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Abstract 
Previous work at Caltech and MIT discovered that oxygen plays an important role 

in the charge compensation mechanism during lithium insertion and extraction in the 

layered LiCoO2 cathode material. The Co-O bond becomes more covalent during 

delithiation because O donates electrons. Nevertheless, some of those groups proposed that 

the situations were different for LiNi0.5Mn0.5O2 and LiNi1/3Mn1/3Co1/3O2 than for LiCoO2, 

though all have same layered cyrstal structure. The Ni2+/Ni4+ redox couple was proposed to 

dominate the charge compensation during lithium insertion and extraction.  

We investigated this topic by employing electron energy loss spectrometry (EELS) 

measurements with computational support. Our results indicate that most of the 

compensation for charge during the removal of Li ions from LixNi1/3Mn1/3Co1/3O2 and 

LixNi0.5Mn0.5O2 occurs at hybridized 2p-like levels with local weight near oxygen atoms, 

much as is the case in LixCoO2. All experimental and computational results are 

inconsistent with the hypothesis of a Ni2+ to Ni4+ transition during lithium extraction. 

Although the results on L3 edge shifts allow for a Ni2+ to Ni3+ transition, the intensity 

results do not, and the Ni2+ to Ni3+ transition is not supported by computational work. We 

therefore conclude that the Ni2+ → Ni4+ oxidation does not occur during lithium removal. 

Continuing with the method we developed in investigating the charge transfer in 

cathode materials, we studied the olivine phases LixFePO4 with different lithium contents, 

x. The emergence of a pre-peak at O K-edge with delithiation indicates O donates its 2p 

electrons. The shift of Fe L3 peak and the total intensity of Fe white lines were measured 

and compared with computational results. Good agreement was obtained. The increased Fe 

white lines intensity and upward shift of Fe L3 peak are evidence of Fe oxidation. However, 
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the charge contributed by Fe is less than 0.5 electron per lithium atom removed. The rest of 

charge compensation is provided by O 2p states. 

Mg2Si is of interest both as an anode material in Li-ion batteries and as a hydrogen 

storage material for fuel cells. Although Mg2Si has been studied for tens of years, the 

ionicity of its Mg-Si bond is controversial. The reported data ranges from less than 10% 

ionicity to fully ionic. We used EELS to measure the valence electron occupancy in Mg 3p 

states. We also performed first-principle calculations to explore its valence electron density 

distribution. We also investigated the typically ionic compound, MgO, and the pure 

covalent compound, crystalline Si, for comparison. Our results show that the Mg-Si bond 

has a very covalent character. The integrated atomic charge indicates 1.48 electrons are 

transferred from Mg to Si, resulting in a bond of 74% ionicity. 
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Chapter 1 

Basics of Li-ion Batteries 

1.1 Introduction 

By the law of energy conservation, energy can be stored in various forms, e.g. 

chemical energy, electric energy, dynamic energy, gravity potential, etc. Under favorable 

conditions, energy can convert from one form to another. A battery is such a device that 

converts the chemical energy stored in its active materials into electric energy via 

electrochemical oxidation-reaction (redox) reactions. 

The fundamental electrochemical unit accomplishing such energy conversion is 

called a “cell”. A battery can consist of one or more cells to achieve the desired capacity 

and voltage. In this work, our batteries contain only one cell, and we will interchange these 

two words for simplicity. A cell contains three major components: the cathode, the anode 

and the electrolyte [1]. When a cell discharges, the cathode accepts electrons and is reduced 

by the electrochemical reaction, while the anode gives out electrons and is oxidized. The 

electrolyte is an ionicly-conductive medium, either in liquid or in solid state, allowing ions 

to move from the anode to the cathode. Electric neutrality is maintained, when electrons 

move from the anode to the cathode via external electric circuit during discharge. 
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1.2 Classification of batteries 

Based on their rechargeability, cells can be identified as primary or secondary cells. 

Primary cells generally have good shelf life and are easy to use, but they can not be easily 

or effectively recharged electrically and are discarded after use. On the contrary, secondary 

cells can restore their power, after discharge, by an external current flowing in the opposite 

direction to that of the discharge current. The advantages of secondary cells include 

reusability, high power density, high discharge rate, flat discharge curves and good 

low-temperature performance. They tend to have poorer charge retention than most 

primary cells. The most common secondary batteries include lead-acid batteries, 

nickel-cadmium batteries, nickel-metal hydride batteries and lithium ion (Li-ion) batteries 

[1].  

1.3 The theoretical potential of a cell 

When a cell discharges, the electrochemical reactions actually occur separately on 

both electrodes. The reduction on the cathode can be expressed, in generalized terms, as 

 cCneaA →+ , (1.1) 

i.e. a moles of A accept n moles of electron e to form c moles of C. Likewise, the oxidation 

on the anode can be expressed as 

 dDnebB →− . (1.2) 
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Combining above two equations, we have the overall reaction equation for the discharge 

process, 

 dDcCbBaA +→+ . (1.3) 

Under isothermal and isobaric conditions, the maximum non-volumetric work that can be 

done by an isolated system is determined by the decrease of its Gibbs free energy, ΔG. 

Assuming an ideal cell with quasi-static discharge, there is no dissipative work and the 

process is reversible. The only work done by the cell is the electrical work, W. By 

electrostatics, 

 nFVVQW =⋅= , (1.4) 

where V is the voltage of the cell and F is the Faraday constant (the number of Coulombs in 

one mole of electrons). If the process occurs under isothermal and isobaric conditions, and 

the system is isolated from its environment with no volumetric work, then the electrical 

work should equal the change of the Gibbs free energy of the cell. We have 

 nFVG −=Δ . (1.5) 

Here, a negative sign is used because the cell is doing positive work.  

In a system containing multiple phases, the chemical potential of the ith component, 

μi, is defined as the partial differential of the Gibbs free energy G to ni, the moles of 

component i,  

 i
ijnPTin

G μ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

≠,,
, (1.6) 
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where T is temperature, P is pressure and nj is the quantity of component j. In a system with 

constant temperature and pressure, Eq. (1.6) can be reorganized as 

 ∑=
i

iidndG μ  (1.7) 

with 

 ξν ddn ii = , (1.8) 

where ξ is the extent of reaction in one mole, a quantity equal for all reactants at a certain 

stage of a reaction [2]. For simplicity, we use νi as the universal symbol for the coefficient 

of the ith reactants in the reaction equation. It is positive for substances formed and negative 

for substances consumed. When a reaction proceeds with νi moles of reactant i involved as 

shown in the chemical equation, dξ equals 1 mole and we have 

 ∑=
i

iiG νμΔ . (1.9) 

Comparing Eq. (1.9) with Eq. (1.5), the voltage V is obtained as 

 ∑−=
i

iinF
V νμ1 . (1.10) 

This equation is often used to calculate the theoretical potential.  

1.4 The Gibbs’ phase rule and voltage profile 

The charge/discharge process of an electrochemical cell is always accompanied by 

the transport of matter (ions and electrons). When the amount of the transported matter 

exceeds a certain threshold, a phase transition may happen either in the cathode or in the 
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anode material. Such crystallographic changes can be observed by monitoring the cell 

potential, because variables in this thermodynamic system are governed by the Gibbs’ 

phase rule. The Gibbs’ phase rule states that the relation among the number of degrees of 

freedom f, the number of separate phases p, and the number of independent components c, 

in a closed system at equilibrium is given by 

 npcf +−= , (1.11) 

where n is the number of the intensive variables necessary to describe the system except the 

mole fractions of the components in each phase [2]. In electrochemical studies, the 

intensive variables are only temperature and pressure. Hence, Gibbs’ phase rule has the 

simplified form 

 2+−= pcf . (1.12) 

In a Li-ion cell, the electrode can be treated as a binary system (c = 2) consisting of 

lithium and the corresponding delithiated phase. If we keep temperature and pressure fixed 

(which is usually assumed in battery reactions), the degrees of freedom reduces to 

 ppf −=−+−= 22)22( . (1.13) 

If only one phase exists (p = 1), f equals 1. The potential of the cell varies with lithium 

concentration. However, if phase separation occurs and the electrode contains two phases 

(p = 2), f equals 0 and therefore no intensive variable (e.g. potential) can change. The 

potential remains fixed for all compositions. The voltage profile of Madagascar natural 
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graphite is shown in Fig. 1.1 as an example [3]. Each two-phase region can be clearly 

identified as a plateau in the curve. 

 
Fig. 1.1 Voltage profile of Madagascar natural graphite during 
charge and discharge with multiple plateaus corresponding to 
two-phase regions [3].  

1.5 Li-ion batteries 

Compared to other rechargeable battery systems such as lead-acid, nickel-cadmium 

and nickel-metal hydride batteries, lithium ion batteries provide higher volumetric and 

gravimetric energy density. They are very appealing for applications in portable electronic 

devices such as cellular phones, laptops and camcorders. The first attempt to construct a 

rechargeable lithium battery was by Whittingham in mid-1970s [4]. The cell used TiS2 as 

the cathode, metallic lithium as the anode, and a non-aqueous electrolyte. However, 

metallic lithium is not a practical anode in rechargeable, liquid electrolyte batteries. During 
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charging, as lithium metal deposits onto the anode surface, dentrites are formed. The 

lithium dentrites eventually reach the positive electrode and cause an internal short-circuit 

[5]. Modern commercial lithium ion batteries use lithium-transition metal oxides, e.g. 

LiCoO2, as the cathodes, and carbon-based materials, e.g. graphite, as hosts to store lithium 

at the anodes. As shown in Fig. 1.2, lithium ions move from the LiCoO2 cathode to the 

LixC6 anode through the electrolyte, and electrons move through the external circuit from 

the cathode to the anode during a charging process [6]. Replacing the lithium metal by 

carbon avoids the presence of metallic lithium in the whole charge/discharge process and 

therefore has significant advantages in terms of safety and cycle life. Unfortunately, it 

sacrifices energy density (3860 mAh/g for lithium vs. 372 mAh/g for carbon) [6]. 

 
Fig. 1.2 Schematic illustration of the charge/discharge process in 
a Li-ion battery using LiCoO2 and C as cathode and anode, 
respectively [6]. 
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1.5.1 Cathodes for Li-ion batteries 

A good cathode material for Li-ion batteries needs to fulfill several requirements: 

1. The material is capable of allowing a large amount of lithium insertion and 

extraction to maximize the capacity of battery. This is determined by the number 

of available lithium sites and the achievable oxidation states of the remaining 

elements inside the material during lithium exchange. Some lithium-containing 

compounds can undergo a few different oxidation states, from low to high, during 

charging. These materials exhibit high energy density. 

2. To improve the energy density, a high cell voltage is preferable. This requires that 

the cation M in compound LiMX, where X is the anion, has a high oxidation state. 

However, a high oxidation state often means a higher potential. Interfacial 

side-reactions and electrolyte oxidation can occur, causing cell failure. 

3. To provide good cycle life for the cell, the material should have good tolerance for 

structural changes during the reversible lithium insertion and extraction process. 

4. The material should have good electronic conductivity and ionic conductivity for 

lithium ions. This depends on many factors such as crystal structure, particle size 

and crystallization of the material. Poor conductivity can cause considerable 

polarization losses during the charge/discharge process, and prevents the cell 
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from being used in applications where high current density and power density are 

desired. 

5. The material should be inexpensive for commercialization. It should also be 

lightweight to achieve high specific capacity. 

6. Safe and environment friendly. 

In modern Li-ion battery researches, cathode materials attracting the most attention 

fall into three main crystallographic categories: layered trigonal structure, spinel-type 

structure and channeled olivine-type structure [6]. 

 
Fig. 1.3 The layered structure of LiMO2. The unit cell is outlined 
by the wire frame. The long side is the c-axis. 

The general formula for layered trigonal cathodes can be expressed as LiMO2, 

where M is a 3d transition metal element or a mixture of several 3d transition metals. The 

structure of these compounds is shown in Fig. 1.3. This structure belongs to the trigonal 
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system with space group mR3  (#166). Oxygen layers form the unit cell frame by stacking 

along the c-axis in a ···ABCABC··· sequence. Li and M atoms occupy the octahedral 

interstitial sites between oxygen atoms [7, 8]. This layered structure has good tolerance to 

structural changes during the extraction and insertion of lithium ions, and is therefore 

favorable for good cycle life [9]. The Li layer facilitates fast two-dimensional diffusion of 

Li+. The edge-shared MO6 octahedral arrangement with direct M-M interaction is believed 

to provide good electronic conductivity [6]. Unfortunately, the commercialization of these 

material is hindered by difficult synthesis, cation disorder (mixed occupancy between Li 

and M sites), and symmetry degradation caused by the Jahn-Teller distortion of M atoms 

[10, 11]. 

 
Fig. 1.4 The unit cell of spinel LiMn2O4 in symmetry mFd 3 . 
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The spinel phases with the general formula LiM2O4 are also of interest as cathodes 

in rechargeable Li-ion batteries. The structure of LiMn2O4 is shown in Fig. 1.4 as an 

example. These materials belong to cubic system with space group either mFd 3  (#227) 

or 3243P  (#212) [12-14]. In mFd 3  symmetry, M atoms occupy the 16d octahedral sites, 

while these sites split into 4a and 12c sites in 3243P  symmetry. In both cases, lithium 

atoms occupy the 8a tetrahedral sites. The edge-shared MO6 octahedra framework provides 

good electrical conductivity, as in the layered LiMO2 oxides. The interconnected lithium 

sites assure good ionic conductivity of Li+. However, a cubic-to-tetragonal transition 

readily occurs during lithium extraction or insertion because of the difference between the 

energies of 8a and 16c sites, both of which can accommodate Li+ [11, 15, 16]. This 

structural transition is accompanied by an intolerable volumetric change during 

charge/discharge cycling, and causes structural deterioration and fast capacity fade. 

The idea to develop cathodes containing polyanions was motivated by the 

eagerness to utilize Fe in Li-ion batteries. Fe is the most available transition metal in the 

lithosphere. It is also less toxic than Co, Ni and Mn, which are currently used extensively. 

Unfortunately, layered LiFeO2 is not a practical cathode material because of its structural 

instability caused by Fe migration from octahedral sites to tetrahedral sites [6]. However, 

this problem does not occur in complex iron oxides containing poly ions such as (SO4)2- 
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and (MoO4)2- [17, 18]. For example, Fe2(SO4)3 exhibited a capacity of 110 mAh/g with a 

flat discharge voltage of 3.6 V. 

 
Fig. 1.5 The unit cell of olivine phase LiFePO4. The long side is 
the a-axis. 

The most promising material in this family is the olivine phase LiFePO4 [19]. It has 

orthorhombic symmetry with space group Pnma  (#62). The framework of the unit cell is 

constructed by FeO6 octahedra and PO4 tetrahedra. Lithium atoms are present as chains in 

the channels along the b-axis, as shown in Fig. 1.5. LiFePO4 has a good theoretical capacity 

of 170 mAh/g and a reasonably high voltage [19]. It also has good structural and chemical 

stabilities resulting in satisfactory cycle life [20]. The main problem of this material is its 

poor conductivity [21]. Several techniques have been developed to overcome this 
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shortcoming, e.g., doping with supervalent cations, coating with carbon and reducing 

particle size [21-24]. 

1.5.2 Anodes for Li-ion batteries 

The most widely used anode in Li-ion batteries is carbon. It exhibits a capacity as 

high as 372 mAh/g with a stable phase LiC6. Its low chemical potential is favorable for a 

high cell voltage.  

Some low-voltage lithium transition metal nitrides and intermetallic compounds 

have been investigated as anodes in rechargeable Li-ion batteries [6, 25]. Li2.6-xCo0.4N, 

Li2.6-xCu0.4N and Li2.7-xFe0.3N showed high capacities around 500 mAh/g at 0.2-1.3 V. 

Li2CuSn demonstrated the capability of reversible extraction of two lithium atoms per 

formula unit [26]. One of the advantages of these materials is that they can be coupled with 

cathodes free of lithium. This brings more flexibility in designing a Li-ion cell.  

Recently, nano-sized and amorphous Ge and Si were proposed to be appealing 

candidates as anodes. Nanocrystalline Ge showed a reversible capacity of 1400 mAh/g 

with 60% capacity retained after 50 cycles, and amorphous Ge showed a stable capacity of 

1700 mAh/g after 60 cycles [27]. Nanocrystalline Si exhibited a capacity of 1100 mAh/g 

with a 50% retention after 50 cycles, and amorphous Si exhibited a stable capacity of 2000 

mAh/g over 50 cycles [28]. The high capacity benefits from the light weight and high 

solubilities of lithium in Ge and Si. The short diffusion distance in these nano-sized and 
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amorphous materials is suggested to be favorable fast relaxation of the strain field and 

therefore suppresses structural damage during cycling. 
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Chapter 2 

Electron Scattering and EELS 

2.1 Introduction to electron scattering 

In a transmission electron microscope (TEM), high-energy primary electrons (also 

known as incident electrons or fast electrons) interact with the specimen and are scattered. 

In terms of energy loss of the primary electrons, the scattering of the incident electrons can 

be divided into two categories: elastic scattering and inelastic scattering. 

Elastic scattering involves no change in the energy of the primary electrons. It is the 

major mechanism that deflects the primary electrons in TEM, and makes the main 

contribution to diffraction patterns and image contrast. When a primary electron is 

scattered elastically, there are two basic types of events [1]. 

1. Large-angle elastic scattering, also known as Rutherford scattering, in which the 

incident electron often undergoes a change greater than 5˚ in direction. This 

process represents the interaction of the fast electrons with the Coulomb 

potential of an atomic nucleus. It only happens when the incident electron 

travels very close to the nucleus. 

2. Small-angle elastic scattering, in which the change in the direction of the 
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incident electron is typically less than a few degrees. Classically, this process 

occurs when the fast electron travels farther from the nucleus and is scattered by 

the electron cloud of the atom. 

In inelastic scattering, a part of the kinetic energy of the incident electron is 

transferred to the electrons or atoms of the specimen. The main types of inelastic processes 

include phonon excitation, plasmon excitation, single electron excitation and 

bremsstrahlung radiation [2]. Analysis of the energy of the inelastically scattered electrons 

forms the basis for electron energy loss spectrometry (EELS). 

2.2 The theory of inelastic electron scattering 

2.2.1 The Born approximation 

In developing the scattering formalism, it is convenient to describe the primary 

electrons as electron waves. In solving the scattered wavefunction, an approximation is 

required to obtain an explicit solution. The one often used is the Born approximation. The 

Born approximation assumes that the kinetic energy of the incident electrons is much 

greater than the energy of the excited atomic states. In its first-order form (known as the 

first Born approximation), this approximation is equivalent to assuming that the wave is 

undiminished and scattered only once [3]. This is valid for weak scattering. A more 

quantitative criterion is that Z<<137(v/c) [4], where Z is the atomic number; v is the speed 
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of the fast electron and c is the speed of light in vacuum. For most elements of interest for 

materials science and the operating voltage in a TEM, this condition is readily satisfied. 

 
Fig. 2.1 Illustration of the wave vectors and particle positions for 
electronic scattering from an atom. 

It is accurate to write the incident electron before scattering as a plane wave 

 )2exp( 00 rk ⋅= iπΦ , (2.1) 

where k0 is the wave vector and r is the vector coordinate for the position of the incident 

electron. Within the first Born approximation, the scattered wave is also in the form of a 

plane wave, 

 )'2exp( rk ⋅= nn iπΦ , (2.2) 
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where kn and r′ are the wave vector and vector coordinate of the scattered electron, 

respectively. The total wavefunction of the system of an incident electron and an atomic 

electron is therefore a product of the atomic states and plane wave states 
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where a0(rj) and an(rj) are the wavefunctions of the atomic states; ri and rj are the 

coordinates for the incident and atomic electrons, respectively. The scattering geometry is 

shown in Fig. 2.1 with the origin at the nucleus. 

2.2.2 The inelastic scattering cross-section 

An important quantity in scattering theory is the cross-section σ, which represents 

the probability of an incident electron being scattered by a given atom. As an example, the 

scattering of an electron by the Coulomb potential of a nucleus is illustrated in Fig. 2.2 [5]. 

The electrons travel on hyperbolic trajectories due to the attractive Coulomb force. If there 

were no interaction between the electron and the nucleus, the electron would travel straight 

and past the nucleus, and the shortest distance between them is defined as the impact 

parameter a. The change in the direction of the electron is described by the scattering angle 

θ. This θ decreases with increasing a. Electrons that pass through an element of area dσ of 

the incident beam will be scattered into a cone of solid angle dΩ. The ratio dσ/dΩ is known 

as the differential cross-section, and is a function of θ. The differential cross-section 

describes the angular distribution of the scattered electrons. 
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Fig. 2.2 A schematic explanation of the differential cross-section 
dσ/dΩ. 

By treating the presence of the incident electron as a perturbation to the 

Hamiltonian of the system, the inelastic scattering differential cross-section can be 

obtained [6] by Fermi’s golden rule 
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where Ψ0 and Ψn are the initial and final wavefunctions as described in Eq. (2.3); V(ri,rj) is 

the perturbing Hamiltonian; m is the rest mass of a electron and h is Plank’s constant. The 

perturbing Hamiltonian has the form 
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where e is the elementary charge; Z is the atomic number of the atom, and ε0 is the 

permittivity of free space. The first term represents the interaction between the incident 

electron and the nucleus. The second term is the repulsive Coulombic interaction between 



 23

the incident and the atomic electrons. Substituting Eq. (2.3) and Eq. (2.4) into Eq. (2.5), the 

differential cross-section becomes 
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In Eq. (2.6), the first term in the modulus cancels because of the orthogonality of the 

atomic wavefunctions 

 00 nn aa δ= . (2.7) 

The second term is 
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Making the variable substitution q = 2π (kn - k0), and noting the integral 
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Eq. (2.6) becomes 
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where  
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2
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me

h
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π

ε
=  (2.11) 

is the Bohr radius. Considering the relativistic effect on electron mass [7], Eq. (2.11) is 

corrected as  
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where γ is the relativistic correction factor for mass, 2211 cv−=γ ; v and c are the 

speed of the incident electron and the speed of light in vacuum, respectively. 

A quantity known as the generalized oscillator strength (GOS) [7] is defined as 
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is the Rydberg energy, and ΔE is the excitation energy that promotes the atom from state a0 

to an. By the conservation of energy, ΔE equals the loss of the kinetic energy of the 
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scattered incident electron. The differential cross-section is expressed in terms of the GOS 

as 
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In studying scattering events with continuous energy loss (e.g., ionization of an 

atom where the final states form a continuum), it is more convenient to use a GOS per unit 

energy loss, EdEqdf ΔΔ ),( . Then, we obtain the double differential cross-section for 

inelastic electron scattering 
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Eq. (2.16) describes the angular and energetic dependence of inelastic scattering. To relate 

the double differential cross-section to experimental data which contain considerable 

details arising from bondings in solids, Eq. (2.16) must be weighted by the density of 

unoccupied states, ρ(En) [8-10]. The final expression of the double differential 

cross-section for inelastic electron scattering in solids is 
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Here, we take the approximation kn/k0 ≈ 1, because ΔE is very small compared to the kinetic 

energy of the incident electron and therefore the kn is very close to k0. 
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2.2.3 The Bethe surface 

A plot of EdEqdf ΔΔ ),(  is called the Bethe surface [2]. Fig. 2.3 shows the 

calculated Bethe surface for the carbon K-shell ionization. The GOS exhibits a maximum 

(Bethe ridge) at larger q (equivalently, larger scattering angle θ). This area corresponds to 

“hard-sphere” collisions with large momentum transfer as if the atomic electron was at rest 

[2]. Both core electrons and valence electrons can be involved in this process. The more 

stationary valence electrons contribute to the central region of the ridge, while the core 

electrons broaden the ridge due to their larger kinetic energies [7]. 

 
Fig. 2.3 The Bethe surface for carbon K-edge showing the 
dependence of the GOS on both energy loss and scattering angle. 



 27

Experimentally, the measured intensity in an EELS spectrum is the total number of 

scatterings within a certain scattering angle θa, which is selected by using a collection 

aperture. A small aperture will collect most of the intensity at energies just above the 

ionization energy, ΔEt in Fig. 2.3. This small aperture is also useful for improving the 

signal-to-background ratio (SBR) by suppressing the background intensity at large q that 

originates from the tails of other features with lower energy loss. However, at energies well 

above ΔEt, a large aperture is necessary to obtain enough counts before radiation damage 

occurs in the specimen [3]. For some specific studies, e.g. electron-Compton 

measurements, an even larger aperture must be used to include a significant portion of the 

Bethe ridge [7]. 

2.2.4 The dipole selection rule 

During an inelastic scattering event, the atom is excited from the initial state with a 

wavefunction a0 to the final states with a wavefunction an by absorbing energy ΔE. The 

probability of such a transition with a given scattering angle is governed by the double 

differential cross-section, as shown in Eq. (2.13) and Eq. (2.17). The exponential terms in 

the Eq. (2.13) can be expanded as Taylor series 
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For small q, higher power terms can be neglected. The integral becomes 
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The first integral on the right side vanishes due to the orthogonality of the atomic 

wavefunctions. As discussed in section 2.2.3, the EELS spectrum is collected up to a 

certain scattering angle θa. Therefore, the spectral intensity represents the integrated 

double differential cross-section within the corresponding solid angle Ωa 
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Here we sum over all possible final states because all transitions make contributions to the 

spectral intensity [2]. By substituting Eq. (2.19) into Eq. (2.20), we have 
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This is known as the dipole approximation. The squared term can be further simplified 
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because the circular symmetry of the collection aperture will cause all cross term 

(involving qxqy, etc.) to vanish [2], when integrated over the solid angle. Now, we have the 

spectral intensity as 

 ∑ ∫ ∑∫
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∝

=n

a
Z

j
jjnnE ddaaqEI

Ω
Δ Ωρ

0

2

1

3
0

*2)( rr . (2.23) 

Quantum mechanics shows that the integral in Eq. (2.23) is nonzero only when 1±=lΔ , 

where l is the angular momentum of the atomic state. This is known as the dipole selection 

rule. Only those transitions allowed by this rule can contribute to the spectrum. The dipole 

selection is valid for small scattering angle, 1<<⋅ rq . At large scattering angles, 

contributions from higher order terms in Eq. (2.18) may be significant. 

2.3 Electron energy loss spectrometry (EELS) 

Electron energy loss spectrometry (EELS) refers to the techniques which use 

monoenergetic electrons to probe a specimen, and analyze the energy distribution of the 

scattered primary electrons after interaction. A few variants have been developed and 

each has its unique instrumentation, advantages and disadvantages. In the present work, 

we employ the EELS technique conducted in the environment of a transmission electron 

microscope (TEM). 
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Fig. 2.4 A schematic diagram showing the arrangement of an 
EELS spectrometer mounted on a TEM. 

2.3.1 Instrumentation 

For TEM-based EELS, high-energy electrons are focused on a thin specimen and 

the transmitted primary electrons are collected by the EELS spectrometer mounted at the 

bottom of the TEM column. This arrangement is shown schematically in Fig. 2.4. There 

are different designs of EELS spectrometers. However, all of them use a static-magnetic 

field to separate electrons with different energies [2]. Fig. 2.5 shows how the electrons 

are dispersed by a 90˚ magnetic sector spectrometer. The spectrometer is focused on the 
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crossover of the projector lens of the TEM. Electrons with a velocity v enter the magnetic 

field B produced by the pair of magnets and travel along a circular trajectory due to the 

Lorentz force BvF ×−= e . The radius of curvature R is given by 

 
eB
vmR γ

= . (2.24) 

where γ, v and m have same meanings as in section 2.2.2. The dependence of R on v 

implies that electrons with different energies will travel along different trajectories even if 

they initially enter the magnetic field at the same point. On the other hand, the trajectories 

of electrons with the same energy can cross at a single point on the dispersion plane if the 

lens is well designed. Thus, all electrons are aligned according to their energies and an 

EELS spectrum is formed. A real spectrometer, as shown in Fig. 2.6, has more 

components for better functionality. QX and QY are quadrupole magnetic lenses to 

correct the first-order aberration of the sector magnets. The second-order aberration is 

corrected by the sextupole lenses SX and SY. Q1-Q4 are quadrupole lenses to increase 

the energy dispersion by enlarging the spectrum. Finally, the spectrum is recorded by a 

photodiode array fiber-optically coupled to a thin YAG (yttrium aluminum garnet) 

scintillator [7]. 
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Fig. 2.5 A schematic diagram showing the electron trajectories 
and energy dispersion in a 90˚ magnetic sector spectrometer. 

 

 

 
Fig. 2.6 A schematic diagram of a Gatan Model 666 PEELS 
system. 
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2.3.2 Features of an EELS spectrum 

A typical transmission EELS spectrum is shown schematically in Fig. 2.7 with the 

x-axis being the energy loss of the primary electron. The first part from the left side is the 

zero loss peak (ZLP) around 0 eV. It contains all the elastically and quasi-elastically 

scattered electrons [2]. The energy spread of the ZLP mainly originates from the 

non-monochromaticity of the electron source in the TEM. The quasi-elastically scattered 

electrons experience very small energy (e.g. excitation of phonons) which can not be 

resolved by conventional TEM-EELS. However, this quasi-elastic component may 

become relatively significant and eventually be separated from the ZLP if a highly 

monochromatized electron emitter is used. The full width at half maximum (FWHM) of 

the ZLP determines the overall resolution of the spectrum [2]. 

 
Fig. 2.7 A rescaled spectrum of Si showing the components in 
an EELS spectrum. 
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From the ZLP to about 50 eV is the “low-loss region.” It corresponds to 

interactions between the primary electrons and the atomic valence electrons which are 

often delocalized due to interatomic bonding. The transferred energy triggers collective, 

resonant oscillations of the valence electrons known as “plasmons.” The plasmon peak 

position is a function of valence electron density in the material. Analysis of the plasmon 

peak can provide useful information about properties such as phase distribution, degree 

of solid solution formation, electrical conductivity, thermal conductivity, etc., which are 

largely determined by valence electrons. For insulators or semiconductors, there may also 

appear relatively small peaks superimposed on the big plasmon peak [2]. These are single 

electron excitations from the valence band to the conduction band. They represent a 

convolution between the density of states (DOS) of the valence and conduction bands. 

Hence, analysis of the details of the whole low-loss region, both plasmon and interband 

transitions, can give information on band structure which is of particular interest to 

semiconductor investigations, and sometimes is referred as “valence electron energy loss 

spectrometry” (VEELS) [11]. 

Beyond the low-loss part of the spectrum is the high-loss part, which can extend 

to several thousand eV. This region exhibits distinct peaks superimposed on a 

monotonically decreasing background. These peaks correspond to excitations of 

well-localized core electrons of atoms and are known as ionization edges. The edge 
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threshold is determined by the binding energy of the core electron, which is a 

characteristic quantity of an element. Hence, the edge position can be used to identify the 

atomic species. It should be kept in mind that the energy threshold of an ionization edge 

can be affected by the chemical environment of the atom. Variation up to a few eV can 

occur for same atoms in different compounds. This is known as the “chemical shift.” The 

intensity of the edge is proportional to the number of atoms in the material, so the 

intensity can be used for the measurement of composition. 

For free atoms, the shapes of the absorption edges are determined by the overlap 

between the initial and final states. The calculated edge shapes are simple and 

structureless [12]. However, ample details are observed on experimentally measured 

edges, as shown in Fig. 2.8. This is known as the energy loss near-edge structure 

(ELNES). The ELNES normally exists within ~50 eV above the edge threshold and is a 

solid-state effect. In solids, the unoccupied electronic states near the Fermi level are 

modified by chemical bonding, which creates a complicated density of states (DOS). A 

correct calculation of the ELNES requires incorporating the DOS of the corresponding 

final states β(En) into the atomic differential cross-section, as we did in Eq. (2.17). Since 

the tight-bound initial core state is essentially an energy delta function, the ELNES 

directly reflects the DOS of the unoccupied states around the Fermi level, as allowed by 

the transition selection rule. 
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Fig. 2.8 The O K-edge in Fe2O3 showing the ample fine features 
in the ELNES region due to solid state effects. 

Beyond the ELNES, there may also be weak extended oscillations. These are 

known as the extended energy loss fine structure (EXELFS). For an inelastic scattering 

event in this region, the ejected core electron has a high kinetic energy and can be 

considered as a free electron. The electron wavefunction is an outgoing spherical wave 

originating from the excited atom. This outgoing wave will be reflected by neighboring 

atoms. The interference between the outgoing and backscattered waves, being either 

constructive or destructive, perturbs the core state wavefunction of the central atom and 

gives rise to the EXELFS [3]. The EXELFS is a useful tool to measure bond lengths and 

short-range ordering in solids. The ionization edges, including both the ELNES and 

EXELFS, are the most useful parts in an EELS spectrum to retrieve information of local 
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chemistry in a material, such as composition, valences of atoms, coordinations and bond 

lengths. 

If a sufficiently large collection aperture is used, the Compton profile can present, 

as we discussed in section 2.2.3. The Compton profile can also be used for bonding 

determination [13]. 

2.4 Spectrum processing for quantitative analysis 

2.4.1 Extracting the single scattering distribution 

Despite how thin the specimen is, plural scattering is always possible. The 

primary electron can undergo a series of inelastic scatterings before it is recorded in the 

spectrometer and its total energy loss may be equal to the loss of energy in several single 

inelastic scattering events. This creates artifacts and prevents direct interpretation of 

spectral features and must be removed [5]. 

The most reliable and versatile techniques to remove the plural scattering from 

experimental EELS data involve deconvolution of a spectrum by using Fourier transform. 

There are two methods, the Fourier-log method and the Fourier-ratio method, and both 

are widely used. 

The possibility of an incident electron experiencing n inelastic scattering events 

obeys the Poisson statistics. Assuming the total incident beam intensity is I, the intensity 

I0 of n-fold inelastically scattered electrons is 
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where t is the sample thickness and λ is the total mean free path for all inelastic scattering 

processes. For n = 0, 
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which represents the absence of inelastic scattering and corresponds to the ZLP in the 

spectrum. For n = 1, 
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I1 can also be obtained by integrating the intensity distribution of single inelastic 

scatterings s1(ΔE) over all energy loss, 

 EdEsI ΔΔ∫= )(11 . (2.28) 

Similarly, for n = 2, 

 EdEsI ΔΔ∫= )(22 . (2.29) 

The intensity distribution of double scattering s2(ΔE) has an energy dependence of 

 )(s)(s)(s 112 EEKE ΔΔΔ ∗⋅= , (2.30) 

where K is a constant. By Eq. (2.28)-Eq. (2.30), we have the double inelastic scattering 

intensity as 
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By Eq. (2.25) and Eq. (2.26), 
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Equating Eq. (2.31) and Eq. (2.32), we have 
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Similarly, sn(ΔE) is obtained as 
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The recorded spectrum sT(ΔE) is the sum of all n-fold scattering distributions, 
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Applying a Fourier transformation to both sides, 
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We have, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
01

)(
ln)(

I
S

IS T ω
ω . (2.38) 

where the upper-case symbols represent the Fourier transform of the corresponding terms 

in energy space, and the frequency ω is in units of eV-1. 

The above derivation assumes an energy resolution of a δ function. A real EELS 

spectrum contains energy spreading. The recorded data is the sum of all plural scattering 

distributions convoluted with a instrument broadening function r(ΔE) [7]. Eq. (2.36) 

should be corrected as 
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where s0(ΔE) is the elastic scattering distribution and is essentially the ZLP. Consequently, 

Eq. (2.38) is modified as 
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I0 is unknown, but it is not of importance because it is just a coefficient and will not affect 

the shape of the spectrum. The factors, ST(ω) and S0(ω) are readily obtainable from the 

experimental data. By applying an inverse Fourier transform on Eq. (2.40), the single 

scattering distribution s1(ΔE) can be retrieved. This procedure to remove the plural 

scattering is the so-called “Fourier-log method.” 

The simpler “Fourier-ratio method” is only used to remove the influence of low 

loss processes from the high loss region. The recorded high loss region is distorted by the 

low loss part as 

 )()()( 1 lowThighhighT EsEsEs ΔΔΔ ∗= , (2.41) 

where sT(ΔEhigh) and sT(ΔElow) are the experimental high-loss and low-loss regions, 

respectively. Applying a Fourier transformation to both sides, we have 

 )()()( 1 lowThighhighT SSS ωωω ⋅= . (2.42) 

The single scattering distribution of the high loss region is given by applying inverse 

Fourier transform on the following equation, 
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2.4.2 Background subtraction 

The background under an edge in an EELS spectrum comes mainly from the tails 

of plasmon excitations and ionization edges with lower threshold energies. In the high 
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loss region, the background intensity Ib exhibits approximately a power-law energy 

dependence [7], 

 r
b EAI −= Δ , (2.44) 

where A and r are constants. A is not of importance as it is the amplitude and can be 

chosen arbitrarily to match the experimental data. The optimal value of r, which 

determines the behavior of the function, is critical for a reliable background fitting. The 

determination of r is largely an empirical procedure. A reasonable fitting should closely 

approximate the region before the edge and should extend well beyond the edge without 

intersecting the spectrum, as shown in Fig. 2.9. 
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Fig. 2.9 (a) The power-law background model (dashed line) 
used to remove the background under Si L-edge (solid line). The 
pre-edge fitting window is shaded in gray. (b) The Si L-edge after 
background removal. 
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Chapter 3 

Local Electronic Structure of 
LixNi0.5Mn0.5O2 and 
LixNi1/3Mn1/3Co1/3O2 

3.1 Introduction 

Cathodes of LiCoO2 with a layered structure have been most successful for service 

in rechargeable Li-ion batteries [1]. The insertion of Li between CoO2 layers allows the 

composition, x, in LixCoO2 to vary reversibly from 1.0 to approximately 0.5 for many 

cycles [2]. Cycling to lower values of x, corresponding to increased charge of the cell, 

causes a loss of reversible capacity, perhaps associated with the formation of a monoclinic 

phase near x = 0.55 [3-5]. The substitution of other transition metals for Co atoms has 

proved a useful approach for increasing the electrochemical capacity by allowing a larger 

compositional range for the reversible insertion and extraction of Li [6-8]. Additional 

benefits of Ni or Mn substitutions for Co include reduced cost of the material, improved 

thermal stability, and environmental friendliness [9, 10]. 

The lithiation reaction in layered LixCoO2, 

 −−+−++ −−→+− e)x1()CoO(Li)CoO(LiLi)x1( 2
x

2x , (3.1) 
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requires the host framework to compensate the charge of the Li+ ion as it is inserted or 

extracted. It is tempting to assume that the oxygen remains as O2- and ascribe the charge 

compensation to the reduction of Co4+ to Co3+ during lithium insertion. Recent work has 

shown, however, that the O atoms themselves play the dominant role in charge 

compensation during Li+ insertion and extraction [11-13]. The Co atoms undergo little 

change in valence. A similar behavior was found for the layered form of LiNi0.8Co0.2O2, 

although there was a suggestion that the Ni atoms may also accommodate some of the 

charge associated with lithiation [14]. 

Recently it has been argued that the situation is quite different for LiNi0.5Mn0.5O2 

and LiNi1/3Mn1/3Co1/3O2 with the same layered structure as LiCoO2. The charging behavior 

of cells with LiNi0.5Mn0.5O2 was interpreted as evidence for Ni2+ to Ni4+ oxidation [7], and 

peaks in cyclic voltammetry measurements at 3.7-4.0 V were interpreted as evidence for a 

Ni2+/Ni4+ redox process [15]. Changes in the spin density obtained from electronic 

structure calculations were used to deduce a Ni2+ to Ni4+ transition during lithium 

extraction [16, 17]. A clear shift of the Ni K-edge was observed in X-ray absorption 

near-edge spectra (XANES). This shift and the change in the Ni-O bond lengths were 

attributed to the oxidation from Ni2+ to Ni4+ during delithiation [18-20]. Due to the dipole 

selection rules, the Ni K-edge is not the optimum edge to investigate the occupancy of Ni 

3d and O 2p states; transition metal L-edges are more informative. The sharp white lines 
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that appear at the L2,3 absorption edges have proved to be useful as experimental probes of 

changes of Ni valence [14, 21, 22]. White lines originate primarily with the excitation of 

inner 2p electrons to unoccupied 3d states at the same atom (alternatively stated as the 3d 

character of the lowest unoccupied molecular orbitals or the projected density of 3d states 

at the transition metal atom). The intensity of the white lines increases with the number of 

unoccupied 3d states, and the central energies of the white lines undergo shifts with 

changes in the energy levels of 2p or 3d electrons. Recent experimental results from X-ray 

near-edge structure and transmission electron energy loss spectrometry reported changes in 

the shape and positions of the white lines at the L2,3 absorption edges of Ni, and none at Mn 

atoms, during lithiation of the material [23, 24]. These results were presented as evidence 

for the Ni2+ to Ni4+ transition during delithiation. Similar work and interpretations were 

reported for the Co-doped variant, LiNi1/3Mn1/3Co1/3O2 [25-27]. On the basis of cyclic 

voltammetry measurements, the redox process around 3.8 V was assigned to the Ni2+/Ni4+ 

redox couple [25]. Band structure and electron density calculations also supported a 

Ni2+/Ni4+ redox reaction during the lithium insertion and extraction process [26, 27]. 

Despite this substantial literature arguing for the Ni2+ to Ni4+ redox process during 

Li extraction from LiNi1/3Mn1/3Co1/3O2, some inconsistencies remain [7, 15-20, 23-27]. 

First, during delithiation, only small changes in the intensities and positions of the white 

lines at the Ni L2,3 edges are measured. Larger changes are generally observed during 
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oxidation of transition metals [28]. Second, the electrochemical capacity and voltage do 

not scale as expected with the amount of Ni in the material. Finally, the electronic structure 

calculations relied on an integrated spin density around the Ni atoms, but changes in spin 

density do not necessarily correlate with changes in charge density. 

Here we report results from a new computational effort to assess the effects of the 

Ni2+ to Ni4+ transition on the white lines at the Ni L-edges that we measured in a new 

experimental effort using electron energy loss spectrometry. The experimental spectra 

were consistent with the results reported by others, but the atomic multiplet calculations 

showed that the shifts at the Ni L-edges were too small to be associated with the formation 

of Ni4+. Changes in white lines intensities during delithiation were also too small to 

account for Ni4+. We conclude that the Ni2+ to Ni4+ redox process does not occur during 

delithiation. This is consistent with our charge density calculations showing that ionic 

charge cannot be inferred from calculated spin densities. Charge compensation during 

lithiation occurs primarily at hybridized 2p states associated with O atoms. 

3.2 Experimental 

To prepare the compound LiNi0.5Mn0.5O2, Ni0.5Mn0.5(OH)2 (by Tanaka Chemicals 

Inc.) was fired at 400 °C for 5 h in air to obtain Ni0.5Mn0.5O. The Ni0.5Mn0.5O was well 

mixed with Li(OH)·(H2O) in a stoichiometric ratio, and LiNi0.5Mn0.5O2 was obtained by 
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firing this mixture at 1000 °C for 24 h in air. The LiNi1/3Mn1/3Co1/3O2 powder was provided 

by Enax Inc. 

 
Fig. 3.1 Indexed X-ray powder diffraction patterns from samples 
of different states of lithiation (a) LixNi0.5Mn0.5O2 (with Si as an 
internal standard) and (b) LixNi1/3Mn1/3Co1/3O2. 

An acetone solution containing 80 wt % LiNi0.5Mn0.5O2 (or LiNi1/3Mn1/3Co1/3O2), 

12 wt % acetylene black, and 8 wt % PVDF (polyvinylidene fluoride) was deposited on an 

aluminum foil and dried for 1 day in air to make electrodes for 2016 coin cells. The cells 
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used Li metal counter electrodes, 1 mol LiPF6/EC-DMC (ethylene carbonate – dimethyl 

carbonate) as the electrolyte and microporous polypropylene Celgard 3401 as the separator. 

Lithium extraction was achieved by charging the cell until the charging capacity equaled 

(1-x), where x ≤ 1, of the theoretical capacity. Hence, the general formulas for the materials 

can be expressed as LixNi0.5Mn0.5O2 (x = 0.7 and 1) and LixNi1/3Mn1/3Co1/3O2 (x = 0, 0.1, 

0.2, 0.4, 0.6, 0.8, and 1), respectively. We refer to samples with x = 1 as “lithiated”, and all 

other samples as “partially delithiated”. 

The structures of all samples were determined by X-ray diffraction (XRD) 

performed with a Philips X’Pert powder diffractometer using Cu Kα radiation (λ = 

0.15046nm). Indexed X-ray diffraction patterns are presented in Fig. 3.1. All patterns are 

indexed well with space group mR3 , and the measured lattice constants are summarized 

in Table 3.1. 

Table 3.1 Lattice constants of LixMO2 

 a (nm) c (nm) c/a 
Li1Ni1/3Mn1/3Co1/3O2 0.2861 1.4094 4.926 
Li0.8Ni1/3Mn1/3Co1/3O2 0.2834 1.4259 5.031 
Li0.6Ni1/3Mn1/3Co1/3O2 0.2820 1.4381 5.100 
Li0.4Ni1/3Mn1/3Co1/3O2 0.2816 1.4366 5.101 
Li0.2Ni1/3Mn1/3Co1/3O2 0.2824 1.3991 4.955 
Li0.1Ni1/3Mn1/3Co1/3O2 0.2830 1.3873 4.903 
Li0Ni1/3Mn1/3Co1/3O2 0.2832 1.3776 4.864 
Li1Ni0.5Mn0.5O2 0.2892 1.4286 4.940 
Li0.7Ni0.5Mn0.5O2 0.2887 1.4317 4.960 
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Electrochemical cells were cycled two to three times between 3 and 4.5 V and held 

at a fixed state of charge for 5 h before they were disassembled in an Ar glovebox. The 

cathodes were removed and crushed with a mortar and pestle in 1-methyl-2-pyrrolidinone. 

Fine particles were then dispersed onto holey carbon grids for transmission electron 

microscopy (TEM) analysis. In selected regions of the sample, beam damage to the 

specimen was monitored in image, diffraction, and spectroscopy modes. Under the most 

intense electron illumination conditions, there was no observable change in image contrast, 

diffuseness of diffraction pattern, and spectral features for at least 10 min, sufficiently long 

to acquire electron energy loss spectrometry (EELS) data. The EELS spectra were acquired 

with a Philips EM420 transmission electron microscope operated at 100 kV with a Gatan 

666 parallel EELS spectrometer. The spectra were acquired in image mode (diffraction 

coupling), with a typical area of analysis of 104 nm2. 

Approximately a half-dozen particles were analyzed for each sample to assess the 

effect of compositional heterogeneity during charging. The statistical variations in their 

spectral results were used to obtain error bars in the figures below. The energy resolution 

was approximately 1.5 eV with an energy dispersion of 0.5 eV per channel. A large 

collection angle of ~100 mrad was used to include the spectral contributions from the 

entire Bethe ridge [29]. Since 1024 channels in the spectrometer cannot cover an energy 

range 0-950 eV in a single acquisition, the low-loss and high loss-parts were collected 
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separately. The two parts were then spliced with an overlapping portion. This manipulation 

could introduce a small spectral shift of high-loss part. All spectra were therefore aligned 

with the Mn L-edges for which no change occurred during delithiation [7, 15-20, 23, 

25-27]. The experimental spectra were deconvoluted using a Fourier-log method to remove 

the plural scattering [30]. A power-law fit to the pre-edge background was performed for 

each ionization edge, and the estimated background was then subtracted from the data [31]. 

3.3 Computational 

Calculations of the electronic structure were performed for a two-formula unit cell 

for both Li2(NiMn)O4 (x = 1) and Li(NiMn)O4 (x = 0.5). The initial structure was taken 

from the mR3  layered structure transformed to a monoclinic cell with symmetry C2/m. 

The VASP [32, 33] (Vienna ab initio simulation program) code was used with projector 

augmented wave (PAW) potentials in the generalized gradient approximation (GGA). The 

calculations were based on the local spin density approximation, and the magnetic 

moments were initially set to three unpaired electrons for Mn and two for Ni in an 

antiferrimagnetic arrangement. A dense 5105 ××  k point grid was used (convergence 

having been checked using larger grids), which gave 78 k points in the irreducible wedge. 

Full relaxation of both the unit cell and the atomic positions was allowed, and the energy 

was converged to 0.001 eV/atom. For density of states calculations, the atom positions 
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were taken from a converged calculation and the k point grid was increased to 6126 ×× , 

which gave 140 k points in the irreducible wedge. 

The shapes of transition metal L2,3 edges are altered significantly by atomic 

multiplet effects because there is significant overlap of the radial wave functions for the 2p 

hole and the holes in the partially filled 3d band. Final states must be calculated by vector 

coupling the 2p and 3d wave functions. This strong, purely atomic, effect is only partly 

screened in the solid state, meaning that features in spectra are comparable for solids and 

isolated atoms. The initial and final states are specified as a sum of terms in the LS 

coupling scheme. For example for Ni2+ the initial state configuration would be 2p63d8 and 

the final state 2p53d9. The initial ground state 3F4 is given by Hund’s rule. Transitions 

calculated with a dipole selection rule give ΔJ as -1, 0, 1. In this case there are 12 terms 

allowed for the final state. The strengths of the various transitions are calculated from the 

appropriate matrix elements from the Hamiltonian 
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Since the first two terms of this Hamiltonian are the same for all electrons in a 

configuration, only the last two terms, the electron-electron interaction and the spin-orbit 

coupling, need to be considered. In practice for transition element ions it has been found 
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necessary to reduce the pd exchange integrals by 20% from the values calculated using the 

Hartree-Fock wave functions. 

The oxygen atoms neighboring the transition metal ion add a crystal field that is 

represented as a sum of spherical harmonics and can be treated as a perturbation to the 

atomic multiplet calculation. The main effect is to change the local symmetry from 

spherical to octahedral. Calculations of some transition metal white line intensities in 

octahedral and tetrahedral symmetry are given by Van der Laan and Kirkman [34]. 

Following this approach, we determined the crystal field parameter 10 Dq from the 

splitting of the t2g and eg parts of the electronic density of states. For a detailed description 

of multiplet theory applied to inner shell spectroscopy, see the recent review by de Groot 

[35], whose codes were used in the present work. 

3.4 Results 

3.4.1 EELS 

White lines at transition metal L-edges originate from electronic transitions from 

core 2p states to unoccupied states that differ by 1 in angular momentum quantum number. 

Their intensity is dominated by the presence of unoccupied 3d states projected at Ni, Mn, 

and Co atoms. Fig. 3.2 and Fig. 3.3 show pairs of prominent white lines at the Mn and Co 

L2,3 edges. For Mn and Co, there is essentially no difference in the white lines for the 
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lithiated and partially delithiated samples. Intensity variations of less than 3% for Mn and 

less than 5% for Co were observed, but these did not correlate well to the state of lithiation. 

We therefore cannot detect any change in valence at Mn or Co atoms during delithiation. 

 
Fig. 3.2 Mn L2,3 white lines from (a) LixNi0.5Mn0.5O2 and (b) 
LixNi1/3Mn1/3Co1/3O2 with different x values. The spectra were 
normalized with a 50 eV window after the L2 peak. 

Fig. 3.4 shows the white lines at the Ni L2,3 edges. There are changes in white line 

shape, position, and intensity with changes in lithium concentration. With delithiation, 

there is a broadening and upward shift of the white lines and a small variation in intensity. 

These changes are very similar to the results on layered LiNi0.5Mn0.5O2 reported by Yoon et 
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al. [23] from soft X-ray absorption spectra and by Koyama et al. [24] from electron energy 

loss spectra of Ni L-edges. Fig. 3.5 shows the positions of the Ni L3 white line from the 

LixNi1/3Mn1/3Co1/3O2 samples. A linear fit shows that the L3 peak shifts upward less than 

1.2 eV when x changes from 1 to 0. Fig. 3.6 shows the change in intensity of the Ni white 

lines versus Li concentration. The changes in intensity show no obvious trend, indicating 

no obvious trend in the valence of the Ni atom upon delithiation. 

 
Fig. 3.3 Co L2,3 white lines from LixNi1/3Mn1/3Co1/3O2 with 
different x values. The spectra were normalized with a 40 eV 
window after the L2 peak. 

Fig. 3.7 shows a large change at the O K-edge upon delithiation. The pre-peak at 

528 eV (labeled “A”) increases in intensity upon delithiation. This pre-peak is dominated 

by the dipole-allowed 1s to 2p electronic transition and is indicative of the number of 

unoccupied 2p states projected at the O atom. Lithiation causes a filling of these states. A 

graph of the normalized O K-edge pre-peak intensities versus Li concentration is shown in 

Fig. 3.8 for samples of LixNi1/3Mn1/3Co1/3O2. A linear fit was made to the delithiated 
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samples with x ≥ 0.4 to compare with previous results for LiCoO2 and LiNi0.8Co0.2O2 

[13,14]. Although the linear fit is an empirical correlation, the slopes for the three systems, 

LiCoO2, LiNi0.8Co0.2O2, and LixNi1/3Mn1/3Co1/3O2, are very similar, being approximately 

-0.27, -0.26, and -0.27, respectively. The range of analysis from 0.4 ≤ x ≤ 1.0 was selected 

because the crystal structure of LiCoO2 is known to be stable over this range. 

 
Fig. 3.4 Ni L2,3 white lines from (a) LixNi0.5Mn0.5O2 and (b) 
LixNi1/3Mn1/3Co1/3O2 with different x values. The spectra were 
normalized with a 40 eV window after the L2 peak. 

 



 

 

59

 
Fig. 3.5 Ni white line L3 positions of LixNi0.5Mn0.5O2 and 
LixNi1/3Mn1/3Co1/3O2 with different Li content, x. 

 

 
Fig. 3.6 Ni L2,3 white line intensities of LixNi0.5Mn0.5O2 and 
LixNi1/3Mn1/3Co1/3O2 with different Li content, x. The intensity is 
normalized to the fully lithiated sample with x = 1. 
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Fig. 3.7 O K-edge from (a) LixNi0.5Mn0.5O2 and (b) 
LixNi1/3Mn1/3Co1/3O2 with different x values. The spectra were 
normalized with the main peak (532-543 eV) to show the intensity 
of the pre-peak. 

3.4.2 Electronic structure calculations 

For the fully lithiated LiNi0.5Mn0.5O2 compound, the unit cell was found to be 

monoclinic (P2/m) with a = 5.119 Å, b= 2.876 Å, c = 5.067 Å and γ = 110.42° with a net 

magnetic moment corresponding to one unpaired electron. The fully relaxed half-lithiated 

cell was also monoclinic (P2/m) with a = 4.907 Å, b = 2.89 Å, c = 5.253 Å and γ = 109.26° 
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with a net magnetic moment corresponding to two unpaired electrons. The reduction in 

symmetry from that of the starting configuration is due to the Jahn-Teller distortion 

[17,36]. 

 
Fig. 3.8 Normalized intensity of pre-peak at O K-edge of 
LixCoO2, LixNi0.8Co0.2O2, and LixNi1/3Mn1/3Co1/3O2, showing 
trends with delithiation. The pre-peak intensity (524-532 eV) is 
normalized to the main peak intensity (532-543 eV). The atomic 
cross sections were divided out of the experimental data. 

Fig. 3.9 shows the spin density contained within spheres of different radii around 

Ni and Mn atoms at two states of lithiation. The results are similar to those obtained by 

Reed and Ceder [16], but the signs of the spins are plotted here to show the 

antiferrimagnetism of the structure. With delithiation there is a decrease in the spin density 

around Ni atoms of about 0.75 μB over a wide range of radii in Fig. 3.9. The spin density 

reaches a maximum at a distance of less than 1 Å, indicating that the loss of spin occurs on 

the Ni atom. There is no such change at Mn atoms. 
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Fig. 3.9 Spin contained within spheres of radius about the Ni 
atom in LiNi0.5Mn0.5O2 and Li0.5Ni0.5Mn0.5O2. 

The charge density within spheres of different radii around Ni and Mn atoms is 

presented in Fig. 3.10. As expected, the charge density increases with sphere radius. Even 

if the absolute charge associated with a particular atom is somewhat arbitrary, it is still 

meaningful to investigate changes in charge with Li concentration over a range of radii up 

to 1.4 Å, which corresponds to spheres touching in the transition metal layer. At both Ni 

and Mn atoms there is a small increase in the charge density with delithiation. The larger 

radii will include electrons associated with O atoms, so interpretation of Fig. 3.10 is not so 

straightforward as for Fig. 3.9. Note that the pseudopotential accounts for an Ar core of 18 

electrons, so the 8 extra electrons for Ni2+ would correspond to a radius of about 1 Å, which 

is half the Ni-O bond distance. Note that the charge density about the Ni atom in Fig. 3.10 

is not consistent with the charge inferred from the spin density of Fig. 3.9. 
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Fig. 3.10 Valence charge contained within spheres of radius about 
the Ni atom in LiNi0.5Mn0.5O2 and Li0.5Ni0.5Mn0.5O2. 

Electronic structure calculations performed with WIEN2K [37] gave similar results 

for the charge and spin density about the Ni and Mn atoms. A very small increase in the 

charge density at Ni and Mn atoms was found upon delithiation, corresponding to less than 

0.1 electron. The magnetic moment at the Mn atom was the same value of 2.5 μB for both 

x=1.0 and x = 0.5, whereas the magnetic moment at the Ni atom decreased from 1.26 to 

0.61 μB between x = 1.0 and x = 0.5. 

Densities of states from VASP calculations for LiNi0.5Mn0.5O2 were used to 

estimate a value of 1.6 eV for the crystal field parameter 10 Dq from the separation of the 

t2g and eg levels [35]. This was used in the crystal field multiplet calculations for Ni2+, Ni3+, 

and Ni4+. The results are shown in Fig. 3.11. There is a mean shift of the white line to 

higher energies by 3 eV for Ni4+ that should be easily detectable in the experimental EELS 

measurements. 
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Fig. 3.11 Atomic multiplet calculation of Ni L2,3 white lines using 
crystal field information from VASP. Compared to Ni2+, the shift 
of the average L3 white line is 3 eV for Ni4+, inconsistent with the 
experimental result of Fig. 3.4. 

 
Fig. 3.12 VASP calculation of of oxygen p partial density of states 
of LixNi0.5Mn0.5O2. The intensity from 0 to 4 eV above the Fermi 
level (Ef) corresponds to the intensity in the experimental pre-peak. 
The integrated DOS from the Fermi level is 30% more for x = 0.5. 

Results calculated with VASP for the O K-edge pre-peak, presented in Fig. 3.12, are 

in good correspondence with the changes shown in the experimental data in Fig. 3.8. The 

calculated peak located from 0 to 4 eV above the Fermi level corresponds to the 
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experimental pre-peak at 528 eV. The integrated DOS in this region increases by 30% on 

delithiation, in agreement with the experimental measurement. 

3.5 Discussion 

No systematic trend was found in the change of the white line intensities of Mn and 

Co atoms during delithiation, consistent with previous results [23-27]. The variations of 

the white line intensities allow for some small changes in the numbers of 3d electrons at 

Mn and Co atoms, but these changes can be only ± 0.05 electrons at Mn and Co atoms per 

lithium atom inserted or extracted. We also have preliminary results from an investigation 

of lithium removal in Li3NiMnCoO6 (a three-formula unit cell) where the transition metals 

are ordered as rows in a single layer. Charge densities of Ni, Mn and Co as a function of 

radius show minimal change with removal of a single Li atom which gives a stoichiometry 

Li2/3Ni1/3Mn1/3Co1/3O2. This result does not depend on which one of three Li atoms is 

removed from the fully lithiated model cell. 

Observable changes in the measured Ni L2,3 white lines upon delithiation are seen 

in Fig. 3.4. The upward shift shown in Fig. 3.5 is representative of some change in 

electronic structure, but it is small. Atomic multiplet calculations with an octahedral crystal 

field show (see Fig. 3.11) that for a change from Ni2+ to Ni4+, this shift should be 3 eV, and 

the L2 edge should grow at the expense of the L3 edge. The upward shift of 3 eV obtained 
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for a Ni2+ to Ni4+ transition during lithium extraction is clearly inconsistent with the 

measured EELS spectrum of Fig. 3.4. 

The normalized Ni white line intensities of the LixNi1/3Mn1/3Co1/3O2 samples are 

shown in Fig. 3.6. The intensities vary randomly within ± 7% of an average value. This 

variation corresponds approximately to a charge transfer only about 0.21 electron per Ni 

atom, assuming three empty 3d orbitals of Ni2+ in the lithiated material. Considering only 

1/3Ni in one formula unit, this puts an upper bound on the total charge transfer from Ni of 

0.07 electron per Li atom. 

Fig. 3.11 indicates that a Ni2+ to Ni3+ transition should cause a shift of 

approximately 0.7 eV at the L3 edge, and this seems consistent with the experimental 

results of Fig. 3.4 and Fig. 3.5. Nevertheless, a Ni2+ to Ni3+ transition caused by the 

extraction of a Li+ ion is inconsistent with the bound of 0.07 electron per Li+ ion obtained 

from the change in intensity of the white lines of Fig. 3.6. An alternative explanation of the 

shift of the Ni L3 edge with delithiation could be associated with Ni-Li interlayer mixing 

[38-43]. Eight percent of such Li/Ni exchange was reported [43], but we do not have data 

for this on our present materials. Nevertheless, the expected interlayer mixing of Li and Ni 

atoms would cause heterogeneity in the local environments of Ni atoms. This 

heterogeneity may change with the state of lithiation, so the observed shifts in Ni white 

lines could originate with interlayer mixing and not necessarily the formation of Ni3+. 
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The oxygen pre-peak in Fig. 3.7 shows good correspondence with the calculated 2p 

DOS shown in Fig. 3.12. The trend with Li concentration (Fig. 3.8) is similar to that found 

for LiCoO2 and LiNi0.8Co0.2O2 [13,14]. With delithiation, there is a loss of 2p electrons at O 

atoms. For a specific Li concentration, the O pre-peak intensity is weaker for the material 

with the largest average atomic number of the transition metal, LiNi0.8Co0.2O2, indicative 

of a larger transfer of charge from transition metal 3d states to O 2p states. The average 

intensities for LixNi1/3 Mn1/3Co1/3O2 and LiCoO2 are similar, as are the average atomic 

numbers of their transition metals. 

The pre-peak intensity for oxygen in the PDOS plot of Fig. 3.12 is indicative of 

about 2.05 holes in the oxygen 2p states electrons, based on prior work with LiCoO2 

[13,14]. Upon delithiation from x = 1 to x = 0.6, the measured pre-peak for 

LiNi1/3Mn1/3Co1/3O2 grows by about 32%. This is consistent with a loss of electrons about 

the O atom, and a simple linear interpolation would predict a loss of 0.66 electrons per O 

atom, or 1.32 electrons per formula unit. This is not accurate quantitatively, but it shows 

that the change in electron density about the O atoms is substantial and is able to account 

for much of the charge compensation around a Li+ ion. The VASP and WIEN2K 

calculations indicate that the charge is built up as electron density in the interstitial regions 

between the atoms, consistent with a tendency for charge accumulation around the oxygen 

atoms. 
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Changes in the spin density at Ni atoms during delithiation are not necessarily 

representative of the change in charge density that provides the change in valence. For 

example, a simple transfer of electrons from 3d up states to 3d down states causes a change 

of spin, but no change of 3d charge. A comparison of Fig. 3.9 and Fig. 3.10 shows that, 

unlike the spin density, the charge density about the Ni atoms increases continuously with 

radius. Especially since the charge density is not isotropic, it is therefore more difficult to 

define a precise valence based on charge density plots as Fig. 3.10. Nevertheless, even 

accounting for small changes in lattice parameter upon delithiation, there is a small 

decrease in the electron density about Ni atoms when the material is delithiated. This is 

opposite from what is predicted by a Ni2+ to Ni4+ transition during delithiation. 

3.6 Conclusion 

Both experimental and computational evidence indicate that most of the 

compensation for charge during the removal of Li ions from LixNi1/3Mn1/3Co1/3O2 and 

LixNi0.5Mn0.5O2 occurs at hybridized 2p-like levels with local weight near oxygen atoms, 

much as is the case in LixCoO2. All experimental and computational results are 

inconsistent with the hypothesis of a Ni2+ to Ni4+ transition during lithium extraction. 

Although the results on L3 edge shifts allow for a Ni2+ to Ni3+ transition, the intensity 

results do not, and the Ni2+ to Ni3+ transition is not supported by computational work. 
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Finally, the trends with lithiation in the spin density at Ni atoms are not representative of 

the trends in charge density. 
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Chapter 4 

Local Electronic Structure of the 
Olivine Phases of LixFePO4 

4.1 Introduction 

The olivine phase of LiFePO4 is drawing much interest as a promising cathode 

material for rechargeable lithium ion batteries. It is nontoxic, non-hygroscopic, chemically 

stable, environmentally friendly and inexpensive [1-3]. It has a discharge voltage of 3.5 V 

vs. Li/Li+ and a high theoretical capacity of 170 mAh/g. The small volumetric expansion 

and structural changes during Li+ insertion and extraction are believed beneficial to a high 

cycle life [4]. There are problems with its low electronic conductivity, but there are 

practical approaches to improving conductivity by doping with supervalent cations [5], 

carbon coating [6, 7], or by reducing the particle size [8].  

LiFePO4 occurs in nature as the mineral triphylite, and its delithiated counterpart, 

FePO4, is known as heterosite. At room temperature, both phases are olivine-type 

orthorhombic structures. Lithium atoms are present as chains in the channels along the 

b-axis in LiFePO4 [1, 2]. For intermediate compositions of lithium in LixFePO4, where 0 < 

x < 1, the material is a two-phase system consisting of both heterosite and triphylite in 

proportions consistent with the overall lithium content [1]. Recently Yamada et al. 
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suggested that LixFePO4 is a mixture of Li0.05FePO4 and Li0.89FePO4 [9]. At temperatures 

around 350 ˚C, a new disordered phase appears, having the same olivine structure and 

lattice parameters intermediate between those of heterosite and triphylite [10]. The high 

temperature phase is not yet well understood, however.  

Theoretical and experimental work has been done to understand the electronic 

structure and phase transitions in LiFePO4 during lithium insertion and extraction. The 

charge compensation and phase separation in the electrochemical lithiation reaction is 

generally attributed to the reduction of Fe3+ to Fe2+ [1, 11, 12]. It has been suggested that 

the PO4
3- polyanion lowers the Fermi level and hence raises the cell potential, and 

maintains a stable structural framework through strong P-O covalent bonds [2, 3, 13, 14]. 

Density functional theory (DFT) calculations show that Fe 3d states dominate the bottom 

of the conduction bands in both LiFePO4 and FePO4. The unoccupied Fe 3d states may 

have more mixing with O 2p states in FePO4 than in LiFePO4 [15]. Unfortunately, the 

two-phase region of the phase diagram is not predicted by standard DFT methods, although 

DFT+U methods give more accurate predictions of the phase diagram and electrochemical 

potentials [12, 16]. 

The shift of the Fe K-edge of up to 4.3 eV during delithiation, observed using in situ 

X-ray absorption spectroscopy (XAS), has been attributed to oxidation of Fe2+ to Fe3+ [17]. 

Mössbauer spectroscopy also provides evidence for transitions between Fe2+ and Fe3+ 

during lithiation and delithiation [18]. A study of the valence-related Fe 3d electronic states 
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was performed with soft X-ray absorption and emission spectroscopies [15]. An upward 

shift of about 2 eV at the Fe L3 peak and a stronger bonding character of the Fe 3d and O 2p 

orbitals were detected after delithiation. These changes were attributed to the Fe2+ to Fe3+ 

oxidation and a large charge transfer from ligand O 2p to Fe 3d states. High resolution 

electron energy loss spectroscopy (EELS) measurements also showed a shift of Fe white 

lines and the presence of a new peak at the O K-edge after delithiation [19]. 

In the present work, we quantify the charge compensation during lithium extraction 

from LiFePO4 by using electron energy loss spectroscopy (EELS) with computational 

support. A shift of 1.4 eV at Fe L-edges is detected after delithiation. Quantification of the 

near-edge structure at Fe L-edges and the O K-edge shows that the Fe and O atoms play 

equal roles in charge compensation upon delithiation. We also report features of the lithium 

distribution at both room and high temperature showing that the high-temperature 

disordered phase of Li0.6FePO4 is preserved at low temperature. 

4.2 Experimental 

Powders of LiFePO4 were prepared by a solid-state reaction. Iron oxalate 

(Fe(C2O4)·2H2O), ammonium dihydrogen phosphate (NH4H2PO4) and lithium carbonate 

(Li2CO3) were mixed in the molar ratio 1:1:0.5, then ball milled in acetone for 12 hours. 

The paste was dried at 60 ˚C in vacuum. The mixture was then reground and heated in a 

nitrogen atmosphere at 700 ˚C for 24 hours. Aqueous potassium persulfate (K2S2O8) 

solution was used to chemically delithiate LiFePO4 to achieve Li0.6FePO4 and FePO4. A 
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portion of the Li0.6FePO4 powder was prepared as a disordered solid solution by heating to 

380 ˚C in an evacuated glass ampoule and quenching the sealed ampoule into water, as 

described elsewhere [20]. 

X-ray diffraction (XRD) patterns were measured with a Philips PW3040-Pro 

diffractometer using Cu Kα radiation (λ = 0.15046 nm). Silicon powder was mixed with 

the samples as a standard to ensure accuracy in peak position determination. Rietveld 

refinement was then used to determine the compositions and structures. 

For transmission electron microscopy (TEM) analysis, the samples were crushed 

with a mortar and pestle in alcohol and the powder was dispersed on a holey carbon grid. 

Electron energy loss spectrometry (EELS) data were acquired using a post-column Gatan 

666 parallel EELS spectrometer installed on a Philips EM420 electron microscope 

operating at 100 kV. The energy resolution is about 1.5 eV with an energy dispersion of 0.5 

eV per channel. The experimental spectra were deconvoluted using a Fourier-log method 

to remove plural scattering [21]. A power-law fit was performed to the background just 

before the onset of each ionization edge, and the estimated background was then subtracted 

from the data [22]. 

4.3 Computational  

Calculations of the electronic structure were performed for a four-formula unit cell 

for LixFePO4 (x = 1 and 0). The VASP [23, 24] (Vienna ab-initio simulation program) code 

was used with projector augmented wave (PAW) potentials in the generalized gradient 
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approximation (GGA). Calculations were performed for both ferromagnetic and 

antiferromagnetic configurations of the iron atoms. Following Zhou, et al., [16, 25] we also 

examined the effect of the self energy U, which was set to 4.3 eV. The initial coordinates 

were taken from Tang and Holzwarth [26] and a full relaxation of the unit cell and atomic 

positions was performed. A plane wave energy cutoff of 500 eV was used in conjunction 

with a 9×2×7 k point grid (corresponding to 20 irreducible k points) to obtain an energy 

convergence to 0.001 eV/atom. For density of states (DOS) calculations, the atom 

positions were taken from a converged calculation and the number of bands calculated was 

increased to 130. The density of states was evaluated by convoluting appropriately 

weighted individual band energies at each k point with a Gaussian of width 1.5 eV, giving a 

resolution that matched the experimental data 

To understand possible charge transfers it is useful to apportion the total charge 

among the different atoms in the unit cell. This can be done in various ways. One accepted 

technique is to calculate the charge in spheres centered at the atom positions. Since there is 

no rigorous procedure for selecting sphere size, the relative charge associated with each 

atom — or for that matter the division of charge between atoms and an interstitial region — 

can be arbitrary. Instead we have chosen to follow the procedure of Bader [27], where the 

division is made along contour lines following the interatomic peaks in the charge density. 

This gives an unambiguous division of charge among the unit cell constituent atoms. 
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Features in the EELS fine structures of transition metal compounds can be 

influenced by both atomic and solid-state electronic effects. The shapes of transition metal 

L2,3-edges can be altered significantly by atomic multiplets arising from the overlap of the 

radial wave functions for the 2p hole, and holes in the partially-filled 3d band.  Final states 

must be calculated by vector coupling of the 2p and 3d wave functions. This strong, purely 

atomic, effect is only partly screened in the solid state, meaning that features in spectra are 

comparable for solids and isolated atoms. The initial and final states are specified as a sum 

of terms in the LS coupling scheme. For example for Fe2+, the initial state configuration 

would be 2p63d6 and the final state 2p53d7. The initial ground state 5D2 is given by Hund’s 

rule. Transitions calculated with a dipole selection rule give ΔJ as -1, 0, 1. In this case there 

are 110 terms allowed for the final state, giving 68 distinct transitions. The strengths of the 

various transitions are calculated from the appropriate matrix elements from the 

Hamiltonian 
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The first two terms of this Hamiltonian, the kinetic energy and the electron-nuclear 

Coulombic interaction, are the same for all electrons in a configuration. Only the last two 

terms, the electron-electron interaction and the spin-orbit coupling need to be considered. 

In practice, for transition element ions, it has been found necessary to reduce the pd 

exchange integrals by 20% from the values calculated using the Hartree-Fock wave 

functions. 
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The oxygen atoms neighboring the Fe ion add a crystal field that is represented as a 

sum of spherical harmonics and can be treated as a perturbation to the atomic multiplet 

calculation. The main effect is to change the local symmetry from spherical to octahedral. 

The strength of this crystal field is specified by 10 Dq, the separation between the t2g and eg 

molecular orbitals. Since contributions from these orbitals could not be directly identified 

from the densities of states, we varied 10 Dq between 1eV and 3.5 eV to best match the 

experimental Fe L2,3 spectrum. Calculations of some transition metal white line intensities 

in octahedral and tetrahedral symmetry are given by Van der Laan and Kirkman [28]. A 

detailed description of multiplet theory applied to inner shell spectroscopy can be found in 

the review by de Groot [29], whose codes were used in the present work. 

4.4 Results 

At room temperature, XRD patterns (Fig. 4.1) of LiFePO4 and FePO4 are readily 

indexed as single-phase triphylite and heterosite, while Li0.6FePO4 is a simple mixture of 

the two. At 380 ˚C, the two phases in Li0.6FePO4 merge to form a new single phase as 

expected from the phase diagram [20]. Fig. 4.1 also shows that the quenched material 

preserves its disordered structure well at room temperature, owing to the sluggish kinetics 

of the unmixing process at temperatures below 200 ˚C.  
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Fig. 4.1 Indexed X-ray powder diffraction patterns from samples 
of LixFePO4 with different states of lithiation, with Si as an 
internal standard. 

 

 
Fig. 4.2 P L2,3-edge from LixFePO4. The spectra were normalized 
with a 50 eV window after the L2 peak. 
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Fig. 4.2 shows EELS measurements of P L2,3-edges of the samples. The peak 

positions and fine structures are similar for all samples. No changes in these P spectra were 

observed during delithiation or thermal treatment. The low-loss EELS spectra in Fig. 4.3 

are complicated by the overlap of the Li K-edge and Fe M2,3-edge. Quantification is not 

possible, but qualitative features are visible. The peaks in this area (indicated as A, B and C) 

vary in their intensities and shapes. The peak A at 55 eV and peak C at 65 eV in the 

triphylite phase belong to the Li K-edge, so the intensities of these features give 

semiquantitative information about the Li content in the material. These features are less 

evident in the disordered sample, and vanish in the two-phase sample and heterosite 

sample. The peak B around 58 eV contains significant contributions from both the Li 

K-edge and the Fe M2,3-edge. It is broad in the fully-lithiated LiFePO4, and becomes 

sharper in samples containing less lithium. This peak actually grows during delithiation, 

indicating Fe M2,3-edge may gain intensity when lithium is extracted from the materials. 
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Fig. 4.3 Li K-edge and Fe M2,3-edge from LixFePO4. The spectra 
were normalized with a 50 eV window after the peak. 

Fig. 4.4 shows a change in the O K-edge with delithiation. A pre-peak (labeled “A”) 

at 528 eV is found in the delithiated material. It is nearly negligible in the triphylite 

(LiFePO4) and the disordered sample, but is distinct in the two-phase and fully-delithiated 

samples. In the disordered sample with composition Li0.6FePO4, this pre-peak is also 

present but its intensity is only 27% of that in the heterosite phase. The main peak of the O 

K-edge (531-547 eV with a maximum at 535.6 eV) is similar for all samples. 
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Fig. 4.4 O K-edge from LixFePO4. The spectra were normalized 
with a 40 eV window after the main peak. 

Fig. 4.5a shows changes in the Fe L-edges with delithiation. These intense sharp 

peaks from transition metals are called white lines, and originate from electronic 

transitions from occupied 2p core states to empty 3d states. The intensity under the white 

lines contains contributions from excitations to both bound and continuum states. The 

continuum contribution was determined by using a two-segment line model to extract the 

bound state contribution accurately [30]. With delithiation, the Fe white lines also undergo 

an upward shift in energy. The centroid of the L3 peak is plotted in Fig. 4.5b. In the fully 

delithiated heterosite phase, the shift is 1.4 eV. A variation of Fe white line intensity is also 

observed (Fig. 4.5c). From x = 1 to x = 0, the total intensity of the L2 and L3 white lines 
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increases by 15%, indicating a depletion of Fe 3d electrons, while the increase is about 7% 

in the disordered sample of Li0.6FePO4. 

 
Fig. 4.5 (a) Fe L2,3-edges from LixFePO4. The spectra were 
normalized with a 40 eV window after the L2 peak. The measured 
shift of the L3 centroid and the normalized white line intensities 
are plotted in (b) and (c), respectively. 

The calculated densities of Fe d-states and O p-states for LiFePO4 and FePO4 in 

antiferromagnetic configuration for U = 4.3 eV are shown in Fig. 4.6 and Fig. 4.7, 

respectively. At the resolution of the experimental data, which was matched in the 

calculations, no differences could be seen between densities of states for ferromagnetic and 

antiferromagnetic configurations, or for different values of U. Charges associated with the 

oxygen and iron atoms as given by the Bader analysis are presented in Table 1. There is a 
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loss of one electron from LiFePO4 to FePO4 per chemical formula, indicating that only Fe 

and O contribute to the charge compensation. Multiplet calculations for Fe2+ and Fe3+ are 

shown in Fig. 4.8. Setting 10 Dq to 3 eV gives the best fit to the experimental peak shape. 

The shift between the centroids of Fe2+ and Fe3+ L3 peaks is then 1.87 eV. 

 

Fig. 4.6 The VASP calculation of Fe 3d partial density of states 
per formula unit. The intensity above the Fermi level corresponds 
to the intensity of white lines in EELS spectra. A 14% increase of 
the unoccupied states from LiFePO4 to FePO4 is predicted. 

 

Fig. 4.7 The VASP calculation of the O 2p partial density of 
states per formula unit. The intensity from 0 to 3 eV above the 
Fermi level corresponds to the intensity of the experimental 
pre-peak.  
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Table 4.1 Bader analysis of the number of electrons surrounding O and Fe 

atoms per LixFePO4 (x = 0, 1) 

 O Fe 

LiFePO4 31.55 6.46 

FePO4 31 6.01 

Difference 0.55 0.45 

 

 
Fig. 4.8 Atomic multiplet calculation of Fe L2,3 white lines. 

4.5 Discussion 

Significant changes were observed at the Fe L-edges after delithiation. The upward 

shift of about 1.4 eV after delithiation indicates an increase in the difference between the 

bonding energy of the localized Fe 2p levels and the outer delocalized Fe 3d levels in the 

solids. Such a shift can be caused by a valence change of the atom, although changes in the 

structural and chemical environment surrounding the atom can cause small shifts in white 

lines. The shift between the L3 peaks for Fe2+ and Fe3+ is 1.87 eV when calculated using the 
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atomic multiplets codes with 10 Dq set at 3eV. This is in reasonable agreement with the 

experimental value of 1.4 eV (Fig. 4.8). The atomic multiplet approach is best suited to 

describing systems that are mainly ionic in character, with limited covalent bonding to 

nearest neighbors described by the crystal field. This might not apply to the LiFePO4, 

FePO4 system, as partly evidenced by the large value of 10 Dq needed to bring about some 

measure of agreement with experiment. We therefore expect less than a full electron 

transfer to Fe atom with lithiation. This may also be the cause of the discrepancy between 

the intensity of the L2 peak of the experimental and calculated spectra. 

More information about the electronic states of Fe atoms is available from the 

intensities of the normalized Fe white lines. The total white line intensity of the FePO4 

phase is 15% larger than that of the LiFePO4 phase. This indicates that with delithiation, 

more electrons are removed from the Fe 3d levels, and Fe2+ is oxidized to a higher valence. 

This is in agreement with the VASP electronic structure calculations (Fig. 4.6) that show a 

14% increase in the proportion of unoccupied d states when going from LiFePO4 to FePO4. 

There are 3.2 holes in the Fe 3d-states per formula unit in LiFePO4 as indicated by the 

VASP calculations. A 15% increase of white line intensity corresponds to a depletion of 

0.48 electrons per Li atom. From the pseudopotential computational work, the Bader 

analysis of the charge density from the VASP calculations shows that the iron is responsible 

for 45% of the charge compensation. Evidently, Fe atoms are not responsible for all of the 

charge compensation in LiFePO4 during delithiation and lithiation. 
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In the disordered sample of Li0.6FePO4, the increase of the white line intensity is 

about 7%, corresponding to a removal of 0.22 electrons. Considering that 0.48 electrons 

are removed in fully-delithiated FePO4, this value is consistent with the overall 

composition. In all the experimental results, the spectra from the delithiated (x = 0) sample 

and the two-phase (x = 0.6) sample were almost identical. This is an artifact of sample 

preparation. The electron-transparent parts of the two-phase sample tended to be the 

delithiated materials. Perhaps this is caused by the delithiation process, where delithiated 

thin layers are more likely to chip off the sample when it is crushed and ground with the 

mortar and pestle. 

At the O K-edge, the most visible change with delithiation is the increase in the 

pre-peak intensity at 528 eV. This pre-peak originates from electron transitions from a 1s 

core state to states with 2p character at oxygen atoms. Since the number of available holes 

in these 2p states is determined by the extent of the orbital hybridization with adjacent 

atoms, this pre-peak provides information on the bonding of the oxygen atoms [31]. In 

LiFePO4, the pre-peak is not present, indicating that all six 2p states of oxygen atoms are 

fully occupied. No 1s to 2p transition can occur. In the fully delithiated FePO4 phase, the 

pre-peak intensity increases significantly, indicating more hybridization between oxygen 

and surrounding atoms, and more covalent bonding. The pre-peak is also visible in the 

VASP calculations of the oxygen p density of states (Fig. 4.7). The calculated ratio of 

pre-peak to integrated p DOS, from 3 eV to 14 eV above the Fermi level is 14%, which can 
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be compared directly to the experimental measurement of 8% in the same energy range, 

since the matrix element for the inelastic scattering is slowly varying over this small range 

of energy. These results also agree with results from soft XAS measurements [15]. The 

pre-peak in the disordered sample of Li0.6FePO4 is about 27% of that in the FePO4 phase, 

showing a reasonable trend with lithiation as the extra electrons associated with the Li+ are 

accommodated in part by O 2p states that are more covalently bonded to Fe. The oxygen 

atoms in LiFePO4 and FePO4 have three inequivalent sites [18]. EELS measurements 

cannot separate these three contributions. Nevertheless, since no changes are observed at 

the P K-edge and the P-O bonds have been shown to undergo minimal shrinking during 

lithium removal [18], we expect that the increase of the pre-peak intensity is contributed 

mainly by the oxygen atoms bonded to Fe. We hereby suggest that the electron removed 

with Li+ during delithiation is donated by electronic states that are hybrids of the O 2p and 

Fe 3d states. 

4.6 Conclusion 

The olivine phases of triphylite LiFePO4, heterosite FePO4, two-phase Li0.6FePO4 

and a disordered solid solution of Li0.6FePO4 were studied by electron energy loss 

spectroscopy (EELS) and electronic structure calculations. A shift of about 1.4 eV at Fe 

L-edges was detected after delithiation. A charge transfer up to 0.48 electrons from iron is 

observed from the variation in the experimental Fe white line intensity. Both experimental 

and theoretical data show oxidation of Fe after delithiation. Electronic structure 
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calculations and the presence of a pre-peak on the oxygen K-edge of FePO4 indicate that 

only ~half of the charge compensation is taking place on the iron atoms while the 

remainder takes place on oxygen atoms. The 2p states at oxygen atoms are fully occupied 

in LiFePO4, but there is some emptying of these states in the delithiated material. The 

oxygen atoms are more covalently bonded in FePO4 than in LiFePO4. Finally, we observed 

that the high temperature disordered phase of Li0.6FePO4 was kinetically stable at room 

temperature. 
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Chapter 5 

Bonding in Mg2Si 

5.1 Introduction 

As the most widely used anode material in Li-ion batteries, graphite only has a 

limited capacity of 372 mAh/g [1]. Intensive researches have been conduced to find the 

new generation anode to replace graphite [2-5]. Mg2Si gained attention because it has 

several advantages. Both Mg and Si are inexpensive, lightweight and naturally abundant. 

This material has a voltage plateau of 0.26 V vs. Li/Li+ [6], which is comparable to graphite. 

A capacity of 830 mAh/g was obtained for bulk material, and Mg2Si thin film even showed 

a capacity more than 2000 mAh/g [7, 8]. 

Mg2Si is also drawing attentions as a hydrogen storage material [9]. Storing 

hydrogen as a liquid or compressed gas consumes considerable energy and it is difficult to 

maintain hydrogen in these states for extended times without significant losses. An 

alternative approach is to store hydrogen chemically in the form of hydrides which are 

stable at room temperature. In the presence of a catalyst or at elevated temperature, the 

hydrides decompose and release hydrogen. The dehydrogenation process can be 

understood through thermodynamics [9]. Mg2Si can react with H2 and form MgH2/Si 
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mixture. The enthalpy is -75.3 kJ/mol for (MgH2 + 0.5 Si), and is -38.9 kJ/mol for (0.5 

Mg2Si + H2). The state (MgH2 + 0.5 Si) is stable at room temperature [9]. When the 

temperature is increased, an endothermic reaction occurs. Some MgH2 in the MgH2/Si 

mixture decomposes and forms Mg2Si to reach new equilibrium. This system has a 

theoretical hydrogen storage capacity of 5 wt %, which is acceptable for practical 

applications. Observable dehydrogenation starts below 300 ˚C, which is relatively low 

compared to other systems [9]. Hence, Mg2Si is considered to be practical material for 

hydrogen storage at reduced temperature. 

Despite this recent progress in applications, fundamental studies on Mg2Si can be 

traced back to more than half century ago. Mg2Si has an antifluorite structure [10] with 

space group mFm3  (#225) as shown in Fig. 5.1. Si atoms form an FCC frame and Mg 

atoms occupy the eight tetrahedral interstitial sites. Extensive studies, both experimental 

and theoretical, have been conducted on the electronic structure of Mg2Si. However, 

controversy exists on the degree of the ionicity and the associated charge transfer in the 

Mg-Si bond. The strong reststrahl peak in infrared reflectivity measurement was though to 

indicate an ionic bonding in Mg2Si [11]. Eldridge et al. concluded the Mg-Si bond was 

strongly covalent with only 10% ionic character based on their study on the atomic radii 

[12]. From the Mg binding energy, Whitten estimated that the ionicity in Mg2Si was less 

than 33% [13]. Meloni et al. performed hard-core pseudopotential calculations which 
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showed the upper three valence bands were dominated by Si 3p states with only a little Mg 

participation, and they concluded the Mg-Si bond was quite ionic with a small covalent 

component [14]. The presence of some covalent character in the Mg-Si bond was also 

supported by Auger spectrometry measurement where occupancies in Mg 3s and 3p states 

were detected [15]. All-electron calculations by Baranek et al. showed a mixed 

covalent-ionic nature in the Mg-Si bond [10]. From their Mulliken-population analysis, 

they estimated 0.9 electron per Mg were transferred to Si. However, an in-situ XPS study 

by van Buuren et al. concluded the Mg-Si bond was strongly covalent [16]. From the 

chemical shifts, they derived an ionicity of 8%. 

In the present work, we investigate the ionicity of the Mg-Si bond in Mg2Si by 

electron energy loss spectrometry (EELS) and first-principles calculations. The results are 

compared with those of MgO and Si which are used as references for typical ionic and 

covalent bonding compounds, respectively. Our results indicate that the Mg-Si bond is 

strongly ionic, although the charge transfer is not complete. 

 
Fig. 5.1 The antifluorite structure of Mg2Si unit cell. 
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5.2 Experimental 

In this study, commercial powders Mg2Si (99.5%, Alfa) and MgO (99.95%, Alfa) 

were used. Crystalline Si, denoted as c-Si to distinguish from the Si atoms, was cut from a 

silicon wafer. To prepare the samples for EELS measurements, these materials were 

crushed with a mortar and pestle in alcohol and fine particles were dispersed on holey 

carbon grids. All operations were done in a glove-box filled with Ar to eliminate contact 

with water or oxygen. The EELS spectra were acquired with a Gatan 666 parallel EELS 

spectrometer installed on a Philips EM420 transmission electron microscope (TEM) 

operating at 100 kV. An energy dispersion of 0.2 eV/channel was used and the energy 

resolution was about 1.5 eV. Plural scatterings were removed from the experimental 

spectra by the Fourier-log method [17]. The background under each ionization edge was 

fitted to a power-law model, and then was removed from the experimental data [18]. 

5.3 Computational 

The calculations of electronic structure were performed by using the full potential 

linearized augmented plane wave method within the local density functional 

approximation, as implemented in the WIEN2K code [19]. In this method, the unit cell is 

divided into non-overlapping muffin-tin (MT) spheres centered at the atomic sites, which 

separate the interstitial region. The wavefunctions are expanded in spherical harmonics 

inside the MT spheres, and in plane waves in the interstitial region. Relaxation of the unit 
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cells was performed and the equilibrium structures are listed in Table 5.1. A 999 ××  

k-points mesh in the irreducible wedge of the Brillouin zone was used for k sampling. In 

these calculations, Rkmax=7.0 (the product of the smallest MT radius by the largest wave 

vector used in the plane wave expansion) and lmax=10 (maximum l for partial waves used 

inside MT spheres) were used to control the size of the basis set for the wavefunctions. For 

the exchange-correlation functional, the Perdew-Burke-Ernzerhof generalized gradient 

approximation [20] was used. The self-consistent calculations were considered to be 

converged only when the integrated charge difference between last the 2 iterations, 

∫ −− rdnn 1ρρ , was less than 0.00002. To evaluate possible charge transfer involved in 

bonding, the total charge associated with each atom was determined by integrating the 

charge density surrounding the atom. The integration volume was defined by the procedure 

of Bader [21], where the boundaries of the volume are along contour lines following the 

interatomic peaks of the charge density. 

Table 5.1 The equilibrium structures for c-Si, MgO and Mg2Si 

 c-Si MgO Mg2Si 

Space group mFd 3  mFm3  mFm3  

a (nm) 0.548198 0.425730 0.637036 
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Fig. 5.2 The Si L2,3-edge of c-Si and Mg2Si, respectively. The 
spectra were normalized with a 30 eV window 50 eV after the edge 
threshold. 

5.4 Results and discussion 

The L2,3-edge of Si is shown in Fig. 5.2. An upward shift of 1.2 eV is observed in 

c-Si. The direction of this shift agrees with the result of XPS measurement [16], where an 

upward shift of 0.95 eV was observed at the 2p level for pure Si. For the size of the shift, 

results from EELS and XPS are not directly comparable. XPS directly probes the energy of 

the core level, and the shift of peak position reflects the change in the energy of 
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corresponding core states. In an EELS spectrum, however, the shift of an ionization edge 

can be a combination of changes in energies of both the initial core state and the 

unoccupied final state. The L2,3-edge in EELS originates from the 2p→3d-like transitions 

at Si atoms. The initial 2p level is 0.95 eV deeper in c-Si than in Mg2Si as already detected 

by XPS. However, the difference between the EELS and XPS data, 0.25 eV, is approaching 

the energy dispersion which sets the energy sensitivity of the spectrometer in this study. We 

cannot assert that the extra shift observed in EELS reveals the difference between the 

energies of Si 3d-like empty states in c-Si and in Mg2Si. 

The Mg L2,3-edges for Mg2Si and MgO are shown in Fig. 5.3. The intensity under 

the edge originates form transitions from Mg 2p states. The final states of the transitions 

are determined by the dipole selection rule 1±=lΔ , where Δl is the difference between the 

angular momentum of the original and final states. In a free Mg atom, the 3s states are fully 

occupied, hence the L2,3-edge only represents the 2p→3d transitions. In solids, however, 

holes may appear in Mg 3s states because Mg may donate part of its 3s valence electrons to 

neighboring atoms to form bonds. These 3s holes can accommodate the excited 2p 

electrons, and the L2,3-edge will represent both 2p→3s-like and 2p→3d-like transitions. 

Variations in the intensities of Mg L2,3-edges can therefore provide information on the Mg 

3s occupancy. 
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Fig. 5.3 The Mg L2,3-edge of MgO and Mg2Si, respectively. The 
spectra were normalized with a window from 80 - 100eV. 

The multiple peaks of Mg L2,3-edge are due to the hybridization of Mg 3s, 3p and 

3d states [22]. The origin of each peak is documented by Mizoguchi et al [22]. Peak A 

corresponds to the transitions to Mg 3s-like bonding orbitals. Peak B actually contains twin 

peaks which correspond to transitions to Mg 3s-like antibonding orbitals and to Mg 3d-like 

bonding orbitals, respectively. With our experimental energy resolution, these twin peaks 

merge as peak B. The intensity including all 2p→3s-like contributions is obtained by 

integrating the spectrum from the onset of peak A to the first minimum after peak B. The 
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ratio of this integrated intensity for Mg2Si and MgO is 73.02 =MgOSiMg II . The lower 

integrated intensity of Mg L2,3-edge for Mg2Si is a signal that the charge transferred from 

Mg during bonding may be less in Mg2Si than in MgO. However, quantification of the 

transferred charge and explicit conclusions are hindered by the presence of the 2p→3d-like 

component in peak B, because the fraction of this component is unknown. 

To find out the valence charge associated to each atom, electronic structure 

calculations were performed. The valence electron distributions in c-Si, MgO and Mg2Si 

are shown in Fig. 5.4 - 5.6, respectively. In c-Si, the Si-Si bond is 100% covalent. The 

sharing of a pair of electrons among Si atoms produces a high electron density in the 

outer-shell area where the bonding orbitals are formed. In Fig. 5.4, these bonds appear as 

protruding ridges at the midway between the two adjacent Si atoms. Because of the 

tetrahedral coordinating environment, sp3 hybridization occurs among Si 3s and 3p atomic 

states and produces four identical bonding orbitals extending along <111> directions. 

In the typical ionic compound MgO (Fig. 5.5), there is a valley of electron density 

between Mg and O, in contrast to the ridge-like feature in c-Si. The minima of electron 

density in the intermediate area indicate that no obvious electron-sharing happens. 

Furthermore, both Mg and O have a nearly spherical electron cloud which is a 

representative feature of atoms in ionic compounds. The small nonspherical distortion of 

the outer contours around O is caused by weak O-O covalent bonds. The presence of local 
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minima of charge in between atoms and isotropic distribution of electron density are good 

evidence for a strong ionic character in bonding. 

 
Fig. 5.4 The calculated 2-D and 3-D valence electron density of 
c-Si on {110} type plane. The corresponding lattice plane is 
shown. 
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Fig. 5.5 The calculated 2-D and 3-D valence electron density of 
MgO on {100} type plane. The corresponding lattice plane is 
shown. 
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Fig. 5.6 The calculated 2-D and 3-D valence electron density of 
Mg2Si on {110} type plane. The corresponding lattice plane is 
shown. 

In Fig. 5.6, the electron density decreases monotonically from Si toward Mg and 

reaches a minimum closely surrounding Mg. The outer contour around Si has a 

pseudohexagonal distortion from spherical symmetry. The vertexes of the contour point to 

<110> type directions, indicating that the distortion is caused by the Si-Si covalent bonding. 
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In the region around the midpoint between Mg and Si, however, the contours stretch along 

<111> directions showing a slight rectangular distortion. This is a result of the polarization 

effect from the eight Mg ions surrounding the Si atom. These positively charged Mg ions 

attract the loose-bound electrons in Si outer orbitals leading to some covalency. Hence, we 

can conclude that the Mg-Si bond is largely ionic with small covalent character. 

Table 5.2 Bader analysis of the number of electrons surrounding each atom 

 Mg O Si 

c-Si   14 

MgO 10.28 9.72  

Mg2Si 10.52  16.96 

Charges associated with atoms in Mg2Si, c-Si and MgO are obtained via Bader 

analysis and are presented in Table 5.2 for comparison. Si in c-Si has all 14 electrons bound 

to the nucleus because of the pure covalent Si-Si bonds. In MgO, 1.72 out of the 2 Mg 3s 

valence electrons are transferred to O, corresponding to an ionicity of 86%. This value is 

same as the results published by other groups [23, 24]. In Mg2Si, each Mg atom donates 

1.48 electrons to Si. The Mg-Si bond therefore has an ionic component of 74%. The 

remaining 0.52 Mg 3s valence electrons are shared with Si. It is worth noting that the ratio 

of the transferred charge in Mg2Si and MgO is 1.48/1.72=0.86. This is reasonably close to 

the ratio of Mg 3s holes, 0.73, obtained from EELS measurements. Hence, the intensity of 
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the Mg L2,3-edge is a useful tool to study the bonding nature of Mg-containing compounds, 

though the availability of quantitative information depends on the spectral resolution. 

5.5 Conclusion 

The nature of the Mg-Si bond in Mg2Si was studied by both EELS measurements 

and theoretical calculations. The results are compared with those of MgO and crystalline Si. 

Plots of calculated electron density show that the Mg-Si is largely ionic in nature. A small 

covalent component is observed from the distortion of electron density contours, however. 

A charge transfer of 1.48 electrons per Mg atom is found out via Bader analysis. A 

comparison between the EELS data and the calculational results shows that the intensity of 

Mg L2,3-edge is indicative of Mg 3s occupancy. 
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Chapter 6 

Future Work 

6.1 Electronic structure of CFx 

Carbon fluorides were first used as anode materials in primary lithium batteries in 

1970 [1]. For graphite-based CFx, the F atoms enter the graphene layers, and the 

periodicity of the new layered structure is determined by the F content [2, 3]. The 

structures of C2F and CF prepared from graphite are shown in Fig. 6.1. 

 
Fig. 6.1 The layered structure of C2F and CF prepared by using 
graphite as precursor. 

The C-C bonds in graphite are greatly modified by fluoridation as observed by 

EELS measurements (Fig. 6.2). The intercalation of F atoms breaks the σ-type C-C 

interlayer bonds and alters the hybridization of the valence states of C atoms from sp2 to 
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sp3. As a result, the σ* peak increases at the expense of π* peak with fluoridation. 

However, due to the diversity of the available carbonous precursors [4, 5], the 

crystallographic structure of CFx can vary considerably, and details of bondings in those 

materials are unknown. The application of CFx as an anode in battery is currently limited 

by its low electrical conductivity. A systematic study of the chemical bonds in CFx 

prepared from various carbonous materials can provide a better understanding of the 

electronic structure which essentially determines the charge transportation mechanism, 

and therefore will be helpful to overcome this shortcoming. 

 

 
Fig. 6.2 The C K-edge of graphite-based CF and pristine 
graphite. The spectra are normalized with a 50 eV window 40 eV 
beyond the σ* peak. 
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6.2 Phase distribution in cathode and anode materials 

6.2.1 Introduction 

The insertion and extraction of Li are diffusion controlled processes. A core-shell 

model has been proposed to describe the phase distribution [6]. In this model, the lithiated 

phase is surrounded by a shell of the delithiated phase during delithiation. However, high 

spatial resolution EELS study of LiFePO4 showed that the diffusion might proceed from 

one side to the other side across the particle, instead of from the surface to the core [7]. 

Since the diffusion process is closely related to the crystallographic symmetry of the 

material, it is of interest to know how the lithiated and delithiated phases are distributed in 

those cathode and anode materials for Li-ion batteries with different structures. Two types 

of EELS-based techniques, as introduced in following sections, are available to accomplish 

this mission. 

6.2.2 Elemental mapping 

Elemental mapping by EELS can provide the two-dimensional distribution of a 

specific element in the sample, either via the spectrum imaging method or via the electron 

spectroscopic imaging method. The small atomic number (Z = 3) makes lithium very 

difficult to be detected by X-ray techniques. However, lithium can be readily detected in 

EELS because of its strong K-edge around 55 eV. 
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The spectrum imaging method rasters the electron beam across the specimen and 

records an EELS spectrum at every point. The corresponding ionization edge in each 

spectrum is then quantified to construct a two-dimensional distribution of lithium, i.e., the 

distribution of the delithiated and lithiated phases. This method requires a very small beam 

probe size and is usually conducted on a scanning transmission electron microscope 

(STEM). In the electron spectroscopic imaging method, an energy-selecting slit is used to 

allow electrons only within a certain energy window, e.g., the Li K-edge, to be collected by 

the spectrometer, which is capable of producing a two-dimensional image. Hence, an 

image with contrast proportional to the concentration of the element is obtained. If a 

sufficiently fine spatial resolution is obtainable, the elemental mapping can even resolve 

the concentration gradient between the bulk and the grain boundaries which may be critical 

to the performance of nano-sized materials [8, 9]. An example of EELS elemental mapping 

is shown in Fig. 6.3 [10]. 

 
Fig. 6.3 (a) TEM bright field image of alumina with additions of 
barium silicate. (b) Elemental map using Ba M4,5-edge shows the 
high concentration of Ba at grain boundary and triple pocket. 
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6.2.3 Valence electron density analysis 

The strongest signal (except the ZLP) in an EELS spectrum is the plasmon peak, 

which originates from the resonant oscillation of the valence electron gas of the solid in 

response to the incident electron. Within the free-electron model, the plasmon energy, Ep, 

is expressed as 
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where N is the valence electron density and m the rest mass of electron. In insulators and 

semiconductors where the valence electrons are no longer free, this expression can still be 

used by including a relaxation time 

 
Γ

τ 1
=  , (6.2) 

where Γ is called the damping constant describing the damping of the plasmon oscillation. 

As the plasmon energy, and hence the plasmon peak, is sensitive to the valence electron 

density, any changes in this quantity (e.g. decrease due to lithium removal) can be detected 

from the shift of plasmon energy. Hence, analysis of the plasmon peak position can be used 

for phase identification. As it directly concerns the density of valence electrons, this 

technique will be particularly useful in studying the lithiation and delithiation processes 

during charging and discharging, where the charge density varies continuously. An 
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example of the application of this analysis in studying the Al-Li alloy is shown in Fig. 6.4 

[11]. 

 
Fig. 6.4 Contour and surface plot of lithium concentration in an 
Al-10.5at% alloy determined by shifts in the plasmon peak 
position. 
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Appendix I 

Electron Density Plots for LiFePO4 
and FePO4 

Distributions of valence electrons (Li 2s, Fe 3d and 4s, P 3s and 3p and O 2p) for 

LiFePO4 and FePO4 are obtained by using WIEN2K code. The atomic coordinates are 

same as those used in the VASP calculations in chapter 4. Fig. I.1 shows the plots of the 

electron densities on the {010}-type lattice plane cutting through (0, 1/4, 0) for LiFePO4 

and FePO4, respectively. The vertices of the contours of Fe atoms extend to O atoms after 

delithiation, indicating more covalent Fe-O bonds. The outer contours surrounding both Fe 

and O atoms also increase slightly in their intensities. There are atomic displacements of 

the PO4
3- polyanion, but the contours surrounding P atoms do not show observable changes. 

Fig. I.2 shows the plots of the electron densities on the (110) lattice plane. O1 and O3 are O 

atoms occupying inequivalent crystallographic sites, which are slightly out of the plane. 

The O1 atoms move closer to the plane after delithiation, hence cause a seeming increase in 

the associated electron density. The vertices of contours surrounding Fe atoms and the 

outer contours surrounding O atoms show behaviors similar to those in Fig. I.1. In Fig. I.3, 

the plots of the electron densities on the }101{ -type lattice plane do not show significant 
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difference between LiFePO4 and FePO4, indicating the delithiation has little effects on the 

O-O bonds. These plots of electron densities confirm our conclusions drawn from the 

EELS measurements and the VASP calculations — there is no charge transfer from P atoms 

during delithiation, and Fe and O atoms both make contributions to the charge 

compensation. The O atoms are more covalently bonded in FePO4 than in LiFePO4. 
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Fig. I.1 Electron densities on the {010}-type lattice plane cutting 
through (0, 1/4, 0) for LiFePO4 and FePO4, respectively. 
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Fig. I.2 Electron densities on the (110) lattice plane for LiFePO4 
and FePO4, respectively. 
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Fig. I.3 Electron densities on the   -type lattice plane 
cutting through (0, 1/2, 0) for LiFePO4 and FePO4, respectively. 
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