a condition on the t@rnperaBu~a? in the boundary 

layer is dfPficulte There seema to i ~ e  no "averaging" law applicable to 

this case. Eat us take T6 to be equal to the adiabatic wall tempera- 

ture, the hottest temperature obtained in the physical boundary layer, 

For a turkwlent 'wundaary layer with recovery factor sf 6. E,9, 
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Taking T = 1.4, thi B gives 

' we have Solving for 7 

F Knowing 7 as a function of M and . w e  can rewrite 

equation 3-$a as 

The equation of state gives 

ALP parafi~eters have been deter~nined as functions of lbdi and hh6, 

4Cn sunLxmary, given a turbulent, thin, slowly growing boundary 

layer on a cylinder in a supersonic flow of h~iack number 29.i, we ;nay 

construct an idealized boundary layer through the following steps: 

' a) Arbitrarily choose a subsonic lvA6 



The effect of the choice of a : ~  can be steadied by canstrusting 

severs1 different idealf zed boundor y layers -to represexat the same 

physical case, This will be done in the next section, 

A s  soon as hi6 is chosen, the representation schex.:e is fixed. 

'vVhen data are given in the PoBlodng B B G ~ ~ B ~ S ~  for instance the flutter 

' w u n h r y  curves, the value 6 is held constam$ for a%E data points. 

F This is only one possible way 6 0  compare data at different 14B and 3. 
- 
S Jr40ro generally, M 6 might DB taken as a function oE 1 1  and x. 

3. @oarparison of Forces wit33 Linear Piston Theory 

Before using the boundary layer theory in 1El.atker equations, it 

i o  sf interest ts study file forces generated by thia theory and t o  

compare them srJltfa linear piston theory. Thla csar~parisesn i a particu- 

larly usefu3, because muela of t ae  research on cylinder fLtxtter has been 

carried out rasing Pinear piston theory. 1% also provides a check on the 

present results due to  the use of linear piston theory as the force at the 

iderface. 
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Given a c yllslder waPP Priicpkc enaent 

rnn x 
t = roeidt ros n sin T 9 

lmundary layer theory gives a auriace pressure as in eqrsation d l .  This 

nloy be rewritten as 

*oe  U2 eos n e ildt++J mnx p(x,O,t) = - '(dt+@zlsin mnx cos - + A,eL 
ML L 

-1 L , 0 6 1  

where rTan and ALm have been written in polar form as 

For a cylinder with no boundary Payer and the same wall displacas~~ent 

as above, piston theory gives 

$Ye can now co-ar~pare the surface for ce8 on a cylinder with and without 

a bowzdary layer, caaing equations 36 and 37. 

The constants A1 ,  AZ. and +2 could 'm written as 

R 6 '8 functions of ZTJ, n, k, ?bt6 k, f;, 3, T, and e6 however. using the -ec; 
results of the idealization sehenre, we can express them$. as functions 0 4  
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t h e  seven variables n--,a, hi, hi6, k, Z ,  an"* ' This i s  still such an 

inlposfng Pist sf variables that we will restrict our selves to the case 

where 

(Let U B  observe at this time that we are actually ~ a r r y i n g  one redundant 

variable. The axial wave length of the cylinder deflection pattern could 

basre been fully defined by using E a s  the wave length. In this way, nl 

would xmt have been needed. aowevez*, far cconverrf ernce, we d 1 l  consider 

L to be a, iixed length and use  the index nx ts indicate %he nnaxriisar of 

enss%a1 h l f  waves contained in that length. This approach is advantageous 

in the formulation sl the flutter problairix to be carried sue later. ) 

Wgi now laok at chabnga~) in the farces on %he shell1 as the 

F paraarketar s ni, nt, k, and are varied. The effect of the circu~-x~fer- 

eneial wave nawA'bar n is perbps  thrj si~~pl~98t. Ff g u r e ~  2, 3 ,  and 4 

8how that increasing the  nzam ber of circunx%s+r;nitia1 waves e E; sentially 

Enlten~ifia e the bauntiar y Payer thickne so effect, causing the same 

results for a thimer ooundary layer. These figures are given for 

ru = 3 .  Vihem nl i e  highar, increasing the flu:-ub@r of c%reur~~fsrenti&l 

waves has a ~izxi1a3.~ effect. T h e  reduction in arp:pPi%ude of the forces is 

very apparent for thz case n 22e 



Increasing tho axial wave nun~bar r r ~  also tends to increase 

the boundary layer effect, is seen in figtrras 5 and 6, Again, a 

Large reduction in forces is possible. The case shorn is Por a = 0, 

The role played by irequency is rather eoxa~plicatcd. Figures 

7, 8 ,  9, and 10 show that the bouaxdary Payer affect ia not as- l a r g e  at 

krighar frequencies as it ia at Pow frequsnciea. For this reatmn, the 

Soundary layer will probably have less effect on axioyxx~~neLric flutter 

&ban on flutter wd$h a-11an.y circus-if erendial waves, the latter ueuafly 

- 
6 In all cases above, it should be noted that a@ ---+ 0 ,  the 

P'orees isecarrie identieall with line3ar piston theory. Since piston theory 

was used at the outer surface of the interface, this i a  a reasonable 

resulk-. Ht i s  also psraaiirla to see that the piston theory dorces a t e  

8 recovered as 3 + 0 directly brol-z: eguation 36 srad the definieions 
- 

of r' and Amn. 6 
ETZD 

These constants are continanou~ Pdnctians of g. 
- 

8 - for a given idealization scheiae. then + G  also, and W 

As a result, equation 36 becarries identical with equation 37. 

F i n a l y ,  let us consider the s d f ~ c t  of the arbitrary c h ~ i c e  sf 

.Mi g .  Force, for severrill different i-s~odes are plotted in figlakes 1 9 and 

12. Unfortunately, varying A".& causes large chalngsa iw the forces 

for t k ~  eases vvhere xti = 10. 1% W;BS hoped that the boundary layer 

idealieatian achen-ie: would prevent %his, For TL-1 = 1 the rdjs~Hes look 
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better, however. In the next. section, flutter work will be  done for the 

aliasyni>~*netric case, n = 0. Ten modes will be used, i. e, r n  = I 

~arough 1 0. Hence, i t  is expected tls~t the flutter results will depend 

on the choice of I.iii8. 

4. e5.xisy~-~-~rraetri~ Flutter  ob a Finite Cylinder with Boundary Layer 

The aerodynamic forces developed in the previous sections are 

for an idinitely long cylinder. Let us consider the flutter of am un- 

stiffened cylinder of constant thickness and finite Zennga~ L and use 

the boundary layer theory a s  an approx i~~a t ion  to the aerodynaczie 

forces. 

0 &hare are 8evera.l possibl@ ways in which a cylinder x-iTay7 flutter. 

Let u5 consider only adsyrci~nctric flutter, Tho case of axlsyriiri-letfir= 

flutter sf a cylinder with no i3oundary layer has been solve2 .!y 

K r u x ~ h a a r  [P-eP. 6). He uses linear piston theory 10s: aergadyna~:~ieo 

and finds an exact solution sf the stability proble-m, Exis work provides 

seliaole flutter atpundaries for coal3parirson and his csr;ic,erat.s on the 

slun~ber of A-i~odes necessary Por convergence a r e  useful for the applica- 

tion of GaSerkin' P srieltkod. 

e will use Ti,.r:oshenkols equations of e q ~ i l i b r i u ~ ~ ~  (Ref. 7). 

These eeg?~ations are specialized to the case aP axisynx~etr ic  displace- 

rxienf s and inertial, oe~odymarr~ic, and structura% damping lor ces are 

added. Since har~ozzic casciljiatfans are considered, the structural 

dan-&ping %orce 55 taken as i g  times the elastic restoring force, 



The cylinder vviI.1 be assian~ed to be firee%y supported at x = 8 

and x = El. FOP 8x1 axf S Y Z K X T ~ ~ ~  P ~ C  displacerr-hect, the 4oundary 

condief ons are 

and 

Aseurr~e that e N e id t  and u eidt and let a prime denote 

diflorsntiattion with respect to x. Equations 38 and 39 Secsnne 



where 

K, = !-JZ e, h',' 
Eh 

K, = (I+L~>($- - tde (1-dz) ) 
EhR 

Zquations 42 and 4 3  with the boundary conditions ' : G  and s i b 1  

define the eigenvaltre pro'olerx-I. Pin approset~~ate solution will la@ done 

using Galorkin' s a-~etixxil. 

1- ,$ e m \ ~ v f l f  search for a neutrally stable solution, i. e. , a displace- 

ment whieb has a harp-aionic time dependence, Asrsurue 

id+ rnnx 
E(x,+) = C a,e sin -i- 

m=\ 

This series satisfies the b u n d a r y  cunditions for B(W, t). '~dheta it is 

substituted into the equation sf equilitsrium in the x diractiom, we 

have 



The particular solution to this equation is 

For the hoxriogeneous solution ta equatian there Ears two cases 

resulting frsrn the inclusion or txclusion of menibrane inertia effects: 

u = G, (t) x t G4 Ct) . 

kt is easily seen that the particular solution satisfies the boundary 

conditions and tile homogeneous solutions do not; therefore, ee;llation 

".$ gives $ha proper sslutibn for u(x, t). 

W e  now have faanctioams z(x, t) and u(x, t )  which satidy all 

boundary conditions and satisfy the equation oS equilibriunx in the x 

dir ecaion. 9 he equation of @quilibriurii in Lln@ ratdial direction, equation 
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-23, will now be satisfied approxiixaately. Inserting the series represen* 

tations for 2: and 88 into equation '13, and using t he  aerodynamic 

force ao develraped in equation 2 8 ,  we have 

The fune%ton (x) is merely the error involved in the approxirt.~atisrs 

of the df sglacenlents and is x2;inimized by requiring sag 

ewx ~ ( x )  sin T - x  = 0 



Y o iC (y-m) is  even) 

i'm = 1 2q.-mj(q+m> i f  (?tm) ' i s  odd I 

For the cage where riiarnbrane inertia is igiaored, the equations 

simplify $0 

%de are now at a point where we can proceed wit11 nusxte~~jb~al. 

W Q ~ Z C .  Let US neglect ri~a,-ribrans inertia and use equatfcr~ls 51. There 

are several ways that the eigenvalue pr~bler i i  can be forn~tslated; how- 

aver, we will define the eigenvalue as 



Equation 51 becsxas s 

1f the coefficients of the am are arranged in a rrratrix P, the condition 

that a non-grivlal solution exists bor the art is that 
L.. 

~~t (?-ICE) = 0 (54) 

Searching for elgemvalues i e  eonhe*st curmbersoixe when fht&er 

points for a specific shell at a standard altitude are desired, These ara 

6 14 indepenele~t variables in the problerr:. Zive of these, Ivi, 2di6 , k, (-1, R 
R 

and must be specified in ordor to calculate the acrodynar~ic terms. 

Values far three P ~ ~ O P ~ S  g, T x ,  and A, ~riust be chosen in  order to 

form the ri-atrix P. Standard altitude conditions set the values for e 

a d  a, and tha choice sb a copper she31 with given internal 2ressuriza- 

tion sets the values for 4, E, es, and Te. Thereiorc, a11 variables 

arc specified, and a solution for fron~ aquation 5% is 30% a true 

eigsnvalue unless it also satisfies eyaatisn 52. Because equation 52 is 

csx.plex, there are actually two constraining conditions. If YwYe write 

= h, t ih,, t i ~ e n  



Hn actual practice, the constraining eq~aations were rewrit$en, 

%f T and go are defined as 

thea equations 55 %nd 56 Secorii-ie 

For a &.sen selection of the othe=. 12 variables, k and A are varied 

until one of the eigenvalues fro.nA equation 5% also satisfies equatisare 

h 
57 and 51. This establishes a. flutter point. The critical value of (z) 
is found tl%s"ough the definition sf A as 



Caicuhationr% were  carried out on the IBM 7090 digital coxxiputer 

R 
for unpressurised copper cylinders with E 0. 5. The following 

constants were uaed: 

= 8. 5 

4 = 0 . 3 3  

Hb sec 
2 

e s  
= 0.0038333 

in 

A11 flutter Wmndariea vJere calcukated using I 0  r:iodes. Pt was felt 

that l ( a  :modes was, the raaximunr nun.~,Ser allowable because of the 

round-off error inharent in currently available eigenvslue su:>rou$inss 

for coiarplsx nlatrices. The s q a n s f ~ ~ s ,  of tke Dessel fianckions used 

earlier also becomes poorer as rx~ore ir-zades are taken (as r : Seccsaae~ 

larger). 

Tme curves of thickness ratio required to prevent flutter at sea 

lave% and 50,000 feet QLiguses 13 and ? 4) indicate that the mundar y 

layer is slightly destabilizinig. Evan a very thin Ssuandairsy layer has an 

F F effect; however, raising the thickness from - = C. 8623 to - = 6 ,  225  R R 
h 

causes little change. The ce>;,vergence is only fair at low values of 

as can be seen in coiszparison with the exact work of Krur~thasr.  Pt is 

nece ssaryr tr3 have such 8 2 3 ,parison available-because of the lack of 

convergence theorerr~s for Galerkia's ir~ctPPsd when applied t~ a 

nsn- self -ad joint pssblern such 8 s  this, 



Figure 15 shows the eifect sf structural da~ lp ing  in addition to 

a typical boundary layer. h is interesting to note that the bowdary 

Jlsyer is 8t;abilizfng when ~tsuceural damping is praiserst. h is rcalizad 

h 
Ulat the flutter boundaries for < 0.001 are not accurata because of 

poor convcr gancg;; l~awevex, they still reveal trends. 

The elfeet of the choice of hLg i s  shown in figure 16. The 

choice of f*ib = 0. 5 fur the cdculation of %he. flatter bounda~ies 

appearrs to have lad to a slightly higher thickness ratios than 111ight 

o bgaf ned wit11 a differ dnt elaof c e.  

Scsnxe oS the flutter points are given in Table P, The values o i  

-4 and k at flutter can be found in this table, 

5, Conclusions 

1%- has been fsund that a sixmplified boundary layer b s  a signifi- 

cant effect ~n the iorces developed on an osciP8akfng cylinder, This 

eE.fec% is especially gronoez~-lced for a2-;odees with T i I m Y  ~ireui~=ferentiiP% 

w=aves and at low frequencies. A case was giveax -where the iorce 

anxpllitudes were only 5 per cent as large as 42:'lrase given ~y linear 

pi stox2 theory. This may mean &at flutter with inany circuraf erential 

waves will occur at higher dynaz~v:liic pressures than cua-rent thaaries 

indicate. 

The SXuttsr b6)~txldarics which were calculated far axi sPrinletric 

flutter are not greatly different from the  flutter 'wundariecl s:~tained 

v~ith no bspxnbry layer, The results indicate that, when str9nctuxaP 

di3?cLping bs present, the b u n d n r y  layas is stabilizing. 
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368 is  possible that the choice of hiis for &is sk~31plified a e s r y  

could be fixed by a inlatching process with a ruorc exact h u n d r y  layer 

theory. 

It should be zxslationed &amt the case of a two~dfmensioxzal f l a t  

plate Pnritk bauradary layer has also been worked OU%. The resuld;~ are 

sfn3ilar .T;s those presented Rare. The equatioas for prc,r,sure and inter- 

face d6 sphc  arfient for the $'f~vo-din*~ensiorn1 flat plate may be aatained 

R. 
flesffn~ %he cylinder equatioris by taking n c 8 and letting -+ en, 

Cylinder flutter irrzany eir@um%erksn$.ial waves f s of sufficient 

interest that flutter boundaries be calculated for this case in. the 

near future. 
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TABLE 1 

AnSPMMETWG FLUTTER POINTS 

0 2. O 0.5 8 0 11, QZQ 9.34 0.00285 

6 2%. 5 0.  5 0 0 3,910 5 .33  0.00494 

9 ,850  to ,  a4 o, 0014s 

3,600 6 . 4  0.00248 
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TABLE l (~g~atdr ) 
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Fig. 3, Effect of Circumferential Waves on Force Phase 
Angles, 



degrees 

0 

Fig. 4. Effect of Circumferential Waves for Very Thin 
Boundary Layer. (Enlargement of Origin in Fig, 3, ) 



Fig .  5. Effect of Axial  W a v e s  on Force  Amplitudes. 



Fig. 6 .  Effect of Axial Waves on Force Phase Angles. 



- 

I - 

C + I I I I i 

0 0.02 0.04 0.06 0.08 0.1 0 0.1 2 
B - 
R 

Fig .  7 .  Effect of Frequency on F o r c e  A ~ l z ~ l i t u d e s .  Many 
Circul-fiferential Waves (11 = 2 2). 
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Zifect of Frequency on Force Phase Angles. Many 
Circun-,ferential Waves (n = 221. 
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Fig. 9, Effect of Frequency on Force Amplitudes. 

Axisymmetric Case (n r 0). 



120 

100 

$2 * 
degrees 

80 

60 . I I I I 

0 0.02 0.04 0.06 - 0.08 0.10 0.12 
6 - 
R 

Fig. 10. Effect of Frequency on Force Phase Angles. 
Axisymmetric Case (n = 0). 



M8 
Fig,  1 1 ,  Effect of the Choice of M, on Force Amplitudes. 

k = 6 . 0  
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Fig.  12. Effect of the Choice of R16 on Force Phase Angles, 

k = 6.0 



Fig. 13, Thickness Ratio Required to Prevent Flutter for a 
Copper Cylinder a2 Sea Level, R / L  = 0. 5, 
M, = 0. 5. 



Fig. 14. Thickness Ratio Required to Prevent Flutter for a 
Copper Cylinder at 50,000 feet. R / L  = 0. 5 ,  
M6 "0.5. 
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Fig. 15. Effect of Structural Damping in Addition to a Typical 
Boundary Layer. 50,000 Feet. M 0. 5. 



Fig. 16. Effect of the Choice of Me on a Typical Flutter 
Point. 


