APPENDIX A

Spectra and X-Ray Crystrallographic Data: Early Efforts Toward the Synthesis of Zoanthenol

Figure A.1 ¹H NMR (300 MHz, CDCl₃) of compound 172.

Figure A.2 Infrared spectrum (thin film/NaCl) of compound **172**.

Figure A.3 ¹³C NMR (75 MHz, CDCl₃) of compound **172**.

Figure A.5 Infrared spectrum (thin film/NaCl) of compound **174**.

Figure A.6 ¹³C NMR (75 MHz, CDCl₃) of compound **174**.

Figure A.7 ¹H NMR (300 MHz, CDCl₃) of compound 173.

Figure A.8 Infrared spectrum (thin film/NaCl) of compound **173**.

Figure A.9 ¹³C NMR (75 MHz, CDCl₃) of compound **173**.

Figure A.10 1 H NMR (300 MHz, CDCl₃) of compound 175.

Figure A.11 Infrared spectrum (thin film/NaCl) of compound 175.

Figure A.12 ¹³C NMR (75 MHz, CDCl₃) of compound **175**.

Figure A.14 Infrared spectrum (thin film/NaCl) of compound **168**.

Figure A.15 ¹³C NMR (75 MHz, CDCl₃) of compound **168**.

Figure A.17 Infrared spectrum (thin film/NaCl) of compound (+)-177.

Figure A.18 ¹³C NMR (75 MHz, CDCl₃) of compound (+)-177.

Figure A.20 Infrared spectrum (thin film/NaCl) of compound (–)-177.

Figure A.21 ¹³C NMR (75 MHz, CDCl₃) of compound (–)-177.

Figure A.23 Infrared spectrum (thin film/NaCl) of compound **178**.

Figure A.24 13 C NMR (75 MHz, CDCl₃) of compound **178**.

Figure A.25 ¹H NMR (300 MHz, CDCl₃) of compound 169.

Figure A.26 Infrared spectrum (thin film/NaCl) of compound **169**.

Figure A.27 ¹³C NMR (75 MHz, CDCl₃) of compound **169**.

Figure A.28 ¹H NMR (300 MHz, CDCl₃) of compound (-)-170.

Figure A.29 Infrared spectrum (thin film/NaCl) of compound (–)-170.

Figure A.30 ¹³C NMR (75 MHz, XX) of compound (-)-170.

Figure A.32 Infrared spectrum (thin film/NaCl) of compound (+)-**180**.

Figure A.33 ¹³C NMR (75 MHz, CDCl₃) of compound (+)-**180**.

Figure A.35 Infrared spectrum (thin film/NaCl) of compound **183**.

Figure A.36 ¹³C NMR (75 MHz, CDCl₃) of compound **183**.

Figure A.37 ¹H NMR (300 MHz, CDCl₃) of compound 184.

Figure A.38 Infrared spectrum (thin film/NaCl) of compound **184**.

Figure A.39 ¹³C NMR (75 MHz, CDCl₃) of compound **184**.

Figure A.41 Infrared spectrum (thin film/NaCl) of compound **187**.

Figure A.42 13 C NMR (75 MHz, CD₂Cl₂) of compound **187**.

Figure A.43 ¹H NMR (500 MHz, CDCl₃) of compound 188.

121

Figure A.44 Infrared spectrum (thin film/NaCl) of compound **188**.

Figure A.45 13 C NMR (125 MHz, CDCl₃) of compound **188**.

Figure A.46 ¹H NMR (300 MHz, CDCl₃) of compound 189.

Figure A.47 Infrared spectrum (thin film/NaCl) of compound **189**.

Figure A.48 ¹³C NMR (75 MHz, CDCl₃) of compound **189**.

Figure A.50 Infrared spectrum (thin film/NaCl) of compound **191**.

Figure A.51 ¹³C NMR (75 MHz, CDCl₃) of compound **191**.

Figure A.52 ¹H NMR (300 MHz, CDCl₃) of compound **192**.

Figure A.53 Infrared spectrum (thin film/NaCl) of compound **192**.

Figure A.54 ¹³C NMR (75 MHz, CDCl₃) of compound **192**.

Figure A.56 Infrared spectrum (thin film/NaCl) of compound **193**.

Figure A.57 ¹³C NMR (125 MHz, C₆D₆) of compound **193**.

Figure A.58 ¹H NMR (500 MHz, CDCl₃) of compound **194**.

Figure A.59 Infrared spectrum (thin film/NaCl) of compound **194**.

Figure A.60 ¹³C NMR (125 MHz, CDCl₃) of compound **194**.

Figure A.61 1 H NMR (500 MHz, CDCl₃) of compound 195.

Figure A.62 Infrared spectrum (thin film/NaCl) of compound **195**.

Figure A.63 ¹³C NMR (125 MHz, CDCl₃) of compound **195**.

Figure A.65 Infrared spectrum (thin film/NaCl) of compound **196**.

Figure A.66 ¹³C NMR (125 MHz, CDCl₃) of compound **196**.

Figure A.67 ¹H NMR (300 MHz, CDCl₃) of compound (-)-**210**.

Figure A.68 Infrared spectrum (thin film/NaCl) of compound (–)-**210**.

Figure A.69 ¹³C NMR (75 MHz, CDCl₃) of compound (–)-**210**.

Figure A.70 ¹H NMR (300 MHz, CDCl₃) of compound (-)-**211**.

Figure A.71 Infrared spectrum (thin film/NaCl) of compound (–)-**211**.

Figure A.72 13 C NMR (75 MHz, CDCl₃) of compound (-)-**211**.

Figure A.74 Infrared spectrum (thin film/NaCl) of compound (–)-**212**.

Figure A.75 ¹³C NMR (75 MHz, CDCl₃) of compound (–)-212.

Figure A.77 Infrared spectrum (thin film/NaCl) of compound (–)-**213**.

*Figure A.*78 ¹³C NMR (75 MHz, CDCl₃) of compound (–)-**213**.

Figure A.80 Infrared spectrum (thin film/NaCl) of compound **214**.

Figure A.81 ¹³C NMR (75 MHz, CDCl₃) of compound **214**.

Figure A.83 Infrared spectrum (thin film/NaCl) of compound **215**.

Figure A.84 ¹³C NMR (75 MHz, CDCl₃) of compound **215**.

Figure A.85 ¹H NMR (300 MHz, CDCl₃) of compound 215a.

Figure A.86 Infrared spectrum (thin film/NaCl) of compound **215a**.

Figure A.87 ¹³C NMR (75 MHz, CDCl₃) of compound **215a**.

Figure A.89 Infrared spectrum (thin film/NaCl) of compound **203**.

Figure A.90 13 C NMR (75 MHz, CDCl₃) of compound **203**.

Figure A.92 Infrared spectrum (thin film/NaCl) of compound **168**.

Figure A.93 13 C NMR (125 MHz, CDCl₃) of compound **168**.

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Lactone 184 (DCB06)

(CCDC 175859)

Contents:

- Table 1. Crystal data
- Table 2. Atomic Coordinates
- Table 3. Full bond distances and angles (for deposit)
- Table 4. Anisotropic displacement parameters
- Table 5. Hydrogen atomic coordinates

Figure A.94 Representation of Lactone 184

Table 1. Crystal data and structure refinement for DCB06_(CCDC_175859).

Tuble II erystal auta and structure rennes	licent for <i>D D D D O O O O O O O O O O</i>	
Empirical formula	$C_{28}H_{42}O_6Si$	
Formula weight	502.71	
Crystallization Solvent	Hexanes	
Crystal Habit	Block	
Crystal size	0.33 x 0.17 x 0.14 mm ³	
Crystal color	Colorless	
Data Co	llection	
Type of diffractometer	Bruker P4	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	96(2) K	
θ range for 8201 reflections used in lattice determination	2.79 to 26.49°	
Unit cell dimensions	$\begin{array}{l} a = 29.220(3) \text{\AA} \\ b = 6.7215(8) \text{\AA} \\ c = 14.4249(17) \text{\AA} \end{array} \qquad $	
Volume	2833.0(6) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P21/c	
Density (calculated)	1.179 Mg/m ³	
F(000)	1088	
Data collection program	Bruker SMART v5.054	
θ range for data collection	1.39 to 28.38°	
Completeness to $\theta = 28.38^{\circ}$	93.9 %	
Index ranges	$-37 \le h \le 38, -8 \le k \le 8, -19 \le l \le 19$	
Data collection scan type	ω scans at 5 ϕ settings	
Data reduction program	Bruker SAINT v6.22	
Reflections collected	38935	
Independent reflections	$6656 [R_{int} = 0.0985]$	
Absorption coefficient	0.120 mm ⁻¹	
Absorption correction	None	

0.9829 and 0.9610

Max. and min. transmission

Table 1 (cont.)Structure solution and Refinement

Structure solution program	Bruker SHELXTL
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	Bruker SHELXTL
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	6656 / 0 / 484
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.403
Final R indices [I> 2σ (I), 3988 reflections]	$R_1 = 0.0584, wR_2 = 0.0804$
R indices (all data)	R1 = 0.1062, wR2 = 0.0844
Type of weighting scheme used	Sigma
Weighting scheme used	$w = 1/\sigma^2(Fo^2)$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	0.333 and -0.349 e.Å ⁻³

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2 σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Z	U _{eq}	
Si(1)	6142(1)	3545(1)	4087(1)	25(1)	
O(1)	6571(1)	5169(2)	4135(1)	23(1)	
O(2)	7293(1)	2606(2)	3725(1)	23(1)	
O(3)	8211(1)	1108(2)	6169(1)	28(1)	
O(4)	8640(1)	2202(2)	7317(1)	44(1)	
O(5)	9414(1)	-4435(2)	4438(1)	30(1)	
O(6)	9725(1)	-2363(2)	3364(1)	45(1)	
C(1)	5665(1)	5006(3)	3527(1)	27(1)	
C(2)	5841(1)	5905(4)	2608(2)	35(1)	
C(3)	5260(1)	3633(5)	3329(2)	43(1)	
C(4)	5503(1)	6694(4)	4154(2)	36(1)	
C(5)	6282(1)	1358(4)	3362(2)	34(1)	
C(6)	5995(1)	2734(5)	5291(2)	39(1)	
C(7)	6962(1)	5171(3)	4672(1)	21(1)	
C(8)	6990(1)	6481(3)	5429(1)	24(1)	
C(9)	6595(1)	7823(4)	5660(2)	37(1)	
C(10)	7397(1)	6526(4)	5928(1)	27(1)	
C(11)	7762(1)	5352(3)	5700(1)	26(1)	
C(12)	7740(1)	4049(3)	4942(1)	22(1)	
C(13)	7334(1)	3973(3)	4446(1)	20(1)	
C(14)	7349(1)	3475(4)	2815(1)	32(1)	
C(15)	8145(1)	2785(3)	4670(1)	22(1)	
C(16)	8169(1)	761(3)	5164(1)	22(1)	
C(17)	8623(1)	1598(3)	6522(1)	28(1)	
C(18)	9030(1)	1238(4)	5922(2)	26(1)	
C(19)	8979(1)	-684(3)	5354(1)	19(1)	
C(20)	8948(1)	-2437(4)	6036(1)	24(1)	
C(21)	9394(1)	-899(3)	4715(1)	24(1)	
C(22)	9349(1)	-2544(3)	4006(1)	28(1)	
C(23)	9638(1)	-5668(3)	3767(2)	29(1)	
C(24)	9927(1)	-4215(4)	3241(2)	39(1)	
C(25)	8901(1)	-2427(4)	3480(2)	33(1)	
C(26)	8502(1)	-1441(3)	3960(1)	24(1)	
C(27)	8074(1)	-1401(5)	3388(2)	35(1)	
C(28)	8545(1)	-548(3)	4787(1)	19(1)	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for DCB06_(CCDC_175859). U(eq) the trace of the orthogonalized U^{ij} tensor.

Si(1)-O(1)	1.6629(15)	C(16)-C(28)	1.510(3)
Si(1)-C(5)	1.849(3)	C(16)-H(16)	0.995(16)
Si(1)-C(6)	1.872(2)	C(17)-C(18)	1.490(3)
Si(1)-C(1)	1.887(2)	C(18)-C(19)	1.538(3)
O(1)-C(7)	1.379(2)	C(18)-H(18A)	0.96(2)
O(2)-C(13)	1.392(2)	C(18)-H(18B)	0.96(2)
O(2)-C(14)	1.446(2)	C(19)-C(28)	1.512(3)
O(3)-C(17)	1.350(2)	C(19)-C(21)	1.531(3)
O(3)-C(16)	1.473(2)	C(19)-C(20)	1.538(3)
O(4)-C(17)	1.218(2)	C(20)-H(20A)	0.987(19)
O(5)-C(22)	1.428(2)	C(20)-H(20B)	1.016(18)
O(5)-C(23)	1.433(2)	C(20)-H(20C)	1.003(19)
O(6)-C(24)	1.389(3)	C(21)-C(22)	1.512(3)
O(6)-C(22)	1.443(2)	C(21)-H(21A)	0.99(2)
C(1)-C(4)	1.527(3)	C(21)-H(21B)	0.99(2)
C(1)-C(3)	1.528(3)	C(22)-C(25)	1.516(3)
C(1)-C(2)	1.545(3)	C(23)-C(24)	1.498(3)
C(2)-H(2A)	1.05(2)	C(23)-H(23A)	0.98(2)
C(2)-H(2B)	0.00(2)	C(23)-H(23B)	0.040(10)
C(2)-H(2C)	1.00(2)	C(24)-H(24A)	0.86(3)
C(2) - H(2A)	0.08(2)	C(24) - H(24B)	0.00(3)
C(3)-H(3R)	0.95(2)	C(25)-C(26)	1500(3)
C(2)-H(2C)	1.04(2)	C(25)-H(25A)	0.00(2)
C(4)-H(4A)	1.04(2)	C(25) - H(25R)	0.99(2)
C(4) - H(4R)	0.99(2)	$C(25) = \Pi(25D)$	1.240(2)
C(4) - H(4C)	0.99(2)	C(26)-C(27)	1.340(2)
C(z) H(zA)	0.99(2)	C(20) - C(27)	1.490(3)
C(c) H(cR)	1.01(2)	C(27) - H(2/R)	0.95(2)
C(5)- $H(5D)$	1.01(2)	C(27) - H(27D)	1.9/(2)
C(5) = H(5C)	0.90(2)	C(2/) - II(2/C)	1.00(2)
$C(0) - \Pi(0A)$	1.03(3)	O(1) $S(1)$ $O(-)$	110.06(10)
C(0) - H(0B)	0.98(3)	O(1) - S(1) - O(5)	112.20(10)
$C(0) - \Pi(0C)$	0.98(2)	O(1)-SI(1)-C(0)	109.05(11)
C(7) - C(13)	1.392(3)	C(5)-SI(1)-C(0)	110.10(13)
C(7)- $C(8)$	1.405(3)	O(1)-SI(1)-C(1)	103.44(9)
C(8) - C(10)	1.389(3)	C(5)-SI(1)-C(1)	109.60(11)
C(8)- $C(9)$	1.503(3)	C(6)-SI(1)-C(1)	112.21(11)
C(9)-H(9A)	1.02(2)	C(7)-O(1)-SI(1)	130.34(12)
C(9)-H(9B)	0.92(2)	C(13)-O(2)-C(14)	113.73(17)
C(9)-H(9C)	0.95(2)	C(17)-O(3)-C(16)	118.89(15)
C(10)-C(11)	1.369(3)	C(22)-O(5)-C(23)	106.28(14)
C(10)-H(10)	0.98(2)	C(24)-O(6)-C(22)	109.25(17)
C(11)-C(12)	1.403(3)	C(4)-C(1)-C(3)	108.6(2)
C(11)-H(11)	0.965(19)	C(4)-C(1)-C(2)	108.7(2)
C(12)-C(13)	1.388(3)	C(3)-C(1)-C(2)	109.5(2)
C(12)-C(15)	1.508(3)	C(4)-C(1)-Si(1)	111.25(15)
C(14)-H(14A)	0.99(2)	C(3)-C(1)-Si(1)	109.77(18)
C(14)-H(14B)	1.00(2)	C(2)-C(1)-Si(1)	108.96(15)
C(14)-H(14C)	1.05(2)	C(1)-C(2)-H(2A)	113.2(11)
C(15)-C(16)	1.538(3)	C(1)-C(2)-H(2B)	109.5(13)
C(15)-H(15A)	1.047(18)	H(2A)-C(2)-H(2B)	106.4(17)
C(15)-H(15B)	0.950(18)	C(1)-C(2)-H(2C)	108.6(12)

 Table 3.
 Bond lengths [Å] and angles [°] for DCB06_(CCDC_175859).

H(2A)-C(2)-H(2C)	108.2(18)	H(14A)-C(14)-H(14C)	108.8(17)
H(2B)-C(2)-H(2C)	110.9(18)	H(14B)-C(14)-H(14C)	114.6(17)
C(1)-C(3)-H(3A)	110.1(14)	C(12)-C(15)-C(16)	114.35(16)
C(1)-C(3)-H(3B)	110.8(14)	C(12)-C(15)-H(15A)	112.3(10)
H(3A)-C(3)-H(3B)	108.4(19)	C(16)-C(15)-H(15A)	104.7(10)
C(1)-C(3)-H(3C)	113.7(12)	C(12)-C(15)-H(15B)	109.6(11)
H(3A)-C(3)-H(3C)	108.5(18)	C(16)-C(15)-H(15B)	108.4(11)
H(3B)-C(3)-H(3C)	105.0(19)	H(15A)-C(15)-H(15B)	107.1(14)
C(1)-C(4)-H(4A)	109.9(14)	O(3)-C(16)-C(28)	112.77(15)
C(1)-C(4)-H(4B)	112.8(12)	O(3)-C(16)-C(15)	108.69(16)
H(4A)-C(4)-H(4B)	110.7(17)	C(28)-C(16)-C(15)	112.34(16)
C(1)-C(4)-H(4C)	115.2(12)	O(3)-C(16)-H(16)	101.4(9)
H(4A)-C(4)-H(4C)	104.1(17)	C(28)-C(16)-H(16)	113.5(10)
H(4B)-C(4)-H(4C)	103.8(18)	C(15)-C(16)-H(16)	107.4(10)
Si(1)-C(5)-H(5A)	113.1(14)	O(4)-C(17)-O(3)	118.11(19)
Si(1)-C(5)-H(5B)	112.4(13)	O(4)-C(17)-C(18)	124.7(2)
H(5A)-C(5)-H(5B)	108(2)	O(3)-C(17)-C(18)	117.06(17)
Si(1)-C(5)-H(5C)	110.5(14)	C(17)-C(18)-C(19)	111.65(18)
H(5A)-C(5)-H(5C)	106.6(10)	C(17)-C(18)-H(18A)	100.4(12)
H(5B)-C(5)-H(5C)	106.0(18)	C(10)-C(18)-H(18A)	109.4(12) 112.2(12)
Si(1)-C(6)-H(6A)	110.0(10)	C(17)-C(18)-H(18B)	112.2(12) 111.5(11)
Si(1) - C(6) - H(6B)	110.3(13) 114.0(12)	C(10)-C(18)-H(18B)	111.0(11) 111.1(12)
H(6A) - C(6) - H(6B)	114.0(13) 107(2)	H(184)-C(18)-H(18B)	100 = (16)
$S_{i(1)} - C(6) - H(6C)$	107(2)	$\Gamma(101) - C(10) - \Pi(10D)$	100.5(10)
$H(6A)_{-}C(6)_{-}H(6C)$	10/.1(13)	C(28)-C(19)-C(18)	10.20(13)
H(6R) - C(6) - H(6C)	108(2)	C(20)-C(10)-C(10)	100.50(1/) 108.80(16)
$\Omega(1) C(7) C(10)$	100(2)	C(21) - C(19) - C(10)	100.09(10)
O(1) - O(7) - O(13)	120.9/(1/)	C(20) - C(10) - C(20)	110.00(10)
C(10) C(7) C(8)	119.01(1/)	C(12) - C(12) - C(20)	111.11(1/)
C(13) - C(7) - C(8)	119.93(16)	C(10) - C(10) - C(20)	10/.94(10)
C(10) - C(0) - C(7)	11/./9(19)	C(19) - C(20) - H(20A)	111.0(10)
C(10) - C(0) - C(0)	121.9(2)	U(20) + U(20) + U(20B)	108.3(10)
C(2) - C(3) - C(3)	120.24(19)	H(20A)-C(20)-H(20B)	$10^{7}.0(14)$
C(8) - C(9) - H(9A)	109.2(13)	U(19)-U(20)-H(20U)	110.5(11)
U(8) - U(9) - H(9B)	112.5(13)	H(20A)-C(20)-H(20C)	104.4(15)
H(9A)-C(9)-H(9B)	111.0(18)	H(20B)-C(20)-H(20C)	114.8(14)
U(8)-U(9)-H(9U)	112.0(13)	C(22)-C(21)-C(19)	113.99(17)
H(9A)-C(9)-H(9C)	106.5(18)	C(22)-C(21)-H(21A)	107.4(12)
H(9B)-C(9)-H(9C)	104.8(19)	C(19)-C(21)-H(21A)	112.5(11)
C(11)-C(10)-C(8)	122.0(2)	C(22)-C(21)-H(21B)	107.6(10)
C(11)-C(10)-H(10)	120.2(12)	C(19)-C(21)-H(21B)	110.2(10)
C(8)-C(10)-H(10)	117.8(12)	H(21A)-C(21)-H(21B)	104.7(16)
C(10)-C(11)-C(12)	120.8(2)	O(5)-C(22)-O(6)	104.75(15)
C(10)-C(11)-H(11)	120.4(11)	O(5)-C(22)-C(21)	110.15(16)
C(12)-C(11)-H(11)	118.8(11)	O(6)-C(22)-C(21)	107.79(17)
C(13)-C(12)-C(11)	117.63(19)	O(5)-C(22)-C(25)	112.29(19)
C(13)-C(12)-C(15)	121.07(18)	O(6)-C(22)-C(25)	109.41(17)
C(11)-C(12)-C(15)	121.30(19)	C(21)-C(22)-C(25)	112.09(19)
C(12)-C(13)-C(7)	121.79(18)	O(5)-C(23)-C(24)	102.91(18)
C(12)-C(13)-O(2)	118.78(17)	O(5)-C(23)-H(23A)	110.8(11)
C(7)-C(13)-O(2)	119.39(17)	C(24)-C(23)-H(23A)	113.5(12)
O(2)-C(14)-H(14A)	107.7(11)	O(5)-C(23)-H(23B)	109.3(12)
O(2)-C(14)-H(14B)	103.7(13)	C(24)-C(23)-H(23B)	112.7(12)
H(14A)-C(14)-H(14B)	111.7(17)	H(23A)-C(23)-H(23B)	107.6(17)
O(2)-C(14)-H(14C)	109.9(11)	O(6)-C(24)-C(23)	106.3(2)

O(6)-C(24)-H(24A)	111(2)
C(23)-C(24)-H(24A)	121(2)
O(6)-C(24)-H(24B)	107.4(15)
C(23)-C(24)-H(24B)	109.6(15)
H(24A)-C(24)-H(24B)	101(2)
C(26)-C(25)-C(22)	117.35(18)
C(26)-C(25)-H(25A)	105.2(13)
C(22)-C(25)-H(25A)	103.6(13)
C(26)-C(25)-H(25B)	109.0(12)
C(22)-C(25)-H(25B)	108.3(12)
H(25A)-C(25)-H(25B)	113.4(18)
C(28)-C(26)-C(27)	124.0(2)
C(28)-C(26)-C(25)	122.27(19)
C(27)-C(26)-C(25)	113.50(18)
C(26)-C(27)-H(27A)	111.8(14)
C(26)-C(27)-H(27B)	110.0(13)
H(27A)-C(27)-H(27B)	108.2(19)
C(26)-C(27)-H(27C)	118.2(11)
H(27A)-C(27)-H(27C)	102.5(18)
H(27B)-C(27)-H(27C)	105.5(18)
C(26)-C(28)-C(16)	120.96(18)
C(26)-C(28)-C(19)	122.09(18)
C(16)-C(28)-C(19)	116.83(16)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
<u></u>						
S1(1)	252(3)	279(4)	224(3)	4(3)	10(3)	-5(3)
O(1)	223(8)	280(9)	195(7)	-17(6)	-35(6)	7(6)
O(2)	277(8)	286(9)	134(7)	-31(6)	-19(6)	-16(7)
O(3)	292(9)	444(10)	110(7)	15(7)	31(6)	67(7)
0(4)	623(12)	535(12)	148(8)	-121(7)	-86(7)	211(9)
O(5)	483(10)	221(9)	186(7)	34(7)	67(7)	24(7)
0(6)	607(11)	324(10)	426(9)	130(8)	373(8)	165(8)
C(1)	206(12)	327(14)	273(12)	19(10)	-8(10)	-14(10)
C(2)	339(16)	452(18)	257(13)	51(12)	-44(12)	55(14)
C(3)	243(15)	500(19)	547(18)	-31(17)	-58(13)	-29(14)
C(4)	287(15)	436(17)	370(15)	43(13)	11(12)	69(14)
C(5)	344(16)	311(15)	366(15)	-48(12)	17(12)	-74(14)
C(6)	465(18)	396(17)	313(14)	73(13)	77(13)	51(15)
C(7)	190(12)	250(13)	199(11)	50(9)	-14(9)	-7(10)
C(8)	254(12)	283(13)	190(10)	6(10)	-4(9)	29(10)
C(9)	400(17)	389(17)	309(15)	-133(14)	-63(12)	122(14)
C(10)	315(14)	336(14)	170(11)	-59(11)	-37(10)	-4(11)
C(11)	274(14)	329(14)	165(11)	3(10)	-41(10)	-10(11)
C(12)	225(12)	279(13)	143(10)	36(9)	23(9)	1(9)
C(13)	237(12)	217(13)	151(10)	13(9)	9(9)	-59(10)
C(14)	336(16)	453(16)	160(11)	-4(12)	-1(10)	-19(14)
C(15)	208(13)	273(13)	170(11)	13(10)	-15(9)	-33(10)
C(16)	202(12)	323(14)	128(10)	10(9)	-18(9)	-19(10)
C(17)	328(14)	308(14)	207(11)	3(10)	-45(10)	114(11)
C(18)	266(14)	297(15)	202(11)	-55(11)	-68(10)	5(11)
C(19)	191(11)	245(12)	126(10)	-11(9)	3(8)	-18(9)
C(20)	228(14)	356(15)	125(11)	21(11)	-11(10)	15(11)
C(21)	253(13)	218(14)	240(12)	33(10)	54(10)	-15(10)
C(22)	378(14)	250(13)	209(11)	52(10)	128(10)	45(11)
C(23)	364(15)	201(13)	292(13)	-18(11)	14(12)	51(12)
C(24)	351(17)	247(15)	576(18)	-68(13)	127(15)	-24(12)
C(25)	501(16)	330(16)	164(12)	6(12)	1(11)	53(13)
C(26)	318(13)	239(12)	150(10)	21(10)	-44(9)	-16(10)
C(27)	458(17)	310(16)	269(13)	-22(13)	-157(12)	-2(13)
C(28)	208(12)	244(13)	125(10)	42(9)	2(9)	-23(9)

Table 4. Anisotropic displacement parameters (Ųx 10⁴) for DCB06_(CCDC_175859).The anisotropic displacement factor exponent takes the form:
 $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	X	у	Z	U _{iso}
Ц(ол)	6100(7)	6800(20)	2602(12)	
H(2R)	5033(7)	4820(40)	2093(13) 2180(15)	30(0)
H(aC)	5920(7)	4020(40)	2100(15)	49(7)
H(2C)	5594(0)	4400(40)	2334(15)	49(7)
	5005(8)	4400(40)	3059(15)	54(0)
	5343(/)	2020(40)	2900(15)	4/(0)
H(4A)	5141(7)	2890(30)	3909(15)	40(7)
$\Pi(4\mathbf{A})$	53/1(7)	5140(40)	4/34(15)	53(7)
	5/49(/)	/000(30)	4290(13)	29(0)
$\Pi(4C)$	5250(/)	/520(30)	309/(14)	30(0)
П(5А) Ц(-Р)	0544(0)	620(40)	3500(15)	55(0)
П(5В)	6016(6)	410(40)	3300(15)	53(7)
$\Pi(5C)$	0350(0)	1/70(40)	$\frac{2}{20(10)}$	53(7)
	5004(0)	3910(40)	5002(10)	00(0)
H(6B)	5/0/(8)	1000(40)	5317(15)	50(8)
H(6C)	6278(8)	2230(30)	5577(15)	50(7)
H(9A)	6319(8)	6970(30)	5851(14)	47(7)
H(9B)	6667(7)	8740(30)	6106(14)	36(7)
H(9C)	6499(7)	8590(30)	5140(16)	48(7)
H(10)	7416(7)	7440(30)	6454(14)	36(6)
H(11)	8045(6)	5450(30)	6044(12)	27(6)
H(14A)	7663(7)	4000(30)	2774(12)	28(6)
H(14B)	7302(7)	2330(40)	2385(15)	49(7)
H(14C)	7118(7)	4650(30)	2727(13)	39(6)
H(15A)	8144(6)	2430(30)	3962(13)	27(5)
H(15B)	8421(6)	3490(30)	4792(11)	16(5)
H(16)	7859(6)	150(20)	5125(10)	8(4)
H(18A)	9081(6)	2380(30)	5535(13)	31(6)
H(18B)	9308(7)	1230(30)	6276(13)	31(6)
H(20A)	8897(6)	-3700(30)	5704(12)	18(5)
H(20B)	9252(6)	-2550(30)	6377(12)	21(5)
H(20C)	8673(7)	-2290(30)	6446(12)	26(5)
H(21A)	9683(7)	-1130(30)	5063(13)	34(6)
H(21B)	9448(6)	360(30)	4373(12)	24(5)
H(23A)	9815(7)	-6710(30)	4072(13)	34(6)
H(23B)	9417(6)	-6290(30)	3393(13)	24(6)
H(24A)	9995(11)	-4420(50)	2670(20)	112(14)
H(24B)	10229(9)	-4160(40)	3514(16)	64(9)
H(25A)	8972(7)	-1560(30)	2948(15)	51(7)
H(25B)	8812(7)	-3770(30)	3298(14)	39(7)
H(27A)	8088(8)	-420(40)	2917(16)	56(8)
H(27B)	8027(7)	-2690(40)	3096(15)	48(7)
H(27C)	7762(7)	-1060(30)	3722(13)	43(7)

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters(Ųx 103) for DCB06_(CCDC_175859).
CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Acid **187**•CHCl₃ (DCB05)

(CCDC 175588)

Contents:

- Table 1.Crystal data
- Table 2. Atomic Coordinates
- Table 3. Full bond distances and angles (for deposit)
- Table 4. Anisotropic displacement parameters
- Table 5. Hydrogen atomic coordinates
- Table 6. Hydrogen bonds

Figure A.95 Representation of Acid 187-CHCl₃

Table 1. Crystal data and structure refinement for DCB05 (CCDC 175588).

Empirical formula	$C_{20}H_{24}O_5\cdot CHCl_3$
Formula weight	463.76
Crystallization Solvent	Chloroform
Crystal Habit	Fragment
Crystal size	0.22 x 0.15 x 0.15 mm ³
Crystal color	Colorless

Data Collection

Preliminary Photos	Rotation	
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	98(2) K	
θ range for 4336 reflections used in lattice determination	2.47 to 25.80°	
Unit cell dimensions	$\begin{array}{l} a = 11.137(3) \text{ \AA} \\ b = 13.282(3) \text{ \AA} \\ c = 15.008(4) \text{ \AA} \end{array}$	β= 98.762(4)°
Volume	2194.3(10) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Density (calculated)	1.404 Mg/m ³	
F(000)	968	
Data collection program	Bruker SMART v5.054	
θ range for data collection	2.06 to 28.36°	
Completeness to $\theta = 28.36^{\circ}$	93.7 %	
Index ranges	$-14 \leq h \leq 14, -17 \leq k \leq 17,$	-19 ≤ l ≤ 19
Data collection scan type	ω scans at 5 ϕ settings	
Data reduction program	Bruker SAINT v6.22	
Reflections collected	32070	
Independent reflections	$5144 [R_{int} = 0.1503]$	
Absorption coefficient	0.447 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9368 and 0.9072	

Table 1 (cont.) Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	5144 / 0 / 362
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.064
Final R indices [I> 2σ (I), 2718 reflections]	R1 = 0.0468, wR2 = 0.0744
R indices (all data)	R1 = 0.1218, wR2 = 0.0862
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^{2}(Fo^{2})$
Max shift/error	0.000
Average shift/error	0.000
Largest diff. peak and hole	0.402 and -0.348 e.Å ⁻³

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Z	U _{eq}	
O(1)	2996(2)	1246(2)	424(1)	23(1)	
0(2)	3667(2)	289(1)	2011(1)	23(1)	
O(3)	10816(2)	767(1)	809(1)	24(1)	
O(4)	10340(2)	21(1)	3988(1)	28(1)	
O(5)	9289(2)	-1153(1)	4583(1)	27(1)	
C(1)	4196(2)	1102(2)	735(2)	20(1)	
C(2)	4579(2)	649(2)	1547(2)	19(1)	
C(3)	5789(2)	489(2)	1874(2)	19(1)	
C(4)	6178(2)	-65(2)	2727(2)	22(1)	
C(5)	7352(2)	-608(2)	2734(2)	20(1)	
C(6)	8184(2)	-314(2)	2243(2)	18(1)	
C(7)	9343(2)	-929(2)	2231(2)	20(1)	
C(8)	9093(3)	-1750(2)	1504(2)	25(1)	
C(9)	9748(3)	-1452(2)	3131(2)	22(1)	
C(10)	9824(2)	-789(2)	3926(2)	21(1)	
C(11)	10377(2)	-254(2)	2003(2)	23(1)	
C(12)	10036(2)	410(2)	1214(2)	21(1)	
C(13)	8738(2)	652(2)	926(2)	19(1)	
C(14)	7993(2)	658(2)	1710(2)	18(1)	
C(15)	8424(3)	1530(2)	2337(2)	22(1)	
C(16)	6654(2)	805(2)	1345(2)	18(1)	
C(17)	6244(2)	1260(2)	531(2)	19(1)	
C(18)	5037(2)	1421(2)	199(2)	19(1)	
C(19)	4615(3)	1892(3)	-688(2)	24(1)	
C(20)	3502(3)	888(3)	2774(2)	28(1)	
C(21)	1118(3)	3109(2)	603(2)	31(1)	
Cl(1)	1475(1)	3147(1)	1778(1)	41(1)	
Cl(2)	2089(1)	3910(1)	117(1)	45(1)	
Cl(3)	-397(1)	3458(1)	263(1)	39(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for DCB05 (CCDC 175588). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

0(1)-C(1)	1.361(3)	C(21)-Cl(3)	1.749(3)
O(1)-H(1)	0.72(3)	C(21)-Cl(1)	1.749(3)
O(2)-C(2)	1.401(3)	C(21)-Cl(2)	1.753(3)
O(2)-C(20)	1.428(3)	C(21)-H(21)	0.91(3)
O(3)-C(12)	1.230(3)		
O(4)-C(10)	1.216(3)	C(1)-O(1)-H(1)	107(3)
O(5)-C(10)	1.319(3)	C(2)-O(2)-C(20)	113.6(2)
O(5)-H(5A)	0.97(4)	C(10)-O(5)-H(5A)	111.0(18)
C(1)-C(2)	1.368(4)	O(1)-C(1)-C(2)	121.6(2)
C(1)-C(18)	1.390(3)	O(1)-C(1)-C(18)	118.2(2)
C(2)-C(3)	1.378(3)	C(2)-C(1)-C(18)	120.3(2)
C(3)-C(16)	1.403(3)	C(1)-C(2)-C(3)	122.7(2)
C(3)-C(4)	1.483(4)	C(1)-C(2)-O(2)	116.2(2)
C(4)-C(5)	1.492(4)	C(3)-C(2)-O(2)	120.9(2)
C(4)-H(4A)	0.94(3)	C(2)-C(3)-C(16)	118.1(2)
C(4)-H(4B)	0.96(3)	C(2)-C(3)-C(4)	121.7(2)
C(5)-C(6)	1.328(3)	C(16)-C(3)-C(4)	120.1(2)
C(5)-H(5)	0.97(3)	C(3)-C(4)-C(5)	112.8(2)
C(6)-C(14)	1.516(4)	C(3)-C(4)-H(4A)	108.3(16)
C(6)-C(7)	1.529(3)	C(5)-C(4)-H(4A)	109.2(15)
C(7)-C(9)	1.525(4)	C(3)-C(4)-H(4B)	108.8(16)
C(7)-C(8)	1.538(4)	C(5)-C(4)-H(4B)	107.1(16)
C(7)-C(11)	1.539(3)	H(4A)-C(4)-H(4B)	111(2)
C(8)-H(8A)	0.95(3)	C(6)-C(5)-C(4)	122.6(3)
C(8)-H(8B)	1.02(3)	C(6)-C(5)-H(5)	119.0(14)
C(8)-H(8C)	1.03(3)	C(4)-C(5)-H(5)	118.4(14)
C(9)-C(10)	1.475(4)	C(5)-C(6)-C(14)	119.3(2)
C(9)-H(9A)	0.92(3)	C(5)-C(6)-C(7)	120.7(2)
C(9)-H(9B)	0.93(2)	C(14)-C(6)-C(7)	119.97(19)
C(11)-C(12)	1.478(4)	C(9)-C(7)-C(6)	111.69(19)
C(11)-H(11A)	0.99(3)	C(9)-C(7)-C(8)	107.6(2)
C(11)-H(11B)	1.00(3)	C(6)-C(7)-C(8)	109.0(2)
C(12)-C(13)	1.480(4)	C(9)-C(7)-C(11)	109.4(2)
C(13)-C(14)	1.541(3)	C(6)-C(7)-C(11)	110.7(2)
C(13)-H(13A)	0.94(2)	C(8)-C(7)-C(11)	108.4(2)
C(13)-H(13B)	1.00(2)	C(7)-C(8)-H(8A)	108.3(15)
C(14)-C(16)	1.520(4)	C(7)-C(8)-H(8B)	107.9(16)
C(14)-C(15)	1.523(4)	H(8A)-C(8)-H(8B)	109(2)
C(15)-H(15A)	1.00(2)	C(7)-C(8)-H(8C)	113.1(14)
C(15)-H(15B)	1.00(2)	H(8A)-C(8)-H(8C)	106(2)
C(15)-H(15C)	1.01(3)	H(8B)-C(8)-H(8C)	113(2)
C(16)-C(17)	1.378(4)	C(10)-C(9)-C(7)	114.7(2)
C(17)-C(18)	1.377(4)	C(10)-C(9)-H(9A)	111.5(15)
C(17)-H(17)	0.97(2)	C(7)-C(9)-H(9A)	114.9(16)
C(18)-C(19)	1.481(4)	C(10)-C(9)-H(9B)	105.6(15)
C(19)-H(19A)	0.94(3)	C(7)-C(9)-H(9B)	111.0(15)
C(19)-H(19B)	0.92(3)	H(9A)-C(9)-H(9B)	97(2)
C(19)-H(19C)	1.03(2)	O(4)-C(10)-O(5)	122.0(2)
C(20)-H(20A)	1.00(3)	O(4)-C(10)-C(9)	123.9(2)
C(20)-H(20B)	0.95(2)	O(5)-C(10)-C(9)	114.2(2)
C(20)-H(20C)	0.99(3)	C(12)-C(11)-C(7)	114.6(2)

Table 3. Bond lengths [Å] and angles [°] for DCB05 (CCDC 175588).

C(12)-C(11)-H(11A)	106.0(16)
C(7)-C(11)-H(11A)	112.5(15)
C(12)-C(11)-H(11B)	113.7(14)
C(7)-C(11)-H(11B)	108.6(15)
H(11A)-C(11)-H(11B)	101(2)
O(3)-C(12)-C(11)	120.7(2)
O(2)-C(12)-C(12)	120.2(2)
C(11) C(12) C(13)	120.3(2)
C(12) - C(12) - C(13)	119.0(2)
C(12) - C(13) - C(14)	113.2(2)
C(12)-C(13)-H(13A)	109.8(13)
C(14)-C(13)-H(13A)	108.8(12)
C(12)-C(13)-H(13B)	110.1(13)
C(14)-C(13)-H(13B)	109.3(12)
H(13A)-C(13)-H(13B)	105.3(19)
C(6)-C(14)-C(16)	110.5(2)
C(6)-C(14)-C(15)	108.5(2)
C(16)-C(14)-C(15)	108.9(2)
C(6)-C(14)-C(13)	110.5(2)
C(16)-C(14)-C(13)	109.8(2)
C(15)-C(14)-C(13)	108.6(2)
C(14)-C(15)-H(15A)	109.5(14)
C(14)-C(15)-H(15B)	111.6(14)
H(15A)-C(15)-H(15B)	107.0(18)
C(14)-C(15)-H(15C)	116 1(16)
H(1 = A) C(1 = E) H(1 = C)	111(0)
H(15A) - C(15) - H(15C)	111(2)
C(15) - C(15) - R(15C)	100(2)
C(17)-C(16)-C(3)	118.0(2)
C(17)-C(16)-C(14)	123.4(2)
C(3)-C(16)-C(14)	118.6(2)
C(18)-C(17)-C(16)	124.3(2)
C(18)-C(17)-H(17)	117.2(15)
C(16)-C(17)-H(17)	118.6(15)
C(17)-C(18)-C(1)	116.7(2)
C(17)-C(18)-C(19)	123.3(2)
C(1)-C(18)-C(19)	120.0(2)
C(18)-C(19)-H(19A)	114.1(17)
C(18)-C(19)-H(19B)	111.4(17)
H(19A)-C(19)-H(19B)	109(2)
C(18)-C(19)-H(19C)	109.9(15)
H(19A)-C(19)-H(19C)	104(2)
H(19B)-C(19)-H(19C)	107(2)
O(2)-C(20)-H(20A)	111.9(14)
O(2)-C(20)-H(20B)	104.7(14)
H(20A)-C(20)-H(20B)	104(2)
$\Omega(2) - C(20) - H(20C)$	100(2)
H(204)-C(20)-H(20C)	108(2)
H(20R) - C(20) - H(20C)	100(2)
n(20B)-C(20)-n(20C)	111(2)
O(3) - O(21) - O(1)	110.32(10)
O(3) - O(21) - O(2)	110.32(17)
O(1) - O(21) - O(2)	109.98(17)
CI(3)-C(21)-H(21)	109.2(19)
CI(1)-C(21)-H(21)	105.5(19)
CI(2)-C(21)-H(21)	111.4(16)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>O(1)</u>	149(10)	334(13)	235(11)	33(9)	80(9)	-25(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	182(10)	311(11)	210(10)	7(9)	113(8)	-10(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(3)	154(10)	348(11)	253(11)	24(9)	102(8)	-2(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	324(11)	318(12)	214(10)	-30(9)	98(9)	-60(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)	325(11)	325(12)	182(11)	-13(10)	95(9)	-42(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	142(14)	230(15)	221(15)	-30(12)	23(11)	8(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	142(14)	248(15)	205(15)	-29(12)	82(11)	-27(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	174(15)	228(15)	167(14)	-8(12)	58(11)	4(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)	183(15)	279(17)	222(16)	16(14)	92(12)	-9(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)	223(15)	228(16)	165(15)	17(13)	41(12)	4(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	155(14)	222(15)	159(14)	-23(11)	31(11)	-4(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)	164(14)	230(15)	198(15)	8(12)	36(11)	1(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)	240(17)	298(18)	208(16)	-20(14)	47(13)	18(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	190(16)	242(16)	242(16)	20(13)	49(12)	24(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	148(14)	267(17)	208(15)	27(13)	-21(12)	41(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	150(15)	294(17)	243(16)	-13(14)	53(12)	15(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	216(15)	196(15)	230(16)	-72(12)	56(12)	-7(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	175(15)	235(16)	172(15)	24(13)	71(12)	9(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	158(14)	222(15)	186(14)	-19(12)	92(11)	-10(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	192(15)	254(16)	217(16)	-18(13)	85(12)	-7(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	169(14)	203(14)	180(14)	-3(11)	79(11)	13(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	176(14)	229(15)	194(15)	-22(12)	92(12)	-2(12)
$\begin{array}{ccccccc} C(19) & 181(16) & 298(18) & 228(16) & 44(15) & 29(13) & -2(14) \\ C(20) & 237(18) & 400(20) & 250(17) & -48(15) & 140(15) & -19(15) \\ C(21) & 345(18) & 274(18) & 296(17) & -15(15) & 10(14) & 23(15) \\ Cl(1) & 443(5) & 519(5) & 245(4) & -55(4) & 17(3) & 122(4) \\ Cl(2) & 415(5) & 447(5) & 491(5) & 63(4) & 117(4) & -38(4) \\ Cl(3) & 331(4) & 475(5) & 339(4) & -10(4) & 21(3) & 69(4) \end{array}$	C(18)	184(14)	216(15)	191(14)	-5(12)	67(11)	22(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	181(16)	298(18)	228(16)	44(15)	29(13)	-2(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	237(18)	400(20)	250(17)	-48(15)	140(15)	-19(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	345(18)	274(18)	296(17)	-15(15)	10(14)	23(15)
Cl(2) $415(5)$ $447(5)$ $491(5)$ $63(4)$ $117(4)$ $-38(4)$ $Cl(3)$ $331(4)$ $475(5)$ $339(4)$ $-10(4)$ $21(3)$ $69(4)$	Cl(1)	443(5)	519(5)	245(4)	-55(4)	17(3)	122(4)
Cl(3) 331(4) 475(5) 339(4) -10(4) 21(3) 69(4)	Cl(2)	415(5)	447(5)	491(5)	63(4)	117(4)	-38(4)
	Cl(3)	331(4)	475(5)	339(4)	-10(4)	21(3)	69(4)

Table 4. Anisotropic displacement parameters (Ųx 10⁴) for DCB05 (CCDC 175588).The anisotropic displacement factor exponent takes the form:
 $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	Х	У	Z	U _{iso}	
H(1)	2670(30)	960(20)	710(20)	37(11)	
H(4A)	6260(20)	400(20)	3203(17)	23(7)	
H(4B)	5570(20)	-560(20)	2799(17)	29(7)	
H(5)	7500(20)	-1210(20)	3098(17)	29(8)	
H(5A)	9470(30)	-750(30)	5120(20)	60(10)	
H(8A)	8480(20)	-2180(20)	1656(18)	30(8)	
H(8B)	9870(30)	-2160(20)	1514(18)	40(8)	
H(8C)	8770(20)	-1467(19)	875(19)	30(7)	
H(9A)	9340(20)	-2040(20)	3214(16)	19(7)	
H(9B)	10520(20)	-1729(19)	3152(16)	22(7)	
H(11A)	10710(20)	190(20)	2508(19)	39(8)	
H(11B)	11100(20)	-680(20)	1959(16)	29(7)	
H(13A)	8666(18)	1287(17)	642(14)	3(6)	
H(13B)	8370(20)	165(18)	456(16)	16(7)	
H(15A)	8294(19)	2176(18)	1999(15)	11(6)	
H(15B)	7970(20)	1565(18)	2856(17)	22(7)	
H(15C)	9280(30)	1480(20)	2670(19)	39(8)	
H(17)	6830(20)	1466(18)	154(16)	23(7)	
H(19A)	4240(20)	2520(20)	-652(18)	31(8)	
H(19B)	4110(20)	1470(20)	-1056(19)	33(8)	
H(19C)	5350(20)	2042(19)	-1011(17)	32(7)	
H(20A)	4260(30)	910(20)	3234(18)	29(8)	
H(20B)	2880(20)	553(17)	3031(15)	14(6)	
H(20C)	3270(20)	1590(20)	2602(19)	38(9)	
H(21)	1220(20)	2450(20)	447(19)	39(9)	

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters(Ųx 103) for DCB05 (CCDC 175588).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1)O(3)#1	0.72(3)	2.10(3)	2.656(2)	135(3)	
O(1)-H(1)O(2)	0.72(3)	2.28(3)	2.703(3)	119(3)	
O(5)-H(5A)O(4)#2	0.97(4)	1.64(4)	2.600(3)	175(3)	

Table 6. Hydrogen bonds for DCB05 (CCDC 175588) [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 -x+2,-y,-z+1

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Crystal Structure Analysis of:

Diketone 196 (DCB11)

(CCDC 201187)

Contents:

- Table 1. Crystal data
- Table 2. Atomic Coordinates
- Table 3. Full bond distances and angles (for deposit)
- Table 4. Anisotropic displacement parameters
- Table 5. Hydrogen atomic coordinates

Figure A.96 Representation of Diketone **196**.

Table 1. Crystal data and structure refinement for DCB11 (CCDC 201187).

Empirical formula	
Formula weight	
Crystallization Solvent	
Crystal Habit	
Crystal size	
Crystal color	

C₂₁H₂₆O₅ 358.42 Acetone/heptane Fragment 0.26 x 0.22 x 0.17 mm³ Colorless

Data Collection

Rotation **Preliminary Photos** Type of diffractometer Bruker SMART 1000 0.71073 Å MoKα Wavelength Data Collection Temperature 98(2) K θ range for 11980 reflections used in lattice determination 2.28 to 28.32° Unit cell dimensions a = 9.0211(6) Åb = 11.3617(7) Å $\beta = 97.5510(10)^{\circ}$ c = 17.9596(12) Å Volume 1824.8(2) Å³ Ζ 4 Monoclinic Crystal system Space group $P2_1/n$ Density (calculated) 1.305 Mg/m³ F(000) 768 Bruker SMART v5.054 Data collection program θ range for data collection 2.13 to 28.32° Completeness to $\theta = 28.32^{\circ}$ 93.0 % Index ranges $-11 \le h \le 11, -14 \le k \le 14, -23 \le l \le 23$ Data collection scan type ω scans at 5 ϕ settings Data reduction program Bruker SAINT v6.022 **Reflections collected** 25862 Independent reflections $4226 [R_{int} = 0.0517]$ Absorption coefficient 0.092 mm⁻¹ Absorption correction None Max. and min. transmission 0.9845 and 0.9764

Table 1 (cont.) Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	4226 / 0 / 339
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	2.153
Final R indices [I> 2σ (I), 3426 reflections]	$R_1 = 0.0404, wR_2 = 0.0704$
R indices (all data)	R1 = 0.0511, wR2 = 0.0715
Type of weighting scheme used	Sigma
Weighting scheme used	<i>w</i> =1/o ² (Fo ²)
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	0.326 and -0.254 e.Å ⁻³

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Z	U _{eq}	
O(1)	7731(1)	4507(1)	529(1)	19(1)	
O(2)	4749(1)	8200(1)	472(1)	21(1)	
O(3)	9216(1)	11345(1)	2166(1)	25(1)	
O(4)	3377(1)	11397(1)	1288(1)	24(1)	
O(5)	5418(1)	12446(1)	1710(1)	29(1)	
C(1)	10631(1)	7158(1)	1330(1)	16(1)	
C(2)	11220(1)	6047(1)	1256(1)	16(1)	
C(3)	12869(2)	5814(1)	1455(1)	23(1)	
C(4)	10262(1)	5133(1)	986(1)	16(1)	
C(5)	8757(1)	5346(1)	789(1)	15(1)	
C(6)	8217(2)	3305(1)	562(1)	20(1)	
C(7)	8162(1)	6478(1)	851(1)	14(1)	
C(8)	6510(1)	6650(1)	623(1)	18(1)	
C(9)	5914(1)	7834(1)	811(1)	15(1)	
C(10)	6851(1)	8484(1)	1442(1)	14(1)	
C(11)	6098(1)	9579(1)	1751(1)	15(1)	
C(12)	4682(1)	9175(1)	2071(1)	19(1)	
C(13)	5708(1)	10548(1)	1148(1)	17(1)	
C(14)	4865(1)	11569(1)	1417(1)	18(1)	
C(15)	2478(2)	12330(1)	1540(1)	31(1)	
C(16)	7204(1)	10084(1)	2400(1)	18(1)	
C(17)	8678(1)	10359(1)	2139(1)	18(1)	
C(18)	9450(1)	9319(1)	1844(1)	18(1)	
C(19)	8466(1)	8626(1)	1220(1)	14(1)	
C(20)	8500(2)	9259(1)	463(1)	19(1)	
C(21)	9104(1)	7387(1)	1138(1)	14(1)	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for DCB11 (CCDC 201187). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

O(1)-C(5)	1.3673(13)	C(20)-H(20A)	0.996(14)
O(1)-C(6)	1.4332(14)	C(20)-H(20B)	0.987(13)
O(2)-C(9)	1.2162(13)	C(20)-H(20C)	0.985(13)
O(3)-C(17)	1.2186(13)		
O(4)-C(14)	1.3457(14)	C(5)-O(1)-C(6)	117.41(9)
O(4)-C(15)	1.4438(16)	C(14)-O(4)-C(15)	115.32(10)
O(5)-C(14)	1.2036(14)	C(2)-C(1)-C(21)	121.54(11)
C(1)-C(2)	1.3828(16)	C(2)-C(1)-H(1)	118.7(7)
C(1)-C(21)	1.3997(16)	C(21)-C(1)-H(1)	119.8(7)
C(1)-H(1)	1.006(12)	C(1)-C(2)-C(4)	118.97(11)
C(2)-C(4)	1.3963(16)	C(1)-C(2)-C(3)	121.17(11)
C(2)-C(3)	1.5069(17)	C(4)-C(2)-C(3)	119.86(11)
C(3)-H(3A)	0.967(14)	C(2)-C(3)-H(3A)	109.9(8)
C(3)-H(3B)	0.963(16)	C(2)-C(3)-H(3B)	111.4(9)
C(3)-H(3C)	0.980(15)	H(3A)-C(3)-H(3B)	109.7(12)
C(4)-C(5)	1.3783(16)	C(2)-C(3)-H(3C)	111.9(9)
C(4)-H(4)	0.958(11)	H(3A)-C(3)-H(3C)	108.7(12)
C(5)-C(7)	1.4037(15)	H(3B)-C(3)-H(3C)	105.1(12)
C(6)-H(6A)	0.978(12)	C(5)-C(4)-C(2)	120.19(11)
C(6)-H(6B)	0.973(12)	C(5)-C(4)-H(4)	119.0(7)
C(6)-H(6C)	0.999(13)	C(2)-C(4)-H(4)	120.8(7)
C(7)-C(21)	1.3926(16)	O(1)-C(5)-C(4)	124.44(10)
C(7)-C(8)	1.5051(16)	O(1)-C(5)-C(7)	114.64(10)
C(8)-C(9)	1.5034(16)	C(4)-C(5)-C(7)	120.92(11)
C(8)-H(8A)	0.993(13)	O(1)-C(6)-H(6A)	105.1(7)
C(8)-H(8B)	0.996(13)	O(1)-C(6)-H(6B)	110.4(7)
C(9)-C(10)	1.5144(16)	H(6A)-C(6)-H(6B)	110.7(10)
C(10)-C(11)	1.5546(16)	O(1)-C(6)-H(6C)	111.8(7)
C(10)-C(19)	1.5679(16)	H(6A)-C(6)-H(6C)	110.0(10)
C(10)-H(10)	0.982(11)	H(6B)-C(6)-H(6C)	108.8(10)
C(11)-C(12)	1.5377(16)	C(5)-C(7)-C(21)	119.20(11)
C(11)-C(13)	1.5525(16)	C(5)-C(7)-C(8)	118.20(10)
C(11)-C(16)	1.5420(16)	C(21)-C(7)-C(8)	122.58(10)
C(12)-H(12A)	0.986(12)	C(7)-C(8)-C(9)	115.21(10)
C(12)-H(12B)	1.025(12)	C(7)-C(8)-H(8A)	112.9(8)
C(12)-H(12C)	0.993(12)	C(9)-C(8)-H(8A)	106.4(7)
C(13)-C(14)	1.5018(16)	C(7)-C(8)-H(8B)	109.6(8)
C(13)-H(13A)	0.986(12)	C(9)-C(8)-H(8B)	105.9(8)
C(13)-H(13B)	0.957(11)	H(8A)-C(8)-H(8B)	106.3(11)
C(15)-H(15A)	0.969(14)	O(2)-C(9)-C(10)	124.61(11)
C(15)-H(15B)	0.980(15)	O(2)-C(9)-C(8)	120.35(11)
C(15)-H(15C)	0.989(15)	C(10)-C(9)-C(8)	115.03(10)
C(16)-C(17)	1.4999(17)	C(9)-C(10)-C(11)	115.52(10)
C(16)-H(16A)	0.980(12)	C(9)-C(10)-C(19)	107.82(9)
C(16)-H(16B)	0.982(12)	C(11)-C(10)-C(19)	118.21(9)
C(17)-C(18)	1.5039(17)	C(9)-C(10)-H(10)	104.1(6)
C(18)-C(19)	1.5492(16)	C(11)-C(10)-H(10)	105.7(6)
C(18)-H(18A)	0.966(12)	C(19)-C(10)-H(10)	103.8(6)
C(18)-H(18B)	0.996(12)	C(12)-C(11)-C(10)	108.53(9)
C(19)-C(21)	1.5357(15)	C(12)-C(11)-C(13)	110.46(10)
C(19)-C(20)	1.5424(16)	C(10)-C(11)-C(13)	112.81(9)

 Table 3.
 Bond lengths [Å] and angles [°] for DCB11 (CCDC 201187).

C(12)-C(11)-C(16)	108.40(10)
C(10)-C(11)-C(16)	107.36(9)
C(13)-C(11)-C(16)	109.15(10)
C(11)-C(12)-H(12A)	109.5(7)
C(11)-C(12)-H(12B)	110.2(7)
H(12A)-C(12)-H(12B)	109.2(9)
C(11)-C(12)-H(12C)	109.5(7)
H(12A)-C(12)-H(12C)	108.7(10)
H(12B)-C(12)-H(12C)	100.7(0)
C(14)-C(13)-C(11)	113.64(10)
C(14)-C(12)-H(12A)	104.7(7)
C(11)-C(12)-H(12A)	104.7(7)
C(14)-C(12)-H(12R)	10.9(7)
C(14)-C(13)-H(13B)	100.1(7)
U(10A) C(10) U(10P)	109.4(7)
D(-) C(14) D(4)	110.0(10)
O(5) - O(14) - O(4)	122.0/(11)
O(5) - C(14) - C(13)	125.55(12)
O(4) - O(13)	111.58(10)
O(4)-C(15)-H(15A)	107.3(8)
O(4)-C(15)-H(15B)	109.3(9)
H(15A)-C(15)-H(15B)	110.0(12)
O(4)-C(15)-H(15C)	110.6(8)
H(15A)-C(15)-H(15C)	111.5(12)
H(15B)-C(15)-H(15C)	108.1(12)
C(17)-C(16)-C(11)	110.67(10)
C(17)-C(16)-H(16A)	108.5(7)
C(11)-C(16)-H(16A)	111.5(7)
C(17)-C(16)-H(16B)	108.4(7)
C(11)-C(16)-H(16B)	107.5(7)
H(16A)-C(16)-H(16B)	110.2(9)
O(3)-C(17)-C(18)	122.40(11)
O(3)-C(17)-C(16)	122.92(11)
C(18)-C(17)-C(16)	114.67(11)
C(17)-C(18)-C(19)	113.93(10)
C(17)-C(18)-H(18A)	109.0(7)
C(19)-C(18)-H(18A)	110.2(7)
C(17)-C(18)-H(18B)	105.8(7)
C(10)-C(18)-H(18B)	100.0(7)
H(18A)-C(18)-H(18B)	107.8(0)
C(21)-C(10)-C(20)	107.0(9)
C(21) - C(10) - C(18)	100.90(9) 110.42(0)
C(20)-C(10)-C(18)	10.43(9) 108.02(10)
C(20) - C(10) - C(10)	100.92(10)
C(21)- $C(19)$ - $C(10)$	10/.05(9)
C(20) - C(10) - C(10)	113.40(10)
C(10) - C(10) - C(10)	109.42(9)
$C(19)-C(20)-\Pi(20A)$	100.7(7)
U(19)-U(20)-H(20B)	111.1(7)
H(20A)-C(20)-H(20B)	107.8(10)
C(19)-C(20)-H(20C)	112.4(7)
H(20A)-U(20)-H(20U)	107.0(10)
H(20B)-C(20)-H(20C)	109.7(10)
C(1)-C(21)-C(7)	119.14(11)
C(1)-C(21)-C(19)	121.02(10)
C(7)-C(21)-C(19)	119.82(10)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
0(1)	179(5)	129(4)	246(5)	-34(4)	5(4)	-8(3)
0(2)	175(5)	198(5)	252(5)	-10(4)	-23(4)	19(4)
O(3)	239(5)	164(5)	340(5)	-50(4)	-12(4)	-28(4)
O(4)	181(5)	202(5)	316(5)	-22(4)	1(4)	57(4)
O(5)	270(5)	197(5)	396(6)	-85(4)	44(4)	-6(4)
C(1)	170(6)	162(6)	152(6)	-5(5)	26(5)	-28(5)
C(2)	160(6)	188(7)	140(6)	12(5)	29(5)	5(5)
C(3)	165(7)	220(8)	302(8)	-28(7)	7(6)	13(6)
C(4)	189(7)	140(6)	158(6)	10(5)	43(5)	31(5)
C(5)	176(6)	159(6)	118(6)	-7(5)	29(5)	-31(5)
C(6)	223(8)	142(7)	237(7)	-9(6)	13(6)	-2(6)
C(7)	145(6)	157(6)	123(6)	7(5)	31(5)	4(5)
C(8)	162(7)	168(7)	209(7)	-33(6)	8(5)	0(5)
C(9)	142(6)	161(6)	161(6)	30(5)	48(5)	-18(5)
C(10)	151(6)	128(6)	143(6)	26(5)	21(5)	7(5)
C(11)	173(6)	128(6)	153(6)	1(5)	32(5)	14(5)
C(12)	202(7)	167(7)	216(7)	13(6)	73(6)	27(6)
C(13)	185(7)	159(7)	171(7)	4(5)	29(5)	13(5)
C(14)	209(7)	164(7)	163(6)	30(5)	19(5)	19(5)
C(15)	218(8)	287(9)	419(10)	-13(7)	64(7)	94(7)
C(16)	241(7)	145(7)	153(7)	-7(5)	26(5)	29(5)
C(17)	203(7)	172(7)	130(6)	-11(5)	-53(5)	9(5)
C(18)	158(7)	159(7)	206(7)	-1(5)	4(5)	-17(5)
C(19)	139(6)	125(6)	166(6)	0(5)	15(5)	-6(5)
C(20)	196(7)	182(7)	201(7)	18(5)	58(6)	0(6)
C(21)	162(6)	150(6)	114(6)	8(5)	37(5)	3(5)

Table 4. Anisotropic displacement parameters (Ųx 10⁴) for DCB11 (CCDC 201187).The anisotropic displacement factor exponent takes the form:
 $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	X	У	Z	U _{iso}	
H(1)	11324(13)	7813(10)	1530(6)	16(3)	
H(3A)	13385(15)	6538(12)	1604(7)	35(4)	
H(3B)	13289(17)	5469(13)	1039(9)	50(5)	
H(3C)	13068(16)	5243(13)	1865(9)	48(5)	
H(4)	10635(12)	4351(10)	941(6)	13(3)	
H(6A)	7338(14)	2849(10)	357(7)	21(3)	
H(6B)	8556(13)	3077(10)	1078(7)	18(3)	
H(6C)	9048(14)	3171(10)	254(7)	19(3)	
H(8A)	6202(14)	6529(11)	77(8)	29(4)	
H(8B)	5944(15)	6062(11)	886(7)	33(4)	
H(10)	6980(11)	7914(9)	1856(6)	9(3)	
H(12A)	4310(12)	9821(10)	2363(6)	17(3)	
H(12B)	3867(14)	8942(10)	1643(7)	22(3)	
H(12C)	4927(13)	8491(11)	2410(7)	20(3)	
H(13A)	6623(14)	10898(10)	997(6)	18(3)	
H(13B)	5112(12)	10214(10)	719(6)	12(3)	
H(15A)	1440(17)	12099(12)	1419(8)	38(4)	
H(15B)	2664(16)	13060(13)	1277(8)	43(4)	
H(15C)	2744(16)	12466(12)	2086(9)	44(4)	
H(16A)	6816(13)	10804(10)	2604(6)	16(3)	
H(16B)	7366(13)	9478(10)	2792(7)	18(3)	
H(18A)	10357(14)	9583(10)	1663(6)	16(3)	
H(18B)	9741(13)	8799(10)	2285(7)	22(3)	
H(20A)	9509(15)	9153(10)	304(7)	26(3)	
H(20B)	7759(14)	8917(10)	69(7)	22(3)	
H(20C)	8331(13)	10112(11)	498(6)	21(3)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
(Å² $x \ 10^3$) for DCB11 (CCDC 201187).