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SUMMaARY

An investigation of the problem of the flutter of two-dimensional
flat panels is undertaken. The research is largely devoted to investi-
gating the adequacy of the ideal flutter theory that hae been employed
to predict flutter boundaries for such panels., 4 series of panel flutter
experiments carried out in the GALCOIT 4" x 10" transonic wind tunnel
at Mach numbere up to 1.5 are described in detail, Before the results
of these cxperiments are compared with the predictions of the theory
some further analytical studies of the flutter problem ore presented
that enable & more critical comparison of theory and experimnent to be
made. These analyses treat some aspects of the problems of transonic
and supersonic panel flutter, The nature of the energy exchange at
flutter is also considered. This latter study throws considerable light
upon the flutter process as described by the ideal theory and also
clarifies the breakdown of certain approzimate unsteady serodynamic
theories in the low supersonic flow region {1 < M < 1.5). Comparison
of theory and experiment reveals considerable difierences between the
theoretical and ezperimental flutter boundaries at the lower supersonic
Mach numbers. The agreement between theory and experirnent im-
proves at Mach numbers above about 1.4, The possible sources of the
apparent inadequacy of the theory at the lower supersonic Mach numbers

are discussed,
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Velocity of sound in the undisturbed flow

Generalized co-ordinates describing the plate motion
{see equations 1.12, 1.16 and 2. 5)

Plate semi-chord

Amplitude of the initial deflection of the plate {sce
Section 2. 2.}

Coecificients appearing in the generalized aerodynamic
force in a supersonic flow {(seec Section 2. 2.)

3
= :‘1:;’53._._.._._2 bending rigidity of the plate

12{1-¥ 7
Young's modulus of the plate material
Structural damping coefficient
Plate thickness

_‘%E » reduced frequency of flutter

2 w,b
—— stiffness parameter

Mach number of the {flow

Mid~plane tension per unit span; tension positive

serodynamic pressure induced by the deflection Z
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Energy contribution per cycle at flutter arising from the
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Time variable

Coefficients appearing in the generalized aerodynamic
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RITRODUCTION

Elastic plates, when suitably perturbed, will exhibit various
patural modes of lateral vibration, wherein all points of the plate will
vibrate at the same frequency. The frequency, damping and spatial
shape of these modes are dependent upon the plate characteristics and
the mediurn in which the plate is immersed, These modes of vibration
are positively doamped in still air, due to the action of aerodynarnic and
internal damping. The nature of these modes will change when the
plate is exposed to an airstream and it is possible that the damping in
a particular mode may vanish at some airspeed. The plate may then
exhibit undamped harmonic oscillations. These oscillations are
referred to as 'panel {lutter'', Further change of airepeed may lead
to a divergent oscillation and the eventual fatigue failure of the plate.
This phenomenon appears to be of practical concern in supersonic
flight {Ref. 1).

The possibly disastrous consequences of panel flutter stimulated
a number of analytical studies of the problern (Refs. 2, 3, 4, 5, 6, 7
and 3). These studies were largely devoted to the prediction of flutter
boundaries for two-dimensional panels exposed to supersonic air-
streams (i.e. the conditions were sought whereby the panels could
exnibit undamped harmonic oscillations)., The analyses were performed
under several simplifying asswnptions conceraning the flow and plate
properties and the amaplitude and velocity of the plate motion was
required to be such that the problem could be linearized. Even so, the

complications introduced in this ideal theory by the aerodynamic
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pressure tﬁrm appearing in the plate equation of motion necessitated
the use of approwimate methods of solution. Two generzl approaches
were employed. The first was the use of methods of solution whereby
the integro-differential equation of motion was reduced to a system of
iinear algebraic equations {e.g. the CGalerkin method or the assumption
of generalized co-ordinates}. The second appreach consisted of the use
of approxirmate aerodynamic theories, such as the quasi-steady and
linear piston theories, that simplified the squation of motion to such an
extent that exact solutions could then be readily obtained. The analysis,
however, proved to be extremely sensitive to the approximations
employed and difficulties arose with both mmethods. The Galerkin method

applied to the membrane flutter problem, at Mach numbers that were
high enough to permit the use of the linearized aerodynamic piston theory,
faijled to vield a convergent rvesult, whereas the exact solution to the same
simil ified problern showed that all membranes would be stable (Ref, &),

n the other hand, the quasi-steady aerodynamic theory, although
apperently successful at high Mach numbers (M > 1.6}, proved to be
inodequate at the low supersonic Mach numbers {1 < M < 1.5). A
flutter analysis performed with this theory {Ref. 4) predicted that all
panels would flutter if the supersonic Mach number was less than Vi,
whereas the results of analyses using the complete linearized aerc-
dynamic pressure yielded {inite flutter boundaries {i.ec. plates with

ufficiently large thickness ratios (?%) would not flutter).

By recourse to furthar analysis (Refs. 1 and 9) the difficulty

with the Galerkin method was shown to be associated with the membrane

problem. Flutter boundaries for plates (finite bending stifiness) could
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be satisfactorily obtained using this method, It was also noted {Ref.,
10) that the guasi-steady serodynamic pressure expression, which
coneists of the mero and first order terms of a fregquency expansion of
the complete linearized result, could be expected to be unsatisfactory
in the neighborhood of X = Je » where the first order {reguency
contribution vanished; however, this reasoning did not explain the {ail-
ure of the theory at Mach numbers well belaw Jz. The general trends
predicted by the ideal theory are shown in Figure Z where stability
boundaries are presented for gimply supported panels at sea level flight
conditions. The results for clamped edge panels are similar and
axhibit the same general features. The boundaries at Mach numbere
less than 1. 56 were calculated using the comwplete linearized aero-
dynamic pressure and the analysis indicatcs that this region is critical
in the sense that large thickness ratios are required to prevent flutter.
The possibility of panel flutter in & transonic flow {M = 1) haa not been
investigated, The analysie in this flow region would require the use of
a transonic aerodynarmic theory.

From this brief sumunary of the previous work it is seen that the
prediction of flutter boundaries is rather difficult and that great care
hzas to be exercised when emploving approzimate methods to obtain a
solution, However, the problem itself that has been analyzed is already
highly idealized with regard to the assumed fluid and plate properties.
In perticular, a drastic asswmption is that the fluid is inviscid, Dy this
means the no-slip boundary condition along the surface of the plate,
which leads to a partially subsonic boundary layer and appreciable
viscous stresses in the iromediate neighborhood of the surface, has been

circumvented and replaced by the simpler tangential flow condition.
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The predictions of this ideal theory, which have already been
showa 6 be extremnely sensitive to assumptions within the limited
framework of the theory, are thercfore open to some doubt and the
guestion arises as to how realistic & description of the panel flutter
phenomenon is presented by such a theory. This guestion can only be
answered by experiment and it is here that the panel flutter investige-
tion is at its weakest. Apart from some work at Mach nummber 1. 3
{Ref, 11), which established the existence of the phenomenon and
investigated the effect of mid-plane stresscs upon flutter, no systematic
experimental investization of the panel flutter phenomenon, especially
in the low supersonic flows, is yet available and the predictions of the
ideal theory remain unchecked,

The present investigation comprises a further study of the
flutter of two-dimensional flat panele and is largely directed to investi-
gating the adeguzcy of the ideal flutter theory. A series of panel flutter
experiments were undertaken in the GALCIT 4" x 10" transonic wind
tunnel at Mach numbers up to 1.5, Two-dimensional conditions wers
represented as closely as wap possible. The flutter phenomenon was
carefully investigated in the low supersonic region and flutter boundaries
were obtained between Mach numbers 1,15 and 1.5, These experiments
are described in the first part of this paper. Defore comparison of the
experimental results with the theory ie undertaken, some further
theoretical studies of the panel flutter phenomienon are presented.
These studies were stimulated by certain features of the experiments
and their results enable & more critical comparison of theory and

experiment to be made., The first of these studies consiste of an
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investigation of the possibility of transonic panel flutter. This analysis
iz undertaken under certain parametric restrictions associated with
the use of a liaearized transonic aerodynamic theory. The flutter of 2
simply supported plate exposed to a sonic airstream (M = 1) is investi-
gated assuming that the plate motion is describable by a small number
of generalized co-ordinates. A4 study of the flutter of simply supported
panels at the low supersonic Mach numbers is next presented., In
particular the effects of internal damping and small initial curvature
apon the flutter boundaries at these Mach numbers are investigated,
Finally an analysis of the energy transfer between the airstream and
the plate during the flutter motion is presented. The analysis is under-
taken by examining the solutions of some previous panel flutter
investigations. The results of this study throw considerable light upon
the flutter processes as described by the ideal theory and clarify the
breakdown of the quasi-steady aerodynamic theory for flutter analysis
at the low supersonic Mach numbers.

The comparison of theory and experiment in the low supersonic
region is presented in the final part of this paper. Considerable
disagreement is found between the theoretically predicted flutter
boundaries and the experimental results at Mach numbers less than
about 1.4. The agreement between theory and experiment improve at
the higher Mach numbers. The possible sources of the apparent
inadequacy of the theory at the lower supersonic Mach number are

discussed,



PART 1

AN EYPERIMENTAL STUDY OF PANEL FLUTTER

1. L, General Remarks

In t&;e experimental program to study the flutter of two~dimension-
al flat panels, the subsonic and low supersonic flow regions were chosen
for the investigation. The experiments were carried out in the GALLCIT
4" x 10" transonic wind tunnel at Mach numbers up to 1.5, . detailed
description of the transonic wind tunnel may be found in Reference 12,
The model and the wind tunnel installetion were designed to represent
two-dlhmensional conditions as closely as was possible, Furthermore
it was attempted to produce a2 good representation of the condition of
zero maid~plane stress in the test panecls. The panels were installed in
the ceiling block of the wind tunnel such that the panel surface would lay
flush with the ceiling surface {(Figure 3)., In order to make some allow-
ance for the sidewall bhoundary layers the span of the test panels were
made slightly lese than the width of the wind tunnel test section. The
test panels were attached to a2 mounting framue at their ieading and
trailing edges. The streamwise edges of the panels were {ree, Ideally
the space behind the test panel, the venting charmber, would be vented
to the free stream static pressure, however, early experiments
revealed that small pressure differentials {of the order of 0.4 ~ 0.5

m Hg) would exist between the chamber pressure and the free stream
static pressure, These pressure differentials could produce mid-plane
stresses in the test plates, which in turn could change the {lutter

houndaries (see for example Reference 0). To reduce the possible
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development of such stresses the trailing edpes of the panels were
& & [

effective mass of this {lexure was small compared to the mass of a
typical test panel and for small amplitude lateral motion {amplitude <
plate thickness) this support is considered to represent a partially
restrained (against rotation) edge boundary condition,

4 boundary layer would be present upon the wind tunnel ceiling
during the tunnel operation. Measurements were made of the velocity
profile of this layer over the test panel installation. The measure-
ments were {aken on the tunnel centerline, The thickness of the
boundary layer, defined as the height above the solid surface where the
flow velocity reached 99 per cent of the free stream velocity, was found
to be of the ovder of 0. 34" - 0.40", The velocity profiles were typical
of a turbulent boundary layer (see Figure 4}). Boundary layer pressure
fluctuations acting upon the surface of the test panels were used as a
gource of excitation of the panels in the non-flutter region. The lateral
motions of the plates that were induced by the airstream were measured
and analyzed at different flow Mach numbers. The flutter boundaries
were estimated from these measureiments, Harmouic analysis of the
plate motion yielded certzin of the natural {requencies of the test pancls
at the different Mach numbers., By this means the origin of the flutter
mode was identified and the importance of the other plate modes assessed,
Flutter boundaries were detarmined in the low supersonic flow region

and certain general features of the phenornenon obtained,
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1.2, Test Panels and Equipment

The test pancls were manufactured from thin brass sheet
{0. 010" to §.0155" thickness) and were attached to a brass mounting
frayne at their leading and trailing edges. The chord length of the
panels varied between 3. 14" and 3.79". The leading edges of the
panels were soldered e:‘iié@cﬂy to the mounting freame, This method of
attachment was consgidered to be a close approzimation to the clamped
edge boundary condition., The trailing edges of the panels were
mounted upon a flexure support {see deteil in Figure 3) that would allow
a small amount of horizontal movement in the plane of the plate, 2 &
section flexure, manufactured from 0, 006" thick phosphor bronze sheet,
was employed, The horizoatal deflection-load characteristics of the
flexure were linear up to at least 2 Ibs. load. The flexure stiffness
being found to be approxiisately 77 lbs. per inch, Permanent deforma-
tion of the flexure would occur at less than 4 lba. load.

This type of support was found necessary to reduce the
development of mid-plane stresses in the test pancls., Such stresses,
which have an appreciable effect upon the flutter boundaries, could be
eagily developed by static pressure differentials across the plates, by
thermal effects and by mechanical distortion of the mounting {frame
when iﬁ‘ie inserted in the wind tunnel., The flexure support conveniently
circumvented these difficulties and had the added advantage of reducing
the effect of any small initial curvature of the test pancls {(the cffect of
small initial curvature would appear a8 a mid-plane stress term in the
plate equation of motion). It should be added that insofar as the

pressure differential problem i5 concerned this meane of support leads
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to the development of bending stresses, rather than mid-plane stresses,
that resist the pressure acting upon the plate. However, such initial
bending stresses, as opposed to initial mid-plane stresses, are
expected to have little influence upon the plate bending frequencies and
this is taken as an indication that the flutter boundaries are relatively
insensitive to this effect,

The flexure is extremely light, the effective mass with respect
to flexural vibration of the plate being of the order of 10 per cent of the
mass of a typical test panel. For small amplitude lateral motion of the
test panels {(amplitude < plate thickness) the agssociated horizontal
motion of the trailing edge will be proportional to the square of the
lateral amplitude (assuming that the flexure is fully effective in prevent-
ing any mid-plane stresses) and, for the panels under consideration, will
therefore be much smaller than the lateral motion. This fact, coupled
with the small effective mass of the flexure, suggests that the horizontal
motion will have little influence upon the linear vibration characteristics
of the test Qa.nelxs&. The flexure supporting trailing edge is therefore
expected to behave as a partially restrained {against rotation) edge.
Experimental determination of the frequencies of flexural vibration of
the various test panele supporte this view, These flexural vibration
frequencies are found to be intermediate to the corresponding values
calculated for plates with claraped-clamped and clamped-simply

supported boundary conditions {(see Table ]},

WThe preceding argument applies to the case of periectly flat panels,
The linear vibration characteristics of slightly curved panels would be
affected. In fact, if the flezure is fully effective then the curved plate
should vibrate at the natural frequencies of the corresponding flat panel.
However, the boundary conditions of this corresponding flat panel are
not expected to be affected by the horizontal rootion.
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The mounting frame, to which the test panels were attached,
fitted into the ceiling block of the wind tunnsl such that the surface of
the test panel would lay flush with the ceiling surface, To reduce the
effect of the sidewall boundary layers the streaimnwise edges of the
plates were set approximately 0. 22" from the tunnel walla. 4 gap of
about 0, 038" was lelt between these sdges of the panel and the mounting
frame. These gaps served to vent the chamber behind the panels to
the free strears static pressure.

The wind tunnel was of the closed circuit type and had a test
section that was 4" wide and approximately 10" deep. The Mach number

.

of the flow was varied continously by two screw jacks which controlled
a flexible nozzle on the tunnel floor block., & second smaller nozzle was
rnounted downstream of the working section. The supply pressure was
kept at atmospheric pressure throughout the tests. The supply tempera-

[«
ture was kept between 30 - 3277, The test section MMach nuaber was

estirmmated {rom static pressure measurements taken upon the mounting

irame and the ceiling liner. Ten static pressure taps were provided for
these measurements. Three taps were located upstream of the model,
three more taps were downstrears of the model and four taps were
located on the mounting frame itself. The pressure in the venting
chamber behind the test panels was also measured, Pressure measure-~
ments taken {rom these taps during the experirments indicated that pood
flow conditiones were obtained over the test panel installation. The
estimated variation of Mach number over the panel chord was of the
order of 0.5 - 1 per cent of the average estimated Mach number. The

spanwise variation of the free stream Mach number was of the sa



11
order of magnitude., For the determination of the free stream Mach
number {rom these static pressure measurements it is assumed that
the airstream has expanded iseatropically {rom the stagnation conditions
and that the wall static pressure is equal to the {ree stream static
pressure (i.e. negligible pressure gradient through the boundary layer).
Because the boundary layer on the panel installation was relatively
thick this latter assumption wase checked and was verified to be reason-
able. The error in Mach number estimation arising from this source
being of the order of 1 per cent of the free stream Mach number.,

When the wind tunnel was in operation a turbuleat boundary layer
was present over the surface of the test panel. Lateral motion of the
panel was induced by the pressure fluctuations presecut in this layer and
the plate response was rmeasured by an inductance pickup. This pickup
was located in the chamber behind the panel, being positioned on the
tunnel centerline at 2. 2" downstream of the test panel leading edge
position. The pickup, which employed a 100 kilocyele carrier systemn,
had the advantage of permitting simultaneous static and dynamic meas~
urements of the plate wwotion. The signal {row the pickup was relayed
to & harmonic analyser (Technical Products TP 627 and TP 626), a
Ballantine true root mean sguare meter and a Moseley automatic plotter.
Precise éete%miamﬁ@n of the plate freguencies was accomplished with
the use of a Hewlett Packard oscillator and a Berkeley type 5581 counter.
A Dumont type 411 oscilloscope was also employed in the analysis of the

plate response.
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A number of panels with thickness r&ﬂ@&(%g} varying from
0.00297 to 0. 0046 were tested. The various thickness ratios were
obtained by varying both the thickness and chord length of the panels.
The chord lengths were varied between 3. 14" and 3.7%9"'. The majority
of the tests ware made with 0, 0125" thick panels, The panel widths
were kept at 3, 56", Details of the diiferent test panels are given in
Table I. The theoretical natural frequencies of lateral vibration that
are also presented in Table I were estimat ed for flat plates with
clamped-simply supported and clamped-clamped boundary conditions

using the results of Reference 13.

1.3, Test Procedure

{(a) Still-air Vibration Tests.

After manufacture of each test panel the {irst few natural
frequenciee of flexural vibration of the panels would be obtained., These
modes of vibration may be divided into two classes, namely (1) the
"two-dimensional' modes, where the nodal lines are all essentially
parallel to the fixed edges of the plate and, (2) the “three~dimensicnal”
modes where nodal lines appear that are not parallel to the fixed edges.
These latter modes are obtained as a consequence of the finite span of
the panels. A series of nodal line positions at successive natural
frequencies that were obtained for a typical test panel are shown in
Figure 5. These nodal line positions were obtained using single frequen-
cy acoustic excitation of the test panel. The two-dimensional mq&es that
are shown are the modes labeled (2, 0), (3, Q) and {4, 0) in the figure.

Examples of the three-dimensional modes are those labeled {<, 1) and
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{2, 2). The classification {a, b) indicates the number of nodal lines.
The first number "a" denotes the number of nodal lines parallel to th;'—s
fixzed edges, the second number b denotes the number of nodal lines
that are essentially parallel to the {ree edges of the panel.

The determination of these modes of vibration in still air is of
some importance in connection with the wind tunnel tests. Dy tracing
the natural frequencies of the plates at different Mach numbers to their
still air values it is possible to identify the source of the flutter mode
and to assess the immportance of the thres-dimensional plate modes in
what is intended to be 2 two-dimensional experiment. The modes that
were three-dimensional in still air are expected to remain three~
dimensional when the plates are exposed to an airstream. It is also
expected that the modes of plate vibration that were two-dimensional in
still air will remain essentially two-dirnensional, (i.e. the changes in
mode shape produced in these modes by the airstrears will be
essentizlly uniform: across the plate span). It is therefore required,
for a two-dimensional experiment, that the flutter mode originates {rom
a two-dimensional mode of plate vibration in still air,

To obtain the plate nataral frequencies at the different Mach
numbers advantage was taken of the fact that random pressure
fluctuations would be acting upon the test panels and that these fluctua~
tions would excite motion of the panels. The feasibility of using random
axcitation as a means of determining the natural frequencies was first
investigated by conducting a series of experiments in which the test

panels were subject to the noise field of an air jet {& convenient scurce
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of randomn excitation). The plate response to such a loading was
analyzed and the resulting power spectra yielded distinct peaks at
frequencies which were found to be identifiable with the plate natural
frequencies. A power spectra of the response of one of the test panels
to jet noise is shown in Figure 6. The spectral peaks have been
identified with the corresponding natural frequencies. The plate modes
at these frequencies were obtained separately with the use of single
frequency excitation of the test panel, The frequencies at which these
spectral peaks occur were obtained by passing the pickup signal through
a 2 cycle/sec bandwidth {ilter, locating the peak from the mean square
signal meter incorporated in the analyser, and then beating the filtered
signal against an oacillé,mr signal. The frequency of the oscillator was
determined using the Berkeley counter.

{b) Wind Tunnel Tests.

The wind tunnel test procedure consisted of mmeasuriag and
analyzing the lateral motion of a given test panel at successive Mach
numbers until the flutter speed for this panel was determined, This
procedure would be repeated for different panels until a flutter boundary
was established in the flow region of interest. The flutter pointe for the
various test panels were estimated from the measurements of the panel
response, Analysis of the panel response yielded the natural {reguencies
of the plates at the various Mach numbers,

Throughout the non-flutter region the plate response was of a
highly irregular nature., The flutter motion on the other hand was very

regular and was of appreciably greater amplitude. The different nature
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of the two types of plate motion ig clearly seen frow: the oscilloacope
traces shown in Figure 7, The {first trace shows a typical plate
response in the non-flutter region. The second trace shows a typical
plate response at flutter., The plate motion in the non-flutter region
was found to be so irregular that the mean square plate responss at a
given Mach number, althougih averaged over several seconds, would

fluctuate considerably. It was thereiore found necessary to take 2 tiine

average of these mean square measurements. nonic analysis of
the plate response, as in the case of the jet nolse suxcitation, revealed
a series of spectral peaks at the natural frequencices of the panels (sse
Figure 8). The major contribution to the rmeansured response was found
to arise from the frequency band around the lowest natural {requency.
An example of thie is shown in Figure 9. The upper trace shows the
variation of the measured meon square recponse of o test panel in the
non-flutter region. The mean square responsec was obtained by
averaging the measured plate deflection over about 5 seconds. The
response was then filtered about the fundamental natural frequency of
the plate, a 50 cycles/sec bandwidth filter was employed, and the
mean square of this filtered response was obtalned, This mean square

e

response is shown in the lower trace in Figure 9. hen taking average
values of the two traces over several minutes and comparing the
resulte it is found that the reeponse in the irequency band around the

fundamental frequency contributes about 75 per cent of the root mean

LN

square response of the plate. The mode of vibration of the plate
corresponding to this freguency derives originally from the mode (2, 0).

The contribution to the plate response from this frequency band is
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therefore expected to be essentially two-dimensional. The non-flutter
response was found to be larger in the subsonic flows than at the
supersonic Mach numbsrs., This effect is believed to be due to disturb-
ances from the wind tunnel diffuser being propagated upstream: into the
working section and exciting the panels. | For supersonic {low the root
mean square amplitude of the measured plate motion in the non-flutter
region would be of the order of ¢, 0005" - §,0015", During the flutter
motion, root mean square amplitudes of the order of 0.016" were
recorded, Root mean square amplitudes of this magnitude would
correspond to actual amplitudes of the oréeé of twice the plate thickness.

The approach to the flutter boundary would be characterized by a
rapid increase in the amplitude of the plate response. The variation of
the mean square plate res;mﬁse with Mach number at the flutter boundary
of a typical test panel is shown in Figure 10, The exact determination
of the flutter Mach number from such measurements ie not possible,
However, the rapid increase of the mean square response with Mach
awmber allows a2 close estimate of the flutter Mach number to be made,
The method employed was to choose as the flutter Mach number, some
value at which the mean square response had increased appreciably ({by
a factor of 20~ 30) from an average value for the non-flutter region. At
such a Mach number the major contribution to the response was the
regular harmonic z%mtian characteristic of the {lutter region. Such a
method is rather vague, however, the increase in the plate response as
the flutter region is approached is so rapid that the method is practical.
¥For example, for the case shown in Figure 19, computing the boundary
using an increase factor of 30 instead of 20 would change the {lutter

Mach number by less than 1 per cent.
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A certaln amount of irregularity was present in the plate
response at flutter, however, this irregularity was very small compared
to the steady component of the mean square response {see Figure 11).
This irvegularity in the response was due to the continuing action of the
random pressure fluctuations acting upon the test panel. Harmonic
analyeis of the plate response revealed in 2ll cases that the flutter
frequency was the lowest natural frequency of the panel. A power
spectrum of the flutter motion of one of the test panels is shown in
Figure 12, The other plate modes were still being excited by the
presedre fluctuations but their contribution to the plate response was
negligible compared to the flutter motion. The oscilloscope traces
presented in Figure 13 show the flutter response of one of the test panels,
The upper trace shows the total response. The second trace shows the
responee when it is filtered at the flutter {reguency {a 2 cycle/sec band-
width filter was employed) and the third trace shows the responee in the
frequency band around the second two-dimensional mode {i.e. the signal
has been filtered at the plate natural frequency that originally derived
from mode (3, 0) in still air). It should be noted that this frequency is
not necess‘arily the frequency of mode (3, 0) in still air. In this coanec-
tion it should also be remarked that the harmonic analysis of the plate
raotion at the different Mach numbers revealed very little change of the
higher natural irequencies of the test panels from their still air values.
The fundamental frequency of the test panels appeared to be more
sensitive to the influence of the airstream. The typical behavior of the
natural frequencies of the test panels are shown in Figure 14. The
fundamental frequency {(mode 2, 0) is found to decrease steadily in the

subsonic range and to increase steadily with increasing supersonic Mach
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nuraber. The phenomenon in the subsonic range may hawever be due
to the effect of wind tunnel interference. The fundamental frequency
was 2lso found to be rather difficult to locate at subsonic Mach numbers
above about 0.6, The variation of the second natural frecuency {imode
&, 1) of the pansel is not plotted, the piclkup location being unsuitable for

the rmeasurement of this mode.

5

i.4 Test Results

The results of the experimental program may be briefly stated
as follows:

Panel flutter was observed only at the supersonic Mach nummbers,
Flutter boundaries were obtained in the low supersonic region between
Mach numbers 1.1% and 1.5, The maximum thickness ratio (—%}
required to prevent the flutter of "flat" panels at &ese Mach numbers
was found to be slightly less than 0.0046. The panel thickness ratio
requirements to prevent flutter were found to decrease slowly with in-
creasing Mach number at Mach numbers above M = 1.2 {(see Figure 15).
The boundaries of the flutter region were quite distinct but proved to be
rather sensitive to the test conditions. In particular, streamwise
acceleration of the airstream over the length of the test panels, was
found to change the flutter Mach nurmber of the test panels from the values
obteined when the alvstrezm was essentially uniform,. At the same time,
the accelerating flow would produce static deflection of the teat panels
{due to the action of the pressure differential). It is believed that the
observed changes of flutter Mach number are a consequence of these
static deflections rather than being directly due to the non-uniformity of

the flow which was small compared to the average Mach number.



19

The flutter boundary presented in Figure 15 that is denoted as
the "flat'" panel boundary was obtained for conditions wherein the
measured static deflection of the test panels was less than a plate thick-
ness. 1his boundary is expectad to be representative of the flat panel
case. Flutter points that were obtained when the test panels exhibited
considerable static deflection {due to an accelerating airstrearn} are
also shown in Figure 15. The flutter Mach number for these points was
taken as the average Mach number over the panel chord. The corres-~
ponding values of the measured static deflection are shown, together
with the measured frequency ratios (-—-:-}, where w, denotes the
frequency of the mode (2, 0) in still zir and W denotes %:hé flutter
frequency.

The flutter mode in all cases was found to derive from the
fundamental two-dimensional mode of the test panels in still air (i, e.
the flutter mode would be traced to the mode {2, 0) in still air. The
maxirnum amplitude of the flutter mode appeared to be downstream of
the mid-chord point of the panel. There was very little phase shift
present in the flutter modes that were observed. The phase shift
between the flutter motion at the 22 per cent and 65 per cent chord
stations of the plate was estimated to be 2. 50. 10, and 1° at Mach
aumbers of 1. 18, 1.31, and 1. 34 respectively. Visual observation of
the flutter response revealed no detectable spanwise variation of the
plate motion. The frequency ratios ( ) of the "flat" panel flutter
were found to vary frorm about 0,83 to ahghﬂv above unity. No
"gecond mode' flutter was observed throughout the test series. (This

second mode flutter would be a flutter mode @mg,iimfmg from the
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second two-dirmensional mode of the test panels)., No frequency coales-
cence was observed, The higher natural {requencies of the test panels
were found to vary only slightly from thelr still alr values.

It was not possible to extend the flutter boundaries in the super-
sonic region to Mach numbers less than about 1,15, This was due to the
appearance of the wind tunnel normal shockwave in the working section.
The presence of this shockwave upset the flow conditions of the experi-
ments and prevented the determination of flutter boundaries.

Review of the experimental data indicates that good two-
dimensional conditions werce obtained in the experlments. As mentioned
previcusly, no detectable spanwise variation of the flutter modes was
ohserved. It was also found that the excitation of the mezsured three-
dimensional plate modes was negligible compared to the plate reeponse
from the fregquency band arcund the fundamental two-dimensional plate
mode, A possible source of three-dimensional effects in the two-
dimensional experiments could arise fromw the emall differentiale that
were found to exist between the pressure in the venting chamber and the
free stream static pressure, and which could produce an outflow from
the venting chamber. Such an outflow, however, iz cupscted to have
little effect upon the main alrstream and it is considered unlikely that
any small, steady perturbation of the mainstrearn produced by this out-
flow would interact with the unsteady flutter phenomenon,

It is also considered that a good represeatation of the zero
mid-plane stress condition was obtained. The low stiffnese of the
flexure support ensures that the mid-plane stresses developed by the

effects of thermal expansion and by the action of static pressure
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differentials will be negligible. For example, when considering a
typlcal test panel that has deflected, under the action of a static pres-
sure loading, into the form of a half sine wave with an amplitude of
0. 069 inches, it is found that the mid-plane stress that is developed
due to the flexure stiffness is only of the orvder of 4-6 psi. The
development of mid-plane stresses by mechanical distortion of the
mounting {rame when it is installed in the wind tunnel would be revealed
by measurable changes between the natural frequencies of the test panels
measured in still alyr and measured when the panel was installed in the
wind tunnel. The changes in the {requencies that were noted were small
{of the order of 2-3 cycles/sec in the fundamental frequency). This
finding indicates that any stresses that were developed by this means
were also negligible., /4 conservative limit apon the magnitude of
mid-plane stresses that were developed in the panels during the experi-
ments is that they would be less than 20 psi. Previous flutter analysis
has indicated that mid-plane stresses of this order of magnitude. would
produce such small changes of the flutter boundarics {rom the results

for zero stress conditions that the experimental flutter boundaries may

be considered representative of these zero stress conditions.



A
PART I

THEORETICAL STUDY OF PANEL FLUTTER

CGeneral Remarks

Before attempting to compare the results of the experimerits
with the theory, some further analytical studies of the two-dimensional
panel flutter problem will be presented. These analyses were stimu-
lated by the experiments and their results will enable a more critical
comparison of theory and experiment to be made.

The problem of transonic panel flutter is first treated. The
experimental results indicate that the {lutter reglon is restricted to the
supersonic Mach numbers and it is of some interest to determine
whether the ideal theory will indicate such a feature of the phenomenon.
To accomplish thie it is necessary to extend the flutter analysis to the
transonic flow region. Such an analysis is presented in the following
section.

It is also necessary to undertake some flutter calculations at
the low supersonic Mach numbers in order that the theoretical flutter
predictions, used in the comparison of theory and experiment, are for
conditions that are representative of the tect panel conditions. Previous
analysis (Ref. ) has indicated that the flutter boundarics in the low
supersonic region are sensiﬁiire to the effects of mid-plane stress and
internal damping., The first of these effects may be safely neglected
in the present calculations because the employment of a flexure support
in the experiments ensures that the mid-plane stresses in the test

panels will be negligibly small, IHowever, the test panels certainly
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possees some internal damping and this effect must be included in the
calculations.

The effect of initial plate curvature upon the experimental
flutter boundaries is considered to be drastically reduced by the use
of the flexure support, however, the nature and actual magnitude of
this effect upon the boundaries in the low supersonic region (2ssuming
fixed edge plates) is not known. It is of some interest to obtain this
information because it is conceivable that the changes of {lutter speed
{observed when the test panels exhibited appreciabls atatic deflection)
could be explained by this curvature effect, sccordingly, some flutter
calculations are undertaken to obtain this information. These calcula-
tions also serve to estimate the error incurred when the curvature
effect iz neglectod in the flutter calculations employed in comparison
with the experimental "flat’ panel flutter boundaries,

A third study that clarifies the flutter mechanism at the low
supersonic Mach numbers is also presen‘teé. Examination of the
energy transfer at flutter throws considerabie light upon the flutter
process as described by the ideal theory and the reason for the break-
down of the quasi-steady acrodynarmic theory for flufter analysie in the
low supersonic range becomes readily apparent.

A1l of these analyees are based upon the use of the ideal theory,
which involves a combination of the simple linear plate theory with
linearized irrotational flow theory. This theory is employed only to
determine the infinitesimal amplitude flutter boundaries and cannot be
used as such to compute the details of the large amplitude flutter

occurring within the flutter region. The foundations of the ideal theory
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rest upon the following set of assumptions concerning the fluid and
plate properties and the flutter motion,

{2} The {fluid is homogeneous and lsotropic,

{b) The fluid is inviscid and non-heat caa&ucﬁng.

{c) The flow is irrotational and all perturbation velocities
and pressures are small compared to the free stream
velocity and pressure respectively,

{d} The plate material is homogeneous, isotropic and
lincazly elastic.

{¢) The amplitude of the plate motion is emall compared to
the plate thiciness.

{f} The normal stress 9, acting on suriaces parallel to
the mid-plane of the plate is negligibly small compared
to the bending stresscs developed by the plate motion.

{z) All points that lie upon a linear element of the plate
which is normal to the undeflected mid-surface of the
plate remain on a straight line that is normal to the
deflected mid-surface of the plate.

{h) The characteristic flutter time is large compared with
the time that it takes an elastic wave to travel the
length of the plate,

Of these assumptions perhaps the most suspect is that of an
inviscid fluid, It is an experimental fact that at normal air densities
the viscosity of air plays an extremely important role in determining
the flow in the immediate neighborhood of a solid boundary, leading to

the formation of the region of large velocity gradients and appreciable
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viscous streeses assoclated with what is comemonly known as the bound-
ary layer., For steady, non-separating flow over 2 smooth surface of
small carvature the boundary layer theory of fluid mechanics indicates
that the pressure gradient through such a layer is negligible and that
the inviscid theory with proper boundary conditions may be employed
with reasonable success. The situation in the unsteady flow case is
not 8o simple, especially when considering seroelastic stability
questions such ae flutter, which tend to be rather sensitive problems,
and it is by no means clear that arguments applied to the steady non-
separating flow case have any bearing whatsoever on the unsteady
problem,

The success of the ideal theory, which will justify such assump-
tions, will be measured later against the experimental data., Dut first
the above mentioned analyses will be presented, For convenience this
part of the in&esﬁig&@ian ig divided into three sections, namely

section 2.1, Two-diimensional Transonic Panel Flutter.

Section 2.2, Two-dimensional Supersonic Panel Flutter.

Section Z.3. Analysis of the Energy Transfer at Flutter,

'}‘:j@ggeﬁher with the assumptions (a) to {h) further restrictions are
imposed upon the analysis in Sections 2. 1 and 2.2, The restriction in
the transonic case concerns the reduced frequency k (k= %) and is
associated with the use of a linearized transonic aerodynamic theory.

The restriction in Section 2. 2 concerns the supersonic reduced frequen-

1
— 2, E/ B ; ,
cy W = :-—%i-al and is imposed to reduce the amount of computational
M7 -

labor invelved in determining the flutter boundariecs, No significant loss

&

of accuracy is expected frowm the use of this simplification.
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Section 2.1. « Two-Dimensional Transonic FPanel Flutter,

B

1.1, CGeneral RHemarks

The following sections conzist of an analysis of the flutter of
two-dimensional {lat plates exposed to uniformn transonic &iratrea;m$$.
The analysis is performed gander the assumptions (2) to {h), which form
& basis for the use of the small disturbance inviscid flow theory and the
linear plate theory., Furthermore, the following parametric restrictions,
peculiar to the transeonic flow region, are imposed

~ 2 -
k> 8 %3 k= 0{1) and k > | 1% -1

Wb , . g’

{where k = - ie the reduced frequency and is the ratio of the

amplitnde of lateral vibration to the plate chord)., Lin, Relssuner and
Teien (Ref. 14) have shown that the linearized flow theory may be

3 s : ce T el3
employed in the transonic range if k >> & /

. F¥Furthermore, the egua-
tion governing the velocity potential may be reduced to 2 simple form if
k >> | Mg -1 ' . MNelson and Berman {(Ref, 10} have employed this
result to determine the {orces acting upon & wing-aileron combination

in a sonic airstream. /i slmilar procedure is employed here to treat
the panel flutter problem. #ith the above limitations clearly understood
the following sections describe the panel flutter analysis for the tran-
sonic flow range. The aerodynamic terms required in the analysis are
first developed and then expressions for the kinetic and strain energy

£

tion surface ie describable by W gzeneralimed co-ordinates. Lagrange's
o [}

w s .. . o .
The adjective transonic is employed here in a rather limited sense in
that the analysis will be restricted to cases where the {ree stream Mach

nurnber is greater than or equal to unity.
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aquations of motion then yield a system of N linear algebraic equa-
tions from which the flutter conditions are obtained. ZSimply supported
and clamped edge plates are treated and numerical results presented
from 2 two mode analysis of a simply supported plate exposed to a
sonic airstream. An alternative derivation of the transonic aerc-
dynamic approximation, which emphasizes the physical significance of
the theory, is presented in Appendix A,

é.1.2, Aerodynamic Pressure Expression

The aerodynamic pressure acting upon a harmonically oscil-
" lating plate exposed to a2 uniform transonic airstream is considered.
The plate is initially flat and is of infinite span, being embedded in a
flat rigid wall {see Figure 1). The wall is parallel to the uniform
stream and extends to infinity in both the front and the rear of the
plate. The flow is assumed to be isentropic and irrotational. The
expression for the aerodynamic pressure on the plate is developed

under the following restrictions.

k= 0(1), k> 8§43 §<< Tandar|mé-1].

Under these restrictions the equation governing the perturba-

tion velocity potential &(%, z, t} is (Ref. 14)

2, 2, Y
zz.zg:_gg{.-z-i-zjﬁ-a“:ﬂﬁ:@. (1.1
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For harmonic oscillations
- - iw ¢
dlx, 2, ) = % {x, z)e . {1.2)
The deflection surface of the plate may be written

t

Z_(%t) = v(®et Pt (0sx% <2b).

The velocity potential ¢(%, 2z, t) satisfies the boundary conditions

8z 8Z
8 - + & a —_ . +
-gg(x.o o‘i)‘:—@:ﬁ'ﬁ‘U?}? fosxg¢ibjz=0),

- - E
{2x<o0, x >2bjz=0),

&lE:
i
<

{1. 3)
and

oz, oo,t) =0

In a supersonic flow (M 21}, ‘the solution of (1. 1), under the boundary

conditions {1.3), evaluated upon the upper surface of the plate is

J-ik £/2

. bel®t : ¥ (= - £) dg
o, 0, t) =
o V%
{o ¢ x<2) {1.4)
4 .

0 ,8) =0 (x < o)
where

e = U 4y

\-»a(}&.) =31 W Y(K) + -5- ﬁ
and



The pressure is given by:

AR
74,

Blx, 2, ) = - P{§§+ %-;f‘-} (1.5)

¥

The pressure distribution on the surface ia therefore;

LS T
.Eiwt( ® cik Bl 2. \ JUN.-. 3
plz oF, 1) = L2 Lo {d Y 2ik ST - EQZY(\I)}d§+:£-(o) £
bzl L ¢ J& ay =

{1.6)

where Y = x - £,

It will be noted that there will be a singularity at the leading
edge if % {o) # 0. This will be the case for simply supported panels.
The singularity is integrable and the computation of the generalized
forces will yield finite values.

The results for @.%—i—é ,» and pé(x, 0+, t} all become infinite for
the steady state case (k = 0), which is a well known difficulty of the

linearized theory.

2. 1.3, Development of the Generalized Aerodynamic Forces

The results of the previous sections will now be employed to
calculate the generalized aerodynamic forces required in the panel
flutter analysis.

{a) Simply supported case.

Assume that the plate deflection surface may be represented

by the following series

M
Y(x) = E A sinfl*";-’*;i . (1.7)

me=1
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Bach term: of the series satisfies the simply supported boundary condi~
tions at =0, x = 2.

. . C 8), ..
The nth generalized force Qil)w given by:

~ {8) e + ., OWE . . o
. = - i:z(:{., o ,t) sin —=— b.dx. {1.8)

Q

The expression for the pressure is of the form

' pd
P, = / £, £)d6

o
and the expression for ‘Qés) is of the form

2 2
ol oL [ g fix, 5)ag | ax.
) o
An examination of the integrande shows that it would be advantageous
to integrate with respect to = first. This may be done by inter-
changing the order of integration by applying Dirichlet's formula which

states:

2 4 2 2 ’
/ dx / glx) £{x, £)aE = / af / gl=) £lx, £)dx.
o o o £

Carrying out this procedure and integrating with vespect to z we find

that

2 iwt

- N
Qég)-: - PV e > o &) . {1.9)
m=

o e}l Ty
A 1
JZWK;M
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where
z , é
o | e . cdn) 2 i/zc

T = J{t)de + J{t)ae + . 4

no 2Je 2§ =

O [e]

v 8 1 “1 Ji)at + “2 J{t)at

N BT WV 2JE ),

mn [26.

J{t)dt + «ﬁ-; §(t)dt.

f‘

and
~ . /2
J(t) = 3_1/2 ﬁ;) - i Jz/z(t)s J_llaﬁi) = (_{%— cost
2 1/z
Jit) = J_Uz(t) +i Jliz(t); Jllz(t) = (_&—{) sint

The J’+ EIBM are Bessel functions of order + 1/2. The coefficients

8)~ .. . ‘s
T“rm(x ) satisfy the relationship

{s) _ m+ (8)
Tpn = 1 ? Tam -

The expression {(1.9) for the generalized force is of a particularly

. . &
convenient form. ¥For given m,n the T ; )

depend only upon k.
Tables of the Fresnel integrals appearing in equation (1. 9) are available

{sce for example Ref. 16). The expressions for the coeifficients Cimn

{s)

appearing in the T "' are given in sppeadiz B, The limits of inte-
A .
gration that appear above are 2 =mw + Kk 28 = nw k; 2B = miw = K,

2686 =nw- k.
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{b} Clamped edge case.

Y

The generalized force expression ic developed for the case

s

when the plate deflection surface is represented by a series of Iguchi

functions:
N
e = ) w e
i) Z A F, e {1.10)
mel
where
s LB yd Tk xqu 1) i (. DT
-5-“:(&)"‘2‘?4“3‘”»‘3 «(" ) - *sz-' “m-rr 8in 5.

3

Bach term of the series satisfies the clamped edge boundary conditions
at =0, = &,

The nth generalized force is
2
- e YT -
fzg ) = ;ii;;,, o, F {:«:) b,
)
where ?a?‘n(:«:) is the nth Iguchi function.

Proceeding as before we find that

" N .
sl AT
. c) _ ~f¥ e E T {e) , {1.11)
n ‘2 e 3 by}
FA 192 m=l

e : .
where the ’E‘mé ) {are functions of m, n, and k satisfy the relation
&

<) _ (_wm%*n 5 {c)

fauie) 0
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These coefficients are more leagthy than the coefficients appearing
in the simply supported case. Thelr explicit forms are given in

Lppendin B,

2.1. 4. Panel Flutter Anelysis

The flutter of a thin elastic plate exposed to a uniforn: two-
dimensional transonic stream over its upper suriace is considered,
The plate is of infinite span and is atiached to a rigid wall at its

8 ©

leading and trailing edges. The plate is initially flat and les flush
with the surfoce of the wall {see Figure 1). The air below the plate is
gtill and is assumed to be vented to the {ree stream static pressure.
Acoustic pressures developed on the lower surface of the plate are
neglected. The structural or internal damping of the z:»laté material is
also neglected, If flutter exdsts, then the plate will cscillate harmoni-
cally under the action of the serodynamic pressures developed by its
motion. It is assumed a priori that the reduced frequency ik = %ﬁ)
is guch that the lincarized aerodynamics developed in the previous
sections may be used. The deflection surface of the mid-plane of the
plate ie represented by a series of functions satisfying the plate boundary
conditions., The flutter analysis is undertaken using the Lagrange
equation of motion.

{a) Simmply supported pancls.

Let Ea(:ﬁ:, t) denote the deflection surface of the mid-plane of

the panel. It is assumed that Za(:s:. £) may be expressed as



| i
z lxt) = E A (8) sin—p= {i.12)

Py

where the .:’?;m(‘é) are regarded as generalized co-ordinates. Zach term
in the above servies satisfies the simply supported boundury conditions.

Liet N_ denote the mid-plane force/per unit width in the panel. (N is

s

afda

taken to be constant). Under the assumptions of the small deflection
k

plate theory, the strain energy of the plate is expressed as

o 2b %c’izq ) N b . =
Ve = (—=)" dx+ T (‘—rr-*) dx ,
o o
E§13

where = 2, and N denotes the mid-plane force/unit width in
T2 %) % . :

il

the panel. The kinetic energy T of the plate may be written as

(0 h 2b 8%
T a A o —
=z lgg=) o=
o
where P@ enotes the demsxty of the plate material, The Lagrange

equation of motion for a system that is describable by N generalized

co-ordinates (,fis.l, Ags e ae s’iN) is

§( } =£:;s’. (a=1,2 ....08) (1.13)

(s)

*
where O is the nth generalized force and o denotes the time
derivative of :%,n. We now substitute the series {1.12) into the

expressione for the kinetic and strain energy of the plate. The results
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of this substitution are then introduced into equation {1. 13) and the
indicated differentiations are performed., Ve now aesume that the
plate motion is harmonic and write

a

. At
'ﬁi‘l‘”}{t) = A‘n’ge , {fm=1 cc.. M)

where the “'&‘“vn are constants, Finally, we substitute eguation {1.9)

BAd

into the Lagrange equation. The system of equations (1. 13) is then

written as

> i
2 2( 4 2 . ~ . ]
-4k + k n +n 3 A= L T ()
O i 2 I
/“ 2akiM” =l
{1.14)
fa=1, 2, .. M)
where
&, 427 be
, & 7 QE) /u- Csh S = b
o~ Log i ’ TEZpPE’ Tz
¢ awfy®  fh e 2T
In the matrix forun the equations {1. 14) may be expressed as
/) G b, M, %, T IS L {1. 15)
o 11 iy
& t
n

For o non-trivial solution the determinant | (ﬂ (ke 28, M, k@, Bilmmust

vanish., The determinant ie generally commplex valued. The vanishing
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of the real and imaginary parts of this determinant yields two equations

from which two of the paraineters may be determined after the remain-
ing parameters have been specified.

{b) Clamped edge panels.

The plate deflection surface is assumed describable by a series
of Iguchi functions,

N R
Z_txt) = Z A0 F_(=). | (1. 16)
m=l

Each term of this series satisfies the clamped edge boundary conditions
at z=0, x= 2,

Taking the first two terms of (1. 16) and proceeding as before,

we find that the equations of motion reduce to the form

] {41y, e, @)
wd o g2 { Y xz.:a.("")}} R S b PR
- Cwlhw ;0 - 3 e w ,“.%.1 &
iy 1““” M Jzming®
{o) {4}
2 i S

Rt
[o]

I
{ ){1-(——-—-”(‘ - ) T a} A
Lolo) 15,14 I, 2

{(1.17)

s o 9y - ()
'{“'1“12, itz

4N b
- 5 K (m“g)‘—m%—w'i q"—-z-}-;'-—.
b) ¢ 1Y Gh Ut
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and
! r
e [ E oS e an= en

mp jaies!

5]

-

The integrals Im;n have been evaluated in Reference 17. Expressed

in matriz form the equation {1.17) becomes

{1.18)

The flutter conditions are determined as before: It ie found to be
convenient to specify %k, & and M and to solve for 7—1‘ and 1{0. Because
k T

—2 = constant \/(wf—)g v - =~ it i8 seen that each panel

M G UL - v 9

material and flight condition specifies 2 hyperbola which intersects the

flutter boundaries on the %, ke plane. The minimum panel thickness

ratio may be determined from this intersection.

2.1.5. Numerical Calculations and Conclusions

Calculations were undertaken for a two mode analysis of a
simply supported panel exposed to & sonic airstream (M = 1}, The
plate was assumed to have zero mid-plane stress and the deflection
surface was represented by the first two terms of the series (1. 12).
The numerical procedure was as follows: a value of k was assumed,
the coefficients ng} were computed and then the flutter determinant
was solved for the corresponding values of % and ko. The reduced

frequency k was varied from 0,001 to 1.5, No real-valued roots of

1
of the mass pararmeter - or the stiffness parameter kg were
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obtained for real k, leadiay to the conclusion that harmonic oscilla-
tions at these reduced frequencies were not possible {at least to this
order of approximation). The variation of l Zm% , and l Iz LN |

with k is shown in Figure 16 where it is seen that | Im;-: l

increases with increasing &kt and l I k@ cecreases with increasing
k. To further investigate the nature of the sclution, the determinantal
equation was expanded for large k. The Fresnel integrals appearing

@
in the coefficients T () were replaced by thelr asyinptotic expansions.

ma
Terms of @L /1) were neglected. The generalized forces e’fiﬁ?(@).
%’S}gs) then reduce to the form
& iwt :
~(8) _ - PU% L TR e s gl _q
Sy Wg {~1) 5 Oy + il S Q(‘{{ 1/3) {n =1, 2).

he determinantal equation becomes

*:

3
. 34 k"
4 16 .. B 4 . o 4 .
16{iK) 7 + — {ii 4 {ik HERT 4+ 4+ ik Sk = O,
{i /M(ﬁi) {i ? By -msg} { Y }%— 1& o

53 ‘i«ta ~ 0{k}, F ~ 0{k) then all the terms are of tho same order of

magnitude, Assuming real k& and separating the cquation into its real

and imaginary parts the following solutions are found.

.k L . - 3/&
Ky = 5 g0 RN A

¢ 5 1/a
ko= 2k, 1. a. 1. + ok [(%;)k -1 .
o M M - &

The first solutions corresponds to vibration in vacuum and are of no

interest here. It is secen that is imaginary in the second solution
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and that the ' Im% l increases linearly with k indicating thot {lutter
is not possible at these higher reduced ireqguenciss.

To summarize, the anslysis was performed ander the restric-
tions k> 83 w=o(1), w>»|lME-1l, <!, ana M21. A
two mode analysis of a simply supported panel suposed to a sonic alr-
stream was carried through. GSolutions of the flutter determinant
indicated that harmonic oscillations were not possible at reduced
frequencies between 0.001 and 1.5, Examination of the asymptotic form

of the determinantal eguation for large k revealed no such oscillations
) ‘

wation, harmonic oscillations of a simaply supported plate exposed to

{for finite It is therefore concluded that, tg this desree of approxi-

a sonic stream are not possible,

Seetion 2.2, - Two-Dimensional Supersonic Panel Flutter,

2.2. 1. General Remarks

The problem of two-dirmensional fluiter in a supersonic flow is

now investigated., This problem has been trcated previously by many
authors, see for example References 1, 4, 5, &, 7, 8, 9, 10, 1§, and
19. The results of these earlier analyses led {o the conclusion that the
low supersonic region {1 < M < 1.3) was critical for panel flutter and
that the simplified aerodynamic theories, such as the guasi-steady and
linear piston theories, could not be employed for flutter analysis at
these Mach numbers. The purpose of the following analysis s to study
the effects of internal damping and initial plate curvature upon the

flutter boundaries at the low supersonic hach numbers, The analysis

is undertaken for simply supported panels. The results of the internal
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damping study are later employed in conjunction with results from
References 1 and 6 {which treated the clamped edgze panel in 2 super-
sonic stream) to provide {utter boundaries for comparison with the
experimental data for "flat” panels. The boundary conditions of the
test panels are considered to be intermediate between the simply
supported and clamped edge cases and the comparison between theory
and experiment will be based upon the assumption that the theoretical
flutter b@mm@éries corresponding to the test panels will be intermediate
between the boundaries for these two plate conditions., The flutter
calculations for the zimply supported and clamped edge panels therefore
provide the two limiting caces against which the experimental results
may be compared.

The effect of plate curvature upon the flutter boundaries is
greatly reduced by the flexure support eraployed in the experiments,
however, it is of interest to determine the general nature and the order
of magnitude of this effect in the low supersonic range. This informa-
tion is used to estimate the error incurred by neglecting curvature
effects in the theorctical flutter calculations that are compared with the
experimental data for "flat” panels and is zlso employed in the discus=
sion of the changes of flutter speed of given test panels that were
ohserved when the test panels exhibited static deflection under the
influence of a slightly accelerating {low.

The analyeis proceeds as in Section 2.1, under the assumptions
of linearized irrotational flow theory and linear plate theory. To

simplify the calculations, the linearized aerodynamic pressure
: 1 o= oM
expresesion is approximated under the assumption that W = ——m L3,
{M~-1)
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The flutter boundaries calculated from this simplified result agree

very well with the boundaries obtained irom more cxtensive calcula-

flons.

Z2.2.2. Aerodynarcic Pressure and Generalized Force

Consider a two-dimensional flat plate embedded in a plene
rigid wall and exposed to & naliorm supersonic airstream (see Figure
1}. When the plate oscillates harmonically the deflection suriace may

be expressed as

Za(:z, t) = “f(x)eiwt.

According to the linearized irrotational flow theory, the aerodynamic

pressure acting upon the upper surface of the plate is

iwt| i“h’*%)
plx, 0% t)= £ ue a0 k@iz_ﬁwq;ww Fix-£)dE |,
« N wEn  wiEnd
where {2. 1)

2 2
- {742} M wf‘*’ %
F(x)""'"?‘”" §0(-E§-w,‘)+ J‘Z( )«:nzi?vﬂ’ ( )
and
- 2 - ry
W = ""‘2“"2‘&&& ’ “ﬁ"whi .{=%. %:% .
(M™-1)

The Jﬂ are Bessel functions of the first kind,
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The first two terme in equation (. 1) coastitute the guasi-steady
aerodynamic theory. The third term is cssential for supersonic flutter
analysis at Mach nurnbers less Luke {Ref, 18) has shown
that the kernel ¥F{z) may be cxpressed as

g
Flaz) = Z 1laim coa%—"f-f;-—-)r, sin{x f:@@@;é%‘%}ﬁ) -
r-s

(2. 2)
2,2¢-1 .
1 4 cos (—-21-;:}--)?.? coslx cgsew?w«?w} +E
wey ‘ﬁ,

21

where the remainder term £ 18

‘3
- . M* W iy
B =" 2421 H}J j ) - ”Z"i%qq” - M%(“) + %Q‘%a(&) +

240 i-. Taquzl®) + Tyquy 60 } .

This result may be cmployed to approx

irnate the kernel ¥ (x) by a
sum of trigonometric functions. The J_(x)

&

are

Byl

iessel functions of
the firet kind, For a lmited range of the argument x, the

q=1

approximation from the above result may be improved upon by using

Fol= | - B2 cos {i"fi’:) + 2lman 1) iM sin () (2.3)

The coefficients eﬁal, é‘éa are obtained by fitting EF‘}(:;;) to Flx) at the
two loweet values of = where real ¥{x) and ':-* 4L F{x)) vanish
respectively.
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Thus
N z
FR%A

—Z-\}'a(ii) = {

S

o & - q;v;é“‘-;»a)j
dy = 2u  where v is the first root of - e Q(u)-&

ek . .
and 4. = 2u where u ig the smallest value of v {for which

J iﬁu) attaine a relative maxin The approximation (2. 3} is
employed hercafter in the flutter analysis and good results are
expacted for w < 3. The flutter frequencies of interest for the
plates under consideration are such that this condition is easily met
when the flow Mach number is bounded away {rom unity.

Substitating equation (2. 3) into equation (2. 1) we {ind

+ p‘ﬂ’a iwt av (L,,Z 2) %AZ b4
o Sk iAW falay AN o T :
%(K’! O, t); m + %"’“’iry(;{” .z Y@é)?zix-fé)di ]
b MiE»l oMl {pM7-1)°
° (2.4)
where
2 . iw,z iW.=m ia,x +i¥ =
}?Z(*f):': - (24 +2) 5 1 @ - + Mlman 31} & ‘L g =
4
and
@ T - @ = =
¥ = e + B W , = e, + M|,
LeTiom (T M) 5,4°% =m |g, v M
&

“Whean the panel under consideration has slmply supported boundary

conditions the deflection surface may be represented by

o o
Z s t) = Z A {e) sin EREEL {z.5)
&% Eé¥] o
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. & + » HgE 3 . -
ﬁkzai‘z“) = o {x,0,t) sia 53.?: bdz=z, {2.¢)

Substituting equation {2.5) into equation (2. 4) and then carrying out the

integration in equation {2.6), we find

N

L pre iwt
o 53 = ~PUe f;:mff) s |- (2.7
::3 ¥-% &
MY -1 m=l
-~ }

The cosfiicients are functions of Lk, ¥, m, and n. They

{s
mn

b

satisfy the relationship
c = (_l)m'%m G .

mn nim

The comnlete cxpressions for these coefficients are glven in Jippendix 3B,
2 8

Z2.2.3. Panel Flutter Analysis

The flutter analysis proceeds in exactly the sawme manner s
in the transonic case. The plate deflection surface is assumed describ-
able by a small nurnber of generalized coordinates, the kinetic and
strain energy of the plates are determined in terms of these co-ordinates
and ausiag the result {2.7) for the generalized force the Lagrange
equations of motion are employed to calculate the flutter boundaries.

The only difference in the aunalyses, apart from the asrodynamic
terms, arises from the imclusion of two effects that were previously
ignored. The first of thece concerns the influence of internzl damping,
imherent in the plate, upon the flutter boundaries. 4B mentioned in

the Introduction the vibrations of plates in still 2ir are found to be
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positively damped and part of the energy dissipation arises from
sources in the plate itseld, in particular from inﬁafm&i friction due to
rotion and from heat conduction across the plate thickness arising
from the straining of the plate elermnents. The complete damping
process will be very complicated but 2 simple means of introducing
damping into the analysis is provided by the use of the structaral
damping coefficlent g. The stiffness parameter ki is simply re-
placed by 3&:5 {1 +ig), where the extra term represents a damping
force proportional to the amplitude of motion and in phase with the
velocity, This damaping cocfficient is independent of frequency and in
practice the damping will be dependent upon frequency, however it will
be remembered that the flutter frequencies in the experiments varied
only slightly from their atill air values so that the inclusion in the
analyeis of values of "'g'' determined from still air teste upon the
models should be realistic.

The second effect treated in this analysis is of geometric origin.
The question has arisen as t0 whether some snall initial curvature of
the panel will affect the fluttcr boundaries. This problem has been
investigated by Vates and Zeijdel {Ref. 20) at dMach numbers 1.5 and
2.0, where it was found that a specified initial plate curvature was
destabilizing up to some critical value of the curvature. This analysis
simply extends the treatment to the low supersonic range. As men-
tioned previocuely, the effect of smuzll initial curvature arises from the
development of mid-plane stresses, Emgﬂoyéng the boundary conditions

of nuo horizontal motion of the plate boundaries it can be shown that a
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mid-plane stress develops that is proportional to the integral of the
nerturbation displacement over the plate chord., The provision of a
flasure suppoert, specifically for the preveantion of mid-plane stress
development, therefore renders the test pancls considerably less

sensitive to any curvature effects. For the purpose of the analysis an

initial plate deflection of the form
- . WE )
¥ {x) = 5. sin e {Z2.9)
1 1 3

iz asswmed. The amplitude of the initizl surface is restricted so that

a‘f:f
) e L

Assuming that the deflection surfaces of the plates are describable by

the two generalized co-ordinates so that

e
& 3t

V=) = Ay sin = 4 4, sin W {2. 9)
the equation of :notlon, including the effects of etructural damplng and
a specified initial curvature but assuming no applied mid-plane stresses,

may be written as

2 2
nan g it S(1 gl ¢ 6By ) | 4 = 3%?)""“ azmgﬁ’]
‘ (2. 10)
i 2 P ~
“k® 4 {1+ ig) = "“3 »3@3?)4’ ,wgﬁzg}]
MV e
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The flutter boundaries are determined in the same manner as in the

trensonic panel flutter analysis,

Z2e2.4, Numerical Calculations

Flutter boundaries were first determined for initially flat panels
at Mach numbers 1,2, 1.3, \/Ej and 1.56. The deflection surface of
the panels were assumed describable by the first two terms of the
series {2.5). The effects of acoustic radiation, structural damping and
mid-plane stress were neglected. The boundaries obtained compare
favorably with the results of more extensive computations {sce for
example Figure 17). The flutter boundaries presented in Figure 18 are
for brass pancls cxposed to an airstreans with constant sea level stagna-~
tion conditions. The lower frequency or “first mode" boundary exhibits
a pealk at about M = 1,26, he higher frequency or “gecond rmode'
boundary is present at Mach numbers less than 1,5 and is critical in the
neighborhood of M = \/E- 4 discontinuity in the slope of the stability
boundaries appears where the boundaries corresponding to each of these
different modes intersect. A similar discontinuity also appeared in
the modal analysis of a clamped edge plate reported in Reference 6 and
was suggested by the authors to be due to & change of flutter mode., A
more extensive snalysis by Fung {Ref. 1) {ailed to reveal this feature
and it was suggested that the discontinuity could be due to the small
number of modes employed in the analysis of Reference 6. However,
the calculations presented in Reference 1 were undertaken for values of
the reduced frequency k up to 0.45., The critical "seccond mode" fluttex

-

of Reference 6 involves values of k of the order of 0.7 and above., The
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non-appearance of the critical "second mode’ flutter boundary in the
analysis of Reference 1 is therefore due to the small values of k
employed in the calculations, The good agreement between the first
mode boundaries calculated in References 1 and & indicates that the
approximate method of analysis converges satisfactorily and that
reasonable predictions may be obtained for the critical flutter bound-
aries of flat panels, with zero mid-plane stress, when employing a
two-meode flutter analysis {i.e. the stiffness requirements predicted
by the two mode analysis are expected to be only slightly affected by
the inclusion of more terms in the analysis).

The effect of structural damping upon the flutter boundaries was
next investigated. Calculations employing values of the structural
damping coefficient g up to 0.05 were undertaken at Mach numbers
1.2. and 1.3, The results for M= V2 were estiznated from
Reference 6. The inclusion of structural damping has a very marked
effect upon the flutter boundaries in the low supersonic region. The
"second mode' boundary disappears completely for sufficiently large
values of g and the thickness ratio requirements of the lower fre-
guency flutter mode are reduced considerably from the values
corresponding to zero structural damping {see Figure 19).

The effect of 2 specified initial curvature upon the panel flutter
phenomenon in the low supersonic region was studied at M= 1.3, It
has been shown by Yates and Zeijdel (Ref. 17) that at the higher Mach
numbers (M 2 1.5) a specified constant initial curvature will be de-
stabilizing up to some critical value of the curvature. A4t this critical

value the first and second natural frequencies of the plate (in vacuum)
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coalesce., A two-mode analysis in the low supersonic region was uander-
taken at Mach number 1.3. The panel was assumed to have an initial
deflection surface in the form of a half sine wave with an amplitude of
one plate thickness., Calculations were also made at Mach number 1. 56
with the same initial deflection. Structural damping was neglected in
both cases., The results of these calculations are presgsented in Figures
20 and 21, There it is seen that such initial curvature is stabilizing
at M = 1.3 and destabilizing at M = 1. 56, It will also be noted that the
critical flutter mode has been changed at M = 1, 3,

The different effects of initial curvature at the two Mach
aumbers considered is not entirely unexpected because the ideal theory
indicates that panel flutter at the higher Mach numbers (M 2 1.5) is
associated with a freguency coaloscence phenomenon which is aot
present in the low supersonic region. The form of initial curvature
assumed produces an increase in the first natural frequency of the
panel (in vacuum) and a reduction in the difference between the first
two natural frequencies. This latter effect appears te be the important
one for flutter at the higher Mach numberes and is expected to be
destabilizing., On the other hand, the most important effect upon
flutter in the low supersonic region is probably the increase in the
fundamental plate fregquency which may be rezarded as a stiffening
influence. It should also be remarked that the precence of sufficient
gstructural damping should prevent the change of critical flutter mode at

Mach pumber 1.3,
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The first mode thickness ratio requirements %} at M= 1,3
for panels representative of the experimental conditions, are found to
be reduced by about 40 per cent from the results for perfectly flat
panels. This reduction in the thickness ratio requirement is due to
the development of mid-plane stresses in the panels, The development
of such stresses in the test panels is greatly reduced by the presence
of the flexure support at the trailing edge of these panels. The flexure
support will therefore reduce the structural effect of any initial
curvature upon the flutter boundaries. A rough estimate of the effec~
tiveness of the flexure in this respect may be obtained by comparing

the mid-plane stresses developed in a deformed pancl when first

secondly considering the casec where the leading edge of the panel is
fixed and the trailing edge is mounted upon 2 flexure support. For a
given deformation of the plate the mid-plane stress developed by the
second configuration may be expressed as Rx O‘K}f. where { 0‘}235
denotes the mid-plane stress developed when the plate is assumed to
have fixed edges and R denotes a relief factor {(E<1). The term
appearing in the flutter equations of motion {equation 2, 10), that
represents the effect of initial curvature, contains the mid-plane stress
and ig therefore also expected to be reduced by the factor R when
account is taken of the flexure support. This reduction may be express-
ed by using VR By as an "effective” amplitude of the specified initial
deflection, i.e. the amplitude of a specified initial deflection .31 of a

panel with a flexure support would correspond to an sffective amplitude

of /R E.?:l for a similar panel with fized leading and trailing edges.
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The value of R cerrespoading to the experimental conditions is of the
-4
order of 4 x 10 .

The experiraentzl {lutter boundaries for flat" panels that are
presented in Figure 15 were obtained for test pancle where the
measured amplitudes of static deflection of the pancls were less than
one plate thickness., The effective amplitudes of these panels, insofar
as the structaral effect of plate curvature upon the {lutter boundaries
is concerned, are thereforve of the order of 0. 82h {(where b denotes the
plate thickaness)., & few calculations were made at M = 1.3, using such
effective amplituces, &n&it was found that the inclusion of this eifect
produced less than 1 per cent change of the flutter boundaries frorm the
resulte for perfectly flat panels. Changes of the same order of magni-
tude are expected at the other Mach numbers in the low supersonic
range. It is therefore seen that negligible error is incurred when
neglecting the appropriate curvature effects in the flutter calculations
that are used in comparison with the ex@erﬁnamt&l flutter boundarles

for "flat" panels.

Section 2.3. - Analysis of the Energy Traunsier at £lutter,

2.3.1., General Remarks

The {ollowing section describes an exarnination of some previ-
ous panel flutter investigations that employed the idesl theory. By
examining the energy transfer between the airstream and the plate at
flutter it is found that considerable light may be thrown upon the
phenomenon as described by the idezlized theory and that the reason

for the breakdown of the guasi-steady aerodynamic theory for panel
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flutter analysis in the low supersonic region becomes readily apparent.
The energy analysis is effected by exarining the flutter modes obtein-
ed in the previous investigations of Fung and Houbolt {(Ref., 1 and 16

respectively),

y

2.3.2, Energy Analysis

The aerodynamic pressure expression for supersonic flows

{Z2. 1) may be written

w2 (02, ity 1 02
o@Eot = L8 BT N g S 21 (3.1)
& R L&x a°-1 © bt

where Z_(% t} deunotes the deflection surface of the plate and 1 denotes
L=
the integral term appearing in (2.1). The rate at which work is done by

the plate against the acrodynamic pressure is

peat
p ew oz
'g{gE:“ H»w@ -ﬁ‘*gm““’ {3. 2}
o
where E denotes the sumn of the kinetic and strain energy of the plate.

For harmonic oscillations the deflection surface ig expressed as

2, (56 = V(%) cos (Wt + ¥ (@)

5&5
The contribution in (3. 2) {row the “’T"“ teram avising in equation (3,1) ie

ol &b
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The contribution to {3.2) from the 'E'“ term in (3. 1) is

. " 21
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Writing A= wi+ % {x), ecquation {3.2) may be expressed as
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where I denotes the contribution from the integral terrs 1 that appears
in the aerodynamic pressure exprea:sﬁan. The results of Fung (Ref., 1)
nd Houbolt {(Ref. 19) indicate that 5& {#} is a monotonic funciion of =
See Figure £2). Using the mean value theorem and the monotonic

nature of '/ (%) the first term in the above eupression may be written

2b 2h ‘
Gy o % “ 2
[‘Yi:«s} gin A ] EZ“{}E) %= -é;_m(}’e; ) [Y(Ez} sin A ] dx,
o o
1 -* -
where {0 € 2 & 2b).
Eonl [3 2 3 s 3 '3 d » - e
Employing this result and integrating o E over one pericd T of the

flutter motion, we obtain
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Efe+T)-E(t) =

¢ 5 t+ T b
[ %:;—(;E&) - Lﬁ_:E@;L } dt {(V(2) smm‘l dx
= U{m~-1)
t ! [n]

At the flutter boundary the net exchange of snergy between the panel and

the fiow must vanish. FHence
Eff+T) - E{t) = 0

The results of Reference 1 indicate that in the low supersonic region

where & ¥ is the change of ¢ over the panel chord. Letting E»RT
denote the energy contribution over one cycle of the motion from the
8z 0z

= term in the aerodynamic pressure, Z_ denote the o 2 contribu-
ot 4 TE

tion and RI the integral terzn contribution, then employing data from
Reference 1 the following table mnay be constructed to evaluate the

relative iimportance of these three terms insofar as the {lutter process

is concerned.



M R R_ Ry .-ﬁi

1.1 -1.56 9.3 1.26 4, 24
1.2 -0.657 0,67 0.587  58.49
1.3 -0.214 0,027 0.187  6.34
1.4 -0.9062  0.0052  0.001  0.19

Although the values given in the above table are approximate they
clearly indicate the importance of the integral term I for the flutter
process in the low supersonic region. It is seen that at Mach aumbers
1.1, 1.2, and 1.3, this term provides the major stabllizing factor to
balance the influence of the ;—‘% terin, which is destabilizing at Mach
avmbers less than »/-27 The term becomes relatively more important
ag the Mach number is increased above 1. 2, but it is completely
dominated by the integral terin at Mach num‘éiam less than 1.4 (see
Figure 23}). The small contribution of the ?;_—? term to the energy ex-
change lies in the fact that although the magnitude of this tersn may be
large compared to the other terins, the phase shift in the flutter mode
at the low supersonic Mach numbers is so small that relatively little
energy contribution is provided, Herein lies the reason for the failure of
the approximate quasi-steady aerodynamic theory which neglects the
integral terrm and retains the other two contributions, At the low super-

8Z
» 9 a s » 3 o, 8 3
sonic Mach numbers the =g terin, which is destabilizing for M <V 2,
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cannot be balanced by the term: alone, which fact leads to the un-

happy conclusion of Reference 4 that all panels are unstable in a
supersonic flow with Mach number less than V.

The success of the approximate aerodynamic theories at high
Mach numbers (M > 1.6) is readily apparent when the flutter modes in
this region are studied, Examination of the results of Reference 19,
wherein the linear piston theory is employed for the aerodynamic
pressure, reveals that the flutter mode at high Mach numbers exhibits
a considerable amount of phase shift (see Figure 22) which in this in-
stance is destabilizing. The flutter boundary is obtained when the out

8Z

of phase countribution from the -5-,-.-3 term balances the damping term
x

?t@ . Unlike the phenomenon in the low supersonic region such a
flutter mechanism is adequately described by the approximate aero-
dynamic theories.

It is also instructive to examine the significance of the varicus
terms in the acrodynamic pressure expression {£. 1) now that their
relative importance in the flutter process has been assessed., The
integral term, which plays such an important role in the low super-
sonic region, represents the influence, at a given point along the chord
and at & given time, of the disturbances produced at earlier times up~
stream of this point. These disturbances propagate through the fluid and
are convected with the supersonic stream over the panel. For such
"almost in phase' mode shapes exhibited in the low supersonic region it
thus appearse that the phase shifts between aerodynamic pressure and
plate displacement introduced by such a convection procese are of

extreme importance in the flutter probiem at these Mach numbers.
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2

The remaining terms in the acrodynamic pressure are what might be
termed "local’, i.e, their contribution to the pressure at a point is
governed entively by the conditions of the plate surface at that point

only. The phase shifte that arise in this case are due to the character
82

o : & » o N
of the plate motion. The e term will have no contribution to the

energy exchange if there is no phase sghift in the plate mode. The
8Z
contribution from the other term (the —5%;% term) is always out of

37

phase. Whether this term is stabilizing or destabilizing depends entire-

Iy upon the supersonic flow Mach nwmber,



THE COMPARISON OF THECORY AND ZXPERIMENT

3.1, Ceneral Remarks

The experimental results are now compared with the predictions
of the ideal theory. The comparison is made in the low supersonic flow
rvegion between kach numbers 1.15 and 1.5 and is based upon the
assumption that the theoretical flutter boundaries corresponding to the
test panels will be intermediate between the flutter boundaries calculated
for the limiting cases of clamped edge and simply supported panels, The

experimental flutter boundaries employed in the comparison are those
corresponding to the "flat'" panel results.

The changes of flutter speed that were noted when the test panels
exhibited stiatic deflection (see Figure 15) are discussed. The theory is
examined in order to determine whether there is any possible theoreti-
cal explanation of this phenomenon.

The results of the transonic panel flutter analysis are discussed

in the light of the experimental data.

3.2. Comparison of the Flutter Boundaries

Direct comparison of the experimental flutter boundaries for
“flat’ panels with the theoretical predictions is not possible because no
flutter calculations have been undertaken for panels with boundary
conditions corresponding to those of the test panels. These boundary
conditions being considered to be clamped at the leading edge and

partially restrained {against rotation) at the trailing edge. The predicted
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flutter boundaries for such pansls are assumed to be intermediate
between the boundaries calculated for simply supported and clamped
edge panels and the euperimental results are compared against these
two limiting cases. For these calculations to be representative of the
experimental conditions it is necessary that realistic values of the
structural darmping be included in the anslysis. ZTuperimnental deter-
mination of the damping coeificient for three diiferent test panels
yvielded values of 0, 0095, 0,010 and 0,012, The calculatons eraployed
in the comparison were thercefore undertaken for g = 0,01, which value
iz considered to be representative of the experimental conditions. It
should be noted that this value of g will be conservative because the
measured damping coefficients arise frorn both internal and acoustic
sources of damping. The effects of mid-plane stress and initial plate
durvature are not included in the flutter calculations used in the
comparison with the 'flat” panel data.

The "{flat’ pancl flutter boundary from Figure 15 is shown in
Figure 24 together with theoretical flutter boundaries calculated from
two mode analyses of simply supported and clamped edge panels. It is
immediately seen that although the experimental and predicted {lutter
boundaries exhibit the same general trend, namely increased stiffness
reguirements in the low supersonic region, the magnitude of the
respective requirements may differ appreciably. The difference is
particalarly pronounced at Mach numbers less than about 1.4, The
theoretical predictions are seen to be conservative in this region, the
maximmum predicted thickness requirements being of the order of two

to three times the experimental value, Agreement between theory and
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and experiment appears to lmprove as the Mach number lncreases.
This trend towards better agreement at the higher Mach number is
further supported by the results of some flat panel flutter tests carried
out at a Mach number of 2,81 by 4nderson. These experiments are
reported upon in Reference 22. The pertinent data fvom these experi-
ments are presented in Table I, where it is scen that the experimental
thickness ratio requirements (—2%-) at the two-dimensional flutter
boundary are between 3 per cent and 18 per cent above the theoretically
predicted values.

The lé.rg@ differences between the theoretical and the experi-
mental flutter boundaries that are observed in the low supersonic region
do not appear explainable by the inclusion of realistic values of mide
plane stress and plate curvature in the flutter analysis. 6 ssentioned
previously in Part I of this paper it is considered that the mid-plane
stresses developed in the test panels would be less than 20 pei. The
inclusion of such mid-plane stresses in the flutter analysis would
produce only small changes in the theoretical predictions from the sero
mid~plane stress case and would not explain the large differences in
quesﬁimﬁ. The same conclusion applies to the structural effect of
initial curvature uvpon the {lutter boundaries, which is also greatly
reduced by the flexure support.

The crucial test of aay flutter theory is the comparison of the

predicted flutter boundaries with experiment and in this instance it has

$The order of magnitude of the effect produced by such stresses may be
estimated from the results of Reference 6, It is found that the thickness
ratio requirements at 3 = 1.3, for panels similar to the test panels,
are reduced by legs than 3 per cent with the introduction of a mid-plane
stress of 20 psi.
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been found that the predicted flutter boundaries are very conservative
at supersonic Mach numbers less than about 1.4. However, it should
be remarked that certain other features of the flulter phenomenon in
this region are predicted guite closely by the ideal theory. In particular
the predicted frequency ratios Q«S—) at flutter are guite close ¢o the

] .
experimental results. The difference between the predicted and experi-
mental values being on the order of 10 - 15 per cent. Furthermore the
agreement between the messured phase shift and the predicted phase
shift in the flutter modes appears to be good. Measurements of the
phase shift between the plate flutter motion at points located at 0. 22
and 0. 65 chord lengths aft of the plate leading edge at Mach numbers of

. _ - : Y 2@ 4O -
1.18, 1.31 and 1. 34 vielded values of 2.5, 17, and 1

respectively.
These results compare very closely with valucs estimated from
Reference 1, which are considered to be representative of the
theorctical predictions. These findings indicate that the ideal theory
can predict the correct flutter mode in the low supersonic region (the
non appearance of the critical ''second mode" flutter is accounted for by
the inclusion of realistic values of structural damping in the analysis)
however the predicted stiffness requirements corresponding to this
mode can show considerable disagreement with the experimentally
determined values and the theory appears to be inadeguate for the

prediction of these requircments at the lower supersonic Mach numbers.

3.3. Effect of Panel Deflection upon Flutter

A further source of disagreement between theory and experi-

ment arises when the effect of static deflection of the test panels upon
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the flutter speed ie inveesiigata&. It was noticed during the experi-
ments that the flutter speed of 2 given panel could be altered by
causing the test panel to deflect out into the alrstream {amplitudes of
deflection of the ordey of 1 1/2 - 3 plate thicknesses), The changes
of the flutter speed that were obscrved were destabilizing in the sense
that the reglon of instability was enlarged from the “flat'’ panel region
of inetability (see Figure 15). The static deflection of the panels could
be produced by slightly accelerzting the alrstream over the length of
the panel and thereby changing the static pressure distribution over the
panel. It was also found that these effects would be accompanied by an
increase in the fundamenial plate frequency over the frequency that the
p?.aﬁe would exhibit, at the same Mach number, when in the "'flat"
condition.

It is considered most ualikely that the changes in the flutter speed
and in the fundamental frequency of the test panels could arisc from
potential aerodynamic eifectz. The non-uniformity of the main flow and
the perturbations produced by the static deflection are both small and,
on the basis of the linear theory, would not affect the unsteady phenome-
pon. Furthermore, the flutter analysis of Part 2 indicates that the
effect of plate curvature and any mid-plane tension introduced by the
preasure loading would be stabilizing in this Mach number region and
would reduce the region of instability., Although the flexure support
greatly reduces the effectiveness of plate curvature and limits the
development of mid-plan‘e stresges it is most unlikely that the flexure

would change their general effect upon the flutter phenornencn.
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It therefore appears that such changes in the flutter speed are
not explainable upoun the basis of the ideal theory. The increase in the
panel {requencies, as opposed to the changes in flutter speed, may
however be explainable upon the basis of plate curvature and mid-plane

tension.

3. 4. Transonic Panel Flutter

The experimental data indicates that the two-dimensional panel
flutter phenomenon iz lirnited to the supersonic flow region. Neo
subsonic flutter was observed for any of the panels that were tested,
These findings support the results of the transounic flutter analysis
which Indicated, to the degree of approximation employed in the
analysis, that panel flutter was not possible at M = 1. The results of
this analysis could not be verified directly because of the shock wave
interference problem that arose in the experiments at Mach numbers

around unity.

3.5. Summary

The results of the preceding discussions may be briefly
summarized as follows:

{1} Theory and experiment both indicate that the low supersonic
region {1 < M <1,5) is critical {or the flutter of two-dimensional flat
panels, Wo subsonic panel flutter was found for any of the panels that
were tested, whereas flutter was found at supersonic Mach numbers.

This finding supports the results of the transonic analysis, however,

the result of this analysis could not be verified directly because of
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shockwave interference with the test panels at dMach numbers around
unity.

{2} The panel thickness ratio required for the prevention of
flutter as predicted by the ideal theory in the low supersonic region is
found to be quite conservative compared to the experimental data at
Mach numbers less than about 1.4. In particular the maximum thick-
ness ratio requirement as predicted by the theory is of the order of two
to three times the experimental value for "flat" panels in the Mach
nurmber range 1.15 - 1. 35,

(3) The agreement between the experimental and theoretical
flutter boundaries improves with increasing Mach number. This tread
is further supported by the experimental data presented in Reference
Z2.

(4) Although considerable disagreement exists between the
theoretically predicted stiffness requirements and the experimental
data at the lower supersonic Maeh numbers, the theory does predict the
correct flutter mode at all supersonic Mach numbers.

{(5) The changes of flutter speed for a glven test panel that were
observed in the experiments when the airstream wae slightly accelera-
ted over the chord of the test panel and that are belisved to be due to
the static deflection of the test panels produced by the variable static
pressure do not appear explainable by the ideal theory.

Accepting the basis of the above comparisons it appears that
the ideal theory is inadequate for flutter predictions in the low super-
gsonic region. The predictions of the theory appear to be more

realistic at higher Mach numbers., The results of the theory at M = 1
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are gupported by the experimental data (this does not necessarily imply
that the theory is adequate at this Mach number).

It is of considerable interest to examine more clogely the
results of theory and experiment in order to see if some indication may
be obtained of the reasons for the apparent inadequacy of the ideal
theory at the low supersonic Mach numbers., In this regard it is of
some help that the inadequacy of the theory appears to be particularly
acute in a specific flow region. Any feature of the flutter phenomenon
that is peculiar to this region would thus be highly suspect and could
possibly contain the reasons for the breakdown of the theory. The dis-
agreement between theory and experiment mavy ariae from the following
contributing sourcea:

{1) Certain of the physical assumptions concerning the plate
and fluid properties upon which the ideal theory is based, are parti-
cularly poor {for the accurate description of the flutter phenomenon) in
the low supersonic region.

{(2) The linearization of the problem and the approximate means
of analysis that were employed to obtain solutions within the framework
of the ideal theory have introduced large errors in the low supersonic
region.

{3} The conditions of the experiments, against whose results
the theory was compared, are poor representations of conditions
assumed in the calculation of the flutter boundaries. In particular the
representation of two-dimensional conditions and the representation of

zero mideplane stress conditions.
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Review of the experimental data and pertinent flutter analyses
suggests that the major source of disagreement between theory and
experiment arises {rom the physical assumptions concerning the plate
and fluid properties that form a basis for the ideal theory. Many of
the factors mentioned in {2) and {3) above have been discussed
previously in this paper. There it was considered that good two-
dimeneional and zero mid-plane stress conditions were obtained in the
experiments and that the approximate methods of analysis employed
to estimate the theoretical flutter boundaries in the low supersonic
region were satisfactory., A4lthough the application of these methods
had been a previous source of controversy more exact theoretical
analysis had indicated that the application to the flutter of plates {finite
bending stiffness) was satisfactory, Furthermore the experimental data
gave nd indication that the linearization conditions were not satisfied.
It should be noted that the severe restriction upon the amplitude of the
plate motion {amplitude << plate thickness) arises from the linear plate
theory and is removed by the presence of the flexure support and is

replaced by the requirement that

a“z& -1 az
—— << h, —-—-_-% «i.
Saz- &=

These conditions were certainly satisfied throughout the experiments.
The lmnproved agreement between theory and experiment at the
higher supersonic Mach numbers indicates that the source of error is

dependent upon the flow Mach number., The possibility that the error
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arises from the hypotheses concerning the plate properties is consid.
ered most unlikely., The experimental data certainly gives no cause
to believe that the adequacy of the plate theory employed in the
analysis will be dependent upon the flow iMach number. It appears
more reasonable that the error arises from the assumptions concerning
the fluid propertiea. The most suspect of these assumptions is that of
an inviscid fluid. This assumption greatly simplifies the analysis
however, in the process, the description of a flow field in the
immediate neighborhood of a solid boundary becomes very poor. This
is because the ideal theory takes no account of the boundary layer, which
is probably the most important consequence of the fluid viscosity, that
will be present over any solid surface. Typical velocity profiles of the
boundary layer over the test panel installation have been presented in
Figure 4. Thie boundary layer will be present for all Mach numbers
{excopt the trivial case M = o) and the question arises as to how this
layer, assuming that its neglect is the major source of error, should
have such a profound effect upon the flutter phenomenon in the low
supersonic region whilst having a relatively small effect upon the
phenomenon at the higher Mach nurobers. A possible answer to this
question could come {rom the results of the analysic of the energy ex-
change at flutter which is presented in Section 2.3. There it was found
that the '"non-local” contributions to the aerodynarnic pressures acting
upon the varicus points of an oscillating panel play an extremely
important role in the flutter phenomenon in the low supersonic region,
whereas at the higher Mach numbers the acrodynamic pressures of

consequence are of "local” arigin (see Section 2. 3. for a more detailed
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discussion)., These flutter mechanisms are of course based upon the
ideal theory, however, if such "non-local” and "local” pressure
contributions have the same relative importance in the flutter
phenornenon in a real fluid then it is conceivable that the boundary
layer could have & more pronounced influence upon the phenomenon in
the low supersonic region than at the higher Mach numbers, This is
because the effect of the "non~local’ pressure contributions will depend
upon their passage over the plate surface, The description of this
process afiorded by the ideal theory is thaf: these disturbances will be
propagated in the uniﬁsrm supersonic stream passing over the plate
surface, In practice, however, these disturbances will be propagating
through the mixed subsonic-supersonic boundary layer and their effect’
could be congiderably different from the ideal theory description., If
the aerodynamic pressures of "local" origin were only slightly affected
by the presence of the boundary layer these changes in the effect of the
"non-local'' pressures could account for the inadequacy of the ideal
theory in the low supersonic region and the apparent success of the
theory at the higher supersonic Mach numbers. The boundary layer
effect could provide an explanation of the curicus changes of flutter
speed that are believed to be due to the static deflection of the test
panels (see Figure 15), To seek evidence to support this suggestion
some boundary layer profiles were measured over a surface of constant
curvature (the radius of curvature was 9, 5') to determine whether the
curvature of the surface would affect the velocity profile of the layer.

Assuming that the boundary layer played an important role in the flutter
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phenomenon it is coneidered that any change of the effect of the Raﬁer
would be associated with changes in the velocity profile. The resulte
of these measurements are preseated in Figure 4 and it will be noted
that these latter velocity profiles are noticeably different from the
profiles measured over the flat surface.

It should be stressed that the above arguments, although based
upon careful review of the theoretical and experimental research, are
hypothetical and are included in this paper to suggest a cause for the
large differences between theory and experiment that were observed in
the low superé@nic flow region. To establish the Lmportance of the
boundary layer upon the panel flutter phenomenon at these Mach numbers
would require the realistic inclusion of the boundary layer effects in the
actual prediction of the flutter beundaries'a. Furthermore, the argu-
ment does not lmply that the other factors that were mentioned
previously do not contribute to the differences between theory and
experiment. These factors are certainly expected to have some contri-
‘buticn, however, the review of the experimental data and pertinent
theoretical analysis indicates that such factors are unlikely to produce

the large differences that werc observed,

Elvt should be remarked that boundary layer effects have been included
in an analysis considering the degree of instability of a traveling wave
in an elastic sheet exposed to an airstream (see Ref, £3).
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APPENDIX A
PHYSIC AL SIGNIFICANCE OF THE

TRANSONIC AERCDYNAMIC THEORY

It is of some interest to seek the physical significance of the
unsteady transonic aerodynamic theory that was emnployed in Part I,
perticularly in light of the failure of the linearized acrodynamic theory
in the steady flow case {k = o) at these Mach numbers. An insight into
the significance of the theory may be obtained by developing the theory
from the solution for & source in a supersonic stream. The complete
solution is obiained by integrating over a distribution of such sources,
It is found that the transcunic sclution may be obtained {within & small
multiplicative factor) by modifying the limits of the integration and the
nature of this modification reveals the physical significance of the
theory.

Consider a uniform supersonic stream of velocity U and
choosc a rectangular cartesian co-ovdinate system (¥, ¥, Z) with the
¥ azis in the direction of the flow. Now consider an elementary line
gource pulse (in thc plane Z = o and perpenéic/ulaz' to the direction of
the flow) which is located at { on the X axis, The source pulses at

time T and the resulting potential observed at the station (x, o, 0) is

l

¢(X,0,t) = /)(E, o, T ) (0 1)
/a2?2 [(x-5)~U=)*
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where T =t- T anda denotes the speed of sound of the fluid. No

disturbance will have arrived at the station {x, o) before the time
T o= (x-%)
a (M+1)
The disturbed fluid will have been swept downstream of the point
(= o) by the time . — (x-7) .
a (M-1)
The observer at (%, 0) will thercfore see a signal during the time

interval T, to T . The duration of the signal due to the source pulse
is
T o= (%-1)= 25
a (M21)

E Al 0. T) is finite the disturbance is of infinite strength on the two
wave fronts bounding the disturbed {luid passing over the plane Z = o,
The downstream or fast wave {ront moves at a velocity U + a relative
to the observer. The slow or upstream wave front moves at a velocity
U - a relative to the observer,

Consider now a distribution of line source pulses in the plane
Z = 0o, The sources being poseitioned on the positive I axis., The
y&ismrb&n«:e potential at {1, 0,t) for M 21 is

(6

X
A(% ¢-2) /
(x9¢) = /d? Y . a2
f . S e e .

Assuming that the sources are harmonic in time we write

iwé
Al ) = — M@
/4
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The potential &=, o, t) is therefore

—vw?
¢ (xot) = / 4 (8 “/ Ae.
”T MZ (-7 ((z

We now assume that the effects of the slowly moving wave fronts
{i.e. the wave fronts that travel at velocity U - 2 relative to the
observer) may be neglected and that the effect of a source pulse is
observed over a time interval T to T“'-' (KM}“) , instezd of the time

interval ¢ to T, Therciore, we write

P (xot) = (F)/}/ ok
/(T-7)(6-2)

5
The term {4-7) 1/a is essentially constant over the range of integra-
tion so that * *
T ~wl T -faT
dt ~ [____S 47

| V(r-2)(t-2) (e-2)@-n)

and we write

» X - AM(x-3) M
0~ M+!

%[Mlé) ~ “—be Wa(5) e
T24M | V(6 o

For sufficiently large k and £ # x the integral

A(x-3)

°TY i =

e dr
o /o

-AH

R
a

My
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Therefore if k is sufficiently large and M = 1 the potential that
results when the slow moving wave fronts are neglected may be

written as

iwt 2
Blvoe) ~ ~te [ WO ar
VerkiM | J/(x-3) /e (4. 3)

This expression differs frorm: the earlier transonic result {equation 1.4)
only by a small multiplicative factor. The major features of the tran.
sonic theory have been obtained by this process of modifying the effects

of an elementary source pulse,

The following interpretation of the unsteady transonic aero-
dynarmic theory is offered upon the basis of the preceding analyeis: In
the transonic flow range the upstream wave fronts {associated with the
velocity U - a) travel extremely slowly over the panel chord with the
result that a large number of such wave fronts will be present at each
point of the panel at any given time. For the case of an oscillating
plate these disturbances have both positive and negative sign, If the
frequency of oscillation is sufiiciently large a destructive interference
may result which would prevent the development of large perturbations.
If the interference was extremely effective we could assurne that the
effects of disturbances that persist upon the pancl could be neglected,
Ve have shown above that the main features of the transonic thsory
may be obtained by such an assumption. The physical significance of
the unsteady transonic theory therefore lies in the neglect of the

disturbances that persist upon the panel. This neglect is possible
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because of the interference phenomenon that may arise for sufficient-

iy unsteady flows. The interference phenomenon prevents the
development of large disturbances and makes possible the use of a

linear theory to describe flows that are sufficiently unsteady.
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APPENDIY B

GENERALIZED ARRODYNAMIC FORCE COEFFICIENTS

1. Sizsply Supported P&nais in a Transonic Adrstrenm

The nth generalized force QM was written in Section

n 2.1
f) €3
&Y = Qf,“ c Z )
27r16 M?

<)

and the coefficients /g w were expressed in terme of the coefficients

C .hm

. . These latter coefficients are defined as follows:
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2. Clamped Edge Panels in a Transonic cirstream

)
The nth generalized force Q. ‘was written in Section 2.1

as dz Iwt ©
(<) - ¢ <
C?u _6,_._ Z 7,_"" Am
Ser ki M A
(<)
The coefficients 7;m are defined as follows:
£ — T+
(e mn Mh Mmn
RS [ Few + S™ [ 0w
ol 0
ME n mrthk MT%

mu ’”’r—‘ﬂ C M My ~
c S Tk v 5 [ T« +5}/0.7dé

© 4 hirté nr-4
< W ~ [/] h —~
7:”‘ = f 56"4. 57 / JO# + 53/ T (M + Jq / J }
~ - ’ T ‘ 7 - 2 7 '
T ) 7—/’_/'/') LYy (€) 3 -/1/‘L) (7T(’> oot J
T = T ) i T, ) Tyt = (2 )I/Lmé»b.
% % ’ 2 e
The following relationships hold:
- T nm
52,““ - (./)h k‘ '54 hm . 53 - (-/) myh SS .
5~°Nk - (-/) Mt So "M ) J\I"'“ = (-_/) W S, W Ma .

TR . PR P .
are functions of k alone for given m and n.

The coefficients S
The explicit forms of thess coefficients arc cutremely lengthy and will

not be given here, These expressions can be found in Reference 24,
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3. Simply Supported Panels in & Supersonic Alrstream

; . . () . .
The nth generalized force Q” wag written in Section 2.2

as o) _ torwt - (s
&Y = —eu e 3 o Au.

ren P

(s)
The coefficients C-m are defined as follows:
4
(s . z hn
Ca = ik (ME2) 4+ 4 g 2 a K }
(M%)) (m=)* L 77

(s) 4 "
Cmi 4" { 2 a; [:T/ " } m#
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TWO-DIMENSIONAL PANEL FLUTTER EXPERIMENTS

PERFORMED AT MACH NUMBER 2,81 (see Ref. 22)

. h h
Thickness Ratio ) {mpe=)
(-ZE 3 experiment

Theory Experiment (‘é%)
theory
0.00147 0. 00163 1.11
0.0014 : 0.00165 1.18
0.00144 0.00165 1.15
0.0020 6. 00205 1.03

Note: Two types of panel flutter were Qbserved in the experiments
described in Reference 22. The first type was characterized by

a three-dimensional flutter mode and the second type by a two-
dimensional flutter mode. The experimental results quoted above

pertain to the two-dirmensional flutter.
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85

1.0
o ~ Flat Surface M8=l.2I9
5g=0376"
0.8 I ,
A ~ Gurved Surface M8=I.2|5
dg=0.386"
06 |
Z
g
0.4 I
0.2 r
1 |
O 0.2 0.4 0.6 0.8 .O 1.2
U/UB
1.O
o~ Flagt Surface M8= .37
Sg=0.34"
0.8 6~ Curved Surface M8= 1.389
Z
S, Sg:0.374"
06 [
0.4
0.2
O 0.2 |.2

u/U8

FIG. 4-TYPICAL VELOCGITY PROFILES OF THE BOUNDARY LAYER OVER
THE TEST PANEL INSTALLATION IN THE WIND TUNNEL GEILING
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FIG. 5 (0) NODAL LINES FOR PANEL MODE (2,0)

Note: The notation (a, b) denotes the number of nodal lines

perpendicular and parallel to the free edges of the plate
respectively, The concentrations of salt crystals occur
along the nodal lines for the various modes and are clearly
visible in the following sequence of pictures.
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FIG. 5 (b) PANEL MODE (2,1)
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FIG. 5(c) PANEL MODE (2,2)
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Fig. 6. A typical power spectrum of the test panel response to jet noise.
Spectral peaks are exhibited at the natural frequencies of the
panel. The spectrum was obtained using a 2 ¢/s bandwidth filter,



Fig. 7a.

Panel Deflection (volts)

90

Time

Panel response prior to flutter. The oscilloscope trace
shows the pre-flutter response of a test panel exposed to
a supersonic airstream. The major contribution to the
response arises from the frequency band around the funda-
mental frequency of the panel. Estimated sweep speed
was of the order of 0.022 seconds per major division of
the scale.
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e

Panel Deflection (volts)

Time

Fig. 7b. Panel response during flutter. The oscilloscope trace
shows the response of a test panel at flutter. Estimated
sweep speed was 0.0093 seconds per major division of
the scale.
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MAGNIFICATION OF VERTICAL SCALE
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Fig. 8. A typical power spectrum of the test panel response to wind
tunnel noise. The spectrum was obtained using a 2 ¢/s
bandwidth filter.
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Fig. 9a. Variation of the mean square plate response with time in
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Fig. 9b. Variation of the filtered mean square response with time
in the non-flutter region. The total signal has been passed
through a 50 c/s bandwidth filter at the fundamental plate
frequency.
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Mean Square Response ,
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Mach Number , M

FIG. I0-TYPICAL VARIATION OF THE MEAN SQUARE RESPONSE
OF A TEST PANEL AT THE FLUTTER BOUNDARY
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MAGNIFICATION OF VERTIGAL SCALE

MEAN SQUARE RESPONSE (ZZ)

10 !

FLUTTER RESPONSE RESPONSE FILTERED
AT
FLUTTER FREQUENCY

PRE FLUTTER RESPONSE

Fig. 11.

2.5 5.0

TIME (MIN.)

Comparison of the mean square plate response in the flutter
and non-flutter region. The flutter response was filtered
at the flutter frequency using a 2 c¢/s bandwidth filter.
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MAGNIFICATION OF VERTICAL SCALE
u | 0 | 100

FLUTTER MODE

SPECTRAL DENSITY, P(w)
l
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Fig. 12. A typical power spectrum of the test panel at the flutter
Mach number. The spectrum was obtained using a 2 ¢/s
bandwith filter,
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Fig. 13. Panel response during flutter,
(a) Panel response, total signal
(b) Panel response filtexjed at the flutter frequency
(c) Panel response filtered at the frequency of the second

two-dimensional mode

Note: A 2 cycle/sec bandwidth filter was employed to obtain traces
(b) and (c). Vertical scales are different for all three traces.
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AT M =4¥2 FROM A TWO MODE ANALYSIS
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Simply supported case

—-— Estimated curve for M=1.35
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FIG.19-VARIATION OF "FIRST MODE" THICKNESS REQUIREMENTS
WITH THE STRUCTURAL DAMPING COEFFICIENT g. BRASS
PANELS AT CONSTANT SEA LEVEL STAGNATION CONDITIONS
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FIG.20-EFFECT OF INITIAL GCURVATURE UPON FLUTTER

BOUNDARIES AT M=1.3 ACCORDING TO A TWO MODE
ANALYSIS
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—o— Experimental Results For"Flat"
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