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ABSTRACT

~This study consists of an attempt to understand the mechanism
'whereby the wind causes the growth of waves in watsr, A simgle géo-
metrical modsl is suggested to describe, in part, the turbul ent flow
of air over a sinusoidal surface, Ths model permits £he calcﬁlatian
of the m&gnituda of thet component of air pressure which is responm
sible for wave growth. Interpreting the model as a rough picture of
a separation phenomencn permits the calculation of thse magnitude of
that component of surface shear which Also contributes tb wave growth,
Pressures computed from the modsl coineide reasonably,wali,With'SOme
measured in wind tunnsl tests using solid test-models,

| As a preliminary to the applicétion of the model to ﬁatsr sur-
faces, = generai wave-growth equation is developed under the condition
that winds extend over only a finite region of space, Usé of this
growth‘équation, together with a condition limiting:the wave=height
(obtained ffom the theory of a single-frequency Wave‘system), leads
tb an encouraging comparison between the predictions of the model
gnd observations on the growth of water waves éver a*@ide }&ngs of
experimental conditions,

Bffects limiting wave growth in multiplenfrequenéy'systems

are considered briefly, and a result is obtainsad which describss

one such effect,
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How the wind makes waves in water has never been satisfaotori}y
- explained. Observations of wave characteristics date from the{days of
Leonardo da Vinoi,_who ?eported an apparent incresass in waveflength of
ocean waves with distance of wave travel, In the last few years quite
accurate semiQempirioal relations have been developed which’felate wave -
height and length to wind speed, fetch (distance from beginning of the
storm to the point of observation), and duration (1). with‘theselrela-
tions the waves resulting from eny given storm may be predicted; of,
conversely, if the waves only are observed, the position and‘étfength
of'the storm which produced them may be determined, even though the
waves may have traveled through a long region of calm since leaving the
storm area, But such relations give no clear understanding of the inter-
action between wind and weter,
| Why'should such a problem still exist, with all the abilities
- of modern phys;cs and the accomplishments of modern serodynamics? The
natﬁre of the préblem can be understood from the'simplést picture of
wﬁtgr waves and alr motion., For the two dimensional cése, with the y-
axis pointing vertically upwards and the x-axis lying alongAtha undism
turbed water surface, gravity waves of small amplitude arebadequatély
represented by (Cf. Ref. 2, p. 363) i‘
4= acCes k(x ~Ct) ey
vhere .7 is the height of the surface, measured paralleivto the y -
axis, and wave length and speed are related by ‘ |

kC?= g = the acceleration of gravity  (2)
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Beneath the surface of the wave the motion of the water particles
- at eny point is described by the x and y components of velecity, which
are, respectively, |
uiakCekgCasK(X~Cf) o (3)
V= akCer?5/n Kix-ct) _ - (4)
If a variable air pressure applied at the surface (thus alnérmal stress)
is to do wnrk‘on the wave system, the pressure must be 180°’éut of phase
with the outward normal component of water particle velocity at the
surface. For small amplitude waves, the normal'component 6f velocity
may be set equal to the y component, given by eq. (4). ' Thus the vériable
part of the air pressure must be 90° out of phase with the suffacevshape.
| An analysis of the air motion is given in Section III, where it is
shown that fof pure potential flow the variable part of the air pressure
‘is in phase with the surface shape, Thus if the air is moving in potenw
tial flow over the wave surface, variations in air pressure'cannbt cause
wave-grcﬁfh.

Shear fopces applied at the surface might do work on the wave
sysfem (Cf. Ref., 2, p. 629), This possibility is analyzed in Section III,
Shear forces of the right phase exist for air in potenﬁial flow, and if
the motion of the water immediately below the surface is 1aminar; work
could be done on the wave system. However, the resulting éhear fofce
depends linearly upon wave smplitude, snd if this is the only force
present, wave growth would be exponential, Sueh growth rates are not
observed, B

Thus an ldealized picture of air and water moticﬁ completely fails

to describe the phenomenon of wave growth in a wind, It is'possible to



understand then why the problem is still unsolved. Only recently have
; non-ideal‘fluid motions (e.g. turbulent motion) been éarefully investim
gated. Even now only a very little bit is known of this extremely com-
plex field, |

‘Using some early results on non-ideal fluid motion, Jeffreys, in
1925 (3)quggested a mechanism to explain wave growth, He based his
idea on analogies with two results, First, the motion of air around a
sphere placed in an air stream was observed to be non-potential behind
the sphere., The pressure on the back of the sphere was»foﬁnd to be
less than it would have ﬁeen had potential motion been followed. Thus
the sphere experienced a drag force, Second, the pressure on a flat
plate held at an sngle to an air stream was found to be propértional to
that angle, From these results Jeffreys reasoned that the motion behind
a wave crest is not potential motion, but such that the pfessure on the
front (weather) slope of the crest is greater than that on fhe rear (1ee)
slopé. Further, the variation of pressure over ths surféce must go as
the slope of the surface. Thus the variable part of the air pressure,

according to Jeffreys' idea, is

—c)R2L |
ap =sp(w-c) of (5)
= density of the ai
where Ag msity o e air
W = speed of the wind
§ = arbitrary constent (the "sheltering coefficient™)

Actually, there is no reason to believe that there is any similarity
between air flow around a flat plate held in an air stroam end air flow

over a wavy surface, Thus Jeffreys was probably not jusfified in using
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this analogy as a reason for selecting the fenn-ggl in his pressure
.law, A more reasonable way to approach his result is as follows:
Certainly the pressure must be proportional to the dynamic pressure
of the wind relative to the wave shape, thus 2 (W - 0)2. It is
reasonable ﬁo suppose that there is some break-down of poténtiil flow
behind the crests, and fhs resulting pressure distribution undoﬁbtedly
has a componeﬁt 90° out of phase with the wave shape., Aléo, the magni—
“tude ofrthis component must depend on the size of the wave, The simplest
mathematical expression which is 90° out of phase with a sine wave and
is proportional to the size of the sine wave is its derivative, Thus the
pressure is proportional to /ED(W'- c)? ;g?. Inclusion of an‘arbitrary
constant is reasonable in the hope that many of’the unknown factors
may bebthus disposed of, and the result is the simplest Possible expla=
.natioﬁ of wave growth, Indeed, in 1925 it was probably the only reasone
eble explanation. Unfortunately, the predictions of this idea do not
agree wifh observations, First, the pressure depends linearly upon
wave amplitude, Thus the resulting wave growth is expéﬁential in time.
As mentioned eaflier, this does not agree with observations, 3Second,
rJeffreys evaluated the constant, s, by measuring the smallesf wind
which would maintain waves against viscosity, and measuring the wave
length of the waves so maintained. (Cf. Ref. 2, ppa. 623;625 for the
relations involved;) The resulting wvalue of s found Sy him end others
is 8= 0,27, If this valuve is used for large waves, for instence at
sea in a storm, the wave growth is at least ten times faster than

observed,

Although today the picture is far from complete, enough additional
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informetion is available to make important improvements in Jeffreys’
- preliminary idea.

Recently another, and completely different, wave-growth.meohanism
has been suggested by Carl Eckart (4). The motion of air in afstorm
is far from regular, Many local pressure fluctuations occur, and seem
to move with the meen air velocity in their vicinity until they disappeara
Zckart has anélyzed the response of the sea surface to such éressure
fluctuation and found that a wave pattern is produced whose spectrum
appears similar to that observed, Increase in wave height:is a result
of the addition of waves arising from various pressure fluctuations, or
Pgusts", Thus the rate of wave growth depends upon the correiafioﬁ
améng gusts, There is no direct emplification of wave height; thet is,
the existence‘of a wave does not result in any local pressure variation
‘which causes that same wave to grow still further, Thus there is a
distinct difference between this theory of Eckart and that of Jeffreys.
Unfortunately, preliminary measurements of the strength of such pressure
fluctuations‘indicate that wave growth from such a cause will proceed at
about 1/10 of the observed rates

The present study is principally concerned with fhe description
and analysis of a model of air motion over a sinusoidal surface. Thus
it might be considersd an extension of Jeffreys' idea, However, béfore
this matter is considered, a preliminary result is obtained. The author
was unable to find in the literature the solution to the problém of the
response of a water surface to a sinusoidai pressure.appiied over a
limited region of space, Since both storms and oceans:are fiﬁite ih

extent, it is felt that such a result should be obtained for the analysis



of the affect of wind on water., The next section of this paper is de=
“voted to that problem,

Since a growth mechenism can only give'half the description of
water waves, a portion of this paper is devoted to considexfatiop of
effects 1imiting wave growth. Only very preliminary results are obtained
. for this part of the problems The understanding of growth-limiting mecha=
nisms is a different and perhaps even more complex problem th@ the under=

standing of growth mechenisms,
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II, RESPCNSE TC A TRAVELING DISTURBANCE,

In explaining wave growth in a wind two types of forces ﬁill be
‘considered, These are normal pressure and tengential shear applied at
the surface. These forces will be periodic, with a period equal to that
of the water waves. The magnitude of the forces will depend upon the
emplitude and wave length of the water waves, and the velocity of the
wind, Thus it is necessary to determine the growth rate of waves in the
pressnce of a traveling periodic disturbance of éither nérﬁal pressure or
tangential shear when the extent of the disturbance is limited in»épace,
i.e, limited to the region over which the wind is blowing, The basis
of the.method‘used to solve this problem is given by Ref, 2,»p.'396.

A, Forces Normal to the Surface, Consider first the application

‘of 'a normal pressure given by
_/54=/q,éﬁasKZTX'~tth) for 0< t and ~D<£ x< 0
| (8)
and /6:.57 otherwise,
The response to such a function will be computed by a Green's function
method, Buppose an initial pressure impulse applied at the surface and
having a value Cos kx per unit length causes oscillations wherein the
water surface is given by the real part of
. t. ’
7= f(k)Cos kx-e“7 , (7)
vhere T %= kg, Then the response to a & -function impulse applied at
the point x = < is
) S : ,
LT
p=—[fk)e " Cos kix-=)dk (8)
since :

S(x—o<) = 5= [ Cos k(X=x) dk ()
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The particular surface pressure under consideration (sqs. (8) )
can be théught of as a set of infinitesimal §~function impulses
of width dx applied at intervals of time dt, Thus at the point x =
end the time t = & , the magnitude of the applied impulse is -
dp = po Cos(Kx-~wt)dxdz L (10)

for o« eand ‘C in the stipulated range. The cumulative effect of
such impulses &t the point x and the time % is given by the in'begral

:ﬁ_ /[D[ Lr[-t—’z:) ,_k(x ) e—tk(x o()J

C4Te 94

| -[e S wt) *‘(Ka( wz)] dl docdT (11)
The correct form for (k) obtained from Ref. (2), pp. 11 and 415,- ﬁas

been introduced into this expression,

7((«):_;;%/?"— )

‘where (3, = density of the water. Integrating first o#er o and then

over T gives

l:/:’o Ld‘f th ~L(K"k)D
-4.779:? J(E‘ez {]fe' /=

L(K <)
ik ,_(E+K)D STt Ckx g (EHR) D
* e (K + K) )'—é(w+7‘)‘ ’+(e —L'(K+k)~
. (KX /__e‘{(K""K)D e ‘(L()—G")i'/ K
€ T(E-k) ((w~T) }d .(15)
Making the substitutions
dk =2/3) odor V o/ = {f
(14)
RD=N xw?9=F  wt=5
and assuming,first, Kq = w’ , : (.15)

permits the remaining integral to be written as
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2
/{el_{g (-ab ﬁy){/_e——z(/ 4 )N)

7= 277‘/09 oF (/+«1)(/-¢12)
vv‘[ ; W 7 . ¢ . Z/V
L - T | iy (b - T
(14 )(1+*) ((“1)(/1“71)
_,,(7 /é_’l-b- ¢ég)[/ 61(/*:4?/&/) J
(-9 )(1=2f2) } q

(16)
The first, third and fourth terms of this integral contain a.éparent
singularities, and thus these terms will make the most important contri-
butions to the result, In comparison with them, the secdnd‘ term may be
neglected, The first term of the integral may be exprsssed as the sum
of four integralﬂs. Call the first of these 1, eand make the substi’tu—

tion z =y - 1. Then
o [ht £ (2°r22+1)]

=~ [ € '
4 “_/ (z+2)* Z i v (xn)

Important contributions to the integral, for large values of f (1 €s
a wave train many wave-lengths long), occur in the reglon of 2 = 0,
Therefore a negligible error will be introduced by neglecting the
variation of z in the termm (z + 2)2 and writing the exponent as

i ‘(‘f‘- b + 2fz), Finally, extension of the lower limit of integration
to- oo may be justified by the same argument, and the integral is
approximately

F-5) ) zifFz
J; _ﬂ_/-é—e ( )/ez' _.O.fé.

= (18)

-0
The singular behavior of this integral is due to the fact' J(v:ha'b it
represents only a part of the complete expression'bf ecj. (16); The.
complete expression has no singulerities, as may be verified by writing

out the exponential terms as gines and dosines and taking limits, Thus
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in order to svaluste the integral term by term using contour integration,
" the 'principal parts of singular integrals must be taken, and the singue
larities must be left on the same side of the contour in all the inte=

grals, The result for 11 is

. L(f-b) 4+ for £3>0
- for £f< 0

(192)

In the same manner the other three integrals of the first term are

approximated by

i LAF—/yj +for £ >~N ,
1, .l ;—F (19b)
—~ for f< -3
e i({+é) +for f > =1b/2 |
13 ~ =+ —Z’_"‘ e (19¢)
_ f<~bf2
© ((F+D + for f>—b/2 - N
1 ~* T;’}e (¥+E) (194)
4 f<=Db/2=N

The complete term is then I = 1 - 12 - 13 + 14. The third term may

be handled in exactly similar manner, giving

L(‘F-f-b) +for f£>0
leflg— { (208)
~ for £<0
. N) (#for £ > =X
JZ gi_mea(f+b+2 ) ( 20b)
2 ~for f<aN
T L(,c+b) +for £ > -1b/2
~for f <=-1b/2
(f+b42N) (+for £ >N «b/f2
3, x+Tte (20d)

~for f£< =N a-b/2

where the complete term is J = Jl -dg = J5 + J4.' The only difference



found in the fourth term is the exist
point z = 0, whereas single poles wer
third terms. However the principal v

be obtained, and the results are

ance of a double pole at the
e encountered in the first and

alues of the integrals may still

: (- (¢ for £<O0
le_ﬁrfe"( ) | (21a)
~for £>0
L(b £) (¥+for  £< b/2
L, = ~+T($-£ (21b)
- for £ > b/2
{(b-f) (+Tor f< X ,
L, *T(f+N)e (21¢)
- for £f> =N
S(b-€)(+for £ < <N + b/2
L, 2t T (F-2+0)e" , (21a)
-for £ > <N + b/2
where the complete term is L = L1 - L2 - L5 + L4. The complets express

sion for the surface is approximately the real part of
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+J+L
g 57 (149

7= (22)

This expression turns out to have seven different values in seven

different regions, as follows (taking real parts)

Region 1, £ < =N = b/?2
n =0 (23a)
Region 2, =W =b/2 <f< N |
“"—475_:—3 [Cos(F+b)+2Cos (f+b+N)] (23b)
Region 3. -N %f < =N -b/2
= ® (Cos(f+b) +3Cos (#-b)
1 i (250)

+a(++N)Sin(£-6)]



Region 4, =N - b/2 <f< -b/2

7:-;/_%[Cos (f—b)*Cos(#,tb)—ZbS/n(f—b)]  (234)

Region 5, =b/2< £< 0

= —423 [Cos(F-b)+2Cos(F+b)-2bSin (#é)] (230)

Region 6, 0 < £< b/2

:'427[—4@5(1‘—!7)* (4 ~2b)Sin (f—b)J - Y(ZSf)

Region 7, b/2< f _

7: 0 . (23g)
Iﬁ is»tacitly assumed that N > b, The situation when this is not
true will be‘treated later, Thé description of the surface at the
- boundary poiﬁts of the regions cannot bs obtained by thevmsthod Just
described. However other methods are available for obtaining approxi-
ﬁate solﬁtions near these points, Such solutions indipate that the
emplitudes of the oscillations given above as straight linés in x (or
f)rand shomn in fig. 1 are joined by smooth curves at the boundaries
~of the regions. The rounding effect of these curves extandé over a few
wave lengths, Therefore, for N and b large the straight lines describe
the complete solution adequately, and nc dseper undérstanding of fhe
problem cen be gained by careful attention to the special solutions in
the vieinity of the boundary points. Therefore the methods of obtaining
such solutions, and a detailed descriptioh of the resulté will not be
given here, |

Consideration should now be given to the meaning of the solutions
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Just obt#ined. vThe first two terms of the solutions in regions 2, 3,
’ 4, end 5, and the first term in region 6 have smplitudes which do not
vary with either £ or b (i,e. spaée or time)., Such terms represent
the transient parts of the solution, as may be verified by inﬁroducing
en exponential damping term in the original expression; that is,'sub-
stitute exp (i 0= p)(t -T) for exp 17 (t -T) in eq.(11)s The term
exp (-pt) will come through as a factor in the transient terﬁs listed
above, but will cancel out of the remaining terms in the 1imit of
small p. Therefore it is the remaining terms‘which are'oflchiaflinte-
rest, The amplitudes of the oscillations in these remaining termé
are lisfed below together with the regions over which they afevapéli-
cable. The expressions have been rewritten in terms of x (feteh) and
t (duration). The amplitudes ars also shown in fig, 1,
Region I, x <= D (includes Regions 1 and 2)
»Ampiitude =0

. €
Region 11, - D< x<~— z"%i— (includes Region 3)

. Ak
Amplitude = ~ (x+ D)
o9
wt . o ' :
Region III, DY ok <0 (includes Regions 4 and 5)

Amplitude = --/—bi—-— wt
Rl

2

; wt . ST
Region IV, 0 < x< S5 (includes Region 6)

Amplitude = ;‘;v% {—L-g_—i—_——K)()

Region V. -"ffai< Kx (includes Region 7)

Amplitude = O
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It was pointed out sarlier that the tacit assumption ¥ > b was
made, For the fegions I through V listed above this assumbtion can
be relaxed to N >1b/2, However there is no difficult? in obtaining
the soiution when this assumption does not hold. The amplitudgs of
the non-transient part for N = b/2 and for N < b/2 are shown in fig. 2.

fhe various regions of wave development shown can be labeled in
the traditional manner, Thus region II is the region of "fetch-limited"
growth; region IIT is the region of "durationw=limited" growth; and
region IV is the region of propagation into the area of calm, Another
well known result is to be found in this solution, It will be remem=
bered that the applied pressure has the form of Cos (f - b) (eq. (6) ).
The non~transient part of the resulting surface waves have the form
Sin (£ = b) (eq. (23) ). Thus the necessary préssure-to-surface phase
relation exists, a relation pointed out by Lamb and othérs (2).

It was assumed (eq. (15) ) that Kg ~w? 1r this,assuhption ism
dropﬁed,'that is, if pressures are applied which dovnot advance at
the same speed as gravity waves of equal wave length, ; solution may
still be obtained, However, the solution is trivial, and consists of
nothing more than a progressing surface deformafion with a,mégnifude
-apﬁroximately equal to the hydrostatic head corresponding to the applied
pressure, with some transient terms, | |

To complete the discussion of the solution it shéuld be mentioned
that certain possibly large contributions to the intégral of eqg. (16)
have been omitted. These are the contributions near the points of
stationary phase of the exponentials in the integrana.: It these-terms

are evaluated it will be found that they contribute terms such'asvthosa
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erising from the applicatién of a local impulse (Cf. Ref, 2, sec, 239 =
2405, Such terms do not contribute to the coherent wave pattern which
is now>of interest,

The variation in amplitude of the waves resulting from a4£raveling
prsssﬁre disturbance is open to an interesting interpretation, Notice
that for the step function type of pressure distribution'here enalyzed,
the effect of sudden variations in the amplitude of the pressure moves
across the wave system at group vslocity. Thus, starting at'the’down-
wind origin of the pressure distribution (at x = -D) the wave ampli-
tudes inecrease linsarly from O %o potut/?falg over the intérvalgﬁ X =
(C/Z)t, For deep-water gravity waves the group velocity is ‘

| U= ¢/2 o (24)
Waves leaving the pressure region at the upwind end (at‘x = 0) decrease
in‘amplitude from pou)t/ZA&,g to 0 over an interval of ﬁhé,same length,
It ié reasonable to extend this to say that any variation in amélitude
of aéplied pressure will cause an effect on the amplitﬁde of the wave
system which moves across the wave system at group veloecity, Thus the
total wave-amplitude at any point (x, t) is the sum of allv"éffects"
‘which, traveling at the group velocity of the wave, arrive at the spatial
point x at the time t, The magnitude of such an "effect" is (w/2g, g)
times the pressure at its point of origin. This,expianation can be
expressed by an equation relating the wave-amplitude, a (x,t) to the

amplitude of the applied pressure, p, (x',t'). Thus

+ ~ .
c?(x,t):z‘;:gf/%(x-lftjt—-’b)dt - (28)
o
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This equation certainly explains the results of the application
of a step-function type of pressure distribution as analyzed in this
Section, On the basis of the interpretation given above, it will be
assumea to apply to all types of pressure distributions.

The result cen be expressed in a more useful form, Thus, make

(j‘:X’“Ut ‘ .
@:‘L‘—t } (26)

the substitutions v

in eq. (25)s The resulting integrand does not contain t explicitly,

The expression reads

t R
_a(y»rUth)éZ;.:g//g(g+U,@,,3)dﬂ o (27)

This may be differentisted partially with respsct to t yielding

(22) =z px8)= U3+ (38), (@

. 5 .
Separation into conditions of duration-limited growth (§ﬁ§'= 0) and
fetch=limited growth (g%; = 0) is an obvious result of this expression,

B, Forcés‘Tangent to the Surface, TBarlier in this section it was

pointed out that two types of forces are to be‘considered iﬁ explaining

‘ wa&e growth in a wind, These are normal pressures andrtangential shear,
So far the discussion has been of normal pressures only; ‘However, simie-
ler results are obtained from considerations of tangéntial shear, The
results differ in two ways, both of which can be seenkeasily from Ref. 2,
pp. 629=-830, First, the waves which grow from the application of peri=
cdic tangential shear forces applied to the surface‘are in phase with

the forces, whereas the waves are 90° out of phase with normal pressures,
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Second, since viscosity must be considered in order to explain energy

. transfer by shear foreces, viscous losses are present. Of course, to
meke a realistic picture, viscous losses should have been included

with the consideration of the effect of normal pressures, However;
with justification and conditions to be presented later, #iscﬂus losses
will be omitted from the present problem, Thus, if so‘is the émplitude

of the shear force (per unit area), eq. (28) can be modified to read

V32, +(3) =gl Rove o] o

That the amplitude of the shear force can be included in thé'growth
equation in the same manner as the amplitude of normal pressure is
jﬁstified in the following manner, The enalysis uses the results of
Sections 349 and 350 of Ref. 2. Under the assumption that applied
. normal force is 2ero (note that since the theory being used here is
linear, this assumption only simplifies the subsequent caléulations,
but.doeérnot limit the results, since effects of normal forces may be
added into the linear theory at any point) the applied tangential force,
s, is given by‘eq. (3), Sec. 350(2) as

2
in  (nee2vki)eo?— 4K

s o
T N+ 2vVK*~ 22 Km | (30)

The number n appears in the factor exp (ikx = nt) of tﬁe expression

giving the surface shape (i.e. 2q. (9), sec. 349 (2)). For the present
case, assume n =05 - i, whers F<< T . Except i‘of very minute wavem
lengths, the number vV k2/0~  (thus also Vim/o~) is very small, Then

eqs (30) reduces, epproximately, to

5 3_/%_2‘:7(,34—2ka) B (31)
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with the surface shape given by
» = aoe'gtCos (kx—aot) ' (32)
Suppose the applied tangential force is written in the form |
s = s,Cos k(x-Ct) _ kﬁ' (33)

and the surface shape is written as in eq. (1)

b =aClos k(x-C%t)
Then egs, (31) and (32) imply

TE 2R T

-2V k%Q ‘ _ | (34)

The second term on the right-hand side of this equation‘represents the
viscous loss, Thus the size of the ratio o

1vkaf, o/ ks,
determines the importance of viscous losses in the present problem.
"The origin of taﬁgential forces is considered in the next section where
it is sthn that ’

So= 7.7-10" "/ W/ (2 VTK )

In the c,g.s, system of units

V= 0,01 cm.z/%ee,

g = 103 cm./%ec.g

fo

(G = 0.00125 gm./om.3

1.0 gm./'cm.3

and the ratio is approximately

| 5108 83/2/ A 2w
where A = 27r/k, the wave-length of the wﬁves. For.wavéé to be consi=-
dered in this study the value of a/)l ranges between-b.oos énd 0.07,

Using a value near the upper limit of this range as a conservative esti-
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mate, the ratiq becémas

5 105/ A}/2 w2
In the range of short wave—lengths, €aga ;lG?lOs cm. , wind speeds
must be of the order of 103 cm./see or greater to make this rgtio
small, Certainly the range of conditions wherein the ratio is iarge is
not negligible, However, it is not the purpose of this §tﬁdy to meke
a complete aﬁalysis of all factors affecting wave growth,’bﬁt rather
to propose a model or air flow over a wave and to make a preliminary
analysis of the predictions of suech a model, ﬁith‘such‘alpurpose in
view, little extra understanding would be gained from the added
mathematical complications involved in including the effectsvdf.
viscous losses, Thus, realizing that the results must be incorrect
for small wiﬁds and small wave-lengths, the viscous term will be dropped
from eq. (34). (Generally, P, S,3 Cf. part D, Sec,III,)

. The resulting expression gives the change with time of the ampl i
tude oflﬁn igfinite wave train in response to a periodic shear force
applied over an infinite range of space. Suppose such a shear force
is applied only for a short interval of time, dt. Then from egs, (1),
"(53), and (34) the resulting surface deformation is

dp = (0°s./2p,9) It Cos K(x-Ct) | (55)
This result is formally identical with eq. (7), with £(k) similar %o
that given in eq. (12), except that P, has been'replaced by s, and the
factor 1 is missing. The remaining analysis could be carried through
with shear forces just as it was done with normel pressﬁrés, end the
only change in the result would be that the resulting(surface form is

in phase with the applied forces instead of 90° out of phase as in the



case of hcrmal pressures,

It must be pointed out.that the results of Lamb,'on which the
- foregoing analysis was based, were obtained wnder the assumptién that
wave amplitudes are small compared to ény other eharacteristidflength
arising in the problem. Cne such length is the thickness of the layer
| _of vorticity at the surface (the boundary layer);Vzléﬁﬂ—, The results
will be of little value in the present study if they must be restricted
to waves with amplitudes small compared to fhis thickness., A complete
solution of the non-linear problem of finite amplitude wavés in a rota=
tional fluid will not be attempted here., However, it will-be‘shown that
the boundary layer thickness is independent of wave amplitudé; Since
the effect of shear forces applied at the surface is transmitted into
the fluid by the vorticity in this boumdary lajer, such a result implies
"that the effect of shear foreces is independent of amplitude, .Another
wﬁy to state this argument is as follows;r Suppose thefe exists'a
system of finite emplitude waves. Suppose a shear force is applied at
the surface of these waves which is of the right phase andeavealength
to create a small incraemental wave of the sams wave-léngth and phase as
the original finite amplitude wave, The resulting vorticity will be
approximately the same as if the original wave did not exisﬁ. This .
means that the incremental wave will be the same as if the surface
were originally flat, But this is to say that wave growth due to shear
forece will proceed at the same rate with waves of finite amplitude as it
does for infinitesimal. waves,. |

The desired result will be shown for an incompressible fluid moving

in two dimensions. Suppose the vector velocity at any point and time,
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(=, Vs t), is given by

%zib{""ﬁ?}' (36)
Assume the fluid motion is approximately irrotational, or that
= : 37
%= g,+ %, S (37)
where %o satisfies
Vx4, =0 | | (38)
and &, K 4, . The equation of motion cen be written as (Cf, Ref. 2,
Sec, 328)
0% / 2 o -
—= W)g=-3 Vp+2VV g+ jg
52 t @ Vg="Z V/ %+4g (39)

Using vector identities, the second term on the left cen be written as
N S
(g-V)g=+wvigl| — gxvxqg, - (0)
in view of eq. (38), Substituting this into eq. (39), and taking the
curl of the fesulting expression results in
—g—:g(ng,)—— fongX%.:‘uVZ(ng,) o (41)
The second term on the left of this expression can be ’exparided ‘as
VxgxVxg = §(VeWxg)- ¥xg (veg)
+[(9xg)ew]lg— (g-v)(wxg) (42

The first term on the right-hand side of this equation is zero iden-

7 tically. The second term on the right vanishes since the fluid is in-
compressible, The factor Wx %, appearing in the third,’cefm haé only a
z component, thus only the operator'% remains in the \_)7 term, .Butg
is a function of (x, y, t) only,. so this term venishes. Next, define
the vorticity, w , as C(J—‘-/V’(g,/u The remaining squation is approxi-
mately | N

QW 4 goo Vw2V VW . (43)

where the term %oVw has been neglected in accordance with the assumpt:
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mentioned abovs,
Suppose the velocity %o corresponds to that of irrotational wave
motion, - Then
bo=akC ekg[lo Cos K(X“Ci') +j5/"‘7 K(’(‘C{-')J : (44)
where a, k, and C have their usual meanings. Let a new coordinate
system be defined which moves with the irroctationsal wave, thus
x' = x - Ct
y' =y (45)
T =t

In this system eq. (43) becomes

——"~C ,-/-o(gf—";—/-ucf;aa—;-u,— :‘U(V’)Zw - (46)

where |
o = 2kC X7 Cos kx’ | (47)
zgkCe‘W:Sirl kx’ i» (48)

In ’chis system the potential function of the irrotavtional wave is
_-_;C..g: C(x’-aek”:g,'n kx’) ' (49)
and the stream function is
zwf c(4~ae ’7C~osl<x) o (50)
If eq. (43) is rewritten in terms of & , { , and T , the result is

o3 =’C/<‘[(%-—C)z+ 7/0—2:][83 ; va(agﬂ m,z)] (51)

where u, and v, can, in principle, be definsd in terms of & and .

In this system the irrotational wave moves with steady motion, i.e., there
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is no time variation, It is reasonable, therefore, to suppose that the
time variation of w is small, or at least that the chenge of ¢ in
any single period of wave motion is negligible, Then eq. (Sl)vreduces,

approximatély, to

QW ., K Qw d'w ,
ot ¥V (ot 372 (52)

which can be solved by separation of variables, giving

eK.I’+K,_E

w = W, (53)
with K; and K2 connected by the relation
2 2 _ ' Y
K.+ (CAv)K, +K =0 o (54)

In terms of the original variables, x, y, and t, the solution for W is
w= w, exp. {kKI[ cjﬂaek‘jCos k(x-Ct)]

| s KK, [x-Ct-aeXSink(x-cey)§ (59
The desired solution must bée periodiec in x with wave number k, There=
fore‘Kz's i, As already pointed out the number k 2)/C = k2‘1)/’d‘ is
negligibly small for all but the most minute wave-lengéhs,, Therefore

K= a-0015 (56)
where the choice of signs is determined by the condition that wWw=>0
' aéfj—>~°°a o |
' In accordance with Ssc, 250(2), thé suffaoe of ‘the wave is given by
v = ae’ Cos K(x = Ct) | (87)

Thus the term y = aey Cos K(x - Ct), appearing in thé expcnent of eqs
(55), measureé the distance from the surface, The coefficient of this
termﬂ};—-{’—; » determines the thiclmess of the boundary:«layer, Whiéh is seen

to be identical to that for infinitesimasl waves, This is the desired

result,



-2B-
- 111, A MODEL OF THE AIR-WATER INTERACTION,

A, Consequences of Pure Potential Flow, As before only the two

dimensional case will be considered, and the ocean will have only
single frequency, sinusoidal waves, Over these waves, and in the
direction of their motion, a wind is blowing with velocity W.

If the motion of the air over the water can be described as
pure potential flow, then it is easy to show that the necessary
normal pressure forces for wave growth are absent, Thus, consider
the steady motion situation in a coordinate system moving with the
waves (thus at velocity C). _The boundary of the air motioﬁ is then
77 = a Cos kx, For ak <K 1 a suiteble approximation to the f‘low of
the air is obtained from the potential

¥ =(w-c)(-x +36_kq5/'nkx) o (58)

and the strezam-function

Y= (w-c) (-4 + ae—kgCos/(x) j -~ (59)
(The stream-function is approximately O for y = i7 and the x component
of #eloci‘bies approaches W-( as y —» 20, while the y component goes to
'0.) The variable part of the pressure is the dynamic pressure, and,
with the density of air = /% s 1s given by )
+43%= L LG+ (35
=y (w-<)yG LI+ 2akCoskx] (60)
As has been shown, this is the wrong phase to cause wave growth,
If the motion of both air and water follows pure poténtial laws
right up to the boundary betwesn the two then a shear fo.rce of ’che.

right phase for wave growth results. Thus suppose the shear forcs,
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per unit area, is given by

£ .
S = '—25—6‘5 VZ ) (61)

where Cg is some coefficient of shear and V is the relative vélocity
between air and water particles at the surface, The velocity of the
water particles at the surface is (Cf. eq. (3) )
| “ = ¢(-1 + ak Cos kx) | (62)
where C is the wave velocity of the water waves, From eq. (58) the
velocity of the air particles at the surface is
% == Wl + ak Cos kx) _ k(63)
The variable part of v2 (still to first order in ak) is o
| 72 (var.) = 2(%2 - Cz) ak Cos kx - (84)
which is of fha right phase to cause wave growth.

There ﬁay be special conditions, perhaps when only very small
emplitude waves are present, where the requirements for this force
(i.e. pﬁre potential flow of both fluids at the boundary) are met,
However, undgr more general ccnditions, several observations indicate
suéh requirements are not met. These observations will be discussed
- next, ‘

B, Evidence of Departure from Pure Potential Flow,. In a classic

,(3)

work on the cause of wave growth in a wind, Jeffreys pointed out

that a sphere moving thru air suffers a drag force because the mobion
of the air around the sphere is not that of potential motion. Instead
the stream lines separate from the surface behind the,sﬁhere leaving

a wake of turbulent motion, In this wake, or saparatéd regiﬁn, thé

pressures are less than they would have been had potential flow con=-



tinued all the way around the sphere., Jeffreys suggested that a
similar phenomenon took place in the les of a wave, thus causing
asymmebtric pressures on the weather and lee sides of the wave bf
the right phase for wave growth, His results are described in the
introduction of this paper,

The fact that such a sheltering effect‘actuélly takesvplace
behind oceanvwaves was vividly pointed out by Cornish(s) who quoted
0ld sea=~captains to say "The sails are taken aback in the trough of
a wave", Further, measurements by Stanton (s)vover a sinuéoidal
wooden model gave a pressure difference between trough and crest
which was only one tenth that required by pure potential flow (Cf,
eé, (60) )» A curve showing a typical result from Stanton's measure-
ments is repfoduced in fig. 5. The curve shows a small pressure rise
- initially (i.e, just after the downwind crest), This.is‘fqlléwed by
a region of fairly constant pressure as far as the center of thé trough
of the wﬁve, Then the pressure rises azain as the wave slopes.upward
to the next‘crest. About half way up the slope, the pressure reaches
a ﬁaximum, then falls rapidly to a minimum et the crest itself,

The region of constant pressure along the lee slépe probably
indicates a region of separation, The pressure maximum on ﬁhe ﬁ%ather
slope may indicate the position of reattachment of the sep#rated
boundary layer. It should be pointed out that the rétio of amplitude
to wﬁve length for the models tested by Stanton was much larger than
that possible for water waves, It is possible that evidénﬁe of sepaw
tation would be even less obvious for models whose diménsions appro#i-

mate those of water waves more closely than did Stanton's,
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Fig. 3, Diagram of Cavity used by Roshko

(7)

Measurements by Anatol Roshko in & rectangular cut-out (fig, 3)

in the floor of a wind tunnel give a good indication of what takes place
in the.trough‘of a wave, His description of the results is Quoted here:

"Apparently the boundary layer, which sepa-
retes at the front edge, diffuses into the cavity,
so that the velocity on the streamline approaching
the downstream edge has some value greater than
zero., This value increases, at first, as the depth
is inecreased, and consequently the stagnation prese
.sures near the back edge increase at first. TUhen
the cavity depth exceeds a certain value (d/b = 0,1),
the separated boundary layer no longer reattaches
to the bottom, It is probably at about this value
that a general vortex system is first set up, in
contrast to the shear layer diffusion at shallower
depths. ™

His measurements of pressure along the floor of the cavity gave
a low value in the region near the upstream corner (fhe point A in fig, 3)
for 4/b =¥ 0.1, Proceeding downstream, this was foliowed by a fairly
sharp rise in pressure, after which the presure rose more slowly to
- a maximum near the downstreeam corner (point B). Ths‘region of the .

sharp pressure rise moved toward the downstream cornér as the ratio d/b
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was increased, until, when d/% = 0,25, it appeared quite closs to the
downstream corner, The initial low pressure region probably indicated
a region of separation, and the boundary layer probably reattached
downstream of the sharp pressure rise, x

For larger values of d/b (i.e. 0.75 = d/b = 2,5) pressure
measurements were 6btained all around the wall of the’cavity, In all
cases measured there was a sharp increase in pressure neér,the higher
upstream corner (point C). Other pressure maxima were found at the
two corners of the base, with minima near the centers of sach of the
thres walls (in general), The total variation of pressure betweén
these other maxima and the minima was much smaller than thé megnitude
of the maximum at the point C, Thus the pressure variation near the
point.of reatbtachment of the boundary layer waé much more violent than
~ the variation due to turbulent motion below the separatéd boundary
layer, This was true for both small and large values‘of d/h.

C» A Model for the Air Flow Over a Wave, 0On the basis of all

such evidence the following model is suggested for the motion of air

over water waves., The boundary layer, separating near the crest at the

A Separated
< boundary-layer
Water T
surface c
C /

Fig. 4. Diagram of Proposed Model,



-3l

point Ak(in fig. 4), diffuses downward into the trough of the wave
and reattaches on the weather face of the next wave at the point B,
Above the boundary layer the motion of the air is adequately described
by potential theory. Below the boundary layer, in the region of sepa=
ration,vconditions are of a type so little understood that almoét
nothing can be said sbout the air motion. Howsver, a tentative cone
clusion may‘be drawn from pressure measurements of both Staﬁton and
Roshko., Although the models used by these two investigators are

quite dissimilar, there is a striking similarity between their pressure
measurements, In the region where the boundary layer is presumed
separated from the surface the pressures were small, Variatioﬁ iﬁ
pfessure in this region was observed to be much smaller than the -
large increase of pressure near the point of reattachmeﬁt of ths
boundary layer, It can be concluded that velocities in this region
are too small tocause any important varistions of pressure,

Oh the basis of such evidence, and the conclusion from it, it
seems reasongble to bridge the comparatively unknown region with the
following assuzﬁptionD The pressure at any point of the watgr surface,
say C' in the sketch above, is the same as that at a point immediately
above it at the boundary layer, thus the point C, The‘queStion as to
whether or not this assumption is critical is best investigated éfter
the results of the assumption are completely analyzsdg This assumption
implies that the atmosphere, in motion over the ocean, "sees", or is
affected by, only the crest of the waves, and does not "see", or does
not depend on, what goes on in the troughs, Thus it is consistent

with the assumption to say that the geometry of the separation pheno-
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menon (ias, the_positions of the points of separation and reattachment,
end the shape of the streamline between these points) does not depend
eritically upon the height of the waves., If the geometry depends on
the wave size at all it depends on the wave -length only, But.for the
present it will be assumed indspendent even of the wave-length,

Such a model gives & boundary streamline for the potential flow
in the region ebove the waves, This streamline is periodic,.and can be
expreséed as a fourisr series

co o) C
g = % ~/-/.7zZ/'a(,7 Cos nkx + '722;16',, Sinnkx  (65)

For & sinusoidal boundary of small amplitude the pressﬁré aiong
the‘boundary in potential flow is given by eq. (60). This linearized
form permits’superposition of various periodic components, Thus the
. variable part of the dynamic pressure over a boundary given by a
fourier series, as eq. (65), can be written

: - ,

AL Z’ nf«nCos nkx+g,Snnkx] (66)

/3’; (W‘C)Z' h=( '

Then if the shape of the boundary is given the pressure cen be come
_putgd, or if the pressure is known the boundary may be‘drawﬁa

Using these results and the assumption that the presSure at a
point of the wave surface is equal to the pressure at a péint of fhe
separated béundary layer immediately above it, the results of Stanton(s)
may be analyzed, The positions of the boundary layers which would
explain his measured pressures are showmn in fige 5. 1f the wave profile
in this figure is téken as Cos kx then the important featurer(for wave

growth) of the shape of the ssparated boundary layer is given by the
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/3, Sin kx term, which is a measure of the asymmetry of the shape.
The term’ X, Cos kx, although importent in determining the appearanée
of the profile (e.g. the ™bowingedown" of the boundary layer between
the crests) does not contribute & pressure term leading to wave growth,

Such observations suggest the following simplification Qf the

model., The separated boundary layer will be taken as a straight line,

—_—
\\‘
—_—

—

L
Separated
boundary-laﬁ%/

Fig. 6. Simplified Diagram of Flow Model

tangent to the wave surface at the point A (fig. 8), sloping downward
at the angle T to the horizontal, and intersecting the wave surface
again at the point B, - The angle, X -5 will be assumed cons’cant,
independent of wave-height, wave-length end wind speed. The size
of ¢ will be ohosen as 0,003 radisns. This value is chosen so that
the predictions of the theory will coincide with observatipnfs of the
growth rates of water wavés.y The method of comparing t‘heoryvand ob=
servations is discussed in Section IV. |

The éualitative aspects of Stanton's observa;bionvs ‘have been
used in the development of this model. It will be interesting to make
a quantitative comparison between his observations and the predic'bioﬁs
of the model, The model is supposed to give the magﬁitude, Pos of rtliat

component of pressure which is 90° out of phase with the wave shape,
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Rqe (74) in part D of this Section shows that p,/ [1/2@.(1:’!’-0)2] is
‘approxim'ately 4%, Teble I gives the amplitude, a, and the wavee

length, A , of the sinusoidal models used by Stanton, as well as the
relative air speed, (W=C), in the tunnel, end the observed values of
po/ [:1/2/3 (w;c)z], . The last column in the table gives the ialues
of U required by the model to produce the observed magnifude of the

out=of~phase pressure component,

Table I, Values of Required by ‘Stanton's Results,

Amplitude VWave= Relative Observed : Required
length air speed ressure ‘value of
(em.) () (o) po/[3/2/; ()3 (rextams)

1.1 1048 325 0,046 0,012
1.1 10.8 470 | 04060 0,015
| 2.2 21,6 330 04086 04022
2.2 21.6 580 04124 0,051
1.5 7.8 1400 0,016 0,004

Except in the last case, the required valﬁes of 7 aré much larger
" than that chosen for the present study (0.003 radians);* Further, the
variation among the measurements is very difficult to wnderstand, It
should be noted that the ratio of amplitude to wave-ieng’ch of Stanton's
models was much larger thean that possible for water waves, This may

be importent, since measurements by Notzfeld over models of more realis-
tic shape, described in part E of this Section, coincide reasonably well

with the choice 7 = 0,003 radians, Stanton's measurements imply a veria-

¥ See foot=note, p. 74,
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tion of 'f with both wind speed and wave shape, but they are insuffie
cient for = precise description of this wvariation. Therefore, until
more experimental information is available, only the qualitative aspects
of Stanton's observations can be used,

The simplified model cen be interpreted in four different ways.
First, it can be taken as the position of a separated boundary layer.
This is undoubtedly wrong. BSecond, it cen be taken as a crude approxi-
metion to the position of a separated boundary layer., For the explana-
tion of Stenton's observations, this is a reasﬁnable intez;pretation.
Then the principal difference between the straight line and the true
boundary layer position is a sinusoidal ocurve, of small amplitude, in
phase with the surfasce shape. As a matter of fact, the additién of such
a sinusoidal curve of any amplitude would not change the magnitude of the
out-of=phase component of pressure. This suggests the third interpretaw
tion, namely, that the straight line of the simplified model is the line
which joins the approximate point of separation of the:bounda'ry layer
with the approximate point of reattachment,

However, it may be undesirable +o requir.e the ’Eoundar-y layer to
separate at all. An asymmetric pressure distribution is possible with-
out actual separation. For instance, the boundary layer might be thicker
on one side of the wave than on the other. Then the fourth, and most
flexible, interpretation of the model is that i'b‘ is merely a means of
computing the magnitude of the asymmetry in the pressure distribution
resulting from turbulent flow over a wave,

Regardless of which interpretation is used, the important featurs
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of the model is its lack of dependence on the amplitude of the wave,

D, Pressure and Shear Stress Over the Tave Surface, The magni-

tude of the 8in kx component of pressure over the boundary layar (_and
thus over the wave surface) is obtained by evaluating ’cher coefﬁcien’c
(Q/ in the fourier series of eq. (66), Thus suppose the water surface
is given by .
p=a Cos kx | (67)
For small values of Y the detachment point may be taken at the crest.
Let the point of reattachment be at x = ¢. Then the s%;fai’ght-line
boundary layer (again for small ¥~ ) may be written
4 =a-YX (68)
and
rc =a(/"C05/(c) (69)
. The coefficient /B, is given by »
G =cz/a)[ !c(a- Yx)Sin kx + z__(;.\acos kx Sin kx dx |
= (1/77*)[& (1~ Cos ke )- (x/kXinke-kcCoskc)-Z5in“ke ] (70)
Approximating for small values of ¥ by letting
| ke = 27— 4§
Cos ke = |— §3/2 + -+ o (71)
Sin k¢ = §— --- . ,
Thus ¥ == (a/3)(8§%2) o (72)

permits eq. (70) to be reduced to

@ = LA0-4( 5] : (73)

Now define h = — 3 eand the magnitude of the 8in kx'c’omponent of

YA



pressure is _
/bo.@_z/gv’(w—c)zr(/—z!‘h‘) | (74)

Cne thing is clear immediatély from this equation, There is a
lower limit for h, na‘mely h = 1/2, below which the equation makes
no sense. It is easy to understand this difficulty, for if h = 1/2
then 2a/3 = ¥ . But 2a/A is the slope of a line joining the crest
of a wave to the trough, and Y is (approximately) the sloée of the
boundary layer, Thus in this limiting condition, the boundary layer,
presumably going from crest to trough, actually never sepérétes, This
picture of limiting conditions is oversimplified, but it makes the
difficulty understandable, Since only small values of b wiil 56
uéed in future computations, the limit cen be takean as a lower limit
to the steephess of waves which can be treated by the present modsl,
Thus this model can explain only the growth of waves whose»steepness,
2a/ A, is greater than Y . Clearly the model camnot explain the
origin éf waves from a perfectly flat ocean., A theory such as that
suggested by»Eekart(4) might explain such an origin,

Shear forces are next to consider., It has already beén assumed
that air motion in the region below the separated boundary iayer makes
only a negligible contribution to the variable part of the dynemic
pressure, This assumption will be extended to cover the éontribﬁtions
to shear force, Thus the shear force is assumed different from zero
only over that portion of the wave surface where the free air stream
(or the boundary layer of the free air stream) actuallyvﬁouéhes the

surface, This can be expressed as
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s n'{kg/é)(zsk/z for o< x £ A
(75)

5 =0 otherwise,
As befors,V is the difference between the velocities of air and
water particles at the boundary, and x = ¢ at the point of rééttach-
ment of the boundary layer.

The velocity of the water particles at the surface is approxi=
mately akC nsar the crest., The velocity of the air particlés a%t the
boundary is variable since the boundary is a periodic funqtidn of x,
Thus V = W + AW - akC, where AW is a correction due fo‘the peri=-
odic structure of the air boundary. The amplitude of this periocdic
structure is so small (for small ¥ ) that AW may be neglected in
comparison to W, Further the term akC will be neglected for tﬁe
present, This means that for large amplitude waves whose speeds
 approach that of the wind the results will require correction, Turther,
it is true that the very existence of shear forces impiies:thaﬁ the
speed of air particles near the boundary is less than %he speed of the
free stream. - However this effect can be absorbed into the definition
of Cg» That is, the magnitude of Cg depends onbthe héight'above the
surface at which W (or V of eq. (75) ) is measursd, The ffee strean,
or "anemometer”, wind speed will be used here, and the value of Cg4
taken as 0,005 * , With W in place of V in eq. (75), s is a simple
periodic step funetion which cen be written as a fourier seriss,

The tsrm of interest in such a geries representation is the Cos kx

terms The coefficient of this term is

# Cf, Ref, 8, and discussions with Dr. W, H, Munk of the Scrlpps
Institubion of Oceanography, University of California,
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A
/5 2
So= Z-Cs WZ‘;T { Cos kxdx
<

CsW? (- Sin ke) (76)

With the same approximetions that wsre used for the normal préssure

(cf. egs. (71) and (72) ) this is

Substituting s, and p, into eq. (29), the resulting expression

for the growth of the smplitude of a wave Ltrain is

2a , aa
U sx*t ¢
o ‘ (77)
(25 a [ 2 / C,W* 2
=o— = | 2Y(W-C)(t-57)+ 2= 1+
2g ﬁw Zh) 2T h:}
Hext, define a number R as
2
\% 4
R :_’)—2_:_?_5._.——/2_ (78)
47 ¥y (w-¢)
This is & measure of the ratio of the effect of shear to that of
pressure, Further, new variables ars defined as
w 5 2 : .
T=57" (W~
39 7 ( c) t (79)
and
w A = zX '
E=35 p (W-¢) % | (80)
Then the growth equation can be written in the simplified form
2h ah _ ,__ 1 + R
——aE + 3t = | Zh '}-;'— (81)

Solutions of this equation for various values of the parameter R

are given in Fig, 7 for an initial value of h = 1. It must be romem=
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bered that the wa’im'lezigth, A, (end ’chus the wave spead, C, and the
- frequency, > ) is a constant in the growth eguation.,

The analysis of the regponse to a shear force, caf‘ried out in
Secfion II, is based on the assumption of laminar flow in the vorticity-
layer just below the surface of the wave, It is reasonable to inquire
whether or not this assumption is walid, For sbteady mobtion, the tran=
sition from laminar to turbulent flow will occur when the critical
value of the Reynoids number

o= UsS/V
is reached; where ({5 is the magnitude of the velocity induced by
shear at the surfacs, and § is the thickness of the vorticity-layer,
A very rough estimate of the critical wvalue of this number is 102,

As slready mentioned (Section II, part B) the value of § is‘d‘?‘ .
The value of U5 is obtained as follows: The shear in a fluid per unit

area is given in terms of the gradients of the welocity components as
O 'U" a(,(
S=p v ( )

Changes in a direction parallel to the surface (here, the surface

will be taken as ¥ = 0) are small, so gif is neglected, The x-com=

vonent of the velocity induced by surface shear is approximately

U = Uy & 98

where L= x-component of velocity at the surface = U, So
S =/RVU/S

‘at the surface.

Using eq. (75) with W replecing V

§

~ S .6 2
Ms-/alv Z C5W



Then
g 7?2,"—*;_-———-@(:’\”2
27, 0V
In o;g.s,‘uhits,‘fhis‘bécomes
;yQ_crEZ'lCr“\A/%/QTf

A conservative estimate for O is 1 suac:i,-1 for waves on the open sea
(this corresponds to a wave-length of about 10* cm, ). Thus the rough
: estimate of the critical value for TF( will be exceeded by winds
greater than 600-cm./secy

This estimate of the critical Reynolds number is based on the
case of steady motion, in the present study, the shear is applied
periodically. Now it takes 2 certain amount of time (or distance)
for the transition from laminar to turbulent flow to take place,
If the shear is applied periodically instead of steadily, the available
time is limited to the period, or, as in the present case, a fraction
of the psriod, Little experimental information is available on such
e situation, but it is reassonable to suppose that the critical value
is much higher in this case, If it is larger by a factor of 100,
which is possible, then only winds above 60 meters/secg would cause
transition, B&ven if the flow in the vortieity-layer were turbulent
there would still be a contribution to wave growth from shsar forces,
v» but the magnitude of the contfibution would be different.

" This is not the only problem with regard to shear forces. Somputation
of the magnitude of the shear force, as carried out in this section, is
based on the interpretation of the model as an approximation to a separa-
tion phenomenon. The fourth of the possible interpreﬁations listed in part

C of this section dropped the idea of separation. Such an interpretation
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would réquire g modification of the calculation of shear force. Fortu=-
~nately for the present study, the effect of shear force is small compared
to the effect of normal pressure for all waves except those whose speed
approaches that of the wind, Therefore the problems concerning the

shear force can bs safely disregarded for the present.

B. . Additional EBxperimental Information. Since the model was

(9)

first devised, thé author has been referred to a paper by Motzfeld
containing information on measurements taken in a wind tunnel using
nodels of waves, iThese measurements differ in three important ways
from those of Stanton, which have been discussed previously in this
Section. TFirst, the measurements were more complete, They included
pitot=tube meagurements of velocity on a very complste set of points
above the wave surface, Pressure measurements along the surface were
obtained also, as they were by Stanton, Second, the models used were
much more realistic. Four different modes were used. Nodel 1 was
a sine wave with steepness (Za/'z.) equal to 1/20. liodel 2, also =
sine wave, had a steepness of 1/10, Model 3 was a trochoid with
steepness equal to 0.0987. MNodsl 4 had the shape of the steepest
wave possible in water (Cfa Rof. 2, p. 418), and thus had a steepness
of 1/7. For comparison, the steepness of the models used by Stanton
ranged between 0,395 and 0,204, Third, the Reynolds numbers (Cf.
Section VI) for Motzfeld's tests were about 10 times as large as
those used by Stanton; however they were about 10 times smaller than
those expected on the open seas

Only in one case did Yotzfeld's measurements give clear indica=~

tion of separation. That was the case of flow over model 4, In the
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ofhar cases, both the pressure measurements and the velocity measure-
ments (from which ths posiﬁion of the streamlines was computed) indi=-
cated an ‘asymmetry in the fléw, but no region of separation, The
computed position of the streamlines indicated that the boundary-laysr
on the lee side of the wave was thicker than on the weather side,

This would account for the observed asymmetry of the pressures,

The asymmetry of pressures leads to a component of pressure 90°
out of phase with fhe wave shape., The magnitude of this componemt
as measured by Motzfeld can be compared with that predicted ﬁith the
the present model, The results (with ¥ = 0,003) are presented in
Table I1,below, TFor test models 1, 2, and 3 the differences between
the twd values ars well within the accuracy intended for the preseﬁt
study. The large difference for model 4 indicates the present theory
fails for this case. This may be due to the fact that model 4 was
a wave with pointed crestss If this is the only reason for the failure
‘of the theory in this case, then the theory can be expected ﬁo work
for most real water vmves, for the crests of these are seldom as sharp
as those of the highest possible wave, This question certainly needs
more investigation,

Motzfeld's findings indicate that the last of the four iﬁtera
pretations given earlier for the present model is the one which must
be used to explain the pressures over waves of realistic steespness.
Thus, rather than describing any separation phenomenon, the model is
a means of computing the out=of-phase component of the pressure dige

tribution in flow over a wavy surfacs,
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Table II, Comparison of Motzfeld's Results and

the Predictions of the Model, -

Test Model Observed Sine Computsd Sine
Used Component of Component of
Pressure Pressure
2po/ (H=C)2 4

1 ‘ 0,011 0,012

2 : 0.015 0.012

3 ‘ . 0,018 0.012

4 0,167 0,012

¥, Investigation of sn Assumption. In the determination of the

pressure over the wave surface it has been assumed that, in the sepam
rated region, the pressﬁre at any polnt on the wave surface is the
same ag the pressure at a point immediately above on the boundary layer,
it is possible to show that this assumption 1s not eritical. Differences
between the assumed pressure distribution and the actual distribution
would cause two types of error. TFirst, the magnitude of the pressure
might be incorrect, and second, the vhase of the pressure component
of the same wave-length as the wave might be wrong (higher frequency
components are unimportant). That is, the relative magnitude of the
Cos kx and Sin kx ﬁerms in the expansion of eq. (66) might be different
than assumed,

If the magnitude of the whole pressure distribution is wrong,

this amounts to no mores than an error in the cholce of 'TY, end cer=
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tainly’would nét imp1y any difficulty with the model. The most

eritical possibility is that of an error in phase. This would be dan-
gerous only if the megnitude of the Sin kx term is much smaller than
that-of the Cos kx term., In that case =& small change in phase would
make a large change in the important Sin kx term, The magnitude of

the Sin kx term is given by B, in eq. (73). The magnitude of the

Cos kx term,:i,,ican be computed in a similar memner, Using the approxi=-

mations implied in eqs. (71) and (72), the ratio of ) to G, is

oﬁ(: .—.% 222 (82)

Thus the assumption could be critical only for waves of very small
stoepness (i.e» 28/4<¥). However, as has already been pointed out,
the model cannot be extended to cover waves of very small steepnesss.

If a more realistic shape is used for the ssparated boundary
layer, the results might be similar to the results measured by
Stantdn(6 ), These results give the Cos kx and the Sin kx components
as the same order of magnitude, with the Sin kx component slightly
larger in most casss,

On the other hand, lotzfeld's measurements give a very large value
for the Cos kx tern relative to the 3in kx term. However, his computa~
tion of the position of streamlines showed that the boundary of poten-
+isl flow was quite near the model surface. The intervening space was
so small that 1ittle error could result from the assumption now being
examined,

Therefore it must be concluded that the assumption determining

pressure along the wave surface 1s not critical.



«lBe

IVﬂ‘ INTERPRETATION OF RESULTS OBTAINED FROM

TRE MOTDEL,

The growth law (eg. (77) ) shows that the height to which any
given wave-length wave grows in a given time (or distance) depends on
both wind speedkand wave-length. The effect of wind speed can be
treated in a convenient menner through the use of certain dimensicnless
variableé. Thus let a measure of wave-height be v

A = gafi? (83)
and & measure of wave-length be
L = g A/(2W) (84)

The measure of fetch is

F = gx/2 (85)
while the measure of duration of the wind is
T = gt/ (88)

Using F as a parameter for the fetch-limited case, or T for the dura-
ticn limited case (Cf., Section II) the dimensionless wave height may
be plotted against the dimensionless wave length from the results of
eqs (8l), FExamples of such plots are given in figs. 8 and 9, In
both cases, the initial conditions on h are h = 1, while ¥ was chosen
to be 0,003. Thus initially

A = 0,0376L ‘ (87)
To make these calculations, the results of linearized deep=water
gravity wave theory have been employed, that is

x? = w2/ = g | (88)
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The ratiO/f%/f%z nas been set‘at 0.00125,
| A more exact, and non-linear, theory of gravity waves is dis=-
cﬁsﬁed by Lamb (Cf. Ref. 2, pp. 417-420). lost of the results of this
theory can be considered as negligible corrections for the present
modsl, However, one result must be considered in full. That is the
fact that a limiting height exists for any given wave-length, Waves
of this 1imitiﬁg height have an approximetely trochoidal profile
between crests with points at the crests. The angle of the pointed
crest is 120° and ratio of the height (crest to trough) to wave
length is approximately 1/7. If the approximation to the actual
wave shape which has so far been used, namely 77 = 8 Cos kx, 15 ex=
tended to this limitinz condition, then in the limit ek = A/L 2 0.45,
The idea of a limiting size will bs incorporsted int& the present
theory by assuming the growth to be sharply cut off when the limiting
' height is reached. The line A = 0.45 L which reprssents this limi%,
or cub-off, is showm in both figs. 8 and 9.

| The results presented in figs. 8 and 9 cen now be interpretsd
in the following way. Suppose an infinite number of oceams are
‘availabia, Bach ccean has a single frequency wave system on its
surface with a wave=length differing from that on any other ocean,
Thus an ocesn is aveilable for every wave=length. A wind is blowing
over each céean, and assume, for example, that fetch-limited condi=
tions apply. Then a particular value of the fetch parameter, say Fq
on fig. B, is choosen, On each oocsan, at the corresponding value of

fetch, the wave-height is measured. That ocean whose waves are the
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highest‘(height ﬁi on fig. 8) is the ocesan with waves of length Ly
4'correspondigg;to the intersection of the constant fetch line and the
limit line, 1In this manner the height and waveal ength of the highest
waves for any valué of feteh (or duration) can be determined,

| Extension of the present theory to the realistic situation of
a bread épectrum-af;wﬁve-iengths is quite difficult, and will not be
‘attempted here, Howéver, it is tempting to compare the results of
this theory with observations. Cbservations for fetch-limited con-

(10) cover a wide

ditions which have been collected by Bretschneider
range of values of F, and contain a very large number of separate
observations. Values for small fetch were taken in various wind tun-
nels., In the middle region the data comes from observations in a
lagoon on the shore of northern California, and data from the region
of large febtch comes from observations in lakes and the open ocean,
A few observatlons corresponding to duration-limited conditions have
‘been compiled by Sverdrup and %unk(l), and are presented in fig.ll.

- There 1s some confusion as to what the various data points actually
represent. In most cases the average height and average wave-length
of what are termed the "highest™ waves are reported, It has been
suggested that this proéess, which amounts to filtering by eye, is
‘ gveraging over the ”1/3 highest waves present“(l), In other cases
where the height has been measured by instrumentation and recorded,
‘the waves (down to the smallest which the instrument was capable of
measuring) were counted, end the 1/3 highest waves picked out for

(11)

averaging . In any oase, the data represents the characteristics
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of wavés which were among the highest preseat at the time of measuring.

Curves giving the predictions of the pressat theory are given in
figs, 10 and 11, Thsre is surprisingly close agreement between theory
and observation with regard to wave-height; but poor agreement, except
~at low values of F, with regard to wave-length., Another way to state
the difficulty with weve-length predictions is to say the following.
Atllarge values of F the observed ratio betwsen wave~height and wave-
length (the steepnéss) is much smeller (by a factor of four at least)
than the theoretical limit of 1/7. This implies that some other
limiting condition controls wave growth in a real situetion, i.e.

a situation where a broad spectrum exists rather than a single fre=-
quency component. This question will be investigated more in the
next Bection,

For large values of F the data gives ;ag/?17%£ >1, i.e, the
wave sgpsed is greater than the wind speed. Fossibikities of extending
the present model %o such a sibustion are very uncertain. ¥hen
Ag/em = wz, thus when there is no air motion relative to the wave
shape, the model has no meaning. When the waves are moving faster
than the wind it is doubtful how the model is to be interpreted, At
first glance, it would seem that all that is required is to reverse

the relative positions of the points A and B in fig. 6, since the
relative wind is now moving from right to left. Fresumably the angle,
Y, would be unchanged, However, it must be remembered that it is
the behavior of the boundary-layer, either its thickening or its sepa-
ration, which is being described by the model. Thils behavior must

depend on conditions &t the sir-water surface, The water particles
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for duration-limited conditions.
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at this surface are, of course, in motion., Neglecting vorticity ine-
| duced by shear at the surface, the velocity of the water particles
Cidn tﬁé eritical region near the crests is in the same direction as the
wave velocity &na of sﬁalleﬁ magnitude, If the wind is moving faster
than the‘ﬁaves, its motion relative to the wéter particles is fagbter
yet. In such a situation, it is reasonable to extend the results of
ﬁind tunnel observations‘over solid surfacss to conditions over =a
liquid surface. But if‘the waves are moving faster than the wind,
the relative motion of air and water particles at the surface may be
positive (in the sense‘of’the direciion of wave advance), negative,
or zero. The magnitude of the relative velocity may be elther grester
or less than the relative velocity between wind and wave. The extension
of wind tunnel results to cover such situations is very guestionable,
Thus it is doubtful that the theory in its present form cean ex-
'plain the observed wave=lengths, For the éame reason, the theory will
not be applied to conditions in the area of wave decay (area of relative
calm), where the wind velocity is much smaller than the wave velocity.
lave-length data for waves moving slower than the wind might be
,reproducéd modifyiﬁg fhe simple theory as follows: The observed maxi=-
mum steepness (as a function of F) is used, instead of the theoretical
| 1/7, as the limiting height cur%re in figs. 8 and 9, The value of ¥ ’
is then takén towary with the Reynolds number based on the wave-length,
(W - C) ;ﬂ,/z) » The variation is so adjusted, and the resulting curves
in figs, 8 and 9 are so modified that the resulting wave-height pre-

diotibnsycoincide‘with the data, The wave-length data will then be
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checked, This is a pnésible scheme, but until thes observed stespness
of the highest waves is expleined no greater understanding of wavs

growth can be gained by such arithmetic.



V. INTERACTIONS IN A JAVE SYSTEM OF MORT THAN CONE

FREQUENCY »

A. Possible Types of Intersctions. In a realistic situation

a broad spectrum of waves are present. The water surface cannot be
described as a single cosine curve, If the implicabtions of the present
model are sxbended to such a case one would expect that the smaller,
short length waves would be sheltered from the wind during the time
they are in the trough of the larger waves, In such a situation the
growth rats of the smaller waves would certainly not be given by the
simple expression of eq. (81)s Interactions of a less 28.8ily under=
standable nature would occur between waves of similar frequency. The
analysis of such interactions will not be attempted here,

Apart from modifications of the growth rate due to the simul=
tansous presence of several different frequencies, another modification
ﬁight occur, The theoretical condition limiting the steepness might
be affected. Such a possibilitj can be snalyzed by a perturbation
method under the assumption that waves of two different frequencies
are presemt, Such an ﬁnalysis will be presented here,

B. lVon=Linear Interactlions of & Two Component I'awve System.

The unperturbed motion will be that of a finite amplitude-wave, Added to
this, as a perturbation, will be a wave of small amplitude., The re=
sulting free-surface boundary condition is then linearized in the ampli-
tude of the perturbing wave. The analysis will be garried out without

restriction on the relative size of the wave-lengths of the two waves,
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The results of the snalysis are then spplied to the special case
whah the perturbing wave has a much smaller wave-length than the
original wave. For this condifion it is found that the perturbiag
© wave 5ecomes stesper near the orest of the orizinal wave, and less
steep near the trough. The sxtent of this effect depends on the steepm
ness of the original wave., From this it is concluded that, if the
perturbing wave is steep enough, the growth of either wave will cause
the perturbing wave to break near the crests of the original wave,
Further analysis 1is carried out which indicates that the shape of the
highest possible wave is unaffected by the presence of more than one
wave train, This analysis is needed to justify the conclusion Just
mentioned. The analysis will be carried out in two dimensions with
an incompressible, irrotational fluid. The potential function is
= B+ (89)

and the profile of the surface is

DGt) =0, (X4)+7,(x,t) (90)
Functions with the subscript ( )0 describe charscteristics of a wave
of large amplitude, and are assumed known exactly., In calculations
the results of TLord Rayleigh (Cf. Ref. 2, p» 417) will be taken as
an adequate description of such a wave, Functions with the subséript
( )7 describe the characteristics of a wave of smell amplitude which
will be taken as a perturbation applied to the larger wave, The re-
sulting perturbed free-surface boundary condition will then be |
lineariz§d in the amplitude of the small wave, whereas terms involving
the properties of the larger wave will be carried to two orders in the

amplitude of the large wave, Laplace's equation for the potential
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function is unaffected by the perturbaﬁion treatment, since it is
already lineara, |

The boundary condition at the free surface is that the pressure
be a constant., The pressure in a fluid is given by eq. (5) of Section
20(8) a8

£ =2%4-0-4¢ (91)

Here p is the pressure, /0 the density of the fluid, (2 ths potential
energy per unit mass of the fluid at the point in question, and q the
magnitude of the welocity of the fluid, Let a rectangular coordinate
system be established with x parallel to the undisturbed surface, and
positive in the direction of motion of the large waves, and y vertical
and positive upwards. Suppose the system is moving with velocity C,

in the direction of x positive. In this system

@ = C. (x—plSink,x) (92)

Vo= o Cos ko X + 3K, Cos?koX + (93)
AL+ (38)k:E"] = a. (94)

Nert define €= x—Be95in kX (95)
and [=y -pe“ICos Kk x (25)

The snelysis will be carried out in the §J§ coordinate system,
The §)§ network corresponds to the equipotentisls and streenlines of
the large wave, In such a coordinate system Laplace’s equation is

mchanged, that is

3*f  DF 2°¢ O
J*-—-Ol <= ax>t3zy® (97)

0F* 28°

\

Yow suppose the surface of the large wave, which is given by C =0,
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is also given by yo = yo(gh,O); Suppose also that the deviation of
the surface from y, caused by the presence of the small wave is gziven
by f*k = £ § ,t), and measured along the lines § = const. Then if ©
is the amgle between the vertical and a normal to the y, surface (which
is the sams as a tengent to the line £ = const. at the surface) and
if the curvature of the line ’f = const. is neglected, then the height
of a point on the surface is

Y =¥y + T'Cos® (98)
as indicated in fig. 12, The potential

energy of & point on the surface is then

N =g(4,+fCosd)  (99)

Figs 12,

~In this expression it is assumed that f' is measured in absolute units.
It will be more convenlent to measure distances in §)§ units, To cone

vert from one system of measure to the other, the factor h is used where

_ A% - arl
‘Ym‘j)%(ax)z @Y+ (ax)? ‘
y -4
"[ 7 b - Comst, }[ (c;:)f Const, (] * (100)

)(af "a"‘"g 3 V )2 (at: *
4+ [ —
24
Then if £ is the deviation of the perturbed surface from the surface

of the large wave ‘§ = 0, and 1is measured in E, Z units

N=q[y + (F/n)Cos O] (102)



thus the expression has

-
Ed

"Here h is to be evalusted on the line T
been linearized in £, i.e., variations in h over the distance 0 < J£ f

are neglscted,
Yext the expression for velocities in g T space will be derived

L DCP(X.'d) ¢ T) ag-' DWIEY) oF (102)
U== S = 2 f T Tt ox

- Wy __ 295X o8 24ET) o (103)
oYy ?E Y °f 2y

Let v? be the component of wvslocity in the direction of increasing

Let &

E ond Ve be the wsloclty in the direction of increasing T
Then

be the angle between the x axis and the line § = constant.

A )
- _ (f‘_ﬂ_) | -3 KoekgCosl(oX ”’D—g' (104)
an« = 4 ‘t k Ky = "‘,(')_.E'_
T=Cons Bkee™7 gin I, x —
2 X
and
C = o8 [/ JioeV /2F)\2
05 o 7»:/\/(:5;) +(%,’_(_ (105)
Sinx= 28 /\/(2€) 3 (208)
Then Ve can be written as
V; = «Cosat + v Sin (107)
__[(2¥ o€ 2 o¢ p¥  OY DL\ OF
[af 2x ﬁf’bx) ’99‘52‘1{ toro )DX (108)
-)
2
| [l2y+ (3E)]
Using the facts
°0F __ o7 (109)

’aém_}‘_’ 2%
oy Dy X
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this becomes -

| .
V) GE) (2£)--n % ()

- In a similar manner

I 4
=" hoE ()
So now the free-surface boundary condition can be written as
Const, “‘” - ( Cos e of (112)
enst. = 9 (fa ) Zh[-(bf) (D";)]

where the right hand side is evaluated at 7 = £, If@=¢/=( F and
f = 0 this equation is satisfied thkrough order (aoko)B. To verify this

write out h? in x, y notation

) Zf(o
hi= I~ Zaokaek"qCas koX + 2t KklZe 7 (113)
The boundary condition becomes
Const.=-gy - LCofi-2a.kee€ ICoskex+ 22 k€ J (1)

(2)

Comparison with Sece 250 shows that the choice of yo given in
eq. (93) satisfies the equation through third order in a ko.
Subtracting eq. (11s) from eq. (112) and linearizing the result

in £ and $ﬁ, s there remains

'D(ﬂ)f - ';{__(g/"!) Cose + (C /2)( 33') =0 (g"/z"’)(’bf])gzo]
(115)
-k C. ( ) £=0 = Cons t,
This is the free-surface perturba‘l‘.lon boundary condition, The boun-
dary condition applied at the tottom of an infinitely deep ocean is

tﬁ—?o as y->-oo, Since {~-2° as y--co, this becomes ﬂ-»o as ¥2-2%,
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A'kinématic'relation betwesn ths éurface shape, T, and the velo=
cities, or potential function at the surface is still needed to come
pletely‘define the problema In the present coordinate system the
prdfila 6f the large wave, Vo, does not change with time., Inspection
of fig. 13 shows that the change

in f with time can be written as f(Et+at) ¢

af=2gat --a-flfgé\f (116)

Here all length measurements,
including those contained,in'vg
and Vg , are in g}t wmits, If

sbsolube wmits are used for the

velocities, the factor a must be

introduced on the right hand side.

Then the equation becomes Fig, 13
szp,"[?,fgf_?_‘e (117)
7t OF DF 08 Joof

If this equation is linsarized in f and 94 , the remaining perture

bation equation reads.

of ,2r . 2f 24

The coefficients appearing in sgs. (115) and (118) must be

written in terms of £ and g . By successive approximations

34
x = § +/G eko(f-l—ﬁe Cos ‘Q?)-s{n l(o(g+f3€kor5,'n l(of) (119)
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KX
Cos ko § 5
ko(fh@e | o3 )Cos l<o[§+ﬂé 5,,,,(05] (120)

Y =T+3€
For the present analysis it will be sufficient %o cohsider only
terms of order O and 1 in 8pk,.» To this order, Cos @ = 1. Then
after making the necessary substitutions the perturbation equations
are

gf) ~gf=Coll-22, I(.,Cosko’s’)(c_i) "Consi (121)

°f

DFf D.éP
=% = (I—Z&okoCoskg)[CObg 5—5}):7 (122)

Since gﬂ, is a solution to Laplace's equation it can be written as

G =L(f+cE)+L(F-(F) ()

First, suppose ¢ is 0. Then

o

pul SRV o¢ (124)
o¥ oF
and such a substitution may be made in eq. (122), Next mew wvariables
are defined as
= Cot + B + 2a,5in ko¥ (125)

T=1 (128)
If these variables are substituted into eq. (121) and (122) and terms
of order higher than the first in a K, are neglected there results
?-—‘p—') ..57[ = Conrst. (127)

oT -0



af, 0
= (a% o (128)

These two equations are formally identical with the equaticns of
the simplest linear gravity-wave theory (Cf. Ref. 2, Sec., 227). The

resulting form of the perturbed surface is

£ =-(a gl at (129)
/ .

k€ =g (120)

Substitutions may be made to obtain an sexpression in terms of x, v,

and t (again to first order in agk,)

9, =8 (1+ 2.k, Cos k,x) Sin Kk [X+ 3, Sink,%= (¢-c,)¢] (151)

Such a function defines a wave whose amplitude snd wave number are
periodic functions of position. At any particular value of x the
equivalent amplitude is
a,/ = U+ a,k, Cos K, x) - (132)
The equivalent wave number is obtained by differentiating the phase
~of the sine term partially with respect to x, thus
K, (1 + a,K, Cos k,x) (133)
Suppose that kj >y ky. Then the variation of the term Cos kyx
can be neglacted over one wave length of the smaller wave, In this

cage it is reasonable to use egs, (132) and (133) +o write the steep=
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ness of the small wave (to first order in agk,) as

a’ k' a, K | .
7 = 'TT‘ (’+2~aok¢,CaS ’(o)() (134)
; A (12)
These results are in agreement with those of P. J. H, Unna , and

imply thet the steepness of the smaller wave may be locally increased
beyond the’theorétical maximum value of 1/7 by the growth of the
larger wave., This would cause the smaller waves to break in the
vicinity of the cfests of the larger waves if the theoretical limiting
condition is not effected by the presencs of the larger wave., Before
investigating this question it should be pointed out that if eq. (124)
is replaced by

o¢ ., 0¥

o7 =Tt of

the results of the analysis are unchanged, so thet the arbitrary

(135)

sslection invelved in eq. (124) is not oritical for the solution.

C. Limiting Height Conditions. In Section IV two important

characteristics of the limiting wave shape in a single frequency wave
system were pointed out. The ratio of height to length is 1/7 and
the included angle at the sharp crests is 120°, It would be imprac=-
tical in the case of a muitiple component wave system to attempt to
determine a complete descriptien of the shape of the water surface,
and thus verify directly that the ratio of height to lemgth is still
1/7, chever, it is possible to show that the angle at the crests

ig still 120%, and this reéult leads to the conclusion that the come

plete shape of the limiting wave must be practically the same in both
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Cases,

An outlins of the method used to obtain the value of 120° for
the. single component system is gilven in section 250(2)43 The artifice
of steady motion is employed, In the present case the steady motion
form of the squations cannot be ussd, Otherwise the approach is
similar, Thus suppose 2 polar coordinate system is sstablished with
an origin instantaneously coincident with the crest of the limiting
wave (which is assumed pointed), Angles are measured by & counter-
clockwise from the downward vertical., In a sufficiently small region
of the crest the boundery is given by 9-‘-""0(.,0(1. The free surface
boundary condition to be satisfied at those values of © is

Const, = o¢ +grCosEe- -2'.—_ (v, 2+ v"e‘)' (136)

ot
Let the potential function be represented by

gﬂ = r m’(éo Sinm,e+ b, Cos '7709) + rno(cbs“" r,6

+Clo COS npé)"' rk: ( = ‘.) s +f[rm(a' Sinle

(187)
2
+b,Cosm &)+ F”‘("‘)+~~J + t [sz("‘)i- ~*]+«- .
where mi <ni< pi I EEEE]
The velocity components are
o
YV, == >r (138)
) ?f (139)
e r o6

Cnly the lowest order terms in t and r need be considered, so the

boundary condition becomes
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r (3, Sinm, 6+ b, Cos me) + qr Cose
| ' (140)

2 _ v
_gg ra(rna r)(aoz+ boz):: Const (9:-"‘.,%)

First, suppose my { 1. By eq, (138) this implies infinite accelera-
tion at the origin, since both ¥V, emd ¥ g are proportional to r mp -1
at t = 0. Clearlﬁ this is not the type of solubtion being sought.
Second, suppose m; = 1, and 2(m, - 1) > 1 (note that for m; » 1,
the boundary condition can be satisfied only for 2(m° -1)=2 1.
As r approaches O the boundary condition becomss
3,sme+(b+q)Cos e =0 ate=-=, 6d, (141)
Obviously any choice of «,and o/ycan fit this equation with appropriate
cholces of 2 and bl’ Thus for example, let 8, be O and by = = g,
The resulting motion is that of free fall, since the acceleration of
the fluid is of magnitude g, and directed vértically dowmwardg Thus
it is not surprising that any values of & and o, are possible.
sgain, the solution is not that being sought.
Third, suppose 2(mg = 1) = 1, thus my = 3/2. The value of m
can be either sequal to or greater than 1 without affecting the following

analysis. The boundary condition is (with my = 1)

2,5ne+ (b+ ﬁ) Cos& = —w—qz_—o. (a,t+ b)) (142)

near ¥" = 0, Again, any values of «, and o, are possible, but consider

the values of Vé at the surface, This is
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: J2 ]
_U;=,~~§~r z(aaCOJ%éﬁ—boSan%:Q) (143)
(with ©= = ;)
Assuming the term in parentheses is not O, then at an instant of tims

sither earlier or later than t = O the surfsce shape will bs like ons

of the four in fig. 14,

Fig. 14

Cnly shape b is clearly impossible, although shape a is certainly
unlikel;h and must either come from or go into shape b, Shapes ¢ and
d are not impossible, and might occur under speclal circumstances,
but they do not represen't the;more or less stable crest shapes which
are desired in the present study. It must be then that vg is 0 for

small r and t = 0, Thus
3, Cos26 -b;Sin2s=0 gt 6=-4,% (144)

Choose the angle (3 such that
= - = 145
Then the crest shape is symmetric about the line 9:@ . BEg. (144)

can be written in terms of O and p as
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a’ Cos 2« bo’an% X =0 (146)
where

8" = 3 Cos2B- b,Sink 3 (147)

%' = d Snd@ + b,CosZ B (148)

The smallest value of A which gives a non-trivial solution to this

equation is &£ =T/3, with bg' =0, or

..k.’_‘i = - Tah%ﬂ (149)
= 5

The included angle at the crest is then

t2.0° (150)

i

2 = av/3

There are no other wvalues of m, and my which may be choosen such that
the boundary condition is satisfied; therefore the desired result is
proved,

D, Implications of the Interaction., The effect of the interaction

on the smaller wave is clear. Although the average steepness of the
smaller wave system is not critical, it may be made to exceed the
critical value in the neighborhood of the crests of a coexistant larger
wave system., ‘hen this happens the smaller waves will presumably
‘break, resulting in the common phenomenon of "white-horses", This

in turn represents a loss of energy to the two-wave system (the energy
goes into still smaller waves, or turbulence), The limiting effect

of the larger wave on the height of the smaller wave is clear. But

it is poésible that the larger waves are also limited, The energy

loss is a periodic phenomenon, with a period the same as that of the
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larger waves, since it happens always at the crest of the larger wave.
This may imply o 1imifing condition on the heights of the larser waves,
but_it is not clear how éuch a condition could be expfessed numerically.
Then the two wave systems have approximately equal wave-lengths,

£he interpretation of eg. (131) is no longer simple, Still more complex
is the question of non=linear interactions in a system with a continu-
rous spectrum. With all such problems still unanswered, the present
study can be takeﬁ only as a beginning to the understanding of none

linear interactions of gravity waves.
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VI. CCNCLUSIONS.

It can be concluded that turbulence in the flow of air over a
wevy surf'é.ce is responsible for the groﬁh of water waves in a wind,
As soon as it is realized that the atmosphere is not an ideal, irro-
tational fluid, there is no longer sny mystery to the problem of wave
growth, If turbulent motion were well enough understood, the flow over
an irregular surface, and the resulting pressures, could be completely
desoribed, snd the problem of wave growth completely solved., Unform
tunately, with the present state of knowledge, this is impossible. The
best that cen be done at present is to approximate the more important
features of turbulent flow, and use such approximations to understand
the growth of waves.

Two such approximations were discussed in the introduction of
this paper, One of these, suggested by Eokart, neglects the turbulence,
‘and resulting pressure distribution, caused by the presence of waves
on the water surface. Since the available experiments indicate that the
pressures from this source are important in building waves, Eckart's
"gust" mechanism cen be only a fraction of the total cause of wave
growth, As already mentioned, preliminsry measurements indicate that
this fraction is 1/10.

The other approximation is due teo Jeffreys. It leads to a mathe-
matical expression which gives the pressure as proportional to the slope
of the surface., It is doubtful that Jeffreys intended this expression
to be applied to any type of surface deformation other than a pure sine

wave, Of course, it would be possible to extend the expression given by
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eq. (5), to any surfacé, or even to maké some numerical modification %o
: pérmit the explanation‘ of more recent experimental results. However, it
is difficult to see any physi.cal justification for such ideas.

It‘ would seem better to use the more recent experimental informe-
tion on the most fundamental level; namely, to develop a new approximation
for the turbulent flow of air over an irregular surface, A new expression
for the pressure would follow from this approximation., It has been the
purpose of this stﬁdy to develop such an approximation. The approximation
consists of a simple geometrical model (fig. 6) which permits the compu-
tation of the out=of-phase component of pressure in air moving over a
wavy surface. The model has been applied to some simple cases, and the
results of these appliocations yield the following conclusions:

‘For waves of moderate steepness, the model, as desoribed in part C
of Sec, 111, with the angle equal to 0,003 radians, is an adequate first
approximation. This follows from the comparison of the predictions of the
model with the measurements of Motzfeld, discussed in part B .of Sec. 1II,
as well as from the application of the model to the growth of water waves,
as discussed in Sec. IV,

The model, in its present form, cannot describe the flow of air
over waves of large steepness, or waves with sharply pointed crests.

This follows from the comparison of the predictions of the model with the
measurements of Stanton*, who used models of large steepness, and with
one of the tests of Motzfeld, using a wave with sharp crests,

¥ In several talks which the author has given on this study, he reported
an agreement between the predioctions of the model and the measurements
of Stanton, Later it was discovered that this was incorrect. It should

be noted further that amplitudes of the waves in the testw-models used by
Stanton (6) seem to be incorrectly reported in Ref. (1).



w7 Sem

It is possidble that the difficulty in explaining, quantitatively,
the.results of Stenton's measurements does not depend upon the steepness
of the wgves, but rather depends on the low Reynold's numbers obtained by
- Stanton. it is to be expected that the characteristics of a turbulent
phenomenon, such as that now under study, will vary with the dimensionless
Reynolds number

R = U1/7 (151)
whers U is the velocity, and 7/ the kinematic viscosity of the fluid
(in this case air) end 1 is a characteristic length associated with the
phenomena, For the present case, U = (W=l), and, in accordance with the
assumptions of the model, 1 = A, For Stanton's tests the Reynolds
numbers were of the order of 105, while for Motzfeld's tests they were
arownd 106. For water waves under realistic conditions, the Reynolds
numbers, defined as above, are of the order of 107,

A variation with Reynolds number is implied not only by the measure
ments of Stanton snd Motzfeld, but also by the fact that the mbdel fails
to reproduce the observed wave=lengths of water waves at large fetoh (or
duration). Even though there is no direct connection between the dimen=-
sionless fetch parameter, F (Cf. eg. (85)), and the Reynolds number de=
fined in egs. (151), nevertheless the data at small values of F ﬁas taken,
generally, for short waves and low wind=~velocities, while the observa- .
tions at large values of F were, generally, of long waves and high winds,
Thus there is a general inorease of Reynolds number with F,

There is insuffiocient experimenmtal information, at presemt, to
permit sny precise representation of variation with Reynolds number, or

even to check the idea that the choice of U and 1 for eq. (151) is correct.
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Many other features of the model require more experimental information
than is now available, For example, it would be desirable to reach a
definite conclusion as to how the model is to be interpreted physically.
The purpose of the model is, after all, to understend the growth of
ﬁater waves under realistic conditions, when a broad band of frequencies
exists., Before the model can be applied to such a problem it must be
decided whether the straight liﬁs of fig. 6 represents the position of
a separated boundaiy-layer, & line joining the points of separation and
reattachment of & boundary-layer, or & method of computing pressures
from an asymmetric, but non=separated boundary-layer., A small wave in
the trough of a larger wave might or might not be subjected to the
force of a high windwvelocity depending on which of these interpretations
is correct. Such information might be obtained from a wind tunnel test=
progrem,

There is sanother question which could be investigated in a2 wind
tunnel, and that is the dependence of separation phenomsna on the shape
of the wave crest, Actual waves do not have a sinusoidel shape, but
are usually more pointed at the crests. Intuitively it would seem
that sharper crests would make separation even more certain, and the
resulting pressure asymmetries more pronounced. Motzfeld's observations
indicate this 1s true. Little experimental evidence on this question
is =vailable,

Although such wind twmnel work is important it can never give
the complete picture, Conditions at the surface of a water wave cen

not be duplicated by a solid model. For one thing, the motion of water
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particlés near ‘hhé surface relative to the wave shape is, on the average
| over a wave length, equal to the wave speed (i.e. the wave moves through
the water but does not carry the water with it). Further, at high wind
speeds the motion of the water near the surface may be turbulemt,

Since the bshavior of the boundary layer must depend on conditions at
the boundary between air and water thls water particle motion is quite
important, It is hard to imagine how the ¥elocity field in the air over
an actual water wave could be explored, but such an experiment is cer=
tainly necessary,

In addition to the experimental work, much more theoretical work
is needed., The observed ratio of height to length for large waves on
the open sea is about 1/30‘, or four times smaller than the theoretical
limit of 1/'7. This is completely wmexplained, In order to wnderstemd
this fact, some mechenism limiting wave growth must be devised, It
seems likely that such a mechanism would depend upon the exlstence of
the broad ba;nd of frequencies presemnt in any real wave pattern. This
conclusion is an extension of one of the results of the present study.
It was shown in Sec. V that non-linear interactions between waves of
different wave-lmgthé can cause limitations on the maximum average
steepness attainable by a growing wave,

Further problems exist in the extension of the present theory to
the three~dimensional case where finite crest lengths must be considered,
Clearly, the present theory represents only a beginning to the underw

standing of the growth of water waves in a wind,
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