APPENDIX C

Spectra and X-Ray Crystrallographic Data: Radical Cyclization Approaches Toward the Tricyclic Core of Zoanthenol

Figure C.1 ¹H NMR (500 MHz, CDCl₃) of compound 255a.

Figure C.2 Infrared spectrum (thin film/NaCl) of compound **255a**.

Figure C.3 13 C NMR (125 MHz, CDCl₃) of compound **255a**.

Figure C.5 Infrared spectrum (thin film/NaCl) of compound **255b**.

Figure C.6 13 C NMR (125 MHz, CDCl₃) of compound **255b**.

Figure C.8 Infrared spectrum (thin film/NaCl) of compound **315**.

Figure C.9 ¹³C NMR (125 MHz, CDCl₃) of compound **315**.

Figure C.11 Infrared spectrum (thin film/NaCl) of compound **317**.

Figure C.12 ¹³C NMR (125 MHz, CDCl₃) of compound **317**.

Figure C.13 ¹H NMR (300 MHz, CDCl₃) of compound 320.

401

Figure C.14 Infrared spectrum (thin film/NaCl) of compound **320**.

Figure C.15 ¹³C NMR (75 MHz, CDCl₃) of compound **320**.

Figure C.16 ¹H NMR (300 MHz, CDCl₃) of compound 322.

Figure C.17 Infrared spectrum (thin film/NaCl) of compound **322**.

Figure C.18 ¹³C NMR (75 MHz, CDCl₃) of compound **322**.

Figure C.20 Infrared spectrum (thin film/NaCl) of compound **323**.

Figure C.21 ¹³C NMR (125 MHz, CDCl₃) of compound **323**.

Figure C.23 Infrared spectrum (thin film/NaCl) of compound **324**.

Figure C.24 ¹³C NMR (125 MHz, CDCl₃) of compound **324**.

408

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Alcohol 324 (DCB34)

Contents:

Гable С.1	Crystal data.
Table C.2	Atomic coordinates.
Table C.3	Full bond distances and angles.

Figure C.25 Representation of Alcohol 324.

Table C.1 Crystal data and structure refinement for dcb34.

Empirical formula	C36 H49 O6 Si2
Formula weight	633.93
Crystallization Solvent	Methylene Chloride
Crystal Habit	Fragment
Crystal size	0.45 x 0.20 x 0.19 mm ³
Crystal color	Colorless

Data Collection

Preliminary Photos		
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 2391 reflections used in lattice determination	2.25 to 25.75°	
Unit cell dimensions	a = 8.012(3) Å b = 12.103(5) Å c = 21.064(8) Å	$\begin{aligned} \alpha &= 104.652(5)^{\circ} \\ \beta &= 92.405(7)^{\circ} \\ \gamma &= 98.610(6)^{\circ} \end{aligned}$
Volume	1947.0(12) Å ³	
Z	2	
Crystal system	Triclinic	
Space group	P-1	
Density (calculated)	$1.081 Mg/m^3$	
F(000)	682	
θ range for data collection	1.76 to 27.12°	
Completeness to $\theta = 27.12^{\circ}$	78.9 %	
Index ranges	-10<=h<=8, -15<=k<=	=15, -26<=l<=12
Data collection scan type	scans at 3 settings	
Reflections collected	8155	
Independent reflections	6807 [R _{int} = 0.0961; G	OF _{merge} =]
Absorption coefficient	0.129 mm ⁻¹	
Absorption correction	None	

Table C.1 (cont.)

Structure Solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	direct
Secondary solution method	difmap
Hydrogen placement	geom
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6807 / 0 / 456
Treatment of hydrogen atoms	mixed
Goodness-of-fit on F ²	2.722
Final R indices [I> 2σ (I), 4077 reflections]	R1 = 0.1484, wR2 = 0.1836
R indices (all data)	R1 = 0.2120, wR2 = 0.1890
Type of weighting scheme used	calc
Weighting scheme used	calc
w=1/[^2^(Fo^2^)+(0.0000P)^2^+0.0000P]	where P=(Fo^2^+2Fc^2^)/3
Max shift/error	1.254
Average shift/error	0.004
Largest diff. peak and hole	0.655 and -0.594 e.Å ⁻³

412

Table C.2 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for dcb34. U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U _{eq}	Occ
Si(2A)	11898(6)	1267(5)	4132(2)	15(2)	0.480(9)
Si(2B)	12395(6)	2036(5)	4004(2)	32(2)	0.520(9)
0(6)	2561(6)	4434(4)	2066(2)	26(1)	1
O(4)	3040(6)	1577(4)	-102(2)	21(1)	-
O(3)	7053(6)	620(4)	947(2)	27(1)	-
O(5)	2281(6)	3355(4)	432(2)	24(1)	-
O(1A)	10070(40)	1775(16)	4115(16)	23(7)	0.480(9)
C(1)	2380(8)	2466(5)	1362(3)	16(2)	1
O(2)	$\frac{1}{8803}(7)$	-67(4)	2080(3)	41(2)	1
C(2)	4738(9)	3387(6)	2278(3)	23(2)	1
C(3)	4299(8)	1754(6)	459(3)	21(2)	1
C(4)	4798(8)	1409(6)	1584(3)	20(2)	1
C(5)	5705(0)	384(6)	1376(3)	23(2)	1
C(6)	5052(8)	2528(5)	1006(3)	10(2)	1
C(7)	7501(0)	2162(6)	3120(1)	25(2)	1
C(8)	7268(8)	2008(6)	1588(2)	23(2)	1
C(0)	2425(8)	1/02(6)	1051(2)	16(2)	1
C(10)	3423(8)	2555(5)	1752(2)	10(2)	1
C(10)	8602(0)	2022(6)	$\frac{1}{32}(3)$	$\frac{19(2)}{24(2)}$	1
C(12)	6086(0)	2280(7)	2562(2)	24(2)	1
C(12)	7215(8)	1161(6)	2502(3)	24(2)	1
C(13)	1007(8)	2052(6)	$\frac{2042(3)}{1820(2)}$	22(2)	1
C(14)	1206(8)	2003(0)	852(2)	20(2)	1
C(15)	8205(0)	$\frac{2}{93(0)}$	2040(4)	22(2)	1
C(10) C(17)	0.007(10)	1020(0) 1020(7)	3049(4)	30(2)	1
C(17)	076(8)	1930(7)	-6=2(2)	30(2)	1
C(10)	9/0(0)	22/2(0)	817(2)	20(2)	1
C(20)	6564(0)	111(6)	1078(2)	23(2)	1
C(20)	0304(9)	4017(6)	19/0(3)	24(2)	1
C(21)	9105(10)	2627(6)	-208(4)	30(2)	1
C(22)	2330(10) 5212(0)	6404(7)	-200(4)	20(2)	1
C(23)	3312(9)	0404(/)	-466(4)	43(2)	1
C(24)	2088(11)	3323(0)	-400(4)	34(2)	1
C(25)	2000(11)	60/4(7)	$\frac{134}{(3)}$	64(2)	1
C(20)	20(11)	7851(0)	$\frac{2}{4(4)}$	04(3)	1
C(2/)	2002(1/)	7051(9)	2886(6)	$\frac{241(12)}{80(4)}$	1
C(20)	1911(11)	6247(16)	2000(0)	205(4)	1
C(29)	2/09(15) -2871(15)	-666(8)	34/2(5)	225(13)	1
C(30)	15110(10)	-000(0)	4880(4)	95(5)	1
C(34)	15112(10)	202/(/)	4009(4)	39(2)	1
C(33)	12620(10)	$\frac{2}{04(7)}$	2374(3) 4600(20)	43(4) 220(60)	1 (0)
O(1B)	13020(00)	$\frac{2}{10}(0)$	4090(20)	330(00) 67(10)	0.400(9)
$C(n_{\rm T})$	102/0(40)	1/00(20)	4019(10)	40(8)	0.520(9)
C(3/)	13940(30)	35/0(10)	442/(13)	49(0)	0.400(9)
C(30)	12030(30)	502(1/)	4/94(9)	$0 \ge (/)$	0.520(9)
C(39)	10884(10)	2090(30)	4/70(15)	4 < (/)	1
C(42)	11720(20)	-04(10)	3290(3)	33(2) 21(4)	1
0(40)	11/20(20)	-94(14)	4414(0)	<u>~1(4)</u>	0.400(9)

C(41)	13220(20)	3598(12)	3960(8)	30(4)	0.520(9)	
Si(1)	2960(3)	5826(2)	2116(1)	36(1)	1	

Table C.3	Bond lengths	[Å] and angles	[°] for dcb34.

Si(2A)-O(1A)	1.68(3)	C(14)-H(14A)	0.9800
Si(2A)-C(40)	1.876(15)	C(14)-H(14B)	0.9800
Si(2A)-C(42)	1.943(8)	C(14)-H(14C)	0.9800
Si(2A)-C(32)	2.11(7)	C(15)-H(15A)	0.9900
Si(2B)-O(1B)	1.69(3)	C(15)-H(15B)	0.9900
Si(2B)-C(39)	1.75(3)	C(16)-C(17)	1.381(10)
Si(2B)-C(42)	1.793(8)	C(17)-O(1B)	1.35(3)
Si(2B)-C(41)	1.934(15)	C(18)-C(22)	1.470(9)
O(6)-C(10)	1.464(7)	C(18)-H(18A)	0.9800
O(6)-Si(1)	1.643(5)	C(18)-H(18B)	0.9800
O(4)-C(22)	1.456(8)	C(18)-H(18C)	0.9800
O(4)-C(3)	1.471(7)	C(19)-H(19A)	0.9800
O(3)-C(5)	1.426(8)	C(19)-H(19B)	0.9800
O(3)-H(3)	0.8400	C(19)-H(19C)	0.9800
O(5)-C(15)	1.441(7)	C(20)-H(20A)	0.9900
O(5)-C(22)	1.454(8)	C(20)-H(20B)	0.9900
O(1A)-C(17)	1.41(3)	C(21)-H(21A)	0.9800
C(1)-C(15)	1.516(9)	C(21)-H(21B)	0.9800
C(1)-C(10)	1.520(9)	C(21)-H(21C)	0.9800
C(1)-C(14)	1.567(9)	C(22)-C(24)	1.516(9)
C(1)-C(9)	1.572(8)	C(23)-Si(1)	1.892(8)
O(2)-C(16)	1.388(8)	C(23)-H(23A)	0.9800
O(2)-C(30)	1.403(11)	C(23)-H(23B)	0.9800
C(2)-C(10)	1.502(8)	C(23)-H(23C)	0.9800
C(2)-C(6)	1.554(8)	C(24)-H(24A)	0.9800
C(2)-H(2A)	0.9900	C(24)-H(24B)	0.9800
C(2)-H(2B)	0.9900	C(24)-H(24C)	0.9800
C(3)-C(9)	1.535(9)	C(25)-Si(1)	1.847(8)
C(3)-H(3A)	0.9900	C(25)-H(25A)	0.9800
C(3)-H(3B)	0.9900	C(25)-H(25B)	0.9800
C(4)-C(6)	1.551(9)	C(25)-H(25C)	0.9800
C(4)-C(5)	1.556(8)	C(26)-C(28)	1.523(11)
C(4)-C(9)	1.570(9)	C(26)-H(26A)	0.9800
C(4)-H(4)	1.0000	C(26)-H(26B)	0.9800
C(5)-C(20)	1.519(9)	C(26)-H(26C)	0.9800
C(5)-H(5)	1.0000	C(27)-C(28)	1.578(15)
C(6)-C(12)	1.540(9)	C(27)-H(27A)	0.9800
C(6)-C(8)	1.576(9)	C(27)-H(27B)	0.9800
C(7)-C(11)	1.391(9)	C(27)-H(27C)	0.9800
C(7)-C(12)	1.397(9)	C(28)-C(29)	1.449(17)
C(7)-H(7)	0.9500	C(28)-SI(1)	1.923(9)
C(8)-H(8A)	0.9800	C(29)-H(29A)	0.9800
C(8)-H(8B)	0.9800	C(29)-H(29B)	0.9800
C(8)-H(8C)	0.9800	C(29)-H(29C)	0.9800
C(9)- $C(19)$	1.537(9)	C(30)-H(30A)	0.9800
C(10)-H(10)	1.0000	C(30)-H(30B)	0.9800
C(11)-C(17)	1.412(10)	C(30)-H(30C)	0.9800
C(11)-C(21)	1.505(9)	C(34)-C(39)	1.45(3)
C(12)-C(13)	1.410(9)	C(34)-C(32)	1.65(5)
C(13)- $C(16)$	1.402(9)	C(33)- $C(39)$	1.55(3)
U(13)-U(20)	1.528(8)	C(33)-C(32)	1.73(5)

C(32)-C(37)	1.29(9)	C(4)-C(6)-C(8)	113.9(5)
C(38)-C(39)	1.94(4)	C(2)-C(6)-C(8)	109.6(5)
O(1A)-Si(2A)-C(40)	113.4(11)	C(11)-C(7)-C(12)	124.2(7)
O(1A)-Si(2A)-C(42)	112.9(13)	C(11)-C(7)-H(7)	117.9
C(40)-Si(2A)-C(42)	108.8(5)	C(12)-C(7)-H(7)	117.9
O(1A)-Si(2A)-C(32)	103.6(15)	C(6)-C(8)-H(8A)	109.5
C(40)-Si(2A)-C(32)	117(2)	C(6)-C(8)-H(8B)	109.5
C(42)-Si(2A)-C(32)	100.4(15)	H(8A)-C(8)-H(8B)	109.5
O(1B)-Si(2B)-C(39)	109.1(16)	C(6)-C(8)-H(8C)	109.5
O(1B)-Si(2B)-C(42)	106.2(11)	H(8A)-C(8)-H(8C)	109.5
C(39)-Si(2B)-C(42)	119.3(11)	H(8B)-C(8)-H(8C)	109.5
O(1B)-Si(2B)-C(41)	112.0(12)	C(3)-C(9)-C(19)	108.6(5)
C(39)-Si(2B)-C(41)	99.8(12)	C(3)-C(9)-C(4)	109.4(5)
C(42)-Si(2B)-C(41)	110.5(6)	C(19)-C(9)-C(4)	108.9(5)
C(10)-O(6)-Si(1)	126.8(4)	C(3)-C(9)-C(1)	110.8(5)
C(22)-O(4)-C(3)	115.3(5)	C(10)-C(0)-C(1)	109.7(5)
C(5)-O(3)-H(3)	109.5	C(4)-C(9)-C(1)	109.4(5)
C(15)-O(5)-C(22)	116.3(5)	O(6)-C(10)-C(2)	107.6(5)
C(17)-O(1A)-Si(2A)	130(2)	O(6)-C(10)-C(1)	110.2(5)
C(15)-C(1)-C(10)	107.0(5)	C(2)-C(10)-C(1)	115.2(6)
C(15)-C(1)-C(14)	10/.9(5)	O(6)-C(10)-H(10)	107.0
C(10)-C(1)-C(14)	108.0(5)	C(2)-C(10)-H(10)	107.0
C(15)-C(1)-C(0)	113.1(6)	C(1)-C(10)-H(10)	107.0
C(10)-C(1)-C(0)	110.7(5)	C(7)-C(11)-C(17)	117.5(7)
C(14)-C(1)-C(0)	111.1(5)	C(7)-C(11)-C(21)	120.5(6)
C(16)-O(2)-C(30)	112.3(6)	C(17)-C(11)-C(21)	122.0(7)
C(10)-C(2)-C(6)	112.6(5)	C(7)-C(12)-C(13)	117.3(6)
C(10)-C(2)-H(2A)	109.1	C(7)-C(12)-C(6)	120.7(6)
C(6)-C(2)-H(2A)	100.1	C(13)-C(12)-C(6)	121.0(6)
C(10)-C(2)-H(2B)	100.1	C(16)-C(13)-C(12)	118.3(6)
C(6)-C(2)-H(2B)	100.1	C(16) - C(13) - C(20)	120.0(6)
H(2A)-C(2)-H(2B)	107.8	C(12)-C(13)-C(20)	121.7(6)
O(4)-C(3)-C(0)	110.2(5)	C(1)-C(14)-H(14A)	100.5
O(4) - C(3) - H(3A)	100.6	$C(1)-C(1_4)-H(1_4H)$	109.5
C(q)-C(3)-H(3A)	109.6	H(14A)-C(14)-H(14B)	109.5
O(4)-C(3)-H(3B)	109.6	C(1)-C(14)-H(14C)	109.5
C(q)-C(3)-H(3B)	109.6	H(14A)-C(14)-H(14C)	109.5
H(3A)-C(3)-H(3B)	108.1	H(14B)-C(14)-H(14C)	109.5
C(6)-C(4)-C(5)	112.0(5)	O(5)-C(15)-C(1)	113.0(6)
C(6)-C(4)-C(9)	119.5(6)	O(5)-C(15)-H(15A)	109.0
C(5)-C(4)-C(9)	115.5(5)	C(1)-C(15)-H(15A)	109.0
C(6)-C(4)-H(4)	102.2	O(5)-C(15)-H(15B)	109.0
C(5)-C(4)-H(4)	102.2	C(1)-C(15)-H(15B)	109.0
C(9)-C(4)-H(4)	102.2	H(15A)-C(15)-H(15B)	107.8
O(3)-C(5)-C(20)	111.5(6)	C(17)-C(16)-O(2)	119.7(7)
O(3)-C(5)-C(4)	111.1(6)	C(17)-C(16)-C(13)	123.3(7)
C(20)-C(5)-C(4)	110.5(6)	O(2)-C(16)-C(13)	117.0(7)
O(3)-C(5)-H(5)	107.9	O(1B)-C(17)-C(16)	120.7(14)
C(20)-C(5)-H(5)	107.9	O(1B)-C(17)-O(1A)	11(3)
C(4)-C(5)-H(5)	107.9	C(16)-C(17)-O(1A)	123.0(10)
C(12)-C(6)-C(4)	110.9(6)	O(1B)-C(17)-C(11)	120.6(14)
C(12)-C(6)-C(2)	110.1(5)	C(16)-C(17)-C(11)	118.6(7)
C(4)-C(6)-C(2)	105.8(5)	O(1A)-C(17)-C(11)	117.5(11)
C(12)-C(6)-C(8)	106.6(6)	C(22)-C(18)-H(18A)	109.5

C(22)-C(18)-H(18B)	109.5	C(28)-C(27)-H(27B)	109.5
H(18A)-C(18)-H(18B)	109.5	H(27A)-C(27)-H(27B)	109.5
C(22)-C(18)-H(18C)	109.5	C(28)-C(27)-H(27C)	109.5
H(18A)-C(18)-H(18C)	109.5	H(27A)-C(27)-H(27C)	109.5
H(18B)-C(18)-H(18C)	109.5	H(27B)-C(27)-H(27C)	109.5
C(9)-C(19)-H(19A)	109.5	C(29)-C(28)-C(26)	112.9(11)
C(9)-C(19)-H(19B)	109.5	C(29)-C(28)-C(27)	113.7(11)
H(19A)-C(19)-H(19B)	109.5	C(26)-C(28)-C(27)	106.1(9)
C(9)-C(19)-H(19C)	109.5	C(29)-C(28)-Si(1)	110.7(7)
H(19A)-C(19)-H(19C)	109.5	C(26)-C(28)-Si(1)	107.6(6)
H(19B)-C(19)-H(19C)	109.5	C(27)-C(28)-Si(1)	105.4(8)
C(5)-C(20)-C(13)	115.6(6)	C(28)-C(29)-H(29A)	109.5
C(5)-C(20)-H(20A)	108.4	C(28)-C(29)-H(29B)	109.5
C(13)-C(20)-H(20A)	108.4	H(29A)-C(29)-H(29B)	109.5
C(5)-C(20)-H(20B)	108.4	C(28)-C(29)-H(29C)	109.5
C(13)-C(20)-H(20B)	108.4	H(29A)-C(29)-H(29C)	109.5
H(20A)-C(20)-H(20B)	107.5	H(29B)-C(29)-H(29C)	109.5
C(11)-C(21)-H(21A)	109.5	O(2)-C(30)-H(30A)	109.5
C(11)-C(21)-H(21B)	109.5	O(2)-C(30)-H(30B)	109.5
H(21A)-C(21)-H(21B)	109.5	H(30A)-C(30)-H(30B)	109.5
C(11)-C(21)-H(21C)	109.5	O(2)-C(30)-H(30C)	109.5
H(21A)-C(21)-H(21C)	109.5	H(30A)-C(30)-H(30C)	109.5
H(21B)-C(21)-H(21C)	109.5	H(30B)-C(30)-H(30C)	109.5
O(5)-C(22)-O(4)	107.4(5)	C(39)-C(34)-C(32)	30(4)
O(5)-C(22)-C(18)	112.5(6)	C(39)-C(33)-C(32)	28(3)
O(4)-C(22)-C(18)	107.1(6)	C(37)-C(32)-C(34)	123(4)
O(5)-C(22)-C(24)	105.3(6)	C(37)-C(32)-C(33)	124(4)
O(4)-C(22)-C(24)	111.1(6)	C(34)-C(32)-C(33)	96(4)
C(18)-C(22)-C(24)	113.4(7)	C(37)-C(32)-Si(2A)	116(3)
Si(1)-C(23)-H(23A)	109.5	C(34)-C(32)-Si(2A)	99(4)
Si(1)-C(23)-H(23B)	109.5	C(33)-C(32)-Si(2A)	93(3)
H(23A)-C(23)-H(23B)	109.5	C(17)-O(1B)-Si(2B)	127(3)
Si(1)-C(23)-H(23C)	109.5	C(34)-C(39)-C(33)	113.8(18)
H(23A)-C(23)-H(23C)	109.5	C(34)-C(39)-Si(2B)	123(2)
H(23B)-C(23)-H(23C)	109.5	C(33)-C(39)-Si(2B)	117(2)
C(22)-C(24)-H(24A)	109.5	C(34)-C(39)-C(38)	95.0(19)
C(22)-C(24)-H(24B)	109.5	C(33)-C(39)-C(38)	100.8(16)
H(24A)-C(24)-H(24B)	109.5	Si(2B)-C(39)-C(38)	98.6(14)
C(22)-C(24)-H(24C)	109.5	Si(2B)-C(42)-Si(2A)	32.6(2)
H(24A)-C(24)-H(24C)	109.5	O(6)-Si(1)-C(25)	108.9(3)
H(24B)-C(24)-H(24C)	109.5	O(6)-Si(1)-C(23)	111.8(3)
Si(1)-C(25)-H(25A)	109.5	C(25)-Si(1)-C(23)	109.2(4)
Si(1)-C(25)-H(25B)	109.5	O(6)-Si(1)-C(28)	104.3(4)
H(25A)-C(25)-H(25B)	109.5	C(25)-Si(1)-C(28)	113.9(5)
Si(1)-C(25)-H(25C)	109.5	C(23)-Si(1)-C(28)	108.8(4)
H(25A)-C(25)-H(25C)	109.5		
H(25B)-C(25)-H(25C)	109.5		
C(28)-C(26)-H(26A)	109.5		
C(28)-C(26)-H(26B)	109.5		
H(26A)-C(26)-H(26B)	109.5		
C(28)-C(26)-H(26C)	109.5		
H(26A)-C(26)-H(26C)	109.5		
H(26B)-C(26)-H(26C)	109.5		
C(28)-C(27)-H(27A)	109.5		