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ABSTRACT

The condensation process in supersaturated vapors is analyzed
with thé help of thexfmodynamics and kinetic theory. The simplifying
approximations which make the problem tractable are carefully ex-
amined. Results are obtained for the steady rate of condensation
which constitute a theoretical improvement over Becker and DBring's
values. The uncertainties in the values of the free energy for very
small droplets, which are only partially removed by Tolman's theory
on the variation of surface tension with curvature, limit this improve-
ment in the condensation theory.

Nonsteady condensation situations are also treated in de‘tail by
means of numerical and graphical integrations. It is found that the
condensation in such situations generally approaches a steady rate in
Itirﬁe periods of the order of 1 to 100 microseconds. Such time peri-
ods are negligible in many physical situations, but may be significant
in the case of condensation shocks in wind tunnels,

A similar analysis is carried out for the boiling of superheated
liquids and the rupture of liquids under tension. Approximations re-
duce the analysis of these processes to mathematical relations very
similar to those for the condensation process. Nonsteady solutions
are obtained by numerical integration. It is found that the solutions
ordinarily approach a steady rate of bubble formation in less than a

microsecond.
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I. INTRODUCTION

When a vapor is condensed to a liquid, or when a liquid is vapor-
ized, the process frequently does not follow the simple scheme of a
single mass of liquid and a single mass of vapor, one of which stead-
ily grows at the expense of the other. Instead, droplets of bubbles,
which are embryos of one phase dispersed in the other, are common=
ly formed. These embryos greatly complicate the process, not only
from a mechanical standpoint, but also from a thermodynamic one,
since the small embryos have ''surface' energies and entropies com-
parable with their "volume' energies and entropies. It is essentialiy
these surface effects which permit the existence of metastable states
such as supersaturated vapors and superheated liquids.

An adequate theory of the dynamics of this phase transition
would contribute to many fields of science and technology. It should
be applicable, for example, to the condensation of droplets .in atmos-=-
pheric clouds and in Wilson cloud chambers, to condensation shocks
in supersonic wind tunnels, to cavitation in pumps and én marine pro=
pellers, and to. many types of boiling problems,

An attempt at such a theory,_ based on thermodynarnics‘ and gas
kinetics, was made by Volmer and Weber, L2 and improved by
Farkas, 3 Kaischew and Stransk]’.,4 and finally by Becker and DBrings’ 6
and Zeldovich.7’ 8 A somewhat different development; based on the
theory of absolute reaction rates, has recently been given by Turnbull

and Fisher.g’ 10

All of these investigators make a number of approxi-
mations and simplifying assumptions, the validity of some of which is

very difficult to determine. Moreover, some of their results
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apparently disagree with experiment, especially in the cases of vapor
condensation shocks and liquid tensile strengths. (It should be empha-
sized, however, that in this field the experimental measurements
frequently do not agree with each other.)

The aim of the present work has been to remove some of the ap-
proximations made by previous investigators- and to estimate tﬁe ac-
curacy of the remaining ones. In the more generalized treatment pre-

sented here, the Becker-Dbring theory becomes a special case,
II. THEORY OF CONDENSATION (DROPLET FORMATION)

Although the theory of condensation and the theory of vaporiza-
tion to be developed in this paper are quite similar, the significance
of the approximations introduced is much more obvious in the é:onden-
sation case; therefore, condensation will be studied first.

2.1, Preliminary Considerations

When a pure vapor is brought from an undersaturated or satu-
rated state to a sufficiently supersaturated state (by adiabatic expan-
sion, for example), the vapor condenses into liquid drol:)lets, These
droplets have presumably been formed by a chain process which starts
with the association of two molecules to form a two—mélecule'aggregate;
this aggregate or ''droplet' captures a third molecule, then a fourth,
and so on. The mean growth rate of a given droplet will be decreased
. or perhaps even made negative by the frequent escape (evaporation) of
molecules. The occasional consolidation of two polymolecular drop-
lets, or the converse fission process, may affect over-all condensa -

12

tion significantly. Moreover, as first shown by Frenkel,“’ vapors

in the saturated or nearly saturated state contain, in equilibrium,
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appreciable numbers of droplets consisting of from two to about ten
molecules; these naturally serve as nuclei for the growth of larger
droplets.

A supersaturated vapor is, by definition, thermodynamically un-
stable with respect to spherical masses of liquid large enough so that
their surface curvature may be neglected; these very large '"droplets"
will grow at the expense of the vapor molecules. Smaller droplets,
however, are less stable than large droplets, essentially. because of
their greater proportion of loosely-bound "surface molecules' com-
pared to the more tightly bound interior molecules., Thus, as smaller
and smaller droplets are considered, a size will be found which is in
approximate equilibrium with vapor molecules of a given de gree of
supersaturation. This size is called the ''critical size;'" analytical
expressions for it will be derived later, but generally it corresponds
to droplets containing on the order of 10 to 200 molecules, for super-
saturation ratios of physical interest. The equilibrium betﬁveen the
vapor molecules and the critical droplet is an unstable equilibrium,
because a critical droplet which happens to lose a molelcule becomes
less stable and thus will (on the average) rapidly lose more molecules
until it is completely vaporized, while, conversely, if it gaiﬁs one
molecule it will grow at an accelerating rate. The growth of any par-
ticular sub-critical droplet up to critical size is therefore an improba-
ble process occurring through fluctuations from the average behavior
of sub-critical droplets. An individual droplet grows or shrinks in
finite jumps by a stochastic process, and there exists a certain small
probability that it will attain or exceed critical size. Most condensa-

tion situations of physical interest involve a very large number of
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vapor molecules; a significant number of droplets of critical size may
be formed from these molecules even though the probability for any
given molecule to initiate the growth be very small. Droplets which
grow beyond critical size are increasingly likely to continue to grow,
and a droplet which has reached about twice the critical size is virtu-
ally certain to attain macroscopic size.

A question which arises before the condensation process can be
treated mathematically is whether the vapor-droplet mixture can be
regarded as ""homogeneous, " or whether significant density and tem-
perature gradients will occur in the vapor immediately surrounding
each growing droplet. In a typical case of water vapor at 0° C and
four times the saturation pressure, a spherical volume of rad?us equal
to the mean free path of the vapor molecules contains about 107 mole-
cules, and similarly large values are obtained for other vapors and
conditions of interest.x Thus any depletion of the vapor in the neigh-
borhood of a droplet growing up to 105 molecules, say, would be equal-
ized in a time short compared to the droplet growth time, and also any
heat conducted away from the droplet by escaping mole;:ules will be
spread over a fegion containing many more molecules in a similarly
short time. It follows that homogeneity in the vapor can be éafely as-
sumed until the droplets grow to many times critical size. Beyond
this point, density and temperature gradients in the vapor may have
to be considered; but, on the other hand, for such ”la"rge” droplets

the actual irregular molecule-by-molecule growth process can be

*If the molecular diameter is estimated from the volume occupied
by a molecule in the liquid state, it is easily shoxgn in general that the
number discussed above equals (/2/108) (pL/pV) » Where PI. and Py
are the densities of the liquid and vapor, réspectively.
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accurately approximated by a continuous steady growth, so that the
problem is still mathematically tractable. Thus, it is convenient to
separate the complete condensation process into an early "molecular
domain' and a later "macroscopic domain' with the dividing point
taken at droplets containing about 104 or 105 molecules, Fort_unate.ly,
in the transition region all of the approximations pertinent to either
domain 'should be valid, so that the exact choice of the dividing point
is immaterial.

In treating the condensation process, one might try to follow the
growth history of particular droplets, or alternatively, one might ex-
amine the change with time of the populations of the various size-groups.
These alternatives correspond to the use of "Lagrangian' or "Eulerian"
coordinates, respectively. In the molecular domain, Lagrangian co-
ordinates yield complicated stochastic equations, since the growth of
a molecular-sized droplet is a very erratic process, while Eulerian
coordinates yield considerably simpler equations, correspo.nding to
a '"generalized diffusion' process, Hence, Eulerian coordinates will
be used in the present work (except in Appendix 3; see section 2. 2).

In the macroscopic domain, on the other hand, it proves simpler
to use Lagrangian coordinates, since the growth of a single macro-
scopic droplet can be considered to be steady and continuous. The
growth of macroscopic droplets has been studied by Hazen13 and
Barrett and GermainM, who found that theoretical relations based on
macroscopic diffusion and heat conduction give results in good agree-
ment with expériment. This macroscopic domain will not be treated

in the present paper.



2.2. Choice of Variables

To treat the condensation process mathematically, let us char-
acterize any given aggregate or droplet by the following three independ-
ent parameters: n, the number of molecules it contains (with n = 1
representing the monomolecular vapor); E, the internal energy of the
droplet; and M, the kinetic energy of motion of the center of mass of
the droplets (E + M = total energy). By thus limiting the character-
ization to these three parameters, we tacitly ignore any variations in
size and shape between droplets having the same mass and energy, and
any non-equilibrium distributioﬁ of the energy among the various parts
of a droplet (i.e., '"internal temperature gradients'). The first ne-
glect appears reasonable becau;cse droplets containing a dozen or more
molecules are virtually certain to be nearly spherical, to minimize the
surface free-energy, while droplets containing fewer molecules can
probably be approximated by a mean size and shape with an error not
greater than the other errors which arise when extremely s-mall drop-
lets are treated. As will appear later, a considerable error in the
treatment of droplets containing only a few molecules rﬁay affect the
calculated con&ensation process only slightly. The neglect of internal
temperature gradients is made plausible by arguments given in Appen-
dix 1, from both a molecular and a macroscopic thermal-conductivity
point of view. Even with these approximations, the general problem
gives rise to differential equations in four independenf variables: n,
E, n , and t (the time).

The variable N can be eliminated by assuming that all droplets
of a given size, n, have velocities (and kinetic energies) distributed

according to Maxwell?s law for a certain temperature, T, which will



-7-

be called the "kinetic-energy temperature, ' and which is independent
of n and E but may depend on time. This assumption appears fairly
reasonable, since any assemblage of moving particles that undergo
either completely elastic or completely inelastic (capture) collisions
tends toward a Maxwellian velocity distribution (with the usual mass
dependence), aé shown in detail in Appendix 2, and condensation pro-
cesses of interest usually take place over time periods long enough to
permit each droplet to undergo many collisions,

The independent variables are thus reduced to three. The dif-
ferential equations which arise, however, are still too complicated to
be solved analytically or even by a conventional numerical method in
a reasonable amount of time. The most feasible method appears to be
the '"Monte Carlo method' of actually tracing the histories of a large
number of typical droplets. An outline of such a procedure for the con-
densation problem is presented in Appendix 3. Numerical results from
such a procedure can be obtained only through extremely lehgthy manual
computations, or extensive use of automatic computing machines, nei-
ther of which has been possible in the present work. lStllch computations
are planned for the near future.

In order to bring the problem.“into more tractable form, two fur-
ther approximations will be madé. First, the droplets will be treated
as if at any instant all the droplets of a given size, n, have the same
free energy, F o which may be a function of n and t. This neglect of
the free-energy dispersion is equivalent to the neglect of the internal-
energy dispersion, since, under the approximations made, the one
quantity is a monotonic function of the other. Each free-energy value,

Fn, also corresponds to a certain temperature, Tn’ for droplets of
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size n. The second approximation which will be made is that Tn =T
for all values of n. This assumption undoubtedly introduces some
error, since the growing droplets in general will héve higher temper-
atures than the surrounding vapor, due to release of the latent heat on
condensation. In cases where the vapor is mixed with a non-condens-
ing gas, the error should be smaller, since the gas molecﬁles will
help carry away this heat. A discussion of the error introduced by
this approximation will be given in a later section.

Actually, much of the theory presented below can be carried
through for arbitrary Tn(t), without assuming Tn = T. The difficulty
is then to find an approximation to Tn better than T. A suc.cessful
method for doing this has not yet been discovered. Even if the mean
temperature for all the droplets of a given size, n, could be calcu-
lated, use of this value for the effective Tn in the condensation equa-
tions may introduce as great an error as use of T, since in general
only a very small fraction of the submicroscopic droplets gfow to
observable size, and these are likely to be those which initially were
much colder than the mean droplet temperature. |

2.3, Kinetic Fundamentals

Let Nn(t) (n=1, 2, 3, . . .) be the number of n-molecule drop-
lets per unit volume, in a mixture of vapor molecules and droplets of
various sizes, all having velocity distributions corresponding to the
kinetic-energy temperature T(t). Then the rate of coilision of droplets
containing i molecules with droplets containing j molecules is
2 (2,'rrk'I‘/m)1/2 Dé [(i-l—j)/ij}l/z N, Nj per unit volume, where k is
Boltzmann's constant, m is the mass per molecule, and D.lj is the

mean collision diameter. 12 If the droplets were perfectly spherical
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and had the same density, Py @S the liquid in bulk, then Dij would e-

)1/3 (11/3 . J.1/3).

qual (3m/41rpL By multiplying these quantities by a
"correction factor," O'ij’ one can take as the exact rate of capture col-
lisions (not counting collisions which do not result in the two particles

sticking together):

) Y
| Rate of i + j capture collisions = KTAELU#{J;@L#'%)E(%)/\Q/\#

2

where the quantity K is given by

() (F) e @

and is constant for any particular liquid, if the variation of liquid den-

sity with temperature and pressure is neglected. The factor gij is
introduced not only to allow for collisions which do not result in cap-
ture, but also to correct for any non-sphericity of the droplets or any
de\{iation of the droplet density.from Py

Wheni=1 andj —» 00, the quantity u'ljl becomes the conventional
accommodation coefficient, a, for individual molecules striking a flat
liquid surface. The best experimental evidence2 indicétes that for
clean liquid surfaces at temperatures not greatly different from room
temperature, a is probably véry close to unity.

When j is small, O’lj can be considered to contain a geometrical
factor slightly greater than unity due to non-sphericity of the aggre-
gates and densities less than the liquid in bulk, and a factor somewhat
less than unity because of collisions which do not result in capture.
For very small and simple "droplets, " such as aggregates of 2 or 3
monatomic molecules, the latter factor may be sevefal orders of

magnitude smaller than unity, because of the inability of the limited
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number of degrees of freedom 6f the aggregate to absorb the collision
energy rapidly. However, for polyatomic molecules it is believed that
'alj is near unity even for values of j as smal‘l‘as 3 or 4.

Similar considerations apply to a5 when both i and j are greater
than 1. It will be shown below that only a fraction of the condensation
is due to terms containing o5 (i, j .>.1), so that the approximaﬁon
O‘ij 2~ 1 should be satisfactory in this case, in the absence of more ex-
act knowledge.,

Equation (1) can be written in shorter form by introducing the

quantity
- s, B )E LI
Gy =0y (£7+47) [/4 , (3)
so that
Rate of i + j capture collision =K 7 vz s /\/1,/\/% . (4)

Besides the capture process, droplets may also undefgo the con-
verse Vaporié.étion or fission process. The two opposing processes,
for any particular i and j, can be treated like the opposing processes
in a reversible chemical reaction, sd that the ratio between the two
rates equals the equilibrium constant, If the mixture of molécules and
droplets can be treated like a mixture of perfect gases, the equilibrium
coﬁstant depends only on the temperattire and can be expressed in terms

of the standard free energy changex, F°
15

- FO _ O -
143 Fi Fj, by a well-known

thermodynamic formula:

%The term "free energy'' and symbol F will be used throughout for
the ""Gibbs free energy,' frequently also called the ''thermodynamic
potential. The word '"'potential” and symbol g will be reserved for the
electric circuit analogy developed in a later section.
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Rate of capture _ s - g Al—;«i.—&o—!——.o
TRate of fission Equilib. const. ex-p( _‘——L-/ET ]

(5)

It follows from Eqgs. (4) and (5) that

, Lo - E0-E0)
Rate of i + j fission =KT/3@?(./\4’,7 exp 4,,é7f 4) (6)

where Fci’ is the standard free energy of an (i + j) droplet at tempera-

+J
ture T and at the standard concentration of one droplet per unit volume
(corresponding to the units of N), and Fc.; and F? are similarly defined

for i and j droplets, respectively.

2.4. The General Condensation Equation

Nn’ the number (per unit volume) of droplets containing n mole-
cules, will increase with time because of capture collisions of N.1 drop-
lets with N . droplets (i=1, 2, .., n - 1) and because of splitting of

larger droplets,, N_, ., into Nn and N, (i=1, 2,..., o), while it will

n+i
be decreased by the converse processes of splitting of Nn droplets and
capture of other droplets by the Nn droplets. Evaluatihg the rates of

these four proces‘ses b;r use of Egs. (4) and (6), and also r.emembering
that Nn is the number per unit volume and hence will change if the vol-

ume V of the mixture changes, one obtains the basic differential equa-

tion for condensation:

n-7/ . ° o o
an, VE ? Fr: ‘/_:J 'Fn—'
71,'—” =KT 2 [—é-‘&l @,H—I[M /\47__,0 - /\/ﬂ exp. ( #7—

g Fai ~Fn = F N[N, AV
‘Z@,n[/\éM‘/\/m, exp i ]_T/ﬂc—[t”_(?)

L=
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where the factor 1/2 appears because the first summation counts each
collision twice (since ﬁij Ni Nj = ﬁjiNj Ni’ etc.). The second summa-
tion counts the n, n collisions twice, which is correct, because each
such cqllision removes two n-molecule droplets.

Equation {7) can be simplified by introducing the quantities

Y (£) =N,V | (8)

(Y Sy s
and QJ{ (t) = fxp(p”*f_éf 7‘) , (9)

so that it becomes

n-r
ay; ) / E X
dtn = KT/E’ {-E- @;”_L (V /),f );4 - Q,o;n—x) >;)

c0
'Zﬁ,(;,n (l/“l):); ’@L’,ﬂ%ﬂ%ﬁ . (10)
<=7

In a particular condensation situation, the vapor temperature, T,
and therefore the temperature-dependent quantities Qij maﬁr be known
functions of time, either because the temperature is directly controlled
by some sort of cooling device, or because the cooling.is produced by
adiabatic expa-nsion with a known volume change and just the earlier
stages of the condensation are considered, before so much condensa-
tion has occurred that the latent heat released affects the vapor temper-
ature, (During later stages, when the latent heat released is important,
T and Qij will depend in a complicated way on the deﬁenden’c variables
Nn or Yn; however, this corresponds to the macroscopic domain where,
as already mentioned in section 2.1, other simplifying approximations
can be made.) Thus Eq.(10) withn =1, 2, 3,..., yields a set of non-

linear differential equations with variable coefficients which in
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principle can be solved numerically, for given initial values of Yn’ to
any desired degree of accuracy. In practice, however, this procedure
may be very lengthy.

2.5, The Linearized Equation and the Electrical Network Analogy

If Eq. (7) is transformed to the following variables:

g, () —*—[/\/,""ew(f%ﬁ“)]/\/n; dt)=1; o (11)

C,(t)= VN, 8xp(—FF—~—)5 C (¢t)=VN,; (12)
R, (t) = K /6,,7 T %2y "N o (F ) (n>l) (13a)

R, (t)= EK_’@',' T%i/”'/\/,“i- © (13b)

and the terms fori =landi=n - 1 in the first summation and for i = 1
in the second summation are written out separately, the equation be-

comes

d(C;; ¢,7) . ¢n—/ ~ @’” _ @/ ¢n+/
At B Kot

A A o= By s (@ ﬁn—é:*gn)
2 ﬁp[fz B0 B R lore

=8, .8, -8,. | |
Z B0 B R R, }’“*”" (142)

7

(14b)

_i"’_(cf‘ﬂ:)z_ a'@ _ 9 ﬁ/@‘@'ﬁ
iy

dt — K
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The extra factor of two is inserted into the definition of Rl to allow for
the fact that when n = 2 there is only one term for the Valﬁes i=1and
i=n-1 ip the first summation of Eq. (7). Thus a factor of 1/2 in the
(¢n-l - ¢n)/Rn-1 term in Eq. (14a) is avoided, élthough such a factor
must then be included in other places where R1 appears in the equations,

The terms in brackets in Eq. {14a) represent contributions due to
collisions of two polymolecular aggregates, or the converse fission pro-
cesses. These are usually infrequent compared to monomolecular col-
lisions, so that to a first approximation they can be neglected, giving
simply

d(n@)' @-/”@ @n ¢’7

t Qﬂ—[ /Qﬂ

2 o (n>r).  (15)

The accuracy of this approximation can be estimated a posteriori by
using the @'s calculated from Eq. (15) to determine the size of the neg-
lected terms. The results of such calculations will be discAussed in a
later section.

During the early stages of condensation, the fracfion of vapor
molecules whi;:h condense into liquid droplets is usually quite small,
so that the total number of monomolecular vapor molecules, VNI’ re-
mains virtually constant. Then, if the vapor volume and temperature
are known functions of time, C  and R_ defined by Egs. (12) and (13)
are known functions of time, and therefore the set of 'Eqs. (15), with
n=2, 3, ..., becomes a set of first-order linear differential equa-
tions with variable coefficients.

Equations (15) are formally equivalent to the equations for the

electrical network shown in Fig. 1, where the ﬂn's are voltages,
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R_n‘s resistances, and Cn's capacitances, This equivalence makes
possible the solution of the linearized condensation equations by means
of an electric analogue computer. In general, the circuit parameters
Rn and Cn will vary with time, which greatly complicates the computer
design; however, in certain simple cases described below, they are
coﬁstant. Another difficulty in the use of an analogue comiautér is the
necessity of measuring output voltages of the order of 10“10 times the
input voltage. Probably this difficulty could be eliminated bjr introduc-
ing voltage amplifiers at intervals along the network, together with
feed-back circuits so that the later stages would properly influence the
earlier stages. Because of these difficulties, however, the use of an
electric analogue computer has not been attempted.

One useful by-product of the electric analogy is the application
of electrical concepts and terminology to the condensation problem.
This makes obvious many relations which otherwise would require
lengthy argument to demonstrate. |

2.6. Evaluation of Droplet Free Energies

Before continuing the discussion of the condensation equation, it
is helpful to détermine the magnitude of the quantities,Rn and Cn’ which
in turn depend upon the droplet free energies. |

The free energy of a small liquid droplet, in excess of the free
energy of the same amount of matter in the '‘bulk liquid, ' is approxi-
mately equal to the ordinary surface tension, o, tirges the surface area,

so that

75
o : 6V
o oo £ o (G o, (e
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where FE is the free energy per unit mass of a large mass of liquid
under a pressure equal to its vapor pressure. The above approxima-
tion is poor when n is small and worthless whenn = 1. However, an
exact expression for F1 can be found from the consideration that the
free energy of the liquid equals the free energy of vapor at the satura-
tion density, while, if the vapor is assumed to be a perfec£ gas, its

free energy varies according to kT times the logarithm of the density.*

), ' (17)

is the number of molecules per unit volume in a saturated

Hence

F-mbF =#T /07(/0/'
Sat

where N
. sat.

vapor at the temperature T. Equations (16) and (17) can be combined

to give

%5
,C_,q/sz} Jn%—nvéT/ay(//\\//’ ) (18)
£ / pL Isat :

A more exact expression for the free energy of a small droplet
can be obtained with the help of Tolman's theory16 on the variation of
surface tension with surface curvature. In carrying out the analysis,
the utmost care must be exercised not to neglect terms of the same
order of magnitude as the surface-tension correction.

The total internal energy of a system consisting of a single liquid
droplet surrounded by vapor in equilibrium can be regarded, following

Gibbs, 18 as made up of three parts: the energy of the liquid calculated

*All of the logarithms used in the text are natural logarithms, to
the base e = 2. 718...
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as if it were in a homogeneous "bulk" state and occupied the volume
4/3 1rr3, where r is the radius taken to some arbitrary point within
the surface layer; the energy of the vapor calculated as if it were
homogeneous and occupied the remainder of the volume; and a correc-
tion tefm, Es’ needed to make up the remainder of the total energy.
The value of the "surface energy," Es’ depends upon the éxacf choice
of r, which is somewhat arbitrary because of the finite thickness of
the surface layer, It is desirable; however, to choose r as the radi-
us of the well-defined ''surface of tension' introduced by Gibbs, which
can be considered as the surface at which the surface tension acts, so
that other relations derived by Gibbs can be directly applied.

The total energy of the equilibrium liquid-vapor system‘can thus

be written

4 4
e =12 R E, + (V-5 7)) 0 E,+F,, (19)

tot

where Py, is the density the liquid would have in bulk at the tempera-
ture and pressure actually existing inside the droplet; El is the liquid
Py and EV are the

corresponding quantities for the vapor, and V is the total volume of the

energy per unit mass under the same conditions;

system. Similar expressions hold for the total entropy, Stot’ and the
total mass, Mtot:
S= 5 g g+ (v-tm?)as
+tot 3 /OL L 3 T ) 'OV y+‘5.5‘ 2 (20)
M, = 27220 (V=% 747)
bt = 3 T —F A 6+M5- (21)

The total free energy (or thermodynamic potential) of the system is

given by
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Féot = Etot— T5eot +“lbl/ V = % 77/}‘3!0L (EL+ TSL)

(V-4 72°) g (6 T3+ E,- TS, + 4,0, (22)

since Py is the pressure actually exerted on the walls of the system.
For this one-component system, Gibbs? Eq. (502.)18 can be written, in

the present notation,

E,-TS, = 4nafc+FM,, (23)

where F is written for the common free energy (or thermodynamic po-

tential) per unit mass of the liquid and vapor phases in equilibrium, i.e.,
F=£-T3,+R /Q=E,-T5,+n/4 - (24)

By virtue of Egs. (23), (24) and (21), Eq. (22) can be written

=T (@F-p ) (v-5 T NRFp,)
+4dmafo+ FM, +p,V

- FM +4masr- 345 722, -p,). (25)

t0T

The basic surface-tension relation (Gibbs, Eq. (500)18) is

‘—pL '—py = iﬁ’ 4 (26)

so that Eq. (25) becomes simply

F . =FM,, +2 7, (27)

tot 4ot 3
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The analysis of the condensation problem in earlier sections
treated the vapor-droplet mixture like a mixture of perfect gases, as-
suming the vapor density is small. If the equivalent assumption is
made here,v the vapor free energy will be independent of the presence
of the droplet, and hence will equal F MV. The remainder of the total
free energy given by Eq. (27) will be the free energy of the n-molecule

droplet
F,=nm E + =% Ao (28)
n 3 2

since the mass of the droplet equals n m., In Eq. (28), F is the free

energy per unit mass of the bulk liquid at a temperature T and pressure

20

-— 4 . Since, in general
T Pexternal ? g ’

aAF =-Sdt + dp/p, (29)

F can be evaluated in terms of the free energy, FE,

of the bulk liquid
at temperature T and pressure equal to its ordinary vapor pressure,

Psat (T): |
i“oj +Pexs
a
L = FLO + ’Oﬁ (30)
L
Psat

If the compressibility of the liquid is neglected, this equation integrates

to give

o, 20T Pext ~L:
E=F"+— + L= 75t
L /LfOL ,OL_ - (31)

In Eq. (31), Poxt is the external pressure exerted on the droplet by the

vapor. For saturation ratios of interest, this is not more than several
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times p so that the last term in Eq. (31) is negligible in the perfect

sat?

gas approximation. With this approximation Eq. (28) can be written

_2man 4

Fp=nm £ ==pgo—+ 5 nA°0. (32)

When this expression is combined with Eq. (17), one obtains finally

) _éemon 4 2 N, :
F-nk = T F T~ - nkT log o (33)

The surface tension, ¢, for a surface of radius r must now be

evaluated. According to Tolmants theory,16

5 _L 52 .
d/qu:fJ /+/z, +j e (34)
2 3 7
N = e

where 6 is the distance between the Gibbs surface of tension and the
surface which would make the ''surface mass' vanish, i.e.,

i

s | (35)

5 \5/?ﬁn’)

27e

For all liquids which have been inves’cigated‘,19 6 is somewhat less than
the distance between a molecule and its nearest neighbors, and thus 6/t
is considerably less than 1 for droplets large enough so that the concept
of surface tension is applicable., It is convenient, then, to expand Eq.

(34) in powers of §/r:

dr S Z

diwo 58 5 5° 53 59
A /C - £ 29, ...J]. (36)
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If this expression is integrated between r and oo, under the assumption
that & is a constant independent of r, one obtains
52 s28% 5957 -

where L is the ordinary surface tension for a flat surface.

It is convenient to rearrange Eq. (35) to read

/3 _/ ‘
_{3mn S5

When this value for r is substituted in Eq. (32), it gives

75 82 =2 &7
6my‘— /+£—*+8 et T e
F-nF, =n?c ) 52

/-/'E_'f'-/fz

N,
~nAT fog—F7 . (39)
Nisot
. 20,21, 22 |
The only published attempts to apply Tolman's theory to con-

densation phenomena tacitly neglect terms containing §/r in Eq. (39),
while using Eq. (34) or (37) to evaluate o. Such a procedure is incon-
sistent and in general will lead to error; however, because the first
order terms in §/r fortuitously cancel in Eq. (39), the results thus ob-

tained are first order approximations. A higher order approximation,

obtained from Egs. (37) and (39) is
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75

s 2 g2 191 5%
£ - nk = ﬂ%O’ ( o) )(/ LD/L 4/Le”%‘j ’5,7‘%4*'”')
A/
- =7 . ; 40
nRT by - (40)
If a dimensionless quantity € is defined:
- /3 '
Im

€= S(WOL— 2 (41)

which depends only upon the liquid under consideration, Eq. (35) can be

transformed to give

5 €n’
A - (/__ en“'/.a} (4:2)

Eq. (40) can then be written in powers of € :

emvir , ) 5 B
£ -nE =n?g; ( )(/—Eéﬁ@+66£n%—gen’,664;745/%---)

zz

(43)

The function (Fn - nFl) increases from a small value when n is
very small to a maximum at a point which will be called the "critical
size," n_, and then decreases and finally becomes negative for large
values of n. The critical size can be found by equating the derivative

of Eq. (43) to zero:
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2/3
o R
N
- 7? ] [ L =0 B (44
SV )

or, inverting the series,
(1- 3€ERZ r0-€% o), (45)

where

32T meo,

30 (4@7*/0,;

o ~

A )3 5 . (46)

n_o is the value n_ would have if € = § = 0. By combining Egs. (43) and

(44), one finds that

. L, 7 o (22T y %
(/‘—n nFl_)max(ﬂﬁ”c) 3" ( ) (/ 7% Tree

P a1 _ 5 a4, P
BCARC AR ”c*“). (47)
By use of Egs. (36) and (40), it may be shown that this result is equiva-

lent to

_4
(F—‘,,—n/—”,)max(nznc) =Smalq , (48)

where T and o are the radius and surface tension at the critical size.
Since the free energy difference has a stationary value at the critical
size, a droplet of this size will be in (unstable) equilibrium with the

vapor. Equation (48) agrees with Gibbs! Eq. (560), 18 derived by him



-24-

for the equilibrium case; one has, therefore, a check on the more gen-
eral Eqgs. (33) and (43), which have not, to the writer’s knowledge, ap-
peared in the literature in any form.

2.7. Incompleteness of the Macroscopically-Derived Free Energy

In the analysis of the condensation process, the Vapor-droplet
mixture was treated like a mixture of perfect gases, If droplets of
size n behave like molecules of a perfect gas, their free energy should
contain a term of the form kT log Nn' It is precisely this térm which
permits an undersaturated or saturated vapor to contain in equilibrium
a few polymolecular droplets, even though the latter have a higher |
"intrinsi;:" free energy.

Both the approximate Eq. (18) and the more exact Eq. (43) are
seen to lack such a term, This deficiency is related to the fact that if
either of these expressions for the free energy (setting N1 = 1, for the
standard state) is substituted into Eq. (11), the ratio ¢Z/¢1 will be found
to depend upon the units of volume chosen, which is inconsistent with
Eqs. (14) and (15) whenn = 1 or 2.

A plausible way to remedy these deficiencies is to assume that,
in treating the droplet thermodynamically to obtain Eq. (43), the ther-
mal motion of the droplet as a whole was, in effect, disregarded. The
additional free energy the droplet will have due to this motion can be
obtained approximateiy from the translational and rotational partiﬁon
functionslz, Zn’ for a rigid sphere of mass mn and moment of inertia

of (2/5) mn(i‘}mn/élwpl_‘)z/3

3wmn£T :
(Z )trdns /\/ ( ) ’ (49)
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(2] - 487 (mn ) 72(£T) %
nrot :

(50)
SR 2

If the quantity -k T [log(Zn)trans + log (Zn)rot] is added to Eq.

(43), it becomes

7 N,
F'nﬁ;=ne@a;(m (,_56,7"/9_,565,;%)_,77537/07._'
n A Noat

znemiAT)
g6yz T m
ATl N, 44T lagr ~A Ty (=35> )-(51)

The terms in € 3 and €% from Eq. (43) have been omitted in Eq. (51),
since they are probably smaller than the inaccuracies in the equation
due to the assumption that 6 is independent of r. These terms were
.originally calculated merely to show that their numerical coefficients
are small,

The quantity which actually appears in the condensation equations
is the standard free energy difference, Fz - nF?, coz_'respohding to the
standard concentration of one particle per unit volumé, i,e., N =1

n

and N1 = 1. This quantity was introduced because, in the perfect gas

approximation, it depends only upon n and T, and unlike the actual free
energy difference, is independent of droplet and vapor concentration.

It follows from Eq. (51) that

5];%’77—_':’- . A(neéﬁfenya*fgz)" n log Ny

%m* (#T) |
asvE m%m? ( )7 (52)



-26-

where, for convenience, \ designates the dimensionless surface-ten-

sion factor:

s
a, [ emvir
A(T) = 457‘( ,/)OZ 77) . (53)

If this expression is substituted into Eq. (11), the resulting }an‘are inde -
pendent of the dimensional units used.

An alternative method of introducing the kT log Nn: term, which
appears nearly as plausible, is to assume that Eq. (43) gives the free
energy for a droplet confined to a volume of order mn/pL.'. If this vol-
ume is then expanded to l/Nn, and the droplet behaves like a perfect
gas molecule, the resulting isothermal change in the free energy is
kT log N + kT log (m n/pL). If this expression is added to Eq. (43),
the standard free energy difference becomes

F-nf°

T =A(n-en®+26%)+nilqg N,

+@n~@@%ﬁ ? (54)

instead of Eq. >(52).

Equations (52) and (54) are certainly not equivalent, although,
surprisingly enough, the two expressions are approximately equal for
many cases of physical interest., A third, still different expression
for the standard free energy difference will be obtainéd in section 2,8,
Equivalent discrepancies appear in the condensation relations derived

by previous investigators, depending upon their different approaches.:k

xCompare, for example, Frenkel, 12 p. 384, Eq. (16a) with his
unnumbered equation for Ng on p. 381.
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These differences arise basically from the attempt to extrapolate mac-
roscopic relations to the molecular domain. In the determination of
droplet free energies as a function of n, macroscopic measurements
enable evaluation of the ""bulk" term proportional to n, the surface-

2/3

tension term proportional to n , and probably, from Tolman's theory,

the next order correction term, proportional to n1/3. Terms of lower
order, however, such as constant terms or terms proportional to log n,
may be completely masked and not measurable by any direct macro-
scopic means. Such lower order terms can make a considerable dif-
ference in condensation processes.

At least two approaches toward evaluating such terms are pos-
sible. On the one hand, the condensation theory might be worked out
for various assumed values of the free energy, and the results com-
pared with experiment. This procedure is followed in the present paper.
On the other hand, the free energy of very small droplets might be cal-
culated directly from the principl‘es of statistical mechanics and quan-
tum mechanics. Carrying out the latter procedure is a formidable task;
a beginning has recently been made by Reed, 23 who calculated the free
energy for nitrogen aggregates containing 2, 3, 4, 5, 6 and 8 molecules,
assuming a Lennard-Jones interaction potential between two molecules
and making other approximations. In Figs. 2 and 3, Reed!s values of
(F;)1 - nF(I))/kT are compared with values calculated from Eqgs. (52) and
(54), and also with values from an alternate equation derived in section
2.8. The comparison will be discussed in detail later. In any case,
these free energy values for a single substance over a limited range of
n are hardly sufficient to deterrﬁine which of the alternate expressions

is most accurate in general. All of the expressions, however, are of
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the following form:

F-nF’° ,
-%= Aln?~2€n”) +p log N,

+Alegn - lg B ,(n>1) - (55)

where A and B are quantities independent of n. A is a positive or nega-
tive quantity of order unity; B is a large positive quantity of order
’1020 cm_3. When accurate values of the free energy forn=2, 3, ...
are known, terms proportional to n-1/3, n-2/3, etc., might be added
to Eq. (55) to obtain better agreement; however, it is probably easier
to work directly with the numerical free energies for the first few
values of n, and use Eq. (56) for larger values of n.

The theoretical condensation relations developed in this paper
will be derived first in terms of arbitrary free-energy functions, and
then specialized to the functional form of Eq. (55). Specifiq values of
A and B will be assumed only for the numerical calculations. Thus,
the theory remains readily adaptable to any more acc'u_rate free-energy

values which future investigators may obtain.

2.8. The Condensation Equations in Terms of Droplet Vapor Pressures

Becker and DBring5 developed their theory of condensation in
terms of the vapor pressures of small droplets instead of their free en-
ergies, and used the Gibbs-Thomson formula for the variation of vapor
pressure with droplet radius. Basically, the two approaches are e-
quivalent, if both are carried out without approximation. It is natural,
however, to make different types of approximations in the two cases,
so that the usual results are oniy approximately equivalent. If only a

rough answer is required, the Becker-DB8ring approach is in some
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ways s-impler and follows physical intuition more closely. If a better
approximation is desired, however, the development of the theory in
terms of free-energy differences has two important advantages. In
the first place, the nonlinear terms in the condensation equation,
representing consolidation or fission of polymolecular droplets, can
be written down immediately in terms of the free energies, but could
be obtained only by a very involved argument in terms of the droplet
vapor pressures. Secondly, the free energy of an n-molecule aggre-
gate or droplet is a definite well-defined quantity (even though its
numerical value may not be known precisely). The vapor pressure of
an n-molecule droplet, on the other hand, might be defined in several
different ways; for example, in terms of equilibrium between.n and

(n - 1) molecule droplets, or between n and (n + 1) molecule droplets,
and with or without a factor [n/(n x 1)]2/3 to allow for the difference in
surface areas, etc. For small n, these definitions are not equivalent,
and the calculated rates of condensation will depend somewhat upon
which vapor pressure is assumed to be given by the extrapolated Gibbs-
Thomson formula, Significant errors may also I;esult from the mixed
use of two different definitions of vapor pressure,

The vapor-pressure definition appropriate to the Becker-DUring
theory can be readily derived. Becker and Doring expressed the rate
of growth of (n - 1) molecule droplets to n-molecule droplets as
Kk’lT-l/Z(n - 1)?‘/3pNn__1 (in the present notation), where p is the
pressure of the monomolecular vapor. Since p = leT, this expres-
sion is seen to agree with Eq. (4) when i =1, j = n - 1, and

ﬁl n-1 " {n - 1)2/3. For the rate of the converse process, the decay
?
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)

of n-molecule droplets to (n - 1), they used Kk} T_l'/2 n2/3 P N

where Pn is the ''vapor pressure'' of an n-molecule droplet. By com-
2/3

parison with Eq. (6), setting i = 1, j = n -1, and Bl po1 = (n-1)
, n-

again, it is seen that

2 (5 -F, - F
P, :,,gr—?}i) exﬁ(” %’77_’ ')- (56)

If Poo denotes the ordinary vapor pressure over a flat surface,

B, - N, AT, (57)
so that
B (n-, )% £ ﬁ,‘,’_,—F,") -
_n - . 58
D N \nl) “P\T &7 (582)
-1 Y73 L£o-F5 - -
[ n-t ~ Fsar
—(n ) exp(” T ) . (58b)
Equation (58b) differs by the factor [(n - l)/n]z/3 from the definition

of P_/P_ used by Reed. 23
n’ “oo

By taking the products of Eq. (58a) for consecutive values of n,

one finds, on simplification

g RY_ , rtnn _z Fo-nk’

1 (Z)- st o (F225) =)
£, -nkE° 2 . £
—Zfz‘r‘“'“(”"')/ow\éanz’“?”;f/""(e,)' (60)
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Becker and DUring further assumed that, even for small values,

of n, Pn/Poo can be approximated by the Gibbs-Thomson formula‘.’15

[ 20m
/Of/( =/ = . (61)
£, Q #£Tr
Equation (61) was first deduced by W, Thomson from mechanical con-
siderations, and later derived more rigorously by Gibbs, 18 using a
free-energy argument. When values of r from Eq. (38), o from Eq.

(37), 8/r from Eq. (42) and \ from Eq. (53) are substituted into Eq.

(61), one obtains
/% 2 -
/07(77) =/\(§n /3'38‘6/7 %e0-€n'), . (62)

neglecting higher order terms. Substitution of values for log (Pi/Poo)

from Eq. (62) into Eq. (60) yields

_F_”f_ - ,\Z( _ —e;%)

+(n-1) log Nsat+-§—/oqn. : (63)

The summations in Eq. (64) can be expressed with the help of a series

for the Riemann Zeta-function (Jahnke and Emde,24 p. 269):
- /
1+ E it = —,_—}*n"} *C(3)+ Sk (3 #1). (64)
=2

Thus, Eq. (63) becomes, to the same order of approximation,
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Fo-nkF’

- 2/3 _ 55 [313+2.291€)
= A(n*s-zen 91

+(n—/)/ch56t+§/oqn. (65)

Eq. (65) is seen to be of the form of Eq. (55), with

_ 2
and

B =N,

sat

exp (A (1313 -2.291€)]. | (67)

In their treatment, Becker and DBring simply approximated the
summation in Eq. (63) (without the € terms) by the corresponding inte-
gral between the limits 1 and n, and obtained results equivalent fo

€ =0, A=2/3, B= N__; exp()N).

2.9 . The Equilibrium Solution of the Condensation Equations

We return now to consideration of the condensation process and
its electrical analogue. If the resistances and capaciténces of the e-
lectrical network shown in Fig. | do not vary with time, a possible
solution for the network is obtained simply by giving éll the voltages the
same constant value. Since ¢1 = 1 from Eq. (11), the above condition

becomes
@, =1 (for all n). (68)

This solution evidently corresponds to the case when there is no current
flow in the electrical analogy, or no net growth of droplets in the con-
densation situation, i.e., an equilibrium state has been attained. Hold-

ing the resistances and capacitances fixed corresponds to holding the
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temperature and volume of the vapor fixed, according to Eqs. (12) and
(13).

Equation (68) is readily seen to be a solution not only of the lin-
earized Eq. (15), but also of the exact nonlinearized Eqs. (14a) and
(14b). This result is to be expected, because it is equivalent to the
well-known ;:hemical principle that the equilibrium of an over-all
reaction is independent of the assumed intermediéte stages.

The number of droplets of a given size in the equilibrium situ-

ation is found from Eqs. (11) and (68) to be
FronF, |
M= N e —7:?—‘} (69)

If free energy values from Eq. (55) are substituted into Eq. (69),

one obtains
N, = Bns exp [-2 (n%2-2ents)] | | (70)

where s is the saturation ratio:

N |
5=— . (71)
Naa

©

When s # 1, Eq. (70) shows that the series E N , which expresses
=1

the total number of droplets of all sizes per unit volume, behaves like

o
. . n .
the geometric series Z s, converging for undersaturated vapors

n=1
(s ¢ 1) and diverging for supersaturated vapors (s > 1). For saturated
o)
vapors (s = 1), the series behaves like E exp(-n2/3) and hence con-
n=1

verges. It follows that the equilibrium state is physically realizable
for undersaturated and saturated vapors, but not for supersaturated

vapors. In the realizable cases the values of Nn fall off rapidly with
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increasing n, and generally become negligible for n > 10.

Equations (69) and (70) for the equilibrium droplet distribution
do not contain the ﬁij's, and hence are independent of the uncertainties
in numerical value of these quantities. They do, however, contain the
free energy difference as an exponent, and thus the calculated values
of equilibrium Nn can differ by factors of 10 to 1000 depending upon
which free energy expression is used, i.e., upon the values of A and-
B assumed in Eq. (70).

2.10, The Steady-State Solution

If Rn and Cn are held constant, a time-independent solution of the
linearized Eq. (15) may be sought by equating the left hand side to zero.

This procedure yields

- 4
@:7/ @:7 _ ﬁﬂ 124/ 5 (for all_n) (72)
-1 ”
or in other words,
@,/, "ﬁﬂi—/
——= =constant = JV. (73)

Ko

The constant in Eq. (73) is denoted by JV because it can be shown that
J is then the steady rate at which droplets grow from any sizé nton+l1.
This result follows from the fact that Cn¢n = VNn’ according to Eqs.
(11) and (12); thus the left hand side of Eq. (15) equals VdNn/dt (since
V is constant in the steady state), and the terms on the right hand side
must then represent ""droplet-growth currents!' multiplied by V. If

Eq. (73) is written in the form
' Q -ﬁx;-ﬁ/ = ‘JV;\ZJ (74)

and the result is summed from i = 1 0 i = n - 1, all #'s except the
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first and last will cancel, yielding
rn—-1
b-0,=0v) R . (75)
L=

Solving for J, and using ¢1 = 1, one obtains

- &,

J = 7—1
vy R
=7

(76)
Equation (76) holds for any value of n. By Eq. (11), [an =
= Nan_n exp[(Fg - nF(lj)/kT]. As n becomes large, Eq. (55) shows

R ¢ Nn is boﬁnded, which must

that this expression behaves like an—
be true in any physical situation, thennii._rglo ¢n = 0 for supersaturated
vapors (s > 1). Thus, by letting n—om, Eq. (76) becomes, for super-
saturated vapors,

o (77)

_ /
= T—
V) R,
=1
‘ ©
The summation in the denominator of Eq. (77) behaves like 2 s 7,
. n=1
and hence converges. For an undersaturated or saturated vapor, both
numerator and denominator of Eq. (76) become large for large n, but
their ratio is of order N _. If lim N_= 0, since, physically, a drop-
n n——Q0 n
let of infinite size cannot be found in any finite volume, then it can be
shown that J = 0 for undersaturated or saturated vapors, as antici-
pated,
Equation (77) can also be obtained readily from the electric cir-

cuit analogy. If the circuit of Fig. 1 is in a steady state, the charges

on the capacitances remain constant, so that the capacitances can be
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omitted without changing the physical situation, leaving just a voltage
¢1 - ¢00 = 1 across the series resistances Rn' The glectric current
flowing is evidently 1 / f Rn’ assuming that the summation converges.
The electric current di?f_elrs from the ''droplet current' by the factor
V, so that Eq. (77) is again obtained. (It might be noted that for the
steady state, since V = constant, one can set V = 1 withoﬁt loss of
generality.) This simplified electrical analogy was discovered by
Becker and DYring, 5 |

The value of Vf Rn needed to calculate J can be found with the

n=1
help of Eq. (55):

=2 / 2B = A -
= = = Fo_or "%
0 R TN N, Z A mﬂﬁ {79

For large values of n, a = 1 (see section 2.3), and therefore

1,n
B % n2/3 by Eq. (3). Equation (78) would be simplified if

2/3

(1 + n-1/3)“2 (1 + n“l)"l/2

= n even for small values of n; this corresponds to

Fsl,n

a5 . A curve for this expression is
] .

shown in Fig. 4; it increases from 0,25 at n = 2 to approaéh 1l asymp-~
totically as n approaches infinity., This is not an unreasonable as-

sumption for a » when more accurate information is lacking. If,on

I,n
the other hand, it is believed that actually 0 5= 1, the approximation

2/3

n is equivalent to neglecting the radius of the vapor mole-

61, n-
cules compared to the droplet radius, and neglecting the thermal motion
of the droplets.

With this approximation, Eq. (78) can be written
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28 Z‘”
VE R, KT'/Z/\/B 3. + exp [-n lga

h=g

+n (nes-26n") +[A —§—)/a¢n]]- . (79)

The terms in this summation have a maximum for a certain value of n
which will be designated by n,, and which can be found by equating the

derivative with respect to n of the exponent in Eq. (79) to zero:

toga +ZA(nB-en”)+(A- 2)4=0, (80)
- -2, :
n*:-n*o[/— 36n*0/3+%(/4~—§—)nm/3+--] > (81)
where
’)A 3
o = 3/090/) o (82)

The quantity n, differs from the ''critical size, " n_ defined previously,

in that n = is defined to maximize a quantity which has an additional

term (A - %—) log n compared to the corresponding quantity for n_. In

the Becker-D8ring approximation, A = 2/3 and thus n, =n, which

result can also be obtained by comparing Eqs. (45) and (81).
Because of their exponential character, the terms in Eq. (78) or

(79) decrease rapidly on either side of n

4 SO that only the terms near

the maximum need to be considered to obtain a reasonably accurate

value of J. Moreover, when n,_ is not extremely small, the initial

%
term 2 B/( 61,1N1) and the next few terms are negligible compared to

later terms, so that the calculated value of J is practically independent
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of the uncertainties in the magnitude of the first few accommodation
coefficients, 0’1, 12 ql’ 2 etc. Thus, whether these coefficients for

n < 5 are closer to unity or to 10_3 ordinarily makes little difference;
however, if they should be as small as 10_6 the reduction in J would

be appreciable for high saturation ratios when n

. is of the order of 10

or 20,

If a simpler expression for J is desired, the summation in Eq.
(79) may be approximated by the corresponding integral, with an error
which is small when n_ is reasonably large. Denote by f(n) the terms

*

in the summation, i.e.,
/ Fag -
NOE ex«p[—n loga + Alns-cen®) +(A—3‘)/oqr7. (83)
It is convenient to introduce a new variable, x, by the equation
n=n, (1+x)° (84)
3 2

so that x = 0 when n = and f(n) = maximum. In terms of this

P
variable,

£n) = L) exp [-n, (3% + 3x2+x% ) fog @ + A, P(2x+x°)

~2€nBx + (3A-2) Ig (1+x)] . ~(85)

If Eq. (80) is multiplied by Sn*x and subtracted from the exponent of

Eq. (85), the latter reduces to
£(n) = 7,Hri,e)ex«p{— Kx®-n, x%log.a

+(3A-2) [Iog Cr4x)- x]] ) (86)
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where
K=3n,lqa-An =2 n*o[/—46n*;'/3+ (€°+6A -4)'7;0%]: (87)
by virtue of Eqs. (81) and (82). Hence

oD o0

£n)dn = 3n, £(n,) | exp [- K xe- n, x? log.a

/3
2 2
(%)

+3Alog(i+x)- (3a-2)x|dx . (s8)

The integrand on the right-hand side of Eq. (88) has a value of unity at
x = 0, while it has a value less than 0,01 when ,x l> 1/2, assuming the
usual situation that n, log s > lQ. Thus, with an error usually less
than 1%, Eq. (88) can be written ‘ \

oe * =
'ﬂf(n)dﬂ = 3N, £(n.) fexp [- tx=n 52090 + 2%
E

~Ye

-z 2, 3 ...
= AxZ+ Ax ]dx

+Ye

=3n, £(n,) _ﬁ+ X +(A ‘gé'”* /oc;a')x’?---]
Lz

ex7o[~ (r+ ZA —c”)x'g]atx. (89)

The exponent in Eq. (89) was chosen so as to make the xz term in the
brackets vanish, The contributions to the integral from the x, x3,
x5, ..+ terms are zero by symmetry. If the x4, x6, ae. terms are

neglected, only the exponential remains under the integral sign. The

limits of integration can now be extended to X co with negligible error,
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so that

ﬁf(n)dn =3n, f’(n,‘)ﬁx‘p[—(/{+ ;_f—AnZ)x‘f]dx
2 ¥ 00

= 577/5/7*%[/7*)(/(-# %A“Z)‘ZE. _ i (90)

The expression for J then becomes, if the 2B N,) term in Eq. (79
1,11 1

is neglected,

J

s . g %
(KB T/aNsat) ,a[jn* loga = AN+ 3A-¢]
37)"72 (n*)A'f'Ka

xexp [ ny foga ~ A (ﬂ*%~£€ﬂ*%)] . (91)

Equation (91) corresponds to the simplifying assumption that

2/3

n in the region n—n

- If the different assumption that

I
nd
1l

1 is made, so that

/)7‘2

G, =0T (147 %B)% (1477 ) (92)

then the value obtained for J will be slightly larger. Such an assump-

tion corresponds to multiplying the integrand of Eq. (89) by a factor

- ~2 -1.-1/2 - -2 - -
(1+n1/3) (1+n1) / =(1+nx1/3) +2n*1/3x-2nx1/3x2'+;..

The resulting value of J is, to a good approximation,

, ' Y
KT 2By w30, toga - A0, P+ 3 A-2-20; 2]
- 3e in )7

x (1+ n;’/3)£ex«p[n* kg~ A(n7% - 56/7*73)] > (93)
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instead of the value given by Eq. (91).
It is of interest to compare Eqs. (91) and (93) with the result
obtained by Becker and D8ring, 3 They obtained, in the present

notation

Ye 2 E .

372

Because they were interested only in a very rough answer, Becker and
D8ring dropped a factor equal to e)‘/sa which generally has a magni-
tude of 10 to 1000, in situations of physical interest. Aside from this
factor, Eq. (94) is a good approximation to Eq. (91) when A = 2/3,

A

B=N_;¢»s €=0andn =n . Equation (94) differs from Eq. (92)

-1/3,72
) » because Becker and DHring

by an additional factor, (1 + n,
neglected the finite radius of the vapor molecules in computing capture
collisions.

The number of droplets of a given size, in the steady-state situ-

ation, is easily derived from Egs. (76), (11) and (13):
/an =/__JVZQ ’ : (958.)
by =V R s (950)

Oy Fo <0
N, = /V,”ew(—%;—'")t“/z R s (962)

<~=n
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KTEVN, G, 0 R,
N, = D . (96b)

- R R,
L=t

The different forms of these equations are.useful for diffe.rent purposes,

The steady-state solution has been derived above for the linear-
ized Eq. (15). The effect of the nonlinear terms in the more exact Eq.
(14a) will be to increase J siightly, since both linear and nonlinear
terms tend to make the ¢n approach the equilibrium value ¢n = 1 (see
section 2.9 ), and this results in a '"current flow' toward larger values
of n, On the basis of a numerical calculation, discussed later, the
contribution of the nonlinear terms to J is estimated to be only a few
per cent in most practical cases,

Thus far, the steady state has been discussed as a possible
mathematical solution to the condensation equations, withéut inquiring
as to whether such a state is physically realizable., If a supersaturated
vapor were maintained at constant volume and temperature, and all
droplets which grew very large were removed and replaced by an equal
mass of vapor molecules, it is evident that the system, in time, woau,ld
approach such a steady state. In the electrical analogy, this corre-
sponds to supplying a constant potential at ¢1 and grognding a particular
¢n (n large). Because the Rn decrease rapidly beyond the critical n,
the result is practically independent of the choice of the voltage ﬂn
which is grounded (or of the droplet size which is removed) provided

that n is at least twice the critical size, D,
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Such a physical situation, involving constant removal of droplets
and addition of vapor, seldom, if ever, occurs in practice. Previous
investigators, -9 however, have used the steady-state value of J to
determine the occurrence or nonoccurrence of condensation in many
types of unsteady physical situations. Because of the exponential
factor in Eqs. (91) and (92), a small variation in temperature or satu-
ration ratio generally causes a large variation in J, so that in many
practical situations very rough approximations in J are permissible,
It is not obvious, however, that typical unsteady condensation situ-
ations can be even roughly approximated by a steady state, and the
arguments of previous investigators on this point have been vague and
rather unconvincing. This question will be discussed in the next sec-
tion.

2.11. Time-Dependent Solutions of the Condensation Equations

In a general condensation situation, the volume V should be a
known function of time, and the temperature T either known directly
(as when the system is in a thermal bath) or determined by adiabatic
expansion _1aws, radiation laws, etc., or determined by these laws
plus terms due to latent heat released, if this effect is significant. In
the first two cases, the condensation Eq. (15) is linear with variable
coefficients; in the last case it is nonlinear. In all of these cases, the
electric circuit analogue involves resistances and capacitances which
vary with time. In general, the only recourse appears to be to solve
the differential equations numerically, and for this purpose Eq. (10) is

probably better suited than Eq. (15).

There exists, however, a particular nonsteady condensation situ-

ation which is considerably simpler to treat than the most general
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case. This is the situation when an undersaturated or saturated vapor
is suddenly brought to a supersaturated state (by adiabatic expansion
or otherwise), so rapidly that negligible growth of droplets occurs
during the transition period, and thereafter the volume and tempera-
ture of the vapor are held constant while the droplet-growth process
occurs. The quantities Cn and Rr1 then remain constant dﬁring the
period of significant condensation, and the nonsteady character of the
process is reflected only in the specification of nonequilibrixim initial
values of the dependent parameters, ]an(t).

The assumption will be made that, before the vapor is cooled
to supersaturation, it is first held in a particular undersaturated or
saturated state long enough for the corresponding equilibriuni‘ distri-
bution of droplets to be obtained. (Since Nn is generally negligible
under these conditions when n » 10, the time required is only that
necessary to establish equilibrium among the droplets having n < 10,
which is usually less than 10-7 sec.) The number of dropléts in this
equilibrium state is given by Eq. (69) or (70). If, at t =0, the volume
and temperature of the vapor are changed so suddenly that the total
number of droplets, VNn’ of each size, is conserved, the new number

of droplets per unit volume will be given by
V —-n EO -n Eo
N, (0) :(V_)N’ ex-p (——"%T———’) (97a)

<O @) exp [ An-cEn®)] (n>1), (970
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where a bar is used to distinguish the parameters of the old under-
saturated or saturated state (V, Nl’ T, etc.) from the corresponding
parameters of the new supersaturated state (V, N, T, etc. ). The
initial values of an can then be obtained with the help of Eqs. (11) and

(55):

4,0 (X ew( nF/ ’:77;;57) (982)

(Z/g)( )e”’[(ﬂ An?e-2(ne- ﬂe)ﬂ/i(m/) (98b)

Like Nn(O), the values of ¢n(0) decrease rapidly with increasing n, and
generally become negligible for n > 10. For the significant céses when
n < 10, Eq. (98b) may be only a rough approximation to the exact Eq.
(98a); howevér, it will be shown below that a considerable error in the
iniﬁal values, ﬂn(O), usually produces only a small change in the calcu-
lated condensatioﬁ process.

During the subsequent condensation process, since V and T are
held constant, the parameters Cn and Rn remain constant as long as
the total amount of condensation is so small that there. is negligible
depletion of the vapor molecules, i.e., negligible decrease in Nlo
Eventually, in a physical condensation situation, the vapor depletion
will become significant, and also the latent heat released on conden-
sation will become large enough to affect the temperature; however,
it will be shown that by this time virtually all of the droplets have
grown 1o a size sufficiently large so that their further growth can be

calculated by means of simple macroscopic diffusion and heat-
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conduction relations.
In treating the condensation, it is convenient to introduce a di-

mensionless time parameter:
T=KT N, ¢
' Ty (99)

and rewrite Eq. (15) to read

4,

T

=a, B ~(an+b,)By + b, %, ,(n>1), (100)

where the C, and Rn have been combined into the quantities

~
:[KTszCnQ?]:Q’;” , (n)/), (101)

y En-Fr,-F,
n = [KT 5N, G, R, ,j A (———i—')
(102a)

A P
B, s &' Kﬁ exp [A nZ- A (n-N7%2eAn l/3+€6/1(ﬂ—/){37, (n>2)

/ Fo-2F°

=(C")A—/,6’,J,A:/(A§ar)ex~p (2%4-2%€n). (102b)

2/3

In the Becker-DYring type of approximation, (31 n- P and the free
3

energies are given by Eq. (63), so that the above expressions simplify

to

¥ (n>1), (103)

by =n2/3,4?’exﬁ[§ Al ? —6/7’%)], (n>z), (104a)
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b= €28 exp[ L a(2P- 7 %e)]. (104b)

Because of the rather complicated variation of bn with n (even
in the simplest case when € = 0), it has not been possible to find a
general analytic solution for the infinite set of Eqs. (100), with
n =2, 3,4, .., or even a particular solution which satiéﬁeé the
necessary condition ¢1 = 1. One must therefore turn to analytic ap-
proximations or numerical methods. A possible approxi.mation is the
neglect of all @f's beyond a certain ¢n' If the n in ¢n is chosen to be
considerably larger than ten, one may expect that there will be a cer-
tain period of time during which this approximation is valid, since only
‘a negligible number of droplets containing more than ten molecules is
present initially. The length of this period may be estimated by noting
the time during which ¢n’ the last term not dropped, is negligible. If
n is chosen to be more than twice the critical size, ¢n will always be
negligible compared to the @'s near critical size so that the entire be-
havior of droplets near the critical size can be obtained, The con-
tinuing rate of growth of droplets beyond the critical size, however,
can be obtained only by increasing n so that it always exceeds the
droplet size of interest, |

With this approximation, Eqs. (100) become a finite set of first-
orcier linear differential equations with constant coefficients, which can
be solved by standard Inet;hods.=k The steady-state sélution is first
subtracted off to remove the nonhomogeneous g:ondition on ¢1; the re-
mainder of the solution is then of the form i c, e ‘Hi”T, where the ci's

i=2
are determined by the initial conditions and the p;'s are the roots of a

xSee, for instance, Carslaw and Jaeger,25 pp. 83-86.
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secular equation of order n -« 1. In typical cases of physical interest,
when n must be of the order of 100 to cover the critical region, this
procedure involves a vast amount of computation. It has been found
possible to derive a recurrence relation for the secular determinants
of successive orders which considerably simplifies the determination
of the pi's. When the p.i"s were computed for a typical case having

n = 50, with the help of a punched-card computing machine, an even
more serious diffifulty arose. It was found that the summations ex-
pressing the desired #'s contained many large terms which nearly
cancelled to give totals several orders of magnitude smaller. In
some cases, eight to ten significant figures had to be carried in inter-
mediate calculations to obtain results correct to 50%, Further in-
vestigation showed that this difficulty arises because of the large vari-
ation in magnitude of Rn with n which is inherent in the condensation
theory. Calculation of the #'s to a given degree of accuracy is much
more laborious when this approximate analytical method is.'used than
when the numerical method described below is used. Therefore, fur-
ther details of this analytical method will be omitted.

Another >type of analytic approximation results from allowing the
variable n, originally defined as discrete, to take on continuous values.
This procedure was followed by Zeldovic:h'7 in treating the simple steady-
state situation. If a(n), b(n), and @#(n, T) are any functions of the con-
tinuous variable n(2 = n < o) which take on the values a, b and [D'n('t,‘)
defined by Eqgs. (100), (101) and (11), respectively, when n is an integer,
and if @(n, ) also possesses partial derivatives of all orders with re-

spect to n, then
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2
/@/(ﬂi‘/,’(ﬁ’) Q/(n )+ M} ?_Q_(i’t?__)+

13 Tapeter (108)

so that Eq. (100) can be written

—Laat(”"") - Catmye s L 28 12,

aland 4’ an‘*

3
+[a(n) b{n)] a¢ -3'—,3—,?3+] .

(106) -
In order to reduce Eq. (106) to tractable form, it is necessary to
make some assumption about the magnitude of the higher derivatives.
In several direct numerical integrations of Eq. (100) which have been
carried out (see below), it has been found that, through most of the
range of n and T , the quantities ¢n behave approximately like a de-
creasing geometric series with a ratio between 1/2 and 1/4. It follows
that @(n, T) is roughly proportional to ¢ ", and therefoi'e all the deriva-
tives with respect to n are approximately of the same magnitude, E-

quation (106) can then be approximated by

IS

)

|

T ?

(a+ b) 2¢ +(a b) ¢ (107)

Q

with an error of the order of 10%.
Equation (107), as it stands, represents no significant simplifi-
cation of the original Eq. (100), because the functional form of b(n) is

too complicated to permit finding an analytic solution. The first step



-50-

in obtaining a numerical solution, on ‘the other hand, is to approximate
the continuous vaﬂable n by a discrete variable, which can best be
done by use of Eq. (100) rather than Eq. (107). The only region where
Eq. (107) appears to be useful is in the region near the critical size
where R has a maximum, so that R ;= R_. Then, a(n) =~ b(n) by

~ n,%/3, 5o that Eq. (107)

Eqgs. (101) and (102a); also g(n*) = ﬁl,n* "

becomes

f?_ zne/s_a_?g_

3c T T (near critical n). (108)

It is seen from the dimensional form of Eq. (108) that any characteristic
condensation time, T , which happens to be determined mainly by the

growth processes in the neighborhood of the critical size, should be pro-

portional to nﬁ4/3. Moreover, a solution to Eq. (108) with the boundary
conditions @#(1,7) = 1, @(n,0) = 0 can be obtained immediately by com-

parison with the equivalent heat-conduction problem;zs it is

) -1
L mn, é’t %

L .
Bnz) =~ /—I/%[e*xedx. (109)
0 |

According to Eq. (109), #(n_,T) at the critical size will reach a value
of 0.5, which is approximately its steady-state value, at a time

= 1.1 n*4/3. This result is likely to be a poor approximation because
of the boundary condition applied to Eq. (108) at the point n = 1 where
the neglected terms are large. An equation similar to Eq. (109) has

recently been obtained by Kantrowitz. 2

In order to obtain a reasonably accurate picture of the variation
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of the @*s with time, it appears necessary to integrate Eq. (100) nu-
merically., Since the values of many of the f's increase by eight to ten
orders of magnitude during the time period of interest, and since the
earlier small values cannot be neglected because they affect the smaller
gts 'corresi)onding to larger values of n significantly, rhany conventional
methods of numerical integration prove exceedingly slow. After con-
siderable experimentation, a combined numerical and graphical method
has been developed which permits relatively rapid integration of the

equations with reasonable accuracy. Eguation (100) is first transformed

d/aq% _ @;m 4 ¢n-/
L1 2N ( )b ) o)

The values of § are plotted against T on semilogarithmic paper having
n

to

many cycles, to cover the full variation of the f's; a second strip of
semilogarithmic paper is used as a scale to measure distances between
the f's. The combination acts like a slide rule, and by simply decreas-
ing the numbers on the scale by unity the values of (¢n~;-1/¢n - 1) and
(¢n_ /ﬂn - 1) can be read directly. The logarithmic derivatives of the
#ts can then be calculated numerically from Eq. (110); and any of
several well-known numerical integration methods used to complete the
step-by-step integration. Further details are given in a later section.
Relatively large time intervals can be used since the logarithms of the
@ts are found to vary nearly linearly with T.

Certain qualitative properties of nonsteady solutions of the con-
densation equations can be deduced without the difficulties which ac-

company a quantitative treatment. Such properties not only provide a
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general picture of the condensation process but also serve to guide and
check the numerical integrations. One property concerns the role
played by the steady-state @i¥s discussed in section 2.10. These quan -
tities, which will be denoted by (¢n)s in the present discussion, de-
crease gradually with increasing n from a value of unity at n=1toa
value of approximately one-half at the critical n. This last statement
follows readily from the electrical analogy since the large resistances
Rn are distributed nearly equally on either side of the critical n. The
steady-state values satisfy Eq. (100) when the time derivative is equated

to zero:
0=a, (H.),~(a,+ b, N B,), +bn (B, ): (111)

If this equation is subtracted from Eq. (100), one obtains

ad, _ an [ @~ Bon) ]~ @y, )[¢n—{¢n}o]

AT
b, [ B, *@‘Q_,)‘,,]. (112)

The initial vél_ues, Q’n(O), for the nonsteady situation decrease rapidly
with increasing n and generally become negligible for n > 10, as has
already been pointed ocut. Therefore, all of the ﬂn(T) are initially less
than the corresponding (¢n)s' It follows from Egq. (112) that no ﬂn( T)
can exceed the corresponding (¢n)s at any later time. The first ﬁn('t)
which might reach (¢n)s must have at this instant a negative time de-
rivative since the first and third terms on the right hand side of Eq.
(112) are negative and the middle term vanishes. In the exceptional

case that §_ is surrounded by several @ts, all of which reach their
n 2
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steady-state values simultaneously, this simple argument is not ap-
plicable because d¢n/d’t becomes zero. However, it can be shown by
repeated differentiation of Eq. (112) and use of Eqgs. (100) and (111) that
the first nonzero derivative of ¢n(1:) is negative, so that the theorem
still holds. »

In general, ¢n-1 (0) is much greater than ¢n(0). When n is less
than N, then a, is less than bn' It follows from Eq. (100) that
d¢n(0)/d'c > 0 for n < n_, while usually d¢n(0)/d’c ~ 0 when n =n_
because all the ¢n(0) are negligible when n > 10. If Eq. (100) is differ-

entiated to give

a'd, _ dd,

A2 ae (a"’*b")?%_*b s (113)

" ody 7
an argument similar to that used with Eq. (112) shows that the deriva-
tives d¢n /d T can never become negative., The details will not be
given here. It follows from this result and the result obtained in the
preceding paragraph that the ¢n(‘l:) at any particular time must form a

decreasing series in n, because Eq. (100) can be written

d
7@_*?_:&” (¢n+1‘¢n)_bn (¢n_¢n~/) 2 (114)
[
and, therefore, if ¢n—l were less than ¢n and dﬁn/d’t =0, ¢n would
have to be less than ¢n+l' Repeating the argument, one obtains

< < < - . - - »
¢n+l ¢n+2 ¢n+3 .. , which is impossible since

« Z : _—
lim ¢n £ lim (¢n)s = 0.
n—-co ‘n—-0o

These various results can be summarized in the following
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statement: At all times the quantities an(’l,“) form a decreasing series
in n; each of these quantities increases steadily with time to approach
-asymptotically the corresponding steady-state value as an upper limit. *
The numerical integrations which have been carried out not only con-
firm this behavior, but also show that the values of the fgts increase
with time almost as if a voltage wave with a rather sharp front were
passing down the electrical circuit in the direction of increasing n.
The time required‘for the formation of observable macrosco‘pic drop-
lets can then be approximated by the time required for the ¢n in the
neighborhood of the critical size to reach essentially their steady-state
values, plus the time required for the steady-state J to 'fill up the
pipeline'' between the critical size and the observable macroscopic
size. The first-named tifne period appears to be generally 1/10 to
1/100 of the value given by the very approximate Eq. (109), and is usu-
ally less than a microsecond. This time period is entirely negligible
in most physical situations.. The second time period mentioned above

can be calculated directly from Eq, (96a); it is simply -
. e
_

7, ° b
Fn-nF
=V A (__'1____1_) : 115
Z,; exp (- 227 %:n@,, (115)

where n is the observable size. This latter time delay is usually of

4

the order of 10  to 10-6 seconds. In some physical situations this

*The mathematical proof that each (f_) _is actually the asymptote
of ¢n(7:‘) is a rather lengthy one and will nét be given here.
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time delay is negligible, so that the Becker-D8ring steady-state ap-
proximation is quite accurate. In other physical situations, where

- such a time period is important, it can be readily computed from Eq.
(115) without the complications of a numerical integration.

2.12. The Effects of Admixtures and Impurities

‘The analysis presented thus far has been directed toward the
condensation process in a pure vapor. By modifying the expressions
for some of the parameters, however, the analysis can be abplied to
many situations in which other materials are mixed with the vapor.

The simplest situation occurs when the vapor is mixed with an
inert gas which is virtually insoluble in the corresponding liquid. To
a good approximation, such an admixture does not effect the early
stages of condensation. The pressure of the gas on the droplets is
generally negligible compared to the '"surface-tension pressure,"

2o /r, for droplets of molecular size. Only when the droplets grow to
many times critical size should this effect and the effect of vapor con-
centration gradients in the gas mixture become important.

When the vapor is mixed with a soluble gas, the larger droplets
will contain gas molecules in solution, The equilibrium concentration of
dissolved gas as a function of droplet size can be computed from the
thermodynamics of two-component, two-phase systems (see Gibbsls).
In general, the gas concentration decreases with decreased droplet size,
so that the effect of the gas on the vapor condensation will be small un-
less the gas is very soluble. In the latter case, the free energies of
droplets having the equilibrium composition can be simply substituted
into the condensation equations, ’ and the remainder of the analysis |

carried out as before.
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A more significant effect on the condensation may occur when the
vapor contains suspended liquid or solid particles., If these particles
are wetted by the condensed vapor, they may initiate condensation at
much lower saturation ratios than would otherwise be required. In
principle, the condensation theory developed previously can be applied
to condensation around such particles by using modified ‘S‘ij‘s and modi-
fied free energies. The ﬁij'?s would be based on the effective vapor-
molecule capture cross section of the particles, and the free energies
would be calculated from the particle size and shape, and the three
pertinent surface tensions (particle-vapor, particle-liquid, and vapor-
liquid). Probably the calculated condensation process would depend
greatly on the exact size and shape assumed for the particles, and
especially on whether cracks and crevices are assumed. Many differ-
ent numerical calculations for different cases might have to be carried
out before any general results of physical significance could be stated
with assurance. Such calculations have not been attempted in the
present investigation.

As is well known, ions can also serve to nucleate condensation,
If each ion haé a radius a and charge e, and is assumed to be situated
at the center of a droplet, the free energy given by Eq. (55) should, to

a first approximation, be increased by the qu.a.ntityl2
x4 7710 -’Ka
= K a/

where K, is the dielectric constant of the liquid. For a second approxi-
mation, the increase of droplet—radius due to the volume of the ion

should also be taken into account. The various condensation parameters
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can then be evaluated and numerical calculations made. Such analysis

will not be included here.

III. THEORY OF VAPORIZATION (BUBBLE FORMATION)

" 3.1. Preliminary Considerations

‘When a liquid under a positive pressure is heated to a sufficiently
high temperature the liquid boils, that is, small vapor b_ubbles are
formed which grow rapidly in size at the expense of the liquid. The
similarity between this process and the converse condensation process
is evident. When a liquid is placed under tension, it ruptures or cavi-
tates. The similarity in this case is not so complete because the vapor
phase may play little or no part in the rupture,

The development of a precise theory of vaporization is more diffi-
cult than the similar development for condensétibn, essentially for the
reason that the kinetic theory of liquids is more difficult than the kinetic
theory of gases., With the help of a number of approximations and
simplifyiﬁg assumptions, however, a rather crude theory of vaporiza-
tion can be developed which may be sufficient to answer certain practi=-
cal questions.,

A vapor bubble or cavity in a liquid might be characterized by its
size and shape, the amount of vapor it contains, and the temperature
of the vapor, As was observed in the condensation case, the develop-
ment of a simple theory becomes possible only if these four variables
can be reduced to a single independent variable, The shape parameter
can be eliminated by the assumption that all bubbles are spherical.

For large bubbles, this assumpﬂtion is probably a good approximation.

The smallest bubbles and cavities, however, are probably more like
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irregular cracks and fissures between the molecules (see Frenkel, 12

p. 177) so that the use of the assumption for these cavities is justi-
fiable only because the calculated vaporization process is not greatly
affected by considerable errors in the treatment of the very smallest
bubbles.

The temperature of the vapor in the bubble can probably be
equated to the liquid temperature with small error, because the vapor
coming from a liquid has the same temperature as the liquid‘(only the
more energetic molecules are able to escape, which effect exactly com-
pensates for the latent heat of vaporization). Such evaporation, to be
sure, cools the liquid surrounding the bubble; but bubbles of interest
are so small that heat conduction in the liquid should act rapidly enough
to remove any significant temperature differences in such small regions.

There remain the two variables of bubble size and vapor mass,
one of which must be eliminated. In the case of boiling at appreciable
positive pressui’e, the rate-determining process is probablsr the trans-
fer of molecules from the liquid to the vapor phase; thqs, the impor-
tant parameter is the amount of vapor in a bubble, while its size on
the other handhcan be approximated by the condition for mechanical
equilibrium, following D8ring. 6 In the case of cavitation, oi‘ rupture
at émall or negative pressures, the rate-determining process is
probably the separation of liquid molecules to leave a hole so that the
important parameter is the cavity size, while the amount of vapor it
contains can either be estimated from the vapor pressure of the liquid,
or entirely neglected, as was done by Zeldovich8 and Fisher. 10

3.2. The Basic Equations for Boiling (Positive Pressures)

If a spherical vapor bubble of radius ro contains n vapor molecules
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at a pressure P, and temperature T, the perfect gas relation gives
L wa’ g, = n AT
3 77'/21” ‘ﬁﬂ =n . (1 1 6)

If the droplet radius is estimated from the condition of mechanical

equilibrium, one obtains

o
f%j- = £n P > (117)

where Py is the pressure in the liquid, which also equals the pressure
of the vapor in a bubble of infinite size in mechanical equilibrium,
Either p or r_ can be eliminated from Egs. (116) and (117) to give,

respectively,

FRT
/Li +( 47;—_7000 s (118)
B _[_3AT :
(¢7n“’poa)3 (337/’673 * (119)

These equations give T and P, as implicit functions of n., Because the
conditions of sphericity and mechanical equilibrium are only roughly
satisfied when n is small, the introduction of Tolmaﬁ's correction to
the surface tension for small radii of curvature is not warranted.

The rate at which the vapor molecules strike the bubble wall is,
1/zrnzp

from simple kinetic theory, Z(Zw/ka) If a fraction a of

these are captured by the liquid, then

Rate of condensation of vapor

molecules on the bubble wall = Z(ka) a T P (120)
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If p were varied until it equaled the vapor pressure, P(T), of the lig-
uid,}k the rate of condensation of vapor molecules would equal the rate
of vaporization of liquid molecules from the bubble wall. It follows

that

Rate of vaporization of liquid molecules

1/2
2 2
mkT/ %n'n E- (121)

from the bubble wall = 2
The vapor pressure, P, of the liquid is a function of the .tern‘perature
and pressure in the liquid phase, and is the same for bubbles of all
sizes, independent of their surface curvature (see the errata to
Ddringts paper).sjm In the boiling situation under consideration, the dif-
ference between the pressure on the liquid and the vapor pfe ssure of
the liquid is seldom more than a few atmospheres. Thereforé, the
ratio of P to the ordinary vapor pressure, which ratio can be obtained
from the Gibbs-Thomson relation, Eq. (61), is so near unity that the
.diﬁ.ference can be neglected.

If Nn denotes the number of bubbles of size n per unit volume of
liquid, Nn will be increased in time by the growth of bubbles from the
next smallest size and shrinkage of bubbles from the next largest size,
while it will be decreased by the converse procésses. EVahiating the
rates of these four processes with the help of Eqs. (120) and (121), one

obtains

jkThroughout the discussion, lower case p's are used for actual
pressures existing in the liquid or vapor, and capital P!s for vapor
pressures which are properties of the liquid phase and may not
correspond to the actual pressure of any phase present.

*xThe vapor pressure of small liquid droplets depends on their
curvature only because the internal pressure in the liquid includes a
term 20'/1'.
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dAQ:=£(2ﬁ Yé

d t mAT/ X,., /Zf?—l PN, - &, /}/iﬂbn N~ “r/"i PN,

+mn*ﬂ /‘"iﬂ Lrr /Vn+/ ) J(”>/) : g (122)

In comparison with Eq. (14a), for condensation, Eq. (122) lacks a vol-
ume-change term, since the liquid is assumed incompressible. Equa-
tion (122) also lacks nonlinear terms corresponding to the consolidation
of two bubbles, or the splitting of one bubble into two. There is no
simple way to derive such nonlinear terms, but, by analogy with the
condensation case, it may be presumed that their contribution to the
vaporization process is small.

An electrical analogy for the Vapofization process may be obtained

by defining

1

g -Lo(] MTIE), dw-r e

. a_" 2, Z 7 P .
G, (¢t) =’55](,L,,) /V/H(Z) ' ‘ (124)
\ /2 - ‘
£T - ‘
Ro(t) =4 (”;W“) (¢, 25 N, P) ’E(%)‘ (125)
In terms of these variables, Eq. (122) becomes
ﬁ_((,,@;,): ¢n—/—@;7__ ¢ﬂ—¢”“/ ) (ﬂ>/)’ (126)

2t 'Qné/ Qn
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which is identical with Eq. (15), so that the electrical circuit of Fig. 1
is again obtained, with somewhat different values for the circuit
parameters.

3.3. The Equilibrium Sclution of the Vaporization Equations

As in the condensation case, the equilibrium bubble distribution
corresponds to ¢n =1 for all n. In view of Eq. (123), this condition

‘becomes
oc, [ n, \° 1*T'ﬁ3 |
- I /
Nn - CCI’I (/I/ﬂ) M&:a 720')- : (127)

In most cases one can probably set a, ®a = 1 (see the discussion on

accommodation coefficients in section 2.3), The rt's and p's in Eq. (127)
can be evaluated from Eqs, (118) and (119). There remains the problem
of evaluating Nl’ the equilibrium number of bubbles containing one vapor
molecule. To obtain a value, probably correct to within an order of one

or two magnitudes, DBring6 simply equated N, to the number of liquid

1
molecules which have a kinetic energy at least sufficient to remove a
molecule from the interior of the liquid and leave a hole. A more exact
value of N1 might be obtained from free-energy considerations, In
view of the approximations involved in the concept of a '"one-molecule

vapor bubble,'" such a refinement does not appear to be warranted.

3.4. 'The Steady-;State Solution

By analogy with the similar condensation process, the constant

rate of formation of bubbles in the steady-state situation is

J = . (128)
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By approximating summations by integrals and making other simplifi-

cations, DBring6 found that

Eyop ( /6 7o ? ”‘é’e,,dp)
SN ( P\~ ZET(op)r &7 )7 (129

where NL is the number of liquid molecules per unit volux;ne and evap
is the energy of vaporization per molecule.

Because of the approximations inherent in the whole method of
approach, no attempt has been made by the writer to improve the de-

tails of DUring's analysis for the steady state.

3.5, Time-Dependent Solutions of the Vaporization Equations

As in the condensation case, the time-dependent vaporization
equations can be solved by numerical integration, Calculations are
most easily performed for situations where the liquid is suddenly
‘heated or its pressure is suddenly reduced (or both), and thereafter the
temperature and pressure are held constant. To treat such situations,

it is convenient to introduce a dimensionless time:

T = ‘?(/méT) CC/L Pt , | (130)

and write Eq. (126) as

Ll -ty G- @y b )y by Gy (30, (13)

atT

where the quantities Cn and Rn have been combined into

2
o, (1 |
@, = oc',q( ¥ ) 5 (132)
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- 2 (32)(8)- 122

Equation (131) is identical to Eq. {100) for condensation, and the
same numerical-graphical method can be used for its solution., Simi-
larly, the characteristic way in which such solutions approach asymp-

totically the steady-state values is also found in this case. The critical

size for the present problem is given by the condition p, = P, whence
*
b =a = (p,n /P)Z/3 from Egs. {132), (133) and (116). By use of
n, n, R

the same approximation as that involved in Eq. (109), it follows that the
time required for the ¢n near the critical size to reach virtually their
steady-state values is roughly T=1.1 (p1 nx/P)4/3.

3.6, The Equations for Cavitation or Liquid Rupture (Negative

Pressures).

If the vaporization equations developed in the last few sections
are applied to the case of a liquid under tension, one difficulty immedi-
ately presents itself. Since Poo ié negative, the left hénd side of Eq.
(118) has a minimum for a certain value of T while the right hand
side approaches — o as n increases. Thus, for valués of n beyond
a certain point, n_o there can exist no vapor bubbles in‘mechanical
equilibrium, If it is assumed that bubbles which reach such a size
automatically continue to grow and thus can be dropped from consider-
ation, the boundary condition ﬂn +1 = 0 can be applied. This assump-

max

tion was used by D'dring6 to calculate the steady-state rate of cavi-

tation:
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4/3[66’@2) /&9;75( % m(%nrp)fj__/ 6)
SN, C GATE Pt aTe e

 Ceup .
=T ] (134)

where z is the absolute value of the tension on the liquid, P is the va-
por pressure of the liquid at ordinary pressures, and the change in the
actual vapor pressure due to the tension is now taken into account, For
the nonsteady situation, the numerical integration of Eq. (1.3 1) can be
carried out with the same boundary condition.

It is somewhat doubtful, however, whether such equations involv-
ing the number of vapor molecules as the chief parameter can satis-
factorily represent cavitation or rupture under large tensions. As
mentioned previously, fhe rupture process probably is determined by
the rate at which liquid molecules can separate to form a hole, while
the role of any vapor present is probably insignificant. - In such cases,
the theories of Zeldovich8 or Fisher, 10 which neglect the Vapdr and
consider only the cavity size, are probably more suitable. Zeldovich's
theory gives the steady-state cavitation rate as a function of the liquid
surface tension and viscosity, while Fisher uses the theory of absolute
reaction rates to obtain the same quantity as a function of the surface
tension and the free energy of activation for a molecule to move from
one equilibrium position in the liquid lattice to another. A critical
comparison and a further refinement of the two theories are highly

desirable, but have not yet been carried out.
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3.7. The Effect of Impurities on Vaporization

As is well known, impurities present in a liquid can greatly in-
crease vaporization rates, and, in fact, prevent the attainment of
significant superheating or tensile strength, The nucleating effect of
a particle of impurity depends on its size, shape and the degree to
which it is wetted. A bubble which starts to grow a;bout aﬁ inéom-
pletely wetted particle will be bounded on one side by the surface of
the particle and on the other side by a liquid surface which forms a
portion of a sphere., The liquid surface meets the solid surface at an
angle determined by the three relevant surface tensions (liquid-vapor,
liquid-solid and solid-vapor). Thus, the radius of curvature, T of
the spherical portion of the bubble surface can be calculated as a func-
tion of n geometrically, and the result used to replace Eq. (116).
Equation (117) remains valid, but the a_ in Egs. (120) and (121) must be
‘modified to allow for the change in the surface area of bubble which is
in contact with the liquid. With these modifications in the values of the
parameters, the basic differential equations for vaporization, Egs.
(126) and (131), remain valid, and numerical solutions can be obtained
as before. Depending upon the exact size, shape and wettability as-
sumed for the particles, one can obtain any limit for the superheating
or tensile strength from zero up to the maximum values for a pure
liquid. The practical application of such calculations requires the
knowledge of what sizes and shapes of impurity particles are likely to
be present in liquids of interest. In the absence of such information,
one might attempt a large number of calculations for different types of

impurity particles in the hope of obtaining some generally valid results.



267~

IV. RESULTS AND DISCUSSION

4.1, Comparison of Free-Energy Values Given by Macroscopic

Formulas with Reed's Numerical Values

The free~energy values for small nitrogen aggregates calculated
by Reed23 are compared with those given by the theoretical formulas
of sections 2,7 and 2.8 in Figs, 2 and 3, for temperatures of 77. 3°K
and 96.6° K, respectively. The points at n = 6 and 8 include the effect
of isomers (different aggregate configurations having the same number
of molecular bonds), with a slight change from Reed's values to re-
move an apparent error in his allowance for isémers. The solid curves
represent Eqgs. (52), (54) and (65) with €= 0; i.e,, with no allowance
for the change of surface tension with radius, No value of € for. liquid
nitrogen is available, and so a value of 0.5, which is typical of liquids
of low molecular weight, 19 was used in the same three equations to
yield the dashed curves.

Reed's values are seen to agree quite well with Eq. (54), based
on the ''volume expansion'' method, and only slightly léss well with
Eq. (65), based on the Gibbs-Thomson equation, The agreement with
Eq. (52), based on the partition functions, is poor. The curves which
neglect the Tolman surface-tension correction lie closer to Reed's
values than those which include the correction. Reed‘.s value for n= 6

appear high compared to the general trend of the other value s,1E while

*Reed plotted log (Pn/Poo) which depends upon Fno- Fg_l by Eq.
(58b). Thus, for n = 6 he obtained high values corresponding to the
high values of F °.F o’ while for n = 8 he obtained low values cor-
responding to the low values of ’(FSO - Féo)/Z. The quantity which actu-
ally enters into the condensation equations, however, is (7 O _nF lo)

which depends upon the cumulative product of (P /Poo)’ according to
Eq. (59), and this quantity does not have a low value at n = 8.
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his values for n = 8 are not relatively high, There is some reason
for believing that, as n is increased beyond eight and the aggregate
approaches the close-packed configuration of one molecule surrounded
by twelve nearest neighbors, the increased number of molecular bonds
may lower the free energy values close to the dashed curves which in-
clude the Tolman correction to the surface tension. This conjecture

is far from certain, however, because severallothe-r factors besides
the number of bonds affect the free energy. The data at hand are in-
sufficient to determine whether use of the Tolman correction increases
or decreases the accuracy of the condensation equations when the criti-
cal size is greater than eight.

It might seem from Figs., 2 and 3 that the total effect of the
Tolman correction and some of the other discrepancies should be
small, However, the free energy enters exponentially into the conden-
sation relations so that a difference of only 4. 6 units on the vertical
coordinate of these graphs is equivalent to a factor of 100 in the con-
densation rates., Although the percentage difference between the alter-
native free-energy curves decreases as n increases, the numerical
difference increases and thus produces a variation in the exponential
function of many orders of magnitude when n is as large as 50 or 100.

4.2, Steady-State Rates of Condensation

An important parameter which determines the steady rate of

droplet formation is the size, n

"~ that corresponds to the maximum

resistance parameter, Rn . As explained in section 2. 10, n, differs
t .
slightly from the critical size, n_, except in the Becker-DBring ap-

proximation. Values of n for water vapor at 0° C and various satu-

ration ratios are shown in Fig. 5. The three solid and three dashed
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curves correspond to the three alternative expressions for the free
energy mentioned before. The considerable effect of the introduction
of Tolman's correction to the surface tension is shown by the difference
between the solid and the dashed curves. In all cases, the values Qf n,
decrease with increasing saturation ratio since a smaller droplet is
stable relative to a more highly supersaturated vapor. The curves
based on free-energy values given by Eqs. (54) and (65) lie quite close
together, while the curves based on Eq. (52) lie considerably lower,
corresponding to the lower free-energy values obtained under the latter
assumption.

Values of the steady-state rate of condensation, J, correspond-
ing to these values of n, are plotted in Fig, 6. Six different éurves
are found, depending upon which expression for the free energy is
used and whether Tolman's correction is included. A seventh curve,
shown cross-hatched, represents Becker and DBring'sS simpliﬁed ex-
pression for J. All of these curves are based on a value of [31, s n2/3,
which corresponds to values of the accommodation coefficient % n

slightly less than unity, as shown in Fig. 4. If a is unity, the values

l,n
of J would be increased by factors of 1.2 to 2.8, but this factor is negli-
gible for most considerations.

A very great increase of J with increase in the saturation ratio is
characteristic of all the curves in Fig. 6. Considerable differences
between the different curves representing different assumptions also
appear. When the Tolman correction is omitted, the curves based on
free energies given by Eqs. (54) and (65) lie quite close together, while

the curve based on Eq. (52) lies much higher. The introduction of the

Tolman correction raises all of the curves considerably. The fairly
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small difference between the curve based on Eq. (65) with € = 0 and
the Becker-D8ring curve is due to factors which Becker and D8ring
dropped in their approximate calculation.

Powell, 27 using an expansion chamber, found experimentally
that water vapor at 0° C first condensed into a cloud of microscopic
droplets at a saturation ratio of 5.40. If, after condensation, the
vapor is saturated and at a temperature near 0° C, approxirhately
Tx 1017 water molecules per cm3 must have condensed. In the
steady state at this saturation ratio only about 102 droplets per c:m3
of each size n can exist when n is larger than about 100 (see Fig. 9).
Therefore, there should be about 1010 droplets of average size
n=5x 107 in the condensed vapor. For observation times of the
order of a second, this value corresponds to J = 1010. The latter fig-
ure is in satisfactory agreement with the curves corresponding to Egs.
(54) and (65) when the Tolman correction is omitted, When the cor-
rection is included, much higher theoretical values of J are obtained,
It is possible, however, that the heating effect during the droplet
growth process, which has been neglected in the present analysis, will
act to decrease the theoretical values of J sufficiently to give agree-
ment between experiment and theory when the Tolman correction is
included rather than omitted.

The third pair of curves, corresponding to Eq. (52), gives much
too high values of J both with and without the Tolman correction. This
disagreement corresponds to the disagreement of Eq. (52) with Reed's
free energy values discussed previously, Therefore, it seems evident
that Eq. (52), based on the translzaxtional and rotational partition func~

tions for a rigid sphere, gives erroneous free-energy values,
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4.3. Computational Method for the Nonsteady Condensation Process

Considerable effort has been devoted toward the development of a
practical method of solving the linearized time-dependent condensation
equations numerically., The method finally worked out is illustrated in
Fig. 7. The points A, B, C and D represent values of ¢n gt time T =
0.50 for four consecutive values of n which have been chosen to illus-
trate the method. The logarithmic scale shown in the insert is marked
on a separate slip of paper. When the zero is placed at the f)oint C, the
reéding at point B gives the value of ¢17/¢18 - 1 and the reading at D
gives ¢19/¢18 - 1 since the two logarithmic scales act like a slide rule
and the scale markings are decreased by unity from their ordinary
values, The quantities read from the scale are then multiplied by bn
and an’ respectively, and added to give the logarithmic derivative of
¢18’ according to Eq. (110), With the help of the slope scale, the
straight line CE is then constructed with this value of the slope. Simi-
lar constructions are carried out for adjacent values of n, The.scale
measurements and slope calculations are now repeated using the end-
points of the line segments at T = 0,60, The new slope is used to con-
struct the line F G which starts at the midpoint of CE, Slopg calcula-
tions are repeated at T = 0,60 and lines are drawn from the point F
until the process finally converges on the line F H, The convergence
can be speeded by judicious guesses,

In the integration process described above, the change of each
¢n over the unit interval is effectively approximated by the magnitude
of the interval multiplied by the mean of the slopes at the beginning

and end of the interval, The curve for each ¢n is thus extended from

its initial value, given by Eq. (98b), to the point where it becomes
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essentially equal to its asymptotic value, (¢n)s, given by Eq. (95b).
The computational graphs cover the range from ¢n = 1 down to ¢n =

10-10

or 10712, below which value §_and N_ are negligible. As the
computation proceeds, new curves for larger values of n are started
at the bottom of the graphs by simple extrapolation. This procedure
can be shown to lead to negligible error. In regions where the f's are
still considerably less than their asymptotic values, it is found that the
curves for successive values of n are quite evenly spaced. Therefore,
the computational labor can be halvea by omitting every other curve
and expanding the measuring scale by a factor of two to allow for this
omission. As the §'s approach their asymptotes, the intermediate
curves can be introduced halfway between the other curves, and their

subsequent behavior computed in detail.

4.4. Results for the Nonsteady Condensation Process

Figures 8a and b, ¢ and 10 show the growth of droplets in water
vapor at 0° C when the saturation ratio is 4, 6 and 8, respectively.
The number of droplets shown at t = 0 corresponds to the assumption
that the vapor was originally saturated at temperatures of 27.0, 35.8
and 42, 6° C, and then expanded adiabatically to 0° C so rapidly that
the droplets do not have time to grow during the expansion. These
initial temperature values were chosen so as to give the desired satur-
ation ratios at 0° C. In all of the droplet growth calculations the sim-
ple values of a  and b  given by Eqgs. (103) and (104ab) are used. These
values are based on free energies obtained in Eq. (65) by the use of the
Gibbs-Thomson equation. The results, however, would be only slightly
changed if Eq. (54) were used fdr the free-energy values instead of Eq.
(65).



Figures 8a and 8b, for a saturation ratio of four, show the rapid
rate at which the number of very small droplets approaches the steady~-
.state value. Since the time required for these Nn to reach essentially
their asymptotic values is short compared to the tifne required for the
critical droplets, at n = 90, to reach equilibrium, a considerable
variation in the accommodation coefficients, free energieé or initial
' Nn values assumed for the droplets of smallest size will .no't affect the
over-all condensation process significantly. Although the cﬁrv-es_for
lar‘ger n values and later times are less steep, the quantities Nn in
the critical region still reacﬂ their steady-state values in a fraction of
a microsecond., This time is negligible in practically all physical situ=
ations. A considerably longer time is required for droplets t‘o‘g_row
from critical to macroscopic size, or for an appreciable amount of the
vapor to condense. According to Fig. 8a, there will never be more
than 10-7 droplets per crn3 of a given size n > 112, In a volume of the
order of a few c:m3 this cannot be strictly true, but it should be true on
the avera‘ge. Since J for this situation is about ten, in:103 seconds 104
droplets larger than critical size will be formed per cmg. If there are
an average of 10-"7 droplets per cna3 for each value of n from 112 to
D nax’ it follows that B o™ 1011 molecules, corresponding -to a radius
of 10-4E cm, The average size of the 104 droplets is abqut 5x 1010
molecules, so that in one second approximately 5 x 1914 vapor mole -
cules have condensed, which is only a small fraction of the 6 x 1017
vapor molecules present,

Figures 9 and 10, for the higher saturation ratios of six and

eight, respectively, exhibit droi)let growth curves similar to those of

Figs. 8a and 8b. The rate of droplet growth increases and the critical
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size decreases as the saturation ratio is increased so that the charac-
teristic time intervals are somewhat shortened. The number of drop-
lets of a given size in the steady state increases with the saturation
ratio, |
In Fig, 11, the actual times, t, and the dimensionless times,’l:,

for the critical size droplets to reach their steady-state number are
plotted and compared with the times given by the very approx1mate re-
lation T=1.1n, 4/3 derived from Eq. (109). The actual times are
seen to be only 1/50 to 1/25 as great as those given by the simple

formula, The exact values are fairly well represented in this range

by the dashed lines which correspond to the formulas T = 0,27 nio' 8
and t=1.1x 10_9 n}é"7 sec,

In order to get an estimate of the magnitude of the nonlinear
terms in the condensation equation which are neglected in most of the
analysis, values of the initial ¢n(0) and also of the final asymptotic
(an)S for water vapor at 0° C and a saturation ratio of four have been
substituted into the nonlinear terms of Eq. (14a) and compared with
the largest lingar term, (¢n_1- ¢n)/Rn-1' The ratios are presented in
Table 1. This table shows that for very small n the nonlinear terms
make a considerable contribution, but when n exceeds ten the non-
linear terms decrease to only a few percent. As long as the critical
size is larger than about twenty, the nonlinear ferms will have only a
small effect. The apparent irregularities in the tabulated values are
explained by the facts that droplets of size n = 2 and 3 cannot be formed
by consolidation of two polymolecular droplets so that only negative
nonlinear terms occur in these Cases, while for larger n the even

values of n have relatively more positive nonlinear terms than the odd
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values of n.

4,5, Results for the Nonsteady Vaporization Process

Figure 12 shows the growth of bubbles in water at 20° C which is
suddenly subjected to a tension of 1000 atm. The calculations were
carried out in the same fashion as those for the condensation situation.
In this vaporization case, values of ¢n(t) rather than Nn(t) are plotted
because the N's vary so greatly with n that a scale which included them
all would make their variation with time imperceptible., The behavior
of each ¢n is similar to that of the corresponding Nn since the two
quantities are proportional, The variation of the @'s with time is some-
what different in this situation than in the condensation situation prima-
rily because the initial values ¢n(0) lie partially above and partially be-
10\& the asymptotic steady-state values. Thus, many of the curves ap-
proach their asymptotes in an oscillatory fashion rather than mono-
tonically as in the condensation case, Another difference is that there
are no curves for n > 46, since bubbles of such size cannot exist at
all in meéhanical equilibrium (see section 3.6). As shown by Fig. 12,
the calculations have not been extended to the attainment of the steady
state, but only far enough to show that the steady state will b:e reached
in approximately 3 x 10—12 seconds, a time entirely negligible for
virtually all practical purposes. These calculations are for a tension
of 1000 atm,, in which situation the steady rate of bubble formation

200 bubbles/(cm3 sec), Ata

has the very small value of about 10~
somewhat higher tension, where the bubble-formation rate becomes

large, the time required for the attainment of the steady state is even

shorter than 3 x 10_12 seconds,



-76-

Detailed calculations for rates of bubble formation in super-
heated water at positive pressure have not been carried out. However,
by comparing the relevant coefficients with those for previous situ-
ations, one finds that in water at 1 atm. and about 295° C (the theoreti—
cal limit of superheating) the bubble formation should approach a steady

rate in less than 10-10 seconds.
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APPENDIX 1

Thermal Gradients Inside of Droplets

One of the approximations made in the course of the condensa-
tion analysis comes from the assumption that any nonequilibrit;m
distribution of the energy among the various parts of a droplet, i.e.,
any internal temperature variation, is negligible., This assumption
is plausible from a crude molecular viewpoint. The oscillatory ve-
locities of the molecules in a liquid droplet and the translational ve-
locities of the molecules in the vapor are comparable. The molecules
in a droplet, however, are in a much denser state so that the kinetic
energy imparted to a droplet by a colliding vapor molecule should be
quite uniformly distributed over all the droplet molecules before the
next collision occurs. There is a corresponding macroscopic argu-
ment. Consider water vapor at 0° C and four times the saturation
pressure. Approximately 1022 vapor molecules strike a square centi-
meter of sﬁrface per second. These molecules contribﬁte a latent
heat of roughly 200 calcries/(cm2 sec) if all of them condense. Using
the thermal conductivity of water, one obtains about 2 :x 104 degrees/
cm for the temperature gradient at the dfoplet surface. If the droplet
radius is less than 10-6 cm (equivalent to about 10° fnolecules), the

maximum temperature difference in the droplet is less than 0, 02° c.
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APPENDIX 2

Velocity Distributions of Particles Undergoing

Elastic and Inelastic Collisions

It is a well-known result of kinetic theory* that in any system of
particles which undergo purely elastic collisions the particle velocities

- tend toward the Maxwellian distribution:

N (M, w)du ()(~)/\/M}ex¢o( ’%T)u (135)

where N(M, u)du is the number of particles of mass M having velocities
between u and du, and N(M) is the total number of particles of such
masé.

Systems of particles undergoing inelastic collisions with re~
sulting capture, such as in a droplet-vapor mixture, are more difficult
to treat because the particles are then not in equilibrium. AUseful re-
sults can be obtained, however, by mathematical induction. In a mix-
both having

ture of particles of mass M, and particles of mass M

1 2’
Maxwellian velocity distributions, the probability of collisions for
which the velocity of the center of mass of the two colliding particles
lies between u and u + du is found from kinetic theory to be propor-
tional to exp [— (M1 + Mz)uz/ZkT} u2 du, If the two particles stick to-

gether, it follows that the resulting aggregate will have a Maxwellian

velocity distribution corresponding to its new mass.

*See, for example, Fowler.28
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The result described above can be applied to each step in the
growth of droplets from vapor molecules. It follows that the veloci-
ties of the droplets should be Maxwellian, One effect, however, has
been ignored. After droplets of a given size have been formed, the
ones with higher velocities are more likely to capture further vapor
molecules, so that the mean velocities of the droplets remaining at
the given size is slightly lowered. This effect is very small in con-
densation processes of interest, since the number of droplets of size
n is always much greater than those of size n + 1 when n is smaller
- than the critical size. When n is larger than the critical size, the
velocities of the droplets are negligible, so that it makes little dif-

ference whether they are Maxwellian or not.
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APPENDIX 3

Equations for the Solution of the Nonisothermal

Droplet-Growth Problem by a Monte Carlo Method

The name '"Monte Carlo' is applied to the systematic replace-
ment of physical or mathematical problems by equivalent "'gaﬁles of
chance,"” With the help of a set of random numbers or other random
device, the games of chance are then played a sufficient nurhber of
times to reduce the probable error of the averaged results to a suf-
ficiently small value, The appiication of this method is quite obvious
in physical problems which involve a large number of stochastic indi-
vidual processes, as in all generalized diffusion problems, including
the droplet growth problem, In the Monte Carlo method, the accuracy
of the resulis increases with the number of individual calculations, and
generally a large number of calculations are required to obtain reason-
ably reliable results. The aécuracy is not affected by the ﬁumber of
independent variables in fhe problem so that the method is particularly
useful in multidimensional problems where conventional numerical-
integration me.thods are exceedingly lengthy.

In order to apply the Monte Carlo method to droplet growth,
with allowance for the heating of the droplets as they grow, expressions
must be derived for the probability of a given droplet growing or
shrinking with a gain or loss of a given amount of energy, and the raté
of occurrence of such changes must also be known. The problem is
considerably simplified if it is assumed that each droplet grows inde-
pendently of the other droplets, 'so that the calculations for the various

droplets can be performed successively instead of simultaneously,
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This assumption corresponds to the neglect of the nonlinear terms in
the differential equation for condensation, which terms are due to con-
solidation or fission of droplets and depletion or heating of the vapor
due to condensation. For the early period of condensation, when the
fraction of vapor condensed is still small, these assumptions appear
quite accurate, as discussed in greater detail in section 2..10 There-
fore, the vapor molecules will be assumed to have velocities and
energies distributed according to the Maxwell-Boltzmann relétions for
the temperature T(t).

The velocities of the droplets (n > 1) will also be assumed to
correspond to a Maxwellian distribution for the same temperature,
T(t). This assumption is justified by the arguments presented in Ap-
pendix 2. The rate, Oecapt’ at which an individual droplet of size n
captures vapor molecules is given by Eq. (4) with i = 1, j=n, and

N. = 1:
J

OPcaPt - KT?E@”/V/' (136)

The rate, ﬂ?loss’ at which a droplet loses molecules is similarly given
by Eq. (6) with T replaced by Tn’ the temperature of the droplet, and

with the free energy difference evaluated at the temperature Tn:

xR = K—{,—vyzﬁ/,n—/ exp ('Cn —/—_—’—FI)T" ]

. 137
loss % T'-? J ( )

Since Eqgs. (136) and (137) give specific transformation rates indepen-
dent of the time, the time periods during which individual droplets re-
main unchanged in size follow the familiar exponential decay law, and

the probability that the next change in a droplet will occur after a time t
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is
@dr{;‘:{—“) dt = (daapt * Ryass ) exp [— (dljcopt M @ross)t]dt - (138)

When a given droplet is under consideration, Eq. (138) permits the de-
termination of the time until its next transformation by an appropriate

sampling process. A fraction @capt/(@ 0?1055) of these trans-

capt+
formations will be capture processes; the remainder will be losses.
From kinetic theory, 28 the probability that a given capture

process results in the addition to the droplet of a vapor molecule with

internal energy E, and relative kinetic energy n is

Y020
n

Rope (E,n)AE, dn = const x(F,)

" [_5*
P TeT

njdf,dq, (139)

where ¥ is the ratio of the specific heats of the vapor. The constant in
Eq. (139) could be evaluated by normalization, but this 1s not necéssary
for the application of the Monte Carlo process. The sj.gnificant param-
eter, as far as the droplet is concerned, is the total eﬁergy, :

AE = E1+ (W contributed by the captured molecule. It is desirable,
therefore, to integrate Eq. (139) from n =0 to n = co, holding AE

~ fixed. This integration yields the probability that the capture of a
vapor molecule will increase the droplet energy by AE:

Pope (AE)A(AE) = const. = (66) P Texp - BE) d (aE).  (140)
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A similar equation for the loss of energy when molecules escape
can be readily obtained by considering a droplet at the same tempera-
ture as the vapor. By the principle of detailed balance, the evaporating
- molecules must have the same energy distribution as those condensing.

Hence

G, COE) d(0E)= const X(~AE)§%5£xp(2!—f—)d(ﬂf). (141)

By means of Eqgs. (140) and (141), the energy gain or loss for a capture
or evaporation process can be properly selected.

To complete the basic equations, relations betweeﬁ droplet
temperatures, internal energies and free energies are needed, The
droplet free energies are given in terms of their temperatures by Eq.
(55), where the constants A and B can be evaluated in various ways, as
discussed in section 2.8. The internal energies of n-molecule droplets
at a temperature Tn can be obtained from the energy of the vapor,
nk Tn/(Z- 1), at the same temperature, less the latent enex;gy of vapor -
ization of the bulk liquid, plus the surface energy of the droplet, so

that

E (1) ==n kT, ~n[£(,)+£(T)] + 1742 w(T;)

%
6mvF
- zZ/ n#T, -n(T,) +(“_‘“’Z ”) n% w (T,). (142)

In Eq. (142), ,Z(Tn) is the ordinary latent heat (or enthalpy) of vaporiza-

tion per molecule; the term an is subtracted from this quantity to

give the latent energy of vaporiiation. The quantity W(Tn) is the sur-

face energy of the liquid per unit surface area. It may be found in
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tabulated form for some liquids; for others, it can be can be calculated

from the surface tension by the relation Iz
20~
w' =~ T35 - (143)

In these equations, no attempt has been made to introduce a
correction for the surface energy of very small droplets s.imilar to
Tolman's correction16 for the surface tension. Derivation of such a
correction would require a detailed analysis, but the condensation re-
sults probably would be affected only slightly since the surface-energy
term in Eq. (142) is generally small compared to the latent heat term,

Equations (138), (140), (141) and (142) comprise the complete
set of physical equations necessary for the application of the Monte
Carlo method. The purely mathematical details of such a process

will not be described here,



TABLE 1

Relative Magnitude of Nonlinear Terms

Condensation of water vapor at 0° C and a

saturation ratio s = 4, (Critical n = 90)

Ratio of Nonlinear Terms to Largest Linear Term
n at t=0 at t—-o00 (steady state)
2 -. 0005 ' -1.42
3 -, 0007 -1.11
4 .76 - .066
5 .44 - .17
6 .58 - .003
7 .32 - .061
8 .31 - .060
10 .20 - .043
15 .10 - .056
25 . 052 - .042
120 - - .020
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