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ABSTRACT

~This study consists of an attempt to understand the mechanism
'whereby the wind causes the growth of waves in watsr, A simgle géo-
metrical modsl is suggested to describe, in part, the turbul ent flow
of air over a sinusoidal surface, Ths model permits £he calcﬁlatian
of the m&gnituda of thet component of air pressure which is responm
sible for wave growth. Interpreting the model as a rough picture of
a separation phenomencn permits the calculation of thse magnitude of
that component of surface shear which Also contributes tb wave growth,
Pressures computed from the modsl coineide reasonably,wali,With'SOme
measured in wind tunnsl tests using solid test-models,

| As a preliminary to the applicétion of the model to ﬁatsr sur-
faces, = generai wave-growth equation is developed under the condition
that winds extend over only a finite region of space, Usé of this
growth‘équation, together with a condition limiting:the wave=height
(obtained ffom the theory of a single-frequency Wave‘system), leads
tb an encouraging comparison between the predictions of the model
gnd observations on the growth of water waves éver a*@ide }&ngs of
experimental conditions,

Bffects limiting wave growth in multiplenfrequenéy'systems

are considered briefly, and a result is obtainsad which describss

one such effect,
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How the wind makes waves in water has never been satisfaotori}y
- explained. Observations of wave characteristics date from the{days of
Leonardo da Vinoi,_who ?eported an apparent incresass in waveflength of
ocean waves with distance of wave travel, In the last few years quite
accurate semiQempirioal relations have been developed which’felate wave -
height and length to wind speed, fetch (distance from beginning of the
storm to the point of observation), and duration (1). with‘theselrela-
tions the waves resulting from eny given storm may be predicted; of,
conversely, if the waves only are observed, the position and‘étfength
of'the storm which produced them may be determined, even though the
waves may have traveled through a long region of calm since leaving the
storm area, But such relations give no clear understanding of the inter-
action between wind and weter,
| Why'should such a problem still exist, with all the abilities
- of modern phys;cs and the accomplishments of modern serodynamics? The
natﬁre of the préblem can be understood from the'simplést picture of
wﬁtgr waves and alr motion., For the two dimensional cése, with the y-
axis pointing vertically upwards and the x-axis lying alongAtha undism
turbed water surface, gravity waves of small amplitude arebadequatély
represented by (Cf. Ref. 2, p. 363) i‘
4= acCes k(x ~Ct) ey
vhere .7 is the height of the surface, measured paralleivto the y -
axis, and wave length and speed are related by ‘ |

kC?= g = the acceleration of gravity  (2)
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Beneath the surface of the wave the motion of the water particles
- at eny point is described by the x and y components of velecity, which
are, respectively, |
uiakCekgCasK(X~Cf) o (3)
V= akCer?5/n Kix-ct) _ - (4)
If a variable air pressure applied at the surface (thus alnérmal stress)
is to do wnrk‘on the wave system, the pressure must be 180°’éut of phase
with the outward normal component of water particle velocity at the
surface. For small amplitude waves, the normal'component 6f velocity
may be set equal to the y component, given by eq. (4). ' Thus the vériable
part of the air pressure must be 90° out of phase with the suffacevshape.
| An analysis of the air motion is given in Section III, where it is
shown that fof pure potential flow the variable part of the air pressure
‘is in phase with the surface shape, Thus if the air is moving in potenw
tial flow over the wave surface, variations in air pressure'cannbt cause
wave-grcﬁfh.

Shear fopces applied at the surface might do work on the wave
sysfem (Cf. Ref., 2, p. 629), This possibility is analyzed in Section III,
Shear forces of the right phase exist for air in potenﬁial flow, and if
the motion of the water immediately below the surface is 1aminar; work
could be done on the wave system. However, the resulting éhear fofce
depends linearly upon wave smplitude, snd if this is the only force
present, wave growth would be exponential, Sueh growth rates are not
observed, B

Thus an ldealized picture of air and water moticﬁ completely fails

to describe the phenomenon of wave growth in a wind, It is'possible to



understand then why the problem is still unsolved. Only recently have
; non-ideal‘fluid motions (e.g. turbulent motion) been éarefully investim
gated. Even now only a very little bit is known of this extremely com-
plex field, |

‘Using some early results on non-ideal fluid motion, Jeffreys, in
1925 (3)quggested a mechanism to explain wave growth, He based his
idea on analogies with two results, First, the motion of air around a
sphere placed in an air stream was observed to be non-potential behind
the sphere., The pressure on the back of the sphere was»foﬁnd to be
less than it would have ﬁeen had potential motion been followed. Thus
the sphere experienced a drag force, Second, the pressure on a flat
plate held at an sngle to an air stream was found to be propértional to
that angle, From these results Jeffreys reasoned that the motion behind
a wave crest is not potential motion, but such that the pfessure on the
front (weather) slope of the crest is greater than that on fhe rear (1ee)
slopé. Further, the variation of pressure over ths surféce must go as
the slope of the surface. Thus the variable part of the air pressure,

according to Jeffreys' idea, is

—c)R2L |
ap =sp(w-c) of (5)
= density of the ai
where Ag msity o e air
W = speed of the wind
§ = arbitrary constent (the "sheltering coefficient™)

Actually, there is no reason to believe that there is any similarity
between air flow around a flat plate held in an air stroam end air flow

over a wavy surface, Thus Jeffreys was probably not jusfified in using
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this analogy as a reason for selecting the fenn-ggl in his pressure
.law, A more reasonable way to approach his result is as follows:
Certainly the pressure must be proportional to the dynamic pressure
of the wind relative to the wave shape, thus 2 (W - 0)2. It is
reasonable ﬁo suppose that there is some break-down of poténtiil flow
behind the crests, and fhs resulting pressure distribution undoﬁbtedly
has a componeﬁt 90° out of phase with the wave shape., Aléo, the magni—
“tude ofrthis component must depend on the size of the wave, The simplest
mathematical expression which is 90° out of phase with a sine wave and
is proportional to the size of the sine wave is its derivative, Thus the
pressure is proportional to /ED(W'- c)? ;g?. Inclusion of an‘arbitrary
constant is reasonable in the hope that many of’the unknown factors
may bebthus disposed of, and the result is the simplest Possible expla=
.natioﬁ of wave growth, Indeed, in 1925 it was probably the only reasone
eble explanation. Unfortunately, the predictions of this idea do not
agree wifh observations, First, the pressure depends linearly upon
wave amplitude, Thus the resulting wave growth is expéﬁential in time.
As mentioned eaflier, this does not agree with observations, 3Second,
rJeffreys evaluated the constant, s, by measuring the smallesf wind
which would maintain waves against viscosity, and measuring the wave
length of the waves so maintained. (Cf. Ref. 2, ppa. 623;625 for the
relations involved;) The resulting wvalue of s found Sy him end others
is 8= 0,27, If this valuve is used for large waves, for instence at
sea in a storm, the wave growth is at least ten times faster than

observed,

Although today the picture is far from complete, enough additional
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informetion is available to make important improvements in Jeffreys’
- preliminary idea.

Recently another, and completely different, wave-growth.meohanism
has been suggested by Carl Eckart (4). The motion of air in afstorm
is far from regular, Many local pressure fluctuations occur, and seem
to move with the meen air velocity in their vicinity until they disappeara
Zckart has anélyzed the response of the sea surface to such éressure
fluctuation and found that a wave pattern is produced whose spectrum
appears similar to that observed, Increase in wave height:is a result
of the addition of waves arising from various pressure fluctuations, or
Pgusts", Thus the rate of wave growth depends upon the correiafioﬁ
améng gusts, There is no direct emplification of wave height; thet is,
the existence‘of a wave does not result in any local pressure variation
‘which causes that same wave to grow still further, Thus there is a
distinct difference between this theory of Eckart and that of Jeffreys.
Unfortunately, preliminary measurements of the strength of such pressure
fluctuations‘indicate that wave growth from such a cause will proceed at
about 1/10 of the observed rates

The present study is principally concerned with fhe description
and analysis of a model of air motion over a sinusoidal surface. Thus
it might be considersd an extension of Jeffreys' idea, However, béfore
this matter is considered, a preliminary result is obtained. The author
was unable to find in the literature the solution to the problém of the
response of a water surface to a sinusoidai pressure.appiied over a
limited region of space, Since both storms and oceans:are fiﬁite ih

extent, it is felt that such a result should be obtained for the analysis



of the affect of wind on water., The next section of this paper is de=
“voted to that problem,

Since a growth mechenism can only give'half the description of
water waves, a portion of this paper is devoted to considexfatiop of
effects 1imiting wave growth. Only very preliminary results are obtained
. for this part of the problems The understanding of growth-limiting mecha=
nisms is a different and perhaps even more complex problem th@ the under=

standing of growth mechenisms,
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II, RESPCNSE TC A TRAVELING DISTURBANCE,

In explaining wave growth in a wind two types of forces ﬁill be
‘considered, These are normal pressure and tengential shear applied at
the surface. These forces will be periodic, with a period equal to that
of the water waves. The magnitude of the forces will depend upon the
emplitude and wave length of the water waves, and the velocity of the
wind, Thus it is necessary to determine the growth rate of waves in the
pressnce of a traveling periodic disturbance of éither nérﬁal pressure or
tangential shear when the extent of the disturbance is limited in»épace,
i.e, limited to the region over which the wind is blowing, The basis
of the.method‘used to solve this problem is given by Ref, 2,»p.'396.

A, Forces Normal to the Surface, Consider first the application

‘of 'a normal pressure given by
_/54=/q,éﬁasKZTX'~tth) for 0< t and ~D<£ x< 0
| (8)
and /6:.57 otherwise,
The response to such a function will be computed by a Green's function
method, Buppose an initial pressure impulse applied at the surface and
having a value Cos kx per unit length causes oscillations wherein the
water surface is given by the real part of
. t. ’
7= f(k)Cos kx-e“7 , (7)
vhere T %= kg, Then the response to a & -function impulse applied at
the point x = < is
) S : ,
LT
p=—[fk)e " Cos kix-=)dk (8)
since :

S(x—o<) = 5= [ Cos k(X=x) dk ()
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The particular surface pressure under consideration (sqs. (8) )
can be théught of as a set of infinitesimal §~function impulses
of width dx applied at intervals of time dt, Thus at the point x =
end the time t = & , the magnitude of the applied impulse is -
dp = po Cos(Kx-~wt)dxdz L (10)

for o« eand ‘C in the stipulated range. The cumulative effect of
such impulses &t the point x and the time % is given by the in'begral

:ﬁ_ /[D[ Lr[-t—’z:) ,_k(x ) e—tk(x o()J

C4Te 94

| -[e S wt) *‘(Ka( wz)] dl docdT (11)
The correct form for (k) obtained from Ref. (2), pp. 11 and 415,- ﬁas

been introduced into this expression,

7((«):_;;%/?"— )

‘where (3, = density of the water. Integrating first o#er o and then

over T gives

l:/:’o Ld‘f th ~L(K"k)D
-4.779:? J(E‘ez {]fe' /=

L(K <)
ik ,_(E+K)D STt Ckx g (EHR) D
* e (K + K) )'—é(w+7‘)‘ ’+(e —L'(K+k)~
. (KX /__e‘{(K""K)D e ‘(L()—G")i'/ K
€ T(E-k) ((w~T) }d .(15)
Making the substitutions
dk =2/3) odor V o/ = {f
(14)
RD=N xw?9=F  wt=5
and assuming,first, Kq = w’ , : (.15)

permits the remaining integral to be written as
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2
/{el_{g (-ab ﬁy){/_e——z(/ 4 )N)

7= 277‘/09 oF (/+«1)(/-¢12)
vv‘[ ; W 7 . ¢ . Z/V
L - T | iy (b - T
(14 )(1+*) ((“1)(/1“71)
_,,(7 /é_’l-b- ¢ég)[/ 61(/*:4?/&/) J
(-9 )(1=2f2) } q

(16)
The first, third and fourth terms of this integral contain a.éparent
singularities, and thus these terms will make the most important contri-
butions to the result, In comparison with them, the secdnd‘ term may be
neglected, The first term of the integral may be exprsssed as the sum
of four integralﬂs. Call the first of these 1, eand make the substi’tu—

tion z =y - 1. Then
o [ht £ (2°r22+1)]

=~ [ € '
4 “_/ (z+2)* Z i v (xn)

Important contributions to the integral, for large values of f (1 €s
a wave train many wave-lengths long), occur in the reglon of 2 = 0,
Therefore a negligible error will be introduced by neglecting the
variation of z in the termm (z + 2)2 and writing the exponent as

i ‘(‘f‘- b + 2fz), Finally, extension of the lower limit of integration
to- oo may be justified by the same argument, and the integral is
approximately

F-5) ) zifFz
J; _ﬂ_/-é—e ( )/ez' _.O.fé.

= (18)

-0
The singular behavior of this integral is due to the fact' J(v:ha'b it
represents only a part of the complete expression'bf ecj. (16); The.
complete expression has no singulerities, as may be verified by writing

out the exponential terms as gines and dosines and taking limits, Thus
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in order to svaluste the integral term by term using contour integration,
" the 'principal parts of singular integrals must be taken, and the singue
larities must be left on the same side of the contour in all the inte=

grals, The result for 11 is

. L(f-b) 4+ for £3>0
- for £f< 0

(192)

In the same manner the other three integrals of the first term are

approximated by

i LAF—/yj +for £ >~N ,
1, .l ;—F (19b)
—~ for f< -3
e i({+é) +for f > =1b/2 |
13 ~ =+ —Z’_"‘ e (19¢)
_ f<~bf2
© ((F+D + for f>—b/2 - N
1 ~* T;’}e (¥+E) (194)
4 f<=Db/2=N

The complete term is then I = 1 - 12 - 13 + 14. The third term may

be handled in exactly similar manner, giving

L(‘F-f-b) +for f£>0
leflg— { (208)
~ for £<0
. N) (#for £ > =X
JZ gi_mea(f+b+2 ) ( 20b)
2 ~for f<aN
T L(,c+b) +for £ > -1b/2
~for f <=-1b/2
(f+b42N) (+for £ >N «b/f2
3, x+Tte (20d)

~for f£< =N a-b/2

where the complete term is J = Jl -dg = J5 + J4.' The only difference



found in the fourth term is the exist
point z = 0, whereas single poles wer
third terms. However the principal v

be obtained, and the results are

ance of a double pole at the
e encountered in the first and

alues of the integrals may still

: (- (¢ for £<O0
le_ﬁrfe"( ) | (21a)
~for £>0
L(b £) (¥+for  £< b/2
L, = ~+T($-£ (21b)
- for £ > b/2
{(b-f) (+Tor f< X ,
L, *T(f+N)e (21¢)
- for £f> =N
S(b-€)(+for £ < <N + b/2
L, 2t T (F-2+0)e" , (21a)
-for £ > <N + b/2
where the complete term is L = L1 - L2 - L5 + L4. The complets express

sion for the surface is approximately the real part of
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+J+L
g 57 (149

7= (22)

This expression turns out to have seven different values in seven

different regions, as follows (taking real parts)

Region 1, £ < =N = b/?2
n =0 (23a)
Region 2, =W =b/2 <f< N |
“"—475_:—3 [Cos(F+b)+2Cos (f+b+N)] (23b)
Region 3. -N %f < =N -b/2
= ® (Cos(f+b) +3Cos (#-b)
1 i (250)

+a(++N)Sin(£-6)]



Region 4, =N - b/2 <f< -b/2

7:-;/_%[Cos (f—b)*Cos(#,tb)—ZbS/n(f—b)]  (234)

Region 5, =b/2< £< 0

= —423 [Cos(F-b)+2Cos(F+b)-2bSin (#é)] (230)

Region 6, 0 < £< b/2

:'427[—4@5(1‘—!7)* (4 ~2b)Sin (f—b)J - Y(ZSf)

Region 7, b/2< f _

7: 0 . (23g)
Iﬁ is»tacitly assumed that N > b, The situation when this is not
true will be‘treated later, Thé description of the surface at the
- boundary poiﬁts of the regions cannot bs obtained by thevmsthod Just
described. However other methods are available for obtaining approxi-
ﬁate solﬁtions near these points, Such solutions indipate that the
emplitudes of the oscillations given above as straight linés in x (or
f)rand shomn in fig. 1 are joined by smooth curves at the boundaries
~of the regions. The rounding effect of these curves extandé over a few
wave lengths, Therefore, for N and b large the straight lines describe
the complete solution adequately, and nc dseper undérstanding of fhe
problem cen be gained by careful attention to the special solutions in
the vieinity of the boundary points. Therefore the methods of obtaining
such solutions, and a detailed descriptioh of the resulté will not be
given here, |

Consideration should now be given to the meaning of the solutions
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Just obt#ined. vThe first two terms of the solutions in regions 2, 3,
’ 4, end 5, and the first term in region 6 have smplitudes which do not
vary with either £ or b (i,e. spaée or time)., Such terms represent
the transient parts of the solution, as may be verified by inﬁroducing
en exponential damping term in the original expression; that is,'sub-
stitute exp (i 0= p)(t -T) for exp 17 (t -T) in eq.(11)s The term
exp (-pt) will come through as a factor in the transient terﬁs listed
above, but will cancel out of the remaining terms in the 1imit of
small p. Therefore it is the remaining terms‘which are'oflchiaflinte-
rest, The amplitudes of the oscillations in these remaining termé
are lisfed below together with the regions over which they afevapéli-
cable. The expressions have been rewritten in terms of x (feteh) and
t (duration). The amplitudes ars also shown in fig, 1,
Region I, x <= D (includes Regions 1 and 2)
»Ampiitude =0

. €
Region 11, - D< x<~— z"%i— (includes Region 3)

. Ak
Amplitude = ~ (x+ D)
o9
wt . o ' :
Region III, DY ok <0 (includes Regions 4 and 5)

Amplitude = --/—bi—-— wt
Rl

2

; wt . ST
Region IV, 0 < x< S5 (includes Region 6)

Amplitude = ;‘;v% {—L-g_—i—_——K)()

Region V. -"ffai< Kx (includes Region 7)

Amplitude = O
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It was pointed out sarlier that the tacit assumption ¥ > b was
made, For the fegions I through V listed above this assumbtion can
be relaxed to N >1b/2, However there is no difficult? in obtaining
the soiution when this assumption does not hold. The amplitudgs of
the non-transient part for N = b/2 and for N < b/2 are shown in fig. 2.

fhe various regions of wave development shown can be labeled in
the traditional manner, Thus region II is the region of "fetch-limited"
growth; region IIT is the region of "durationw=limited" growth; and
region IV is the region of propagation into the area of calm, Another
well known result is to be found in this solution, It will be remem=
bered that the applied pressure has the form of Cos (f - b) (eq. (6) ).
The non~transient part of the resulting surface waves have the form
Sin (£ = b) (eq. (23) ). Thus the necessary préssure-to-surface phase
relation exists, a relation pointed out by Lamb and othérs (2).

It was assumed (eq. (15) ) that Kg ~w? 1r this,assuhption ism
dropﬁed,'that is, if pressures are applied which dovnot advance at
the same speed as gravity waves of equal wave length, ; solution may
still be obtained, However, the solution is trivial, and consists of
nothing more than a progressing surface deformafion with a,mégnifude
-apﬁroximately equal to the hydrostatic head corresponding to the applied
pressure, with some transient terms, | |

To complete the discussion of the solution it shéuld be mentioned
that certain possibly large contributions to the intégral of eqg. (16)
have been omitted. These are the contributions near the points of
stationary phase of the exponentials in the integrana.: It these-terms

are evaluated it will be found that they contribute terms such'asvthosa
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erising from the applicatién of a local impulse (Cf. Ref, 2, sec, 239 =
2405, Such terms do not contribute to the coherent wave pattern which
is now>of interest,

The variation in amplitude of the waves resulting from a4£raveling
prsssﬁre disturbance is open to an interesting interpretation, Notice
that for the step function type of pressure distribution'here enalyzed,
the effect of sudden variations in the amplitude of the pressure moves
across the wave system at group vslocity. Thus, starting at'the’down-
wind origin of the pressure distribution (at x = -D) the wave ampli-
tudes inecrease linsarly from O %o potut/?falg over the intérvalgﬁ X =
(C/Z)t, For deep-water gravity waves the group velocity is ‘

| U= ¢/2 o (24)
Waves leaving the pressure region at the upwind end (at‘x = 0) decrease
in‘amplitude from pou)t/ZA&,g to 0 over an interval of ﬁhé,same length,
It ié reasonable to extend this to say that any variation in amélitude
of aéplied pressure will cause an effect on the amplitﬁde of the wave
system which moves across the wave system at group veloecity, Thus the
total wave-amplitude at any point (x, t) is the sum of allv"éffects"
‘which, traveling at the group velocity of the wave, arrive at the spatial
point x at the time t, The magnitude of such an "effect" is (w/2g, g)
times the pressure at its point of origin. This,expianation can be
expressed by an equation relating the wave-amplitude, a (x,t) to the

amplitude of the applied pressure, p, (x',t'). Thus

+ ~ .
c?(x,t):z‘;:gf/%(x-lftjt—-’b)dt - (28)
o
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This equation certainly explains the results of the application
of a step-function type of pressure distribution as analyzed in this
Section, On the basis of the interpretation given above, it will be
assumea to apply to all types of pressure distributions.

The result cen be expressed in a more useful form, Thus, make

(j‘:X’“Ut ‘ .
@:‘L‘—t } (26)

the substitutions v

in eq. (25)s The resulting integrand does not contain t explicitly,

The expression reads

t R
_a(y»rUth)éZ;.:g//g(g+U,@,,3)dﬂ o (27)

This may be differentisted partially with respsct to t yielding

(22) =z px8)= U3+ (38), (@

. 5 .
Separation into conditions of duration-limited growth (§ﬁ§'= 0) and
fetch=limited growth (g%; = 0) is an obvious result of this expression,

B, Forcés‘Tangent to the Surface, TBarlier in this section it was

pointed out that two types of forces are to be‘considered iﬁ explaining

‘ wa&e growth in a wind, These are normal pressures andrtangential shear,
So far the discussion has been of normal pressures only; ‘However, simie-
ler results are obtained from considerations of tangéntial shear, The
results differ in two ways, both of which can be seenkeasily from Ref. 2,
pp. 629=-830, First, the waves which grow from the application of peri=
cdic tangential shear forces applied to the surface‘are in phase with

the forces, whereas the waves are 90° out of phase with normal pressures,
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Second, since viscosity must be considered in order to explain energy

. transfer by shear foreces, viscous losses are present. Of course, to
meke a realistic picture, viscous losses should have been included

with the consideration of the effect of normal pressures, However;
with justification and conditions to be presented later, #iscﬂus losses
will be omitted from the present problem, Thus, if so‘is the émplitude

of the shear force (per unit area), eq. (28) can be modified to read

V32, +(3) =gl Rove o] o

That the amplitude of the shear force can be included in thé'growth
equation in the same manner as the amplitude of normal pressure is
jﬁstified in the following manner, The enalysis uses the results of
Sections 349 and 350 of Ref. 2. Under the assumption that applied
. normal force is 2ero (note that since the theory being used here is
linear, this assumption only simplifies the subsequent caléulations,
but.doeérnot limit the results, since effects of normal forces may be
added into the linear theory at any point) the applied tangential force,
s, is given by‘eq. (3), Sec. 350(2) as

2
in  (nee2vki)eo?— 4K

s o
T N+ 2vVK*~ 22 Km | (30)

The number n appears in the factor exp (ikx = nt) of tﬁe expression

giving the surface shape (i.e. 2q. (9), sec. 349 (2)). For the present
case, assume n =05 - i, whers F<< T . Except i‘of very minute wavem
lengths, the number vV k2/0~  (thus also Vim/o~) is very small, Then

eqs (30) reduces, epproximately, to

5 3_/%_2‘:7(,34—2ka) B (31)
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with the surface shape given by
» = aoe'gtCos (kx—aot) ' (32)
Suppose the applied tangential force is written in the form |
s = s,Cos k(x-Ct) _ kﬁ' (33)

and the surface shape is written as in eq. (1)

b =aClos k(x-C%t)
Then egs, (31) and (32) imply

TE 2R T

-2V k%Q ‘ _ | (34)

The second term on the right-hand side of this equation‘represents the
viscous loss, Thus the size of the ratio o

1vkaf, o/ ks,
determines the importance of viscous losses in the present problem.
"The origin of taﬁgential forces is considered in the next section where
it is sthn that ’

So= 7.7-10" "/ W/ (2 VTK )

In the c,g.s, system of units

V= 0,01 cm.z/%ee,

g = 103 cm./%ec.g

fo

(G = 0.00125 gm./om.3

1.0 gm./'cm.3

and the ratio is approximately

| 5108 83/2/ A 2w
where A = 27r/k, the wave-length of the wﬁves. For.wavéé to be consi=-
dered in this study the value of a/)l ranges between-b.oos énd 0.07,

Using a value near the upper limit of this range as a conservative esti-
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mate, the ratiq becémas

5 105/ A}/2 w2
In the range of short wave—lengths, €aga ;lG?lOs cm. , wind speeds
must be of the order of 103 cm./see or greater to make this rgtio
small, Certainly the range of conditions wherein the ratio is iarge is
not negligible, However, it is not the purpose of this §tﬁdy to meke
a complete aﬁalysis of all factors affecting wave growth,’bﬁt rather
to propose a model or air flow over a wave and to make a preliminary
analysis of the predictions of suech a model, ﬁith‘such‘alpurpose in
view, little extra understanding would be gained from the added
mathematical complications involved in including the effectsvdf.
viscous losses, Thus, realizing that the results must be incorrect
for small wiﬁds and small wave-lengths, the viscous term will be dropped
from eq. (34). (Generally, P, S,3 Cf. part D, Sec,III,)

. The resulting expression gives the change with time of the ampl i
tude oflﬁn igfinite wave train in response to a periodic shear force
applied over an infinite range of space. Suppose such a shear force
is applied only for a short interval of time, dt. Then from egs, (1),
"(53), and (34) the resulting surface deformation is

dp = (0°s./2p,9) It Cos K(x-Ct) | (55)
This result is formally identical with eq. (7), with £(k) similar %o
that given in eq. (12), except that P, has been'replaced by s, and the
factor 1 is missing. The remaining analysis could be carried through
with shear forces just as it was done with normel pressﬁrés, end the
only change in the result would be that the resulting(surface form is

in phase with the applied forces instead of 90° out of phase as in the



case of hcrmal pressures,

It must be pointed out.that the results of Lamb,'on which the
- foregoing analysis was based, were obtained wnder the assumptién that
wave amplitudes are small compared to ény other eharacteristidflength
arising in the problem. Cne such length is the thickness of the layer
| _of vorticity at the surface (the boundary layer);Vzléﬁﬂ—, The results
will be of little value in the present study if they must be restricted
to waves with amplitudes small compared to fhis thickness., A complete
solution of the non-linear problem of finite amplitude wavés in a rota=
tional fluid will not be attempted here., However, it will-be‘shown that
the boundary layer thickness is independent of wave amplitudé; Since
the effect of shear forces applied at the surface is transmitted into
the fluid by the vorticity in this boumdary lajer, such a result implies
"that the effect of shear foreces is independent of amplitude, .Another
wﬁy to state this argument is as follows;r Suppose thefe exists'a
system of finite emplitude waves. Suppose a shear force is applied at
the surface of these waves which is of the right phase andeavealength
to create a small incraemental wave of the sams wave-léngth and phase as
the original finite amplitude wave, The resulting vorticity will be
approximately the same as if the original wave did not exisﬁ. This .
means that the incremental wave will be the same as if the surface
were originally flat, But this is to say that wave growth due to shear
forece will proceed at the same rate with waves of finite amplitude as it
does for infinitesimal. waves,. |

The desired result will be shown for an incompressible fluid moving

in two dimensions. Suppose the vector velocity at any point and time,
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(=, Vs t), is given by

%zib{""ﬁ?}' (36)
Assume the fluid motion is approximately irrotational, or that
= : 37
%= g,+ %, S (37)
where %o satisfies
Vx4, =0 | | (38)
and &, K 4, . The equation of motion cen be written as (Cf, Ref. 2,
Sec, 328)
0% / 2 o -
—= W)g=-3 Vp+2VV g+ jg
52 t @ Vg="Z V/ %+4g (39)

Using vector identities, the second term on the left cen be written as
N S
(g-V)g=+wvigl| — gxvxqg, - (0)
in view of eq. (38), Substituting this into eq. (39), and taking the
curl of the fesulting expression results in
—g—:g(ng,)—— fongX%.:‘uVZ(ng,) o (41)
The second term on the left of this expression can be ’exparided ‘as
VxgxVxg = §(VeWxg)- ¥xg (veg)
+[(9xg)ew]lg— (g-v)(wxg) (42

The first term on the right-hand side of this equation is zero iden-

7 tically. The second term on the right vanishes since the fluid is in-
compressible, The factor Wx %, appearing in the third,’cefm haé only a
z component, thus only the operator'% remains in the \_)7 term, .Butg
is a function of (x, y, t) only,. so this term venishes. Next, define
the vorticity, w , as C(J—‘-/V’(g,/u The remaining squation is approxi-
mately | N

QW 4 goo Vw2V VW . (43)

where the term %oVw has been neglected in accordance with the assumpt:
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mentioned abovs,
Suppose the velocity %o corresponds to that of irrotational wave
motion, - Then
bo=akC ekg[lo Cos K(X“Ci') +j5/"‘7 K(’(‘C{-')J : (44)
where a, k, and C have their usual meanings. Let a new coordinate
system be defined which moves with the irroctationsal wave, thus
x' = x - Ct
y' =y (45)
T =t

In this system eq. (43) becomes

——"~C ,-/-o(gf—";—/-ucf;aa—;-u,— :‘U(V’)Zw - (46)

where |
o = 2kC X7 Cos kx’ | (47)
zgkCe‘W:Sirl kx’ i» (48)

In ’chis system the potential function of the irrotavtional wave is
_-_;C..g: C(x’-aek”:g,'n kx’) ' (49)
and the stream function is
zwf c(4~ae ’7C~osl<x) o (50)
If eq. (43) is rewritten in terms of & , { , and T , the result is

o3 =’C/<‘[(%-—C)z+ 7/0—2:][83 ; va(agﬂ m,z)] (51)

where u, and v, can, in principle, be definsd in terms of & and .

In this system the irrotational wave moves with steady motion, i.e., there
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is no time variation, It is reasonable, therefore, to suppose that the
time variation of w is small, or at least that the chenge of ¢ in
any single period of wave motion is negligible, Then eq. (Sl)vreduces,

approximatély, to

QW ., K Qw d'w ,
ot ¥V (ot 372 (52)

which can be solved by separation of variables, giving

eK.I’+K,_E

w = W, (53)
with K; and K2 connected by the relation
2 2 _ ' Y
K.+ (CAv)K, +K =0 o (54)

In terms of the original variables, x, y, and t, the solution for W is
w= w, exp. {kKI[ cjﬂaek‘jCos k(x-Ct)]

| s KK, [x-Ct-aeXSink(x-cey)§ (59
The desired solution must bée periodiec in x with wave number k, There=
fore‘Kz's i, As already pointed out the number k 2)/C = k2‘1)/’d‘ is
negligibly small for all but the most minute wave-lengéhs,, Therefore

K= a-0015 (56)
where the choice of signs is determined by the condition that wWw=>0
' aéfj—>~°°a o |
' In accordance with Ssc, 250(2), thé suffaoe of ‘the wave is given by
v = ae’ Cos K(x = Ct) | (87)

Thus the term y = aey Cos K(x - Ct), appearing in thé expcnent of eqs
(55), measureé the distance from the surface, The coefficient of this
termﬂ};—-{’—; » determines the thiclmess of the boundary:«layer, Whiéh is seen

to be identical to that for infinitesimasl waves, This is the desired

result,
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- 111, A MODEL OF THE AIR-WATER INTERACTION,

A, Consequences of Pure Potential Flow, As before only the two

dimensional case will be considered, and the ocean will have only
single frequency, sinusoidal waves, Over these waves, and in the
direction of their motion, a wind is blowing with velocity W.

If the motion of the air over the water can be described as
pure potential flow, then it is easy to show that the necessary
normal pressure forces for wave growth are absent, Thus, consider
the steady motion situation in a coordinate system moving with the
waves (thus at velocity C). _The boundary of the air motioﬁ is then
77 = a Cos kx, For ak <K 1 a suiteble approximation to the f‘low of
the air is obtained from the potential

¥ =(w-c)(-x +36_kq5/'nkx) o (58)

and the strezam-function

Y= (w-c) (-4 + ae—kgCos/(x) j -~ (59)
(The stream-function is approximately O for y = i7 and the x component
of #eloci‘bies approaches W-( as y —» 20, while the y component goes to
'0.) The variable part of the pressure is the dynamic pressure, and,
with the density of air = /% s 1s given by )
+43%= L LG+ (35
=y (w-<)yG LI+ 2akCoskx] (60)
As has been shown, this is the wrong phase to cause wave growth,
If the motion of both air and water follows pure poténtial laws
right up to the boundary betwesn the two then a shear fo.rce of ’che.

right phase for wave growth results. Thus suppose the shear forcs,
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per unit area, is given by

£ .
S = '—25—6‘5 VZ ) (61)

where Cg is some coefficient of shear and V is the relative vélocity
between air and water particles at the surface, The velocity of the
water particles at the surface is (Cf. eq. (3) )
| “ = ¢(-1 + ak Cos kx) | (62)
where C is the wave velocity of the water waves, From eq. (58) the
velocity of the air particles at the surface is
% == Wl + ak Cos kx) _ k(63)
The variable part of v2 (still to first order in ak) is o
| 72 (var.) = 2(%2 - Cz) ak Cos kx - (84)
which is of fha right phase to cause wave growth.

There ﬁay be special conditions, perhaps when only very small
emplitude waves are present, where the requirements for this force
(i.e. pﬁre potential flow of both fluids at the boundary) are met,
However, undgr more general ccnditions, several observations indicate
suéh requirements are not met. These observations will be discussed
- next, ‘

B, Evidence of Departure from Pure Potential Flow,. In a classic

,(3)

work on the cause of wave growth in a wind, Jeffreys pointed out

that a sphere moving thru air suffers a drag force because the mobion
of the air around the sphere is not that of potential motion. Instead
the stream lines separate from the surface behind the,sﬁhere leaving

a wake of turbulent motion, In this wake, or saparatéd regiﬁn, thé

pressures are less than they would have been had potential flow con=-



tinued all the way around the sphere., Jeffreys suggested that a
similar phenomenon took place in the les of a wave, thus causing
asymmebtric pressures on the weather and lee sides of the wave bf
the right phase for wave growth, His results are described in the
introduction of this paper,

The fact that such a sheltering effect‘actuélly takesvplace
behind oceanvwaves was vividly pointed out by Cornish(s) who quoted
0ld sea=~captains to say "The sails are taken aback in the trough of
a wave", Further, measurements by Stanton (s)vover a sinuéoidal
wooden model gave a pressure difference between trough and crest
which was only one tenth that required by pure potential flow (Cf,
eé, (60) )» A curve showing a typical result from Stanton's measure-
ments is repfoduced in fig. 5. The curve shows a small pressure rise
- initially (i.e, just after the downwind crest), This.is‘fqlléwed by
a region of fairly constant pressure as far as the center of thé trough
of the wﬁve, Then the pressure rises azain as the wave slopes.upward
to the next‘crest. About half way up the slope, the pressure reaches
a ﬁaximum, then falls rapidly to a minimum et the crest itself,

The region of constant pressure along the lee slépe probably
indicates a region of separation, The pressure maximum on ﬁhe ﬁ%ather
slope may indicate the position of reattachment of the sep#rated
boundary layer. It should be pointed out that the rétio of amplitude
to wﬁve length for the models tested by Stanton was much larger than
that possible for water waves, It is possible that evidénﬁe of sepaw
tation would be even less obvious for models whose diménsions appro#i-

mate those of water waves more closely than did Stanton's,
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Fig. 3, Diagram of Cavity used by Roshko

(7)

Measurements by Anatol Roshko in & rectangular cut-out (fig, 3)

in the floor of a wind tunnel give a good indication of what takes place
in the.trough‘of a wave, His description of the results is Quoted here:

"Apparently the boundary layer, which sepa-
retes at the front edge, diffuses into the cavity,
so that the velocity on the streamline approaching
the downstream edge has some value greater than
zero., This value increases, at first, as the depth
is inecreased, and consequently the stagnation prese
.sures near the back edge increase at first. TUhen
the cavity depth exceeds a certain value (d/b = 0,1),
the separated boundary layer no longer reattaches
to the b