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ABSTRACT

This thesis describes a computer suitable for the determination
of the eigenvalues and eigenvectors of conservative mechanical and -
electrical systems.

In essence, the computer consists of several active circuits
with input impedances which act as negative resistances at the operating
frequency of the computer. These negative resistances are intercon-
nected with passive resistors and transformers to form a circuit anglo-
gous to the system being studied. For any setting of the control the
analog represents the original system at a single frequency only, -
consequently it cannot be used for transient analysis.

It is shown.that the analog circuit is, in general, unstable at
the control settings that are of nterest, but that the application
of suitable qonstraints suppresses the oscillations so that measure-
ments may be made. The negative resistance circuits are designed so
that parasitic impedances have little effect on the results. The com-
puter has been found to produce results accurate to one per cent in

most casese.
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I. INTRODUCTION

In recent years lumped electrical analogs of many conbtinuous systems
have been developed, intended primarily for the study of large scale
-systems by electric analog computers, Of particular interest are electri-
cal analogs for wave equation vibration problems as typified by the
vibrating string or membrane, (Refs. 1, 2) and for the bending of beams,
plates and other structural members (Refs. 2, 4, 5). In most cases the
physical systems are conservative and the analogs employ only reactive
elements,

In the solution of potential problems, on the other hand, use
of resistance networks (Ref., &) allows highly accurate solutions to be
obtained at & relatively low cost., ZElaborating on this approach, Swenson
(Refs. 7, 8, 9) has developed a direct current computer for solution of
membrane vibration problems, This computer consists of a large number
of resistors arranged in a grid to represent the tension in the membrane
and of several active circuits which serve as negative resistances to
represent the mass., In operation these negative resistances are set to
va;ues corresponding to a given vibration freguency and the circuits are
then successively balanced by hand, several balancing operations usually
being required due to the coupling involved,

In working with this computer Swenson found that the lowest mode
could be easily obtained while driving the system 2t one point and
observing the vibration frequency corresponding to zero input admittance.
Higher modes could be obtained only when the position of their nodal lines
were known, thus reducing the problem to finding the lowest mode of a

smaller region., He noted that it was impossible to obtain a balanced

condition in any network when the vibration frequency was set to a value
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higher than the freguency at which the input admittance became infinite.

The present work extends that of Swenson in two ways: the problem
of hand balancing the negative resistors is eliminated by the use of self-
balancing feed back circuits and modes other than the lowest are obtained
directly by employing multiple constraints or driving points. .In addition
alternating current is used for computation, in order to handle analogs
which require transformers.

Some of the basic properties of eigenvalues and eigenveciors are
discussed in Part II. The relative magnitudes of eigenvalues of systems

having one or more constraints is of particular importance.

Part III is an exposition of the theory of operation of the computer.

It is shown thet, without constraints, an analog becomes unstable at
the lowest normal mode, but that it may be made stable at all modes if
g sufficient number of constraints are applied. To achieve this result,
it is sufficient to assume that the negative resistance circuilts have
idehtical frequency responses. Finally, various techniques of obtaining
a balance with several constraints are discussed.
The actual construction of the computer is discussed in Part IV.
Here various prgctical considerations such as impedm ce 1evél, ease of
operation, etc. are taken into account. In addition it is shown thst
oﬁeration is essentially unaffected by small departures of individual
negative resistance circuits from the standard frequency response, or
by parasitic reactances in the computing resistors or transformers. The
results of various tests performed on the computing circuits are included.
Several examples are worked out in detail in Part V to illustrate

various points snd to test the accuracy of the computer. The results
indicate that it is not unreasonable to expect accuracies in the order

of 1% on both eigenvalues and eigenvectors.



IT. PROPERTIZS COF EIGENVALUES AND EIGENVECTORS

2,1 Conservative Mechanical System

Consider a system of masses interconnected by springs and perhaps

by levers, bars, etc., resulting in holonomic constraints¥*., It will

be assumed that the system is conservative, The system is said Lo have

n degrees of freedom i1f the motion of the gystem is known when the

values of n coordinates qi, g2, ...Qn are specified, The motion of

such a system can be expressed by the differential equation

My + Kq = Qs (11-1)

where M is the n ¥ n matrix

[~ -
mll my2. . .ol

mp1 mpR. .

Mz (mis) = . .

*

mnlmn2. B .mnn

and q is the column matrix

Fgl'
g = {qg&: a .

dn

The superscript "t" will indicate the transposed maitris,
ys D D

M
w

A constraint is said to be holonomic if the equation describing

it involves the values of the coordinates only, or, if time derivatives
of the coordinates are involved, when it can be integrated without
further knowledge of the motion,



Unless otherwise indicated, it is assumed that all square matrices
are symmetric and that all elements are real,

The equations of "free vibration" are obtained by setting the
driving forces ®i equal to zero, It is possible to introduce a
coordinate transformation of the form g = A u which will simulténeously
diagonalize both M and K (Ref 10, pg. 187), If the equations are also
normalized so that AY™™ A becomes the unit matrix B = (6ijj y -

At A W+ A%Kan T 0

Ed + Du = O, (II-2)

Here D is the n x n matrix with diagonal terms ry, Tp, ...rp; all
other terms being zero, The coordinates w. are called the normal
coordinates of the system and the r's are the sguares of the normal
frequencies of vibration of the system. These numbers are often termed
characteristic numbers or eigenvalues. These terms will be used inter-
chaﬁgeably. The columns of the transformation matrix A are qalled the
mode shapes or elgenvectors of the system, for they specify the relative
magnitudes (and phases) of the displacements of the various coordinates
vhen the system i1s vibrating at the appropriate normal frequency.

The usgefulness of the normal mode concept comes about through use
of the principle of superposition, which leads to the result that the

response of the system to any arbitrary set of forces may be expressed

p

as a linear combination of the normal vibrations. This is most easily
gseen, perhaps, by applying the transformation directly to the non-

homogeneous equation (II-1):
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A% a5+ k2 o= a¥o}={o §. (T1-3)
The resulting n equations
fi *+ =l =%l (II-4)

may be solved for u (t), the aQy (t) then being obtained by again
applying the transformation. When the transformation used is one which

~ has not been normalized, (II-4) may be written in the alternative form

.o 2 . t '
w, + o = igi}. (I1-5)
Aba

The theory outlined above is useful from an analytlical point of
view and in establishing the existence of a solution, but if ignores
the important point that the maetrix A is unknown at the ocutset. There
are seversl numerical methods which may be used to find thise matrix
in speciel cases. One such method mekes use of the assumption that
u is of the form u ={u,_ cos (wt + Bk)L Substituting in the equation of
free vitration, (II-1 with Q; = 0) yields a set of linear homogeneous
equations A |

(M + K]A{uk Cos (wt + (sjs)}= 0. : (11-6)
These equations possess a non-trivial solution only when the determinan-
tal equation |

Ik - o= 0 G 20
is satisfied. Solution of the equation is obtained for n values of
A= w? (the eigenvalues) each one of which allows one column of A to be

determined from (II-7).*

¥ Degenerate forms occurring when two or more eigenvalues are equal are
not considered here. See Ref. 1, p. 16 and Ref. 12)



2.2 Properties of the Eigenvslues

The eigenvalues of the system described, and of any system where
the matrices M and K are real and symmetric, may be shown to be real.
(Ref. 10, pg 196). Since it has also been assumed that the matrices
are positive semi-~definite, the eigenvalues sre all of the same sign
(éero included) (Ref. 10, pg 196). Unless otherwise noted, the sign will
eslways be chosen positive. The eigenvalues may be conveniehtly indexed

: . 0£x £ £ <
in order of magnitude: 0 £ Al AQ AB ees = An,
If the original system is subjected to r auxiliary conditions of
n _
the type Z:: a,qy = 0, called "constraints™, the number of degrees of
i=l
freedom of the system is reduced and the n-r new or "constrained" eigen-

3 )

values, s are related to the original ones by the inequalities

(Ref. 13, pg 286)

< (r) £ .
NEANY TN (1I-8)
In particular for one constraint
- = =4 - <~
MEMEREN e F N TN | (11-9)

Constrained eigenvalues for systems with greater numbers of constraints
are similarly interleaved with those for the system having one less
conétraint.

Two other properties of eigenvalues are of interest. As stated by
Courant and Hilbert (Ref. 13, pg 286),
| "As the inertia increases, the pitch of the funda-

mental tone and every overtone decreases (or remains the

same).

If the system stiffens, the pitch of the fundsmentsl
tone and every overtone increases (or remains the same).
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Increase of inertia means change to a system with kinetic
energy T' such that T'-T is never negative, while the potential
energy remains unchanged."

2.3 Nodes - Some Properties of Eigenvectors

Nodes of eigenvectors are points which are motionless when the
system is vibrating in a normal mode. They are, perhaps, easiest to
visualize by considering éontinuous systems rather than the discrete
systems previously discussed. A classical example is the standing waves
of a vibrating string or membrane. In the one dimensional case of the
string, nodal points separate two adjacent regions vibrating with opposite
phase. Similarly, nodal lines occur on the vibrating membraﬁe. As an
example of the three dimensional case, resonant cavities exhibit nodal
surfaces where the electric or magnetic field intensity is zero.

In a discrete system it will be assumed that a node can exist at a
mass, in which case the approprlate element of the eigenvector is zero;
or at a point of a spring between two masses, in which case the elements
of the eigenvector corresponding to the two masses connected ére of
opposite sign.

While there are many general properties of eigenvalues as described
above, much less 1is known of the generszl béhavior of the nodes of eigenvec-
tors. Of course, the transformation introduced in the diagonalization
of the system matrix implies that the weighted orthogonality conditions

Aa = - (11-10)

A%a =D

hold in all cases. It can also be shoun* that the h-th eigenvector has

#pAppendix I and Reference 13, pg 451.
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ho more than h-1l nodes, and therefore no mor? than h subregions separated
by nodes. This taken in conjunction with the ortogonality conditions
shows that évery subregion corresponding to a given eigenvalue must have
within it a point or points corresponding to some node of each higher
eigenvector. In a system with one space variable (for example where

the messes can move only along a line) it can be shown that there are
éxactly h-1 nodes of the h-th eigenvector. In particular the lowest

mode of any system has no nodes. Several examples illustrating these

properties may be found in Part V.



2
III. THEORY AND METHODS OF OPERATION
3.1 Analogous Systems

It has.long been recognized (Ref. 14, Ch V) that systems of linear
second-order differential equations serve to describe lumped constant
electrical networks as well as mechanical systems. Two such systems
are said to be analogous when they are described by identical sets of
equations.

There are two commonly used electrical asnalogies to mechanical
systems. They may conveniently be designeted as the current-force and
voltage-force analogies. Although electrical analogs may beAdeveloped
on either basis the current-force enalogy has proven most useful in
analog computer study of vibrating systems and will, therefore, be the
only one considered here. Corresponding quantities are listed in.Table

III-1, which is adapted from Gardner and Barnes (Ref. 15, Chap. II)

Table ITI-1

Corresponding Quantities in Current-Force Analogy

Mechanical Electrical

Mass Capacitance
Spring Compliance Inductance
Viscous Damping Conductance

Force Current

Velocity Voltage

Lever Ideal transformer

Tumped element electrical anslogs have been developed for many
‘continuous mechanical systems by the use of finite difference techniques
(Ref. 3,4) and by other methods (Ref. 16). We will be primarily concerned

with such systems, and in particular with those which are conservative.
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3.2 Single Freguency Analogy

If attention is restricted to a single frequency an electrical
analog based on equation (II-1) may be used. Taking Q;=I; Cos wt and
5=V Cos wt and restricting attention to the amplitude of the voltage
and current gives |

(< M+K) v= I.% (I1I-1)
If the possibility of using a negative resistance is admitted, an analog

can be constructed employing the following equivalent elements:

Mechanical Electrical

Mass (times w?) Negative conductance
Spring Compliance Pogitive resistance
Viscous Damping none

It is seen, by comparing with Teble III-1l, that any pure reactanée
network can be represented, at a single frequency, by a purely resistive
network with the proper values of negative and positive conductance re-
placing capacitance and inverse inductance reapectively. It should be
noted that the value of w in (III-1) bears no relation to the amctual
angular frequency of the voltage and current. It is mereiy a perameter
used in the study of the system and affects the value of the negative
conductances. In fact, if there are no transformers in fhe network, direct
current may be used as the "working frequency®.

The actual method to be used in obtaining the required negative
conductances is, of course, of great importance and_will be discussed in

Part IV. It will be sufficient for the present, however, to assume that

¥To simplify the figures and equations the mechanical labeling will
be used for electrical components when referring to the analogous systems.
It is understood that an admittance base has been chosen for representing
both mass and spring constants.
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b éach negative conductance is replaced by a "black box" which has the
input admittance f(p) m, 5o It is assumed that the fregquency dependence
of each blaék box is identical. This restriction will be removed in
the discussion of parasitics, Section 476. It is seen that (III-1) in
conjunction with (II-7) implies a restriction on f(p), namely

£(j w) = = A L - (TII-2)
where, for generality, the eigenvalue parameter A has replaced.qe and W,
is the working angular frequency.
3.3 Instability of the Analog

Inter-connection of many active elements always raises the
possibility of instability. In the case of an analog using negative
conductance generators the characteristic equation of the system is the
determinantal equation |

|k + £(p) M| =0 . | (I1I-3)

This equation is identical with (II-7) if we replace o by - £(p).
As pointed out in sections 2.2 and 2.3, the solutions of (II-7) and
therefore of (III-3) are the eigenvalues of the system. Thus, (111-3)
may be re-written as a product:

(£ () =) (£(B) =2) woe (£ (D) -X) =0. - (III-4)
Now each factor may be set equal to zero and the Nyguist critérion
(Ref. 17, ch VIII)'may be applied to each in turn. If any factor
“indicates instability, the entire system is unstable. The separate
plots may be combined into one, for it is seen thaf the systen is

unstable if the locus of f(jw) encircles gny of the points (-Ak + jo).
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Effects of deviations of the impedances from pure conductence, and of
slight dissimilarities of the amplifiers will be discussed in Section 4.6.

It is éustomary to determine the normal mode frequencies of electric
analogs by driving the system at one point with a varieble frequency .
oscillator, holding the voltage constant and measuring the current
entering the system. A normal mode is indicated by minimum input
admittance as detected by a current null or by unity power factor, which
cccur at the same frequency since we are assuming no damping.

If the purely conductive analog is not driven by any external
current or voltage sources, as the parsmeter X\ is raised fraﬁ zero to a
positive value* the voltages at all junctions remains zero until the
value }1 is regched, at which point the system bresks into oscillation.
These oscillations will, in general, increase in magnitude until limited
by the nonlinearities of the system, so that it would be useless to
attempt to obtain higher modes, or even the shape of the lowest mode,
without taking steps to eliminate the oscillstions,®#

Assume, then, that one of the junctions, say the n-ﬁh, is being

driven by an ocillator of low impedance and frequency'a%, such that

v=EQ 5 .
n P +(,0o

# Tt is assumed that the A of all negative conductances can be
varied continuously and simultaneously.

¥% Tt was possible by very critical adjustment of A to make
some systems oscillate in the lowest mode shape without
saturation. However, shifting of measuring equipment from
point to point sltered the circuit sufficiently to disturb this
condition.
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(Note that there are no other voltages applied).
Equations (III~1) may be re-written as n-1 equations of the form
(kil + milf(p) ) v+ (kiz + mizf(p)_ )v2

== gy tmf) ) p |
P+ @~ - (111-5)

the n-th equation having Been eliminated. This set of equations

determines a new characteristic eguation having a determinant which is
that of the original system with one constraint. The roots of this
equation are obtained for -f(p) = h'k.* The Nyquist Diagram for this
case is shown in Figure 1 for a walue of A lying between hl aﬁd Ai .
Equation (III-2) indicated that the point -f(jmo) lies on the positive
real axis as shown. By (II-7) it is seen that it is always possible, in
the absence of degenerate roots, to obtain the lowest mode withouf
instebility of the system by driving the system at one point, and moreover,
the choice of the point is arbitrary.

It is also evident that A cannot be increased indefinitely without
causing instsbility, for eventually the plot will encirclé one of the
Ak!'. Of course, by the exercise gf some ingenuity it is theoretically
possible to sketch a plot of -f{j w) which would allow stability at a
higher eigenvalue while still avoiding & critical point (Fig. 2), but
this would require some knowledge of the eigenvalues and would certainly
not allow A to be continuously variable.

Fortunately, there is another method of a pproach to the problem
which is practicable. Consider the network with cne voltage source
applied. The lowest ejgenvalue is the lowest one of the original system

with one constraint applied. Referring to Section 2.2, if & constraint

* See Zection 2.2
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~£(jw) plane

Figure 1. Nyquist Diagram Illustrating Stability at )\.1

-f plane

-£(jw)

Figure 2. Nyquist Diagram - Conditional Stability Near X\
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is added to a system it rpises the value of the lowest eigenvalue. In
order to keep the system stable in the viecinity of AQ, then, additional
c?nstrainﬁs may be added until the lowest eigenvalue of the constrained
system is greater than Az. Continuing the process assures stability at
higher eigenvalues.

The properties of éigenvectors are outlined in Section 2.3 are
useful in meking a judicious choice of points at which to apply the
constraints. In order for the system to be stable in the vicinity of
any eigenvalue, there must at least be one constraint applied in each
6f the regions separated by the nodes of the eigenvector.  If there is
not, then the unconstrained region will oscillate, for it may be considered
as a separate eigenvalue problem having a boundary of zero deflection
corresponding to the node and its lowest eigenvalue will be the.one
sought. This also indicates that the constraints must be chosen so
‘that there is no region with fixed boundary passing through constrained
points which has a lowest eigenvalue lower than the one being sought.
In this matter experience is the best teacher. The following section
discusses the points in more detail.

3.4 Determination of Eigenvalues and Eigenvectors

With stability of the system assured by the use of constraints, there
remains the problem of determining the eigenvalues and eigenvectors of
the homogeneous system. In the pure reactance analogy, the input
admittance at one point is measured, the system being driven at that
point only. There is, of course, only one.input current. This is the
situation we are trying to duplicate, but inherent instability requires
that the pure conductance analogy be driven at several points. If,

however, the several constraining voltages can be adjusted so as to
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make all the currents in the additional or "variable" constraints zero, the
current into the original driving point or "fixed" constraint is a
—measure of the input admittance. This current may be plotted against A

as an éid in finding the eigenvalues. At an eigenvalue, reducing the
additional constraint currents to zero will automatically causé the

curreﬁt at the "fixed" éonstraint to be zero. The eigenvector is found

by direct measurement of the voltages at the junctions whén‘all currents
are zero.

When there is only one variable constraint the-balanced'condition
is easy to achieve. It is only necessary to meter the current in the
variable constraint and adjust the voltage to minimigze it. The fixed
constraint current may then be measured and the input admittaﬁégvat the
fixed constraint determined.

With two or more variable constraints, the procedure is not so
Vsiﬁple. Several methods of approach to the problem will befdiscussed.

The first method might be termed the "Matrix Method". Ir there are
n-1l variable congtraints applied to the network, the input currents may

be expressed‘aé a linear combination of the constraining voltages:

by ¥y + bV o .. =1, (II1-6)
by * BTy + ee =1

The coefficients have the dimensions of admittance and are; in fact,
the input and transfer admittances associated with thenetwork. These
velues may be measured directly on the analog by setting each voltage

in turn to a standard value while keeping the others zero and measuring
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the resulting currents. Note that when the network is symmetrical
only n(n+l)/2 coefficients need be measured as egainst n2 in the un-
symmetricél case. If desired, the coefficients could be calculated
from the original netwﬁrk equations by taking ratios of determinants
of the proper minors. .

In order to make the variable constraint currents vanish, set
12, 13, ..In equal to zero and discard the first equation. The
remaining equations are solved for V2, V3...Vn in terms of Vl, the
fixed constraint. If these values are set on the analog, the resultant
variable constraint currents should be.zero, and the input admittance
of the fixed constraint can be calculated from voltage and current
measurements.

Of course, the last step is unnecessary, except as a check that
the residual currents in the variable constraints are zero, for
‘equatiéns I1I-6 may be solved directly for the input admittance at
point 1. Again taking all currents save I1 zero, solution for I

1
by Cramer's rule (Ref. 10, pg 85) gives

Y, = 2 | (111-7)
11 ,
where A is the determinant of the coefficients and All the determinant
of the first order minor obteined by striking out the first row and
column.
Often the labor of the previous method may be eliminated by a

Judicious choice of constrgined points and by other techniques. Several

examples will serve to illustrate this point.
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First consider a one dimensional system typified by the circuit
of figure 3. The first two modes are easily found, as previously in-
dicated. The lowest mode has no nodes (see Section 2.3). Assume the
node of the second mode is as indicated by Nz. The three constrgints
(presumgd sufficient for obtaining the third mode) are taken“at é:3.'

Note that free oscillation at second mode is suppressed by the constraints
vithin the subregions seperated by Ny. Now adjustment of céa» will
affect the currents in cBa and GBb only, due to the isolating effect

of ng' Similarly, variation of the voltage at G, affects thé currents

3c

vat cBb and C30 only. By alternate adjustmentiof cBa and GBcvit is
possible to achieve current minimum in a1l the constraints quick}Yo
This is essentially a process of reducing "“residues" by a relaxation
techniqué as illustrated numerically by several authors, nétably
Squthwell (Ref. 18); The advantage here is that residues accrue at
only three points rather than the seven of the basic circuit.i

Another technique which may be used in a one dimensional circuit
is suggested by the isolating properties of a single constraint. Since
the current in~CAa, sgy, may be made zero simply by ad justment gf the
voltage at cAa’ without affecting either the voltage or current at
CA§ of cAd’ it follows that this current may be maintained zero by’
keeping the ratio of voltages at CAa and CAb at the correct value. This
might be done by use of an auxiliary transformer. The current in GAb
would next be made zero by adjustment of CAC or of CAa and cAb simul-
taneously. In this menner the residue is "washed" off the right hand end
of the circuit.

The circuit of Figure 4 is typical of the equation fbr beam bending

(Ref. 3 and 19). Though this is still a one dimensional system, the
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Figure 3. Placement of Constraints - Single Space Variable

Free
Fixed K/2 (8] K e K (8] K e
_ y2 3/2 5/2 7/2
VAVAVAS -\ AN/ — = AN A
4d

.

Figure 4. Placement of Constraints - Beam Analog
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transformer coupling prevents a single constrsint from isolating two

other constraints. It is seen that both C4a and CAd are required to

‘prevent C,. from affecting C '

4b 4

If & metering circuit is devised to form the sum of the magnitudes
(or squares of the magnitudes) of the constraint currents, the voltages
may be adjusted in a correct manner by always causing this quantity to
decrease. (Ref. 20, pg. 13, Ref. 21).

Another method has been tried which depends on the fact that the
total power driving the network has a stationary value when zll the
currents except that in the fixed constraint sre zero. The‘total power
may be expressed as a quadratic form by multiplying the first of
equgtions I1I-6 by V., the second by Vz, etc., and summing:

Pin=§ 3 bijvivj' (111-8)
A stationary value is found by solving the n-1 equations (remembering
that V. is fixed) |

1

gy = 2 z;bi' Vi =
Vi ’

Except for tﬁe factor of 2, these are exactly the equations obtained

0 (3 = 2,3, noon) . (III—Q)

in the previous method when solving for the voltages required to mske
all the v&riable constraint currents zero. The éondition of stationary
pover input is, then, the condition which it is desirable to achieve.
This stationary value is

2
P, =V [z} , : (I1I-10)

1
In this equation, as is also the case in (III-7), the A's may refer

either to the matrix of coefficients of (III-6) or to the admittance
coefficients of the original system equations, whichever viewpoint is

more convenient for the purpose at hand.
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Expanding the power input in a Taylor series about the stationary

point {Ref. 23, Vol. II, pg 78) gives

PPy * 4D by VT (I11-11)
The type of stationary point is determined by the matrix of the co-
efficients bij‘ If the matrix is positive definite, the point is a
minimum; if negative definite, it is a maximum. If it is neither, the
point is a saddle point in the multidimensional space of the problem.
A simple example (Section 5.2) shows that one csnnot always assure
definiteness in these problems.

In summary, it has been shown that the inherent instability of the
analogy may be controlled by the use of constraints on some of the
coordinates. Use of the constraints changes the system equations and
one of several methods must be used to eliminate extraneous currénts

(forces).
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IV. CONSTRUCTION OF THE COMPUTER

The discussion of Part III has indicated a major construction
problem: the synthesis of a suitable ﬁegative conductance element.
The actual circuits used by the author will be presented here, with. a
discussion of the properties required in addition to those specified in
Part III. The author has become well aware of some of the drawbacks and
deficiencies of these circuits in the course of time and has inclﬁded
some remarks on possible improvements in the conclusions = Part VI.
A.l Primary Consideratiocns

The most obvious reguirements on negative conductance geﬁerators
are implicit in the discussions of Parts II and III. They are:

i) A1l negative conductances should be capable of independent

setting of.the basic value of conductance.

ii) Once set for a particular problem, a single continuously
variable control adjusts the value of all conductances simultanéously
maintaining the ratio of one to the other as determined by the basic
values. This control is termed the eigenvalue control or, more loosely,
the freguency control.

\ iii) If transformers are to be used, a basic frequency must be
established. No direct current may flow in the output of the generators
in order to prevent saturation of transformer cores.

iv) As a matter of convenience, adjustments to the generators
should be simple and unaffected by changes in value of negative conductance.
represented, within a reasonably large range. The power handling capa-
bilities of the generator should be adequate for all contemplated resis-
tance levels.

v) It may be necessary to consider cost and space limitations.
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4.2 Negative Conductance Generators
N If a positive conductance is connected across a voltage source, the
current which flows through it is proportional to the wltage and the
conductance, in accordance with Ohm's Law. The direction of current
flow is as indicated in Figure 5a. If the conductance is negaﬁive, the
current flow is reversed as in figure 5b. That such an element cannot
be synthesized from passive elements is obvidus, as in energy . considerations
(Ref. 17, pg. 126), for example. |

A circuit for a generator operating in a direct current cbmputer
has been used by Swenson, (Ref. 7, 8, 9) figure 6 (with «= i/?). In
operation, the circuit is adjusted until the voltmeter indicates zero.

At this point e, = i and the input admittance is

d -
Yi = - Gn ) : - (Iv-1)
The circuit may, of course, be used with fixed frequency alternating
current by replacing the battery with an s. c. source. :

If the value of & is not taken equal to 1/2 but is allowed to
vary, the input sdmittance in the bglanced condition 15 given by

y,=-¢ (_1-0) . S (17-2)

Since 0 £ 21, 1 £ __&_ £o so that all values of negafive admittance
msy be covered with this genergtor. | |

The second requirement of Section 4.1 is that all the negative
conductances in an analog should be capable of being adjusted simultaneously
to be proportional to the eigenvalue setting. The generator of figure
6 may be used in this manner by ganging the pbtentiometers to the same

shaft. It is apparent that the admittances of generators so connected

will be proportional to their respective Gn settings. The difficulty
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with this type of generator is that each generator requires hand balancing
for each setting of the potentiometers. 1In fact, it is easily seen that
one adjustment will not usually be sufficient as each generator's terminal
voltage will depend on that of all the others.

One solution is immediately obviocus: provide servo bélancing of the
generators. This requifes some sort of differential amplifier connected
to the terminals previously used for the voltmeter, as in.figUre 7,
but is otherwise straightforward.

By using positive-gain amplifiers, it is possible to eliminate the
servo motors as in figure 8. The input admittance of this circuit is

Y, =G (Aqg-1) . (1v-3)
the input admittance of the potentiometer being excluded. This circuit
has the advantage that the admittance is directly proportional to the
potentiometer setting, so that a linear scale may be used. The low out-
ﬁut»impedance (at el) of the servo balanced model of figure 7 is much
more difficult to achieve here,

The generator used in the computer constructed by fhe author is
based on the final configuration above. The deciding factors were
chiefly considerations of linear control sceale, cost, compactness and
ease of adjustment, since all of these models may be made to satisfy
the first three requirements of 4.1.

Figure 9 presents a block disgram of the generatof used in the
éomputer. It consists basically of two high gain amplifiers with
resistor feedback. Bach amplifier has 180° phase shift so that the
net phese shift is zero. The eigenvalue control potentiometer is placed
after the first amplifier to avoid loading of the computing ecircuits.

The role of the R C network between the smplifiers will be discussed in
section 4.7.
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Figure 5. Direction of Current Flow in Positive and Negative

Conductances
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‘Figure 6. Direct Current Negative Conductance Generator
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The overall gain of the two amplifiers and network is adjusted to
be 10. This allows X to vary from O to 9 as the potentiometer is
veried froﬁ 1/10 full scale to full scale. The potentiometers used are
ten turn Helipots, 10000 ohms and .5% linearity. When properly aligned,
the 10 turn vernier dial is set so that the eigenvalue can be réad

directly. -
| 4.3 R=C Coupled Feedback Amplifiers

In an effort to minimize power supply requirements and>the drift
and oscillation troubles common to d.c. amplifiers, it was decided to
construct the amplifiers with R €C interstage coupling. Howéver, since
the working frequency was selected to be 150 cps, it was not without
some difficulty that a stable feedback amplifier was constructed. The
choice of frequency is based on the desirable operating range-of the
California Institute of Technology Analysis Laboratory transformers to
be used in the analogs, and on a desire to keep away ffom'the higher
harmonics of the 60 cycle line current. The circuit schematic for the
input amplifier is drawn in figure 10.

When a three stage R C coupled amplifier is to be used as a feed-
back stablizied computing amplifier, there is a definife 1imit to the
allowable loop gain, due to the accumulated phase shift at frequencies
far from the center frequency. The loop gain limit may be véried some-
what by judicious choice of the R C products.

Treating the amplifier as equivalent to threé high-pass R=C L=

sections isolated by buffer amplifiers leads to the following results:

1) Maximum gain at 180° phase shift occurs when one time constant
is equal to the geometric mean of the others. Minimum gain occurs when

two time constants are equal.
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ii) 1If R® is the ratio of the largest time constant to the smallest,

the maximum gain is

2
K = R . . (IV“
max T +RrY) (1 +R)I7 4)

The minimum gain is given by

X R? . (IV-5)

min R

These are plotted in figure 11.
If there is no phase shift introduced by the feedback, the allowable
loop gain at mid-frequency is 1/K, with no gain margin allowance.
As an example take an amplifier with the following conétants:
Tl = .001% R =10

T2 = .14 Am = 1350

If T3 is allowed to vary and if for some methods of operation iﬁ may
take on the value R, the amplifier must be designed to be stable with

X ='Kmax = ,0082. Then the gain at 180° phase shift is K oy = 13
This is the factor by which the loop gain must be reduced at ukmax?

If the feedback is constant with frequency the maximum ioop gain at

wo is l/Kmax = 122, Reduction to 40-50 allows adequate gain margin.

The input amplifier of the generator, figure 10, has the constants above
with T3 = .0.1. The feedback illustrated gives a measured loop gain of
42 at 150 cps.

The output emplifier is more of a problem as the 6utput time
constant depends on the value of Gn used in the circuit. Furthermore,
there is additional phase shift produced by the loading of the network
between the amplifierg. It was found necessary to redﬁce the loop gain

of this amplifier to about 10 for stability reasons when the load resistance

En=]l was set at 500 ohms in some circuits.
~ Gn
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Tendency to oscillate at high frequencies was stopped by employment
of small condensers from input grid to ground as shown in the cireuit
’ diagrams.‘ This method with its high frequency gain reduction is allowable
here because of the single frequency of interest.

4, D. C. Mmplifiers

In effort to increase the loop gain and thus lower the output
impedance of the final amplifier, a direct coupled amplifier requiring
an additional -150 volt power supply was constructed, Figure 12. The
loop gain of this amplifier is 40 at the working frequency and it is
stable for the high values of Gn required. There is no_low‘frequency
oscillation trouble as in the a-c amplifier, for there is but one R-C
lag in the circuit and the maximum phase shift is 90°.

4.5 Dusl Locus Nyquist Disgrams

In anticipation of the discussion of tﬁe following section, the
dual locus Nyquist diagram, an extension of the conventioﬁal}Nyquist
diagram, will be presented. This section is essentially a review of
pertinent parts of reference 24, which should bé consulied for more
detailed diagrams and examples.

Consider a dynamical system with characteriétic-eQuation’F(p) =
0, where F(p) is a polynomicael in p, the complex frequency #ariable.
In many of the cases encountered servo mechanism and feedback amplifier
analysis, this eguation appears in the form

1+ G(p) =o0. ‘ (IV-6)

where G(p) is a quotient of polynomials in p. The Nyquist criterion
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(Ref. 17) for stability consists in making a poler plot of 1 + G{jw)
as w varies from o tow . If the plot encircles the origin, the system
is unstabie. Systems with zeros in the right half plane are not considered.

In some cases it is simpler to consider the characteristic equation

to be of the form
F(p) = A(p) +'B(p) = 0 (1v-7)
If the functions -A(jw) and +B(jw) are plotted, along with F(jw),
figure 13, it is seen that the magnitude and direction of F at any
frequency may be obtained from plots of -A and +B by use of the eguation
-A(jw) + F(jw) = B(jw). - (1Iv-8)
A little consideration shows that it is not necessary to plot F, for it
is sufficient to visualize the direction of the vector F as w increases
from o tow in order to see if it encircles the origin. With this in
mind it is easy to see that the system must be stable if the two loci do
not intersect--unless one lies wholly within the other in which case
the system must be unstable.

If the two loci intersect the situation must be exémined ﬁore
closely. In order for the system to remain steble the locus first
reaching the intersection, (that is, reaching it at a lower value of
angular frequency) must also be the first to resch the second intersection
(figure 14). It will be noted thet it has been unnecessary to point
out which locus is that of A(m») and which that of -B(Ib).

If the w = o point of one locus lies within a region surrounded
by the second, then the second must reach the point of intersection at
the lower frequency. If the w = O point is within such a region, then
this locus must reach the point of intersection first. Loci which

become infinite as w _, o must have the closure at infinity taken into
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account in order to apply these criteria.

4.6 Effect of Parasitic Impedances

It has been shown in Part III that an enalog including many active
impedances can be constrained so as to prevent oseillations wh;ch would
make it impossible to obtain the second and higher eigenvalue and
eigenvectors. The discussion there was based on the assumption that
all networks were purely conductive and that all negative.conductance
generators were identicel. Construction of such networks is impossible,
of course, due to the inevitable wiring reactance, the magnetizing and
leakage inductance in transformers and uncompensated phase shift is
the amplifiers.

The problem facing the designer is this: What should the frequency
response cheracteristics of the generator be in order to maintain sccuracy
and avoid spurious oscillations for 211 types of parasitic effects which
may reasonably be expected? The problem will be approached'by analyzing,
qualitetively, several typical examples. Dual locus Nyquist disgrams
will be used (See Section 4.5). Since the characteristic equation of
the interconnected system can be factored as s hown in Section 3.3,
the circuit of figure 15 will serve for all cases. Here a sihgle generator
is isolated and the remaining portions of the circuit are lumped in the
effective admittance Ye. Effects of parasitics in the circuit or within
the isolated generator are accounted for by teking Yé.and Ye to be
other than pure conductances.

The cheracteristic equation of the circuit is

T, -1, {A(p). o -1=0, or ' (1v-14)

(

= 0

+ 1) - aA(p) = 0 (IV-15)

nlo
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Figure 16. Dual Locus Nyquist Diagram - Case I Pure Conductance
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Case I
The ideal or purely conductive case discussed in Part ITI (especially
3.3) occuré for Yé = ng and Y = G_. This case is illustrated in
figure 16. The circuit will oscillate when, by variation of a, the
locus of a A(jw) passes through 1 + Ge/Gn = B(jw). Noting this and (111~
2), we see that the circuit is properly adjusted when
a=A+1 . | - (Iv-16)

This means, since a and A are real, that the amplifier must have no
phase shift at the working frequency.

Case II

This case illustrates the possible effect of the distributed

inductance if wire-wound resistors are used in the computer. In this

case Ye = 1 = Ge 1

Y GRL G 1+LG
g g( Lp) o P

The locus is a semicircle lying below the real axis, figure 17. Osecil-
lations occur when the frequencies of the two loci are the same at their
point of intersection. It is desirable, of course; to have this ine-
stability occur with the W, point of aA as close ss possible tc the

zero frequency point of 1 + Ye/Yg. This becomes more nearly the case
as the change of phase shift with frequency is decreaséd for 1 + Ye/Yg
(smaller parasitic inductance) or increased for gA. It may be noted

that if the ciranit conductances all have the same percentage parasitic
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inductence we have Yé = Ge(l +GLp)= Ge and the problem reduces to
oo —
Y G{1+GLp) G
4 g ¢ e E
Case I.

Case III

Y =G +Cpor ¥ =G +_1. Y =G
e e e e E—E_ g g

Other parasitic reactances may appeer as either capacitance or
inductance in parallel with the resistances. Both these ioci'are covered
by the streight line in figure 18. There i3 no trouble with accuracy
in this case so long as the magnitude of A(jw) is greatest at w = w, .
Thus, loci such as are shown dotted in the figure are not to be allowed.
Case IV

Y = Gy +Cp, ¥ =G_.

® TTHIGp e £

There is usuaily e capacitance shunting the external impedance due to

wiring, etc., which may be of a magnitude to ceuse trouble at frequencies
far from<n°. This case illustrates the possibility of high frequency

instability if LGe;>_g_. This is the condition illustrated in figure 19.

G
e

It occurs when the gain of the amplifier is allowed to increase at high
frequencies, as may occur, for example, by capacitive pickup from
adjacent leads.

4.7 Generator Freguency Response Regquirements

The requirements placed upon the frequency response of the negative
conductance generator by the analysis of the previous sections are:

i) Positive gain, no phase shift at a specified working frequency,
w, e

ii) A high value of frequency gradient at ®_ .
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(A+1)Afjw) ,
Afj Jw ; v Parallel Inductance

k.

1+ Ge/Gg

w
1
Parallel Capacitance

Y

Flgure 18. Dual Locus Nyquist Diagram - Case III Parallel
Reactance

(A1) Aljw)
 AQwo)

Figure 19. Dual Locus Nyquist Diagram - Case IV Illustratmg
High Frequency Instability ,
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iii) Rapid decrease in gain for frequencies far from w_.
These, together with the requirements of 4.l, specify the type of
‘generators.to be built.

The above three requirements are met by introducing the shéping»
network of figure 20 between the two stabilized amplifiers figure 9:
The locus of the transfer function of this network is a circle in the
complex frequency plane, and, of course, the values are chosen to make
the phase shift gzero at @ - 150 cycles per second for this computer.
The capacitances are made variable to allow for compensation of the
inevitable small phase shifts occurring in the amplifiers.

The generators are adjusted by setting the A control to 1.0 and
adjusting the trimmers of the shaping network and the fine gain adjust-
ment to give zero phase shift and a gain of 2 at @, - This iS'mOét '
easily accomplished by "resonating" a selected Gg withvan’equal value
of Ge as in figure 21. Satisfactory current minima of 8-15 micro-
amperes wére obtained on the generators of the computer. |
48 Test Results

The block diagram of the negative conductance generator used in
the computer is shown in figure 9. The network bétween:the emplifiers
is described in section 4.7 and figure 20, and the amplifier’schematic
in figure 10. Several tests were made on typical amplifiers to see
how well they could be expected to perform in analog circuits and to
verify certain theoretical predictions.

The transfer function of the R=C filter is a circle in the
complex plane. If the amplifier gain were constant at all frequencies

the admittance of a typical generator would be as indicated in figure 22.
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(a) (b)

Figure 20. Shaping Network
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Figure 21. Circuit for Balancing Generator
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The measured input admittance of a typical generator is drawn on the
~Same sheet for comparison. Deviations are mainly due to the non-
ideally-flat gain characteristics 6f the amplifiers.

Trﬁcking of the input conductance with the A control is, of course,
necessary for successful operation. Table IV-1 and Figurev23 éummarize
~ the résults of tests made on all of the generators. The circuit of
Figure 21 wes used to make the calibration with G, fixed at 1072 mho
and Ge variable. It is seen that the tracking is quite good over most
of the range. The deviations neer the middle of the range are due
mainly to loading of the potentiometers by the R-C filter (Figure 9).
Two methods might be employed to overcome this difficulty:

i) Use the data of Table IV-1 to derive a calibration cﬁrve for
correction 6f dial readings.

ii) TUse a resistor in series with the potentiometer to cause the
variation to be over a more linear portion of the loading cuive.* This
would a1s0 require higher gain in the initial amplifier to allow use
of the same dial fixtures. |

A furtherEdifficulty was encountered in the use of electronie
amplifiers to generate negative conductance. This was associéted with
limitations on the current handling capacity of the output tube of the
amplifiers. It was found that 31.5 volts rms was the maiimﬂm capacity
of this particular circuit. Accordingly it became necéssary to specify

the meximum input voltage (terminal voltage of the negative conductance)

#* This and other methods of avoiding loading dlfflculties are discussed
in Ref. 23, pg 95.



Dial
Setting

.80
.90
1.00

.00
.00
.00
.05
-.15
.13
.11
-.02
-.05
~-.15

.00
-.25
~e43
-2l
-.58
-.06

-003

"011

43

Table IV-1

POTENTICMETER ALIGNMENT

Percent error = 100.§Megsured voltage ratio) - Sgigl setting)

3
"040

-.15
-.26
-.25
-.57
-.16
-.10
-.19
-.26
~.28

Percent Error

(Dial setting)

Generator
4 5
05 =25
2,  =.33
R4 =41
«25 .50

-.12 43
.25 .75
.20 .52
.05 .23
.00 .07

-.07 =.11
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.06
.03
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~.33
.03
.03

—.10

--26
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.08
~-e22
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.12

’0075'
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.28
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alloweble. This is a function of the value of Gg' Curves of the
maximm allowable input voltage as a function of A and Rg = 1/(}g
are given in Figure 24.

Several tests to confirm the theory of section 4.6 were made. A
typical case is i1llustrated in Figure 25 and all results are t;bulated
in Teble IV;2; It is s;en that the results give reasonable confirmation
of the theory.

Table IV-2
EFFECTS CF PARASITICS

Type of Parasitic# Instability occurs at:
b)Y frequency (c.p.s.)

None 1.00 150
Series L = .01 hy 1.00 152
= .05 hy .995 155
=.1 hy 995 160
= .25 hy 96 182
= .5 hy .82 207
Parallel C = ,004uf 1.00 150
.0luf 1.00 148
Juf 1.00 141

It is elso of interest to determine how sensitive a generator
is to setting of the A dial. This sensitivity is indicated by the

"resonance" curve of figure 26 which was measured on a particular

¥ All tests are with Gg: Ge = ,001 mho.
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'amplifier. From this curve one may calculate a quality figure equivalent
to the Q of a conventional reactance resonent circuit. This may be

done by taking as the definition of Q

%
Aw

) (IV—;?)

where @ is the resonant‘freQHency and An is the band width at the
point where the current is Vé.times that at resonance (Ref. %, pg 138).
| On this basis the Q of a typical amplifier is 250 at A = 1.0.

An glternative formula, essily derived from the above is

e=r DD |
(B-1)1 AN (Iv-18)

where X\ = a? and I0 is the minimum obtained by extrapolating the
linear slopes. On this basis the Q is 960 at A = 1.003.

The difference in Q as calculated by (IV-17) and (IV-18) is
due to the residual out of phase components and noise pickup (mostly
supply frequency in these amplifiers). It is felt by the author that
the value of A obtained by extrapolating the linear slopes is the more
accurate. »

Several views of the six-generator computer constructed by the
authof aré shown in Figures 27 through 29. The panel is shown in
Figure 27. The lower six pairs of terminals are the terminals of the
generators.' The actual value of negative conductance is determined by
plug-in resistances, one of which is shown. The value of X is set on
the dial in the center of the panel. A rear view of the chassis is

shown in Figure 28. Each set of four tubes in a row constitutes one
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Figure 27. Six Generator Computer - Front Panel

Figure 28, Six Generator Computer - Rear View
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Figure 29. Computer in Operation - Plate Analog
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generator. The N potentiometers, connected by flexible couplings, are
mounted on a piece of alumirum angle fastened to the chassis. Fine
gain and phase shift adjustments are visible just behind the first
row of tubes.

Figure 28 shows the computer in conjunction with the servémechanisms
laborastory computer at CalTech, connected for the analog of section 5.5.
Some of the many trensformers are visible on the floor, while"others
and most of the resistors used are available at terminals on the plug
board. The pénel below the computer contains switches and shunts for

metering and applying the constraints to the circuit.
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V. RESULTS OF TESTS ON ANALCGS

This portion of the thesis is concerned with the accuracy of
the computer constructed by the author in determining the eigenvalues
and eigenfunctions of several types of analog. The three circqits
selected are the analogs for torsional vibration of a rod, bending
of a beam, and the bending of a plate. Theoretical values for the
results were calculated for comparison. In addition, two numerical
examples are given to illustrate points brought out in the previous
discussion.
5.1 Gomputation of the Eigenvalues and Eigenvectors of a Simple

System

The configuration to be considered is the mass-spring system
of figure 30, which is the lumped parameter mechanical analog for the
_ta;sional vibration of a uniform rod (see section 5.3). For this
case M = E5 and

3 -1 0 0 O
0

10 0 0 =1 1
The determinantal equation is
K - AM|= 2 - 250 + 500% - 358° + 100 - 25 = 0.

Thus the eigenvalues are

N = .098

A= 82
13 = 2,000

AS = 30902 Y
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Figure 30. Lumped Mechanical Analog of Uniform Reod in Torsion

ClampedZK K K K ' K Free

Figure 31. Electric Analog For Uniform Rod in Torsion
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The normalized eigenvector matrix, A, is
(L0989 2871 472 5635 6247
2871 JB24T  JA4T2 =.0989 ~-.5635
A= | A4T2 4T =~ LLTR = AAT2 42|
¢5635 =.0089 =,4472 L6247 -.2871

_.6247 05635  J4472 -.2871 .098?

It is easily verified that A™™A = E, and a%ka = DOL).

5

5.2 Example of Stationary Power Input

Consider the following equation, representative of a 4-1/2 cell

cantilever beam (section 5.4):

f— -

72 -4 1 o [[w] [g]

-4 6 =\ -4 | 1 v, _ L . W-1)
1 -, 5 A =2 Vsl |5

o 1 2 Ayl |y

As indicated, four constraints are considered to be applied.

Establishing Vi as the fixed constraint, it is seen that definiteness

of the matrix
6 =N =4 1
-4 5-N =2 (v-2)
1 -2 1 =A

must be established if the driving power is to be an extreme value
when the circuit is balanced (Section 3.4). Definiteness or non-
definiteness of the matrix may be established by examination of its
discriminants. If all are positive, the matrix is positive

definite and the stationary point is a minimum. A similar rule holds

for negative definiteness in the case of a maximum (Ref. 10, pg. 107).
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The discriminants of the matrix (V - 2) are:

6 -\ -4 1

=/, 5w w2 = (0.0516 =\)(1.936 -A)(10.013 =7),

1 -2 1-A

6 =\ =4 » :
= (1.469 =A)(9.531 =1A),

-4 5 <A

6 =X 1
= (0.8075 ")\) (60193 "l),

1 1 =7

5 =X =2
= (5,828 «A)(0.172 =A),

-2 1-x

(6 -A), (5 -7), and (1 =A).

The eigenvalues are

}\1 = * 02966
}2 = .98011
13 = 5,5167
AZ = 12,475 .

It is seen that the discriminants are all positive for A<.0516
so that for these values of A a power minimum may be obtained.
Furthur inspection shows that for no value of A> ,0516 are all
the discriminants of the same sign, so that a power minimum cannot
be achieved for this range of A.
.~ 5.3 Torsional Vibration of a Rod
The differential equation for the torsional vibration of a

rod is (Ref. 26, pg. 318)

D fer . pI ¥, -
2 {erde} . o (W - 3)
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where density

shear modulus of elasticity

i

P
G
I = polar moment of inertia

Y = angular deflection.

Separating the variables as indicated is section 2.1, and using the
finite @ifference approximation for the space derivative we have

(using a uniform rod for simplicity)

Ppe1 = ¥yt ¥piy = op 2

. (V =~ 4)
(ax)*? G

The combination of variables a@(Ax)zp/C may be replaced b& the
eigenvalue variable A. The equations for the transverse vibrations
of a stretched string are of the same form with A = a?(Ax)zp/T; vhere
T is the tension on the string, An electric circuit which satisfies
(V ~4) is shown in figure 31. Here a particular case has been
'aséumed; it is that of a uniform rod approximated by five sections,
one end being clamped and the other free,
'It can easily be shown by substitution that a solﬁiion to (V- 4)
is
Y, = Sin (2n --l)Bk '
2 (V- 5)
M = 45107 By
vhere B, = (Rk-1)w/4N, k being the eigenvalue index and N the number
of sections. This equation serves as a basis for the theoretical
calculations which are compared in table Vel with the results obtained
on the computer. The experimentally obtained eigenvectors are

plotted in figure 32,
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TABLE V = 1
TORSIONAL VIBRATION OF A UNIFORM CANTILEVER ROD

Five Cell Anaglog

Mode 1 2 3

Calculated A .098 0824 2.00j

Experimental A . +098 818 1.98

Normalized

Eigenvectors

Station calc exp calc exp calc exp

1 .0989  ,095 2871 289 A4TR 4395
2 02871  .286 06247 585 o4ATR - 460
3 ohdT2 o450 L4T2 W40 =l T2 =4451
4 05635 .563  =.0989 =097  =ubhT2 =u4TO
5 6247 625 -05635 =-o586 AT 455

Figure 33, showing the measured input current at the fixed
constraint for A's near the system eigenvalues, illustrates the.
sharpness of convergence. Successive values of M\ chosen are indi~-
cated by the numbering of the points. Modes higher than the third
would require all junctions to be constrained. This is due to the
fagt that leaving any single junction unconstrained leaves a region

with lowest eigenvalue equal to A3 (see section 3.4).

5.4 Bending of a Beam
The differential equation for the bending of a beam is (Ref. 26,

PE. 324)

e (v-©
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where ¥y = deflection of the neutral axis
= modulus of elasticity
I = moment of inertia of cross section
m = masg per unit length.

For a uniform beam, the finite d@ifference form is
(yh-Z -Ayh-l +6yn .Ayh+l +yn+2) = maxu? Ip (V-1

An electric analog of this equation (Ref. 19) is shown in figure 4.
The particular case chogen is that of a uniform cantilever beam
represented by 4-1/2 cells*. This is the example used in section
5.2. The solution may be obtained numerically as outlined in
sections 2.1 and 5.1. Table V-2 lists the calculated and experi-
mental results for comparison, and the eigenvectors are plotted
in figure 34.

TABLE V = 2

BENDING VIBRATION OF A UNIFORM CANTILEVER BEAM

Mode 1l 2 3 . 4

Calculated A «0297 +980 5.71 | 12,49

Experimental A .03 <975 5¢48 12.44

_ Normalized |
Eigenvectors
Station calc exp calc exp calc exp calec exp

1 $084 083 o403 =406 712 714 -.571 =610
2 271 1275 =693 =689 108 115 .661 .636
3 e525 52T =o34] =u342 =625 =.626 =.469 =.453
4 «805 .800 4496 4495 301 L293 L140 .129

* A somewhat different analog circuit is presented in reference 16,
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An orthogonality check is made by taking the product AtMA. The
results (V-8) indicate an r.m.s. error of 1.4% due mostly to in-
accurécies.in the highest mode.
[.083  .275 .528 .799] [.083 -.406 .T13 -.606]
=406 -.688 -.341 .495| | .275 -.688 115 (445

2ha-

713 115 =626 .293| | 528 —.34l -.626 =47

=606 645 =447 L130| | WT99 495 .293  .130
| <9497 -.007,  -.0056  -.0051
.9995  -.0101 .0190

.9993 -.0400 (v-8)

L_(Symmetric) 1.0000

Four constraints were required in obtaining the third and fourth
modes. In the balanced condition, the residusl currents with A:LB and
A:AA ranged from 8 to 100 microamperes. About one hour was required
to converge on mode 3, while only 30 minutes were taken in finding
mode 4.

5.5 Bending of a Plate.

The finsl example chosen is that of the bending vibration of a
square cantilever plate. This problem was selected as an example of
a paftial differential equation with two space variables, and for the
large number of transformers required. It was felt that this cireuit
- constituted a rather severe test of the computer's_capébility for hand-
ling perasitics and low impedances.

The generel differentiel equation for the bending of a plate is

(Ref. 25, pg. 441)
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SRERCIR AR
§x? i)xz ' }yz i \yz }yz ¥vkx2

\2 [D(l ~v) 32y )=
o A5 a2 -
f ey my] ¥ V-9

vhere u = defiaction of the plate

D=__ Eh’ __, the flexwral rigidity

12 A -F)
m = mass per unit area
-+ = Polsson's ratic
h = thickness
E = Young's modulus.

An alternative form of this equation is

Ay [ofPu v¥ )_[D(l -) }i”
}y{\y[ ()yz* szHJr x Yxdy

N () [p(¥u v _)_KD(l-V) ﬁ]gzmlz_u- -
el (sx2+'>y2) . Wyl 22 0

The circuit used* is that of figures 35 and 36, which is for the case
of a square cantilever plate represented by 12 cells. Sjmmetry con~
siderations allow one to use only six negative conductance generators,
as shown. |

No ansalytical solution has been obtained for this circuit, so
far as is known to the author. This case was solved by MacNeal
(Ref. 4) and, for 18 degrees of freedom rather than 12; by Young

(Ref. 27). Unfortunately, an error of about 2% in the value used by

* This analogy was developed by Dr. R. H. NacNeal (Refs. 4 and 19, pg 126).
Non-uniform plates and beams and other boundary conditions are treated
in detail in these references.
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Figure 35. Electric Analog for Square Cantilever Plate
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Figure 36.Square Cantilever Plate

TABIE V = 3

IMPEDANCE VALUES FOR PLATE ANALOG

z =g =§'l-2-U22 z =§1—ﬁ‘2

¥ I3 X 2

2 =z =] =-v z = 1-v2
R 4] *5

z =g =14V z = 2



66

the author for several of the impedances (le, zx5’ ZYB) was discovered
?after the .computer was dismantled, so that & direct comparison of
results is impossible. It was possible, however, tc set up the equa-
tions for the network of figure 35, and to solve them numerically for
the eigenvalues and eigenvectors. The six resulting équations‘for both
the symmetrical and unsymmetrical cases are given in V-11, page 67,
where the upper signs refer to the symmetricel case, For.clarity
only the subscripts of the admittances are written Thus, "x_x ™

374
means “(l/zxg)'(l/zx ), etce The same equation, written in terms of
4

Poisson's ratio,v, is also given (V=12).

fzo_ I8 642041 -8 12 eV 2 0

-642041 lkgﬂf_ 2-v -2(24+9) (1-V) 0 -1-2:?-:

-8 32 2~7 18 ¥8 b2 V4] ~6+20+4(2-2) 2(1-2)

2= =2(2+7)(1-7) -6+2041 ltg&ik?_ 2m -(1-2) (3+v)
1 0 64274 (2-7) 2-0 15=8=52~ - (3-7°)

3
T (4-20-28) iﬂi‘é’:ﬁ

. 2
0 Q=) 2(1-9) ~(1-0) 34) -(3-2F) . (1-9) (3+)
(g )
2

-aD{1, 1/2, 1, 1/2, 1/2, 1/4) = b (v -12)
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Taking v = 0.3, the correct equations are

[12.0 =44 =6.0 1.7 1.0 0.0
-8.8 13.97 3.4 =bub4 0.0 0.91
-6.0 1.7 10.0 LedO  =3.7 1.4
3.4 =6.44 -8.8 12,15 3 =heR

2.0 o.o "’7.4 3.4 5071 "3071

L 0.0 1082 5.6 "9.24. -7.42 9.24

“E, A, =0 (v-13)

and
(28,00 =6.40 =10.00 1.70 1.00 0,00
|-12.80 13.97  3.40 -6.44 .00 .91
~10.00 1.70 26,00 =6.40 =7.10 1.40
3040 =bokdy  =12.80 12,15  3.40 =4.62
2,00 0.00 =14.20 3.40 18.59 =5.53

L 0.00 1Q82 5.60 -9024 "11006 9.2[:-

By A =0 (v-14)

vhere the subscripts S and U indicate the symmetrical and

unsymmetrical cases respectively. The erroneous values used

were

24T 2,25 vice 2.2,
2 = 1,125 vice 1.1,

z = 2.25 vice 2.2,



Use of these values leads

[ 11,9900
~8.7§12
~5.9941

3.3966
1.9980

«C000

[27.9772
~12.7872
-9.9900
3.3966

1.9980

| 0.0000

~443956
13.8146
1.6983
=6.3527
0.0000

1.7776

~6.3936
13.8146
1.6983
-€.3527
0.0000

1.7776

€9

to the equations

=5.9941
3.3966
9.9900
-8.791<
~7.3860
5.5944

=9.9900
3.3966
2549772
-12,7872
~14.1858
5.5944,

1.6983
~6.3527
~4.+3956
12.0368

3.3966
~9.1499

1.6983
-6.3527
-6.3936
12.0368

3.3966
-9.1499

=7.0929  1.3986

0,9990 0.0000]
0.0000  0.8288
-3.6930  1.3986
3.3966  ~4a5749
5.6880  =3.6860

=7.3721  ° 9.1499]

-Eékg =0 (v=15)

0.9990 ‘0.0000

0.0000  0.8888

3.3966 =44 5749
18.3896  ~10,9277

=10.9277 941499

“-EX =0 (v-16)
6 u

The eigenvalues obtained are compared in Table V-4. The nor-

nalized eigenvectors obtained experimentally are given in

Table V-5. Contour lines showing the mode shapes obtained

are plotted in figure 37. These are a good example of the:

principles on the nodes of eigenfunctions described in 2.3. -
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TABLE V - 4
EIGENVALUES FOR SQUARE CANTILEVER PLATE

N = a;szll’m = mkzal'm
) “gID

U= 0.3, 12 cells {(figures 35, 36)

k Symmetry Eigenvalues
Calculated Experimental MacNeal¥®
(z's used) (Ref. 4)

1 S 0.1242 0.129 0.124

2 i} 006422 0.640 0.616

3 S 245840 2edd, 2.38

4 S Led22) 4632 3496

5 U 57432 5.75 5.30

TABLE V-5

NORMALIZED EIGENVECTORS FOR SQUARE CANTILEVER PLATE®*

Station ‘ Mode
1 2 3 4 5
1 082 J0B6  —u223 =182 =148
2 WO74 205 =321 091 =427
3 V249 o149 =al46  =u220  =a060
4 242 W26 =336 349 =.230
5 448 213 365 -.203 252
6 L40 597 G153 576 o548

These values are fMZ (472 /81) vhere fy is the frequency given by
MacNeal. o

The values for the other six stations may be obtained by symmetry.






genvectors for Squar

i

nalized
=5

d)

Antil

imue

¢

i
.

s
-

i1

» ;7 gl | L

a

3

i 4







T4
VI. DISCUSSION AND CONCLUSICON

This work has been directed toward the development of a computer
suitable for the solution of various eigenvalue problems. The problems
solved are of a type wuitable for solution with direct electric
analogs, using pure reaétance networks. By employing resistors and
positive~-gain emplifiers as computing elements, costly high precision
inductances and capacitors may be eliminated. This substitution is
not without disadvantages, however, for such a computer is not suit-
able for the solution of transient problems. Also, the inﬁerconnec—
tion of many active elements causes undesired oscillations which must
be suppressed when determining eigenvalues and eigenvectors.

The majority of this work has been concerned with methods bf
suppressing these oscillations. Methods based on the known properties
'of'eigenvectors have proved suitable for determining driving points
and for obtaining convergence to normal modes.

‘The computer constructed for the tests of Part V Has some dis-
advantages. The most severe was associated with the low output imped-
ance and peak voltage capacity of the final amplifier of the negative
conductance generators. This could be most easily corrected, no
doubt, by use of a direct-coupled amplifier and a somewhat different
output amplifier. Some advantage might be gained by using a higher
working frequency. No effort was made in this direction by the
author, due to the lower frequency design of the available transformers.

A more positive method of achieving convergence at a normal mode
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based on minimizing on error magnitude, has been indicated (section 3.4).
~ The construction of such a system, and the elimination of the limita-
tions of the output circuit should provide a computer capable of high
accuracy with a reasonable amount of effort and expense.
In summary
i) An eiectric analog involving interconnected negative
conductance generators will break intc spontaneous osciliatiéns when
the equivalent frequency is at least equal to the lowest normal mode
frequency.
ii) Suppression of this oscillation and the determination

of higher normal mode frequencies and mode shapes requires thg'addition
of constraints, At least one additional constraint must be*édded for
each sﬁccessiVe mode., | ,

“ii}) A éomputer of reasonable accuracy (1%) may be constructed

using R-C coupled amplifiers, resistors, and transformers, -
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APPERDIX 1

PRCOF OF SOME THEOREMS ON THE NODES OF EIGENVECTCRS
Courant and Hilbert (Ref. 13, pg.31l) have shown that the
h-th.eigenvalue of the equation
kK-2aM x=0 (AI-1)
may be characterized as follows: Minimize the quadratic form
xYKx under the normalizing condition xtMx= 1 and the h-l aux-
iliary constraints vf Mx = 0; 1 = 1,2, . « + sh=1; h £ n. The
maximum value of xPKx obtained under these conditions for all
arbitrary vectors v; is the h-th eigenvalue A, .
This idea may be used to prove the following general theo-
rem:® |
Given the vibrating system characterized by the equa-
tion & - A M] x =0 for a domain G with arbitrary
homogeneous boundary conditions; the nodes of the
h-th eigenvector*#* X divide the domain into no more
than h subdomains. No assumptions are made about
the number of independent variables. In particular,
the eigenvector of the lowest mode has no nodes{
Assume for simplicity that G is a two dimensionél domain,

and that the h-th eigenvector x,, divides it into more than

® This is a paraphrase of a theorem proven in Ref., 13, pg.451
for the eigenvalue problem of a differential equaticn. The
proof is the same except for minor modifications.

A node occurs: on the spring connecting two masses which
have displacements of opposite sign, or at a mass with

zero displacement. Physically, in the first case, there

is a point of the spring vwhich does not move,

3
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h S'ledomains Gl’ G2, . » 9 G}l’ Gh+1, s o o Define h VectOI‘S
wl, Woy s e o Wy which coincide with X except for a normaliz-
ing factor, within their respective domains and are identically

zero outside them. The v, are normalized by the condition

v, M Wi = 1. Form a linear combination of the wi‘s;
| P = cjwy toeguy e o o+ ooy (AI=-2)
such that it also satisfies
t. 2 2 2 _ -
¢M¢—Cl+02+...+ch—-l. (AI"B)

The h-1 auxiliary constraints vFK¢ = 0, taken with AI-3, com-
i
pletely specify the constants Cye Using the system equation

(AI-1) it is seen that

t,, _ t.,. _ .
PRD =AM = A (AI-4)

- Another theorem is needed before continuing:
If G' is any subdomain of G with the boundary condi-
tion x = O on the non-common boundaries and any homo-
geneous conditions on the common boundaries,
the h~-th eigenvalue of GY, l'h, is not lesé than
Xys the h-th eigenvalue of the larger domain.
The proof lies in considering the effect on the sysﬁem as the
boundary of G! is deformed to match that of G:
i) the unstressed length of a spring may be made longer,
thus making the system less stiff,
ii) a new mass may be added to the system.
Both of these effects operate to decrease (or at least not change)

all eigenvalues.
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Returning to the original theorem, consider the domain G' =
Gl + G2 + ¢+ o+ Gye Since Y satisfies the system equation
"~ and all constraints and the condition ¢tK¢ = Ah’ the h-th eigen-
value for this special domain must satisfy the maximum-minimum
condition described above. In addition it must satisfy the
last theorem, so that | ‘

NEWEN, 5

and equality must hold. Then for every subdomain of G contain-
ing G' the h~-th eigenvalue must be Ah.

Designate by xﬂ the h~th eigenvector for G' which is ex~
tended to the entire domain G by taking it té be zero oﬁtside
G'. A suitable coﬁstant multiplier may be chosen to satisfy‘v

t

the normalizing condition x'thﬁ = 1, Then, by the maximum-.

minimum principle, since xﬁ is a vector of the full domain

xﬁtK' X5 .  (AI-5)

On the other hand v
xR = by =0y e
These equations are clearly incompatible so that the agsumption
of more thaﬁ h subdomains is incorrect.
Actually much more can be proved in the one dimensionél
cases
Given the vibrating system characterized by the equa-
tion [K‘- AM] x = 0 for a domain G with arbitrary
homogeneous boundary conditions; the nodeé of the
h-th eigenvector divide the domain into exactly h

subdomains.
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let a be the normalized‘eigenvector for the lowest eigen-
value, a, that for the second eigenvalue; etc. 8ince M is posi~-
tive dgfinite4and a; has no nodes, each of the elements of the
column vector M a, is positive. By definition azMal =0 so
that;ai must change sign at least once within G. Applying Fhis
ireasoning to the subdomains formed by the various eigenvectors,
itvis seen that of two eigenvectors with different numbers of
nodes, the one with the least nodes has the lowest eigénvalue,
for it must have at least one subdomain with more than one node
of the other eigenvector. Then each eigenvector must have one
more node than the previous one but not more than h-1l. Since

the first has no nodes the h-th must have h-1.



