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Abstract

Organisms continuously monitor the stimuli they encounter and the outcome of their ac-

tions. To survive in an uncertain world they aim for rewards and try to avoid punishments.

Research in neuroscience, ecology, and economics implies that organisms base their decisions

in uncertain situations on expected rewards and risk. Neuroscience focuses on reward pre-

diction learning based on reward prediction errors. In contrast, economic studies emphasize

risk in addition to expected reward.

We used functional imaging in humans during gambling tasks to understand how the

brain represents expected reward and risk. We find that brain activity in subcortical

dopaminoceptive structures can be separated, both spatially and temporally, into signals

that correlate with (mathematical) expectation of reward, and with reward variance (risk)

– two fundamental parameters in financial decision theory. Our results suggest that the

primary function of the dopaminergic system extends beyond its established role in learn-

ing, motivation, and salience: it signals different aspects of upcoming stochastic rewards –

expected reward and risk.

Based on financial decision theory we then hypothesized neural representations of pre-

diction risk and prediction risk errors. We find that the insula represents both. In analogy

with reward representations in subcortical structures, the signals are spatially and tempo-

rally differentiated. These findings expand our understanding of the neural basis of decision

making under uncertainty by adding prediction risk estimation.

Finally, we investigated where and how expected reward and risk are combined into

the neural representation of a gamble’s overall value. Using canonical correlation analysis,

we find a new predictor that – contrary to expected utility theory – adds risk to expected

reward. This sum may define a metric of conflict or attention. This metric significantly

correlates with activation in the anterior cingulate cortex a structure associated with conflict

monitoring.
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Drawing on financial theories, we show how the brain represents expected reward and

risk. Our results suggest that the earlier understanding of decision making under uncer-

tainty needs to be expanded to include (prediction) risk as measured by variance as well

as prediction risk errors. Such integration has far-reaching implications, in particular for

pathological decision making.
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Part I Overview

An organism trying to survive in an uncertain world cannot be indifferent to the stimuli

it encounters and the outcomes of its actions. Instead, incoming stimuli are assigned a

motivational value that guides decision making. The most basic form of assignment is to

dissociate rewarding (appetitive) and punishing (aversive) stimuli. Accordingly, the most

basic behavior is to seek out rewards and avoid punishments.

In a dynamic and fast-paced environment, fast behavioral reactions can be advanta-

geous. (Accurate) predictions can reduce reaction times. In addition, based on predictions,

organisms may evaluate future stimuli and events before they actually occur. Behavioral

responses can be chosen and prepared beforehand and thus increase the probability of ap-

proaching a rewarding, or avoiding a punishing object.

Early neuroscience research focused on predicting rewarding stimuli and on responses to

unexpected appetitive and aversive events. This research was soon related to reinforcement

learning, which uses prediction errors to improve future predictions. Since then much of the

research within neuroscience has been driven by the reward-prediction-error hypothesis.

In the context of learning and motivation, the neural representations of reward, reward

predictions and reward prediction errors are now well studied (chapter 1). However, evidence

from behavioral ecology shows that values are assigned to stimuli and events not based on

predicted reward alone but that consistent preferences are still formed between stimuli of

the same predicted reward when the uncertainty associated with the stimuli differs (chapter

2). Most organisms will avoid uncertain rewards yet attitudes toward uncertainty are not

as homogenous as those toward predicted rewards.

The mathematical framework for forming preferences and making decisions under un-

certainty is often borrowed from economics and finance. Its significance for neuroscience

is highlighted by its successful application to behavioral ecology and emerging results on

uncertainty-related signals in the brain (chapter 3).
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Taken together, previous research in neuroscience, ecology, and economics implies that

in order to assign motivational values and decisions in situations of uncertainty, organisms

make predictions about expected rewards and uncertainty which are continuously updated

using prediction errors.
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Chapter 1

Neural Basis of Reward Processing
and Reward Learning

The dopaminergic system is the cornerstone of reward processing and reward learning. It

is the origin of reward-related input to many brain regions including various limbic regions

(caudate nucleus, putamen, nucleus accumbens) and many areas of the neocortex (with a

particular focus on prefrontal cortical areas).

Figure 1.1 shows one of the earliest recordings of reward-related signals from dopamin-

ergic midbrain neurons in a behaving monkey. Phasic responses are elicited when a monkey

touches a small piece of food that is hidden in a box (Romo and Schultz 1990). The re-

sponse can be transferred to other somatosensory stimuli (e.g., visual or auditory) if these

fully predict the availability of food before the monkey reaches into the box (Schultz and

Romo 1990). Most importantly, these neurons do not respond to fully predicted rewards

(Mirenowicz and Schultz 1994). Such conditioning responses have been shown for other con-

ditioning paradigms as well (Schultz et al. 1993). As such, dopaminergic neurons respond

phasically to unexpected rewards and reward predicting stimuli.

The resemblance of this response to the error term used in temporal difference (TD)

learning, a form of reinforcement learning (RL) (Sutton and Barto 1981), led to the reward-

prediction-error hypothesis in which phasic dopamine responses encode a prediction error

about the summed future rewards. In TD models, prediction errors are the result of the

continuous comparison of predictions of reward with actual rewards. Reward prediction

errors are then used to update the future predictions of the model (Montague et al. 1995,

1996; Schultz et al. 1997). The application of the TD model generated many testable

predictions, which were first investigated in dopaminergic neurons of the midbrain and
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Figure 1.1: Phasic response of a dopaminergic neuron in response to a food reward (Romo
and Schultz 1990).

later expanded to include projection targets of these neurons. While the TD model does

have limits some of which I will explore in the discussion (chapter 8), the steady growth of

the number of structures involved in or modulated by reward processing has emphasized the

importance of this model. The following section gives an overview of the structures involved

in reward processing and the different aspects of reward that are known to be encoded. As

this is a field of intense research, the list is by no means complete and includes mostly very

early electrophysiology and fMRI studies. Many of the more recent studies are omitted at

this stage as they will be related to the current research in later chapters.

1.1 Reward-processing structures

Brain regions that respond to rewards include ventral tegmental area (Romo and Schultz

1990), the striatum (including caudate, putamen, ventral striatum and nucleus accumbens)

(Apicella et al. 1991; Hassani et al. 2001), subthalamic nucleus (Matsumura et al. 1992), pars

reticulata of substantia nigra (Sato and Hikosaka 2002), dorsolateral and orbital prefrontal

cortex (Tremblay and Schultz 1999), anterior cingulate cortex (Niki and Watanabe 1976),
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amygdala (Nishijo et al. 1988), and lateral hypothalamus (Burton et al. 1976). In addition,

the activity in numerous brain regions seems to be modulated by reward resulting in higher

activity during rewarded vs unrewarded trials. These include many of the areas listed above

plus the perirhinal cortex (Liu and Richmond 2000), superior colliculus (Ikeda and Hikosaka

2003), multiple regions within parietal cortex as well as pars compacta of substantia nigra

(Waelti et al. 2001). The specific aspect of reward and the response pattern that reward

triggers varies across regions.

For instance, reward-detecting neurons in orbitofrontal cortex (OFC) can dissociate

between liquid and solid food rewards, discriminate positive and negative reinforcers and

reflect the difference in value of (identical) food when presented in states of hunger vs

satiation (Critchley and Rolls 1996), all shown in nonhuman primates. In humans, the

involvement of OFC in coding stimulus value has been established for rewards associated

with sensory modalities (Anderson et al. 2003; O’Doherty et al. 2000) as well as abstract

rewards such as money (Elliott et al. 2003).

The phasic response of the dopaminergic neurons to the delivery of unexpected rewards

and reward-predicting stimuli increases for some of these neurons with increasing reward

probability (Fiorillo et al. 2003).

A reward prediction error has been confirmed in monkey midbrain neurons (Bayer and

Glimcher 2005) and is also seen in putamen in human imaging studies (McClure et al. 2003).

Signals associated with reward expectation and anticipation have been found in medial

prefrontal cortex and in human ventral striatum as well as in the amygdala (Knutson et al.

2001a,b).

Early research in amygdala had suggested that its activity can determine the magni-

tude of rewards (Pratt and Mizumori 1998) and predict expected outcomes during learning

(Schoenbaum et al. 1998). More recently, neuroimaging studies have pointed to an intensity

rather than valence encoding (Anderson et al. 2003) in amygdala.

1.2 Summary

Neuroscience research has focused on predicting rewarding stimuli and events and on re-

sponses to unexpected appetitive and aversive events. The resemblance of the encoding seen

in dopaminergic neurons to the error term used in TD learning has helped to significantly
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expand our understanding of neural reward processing.

However, due to the influence of TD learning the vast majority of representations have

been related to learning and motivation. In the absence of learning, are predictions about

reward made and reward prediction errors still generated? In addition, evidence exists that

it is not just expected reward that plays a role in decision making under uncertainty. The

next chapter will look at results from behavioral ecology that point to a more complex

behavior in decision making under uncertainty.
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Chapter 2

Behavior in Stochastic
Environments

Foraging behavior is studied in behavioral ecology and provides further support for the

reward-prediction-error hypothesis as organisms consistently prefer stimuli with larger ex-

pected rewards over those with smaller. However, foraging behavior indicates that when

assigning motivational values in situation of uncertainty, the uncertainty itself influences

decision making.

When a bee flies over a bed of flowers that it frequently visits, it will prefer flowers

which are more likely to have nectar over those that are less likely. That in itself is not

surprising. However, the bee does not always choose the more likely floral type. Instead,

when a flower is twice as likely to contain nectar than another one the bee will choose this

type of flower about twice as often (Real 1991). Is the occasional visit to the nectar-poor

floral type an error of choice or does bees’ choice behavior consistently reflect the statistics

of floral fields?

One of the first to formally study choice behavior in stochastic environments was Richard

Herrnstein in his Harvard pigeon lab (Logue 2002). Together with his colleagues he studied

pigeons’ foraging behavior by manipulating the probability of food availability. In a typical

experiment, pigeons had to pick one of two levers one of which would be “better,” i.e., more

likely to result in food pellets, than the other. The pigeons’ choice behavior, just like the

bee’s, revealed a preference for the “better” lever with occasional visits to the other lever.

The researchers noticed that the ratio of visits to the levers was not random. Instead, it was

best described by the matching law, a quantitative model, that states that pigeons distribute

their choices according to the ratio of likelihoods of reward on either lever (Herrnstein 1961,
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1974). Foraging behaviors that reflect the average amount of reward available have since

been observed in many other species including pigeons (Davison and Hunter 1976), rats

(Graft et al. 1977), nonhuman primates (Sugrue et al. 2004) and humans (Baum 1975). It

seems irrelevant if the difference in probability is presented in terms of spatial, temporal or

quality aspects of the available food or stimulus.

This behavior mirrors the findings of the neural basis of reward processing and is com-

patible with error based learning. Stimuli that provide larger rewards are assigned higher

motivational values and are preferred over those with lower motivational values. In addi-

tion, when underlying averages change suddenly, most organisms will adapt over a short

period of time (e.g., (Dorris and Glimcher 2004)) in a manner consistent with TD learning.

As the predictions are now less accurate, prediction errors will occur more frequently (in

the direction of the new averages) and predictions are updated accordingly to reflect the

new averages.

In summary, when an organism is presented with two stimuli of which one stimulus

on average is more rewarding than the other stimulus, the organism will prefer the more

rewarding stimulus. The difference in average is mirrored in behavior such that the larger

the difference, the more preferred the “better” stimulus becomes. So when averages are

the same, and decisions or preferences are based on averages alone, organisms should be

indifferent.

However, when a bee flies over a bed of flowers in which some floral types contain nectar

for sure and others have more nectar but its availability is less certain, bees will prefer a

constant rate of nectar over varying rates (although the average rate is the same) (Real

1991). Such variance sensitive foraging demonstrates that two stimuli which are on average

equally rewarding (based on expected reward) do not have the same value to the organism.

Instead, a second parameter comes into play; variance, or more general, uncertainty.

Variance-sensitive foraging behavior is found in many species. Sparrows (Caraco 1983),

juncos (Caraco 1981), wasps (Real 1981), rats (Battalio et al. 1985), and shrews (Barnard

and Brown 1985) all favor constant food availability over varying one given that the average

amount of food is the same. The macaque is the only nonhuman animal for which a

consistent preference for varying over constant rewards has been reported (McCoy and Platt

2005). In addition, variance-sensitivity has been successfully manipulated in other species

as a function of the organism’s energy budget (Caraco 1981; Barnard and Brown 1985). As
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such, preferences with respect to variance are not as straightforward as reward-sensitivity.

In decision making under uncertainty, does variance (or uncertainty) play a role similar

to that of expected reward? Are there neural correlates of uncertainty in analogy to expected

rewards? I.e., are there predictions of uncertainty and errors about these predictions?

Can the TD model make use of such predictions? Or is there a separate TD model for

uncertainty?

This idea gets strong support from economics and finance, which observe similar behav-

ior in human economic decision making under uncertainty. The mathematical framework

that has been developed to model such behavior may be able to inform and guide neu-

roscience research under uncertainty just as TD learning has guided research on reward

prediction and reward processing. For this, at least two things should be established:

(i) Preferences of choice in humans using abstract reinforcers such as money are similar

to preferences of choice in both humans and non-humans using primary rewards, such

as gustatory stimuli. This is to show that motivational values are assigned in the

same way in humans and non-humans and that motivational values are assigned in

the same way for primary and abstract rewards.

(ii) Economic theories can be applied successfully to behavioral and neural data.

Assuming (i) and (ii), uncovering the neural basis of basic economic variables and con-

cepts would provide the inputs and therefore be an important step toward understanding

decision-making mechanisms with the potential to expand the results to non-humans.

Using simple variables such as magnitude, probability, and utility of reward, economics

and finance successfully describe choices under uncertainty in humans, and therefore have

helped to better understand behavioral decision processes made by individuals. While the

above accounts of foraging behavior and reward processing circuits may imply that un-

certainty, just like expected reward, must have explicit neural representations, economic

theories demonstrate that variance-sensitive behavior can be generated without explicitly

encoding variance. This suggests that implicit neural codings have to be considered as well.

In the next chapter I will review the two main economic approaches to establishing moti-

vational values. The first is rooted in economics and uses implicit representations of both

expected reward and risk. The second is rooted in finance and uses explicit representations.
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Chapter 3

Preferences of Choice in Economics
and Finance

“Suppose two players, A and B, are playing a three-point game, each having wagered 32

pistoles, and are interrupted after A has two points and B has one. How [many pistoles]

should each receive?” (Encyclopaedia Britannica 2006) This problem was posed by Chevalier

de Mere in 1654 to Blaise Pascal which led the latter to develop the theory of probability

(and expected value).

To arrive at the answer (48 for A, 16 for B) Pascal suggested, that choices are based

on the expectation (or expected value), i.e., the sum of the value of all possible events

weighted by the probability of their occurrence. Given N possible outcomes xi (here N = 2,

corresponding to the two outcomes "A wins" and "B wins"), each having the probability

p(xi) of occurring, the expectation EV is given by the sum of all possible outcomes xi, with

i = 1, ..., N , each weighted by their probability p(xi)

EV =
N∑

i=1

p(xi) · xi. (3.1)

The idea of maximizing this expectation (or expected value) was the basis of early eco-

nomic theories of choice. At the time expected value was equivalent to what today is called

expected reward. Just like neuroscientists, economists assumed that options with higher

expected rewards are always preferred over those with lower expected rewards. Uncertainty

first entered the picture in 1738 (Bernoulli 1738), yet it was not further developed and

incorporated into theories of decision making until a couple of hundred years later (Knight

1921; von Neumann and Morgenstern 1944).1 Since then two questions have driven eco-
1In economics, risk denotes situations of uncertain outcomes for which the probability of the outcome
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nomic theories: How are preferences formed for uncertain prospects? and, How do you

mathematically model an uncertain prospect?

Today, there are two major mathematical approaches to preferences of choice under

uncertainty, one rooted in economics, the other in finance. They differ primarily in how

they deal with choice under uncertainty. In finance, expected reward and risk are modeled

explicitly, in economics they are modeled implicitly.

3.1 Economics and the notion of expected utility

To model choices, neoclassical economics describes the value of goods and services in terms

of expected utility. Expected utility is derived from a utility representation which captures

preferences and values in form of a single-dimensional index. A good with higher utility

is preferred over one with lower utility and a preferred good has higher utility than all

other available goods. Expected utility was first introduced by Daniel Bernoulli (Bernoulli

1738) and later axiomatized by John von Neumann and Oskar Morgenstern (von Neumann

and Morgenstern 1944). Expected utility expands the idea of utility by including choices

with uncertain outcomes. In analogy to utility, an option with higher expected utility is

preferred over an option with lower expected utility. And a preferred option has higher (or

at least equal) expected utility as all other available options. Expected utility sums the

utilities u(xi) of all possible outcomes xi, i = 1, ..., N of an action or choice weighted by

their probability of occurrence (given that choice).

EU =
N∑
i

piu(xi). (3.2)

As utility or expected utility is based on an axiomatic approach, the utility function can

take many different forms as long as the axioms are satisfied. When there is no uncertainty,

a utility representation u(x) has very little structure, it is simply a preference ordering. As

such, a statement such as u(x1) = 2u(x2) has no meaning. This representation can easily

capture individual preferences. Differences in attitudes toward goods, services, probabilities,

risk, ambiguity, and wealth, and even differences that arise from emotional states may all

is known, e.g., betting on a fair coin flip is risky as the probability of winning is 50%. Ambiguity or
uncertainty denote uncertain outcomes for which the probabilities are not know. In neuroscience and other
fields, uncertainty often (but not always) means risk. In this thesis I will use the term uncertainty in its
most general form which includes both ambiguity and risk.
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contribute to preference formation. However, in economics it is usually not of interest how

the exact shape of an individual’s utility curve comes about as long as it correctly predicts

the individual’s preferences. As such, it is often the goal to find a mathematical function

that satisfies all axioms and at the same time can fit accurately many different forms of

decision-making behavior under risk. However, how probability and risk are integrated to

give rise to that function is of no interest.

This is where neuroscience diverges. Assuming that there is an expected utility function

in the brain, how is it put together? Which aspects of a good or option do we perceive?

How are these quantities integrated into a utility index? As a result, utility or expected

utility is a good framework to determine preferences but often falls short on (or does not

attempt) accurately describing phenomena such as risk for instance.

The interesting thing is that economics accounts for risk without explicitly modeling risk.

According to the representation above an explicit (neural) representation is not necessary

to form preferences under uncertainty to account for things such as risk aversion.

3.2 Finance and the notion of risk

Finance deals with how prices are determined in financial markets. And while this is

a fascinating field on its own, neuroscience is only interested in how finance determines

preferences of choice under uncertainty. The two key ideas that neuroscience is interested

in were both introduced by Harry Markowitz (Markowitz 1952): (i) Preferences can be

accurately described using only the expected return (expected reward or mean) and risk of

a security or portfolio2 (equation (3.3)). (ii) Risk is measured as variance.

EU ∼ a · E[R] + b · var[R]. (3.3)

For neuroscience this translates into two hypotheses: (i) There are explicit neural rep-

resentations of expected reward and risk, (ii) Expected rewards are measured as the mean,

uncertainty or risk is measured as the variance of outcomes.

Examining expected utility (preferences) (equation (3.2)), Harry Markowitz noted that

determining a utility function is often not feasible and may require substantial computa-

tional power. He proposed an approximation to EU that uses only the means and variances,
2the securities held by an investor
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the two key parameters that characterize uncertain outcomes. This is in effect a second-

order Taylor series expansion. It is generally agreed that this mean-variance scheme is

but an approximation of expected utility that tends to incorrectly describe preferences in

situations of high skewness and kurtosis (or nonnegligable higher-order terms). And while

skewness and kurtosis often pose a problem in finance they are less relevant in natural

environments where many processes are well described by Gaussian distributions.

The computational ease of a mean variance approach is of particular interest to neuro-

science. Equation (3.2) implies that for a neural system to determine expected utility it is

necessary to neurally represent the probability pi and utility u(xi) of every possible out-

come. Intuitively, this seems impractical if there are many possible outcomes. If however,

there are explicit neural representations of means (expected reward) and variances (risk)

the problem of determining EU can be reduced to the trade-off between the two (equation

(3.3)).

3.3 Applications of economics and finance to foraging in stochas-

tic environments

The measures provided by economics and finance have frequently been applied to and often

have been successful in describing foraging behavior (Battalio et al. 1985; Real and Caraco

1986). Evidence is limited, though, of successful applications in neuroscience.

A particularly interesting result is the biomechanical derivation of a utility-type function

for bumblebees based solely on biomechanical principles (Harder and Real 1987). Instead

of measuring a bee’s utility function by observing their foraging behavior in situations of

varying expected reward and risk, the researchers asked, ”why are bumblebees risk-averse?”

They defined maximizing the expected rate of net energy intake as the bumblebee’s goal

(rather than maximizing expected utility). The net energy intake is a nonlinear function

of the net nectar volume. It can be derived only from biomechanical principles such as the

bee’s weight, flight time between flowers, energy per drop of nectar and so on. This function

is not derived from the bees preferences during foraging yet it exhibits the typical concavity

seen in utility functions and therefore accounts for the bees’ sensitivity to variance seen

in their foraging behavior. E.g., for large nectar volumes the energy intake per volume is

smaller than for small nectar volumes and therefore a constant nectar volume should be
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preferred over a varying nectar volume of the same mean.

3.4 Risk processing structures

Within neuroscience, uncertainty is less well understood and has primarily been explored

in the context of complexity (Lauwereyns et al. 2002; Takikawa et al. 2002; Grinband et al.

2006), entropy (Harrison et al. 2006), or ambiguity (Hsu et al. 2005). In recent years,

functional neuroimaging studies have pointed at the involvement of cortical structures such

as anterior insula and parietal cortex in risk processing (Huettel et al. 2005a). In addition,

there is some evidence that neurons of the ventral tegmental area encode a quantity that

correlates with measures of uncertainty (Fiorillo et al. 2003). The specific measure of risk

or uncertainty has yet to be established.

3.5 Summary

Economics and finance provide two different approaches toward modeling and determining

preferences of choice under uncertainty. Finance shows that preferences can be described

(close to) accurately when expected reward and risk are modeled explicitly. Economics

shows that preferences can be described accurately with a single-dimensional index that

captures attitudes toward expected reward and risk implicitly. The neural basis of reward

processing is well studied yet the relationships that have been established between neural

activity and expected reward, or between neural activity and risk, are usually simply mono-

tonic. The commonly used block designs of fMRI studies in particular can capture only

preference orderings rather than specific representations of expected reward, risk, utility or

other value functions. Economics and finance can inform neuroscience by suggesting specific

models for encoding values and preferences. In return, neuroscience can inform economics

and finance by establishing which of the suggested measures have neural representations.
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Chapter 4

Toward a Hypothesis of Decision
Making under Uncertainty

In decision making under uncertainty, neuroscience has focused on reward and reward pre-

diction learning. However, ecology shows that uncertainty or variance also plays a role.

Integrating research from neuroscience, behavioral ecology, economics and finance sug-

gests two hypotheses of how motivational values can be assessed in situations of uncertainty:

(i) Motivational values are captured by (predictions of) a single-dimensional index. Ex-

plicit neural representations of (subjective) probability and utility functions are nec-

essary; explicit representations of risk are not.

(ii) Explicit neural representations of (estimates of) expected reward and risk are com-

bined into a motivational value. Thus, the trade-off between the two is also made

explicit. Estimates are updated using prediction errors of both expected reward and

risk.

Several questions arise from this. Are expected reward and risk explicitly represented in

the brain as suggested by finance? More specifically, are there brain regions whose activity

increases linearly in expected reward? Are there brain regions that encode variance? Or is

there a value function analogous to expected utility that implicitly generates preferences for

high expected rewards and low risks? Are there neural signals that can be used to update

estimates of expected reward and risk.

The suggested mathematical framework was originally derived from (and is therefore

known to work for) human behavior in mostly financial decision making. It seems best to

first explore the implications of these hypotheses in humans using similar tasks. Neural
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activity can be accessed using functional magnetic resonance imaging (fMRI). However, in

order to extend such studies at a later stage to nonhuman animals it would be advantageous

to use a paradigm that is well explored within both neuroscience and ecology and can easily

be transferred to other species, such as a foraging task like matching.

4.1 Human behavior in stochastic environments

We conducted two behavioral studies to explore human “foraging” behavior in financial

environments. The studies also serve to explore the potential of matching tasks for exploring

neural correlates of expected reward and risk using functional imaging in humans. The first

is a standard matching task, the second a reversal task. Both have been described and

results from previous research have been presented in chapter 2.

4.1.1 Matching task

In the matching task, on each trial, subjects were presented with two visual stimuli (white

squares) to the left and right of a fixation cross, exactly one of which would hold the reward.

Subjects had to choose a square (left or right); the outcome would be revealed a little later.

The probability of a monetary reward ($0.25) to be in either box was fixed; one side was

set to p1 = 0.7, the other to p2 = 1− p1 = 0.3. Probabilities did not change over the course

of a session. Subjects were instructed to maximize their overall reward. Using expected

reward, it can be shown that the optimal strategy is to continuously choose the square with

the higher probability pi of winning.

Figure 4.1 shows the data for three different subjects for a single session (100 trials).

Each panel plots for each trial i the percentage with which the subject has chosen the left

box over the past i trials (solid line), as well as the percentage of the left box winning

over the past i trials (dashed line). Thus, the dashed line indicates the probability with

which the left square has been rewarded in the past. For the first subject (top panel), the

left square had a probability of reward of p = 0.3. Toward the end of the experiment, the

subject’s choices match this probability almost perfectly (solid line). This is consistent with

the matching law established in behavioral ecology (Herrnstein 1974).

The typical behavior of a second group of subjects is shown in the middle panel of figure

4.1. The subject continuously chooses the box that is more likely to obtain the reward.
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Figure 4.1: Human responses to probabilities. Upper panel. Matching behavior. The ratio
of choices attributed to the left and right square matches the ratio of probabilities with which
a reward is placed behind the left or right square. Middle panel. Optimizing behavior. Over
the first few trials the subject determines the “better” square and continuously chooses it
throughout the rest of the experimental session. Bottom panel. The subject starts out
matching (as in the upper panel) but converges on the optimal strategy toward the end of
the experiment.
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This is indeed the optimal strategy which is consistent with choice behavior as predicted

by economics and finance. However, this behavior diverges significantly from predictions

made by the matching law.

The bottom panel of figure 4.1 shows the behavior for a third subject which starts out

matching but slowly learns that there is a better strategy. About halfway through the

session this subject switches from matching to optimizing behavior (which is indicated by

the overmatching at the end of the experiment). Thus the subject seems to have learned

the optimal strategy.

Of the nine subjects that participated in this task five matched, three optimized, and

one learned to optimize over the course of the experiment. The exact distribution of these

behaviors across the general population is of little significance here and has been studied

elsewhere. There are several things to note though: (i) Human choices reflect preferences

toward higher expected rewards. (ii) As opposed to nonhuman animals, humans show two

significantly different types of behavior, a matching-type behavior in analogy with reports

from behavioral ecology (Baum 1975) and an optimized behavior. The split of behaviors

makes it difficult to draw conclusions about the general population. More importantly,

to explore the neural basis of probability and risk perception a design is needed that will

minimize the difference in perception of probabilities and risk between the different groups.

4.1.2 Reversal task

In a second experiment, a reversal task, the same paradigm was used. However, after

20–30 trials the probabilities of reward associated with the two boxes changed. Reversals

occurred 5 times throughout one session (approximately 120 trials) resulting in 6 blocks per

session. Subjects were informed that probabilities would change several times throughout a

session. In order to maximize their reward, subjects had to detect the change of probabilities

and adjust their behavior accordingly. Again, we are interested primarily in how human

behavior in such tasks compares to nonhuman behavior. Figure 4.2 shows the results for a

single subject. The results compare qualitatively to those obtained from reversal tasks in

nonhuman primates (Dorris and Glimcher 2004) as changes are detected with a small delay

(consistent with TD learning). However, all subjects who participated in the study showed

optimized behavior within each block once the change had been detected.
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Figure 4.2: Human responses in a matching reversal task in a single subject. The solid
blue line indicates the frequency with which the subject chose the left box over the past 5
trials. Dotted green lines indicate the probability of the left box on this trial. Dotted red
lines indicate optimal choice behavior as predicted by economics. Detection of change is
reflected in subject’s behavior several trials after the change occurred. Once the change is
detected, the subject follows the optimal strategy within each block.
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4.2 Conclusions

While some subjects showed matching behavior similar to that seen in nonhuman species,

humans seem to have the capacity to adapt additional strategies which are in fact optimal

in an experimental setup. The experiment itself, and especially the dissociation of different

player types (i.e., matchers and optimizers) poses problems for an fMRI experiment that is

aimed at finding neural representations of expected reward and risk: (i) In optimizers, there

is no behavioral measure for the perceived probability and risk. Both the matching and the

reversal behavior reflect a simple preference ordering but not necessarily a representation

of expected reward. Such representations will be particularly difficult to assess in the

reversal task. (ii) For both matchers and optimizers it is difficult to assess at which point

subjects have established a stable estimate of probability due to ongoing learning. (iii) The

dichotomy between matchers and optimizers is not a strict one as matchers are capable

of optimizing as well. As such, there may be an additional process which may eventually

result in behavioral switches. The neural basis of this learning is unknown. (iv) Due to

(iii) it may also be difficult to dissociate between matchers and optimizers throughout an

experiment.

In summary, while matching tasks are great to explore learning about probabilities, they

seem too complex to explore basic representations of expected reward and risk. A more

controlled experiment is needed that avoids the problem of different behavioral types and

that does not involve learning.
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Part I Conclusions

Driven by models of TD learning, neuroscience has focused on reward prediction and reward

learning to explore decision making under uncertainty. And while ecology shows that esti-

mates of uncertainty are equally important for preference formation, neuroscience provides

very limited evidence or neural encodings of uncertainty.

Two approaches to preference formation suggested by economics and finance provide a

mathematical framework for exploring neural representations of expected reward, risk and

motivational values.

Combining the ideas and research from neuroscience, ecology, and economics, and using

fMRI in humans we will test the following hypotheses:

• There are neural representations that are linear in probability and/or expected reward.

• There are neural representations of risk such that risk is measured as variance.

• Representations of both expected reward and risk are estimates or predictions asso-

ciated with future stimuli and events.

• At the time of the stimulus prediction errors are generated whenever predictions are

violated. Such prediction errors can be used to update future estimates of expected

reward and risk.

• Responses to expected reward and risk occur in the absence of learning and motivation.

• Expected reward and risk are combined to form motivational values.

• Expected reward and risk can be used to evaluate different forms of uncertainty.

The reminder of this thesis is devoted to exploring these hypotheses. Part II reports on

a functional imaging experiment that uses a gambling task to probe for the hypothesized
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neural responses. Part III investigates the implications of this work and presents another

brief pilot study as a first step toward expanding this work beyond its current scope.
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Part II Overview

In decision making under uncertainty, neuroscience focuses on expected reward and learning

rather than risk (chapter 1). Economic studies emphasize the importance of risk in addition

to expected reward (chapter 3). We designed a simple gambling task and conducted a

functional imaging study using humans to understand if and how the brain represents and

processes both expected and risk in situations of uncertainty. The result is a series of three

papers (one published (Preuschoff et al. 2006), two submitted (Preuschoff et al.; Bruguier*

et al.)) which are collected in this part of the thesis.

Chapter 5 explores subcortical representations of probability and risk. Drawing on

financial decision theory, expected reward and risk are modeled as mathematical expectation

of reward, and reward variance, respectively. Activations in dopaminoceptive structures

correlated with both mathematical parameters. These activations differentiated spatially

and temporally. Temporally, the activation related to risk was delayed. Analysis confirmed

that the paradigm minimized confounds from learning, motivation, and salience. These

results suggest that the primary task of the dopaminergic system is to convey signals of

upcoming stochastic rewards, such as expected reward and risk, beyond its role in learning,

motivation, and salience. With minor modifications the text in chapter 5 was published in

(Preuschoff et al. 2006). The methods have been expanded to provide significantly more

details than the original publication. Supplementary materials are included in the main

text.

Chapter 6 emphasizes cortical representations of risk. Considerations from financial

decision theory led us to hypothesize that the brain encodes a prediction risk signal and a

prediction risk error signal. An early-onset activation in the human insula correlates signifi-

cantly with prediction risk error. Its time course is consistent with a role in rapid updating.

Activation previously associated with prediction risk emerges with a delay consistent with a

role in anticipation. These findings indicate that our understanding of the neural basis of de-
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cision making under uncertainty needs to be expanded to include prediction risk estimation.

Such integration may have far-reaching implications for our understanding of pathological

decision making. In addition, the analysis demonstrates how carefully modeling the tem-

poral aspect of functional imaging data can reveal complex, intertwined processes. With

minor modifications the text in chapter 6 has been submitted. The methods provided in

this chapter are limited to those parts not used and mentioned in chapter 5. Supplementary

materials are included in the main text.

Chapter 7 looks at how the different representations of probability and risk can be

combined into a single representation of value. On a behavioral level, expected reward and

risk are often competing as a high expected reward may also come with a high risk, i.e., a

small chance of not getting anything at all or even losing some. What is the overall value of

a gamble after taking into account both expected reward and risk? This chapter addresses

the question of where and how these two variables are combined into a single variable that

evaluates the overall value of a gamble. Using canonical correlation analysis on the ventral

striatum, putamen, and insula signals a new predictor emerges that summed both expected

reward and risk. This suggested that contrary to expected utility theory, risk is added to

and not subtracted from expected reward to obtain a metric of conflict. The new predictor

significantly activates the anterior cingulate cortex (ACC) in accordance with its role in

conflict monitoring.

Contributions

Experimental design, data collection, and data analysis for all studies (including pilot studies

and final design) were done by me. The results of chapters 5 and 6 inspired the data

analysis for chapter 7 for which Tony Bruguier (together with Peter Bossaerts) worked out

and applied a canonical correlations analysis capable of exploiting correlations across brain

regions. Peter Bossaerts and Steve Quartz coauthored the papers presented in chapters 5,

6, and 7. Tony Bruguier coauthored the paper presented in chapter 7.
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Chapter 5

Neural Differentiation of Expected
Reward and Risk in Human
Subcortical Structures

5.1 Summary

In decision making under uncertainty, economic studies emphasize the importance of risk in

addition to expected reward. Studies in neuroscience focus on expected reward and learning

rather than risk. We combined functional imaging with a simple gambling task to vary ex-

pected reward and risk simultaneously and in an uncorrelated manner. Drawing on financial

decision theory, we modeled expected reward as mathematical expectation of reward, and

risk as reward variance. Activations in dopaminoceptive structures correlated with both

mathematical parameters. These activations differentiated spatially and temporally. Tem-

porally, the activation related to risk was delayed. Analysis confirmed that our paradigm

minimized confounds from learning, motivation, and salience. These results suggest that

the primary task of the dopaminergic system is to convey signals of upcoming stochastic

rewards, such as expected reward and risk, beyond its role in learning, motivation, and

salience.

5.2 Introduction

When faced with decision making in an uncertain world, it is fundamental to evaluate

both expected rewards and risks. Higher expected rewards are usually preferred over lower

expected rewards. But sensitivity to risk is also ubiquitous. For instance, when an investor
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has the option of either opening a simple savings account (low expected reward but a known

outcome) or investing all of her money into a particular stock (higher expected reward but

an uncertain outcome), she may prefer the option with the lower expected reward because

of the higher risk of the alternative. Economic studies (Bossaerts and Plott 2004; Holt and

Laury 2002) have confirmed that risk considerations, in addition to expected reward, indeed

play a role in decision making under uncertainty and in the valuation of risky gambles. This

sensitivity to both expected reward and risk is not unique to financial situations. It is also

observed in nonhuman primates facing uncertain rewards (Fiorillo et al. 2003; McCoy et al.

2003) and in bees choosing among different flowers (Real 1991).

In neuroscience, evidence has accumulated that brain activation correlates with expected

reward. Human fMRI studies have found that subcortical dopaminergic structures such as

striatum are involved in reward-related processes. Activity in these structures correlates

with reward value of a variety of stimuli, including primary rewards, such as gustatory

stimuli (Berns et al. 2001; O’Doherty et al. 2002) and abstract stimuli, such as money

(Breiter et al. 2001; Elliott et al. 2000, 2003; Knutson et al. 2001a, 2003, 2000). Studies of

nonhuman primate conditioning document a monotonically increasing relationship between

phasic activity of midbrain dopamine neurons and reward probability or expected reward

(Fiorillo et al. 2003; Tobler et al. 2005).

The correlations found between risk and activation in cortical regions are unambiguous

(McCoy et al. 2003; Huettel et al. 2005a, 2006). However, correlations found between risk

and activation in subcortical regions are not. In the nonhuman primate brain, delayed firing

of dopaminergic neurons was positively correlated with risk when risk was modulated by

changing reward probabilities (Fiorillo et al. 2003; Tobler et al. 2005). Correlation was also

positive in caudate neurons when risk was modulated by manipulating problem complexity

(stimulus recognition uncertainty (Lauwereyns et al. 2002; Takikawa et al. 2002)). For the

human brain, however, the findings are inconsistent. When risk was modulated by altering

the degree to which one knows the probability of reward, i.e., when manipulating knowledge

of the reward probability rather than the probability itself, activity in striatum correlated

negatively with risk (Hsu et al. 2005). In contrast, when risk concerned problem complexity

(categorization uncertainty (Grinband et al. 2006)), striatal activation correlated positively

with risk.

Consequently, to date no studies have examined whether and how subcortical dopaminocep-
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tive regions in the human brain code for risk when risk is modulated by changing reward

probability. This is the primary type of modulation for decision making under uncertainty,

and needs to be understood before modulating knowledge of probabilities and studying

learning of probabilities.

Here, we manipulated probabilities so that not only risk changed over the full range, but

also expected reward, and in such a way that expected reward and risk varied orthogonally.

We then determined whether and how activation in subcortical dopaminoceptive regions

correlated with expected reward and risk.

In addition, our study addresses a number of important open issues about the repre-

sentation of expected reward and risk in subcortical dopaminoceptive regions. First, since

neuroscientific studies have examined expected reward for a limited number of values, the

precise representation, or mathematical model, of reward expectation in the brain remains

unknown. As financial decision theory models reward expectation as mathematical expecta-

tion of reward (Knutson et al. 2003), it makes specific predictions regarding the form brain

activation must take to represent expected reward. When reward is kept constant across

rewarded trials, mathematical expectation of reward increases linearly in the probability

of reward. We therefore hypothesized that brain activation increases linearly in reward

probability if it is to reflect expected reward. To test this representation hypothesis stem-

ming from financial decision theory, the probability of reward needs to be varied over all

probabilities (ranging from p = 0 to p = 1) with a sufficient number of intermediate values.

Second, the specific form of risk representation in the brain is unknown. As with reward

expectation, financial decision theory suggests a specific metric for measuring risk, namely,

variance, the mean squared deviation from the expected outcome (Markowitz 1952). When

reward magnitude is kept constant across rewarded trials, reward variance is quadratic

in reward probability p; variance attains a maximum at p = 0.5, and minimums at the

extremes, p = 0 and p = 1 (figure 5.1). Because variance is monotonically increasing

for p < 0.5 and monotonically decreasing for p > 0.5, care has to be exercised that p

varies sufficiently to ensure that the effects of changes in risk and expected reward can be

disentangled. Otherwise, an increase in risk may be confounded with a change in expected

reward (Critchley et al. 2001; Dreher et al. 2005; Knutson et al. 2003). From a statistical

point of view, variance and expected reward become orthogonal if they are varied over

the full range of reward probabilities and are mean corrected (i.e., after subtracting their
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Figure 5.1: Expected reward and risk as a function of the probability of reward. Expected
reward, measured as mathematical expectation of reward, increases linearly in the probabil-
ity of reward p (dashed line). Expected reward is minimal at p = 0 and maximal at p = 1.
Risk, measured as reward variance, is an inversely quadratic function of probability that is
minimal at p = 0 and p = 1 and maximal at p = 0.5 (solid line). As such, expected reward
and risk are orthogonal over the full range of probabilities, p in [0, 1]. When subjects place
their bet, the reward probability p is 0.5. After display of card 1, the reward probability
changes, depending on whether the subject bet that the second card is higher or lower, and
depending on the number on card 1. If the subject bet that the second card is going to be
lower, then p increases linearly in the number on card 1; otherwise p decreases linearly in
the number on card 1.

average values).

Third, previous neuroscience studies have focused on the learning aspect of reward an-

ticipation (Hollerman and Schultz 1998; Mirenowicz and Schultz 1994; Romo and Schultz

1990), leaving it unclear whether activation related to reward expectation and risk in subcor-

tical structures requires learning and motivation (Knutson et al. 2001a) to be present. Many

of these studies have been guided by Temporal Difference (TD) models of learning (Sutton

1988). In the case of risk encoding in dopaminergic neurons, it too has been interpreted in

terms of reward learning (Fiorillo et al. 2003; Tobler et al. 2005). The controversy regard-

ing the interpretation of subcortical dopaminergic activation is compounded by studies that

suggest that such activation may represent salience (Zink et al. 2004) or nonspecific forms

of uncertainty (Aron et al. 2004; Berns et al. 2001). Our hypothesis is that the primary
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task of the dopaminergic system is to convey signals of upcoming stochastic rewards, like

expected reward and risk, while learning, salience and motivation constitute only secondary,

albeit important, tasks. Testing this hypothesis requires disassociating the signaling task

from learning, salience and motivation, which requires a perceptual experimental paradigm,

unlike the previously employed conditioning tasks. Elimination of learning confounds is es-

pecially important because the correlation of sustained activation of dopaminergic neurons

with uncertainty (Fiorillo et al. 2003) has been interpreted as the effect of back-propagation

of reward prediction errors during learning (Fiorillo et al. 2005; Niv et al. 2005).

Finally, if a single brain system, the dopaminergic system, is to represent two parameters

(expected reward; risk) of a single phenomenon (a gamble), the issue of discrimination arises.

Discrimination could be achieved spatially, in which different regions could specialize in

encoding the different parameters or distinct neural populations within the same region

of the brain could encode different parameters. Another possibility is that discrimination

could be achieved temporally, in which the same sub-region sequentially encodes the two

parameters.

To test how subcortical dopaminergic structures encode these two parameters it is nec-

essary to utilize an experimental design that allows for distinguishing these alternative

encoding strategies. Based on recent evidence of activation of dopaminergic neurons in

the nonhuman primate brain when risk is modulated by varying probability (Fiorillo et al.

2003), we expected to find an early onset activation in subcortical dopaminoceptive regions

that correlated positively with expected reward, while a late onset activation would cor-

relate positively with risk. We therefore allowed for sufficient time between stimulus and

outcome and used a statistical analysis of the imaging data that is able to capture potential

temporal differentiation.

Nineteen subjects played a gamble where two cards were drawn (without replacement

within each trial) from a deck of 10, numbered 1 through 10 (figure 5.2). Before seeing either

card, subjects first placed a $1 bet on whether the first or the second card would be higher.

Once the bet was placed, subjects saw card 1, followed ∼7 s later by card 2. We refer to

the time interval between display of card 1 and card 2 as the anticipatory period. Upon

display of card 1, the probability of winning changes as a function of the number on card 1.

For instance, if the subject bet on “second card higher”, the probability of winning is given

by the number of cards initially in the deck (always 10) minus the number displayed on the
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first card (C) and divided by the number of cards remaining in the deck: p = (10− C)/9.

Since a new deck was used on every trial, subjects had no prior information about the

outcome of the gamble, so that on any given trial the initial probability of winning at the

time of bet was p = 0.5 with maximal risk. As a result, gains and losses were independent

of the strategy the subject chose. In addition, there is no role for learning, as any strategy

is optimal. Following the presentation of card 2, subjects were asked to report whether they

won or lost. In case of an incorrect response subjects lost $0.25, independent of whether

their gamble had paid off. As such, motivation (the degree to which one is willing to work

to report whether one won or lost) during the anticipation period should not depend on

expected reward or risk.

Reward level was kept constant across all rewarded trials. Because of this, expected

reward and risk (variance) upon display of card 1 change only as a function of the proba-

bility of winning, as shown in figure 5.1. Altering the reward level would have potentially

introduced a confounding factor, namely, varying complexity, which is known to induce

activation in subcortical dopaminoceptive structures in itself (Grinband et al. 2006).

5.3 Results

In this section, we first report statistics on task performance. Using a voxel-based analysis,

we subsequently document that subjects encoded the task as a reward prediction problem

by replicating previously found activation patterns for reward. We then focus on the antic-

ipatory period to find regions of interest (ROIs) whose activity is modulated by expected

reward and risk. We determine how activity varies with the probability of reward within

the identified ROIs, to verify that activations correlate with mathematical expectation of

reward, and reward variance. Finally, we report on tests to determine whether the results

were affected by learning, motivation or salience.

5.3.1 Task performance

Participants won on 48.60± 3.95% of all trials and correctly reported the outcome of their

bet on 97.8 ± 2.6% of all trials showing that the gamble was indeed random and subjects

kept track of the cards displayed on the screen.
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 ~19.5 s  

 ~18 s     Indicate win or loss

 ~5.5 s 

 ~11 s    See the second card

 ~12.5 s 

 ~4 s     See the first card

 ~2 s 

 ~1 s     Bet placed

   0 s     Place a bet ($1 per trial)

 ~25 s     Start of next trial

 ~19 s     Response

Figure 5.2: On each trial, two cards were drawn (without replacement within each trial)
from a deck of 10, numbered 1 through 10. Before seeing either card, subjects first placed
a $1 bet on one of two options, “second card higher” or “second card lower” (than first
card shown). Subjects could earn $1 if they guessed the right card, and lost $1 if they were
wrong. Once the bet was placed, subjects saw card 1, followed ∼7 s later by card 2. At the
end of each trial subjects had to indicate whether they won or lost on this trial. A $0.25
penalty was imposed for misreporting, independent of the outcome of the gamble. All times
shown are with respect to the onset of the trial.
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Figure 5.3: Neural activations related to reward (at the display of card 2).

5.3.2 Reward activation

The contrast between wins and losses (i.e., the difference in activation following wins vs.

that following losses) revealed significant activation (p < 0.0001, figure 5.3) of a subcortical

network including caudate, globus pallidus, thalamus and putamen as well as midbrain

and cingulate gyrus (table 5.3.2), in agreement with previous reports (Delgado et al. 2000;

Elliott et al. 2003; Knutson et al. 2001a, 2003, 2000). The contrast between losses and wins,

i.e., “negative reward,” revealed no significant activation, which is also supported by prior

findings (Knutson et al. 2003). This indicated that subjects were encoding the task as a

reward prediction problem and motivated our investigation of decision variables underlying

this response.

5.3.3 Anticipatory period activation

Focusing on the anticipatory period, we first used a model to define regions of interest that

correlate with expected reward and risk (reward variance) during this period. Based on

nonhuman primate evidence that temporally distinct responses of dopaminergic neurons

might encode expected reward and risk respectively (Fiorillo et al. 2003), we decomposed

the anticipatory period into (i) a response at the onset of card 1 (initial sub-period), followed

by (ii) a response until the onset of card 2 (subsequent sub-period). The duration of the

initial response (i) was set at only 1s to allow for an onset of the delayed response as early

as 1 s after the stimulus. The duration of the subsequent response (ii) was therefore longer

(∼6 s), in accordance with the finding in the nonhuman primate brain of sustained neuronal

firing that correlates with risk. Because the total length of the anticipatory period is only
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region L/R mean x mean y mean z cluster size max stat

lateral dorsal thalamic nucleus L −6 −20 15 17 6.21
R 12 −16 14 63 6.77

subthalamic nucleus R 14 −18 −2 51 10.64
lateral geniculate L −22 −16 −6 50 9.55
caudate head L −10 1 1 39 6.72

R 12 4 2 33 7.03
caudate R 12 2 13 27 6.09
putamen (posterior part) R 27 −18 −2 22 6.72
midbrain L/R −3 −23 −18 12 6.07
parahippocampal gyrus L −33 −36 −9 11 6.73

R 23 −32 −6 17 6.68
pulvinar L −7 −22 −1 15 6.56
posterior cingulate gyrus L/R 1 −39 29 101 7.2
cingulated gyrus L/R −2 −23 28 5 5.8
superior frontal gyrus L/R −3 21 49 111 8.54
inferior frontal gyrus L −44 22 16 10 5.82
inferior medial frontal gyrus R 46 18 24 5 6.7
insula L −33 −6 11 10 6.12
short insular gyri L −26 18 1 8 5.59
precentral gyrus R 48 1 28 28 6.38
inferior precentral gyrus L −46 2 18 14 7.11
middle temporal gyrus L −52 −57 4 11 7.49
middle temporal gyrus L −33 −73 11 7 9.93
posterior middle temporal gyrus R 56 −42 9 7 6.04
fusiform gyrus R 38 −58 −13 12 6.16
precuneus R 19 −64 22 6 5.82
lingual gyrus R 4 −85 −3 8 5.97
cerebellum R 17 −41 −30 9 8.13
cerebellum L/R −4 −47 −16 6 6.08

Table 5.1: Activation to reward
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∼7 s, whereas hemodynamic responses typically peak at only about 4 s, we did not, however,

expect to be able to detect the precise length of the respective responses, and hence, to be

able to differentiate between phasic and sustained durations. We therefore only focused on

differentiation of the onset of the signal: early (response (i)) vs. later (response (ii)).

We next examined whether the activation we observed conformed to the model of ex-

pected reward and risk as specified in financial decision theory. We tested the hypothesis

that activation levels relate to reward probability in the way that mathematical expectation

of reward and reward variance relate to reward probability (figure 5.1). We changed the

specification of our general linear model to compare activation levels at different proba-

bilities within the identified ROIs. To do this, in the new model, one predictor for each

individual probability level replaces the predictors for expected reward and risk in the old

model.

5.3.4 Modulation of anticipatory period activation by expected reward

Over the initial sub-period (1 s) of the anticipatory period, expected reward was highly

correlated with activation in putamen, ventral striatum, globus pallidus, anterior cingulate

cortex, midbrain and other regions (figure 5.4 A; table 5.2). We also detected significant

activation to expected reward during the subsequent sub-period (6 s) in several foci in the

cerebellum and medial temporal gyrus. Although our imaging sequence was not optimized

for frontal regions we also found activation in medial orbital gyrus and gyrus rectus (table

5.3).

Based on our a priori hypothesis that subcortical structures encoded expected reward

as mathematical expectation of reward, and hence, that activation increased linearly in

reward probability, we compared the responses in ventral striatum and putamen for each of

the ten reward probabilities that were obtained as a result of the number on card 1 (figure

5.4 B). Activation in bilateral ventral striatum (L vst, R vst) and putamen (L put, R put)

showed a linear increase with increasing reward probability; the best linear fit is highly

significant and explains a large proportion of the variance of the mean activation levels (L

vst: r2 = 0.87, p < 0.001; R vst: r2 = 0.66, p < 0.01; L put: r2 = 0.69, p < 0.01; R put:

r2 = 0.7, p < 0.01).
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Figure 5.4: Immediate neural correlates of expected reward. A. Neural activations related
to expected reward (immediate response within 1 s of display of card 1). Bilateral activity in
putamen (L put, R put) and ventral striatum (L vst, R, vst) correlates with the probability
of win, and hence, expected reward (random effects, p < 0.001). Neural responses are
displayed in coronal and axial formats. B. Mean activations (parameter estimates beta
with standard error) for ten probabilities. In both left and right ventral striatum (vst) and
putamen (put) neural responses increase with increasing probability of win. Dashed line
indicates the best linear fit (L vst: r2 = 0.87, p < 0.001; R vst: r2 = 0.66, p < 0.01; L put:
r2 = 0.69, p < 0.01; R put: r2 = 0.7, p < 0.01).
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region L/R mean x mean y mean z cluster size max stat

putamen L −26 −9 5 176 7.92
R 23 −7 11 29 6.01

ventral striatum L −12 3 −3 35 5.47
R 12 5 −3 6 4.45

medial geniculate R 16 −22 −4 8 4.92
pons L/R 2 −24 −28 29 5.77
midbrain L −5 −19 −16 5 4.43
anterior cingulated L −2 32 −2 15 5.41
angular gyrus L −45 −59 29 36 6.07
middle frontal gyrus L −33 7 47 14 5.07
superior frontal gyrus R 18 25 50 11 4.86

L/R −3 23 53 11 4.36
medial frontal gyrus L −12 38 17 7 4.63
superior temporal gyrus L −44 −37 4 25 5.88
occipital gyrus R 22 −75 31 19 5.63
cerebellum L −14 −38 −29 14 4.57

L −36 −66 −24 8 5.23

Table 5.2: Activation to expected reward (immediate response)

region L/R mean x mean y mean z cluster size max stat

cerebellum R 23 −82 −21 22 5.39
cerebellum R 32 −32 −22 11 6.44
lingual gyrus R 9 −80 −16 10 4.63
middle temporal gyrus L −44 8 −24 8 5.35
medial orbital gyrus L −24 22 −11 7 5.71
gyrus rectus L −5 23 −11 6 4.97
parahippocampal gyrus L −16 −23 −13 6 4.74

Table 5.3: Activation to expected reward (delayed response)
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5.3.5 Modulation of anticipatory period activation by risk

During the second (6 s) sub-period of the anticipatory period, risk was highly positively

correlated with activation in an area extending posterior to and bilateral from the ventral

striatum to the subthalamic nucleus as well as mediodorsal thalamic nucleus, midbrain,

and bilateral anterior insula (figure 5.5 A). Risk was not significantly correlated over the

initial (1 s) sub-period with activation in any of the subcortical regions of interest except

for midbrain. Instead, risk correlated significantly over this sub-period with activation in

the anterior insula and orbitofrontal cortex (table 5.4). As we are focusing on subcortical

structures, we do not elaborate here on the latter finding.

To determine that the risk-related activation over the second (6 s) sub-period of the

anticipatory period reflected reward variance, we used the same approach as for expected

reward and studied activation separately for each of the ten different reward probability

levels (figure 5.5 B). If the activations reflected reward variance, then their relationship

with reward probability should be quadratic, with maximum at p = 0.5, and minima at

p = 0 and 1. We found that responses in ventral striatum (L vst, R vst), midbrain (mb),

and thalamic nucleus (md) are indeed maximal at intermediate probabilities and minimal at

both minimal (p = 0) and maximal (p = 1) probabilities. Furthermore, the responses in all

four regions of interest were shown to correlate with a function that is inversely quadratic

(inversely u-shaped) in the probability of winning with a maximum at p = 0.5; the best

quadratic fit is highly significant and explains a large proportion of the variance of the mean

activation levels (L vst: r2 = 0.89, p < 0.001; R vst: r2 = 0.88, p < 0.001; mb: r2 = 0.84,

p < 0.001; md: r2 = 0.80, p < 0.001). To ensure that the close quadratic fit did not merely

result because activation is low at p equal to 0 and 1, while high elsewhere, we performed

a standard nonnested hypothesis test (Davidson and MacKinnon 1981) that determined

whether a simple model with low activation at p = 0, 1 and high for p 6= 0, 1 should be

rejected in favor of the quadratic model. Across the four brain regions, the quadratic fit

was found to be significantly better (p < 0.001; results for individual brain regions: L vst:

p < 0.01; R vst: p < 0.01; mb: p < 0.01; md: p = 0.01).

Finally, if the encoding indeed reflects variance of reward (risk as measured in financial

decision theory), we should be able to use activation levels during the anticipatory period

to successfully predict activation levels after the bet but before display of card 1. At the
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Figure 5.5: Delayed neural correlates of risk. A: Neural activations related to risk (delayed
response, after 1 s of display of card 1 and until display of card 2). Brain regions whose activ-
ity correlates with reward variance, reflecting risk (random effects, p < 0.001), include left
and right ventral striatum (L vst, R vst) extending into the subthalamic nucleus, midbrain
(mb) and mediodorsal thalamic nucleus (md). B: Mean activations (parameter estimates
beta with standard error) for ten probabilities. Neural responses in regions displayed in
A increase toward medium probabilities and decrease toward low and high probabilities.
Dashed lines indicate best quadratic fit (L vst: r2 = 0.89, p < 0.001; R vst: r2 = 0.88,
p < 0.001; mb: r2 = 0.84, p < 0.001; md: r2 = 0.80, p < 0.001). Across all four regions,
the quadratic fit is significantly better than a model that predicts low activation at p = 0, 1
and high activation for p 6= 0, 1 (p < 0.001; results for individual brain regions: L vst:
p < 0.01; R vst: p < 0.01; mb: p < 0.01; md: p = 0.01). Red data points (asterisks) at
p = 0.5 indicate late onset activation levels between the time of bet and card 1 when risk
is maximal.
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region L/R mean x mean y mean z cluster size max stat

parahippocampal gyrus L −17 −29 −17 110 −6.75
R 18 −22 −14 9 −5.26

transverse temporal gyrus R 57 −13 10 76 −6.52
R 38 −25 23 5 −4.94
L −53 −8 3 19 −5.16

short insular gyri L −32 17 1 68 6.47
short insular gyri R 34 13 1 9 4.61
midbrain R 9 −32 −12 44 −8
anterior cingulate L/R 2 22 −6 14 −4.95
supramarginal gyrus R 35 −36 45 9 −5.52

R 40 −26 49 5 −5.06
superior frontal gyrus L −9 −29 47 7 −4.61

Table 5.4: Activation to variance (immediate response)

region L/R mean x mean y mean z cluster size max stat

short insular gyri L −30 21 9 72 −6.59
R 31 24 9 11 −4.25

ventral striatum L −10 −3 −3 45 −6.59
R 12 −3 −3 42 −5.76

mediodorsal thalamic nucleus L/R 1 −16 5 27 −5.18
substantia nigra L/R 1 −18 −11 17 −5.58

Table 5.5: Activation to variance (delayed response)
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time of bet, the probability of win is p = 0.5, and risk is maximal (figure 5.1). Therefore,

the activation level in ventral striatum must be similar to the levels for p = 0.5 during the

anticipatory period. Figure 5.5 B shows the level of activation in the same ROIs after the

bet and before card 1 is shown. This activation level falls into the confidence interval of

when reward variance is maximal. Since the periods before card 1 and 2 are not identical in

length, the additional data points have to be evaluated carefully. Nonetheless, they provide

corroborating evidence of the hypothesis that these ROIs reflect reward variance.

5.3.6 Modulation of anticipatory period activation by both expected re-

ward and risk

When simultaneously mapping the activation clusters reported for expected reward (activa-

tion over the initial 1 s sub-period) and risk (activation over the subsequent 6 s sub-period),

a region in left ventral striatum emerged where the clusters overlap (figure 5.6 A-C). We

defined this as a region of interest to determine how the different levels of expected reward

and risk were reflected in the time courses. We compared average adjusted hemodynamic

responses to card 1 for low, medium and high expected reward (figure 5.6 D) and low,

medium and high levels of risk (reward variance; figure 5.6 E). Early during the anticipa-

tory period the hemodynamic response increased with the level of expected reward, whereas

starting from about 4 s after the onset of the anticipatory period (when card 1 is displayed),

the hemodynamic response increased with the level of risk.

5.3.7 Testing for absence of learning, motivation, and salience confounds

As we were interested in determining whether there were subcortical activations that were

related to decision-making parameters independently of their previously documented role

in reward prediction learning, our task was designed so that learning would not improve

the potential outcome of the gamble. Nonetheless, it may be possible that learning-related

signals are generated during the task, particularly if the reward prediction learning role of

these structures is primary. To test this possibility, we probed our behavioral and imaging

data for evidence of learning, salience, and motivation. We distinguished between switch

and stay trials, defining a switch trial as one in which a subject chooses a different bet than

in the previous trial; in a stay trial, the subject chooses the same bet. For instance, if a
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Figure 5.6: Temporal encoding of expected reward and risk. A-C: Immediate (within 1 s
of display of card 1) activations related to expected reward (probability of win; red) and
delayed (after 1 s of display of card 1) activations related to risk (blue), superimposed
on a mean anatomical image. Activations are identical to those shown in figure 5.4 and
figure 5.5 but are not pseudo color coded in this map. A, C: Spatial relationship between
encoding of expected reward and risk include overlapping regions (displayed in purple and
circled) in ventral striatum (vst) and spatially contiguous areas. D, E: Averaged adjusted
time courses showing different temporal patterns for representations of expected reward
and risk during the anticipatory period (t = 0, 1, . . . , 7 s) in the same sub-region of left
ventral striatum (circled purple region in A, C). Separation of time courses for low, medium
and high expected reward trials peaks early in the anticipatory period. Separation of time
courses for low, medium and high risk trials starts later and peaks around the time card 2
is shown. Gray bars indicate the presentation of card 1 (t = 0 s) and card 2 (t ∼ 7 s).
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subject who chose second card higher on the previous trial chooses second card lower in the

current trial, then the current trial is a switch trial.

Learning would imply that the likelihood of switching increases after a loss trial, while

the likelihood of staying increases after a win trial. There was, however, no significant

difference between the number of switches after loss trials vs. win trials or the number of

stays following win trials vs. loss trials (figure 5.7 A). We do find an (insignificant) tendency

to stay rather than switch regardless of outcome, which is consistent with previous reports

on the status quo bias in decision making under uncertainty ((Samuelson and Zeckhauser

1988); it should be added, however, that in our paradigm the status quo bias does not lead

to inferior performance; any strategy is optimal, as pointed out before).

Learning would also imply that reaction times to placing the bet would be effected by

previous outcomes. Reaction times to placing the bet corroborate the absence of learning

effects: reaction times are approximately equal whether the previous trial generated a win

or a loss (figure 5.7 B) and they do not differ significantly across stay and switch trials

(figure 5.7 C).

To determine whether learning could have caused the reported activations in subcortical

structures for expected reward and risk over the two sub-periods of the anticipatory period,

we included a variable in our general linear model that indicated whether the immediately

preceding trial generated a loss or a gain. Under TD learning, activation for expected reward

should be significantly correlated with this indicator variable (while activation for risk could

be explained as an effect of back-propagation of prediction errors (Niv et al. 2005; Fiorillo

et al. 2005)). We found no significant effect of prior-trial outcome in the regions where

activation was found to be reflecting expected reward. The lack of an effect as predicted by

TD learning indicates the absence of a learning confound.

We also examined reaction times to determine whether motivation or salience affected

our results during the anticipatory period (figure 5.7 D). One could legitimately be con-

cerned that higher expected reward induces higher motivation, while higher risk induces

higher salience. The penalty to false reporting of the outcome after the anticipatory period

is independent of the outcome, while no reward is given to correct reporting of the outcome.

Since both expected reward and risk (reward variance) are related to reward probability,

we verified the absence of motivational and salience confounds by plotting reaction times to

outcome reporting against reward probability. Figure 5.7 D confirms that there is indeed
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no relationship.

While the data presented in figure 5.7 are pooled over all subjects the results reported

also hold on an individual subject basis (see also table 5.6). Specifically, differences in

strategy (switch or stay) after wins vs. losses are not significant in 17 of 19 subjects

(p > 0.05, not corrected for multiple comparison). There are no significant differences

(p > 0.05) for any subject for reaction times after win vs. loss trials and for switch vs. stay

trials. No significant linear or quadratic relationship between reaction times and probability

of win emerges for any subject. Where applicable we also tested for long-term effects of

learning and found no significant results. We see a general trend of decreasing reaction time

over time, which does not affect the results reported in figure 5.7.

5.4 Discussion

By utilizing a design in which expected reward and risk as measured in financial decision

theory varied orthogonally and across the full range, we tested whether activation in human

primary projection targets of midbrain dopaminergic neurons significantly correlated with

these two critical decision-theoretic parameters. Further, the paradigm was designed to

minimize potential confounds from learning, motivation or salience, allowing us to determine

whether these target areas encode expected reward and risk, the primary parameters of

financial decision theory, beyond their established role in learning.

We found that during reward anticipation, initial activation in ventral striatum and other

subcortical dopaminoceptive structures varied with expected reward, whereas subsequent

activation in ventral striatum varied with risk. Activations correlating with expected reward

and risk were thus differentiated both spatially and temporally and arose in the absence of

learning, motivation, or salience confounds.

5.4.1 Expected reward is reflected in linear response to probability

The response of the ventral striatum and other subcortical structures is highly linear in

reward probability. This provides strong support that the phasic responses of ventral stria-

tum and putamen encode the expected reward parameter of financial decision theory and as

such goes beyond the monotonicity of encoding expected reward shown in previous studies.

The interpretation of the early response as encoding expected reward is also consistent
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Figure 5.7: Relationship between subject behavior and outcome history. A: Histograms of
choice behavior as a function of the outcome (win, loss) in the previous trial. Stay refers
to a trial where the subject bets the same as in the previous trial; Switch refers to a trial
where the subject bets differently from the previous trial (if subject bet that 2nd card is
higher in previous trial, then subject bids that 2nd card is lower in current trial, and vice
versa). Evidence of learning would emerge if subjects tend to switch more after a loss, and
tend to stay after a win. B: Mean reaction time from trial start to placement of the bet
as a function of outcome (win, loss) in prior trial. Evidence of learning would emerge if
reaction times tend to be shorter after gains than after losses. C: Mean reaction time from
trial start to placement of the bet as a function difference in choice between current and
previous trial (switch, stay). Evidence of learning would emerge if reaction times tend to
be shorter for stays than for switches. D: Mean reaction times from display of card 2 to
reporting of outcome as a function of probability of reward as of display of card 1. Evidence
of motivation would emerge if mean reaction times decrease in reward probability. Evidence
of salience would emerge if mean reaction times are maximal for maximum risk (p = 0.5)
and minimal for minimum risk (p = 0, 1). See table 5.6 for individual results.
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After win After loss

Prefer to stay 0 2
Prefer to switch 2 0
Indifferent (p > 0.05) 17 17

After win After loss

Slower reaction time 0 0
Faster reaction time 0 0
No difference (p > 0.05) 19 19

When switching When staying

Slower reaction time 0 0
Faster reaction time 0 0
No difference (p > 0.05) 19 19

As probability of winning increases ...

Reaction time increases 0
Reaction time decreases 0
No change in reaction time (p > 0.05)a 19

aTest for both linear and quadratic changes in probability of winning.

Table 5.6: Relationship between subject behavior and outcome history (individual subjects’
results). Number of subjects (out of 19) for which the results in figure 5.7 were significant.
Differences in strategy (switch or stay) after wins vs. losses are not significant in 17 of
19 subjects (p < 0.05), not corrected for multiple comparison). There are no significant
differences (p < 0.05) for any subject for reaction times after win vs. loss trials and for
switch vs. stay trials. No significant linear or quadratic relationship between reaction times
and probability of win emerges for any subject. Where applicable we also tested for long-
term effects of learning and found no significant results. We see a general trend of decreasing
reaction time over time, which does not affect the results reported in figure 5.7.
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with theoretical Temporal Difference (TD) models (Montague et al. 1996; Montague and

Sejnowski 1994), which have primarily guided the investigation of dopaminergic structures

(Knutson et al. 2003), though our results reveal that this signal is generated even in the

absence of learning.

5.4.2 Reward variance (risk) is reflected in quadratic response to proba-

bility

The quadratic relationship between reward probability and the late response in ventral

striatum and other subcortical structures supports the hypothesis that risk is encoded as

reward variance in the brain. Variance, however, is just one of several measures of uncer-

tainty that are all maximal at p = 0.5. Within neuroscience, entropy (equals minus the

weighted sum of the logarithm of the probabilities of each possible outcome), is the most

common measure of uncertainty and has been used extensively in information-theoretic

analysis of spike trains (Bialek and Rieke 1992). One interpretation based on nonhuman

primate electrophysiology in ventral tegmental area has suggested that the sustained re-

sponse may be encoding entropy (Fiorillo et al. 2003), since entropy is also maximal at

p = 0.5. Closer inspection of the data demonstrates, however, that the sustained firing of

dopaminergic neurons actually correlates with magnitude (Fiorillo et al. 2005). As such,

variance (which is sensitive to both probability and magnitude), not entropy, is the right

measure of risk. This is consistent with financial decision theory. Financial decision theory

sometimes uses additional risk metrics (skewness, kurtosis, etc.), but these appear to be

unnecessary to explain valuation when risk is as small as in our experiments (Bossaerts and

Plott 2004).

5.4.3 Separation of expected reward and risk through spatial and tem-

poral differentiation

Though some subcortical regions are responsive exclusively to either expected reward or

risk, others are responsive to both parameters, leading to the issue of how these signals are

differentiated. Our results indicate that the brain differentiates these signals temporally: the

initial response reflects expected reward; the subsequent response reflects risk. The distinct

hemodynamic responses to expected reward and reward variance in human dopaminoceptive
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structures follow a pattern remarkably consistent with that found in nonhuman primate

ventral midbrain using electrophysiology and reporting an immediate, phasic encoding of

expected reward and a late-onset sustained encoding of risk (Fiorillo et al. 2003). The late

onset happened to be too late relative to the duration of the anticipation period, however,

to discriminate between phasic and sustained responses as well as one has been able to do in

electrophysiological studies. Our results suggest that the downstream effects of temporally

differentiated activation in the ventral midbrain result in both an early onset separation of

signals correlating with expected reward and a late onset separation of signals correlating

with risk in the target (dopaminoceptive) structures.

It is interesting to note that, with the exception of the midbrain, we failed to find

an immediate activation in subcortical structures that correlated with risk. Activation in

subcortical dopaminoceptive areas that correlated with risk is invariably delayed. This

raises a number of issues worth investigating in future research. Is there an immediate

signal for risk elsewhere in the brain (our data suggest that insula may play a role)? If so,

how are the signals of expected reward and risk combined in order to guide decisions? What

is the role of the delayed risk signal in subcortical dopaminoceptive areas? Is it used to

improve learning, as suggested in (Tobler et al. 2005)? Interestingly, the late-onset activity

in ventral striatum looks similar to delayed activity in parietal cortex reported in (Huettel

et al. 2005a, 2006).

5.4.4 Brain activation decomposes along basic financial parameters of

monetary gambles

Our investigation was guided by the mathematical model of decision making under uncer-

tainty stemming from financial decision theory. This model specifies the minimal parame-

ters that are necessary for rational choice under uncertainty (expectation and variance of

reward). Our study shows that brain activity correlates with these two parameters. In

financial decision theory, expectation is balanced against variance, and this trade-off has

led to important insights not only about simple animal behavior (e.g., bee foraging (Real

1991)), but also about complex human activity, such as the demand for money and its

relation to yields on fixed-income securities (Tobin 1958), or the demand for and pricing

of multiple risky securities. For instance, Sharpe (1964), Lintner (1965) and Mossin (1966)

demonstrated that expected returns on risky securities should increase not as a function of
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their own risk (variance), but only to the extent that they contribute to the risk (variance)

of the securities market as a whole. Experiments confirm these predictions (Bossaerts and

Plott 2004). Later, Black and Scholes (1973) showed that prices of options (to purchase or

sell securities) increase as a function of risk again measured by variance. It is striking that

brain activation at the level of subcortical dopaminergic structures reflects the separation

of expected reward and risk on which financial decision theory is based.

5.4.5 Objective perception independent of choice, learning and attention

As our results are obtained under purely perceptual conditions, i.e., when no choice is to

be made subsequently, the activations we report are related primarily to the assessment of

risk and reward in gambles. Many levels of processing intervene between perception and

choice, so it is possible that the brain tracks expected reward and risk at the perceptual

level, while additional elements, such as contextual factors (e.g., decisions by others (Abel

1990)), modulate choice. As such, perception of reward and risk may continue even if choice

is not affected (Bayer and Glimcher 2005). Absent subsequent choice, brain activity may

merely reflect information gathering for the case that a choice opportunity would suddenly

and unexpectedly arise.

It is important to point out that our goal was to investigate the perception of risk and

reward and whether such perception conformed to a specific mathematical model. Our find-

ing that at the perceptual level the brain conforms to this model is entirely consistent with

the fact that there may also be subjective representations of decision-making parameters

that vary from this model, as they may simply be different levels of representation or gen-

erated under different contexts. It is an important issue for future research to investigate

when and where subjective representations of these parameters may also be generated and

how these signals may be integrated or interact in the generation of choice behavior.

Likewise, our task does not involve conditioning. Behavioral data support the absence

of conditioning, and statistical analysis of the brain activation confirms the absence of

conditioning confounds. Conditioning paradigms allow one to shed light on factors such

as learning, motivation or salience, in addition to perception (Elliott et al. 2003; Knutson

et al. 2003; Critchley et al. 2001; Rustichini et al. 2005; Ernst et al. 2004; Zink et al.

2004). Here we show how expected reward and risk correlate with activation in subcortical

dopaminoceptive structures when these additional elements are removed.
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5.4.6 Implications for pathological decision making under risk

Pathological behaviors ranging from addiction to gambling (Bechara et al. 1997) as well as a

variety of mental illnesses, such as bipolar disorder (Minassian et al. 2004), and schizophre-

nia (Shurman et al. 2005), are partially characterized by risk taking. To date, it is unknown

whether such pathological decision making under risk is due to misperception of risk or

disruptions in cognitive processes, such as learning, planning, and choice. For example, a

bipolar subject during a manic episode may invest in a risky business proposition either

because they misperceive the risk to be lower than it actually is, or because they accu-

rately perceive the risk to be high but may have impaired learning, attentional, working

memory, or choice processes. To date, studies of pathological decisions making under risk

have primarily utilized the Iowa Gambling Task (IGT) (Cavedini et al. 2002; Clark et al.

2001; Shurman et al. 2005), which was designed to assess sensitivity to future negative re-

inforcers (Bechara et al. 1997). Recent studies (Dunn et al. 2006; Maia and McClelland

2004), however, suggest that impaired performance on the IGT may be due to impairments

in reversal learning, working memory, attentional shift, and related high-level cognitive pro-

cesses rather than misperceptions of risk per se. Since our task was designed to minimize

the involvement of these high-level processes, in the future it may be utilized with clinical

populations to determine whether alterations in risk perception accompany their changes in

risky behavior. This may lead to a better understanding of the relative contributions of risk

misperception vs. cognitive impairments in these pathological cases, may suggest different

treatment approaches, and may also gauge the impact on and the feedback from higher-level

brain regions known to contribute to decision making (e.g., ventromedial prefrontal cortex

(Fukui et al. 2005)).

5.4.7 Conclusion

In neuroscience, the investigation of the dopaminergic system in tasks involving uncertainty

has emphasized reward prediction learning. Risk perception has been less well studied,

yet it is central to decision making under uncertainty, as formalized in financial decision

theory. Our results show that brain activity can be separated, both spatially and temporally,

into signals that correlate with (mathematical) expectation of reward, and with reward

variance (risk) - two fundamental parameters of financial decision theory. The role of
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human subcortical dopaminoceptive structures in reward-related processing is extended

even further as our results suggest that these structures convey basic signals of upcoming

stochastic rewards, like expected reward and risk, beyond these structures’ role in learning,

salience and motivation.

5.5 Methods

A total of 19 subjects participated in the study (10 male, 9 female; aged 18-30, mean age

21.4 years). All subjects gave full informed consent to participate in the study. The study

was approved by the California Institute of Technology Institutional Review Board.

5.5.1 Experimental paradigm

Each subject was given written instructions for the game and completed a brief training

session outside the magnet. For each session, subjects were provided with an initial endow-

ment of $25. If no bet was placed, they lost automatically. They also lost $0.25 if they

incorrectly reported the outcome of their bet or if they did not respond. Accumulated gains

were shown only at the end of each session. Subjects played 3 sessions with 30 trials per

session. At the end of the experiment, subjects selected one of the three sessions at random,

which determined their final payoff. During scanning, trials were randomly ordered. The

first card was pseudorandomized such that each of the 10 cards would be seen 3 times as

the first card. The second card was randomized.

5.5.2 Imaging data

Each scanning session included a localizer scan and T1 weighted MPRAGE anatomical scans

(256x256 matrix, 176 1mm sagittal slices) followed by the acquisition of functional images

while subjects performed the gambling task. Images were acquired using a Siemens TRIO

3.0T full body MRI scanner using T2*-weighted PACE EPI. For each subject three func-

tional runs were collected (392-400 scans each). Imaging parameters for both anatomical

and functional data acquisition are summarized in table 5.7.

Visual stimuli were presented using Matlab Psychophysics toolbox. A fixation cross was

present on screens with no other stimuli. Cards were presented in the center of the screen

(screen resolution 600x800, card size 73x97). A single suit (spades) was used.
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Parameter Anatomical Functional

Sequence name mprage EPI Pace

Slice orientation sagittal axial

Number of slices 176 32

Slice thickness [mm] 1 3

Slice resolution [mm2] 1× 1 3.28125× 3.28125

Slice resolution [px2] 256× 256 64× 64

FOV [mm] 256 210

FOV [%] 100 100

Phase oversampling [%] 0 13

Slice oversampling [%] 9 n/a

Flip angle [deg] 10 90

Bandwidth [Hz/px] n/a 2694

TR [ms] 1500 2000

TE [ms] 3.05 30

TI [ms] 800 n/a

Acquisition sequence n/a interleaved

Phase encoding direction A → P n/a

Table 5.7: Imaging parameters

5.5.3 Behavioral Data

Throughout the experiment all responses and corresponding reaction times were recorded.

The correct timing of unprompted or late button presses was not tracked, however their

occurrence and the trial in which they occurred was.

5.5.4 Data processing

Data were processed and analyzed using BrainVoyager v1.26 for Windows running on a

Sony Vaio PCG-GRX600P. Preprocessing included motion correction (six-parameter rigid

body transformation), slice timing correction, linear drift removal, highpass filtering, nor-

malization to Talairach space, and spatial smoothing with a full width at half-maximum

Gaussian kernel of 8 mm.
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Coregistration. For each subject functional and anatomical data was aligned using

anatomical to anatomical mapping. For this an anatomical volume was created from the

first experimental session by averaging over all functional volumes within that session and

inverting intensities. The resulting alignment was checked visually and corrected if neces-

sary. The transformation matrices can be used to map activation from all three sessions

onto the anatomical volume.

Transformation to Talairach space. Anatomical data was transformed to Talairach

space by rotating the anatomical volume into the ACPC plane and applying a standard

9-parameter landmark transformation.

For each subject, a separate linear model was constructed that included the regressors

described below as well as visual and motor activation. Regressors modeled the BOLD

response to the specified events using a convolution kernel applied to a boxcar function. A

first-order autoregressive model was used to correct for temporal autocorrelations. For each

subject, contrasts were calculated at every voxel in the brain. In a random-effects analysis,

a one-sample t test determined where the average contrast value for the group as a whole

(n = 19 subjects) differed significantly from zero. Statistical maps were thresholded for

significance (p < 0.001) and cluster size (≥5 voxels). The model used to identify regions

of interests decomposed the anticipatory period into two consecutive epochs: a short epoch

(1 s from card 1) followed by a long epoch (6 s) modeling the remainder of the anticipatory

period until card 2. Both epochs were modeled with three predictors, a 0th, 1st, and 2nd

order term. The predictor for the 0th order term modeled the anticipatory period. The 1st

and 2nd order terms modeled the same period, but predicted a hemodynamic response that

scaled linearly and quadratically with the probability of win. Note that all three components

were orthogonal with respect to one another. The model also included predictors for visual

and motor activation as well as for wins and losses at the time of card 2. The different

regressors are summarized in the next section.

To compare activation levels at different probabilities (beta estimates in figures 5.4 and

5.5) within the identified regions of interest, the model was modified to include one predictor

for each individual probability instead of the 0th, 1st, and 2nd order terms. For determining

risk activation levels, a late-onset predictor between the bet and card 1 was also included

to model the (maximal) risk at that time. Adjusted time courses (figures 5.6 D and E) are
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time courses corrected for the effects (confounds) in the reduced model (for probability time

course, reduced model = full model predictor for 1st order term [probability]; for risk time

course, reduced model = full model 2 predictor for 2nd order term [risk]). This ensured

that the effects shown were orthogonal to all effects captured by the reduced model. Any

effect not included in the reduced model would show up in the adjusted data (error term),

while any effect included in the reduced model should not show up. For the probability

time course, adjusted data were grouped into low (p < 0.3), medium (0.3 < p < 0.7), and

high (p > 0.7) probability trials, averaged over all trials (time-locked to card 1). This event-

related average was plotted over time for each group. For the risk time course, adjusted

data were grouped into low (p = 0 or p = 1), medium (0 < p < 0.3 or 0.7 < p < 1), and high

(0.3 < p < 0.7) risk trials, averaged over all trials (timelocked to card 1). This event-related

average of residuals was plotted over time for each group.
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Chapter 6

Human Insula Activation Reflects
Risk Prediction Errors as well as
Risk

6.1 Summary

All decision-makers confront many forms of uncertainty when making adaptive choices. One

form occurs when stimulus-reward associations are probabilistic and changing. Understand-

ing how organisms deal with this source of uncertainty has been advanced by a convergence

between reinforcement learning models and primate physiology, which demonstrated that

the brain encodes a reward prediction error signal. However, organisms must also track the

level of risk associated with predictions of probabilistic reward, monitor the errors in those

risk predictions, and update these in light of new information. To date, it is not known

whether, or how, the brain accomplishes this. Considerations from financial decision theory

led us to hypothesize that the brain encodes a prediction risk signal and a prediction risk

error signal. Using functional imaging during a simple gambling task, here we show that

an early-onset activation in the human insula correlates significantly with prediction risk

error and that its time course is consistent with a role in rapid updating. Further, we show

that activation previously associated with prediction risk emerges with a delay consistent

with a role in anticipation. Our findings indicate that our understanding of the neural

basis of decision making under uncertainty needs to be expanded to include prediction risk

estimation. Such integration may have far-reaching implications for our understanding of

pathological decision making.
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6.2 Introduction

Many people listen to weather reports to make predictions about their environments. To

choose the right clothing, people must predict not only the average temperature but also how

much it will vary throughout the day. In other words, they need to estimate the prediction

risk (variance) of the predicted average temperature. In addition, if the prediction risk is

misjudged, prediction risk errors arise with which to correctly assess future prediction risk.

While this is a simple everyday example, estimation of prediction risk is mathematically

sophisticated, as evidenced by recent advances in the theory of finance, where prediction

of risk is crucial to correctly value securities with complex future payoffs such as options

(Engle 2002, 1982). In fact, keeping track of prediction risk errors and thereby correctly

estimating prediction risk is crucial for survival of any organism that must adapt to a

changing, uncertain environment.

We hypothesized that there exists a system in the brain that encodes both prediction

risk error and prediction risk, and that such a system plays the same role for prediction

risk and prediction risk error that subcortical dopamine projection areas play for reward

prediction and reward prediction error. We predicted that this system may be insula, as

insula activation correlates with a broad range of risk-related characteristics of gambles

involving probabilistic rewards, such as complexity (Huettel et al. 2005a; Grinband et al.

2006) ambiguity (Hsu et al. 2005; Huettel et al. 2005b, 2006), and uncertainty (Critchley

et al. 2001; Paulus et al. 2003; Elliott et al. 2000; Ernst et al. 2002).

6.3 Task

To test our hypothesis, nineteen subjects played multiple rounds of a simple gambling task

(figure 6.1) while their brain activity was recorded using functional magnetic resonance

imaging (fMRI). In each round two cards were drawn from a randomly shuffled deck of ten.

Before seeing either card, players guessed if the second card would be higher or lower than

the first. We then displayed the first card followed ∼7 s later by the second card. Within a

round, predictions occur before the first and second card, which result in prediction errors at

both cards. This is illustrated for three exemplary trials in figure 6.1. When guessing which

card would be higher, the player has an estimate of the reward to be expected after seeing

the first card and of the corresponding prediction risk. Once the first card is revealed,
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these estimates are compared to the actual values, resulting in reward prediction errors

and prediction risk errors. The player then estimates the reward at the second card and

corresponding prediction risk, which again results in errors once the card is revealed (see

section 6.6 for formal definitions). We hypothesized a response to prediction risk errors and

to prediction risk in insula following both cards.

6.4 Results

The prediction risk error following both the first and second card indeed correlated signif-

icantly with activity in bilateral anterior insula (figure 6.2 A). Increasing prediction risk

errors were reflected in increasing activitation in right insula (figure 6.2 B, p < 0.001,

r2 = 0.76). Furthermore, changes of activation intensity as a function of prediction risk

error did not depend on whether they occurred after the first card, or after the second card.

I.e., knowing the activation level at the first card, one can predict the activation level at

the second card from the prediction risk error.

Previous studies have investigated prediction risk and have found an association with ac-

tivation in insula. The time courses in these studies suggest that the onset of the risk-related

activation is delayed with respect to the risk onset (Huettel et al. 2005a). In accordance

with these results, we found late-onset prediction risk signals in bilateral insula areas. These

areas were slightly more superior and anterior to those found for prediction risk error (figure

6.3).

In summary, we found two signals in bilateral anterior insula, one for prediction risk

error and one for prediction risk. The two signals were not only spatially separated (figure

6.3 top) but also temporally (figure 6.3 bottom). Different levels of prediction risk error

were best dissociated immediately after a card is shown, while different levels of prediction

risk were best dissociated after a delay.

6.5 Discussion

These findings support our hypothesis that there are two signals in anterior insula, a fast-

onset prediction risk error signal and a late-onset prediction risk signal. While previous

studies have documented risk-related activation in insula (Huettel et al. 2005a,b, 2006;
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Figure 6.1: Expected reward, prediction risk, and prediction risk errors throughout typical
trials. Within a trial, predictions and prediction errors arise twice: when the first card
is revealed; and when the second is revealed. As there are 10 cards, numbered 1-10, the
expected reward before the first card is $0; the expected number on the first card is 5.5.
Note that this number will never equal the number on the first card, i.e., there will always
be a prediction error and it will at least be 0.5. One can compute how large this prediction
error will be on average when the first card is shown, by summing the expected rewards
for the different possible numbers on the first card multiplied by the probability that these
numbers occur. The difference between this average and the actual prediction error results
in a prediction risk error. A: The subject guesses that the second card will be lower. The
first card drawn is a 3. The second card is a 2 hence the subject wins $1. The reward
prediction error at the first card (red dashed line, second panel) is a little smaller than
expected (prediction risk is the expected size of the reward prediction error); therefore the
prediction risk error is negative. At the second card, the reward prediction error is much
smaller than expected. Therefore, the prediction risk error is positive and large. B: The
subject guesses that the second card will be lower. The first card drawn is a 8. The second
card is a 2 hence the subject wins $1. The reward prediction error at the first card is
smaller than expected; therefore the prediction risk error is negative. At the second card,
the reward prediction error is much smaller than expected. Therefore, the prediction risk
error is negative and large. C: The subject guesses that the second card will be lower. The
first card drawn is a 10. The second card is a 2 hence the subject wins $1. The reward
prediction error at the first card is much larger than expected; therefore the prediction risk
error is positive and large. As no uncertainty remains about the outcome after card 1, there
are no prediction errors at the time of card 2.
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Figure 6.2: A: Activation in bilateral insula correlates positively with a prediction risk
error as of display of both the first and second card (random effects, df = 18, p < 0.0005)
B: Activation levels in right insula show a significant linear relationship with the level of
prediction risk error at the time of the first card (blue) as well as the second card (red).
Furthermore, the functional relationships are comparable at the first and second card.

Brain region L/R mean x mean y mean z cluster size max stat

Anterior insula R 32 15 −3.3 46 7.3
Anterior insula L −31 14 −2.4 41 7.32
Posterior insula R 49 −11 6.1 95 −6.64
Inferior parietal gyrus R 57 −27 28 6 −5.63
Angular gyrus R 53 −52 25 14 7.69
Inferior frontal gyrus R 48 17 16 12 5.72
Superior temporal gyrus L −38 −27 21 58 −7.56
Angular gyrus L −43 −60 34 24 7.25
Superior temporal gyrus L −56 −11 4.6 24 −6.52

Table 6.1: Activation for early-onset prediction risk error after display of cards 1 and 2.
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Figure 6.3: A: Activation in bilateral insula correlates with both prediction risk (blue)
and prediction risk error (red). Risk is reflected in an area slightly more superior and
anterior than prediction risk error. Note, that both the red and blue clusters reflect positive
correlations (random effects, df = 18, p < 0.0005). Different colors were chosen for better
visualization. B: Adjusted time courses in right insula at the first card show that different
levels of prediction risk errors upon display of the first card are best dissociated immediately
after the first card, whereas different levels of prediction risk (anticipated risk of predictions
of outcome as of the second card) are best dissociated right before the second card is shown.

Brain regions R/L mean x mean y mean z cluster size max stat

Anterior insula R 33 21 8 25 −4.94
Subcortical structures* 1 −10 −1.8 258 −8.16
Pulvinar L −10 −26 15 4 −4.85
Pulvinar L −14 −30 6.4 5 −4.7
Anterior insula L −31 22 7.7 82 −7.54
Precentral gyrus L −38 −8.8 32 10 −5.25
Precentral gyrus L −40 −12 42 6 −4.44

Table 6.2: Activation for late-onset prediction risk during anticipation period between dis-
play of cards 1 and 2. *Structures include bilateral ventral striatum, substantia nigra, and
thalamic nuclei. This result is reported in chapter 5.
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Grinband et al. 2006; Hsu et al. 2005; Critchley et al. 2001; Paulus et al. 2003; Elliott et al.

2000; Ernst et al. 2002), the neural response to prediction risk errors has not been reported,

nor has its occurrence been differentiated from that of the prediction risk signals.

The distinct time courses of these signals support the hypothesis that they also play a

distinct role in risk processing. The prediction risk error may mediate learning and therefore

be important for quickly adapting to rapidly changing uncertain environments. Physiolog-

ically, this is supported by the fact that the response to prediction risk errors emerges

immediately after the risk cue. In contrast, prediction risk may act as an anticipatory sig-

nal before risk is realized. This is supported by the fact that the response to prediction risk

is delayed after the risk cue.

There is an intriguing parallel between the activations in insula for prediction risk error

and those in subcortical dopaminoceptive structures such as ventral striatum for reward

prediction error. Both (error) activations have an early onset. In addition, prior studies re-

port neither early-onset activation in ventral striatum that correlated with risk (Preuschoff

et al. 2006) nor early-onset activation in insula that correlated with reward expectation (see

tables 6.1 and 6.2), and our data confirm this. The pairing suggests that insula monitors

risk and subcortical dopaminoceptive structures monitor expected reward. One could con-

jecture that insula activation correlates with behavior that primarily involves risk, while

activations in subcortical dopaminoceptive structures correlate with behavior modulated

mainly by expected reward. A recent study confirms this (Kuhnen and Knutson 2005):

insula activation predicts risk avoidance, while activation in nucleus accumbens predicts

reward-seeking behavior.

Previous studies of insula activations in the context of uncertainty only reported signals

that increased in the level of uncertainty. These studies do not report a prediction risk

error, not only because it was not hypothesized, but also because of its peculiar timing.

To determine whether our activations were consistent with earlier accounts of uncertainty-

related activations in insula, we needed to replace our model with one similar to previous

studies. Such models only include prediction risk and no prediction risk error, and they

pay little attention to the exact onset of the activations. Insula activations in response to

risk became far less significant (p < 0.05, uncorrected), whereas prediction risk errors could

of course no longer be detected. However, the detectable correlation with risk was positive

and therefore consistent with accounts in the literature.
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This demonstrates that the standard model (block design) for prediction risk (uncer-

tainty) masked the signal for prediction risk error. We therefore suggest that block designs

should be used carefully when modeling complex, intertwined processes. A block design

may make it impossible to pick up subtle differentiations of brain signals across sub-regions

and over time.

The late-onset activations in insula that correlate with prediction risk exhibit an intrigu-

ing pattern. In particular, we discovered that the timing of onset and peak of activations in

insula is strikingly similar to those of risk-related activation in ventral striatum (see figure

5.6). Since the signal in ventral striatum is understood to have a dopaminergic origin, and

since dopaminergic neurons project to insula as well, we conjecture that the signal in insula

may also have a dopaminergic origin. Future research should establish the validity of our

conjecture.

The theory of finance dissociates estimation of reward and estimation of prediction risk

(Engle 2002, 1982). Our results indicate that the brain implements the same dissociation.

Among others, subcortical dopaminoceptive structures encode quantities needed for esti-

mation of expected reward, namely, reward expectation errors. In parallel, insula encodes

quantities needed for estimation of prediction risk namely, prediction risk errors.

While forms of reward prediction learning have been found across a diversity of species,

including bees (Real 1991) and nonhuman primates (Schultz 2004), the extent of prediction

risk learning across species is not known, in part because it has not been explicitly consid-

ered. One possibility is that prediction risk estimation may be a relatively late adaptation,

perhaps emerging during great ape evolution, which was characterized by/ during height-

ened habitat instability (Potts 1996). Ripe-fruit frugivory under these conditions would

have involved complex spatial and temporal prediction problems, resource variability on

both seasonal and longer timescales, and other risk prediction problems that may have con-

tributed to the expansion of brain enlargement and enhanced cognition. By emphasizing

the adaptive importance of prediction risk estimation, we suggest that an important future

research question will be to assess the extent of its use across species.

In summary, we hypothesized and showed that insula activations in the context of a

monetary gamble reflected both prediction risk errors and prediction risk. These are crucial

inputs for assessment of risk in a rapidly changing, uncertain world. Most importantly, our

results suggest that the earlier understanding that insula is involved in uncertainty-related
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phenomena such as complexity, ambiguity and risk needs to be expanded to allow for the

possibility that insula encodes prediction risk errors. The suggested expansion is rendered

all the more significant by the timing of the prediction risk error signals, which indicates

that they may play a primary role in rapid updating. It appears that our understanding of

reward anticipation in the dopaminergic system developed in an analogous way: it likewise

started with the idea of encoding levels (of rewards), but it later needed to accommodate

prediction errors. Finally, just as the idea of a reward prediction error (Montague et al. 2004)

has led to new insights into addiction, mental illnesses, and pathological decision making,

the notion of risk prediction errors and possible disruptions in risk prediction learning may

also have significant clinical implications.

6.6 Mathematical details of reward prediction error, predic-

tion risk and prediction risk error

Referring to the gamble in our experimental paradigm, define the following: P1 denotes

the expected reward conditional on the number on card 1, P2 denotes the actual reward,

revealed upon display of card 2. Before display of card 1, the task is to predict P1; after

display of card 1 and before display of card 2, the task is to predict P2.

Let P0 be the prediction of P1, i.e., P0 = E[P1]. The prediction error (as of display

of card 1) equals P1 − P0; the prediction risk is the expected size of this prediction error,

namely, E[(P1 − P0)2]. The prediction risk error is the actual minus the expected size:

(P1 − P0)2 − E[(P1 − P0)2].

Analogously, after display of card 1, P1 is the prediction of P2: P1 = E[P2]. the

prediction error at the time card 2 is displayed equals P2 − P1. The prediction risk is the

expected size of this prediction error, E[(P2 − P1)2]. The prediction risk error is the actual

minus the expected size: (P2 − P1)2 − E[(P2 − P1)2].

This is summarized in Table 6.3.
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Term Definition

Reward prediction E[P2]
Reward P2

Reward prediction error P2 − E[P2]
Prediction risk E[(P2 − E[P2])2]
Prediction risk error (P2 − E[P2])− E[(P2 − E[P2])2]

Table 6.3: Formal definitions
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Chapter 7

Brain Signals of Risk and Reward
Jointly Integrate into Anterior
Cingulate Cortex

7.1 Abstract

Recent studies show that the expected (anticipated) reward of a gamble and its risk (reward

variance) are encoded in separate areas of the human brain. Effective perception of a gamble

supposes that these two parameters be integrated. Here, we used canonical correlation

analysis to determine what signal the brain constructs. Joint activation in the ventral

striatum, putamen, and insula revealed a signal that is increasing in expected reward and in

risk. This metric can be interpreted alternatively as reflecting attention or conflict (between

risk and reward). In line with these interpretations, the new predictor significantly activates

the anterior cingulate cortex.

7.2 Main text

The foundation of modern decision theory under uncertainty is that the anticipated value

of a decision can be represented by a single-dimensional index. In 1738, Bernoulli first

conjectured that such a metric reflects the trade-off between the expected (anticipated) value

of an outcome and its risk (variance), as a lower expected reward (e.g., putting your money

into a savings account) is sometimes preferred over a higher expected reward (e.g., investing

money into the stock market) simply because it involves lower risk (Bernoulli 1738). Modern

decision theory rests on the axiomatic treatment that von Neumann and Morgenstern (1944)
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first gave for this trade-off between expected reward and risk. This resulted in Expected

Utility for objective probabilities, a single-dimensional decision metric. Expected Utility

was subsequently axiomatized by Savage for subjective probabilities (Friedman and Savage

1952). Alternatives to Expected Utility have since been proposed, such as the value function

of prospect theory (Kahneman and Tversky 1979). However, they mirror the Expected

Utility approach of a single-dimensional index that is some function of expected reward and

risk.

To date, it remains unknown whether, or how, the brain constructs a single-dimensional

representation of the anticipated value of a decision outcome. Accumulating evidence sug-

gests that both expected reward and risk are encoded in the human brain. Several studies

indicate that activation in the ventral striatum and putamen encodes expected reward

(Knutson et al. 2001a; Preuschoff et al. 2006), while activation in the insula reflects risk

(Preuschoff et al. 2006; Huettel et al. 2005a). This evidence indicates that these two decision

parameters are encoded in different areas of the brain, yet it leaves open the question of

how they are subsequently integrated to form a single-dimensional index of the anticipated

value of a decision outcome, as modern decision theory predicts.

We hypothesized that the brain combines the striatum’s expected reward signal and

the insula’s risk signal into a single metric that is reflected in activation of higher-level

cortical structures. On functional imaging (fMRI) data this hypothesis cannot be tested

using the standard linear model (GLM) approach (Anderson 1984), as the GLM detects the

neural responses to a set of predictors, such as expected reward and risk, by minimizing the

error between the variables and activation in a single location in the brain. We therefore

developed a multivariate approach based on canonical correlation analysis (CCA) (Hotelling

1936), which extends the GLM approach for a set of multiple locations in the brain. That is,

CCA explains the joint activation across multiple locations in terms of a set of predictors.

We recorded brain activity during a simple gambling task (figure 5.2). The task was

chosen as it elicits strong responses to expected reward (in ventral striatum and putamen)

and risk (in insula) (Preuschoff et al. 2006). In this task, nineteen subjects placed a bet on

whether the first or second of two cards drawn from a deck would be larger. The two cards

were drawn without replacement from a randomly shuffled deck of ten cards number 1 to 10.

We were interested in the brain activity after the first card is shown but before the second

card is revealed. During this phase, expected reward and risk vary with the probability of
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Weight p-value Parameter

32.63 < 10−7 Expected Reward
63.44 < 10−5 Reward Variance (Risk)

Weight p-value ROI Talairach
(x, y, z)

0.25 0.0017 Putamen (−22, −8, 8)
0.44 < 10−7 Ventral striatum (−12, 5, −3)
−0.22 < 10−4 Insula (−31, 21, 9)

Table 7.1: CCA model of joint activation in ROIs in terms of prediction model with two
predictors: expected reward and risk. Weights are fixed across subjects.

winning (figure 5.1) which depends on the first card and on whether the subject bet that

the second card was going to be higher.

Using CCA, we determined how joint activity of regions that encode expected reward

(ventral striatum, putamen) and risk (insula), can be explained in terms of a single metric

consisting of the combination of two predictors, expected reward and risk. We used standard

tests to gauge the significance of the correlation between the joint brain activations and

the predictors (“canonical correlation”) as well as of the estimated weights (“canonical

loadings”) in the predictor model (Anderson 1984).

A group analysis on all subjects yielded a highly significant canonical correlation between

the estimated joint brain activation and the estimated predictor model (p < 10−7; computed

with Bartlett’s correction (Johnson and Wichern 2002)). More importantly, the weights on

both expected reward and risk were positive and highly significant (table 7.1). As such, the

signal reflected in the estimated predictor model is increasing in both expected reward and

risk.

To determine if these results hold for all subjects, we repeated the analysis for each

subject. We obtained significant canonicial correlations in 16 out of 19 subjects (p < 0.1).

For 15 out of these 16 subjects, the weights for both expected reward and risk in the

estimated predictor model are positive (p < 0.0003, table 7.2).

The canonical correlation is best visualized by comparing the estimated predictor model

and the joint activation of the ROIs at the peak of the hemodynamic response function,

5 s after the first card is revealed (figure 7.1). for each of the ten probabilities the value

predicted by the model falls into the 95% confidence interval of the actual (measured) joint
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Number of Subjects

No significant canonical correlation (p ≤ 0.10) 3
Significant canonical correlation (p < 0.10) 16

Of which positive weights on both expected reward and risk 15
Total number of subjects 19

Table 7.2: Subject-by-subject analysis of the sign of the weights (loadings) of the estimated
decision metric.

activity.

We next determined the projection area for the signal generated by the joint activations

of ventral striatum, putamen and insula. This signal is increasing in both expected reward

and risk, and hence, is high when either expected reward and risk or both are high, which

suggests that it may be an attention metric. Perhaps more accurately, it could be interpreted

as measuring the amount of conflict there is between two decision variables, expected reward

and risk. Therefore, we hypothesized that it would activate neural regions involved in

processing attention or conflict.

The interpretation of the estimated predictor model in terms of an attention or conflict

metric suggested that we look for a neural response in the anterior cingulate cortex (CCA),

a brain region known to be involved in attention redirection, especially in the context

of cognitive conflict (Botvinick et al. 2004). In accordance with the previously reported

activation patterns, we hypothesized that the ACC would correlate with the absolute change

in conflict. We performed a group analysis on the 15 subjects for which the CCA yielded

significant results.

A sub-region of ACC showed highly significant activation in response to the signal

generated by the estimated predictor model (figure 7.2; p(uncorrected) < 0.0014; peak at

(1, 13, 50) in Talairach coordinates; see also table 7.3). The location and spatial extent of the

activation matched those reported for other conflict situations in the literature (Botvinick

et al. 2004). Qualitatively similar results were obtained when the predictor model was

estimated with constant weights across all subjects (figure 7.3; table 7.4).

7.3 Discussion

Using CCA, we found strong evidence that the joint activations reflecting expected reward

in ventral striatum and putamen and risk in insula reflect a single metric. Strikingly, the
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Figure 7.1: Correlation of the activity predicted by the conflict measure U and the combined
activity V of ventral striatum, putamen, and insula. Combination of brain activations in
three ROIs that is maximally correlated with U is superimposed along with 95% confidence
intervals. U and V are measured 5s after the display of the first card, to correct for the hrf
delay.

ACC

x=1

Figure 7.2: ACC responds to changes in the signal predicted from joint brain activations
in ventral striatum, putamen, and insula. Sagittal view of activation in response to the
size (absolute value) of the change in this signal before and after display of card 1. Map
threshold: p(uncorrected) < 0.0014.
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x=3

ACC

Figure 7.3: ACC responds to changes in the conflict metric estimated form joint brain
activations in ventral striatum, putamen, and insula. Weights in conflict metric are forced
to be fixed across subjects. Sagittal view of activation in response to the size (absolute value)
of the change in conflict before and after display of card 1. Map threshold: p(FDR) < 0.02.

Predictor Talairach t14-stat cluster size
(x, y ,z)

|U − U(0.5)| (1, 13, 50) 4.57 15

Table 7.3: ACC activation in response to change in the estimated conflict metric before
(U(0.5)) and after (U) display of card 1 (random effects GLM). Coordinates refer to the
center of the cluster activated at P < 0.0014. The t14-statistic corresponds to the most
significant voxel.

Predictor Talairach z-stat cluster size
(x, y, z)

|U − U(0.5)| (3, 16, 40) 4.644 126

Table 7.4: ACC activation in response to change in the estimated conflict metric before
(U(0.5)) and after (U) display of card 1 (fixed effects GLM).
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metric we recover generates a signal that is increasing in both expected reward and risk,

suggesting that it conveys conflict. It is reasonable to posit that humans are risk averse,

and hence, if this metric had been reflecting expected utility, while increasing in expected

reward, it would have been decreasing in risk (Levy and Markowitz 1979). Supporting our

interpretation of the joint activation, the signal correlated significantly with activation in

a sub-region of ACC, which is known to be engaged in monitoring conflict. As such, ACC

appears to play a crucial role in communicating how much conflict there is between expected

reward and risk, the two main parameters that characterize risky gambles.

Our results significantly extend the role of ACC in monitoring of conflict, from the Stroop

and related tasks (MacDonald et al. 2000; Pardo et al. 1990) to valuation of probabilistic

rewards with varying degrees of expected reward and risk, consistent with recent evidence

that ACC is crucial in valuing options based on multiple decision criteria, including risk and

expected payoff (Kennerley et al. 2006). Our extension is significant in that we manipulated

conflict cardinally, unlike in previous studies, where the level of conflict is only ordinal

(generally binomial, and at most multinomial).

Our findings suggest that the metric we observe in ACC may be interpreted as a conflict

metric in accordance with the theory of games of conflict (Esteban and Debraj 1999).

In this interpretation, sub-cortical regions such as ventral striatum and putamen play a

game of conflict with the cortical insula region. One can suppose that the sub-cortical

regions have preferences that are increasing in expected reward, while the cortical region

has preferences that are increasing in risk. Each region lobbies a third region, the ACC, and

one could measure the intensity of the lobbying in terms of the signal strength reflected in

the activations of the respective regions. The theory of games of conflict demonstrates that

an effective metric of the total amount of conflict is increasing in the contributions of the

parties, i.e., in the lobbying efforts. In our context, a metric of conflict between the regions

of interest should therefore be increasing in the expected reward and the risk signals that

they generate. The predictor model we estimate from the joint activations does precisely

that, leading to our interpretation of it as a conflict metric.

That the human brain may engage in monitoring conflict as in games of conflict leads

us to a new conjecture that the human brain may solve problems of decision-making under

uncertainty through conflict resolution. This contrasts with a view that the human brain

would simply aggregate expected reward and risk to construct an expected utility index with
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which to facilitate choice and/or determine actions. However, it is important to note that

our results do not exclude the possibility that expected utility may be encoded elsewhere in

the brain, or at different times. Still, recent lesion studies of ACC in non-human primates

(Kennerley et al. 2006) suggests that the ACC signal may be necessary at least in some

contexts for adaptive decision-making under uncertainty, and it remains an open issue

whether and under what conditions the brain generates additional decision metrics.

As it is increasing in both expected reward and risk, the response in ACC may also

be related to attentional processing. The higher expected reward, risk, or both, the more

attention should be spent to ensure receipt of the reward (higher expected reward), to avoid

risk if the opportunity is provided (higher risk), or to evaluate the trade-off between risk

and expected reward (when both are high).

Behind our ability to extract a single metric in expected reward and risk from simul-

taneous activation in several brain regions lies a novel organizational principle regarding

signal processing in the human brain. Indeed, CCA exploits correlations in baseline acti-

vations. Such correlations are known to exist between single neurons from different regions

with common projection targets (Salinas and Sejnowski 2001); they have also been detected

between multiple brain regions using fMRI (Zeki et al. 2003). Aside from an association

with attention (Salinas and Sejnowski 2001), the goals of these correlations are unknown.

Our conjecture is that they improve re-combination of signals from different brain regions.

Expected reward and risk are two features of random outcomes that need to be jointly

considered in order to effectively evaluate gambles. They are separately encoded in the

brain, raising the question as to what they are re-integrated into, if at all. Our study

uncovered a conflict signal in the joint activations of brain regions that encode expected

reward and risk. This signal provides a quantitative measure of conflict, and hence, our

finding that it correlates with activation of anterior cingulate cortex significantly expands

our understanding of this structure, from ordinal assessment of change in conflict, to cardinal

monitoring. Since most humans are risk averse, one could also be surprised that the signal

reflected in joint activations of regions that encode expected reward and risk is not an

expected utility index. While increasing in expected reward, expected utility is decreasing

in risk.
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Part II Summary

Following a reward predicting cue, initial activation in ventral striatum and other subcortical

dopaminoceptive structures varies with expected reward, whereas subsequent activation in

ventral striatum varies with risk. Responses to expected reward are linear in probability;

responses to risk are quadratic in probability implying that risk or uncertainty is encoded as

variance. The responses arise in the absence of learning, motivation, or salience confounds.

In addition, insula activations reflects both prediction risk errors and prediction risk.

These are crucial inputs for assessment of risk in a rapidly changing, uncertain world. This

suggests that our understanding of insula needs to be expanded to allow for the possibility

that insula encodes prediction risk errors in addition to the previously reported uncertainty-

related phenomena such as complexity, ambiguity and risk.

Furthermore, the brain seems to combine the joint activations that reflect expected

reward in ventral striatum and putamen and risk in insula into a single metric. This metric

is increasing in both expected reward and risk and correlates significantly with activation

in a sub-region of ACC, which is known to be engaged in monitoring conflict.

The final part of this thesis will discuss the implications of this.
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Part III

Discussion and Future Directions
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Chapter 8

Discussion

In the context of learning, in particular learning about future rewards using reward pre-

diction errors, two results presented in this thesis are particularly interesting: (i) reward

prediction errors are generated in the absence of learning, (ii) signals of prediction risk

and prediction risk errors are generated. The first poses a problem to standard Temporal

Difference (TD) models. The second provides a solution.

8.1 Temporal difference learning and prediction risk

TD models, a form of reinforcement learning (RL) models, have successfully explained

reward-related neural activity of the dopaminergic system and thus contributed to under-

standing the neural basis of learning to anticipate uncertain rewards. They provide evidence

for the crucial role of the dopaminergic system in such learning and the nature of the un-

derlying learning algorithms. TD models have accounted for a wide range of behavioral and

neural phenomena such as foraging behavior in bees (Montague et al. 1995) and dopamin-

ergic response patterns in nonhuman primates (Montague et al. 1996).

The TD model is an extension of the Rescorla-Wagner (RW) rule which tries to predict

future rewards by continuously comparing incoming rewards rt with predictions xt. The

resulting error δt = rt−xt is used to update predictions about future rewards xt+1 = xt+λδt.

The learning rate λ is usually kept constant. However, if the learning rate is fixed, learning

should occur whenever a reward prediction error occurs. Consider the following situation:

A fair coin is tossed for a $1 win or loss. The prediction xt of the reward pt on trial t will

be $0 (as this is a random gamble). If the player wins on the next coin toss (rt = 1), then

according to TD learning and with a constant learning rate λ > 0, the player’s prediction
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xt+1 for the next coin toss will be larger than xt, i.e., xt+1 > 0. However, most players will

not (and should not) update their future predictions, i.e., xt+1 = xt. To arrive at xt+1 = xt

using the RW rule the learning rate λ should be zero.

The key here is that this is a situation of (known) nonzero risk. Therefore, the prediction

risk vt is non-zero, i.e., prediction errors are expected and updates of future estimates should

not be too sensitive to outcomes. In other words, while the prediction xt is wrong and

therefore a prediction error δt > 0 is generated, the error itself is predicted. For the TD

model to arrive at this solution the learning rate λ should be a function of prediction risk

such that large prediction risk decreases the learning rate and small prediction risk increases

the learning rate. In addition, note that the best prediction the player could have used, i.e.,

xt = 0 ∀t, is not correlated with past prediction errors. The covariance between prediction

and past prediction errors is zero. According to least squares learning theory, the learning

constant λ should be the coefficient in a projection of predictions on past prediction errors.

The projection coefficient is defined to be the ratio of a covariance and a variance. In our

setting,

λt =
cov(xt+1, et)

vt(et)
,

where the prediction risk is given by the variance of the prediction error, vt =
√

var(et, t);

vt cannot be constant over time. During learning, vt is expected to be larger for early trials

than late trials.

Least squares learning can be defended against more powerful learning rules such as

Bayes’ law because it is agnostic about the model that generates the stimuli (on which

predictions are to be based) and the rewards. In other words, it is model free.

This formulation suggests that a system that implements simple RL, needs to engage in

three tasks:

(i) Track prediction errors.

(ii) Track prediction risk in order to scale prediction errors appropriately.

(iii) Evaluate the covariance between outcomes and scaled prediction errors, i.e., track

prediction risk errors.

Evidence has converged over the last ten years that activation of the dopaminergic

system in the primate brain reflects prediction errors. In this thesis, evidence is provided
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that the brain is also involved in the other two tasks. The prediction risk signal seen in

insula is suitable to modulate the learning rate in the manner described above. In addition,

insula keeps track of prediction risk errors, such that prediction risk can be evaluated and

updated itself.

Is there any other evidence to substantiate the claim that the brain encodes prediction

risk and prediction risk errors? And where would such signals originate? This issue has not

been addressed directly in the neuroscience literature. On the one side, there is indirect

evidence that the signals related to reward prediction and prediction risk both originate in

the dopaminergic system. On the other side, there are computational approaches toward

modeling uncertainty that suggest the neuromodulators norepinephrine and acetylcholine

for mediating different forms of uncertainty.

8.2 The dopaminergic system as a mediator for prediction

risk and prediction risk errors

Figure 8.1 reproduces a result from the dopaminergic midbrain neurons of the nonhuman

primate brain (Fiorillo et al. 2003). Dopamine neurons in the vental tegmental area of the

nonhuman primate brain display a gradual increase in their firing rate in the anticipation

period between cue presentation and outcome revelation (reward/no reward). The slope

of the increase increases with prediction risk. This effect is referred to as “ramping.”

In the experiment, prediction risk (when measured as reward variance) is maximal when

the reward probability equals 0.5; it is minimal for probabilities equal to zero or one.

Correspondingly, ramping increases in probability for probabilities up to 0.5, and decreases

for higher probabilities. The researchers interpreted the effect as related to uncertainty,

although they were not able to establish the exact measure of uncertainty. The possibility

of prediction risk and prediction errors was not explored.

Controversy exists about the origin of this correlation between prediction risk and ramp-

ing in dopaminergic neurons or delayed activation in dopaminoceptive areas. Such correla-

tion could spuriously emerge as a result of the averaging of activation across trials on which

figures 8.1 and 8.2 are based (Niv et al. 2005). The spurious correlation emerges even in

a standard TD learning model, with a constant learning rate, and hence, no account for

prediction risk. Still, this explanation relies on specific aspects of the TD learning model



86

Figure 8.1: Relationship between firing of dopamine neurons in Ventral Tegmental Area and
probability of reward. Firing increases gradually (“ramping”) in the period of anticipation
of reward; the increase is more pronounced the higher prediction risk (measured as reward
variance) is. Prediction risk is highest for reward probability p equal to 0.5, and lowest for
p = 0, 1 (Fiorillo et al. 2003).



87

(back-propagation of prediction errors in the anticipation period) for which there exists lit-

tle physiological support. In addition, ramping is observed in single trials for single neurons

as well (Fiorillo et al. 2005).

The result of a late emerging (prediction) risk signal in both ventral striatum and insula,

together with the prediction risk error signal may help to settle the issue. Prediction

risk signals alone are prone to an argument similar to the one above, the prediction risk

error signal is not. Assume for a moment that only a prediction risk or risk signal had

emerged in the brain. If the ramping effect was a spurious one, it may still show up in

the BOLD response as such does not prove the functional significance of the signal. The

fact, that a similar signal is seen in ventral striatum and insula, both projection areas

of the dopaminergic system, suggests that the signal (or the spurious effect) is relayed to

these regions. Still this does not resolve the issue. If however, a signal can be established

that is derived from the signal seen in ventral tegmental area, this would provide strong

evidence against the spurious interpretation. To achieve this, two things are needed: (i) a

solid mathematical measure of the effect, (ii) another measure derived from this measure.

(Prediction) risk, as presented in chapters 5 and 6 address (i) by showing that risk is

encoded as variance. The prediction risk error is a linear function of this variance and

therefore addresses (ii). The prediction risk error is directly related to (and relies on) a

neural representation of prediction risk providing strong support for the interpretation of

the effect in figure 8.1 as an uncertainty-related signal.

More evidence for prediction risk encoding in the dopaminergic system comes from

encoding of prediction errors at reward delivery (figure 8.2). Upon reward delivery, the

firing rate does not change with the size of the prediction error, as when the prediction

error is normalized with the prediction risk. The firing rate changes only as a function

of the scaled prediction error, i.e., as a function of et
vt

. Unlike neuronal firing that reflects

reward anticipation at stimulus onset, firing that correlates with prediction errors at reward

delivery appears to be scaled with prediction risk (Tobler et al. 2005).

Recent analysis in Wolfram Schultz laboratory of imaging data of ventral striatum con-

firm this finding for the human brain (unpublished data). As such, there is evidence of

encoding prediction risk in the dopamine system of the primate brain both during the an-

ticipation period and at reward delivery. That an equivalent signal is seen in the ventral

striatum, a primary projection target of the dopaminergic midbrain neurons, supports this
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Figure 8.2: Firing of dopamine neurons in ventral tegmental area of nonhuman primate
brain, as a function of the size of the prediction risk: low (top), medium (middle), high
(bottom). Upon reward delivery, the prediction error encoded in neuronal firing is scaled
so that it is independent of prediction risk size (Tobler et al. 2005).
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hypothesis.

8.3 Norepinephrine, acetylcholine and the idea of expected

and unexpected uncertainty

The results and conclusions presented earlier nicely complement computational work done

by Peter Dayan and Angela Yu on the subject of uncertainty. They originally suggested that

acetylcholine helps to balance top-down and bottom-up processing in perceptual inference

by signaling the uncertainty associated with top-down information. High uncertainty signals

that predictions are unreliable and more attention should be paid to bottom-up information

(Yu and Dayan 2002).

They later recognized that at least two forms of uncertainty need to be dissociated,

expected and unexpected uncertainty. Expected uncertainty arises when the occurence

of stimuli or events is known to be unreliable. Unexpected uncertainty however reports

on “strong violation[s] of top-down predictions that are expected to be correct.” (Yu and

Dayan 2005). In the updated model, expected uncertainty is signaled by acetylcholine

whereas unexpected uncertainty is mediated by norepinephrine which previously had been

implied to mediate attention. Yu and Dayan make a strong case for this distinction and

encoding by reviewing a large amount of both modeling and experimental data.

The two forms of uncertainty are closely related to prediction risk and prediction risk

errors. Expected uncertainty is equivalent to prediction risk; both signal the (estimated)

correlation between predictions and outcomes. Unexpected uncertainty can be viewed as

the sum of prediction risk and prediction risk errors. More intuitively, prediction risk errors

are the difference between unexpected and expected uncertainty.

Dayan and Yu suggest that acetylcholine and norepinephrine are uncertainty signals

encoding these two types of uncertainty which might provide new insights into exploration

vs. exploitation mechanisms.

8.4 Risk vs. ambiguity

Another approach toward different forms of uncertainty is once again provided by eco-

nomics, which makes the distinction between risk and ambiguity (which could also be
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termed “known” and “unknown” uncertainty). While this definition is different from Yu

and Dayan’s expected and unexpected uncertainty, it clearly addresses the same problem.

Sometimes we are aware of the risk and uncertainty associated with our environment and

sometimes we are caught by surprise. To point out future directions and approaches toward

neural representations of uncertainty we present another study in appendix A that explores

decision-making behavior under ambiguity. While at this stage, the study provides mostly

pilot data it is included nonetheless because it nicely demonstrates a behavioral approach

to modeling choices under ambiguity that can be expanded to functional imaging as well.

8.5 Summary

Compared to our understanding of processing expected rewards in the brain, our under-

standing of processing uncertainty is in its infancy. The ideas presented above are just

some of many possible approaches to dealing with uncertainty. As this is the first account

of prediction risk and prediction risk errors in the brain, a lot of research lies ahead, much

of which is likely to mirror the path that reward prediction learning has taken, ranging

from computational modeling to neuroanatomy, to new learning paradigms that can track

learning as a function of prediction risk errors.
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Appendix A

Decision Making under Ambiguity

Ecologic and economic theories of decision making under uncertainty emphasize the im-

portance of correctly evaluating expected reward and risk. Within neuroscience, the idea

obtains strong support from the fact that the human brain reflects both mathematical ex-

pectation of reward (mean) and risk (variance) (part II) in situations under pure risk. Pure

risk is often dissociated from “true” uncertainty or ambiguity in which probabilities of out-

comes are unknown. As such, the outcome of a fair coin flip is risky but not uncertain

(ambiguous). Weather reports however are ambiguous. And so are most natural stochastic

environments.

A.1 Introduction

In situations that involve neither risk nor ambiguity, organisms prefer higher expected

rewards over lower expected rewards. In situations that involve risk but no ambiguity, most

people prefer low risk options over high risk options if the options have the same expected

reward. Preferences across individuals become less homogenous when both expected reward

and risk are varied, i.e., when a trade-off between the two is introduced. Behaviors range

from high risk aversion via risk neutrality to risk seeking. Most people are risk averse,

though to different degrees. Analogously, in situations of ambiguity most people prefer

low ambiguity options over high ambiguity options. In other words, just as increasing risk

lowers the overall value of an option so does increasing ambiguity. Again, most people are

ambiguity averse (to different degrees) rather than ambiguity neutral or seeking. Attitudes

toward both risk and ambiguity have been manipulated by changing the organisms current

state, such as the energy budget (Caraco 1981) or financial budget (Rode et al. 1999).
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Behavioral ecology treats most situations of uncertainty as ones of risk by talking about

subjective (perceived) probabilities rather than the actual objective (underlying) probabil-

ities. As such any situation in which objective probabilities are not explicitly stated or

known can be represented in terms of expected reward and risk using the organism’s sub-

jective probabilities. In general, ecology is not interested in how objective probabilities are

transformed into subjective probabilities occurs. As such, it does not explicitly deal with

the difference between behavior under ambiguity and behavior under risk.

In economics, the dissociation between risk and ambiguity is highly controversial and

theories of how to account for different forms of uncertainty are abound (Kreps 1988).

And while ambiguity aversion is well documented (Ellsberg 1961) it is not well studied

behaviorally.

The study presented in this chapter proposes an approach to studying both behavior

and neural circuits of decision making under ambiguity. In this first stage, the study tries to

quantify behavior in addition to determining preferences under ambiguity. More precisely,

on a behavioral level, how are ambiguous situations treated differently from risky ones? Can

theories of decision making under risk as those presented in earlier chapters (be expanded

to) capture decision-making behavior under ambiguity? Are risk and ambiguity treated

differently? So far, neither neuroscience nor ecology have explicitly dealt with the distinction

between risk and ambiguity. Therefore, the mathematical framework will once again be

provided by economics and finance.

While this is only an extended pilot study, the long term goal of this work is to under-

stand the neural circuits involved in evaluating situations of all forms of uncertainty.

A.2 A mathematical approach to choices under ambiguity

Economics accounts for choices under ambiguity by expanding the unidimensional index,

expected utility, to capture not only attitudes toward expected reward and risk but am-

biguity as well. For this, the ambiguity aversion coefficient α ∈ [0, 1] describes preference

for ambiguity, with α = 1 for a highly ambiguity averse person, α = 0.5 for an ambiguity

neutral person, and α = 0 for a highly ambiguity seeking person. In analogy to risk, ambi-

guity is not explicitly modeled in economics but captured by the utility u(xi). Again, the

expected utility of an option X is determined by the utility u of each possible outcome xi
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weighted by the probability pi of that outcome:

EU(X) =
∑

i

piu(xi). (A.1)

Under the assumption that u(x) is known, expected utility theory estimates the unknown

probabilities pi using the minimum expected and maximum expected utility of an option.

This approach uses a weighted sum of the maximum and minimum expected utility, weighted

by the ambiguity aversion coefficient α (α max min-preferences (Ghirardato et al. 2004)).

EU(X) = α min
p

E[U(x)] + (1− α) max
p

E[U(x)]. (A.2)

The idea of α max min-preferences is frequently used to determine preferences in situa-

tions of uncertainty (including both risk and ambiguity). To approach stems from the idea

that in any decision situation there is a best possible outcome, minE[U(x)], and a worst

possible outcome, maxE[U(x)]. The coefficient α reflects to which degree a person believes

nature to be malevolent or benevolent. For a highly ambiguity averse person (α = 1) for

instance, EU(X) is based solely on the minimum available utility, minE[U(x)]. In other

words, the person will ignore what may be available (reflected by max E[U(x)]).

Finance uses the same approaches but again replaces expected utility by its mean-

variance approximation:

EU ∼ α min
p

(E[R]− 1
2
var[R]) + (1− α) max

p
(E[R]− 1

2
var[R]). (A.3)

Note that the expected utility approach, equation (A.1) is a sum over all possible out-

comes, i.e., EU requires a separate (neural) representation for each probability and each

utility. Equation (A.3) takes an estimate of the mean and variance (of all possible options

together) rather than computing individual probabilities and utilities. As such, the mean

variance approximation is not a function of the number of options as we have shown that

there are neural representations of mean and variance. However, this approximation relies

on an assumption about the underlying expected utility function (here: logarithmic) which

determines the weights of E[R] and var[R].

In this first experimental stage, the questions we would like to answer are: Do people

make consistent choices under ambiguity such that future choices can be predicted from
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past ones? Can equations (A.2) and (A.3) capture such preferences under ambiguity? How

do the two equations compare in predicting choices?

We used a gambling task in which subjects had to choose between two ambiguous

gambles. To approach the questions above, the goal was to (i) determine subjects’ choices

under ambiguity (ii) look for patterns of choice, (iii) look for patterns that deviate from

(ambiguity neutral) decision making under risk. If ambiguity is treated the same as risk,

(close to) all subjects should turn out to be ambiguity neutral, i.e., α = 0.5. If however, α

turns out to be different from 0.5 then the question arises how and why ambiguous gambles

are evaluated differently.

A.3 Task

On each trial two colors are presented to the player. A ball is then drawn from an urn. If

the color of the ball matches one of the two colors presented the subject wins $1, otherwise

the player loses $1. Subjects cannot choose the colors they bet on. But they can choose

the urn. On each trial, two urns are shown. Both urns provide different information about

the distribution of balls in it. Figure A.1 shows two such comparisons. Each urn has red,

green, and blue balls in it. In the given example, for both urns the exact proportion of red

balls is known. Also, a minimum number of blue and green balls is known. However, in

each of the two urns there is a subset of balls which can be either green or blue. This is

the ambiguous part. Subjects are now told that they will bet on either blue or red and are

asked if they would like a ball to be drawn from the first or the second urn. They pick an

urn, a ball will be drawn from that urn. If it matches either color they win, if not, they

lose. For the experiment, the urns are represented as a circle with three colored segments.

The size of a segment corresponds to the number of balls with the corresponding color in

the urn. Subjects never see the exact composition of an urn because the circle is partly

covered. The size and position of this gray cover changes over time. The exact composition

of the urns is determined before the experiment and may change from one trial to another.

No hints are given about what is underneath the cover. Outcomes in one trial do not tell

anything useful for subsequent trials.

Once an urn is chosen, a ball is drawn from that urn. The probability for the am-

biguous colors is determined by picking at random (from a uniform distribution) a position
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underneath the covered part of the circle.

The true distribution under the cover is uniform although subjects are neither told, nor

are they shown the actual distribution under the cover after each trial. Thus we avoid that

subjects learn over time what the underlying distribution is. In this case the gamble would

turn from an ambiguous into a risky gamble over time as in (Huettel et al. 2006).

A total of 23 subjects participated in the study. All subjects gave full informed consent to

participate in the study. The study was approved by the California Institute of Technology

Institutional Review Board. Each subject was given written instructions for the game and

completed a brief training session outside the magnet.

Figure A.1: Decision screen. Left panel - comparing two ambiguous gambles. The two
colored ball at the top of the screen indicates that the subject will win if either green or
red are drawn from an urn. Two urns are presented. The fraction of the circle covered by
each color represents the fraction of balls of that color in the urn. In the left panel, both
urns contain exactly one third red balls indicated by one third of the circle being red. In
the left urn at least 5% of the balls are green and at least 5% are blue with the remaining
balls unknown (either blue or green). In the right urn, at least 25% of the balls are green
and 25% are blue. This means that for the left urn the minimum probability of drawing
either red or green is given by (pmin = 0.33 + 0.05), whereas the maximum probability is
given as (pmax = 1 − 0.05). In the right urn, the minimum and maximum probabilities
are given by (pmin = 0.33 + 0.25) and (pmax = 1 − 0.25), respectively. Both urns are
ambiguous since the exact probability of winning is not known for either one. Right panel
- comparing one ambiguous and one risky gamble. Both urns are evaluated in the same
manner as in the urns in the left panel. Note, that the right urn turns out to be risky
rather than ambiguous because the minimum and maximum probabilities are equal and
given by (pmin = pmax = 1− 0.33). As such the subject has to choose between a risky and
an ambiguous urn which in this case are matched for both (objective) expected reward and
risk.
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Trial type # of trials Description

A 4 risky
B 4 risky
C 8 ambiguous
D 4 ambiguous
E 4 ambiguous
F 8 ambiguous
G 8 ambiguous
H 4 ambiguous
I 4 ambiguous
J 8 ambiguous
K 8 ambiguous

Table A.1: Classification of trials. The number of trials in each group is needed to properly
balance the design when building constrast.

A.4 Trial types

Two groups of trials were used. In the first group subjects were presented with two ambigu-

ous choices. In the second group subjects had to choose between a risky and an ambiguous

gamble. In each session, there are 56 trials in the first group, and 8 in the second, summing

to 64 trials per session. The trials in the second group are chosen as a control to look at

choices involving pure risk. The other 56 trials are chosen to best determine the ambiguity

type of the subjects.

The 64 trials can be grouped into 11 types, which are then balanced for colors and

laterality. Table A.1 lists the 11 types and the number of trials in each category.

A.5 Ambiguity types

We first predicted the choices for each of the 64 gambles as a function of α using both

expected utility (equation (A.2)) and the mean variance approximation (equation (A.3)).

That is, different ambiguity types are predicted to make different choices.

For expected utility, equation (A.1) yields

EU = p̃u(win) + (1− p̃)u(loss) (A.4)

= p̃. (A.5)
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The utilities u for the two different outcomes (win or loss) are set arbitrarily to u(win) =

1 and u(loss) = 0. This can be done as the utility function in itself is not specified and is a

number up to a linear transformation. To determine the perceived probability p̃, let pi be

the probability of the risky color, pa be the probability of the ambiguous color that you bet

on, and pc be the probability of the (ambiguous) color that you do not bet on. The reward

R equals 1 or −1. With that,

p̃ = α arg min
p

E[U(x)] + (1− α) arg max
p

E[U(x)]

= α(pi + pa) + (1− α)(1− pc).

Here, arg minp E[U(x)] denotes the value p that yields the minimum expected utility for

a given gamble.

For the finance approach, the mean and variance of each gamble are determined by

E[R] = < R >= Σipixi

= px + (1− p)(−x)

= 2px− x

and

V [R] = < (R− R̄)2 >=< R2 > − < R >2

= Σipix
2
i− < R >2

= px2 + (1− p)(−x)2 − (2px− x)2

= px2 + (1− p)x2 − (4p2x2 − 4px2 + x2)

= 4px2 − 4p2x2.

With that, the expected utility is approximated to
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EU ∼ α min
p

(E[R]− 1
2
V [R]) + (1− α) max

p
(E[R]− 1

2
V [R]), (A.6)

where α is again the ambiguity aversion coefficient.

A.6 Results

Based on a uniform distribution underneath the cover, the average expected probability of

win is 0.67 as there is on average a 2/3 chance of winning on each trial. Subjects won on

67.3± 1.54% of all trials.

For each subject, the ambiguity type was determined based on their choices. Predicted

choices for α = 0, α = 0.5, and α = 1 were compared to the actual choices the subject

made. For each type the hitrate, that is the number of choices that matched the predicted

choices, was computed (figures A.2 A.3). The ambiguity type was then determined using

a maximum criterion (highest hit rate). (To compute hit rates all trials in which subjects

were predicted to be indifferent were omitted.)

Figures A.2 and A.3 show the behavioral data for 23 subjects, each playing 3 sessions

of 64 trials. Subjects played the same 64 trials in each session but in different randomized

order. All subjects played the same three sessions although in randomized order.

For most subjects hit rates consistently differ from 50% (chance level) indicating that

choices were not random and subjects evaluated the different gambles. Two out of 23

subjects show no correlation with any ambiguity type. This indicates a strategy unrelated

to the information provided and not ambiguity neutrality. Ambiguity neutrality would be

reflected in a large hit rate for α = 0.5.

Especially for the mean variance approximation but also for expected utility most sub-

jects can be classified as either highly (α = 1) or moderately (α = 0.75) ambiguity averse.

Choices are not best predicted by ambiguity neutrality (α = 0) indicating that the eval-

uation of the gambles is not simply based on objective measures of probability and risk.

Nonetheless, the evaluation of the ambiguous gambles seems to be systematic as subjects’

choices are consistent across session.
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Figure A.2: Ambiguity types based on expected utility (equation (A.2))
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Figure A.3: Ambiguity types based on the mean variance approach to expected utility
(equation (A.3)).
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A.7 Discussion

While this study is still in its early stages it nonetheless makes a number of interesting

points. In decision making under ambiguity subjects systematically evaluate ambiguous

gambles to arrive at consistent choices. As such, there seems to be a mechanism underlying

choice behavior to systematically evaluate ambiguous situations. The question arises if

ambiguity should be treated separately from risk as is often suggested in economics (Knight

1921) or if ambiguity and risk are two facets of a more general form of uncertainty. Both,

the expected utility approach as well as the mean variance approximation were able to

capture preferences under ambiguity. And both approaches can easily be reduced to the

pure risk case.

It can be argued that situations of pure risk are only generated in laboratory experiments

and certain types of gambles. As such it is doubtful that the brain has evolved to separately

deal with situations of risk and ambiguity. Instead, ambiguity - although within economics

it was “discovered” later - may be the only one of these two forms of uncertainty which is

encountered in nature. In this view, risk becomes a special case of ambiguity rather than

ambiguity being an extension of risk.

From a modeling point of view, ambiguous situations are more complex than situations

of pure risk since more parameters have to be determined. Ambiguity aversion as well as

estimates of expected reward and risk may all differ across individuals. Determining the

correct measures and individual differences poses a challenge to future behavioral as well as

neuroscientific studies. In addition, how individuals trade off mean and variances may also

vary.

A.8 Future work

The long term goal of this work is to understand the neural circuits involved in evaluating

situations of all forms of uncertainty. Previous research has identified structures involved

in ambiguity evaluation (Hsu et al. 2005; Huettel et al. 2006). Here, we would like to

understand how these structures are involved. The hypothesis underlying this work is that

in situations of (any form of) uncertainty organisms estimate both means and variances

of future stimuli and events. The estimates are then traded off to establish the value of

a stimulus, action, or event. This trade-off does not necessarily differ across individuals.
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While a phenomenon such as risk aversion or ambiguity aversion may be captured by a risk

aversion or ambiguity aversion coefficient α, it may also be reflected in the estimate of risk

itself. In other words, a highly risk averse person will grossly overestimate risk rather than

giving it a larger weight when combining expected reward and risk.

In the next stage, the estimates of expected reward and risk computed for different

ambiguity types may be used to determine ambiguity types on brain activity alone. This

would strengthen the idea of a mean variance representation as well as the idea that different

types of uncertainty are evaluated in a similar manner.
1

1To get a better grasp at the underlying neural representations it may be helpful to change the comparisons
between different gambles used in this study to include more risky gambles. As representations of mean and
variance are already established under pure risk, such gambles will provide a better baseline for determining
neural activity in ambiguous situations. It would also allow to better measure individual attitudes toward
risk. However, the overall number of trials is limited in imaging experiments as single trials tend to be longer
than in purely behavioral experiments.

It remains to be seen if the two approaches of expected utility and its mean variance approximation can
easily be compared. While from figures A.2 and A.3 it may seem as if the expected utility representation
has less discriminative power than the its mean-variance approximation this is (at least partially) a result
of the experimental setup.
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